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                                                        Abstract 

 

 

 

 

The exploitation of low and medium grade heat is receiving  growing interest due to the increased concern 

about energy storage and global warming. There are a number of new solutions proposed to generate 

electricity from the low temperature heat source. Among them, organic Rankine cycle  is one of the 

promising technologies aimed at converting low grade heat into electricity  and is used in practical industry 

applications exploiting biomass, solar power, ocean thermal energy, geothermal energy and waste heat. In 

fact, industrial plants continuously reject large amounts of thermal energy through warm liquid or gaseous 

effluents directly into the atmosphere due to the lack of effective methods for its recovery and utilization 

during their normal operation. Recovering energy from waste flue gas, converting it to electricity, can 

reduce fossil fuel consumption and environmental problems. Therefore, greater and greater attention has 

been paid to these technologies in recent years and many researches mainly focused on working fluid 

selection and optimization of organic Rankine cycles. 

Heat exchangers are one of the main source of entropy generation that reduce the performance of the 

cycle. The optimization of heat exchangers can help enhance the exploitation of the heat source.  

In this work, I employ the multi-objective genetic algorithm to optimize the performances of the organic 

Rankine cycle and the design of the heat exchangers. I consider two levels of optimization. The first level 

aims to define the operating conditions of the cycle in order to maximize the net power output and to 

minimize the entropy generation rate. The second levels of optimization aims to model the heat exchangers 

in order to minimize simultaneously volume, pressure drop and total annual cost.  

I consider the evaporating pressure and the working fluids as optimization variables for the first level of 

optimization. Moreover, I select the working fluids based on environmental impact, safety and availability. 

 The design parameters of the second level of optimization are the geometric characteristics of the heat 

exchangers. Flat plate heat exchangers with herringbone corrugations are selected for low-grade heat 

source and six design parameters are used to model the pre-heater and the evaporator: plate width, plate 

length, channel spacing, Chevron angle, number of channels per pass and number of passes.  

Shell and tube heat exchangers are considered for higher heat transfer rate such as the heat recovered 

from gas turbine in off-shore applications. The design variables considered are: shell diameter, tube outer 

diameter, baffle spacing at the center, baffle spacing at the inlet and outlet, baffle cut, tube pitch, layout of 

the tubes and fluid arrangement. 

The results of the first level of optimization indicate that the working fluid, the evaporating pressure and 

the pinch point have the major impact on the performance of the cycle. Among the fluids considered, 

R245fa, R236ea and R245ca are the most promising. The environmental impact, the safety and the 

performances of these fluids represent the best trade-off for medium-grade heat source. 

In the second level, the results of the multi-objective optimization clearly reveal the antagonism between 

the two objective functions. Namely, the lower the compactness, the higher the pressure drop of the heat 

exchangers. Total annual cost can be used to find the minimum between initial costs and operating cost. 

Initial cost is related to the volume whereas operating cost depends on the pumping power and on the 

pressure drop.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

                                             Nomenclature 

 

 

 

 

  Area [  ] 
  Channel spacing [ ] 
   Heat capacity [      ] 

    Initial cost [ ] 
    Operating cost [      ] 

     Total annual cost [      ] 
  Diameter [ ] 
   Hydraulic diameter [ ] 
     Diameter of the circle through the centers of the 

outermost tubes 

[ ] 

     Diameter of the circle through the outermost tubes [ ] 
   Shell diameter [ ] 
   Electricity cost [     ] 
   Pumping power – shell side [ ] 
   Pumping power – tube side [ ] 
  Friction factor [ ] 
   Correction factor [ ] 
  Gravitational acceleration [   ⁄ ] 
  Mass velocity [     ⁄ ] 
  Specific enthalpy [    ⁄ ] 
    Latent heat  [   ⁄ ] 

 ̇ Irreversibility rate [   ] 
  Thermal conductivity  [   ⁄ ] 
   Baffle cut [ ] 
  Length [ ] 
     Baffle spacing  [ ] 
     Baffle spacing at inlet/outlet [ ] 
   Plate width [ ] 
   Plate length [ ] 
 ̇ Mass flow rate [      ] 
  lifetime [     ] 

         Number of channels per pass [ ] 
      Number of pass [ ] 

      Entropy generation number – temperature contribution [ ] 

      Entropy generation number – pressure drop contribution [ ] 
   Number of tubes [ ] 
   Nusselt number [ ] 
   Operating hours [          ] 
   Corrugation pitch [ ] 
   Tube pitch [ ] 
  Pressure [   ] 
   Prandtl number [ ] 



   Heat flow rate hot side [ ] 
   Heat flow rate cold side [ ] 

 ̇ Heat flow rate [ ] 

   Reynolds number [ ] 
   Fouling factor tube side [    ⁄ ] 
   Fouling factor shell side [    ⁄ ] 
  Specific entropy [   ⁄ ] 

 ̇ Entropy generation rate [   ⁄ ] [   ] 
  Plate thickness [ ] 
   Dead temperature [ ] 
  Temperature [ ] 
  Internal energy [ ] 
  Velocity [  ⁄ ] 
  Overall heat transfer coefficient [    ⁄ ] 
  Volume [  ] 
  Specific volume [    ⁄ ] 
  Quality [ ] 
  Channel aspect ratio [ ] 

 ̇ Power [ ] 

 ̇    Reversible power [ ] 
   
   
   
Greek symbols   

  Heat transfer coefficient [    ⁄ ] 
  Chevron angle [ ] 
   Pressure drop [   ] 
  Effectiveness [ ] 
  Void fraction [ ] 

     Efficiency of ORC [ ] 
     Isentropic efficiency of expander [ ] 

      Isentropic efficiency of pump [ ] 

     Angle between the baffle cut and two radii of a circle 
through the centers of the outermost tubes  

[   ] 

   Angle in radians between two radii intersected at the 
inside shell wall with the baffle cut 

[   ] 

  Thermal conductivity [   ⁄ ] 
  Dynamic viscosity [    ] 
   Dynamic viscosity at wall [    ] 

  Density [     ] 
  Irreversibilty ratio [ ] 
  Enlargement factor [ ] 

   
   
   
Subscript   

s Shell side  
t Tube side  
h Hot side  
c Cold side  

eva Evaporator  
eco Economizer  



exp Expander  
cond Condenser  

p Pump  
l Liquid  
g Vapor  
i inner  
o outer  
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1                              Organic Rankine Cycle 

 

 

 

1.1. Organic Rankine Cycle 

The operating principle  of ORC is the same as the conventional Rankine cycle  with the difference that the 

working fluid is an organic compound instead of water. The simplest cycle consists of a pump, an 

evaporator, an expander and a condenser. The pump pressurizes the liquid fluid which is injected into an 

evaporator to produce a vapor that is expanded in a turbine connected to a generator. The evaporator is 

the device that allows the heat transfer between the heat source and the working fluid. Finally, the vapor 

discharged from the turbine is condensed and sucked up by the pump to start a new cycle (Fig.1.1). In order 

to enhance the performance of the cycle, it is possible to include a heat exchanger at the outlet of the 

turbine to preheat the pumped fluid that will enter the evaporator as shown in Fig.1.2. 

 

Figure 1.1. Rankine cycle with ideal transformations  
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Figure 1.2. Organic Rankine cycle with regenerator 

An ideal Rankine cycle is composed by four processes as shown in fig. 1.2. The segment 1-2is represents an 

isentropic compression of the saturated liquid from the condensing pressure to the evaporating pressure. 

Along the ideal isobaric line 2is-3, heat is extracted from the heat source and transferred to the working 

fluid. Afterwards, the fluid is expanded through an isentropic process and finally an isobaric heat transfer 

occurs in order to return at the initial condition. More realistic cycle is represented by an increase of 

entropy in the compression and expansion process. Furthermore, heat exchangers are characterized by 

pressure drops.   

 

Figure 1.3. Rankine cycle with real transformations  

The turbine is connected to a generator so that the net power output is the difference between the output 

work and the input work in the pump. 

 

1.2. Selection of the working fluid  

One of the most interesting aspects of ORC is the selection of the fluids that could be used in the cycle. 

Nowadays, there are several  organic fluids and the designer must take into consideration different aspects 
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to choose the best one. Working fluid selection for ORC has been studied in a number of previous works 

[1,2,3] and several criteria are defined such as having optimal thermodynamic properties at the lowest 

temperatures and pressures and being economical, nontoxic and nonflammable. Furthermore , the growing 

attention to environmental impact limits the list to just few fluids. 

The aspects to take in consideration are: 

a. Environmental: Montreal and Kyoto protocol define the guideline to evaluate the environmental 

impact. Ozone Depleting Potential (ODP) and Greenhouse Warming Potential(GWP) are indexes 

which intend to prevent the destruction of the ozone layer and emission of gases causing the 

greenhouse effect. Due to environmental concerns, some working fluids have been phased out, 

such as R-11, R-12, R-113, R-114 and R-114 while some others are being phased out by 2020 or 

2030 (such as R-21, R-22, R-123,R-124, R-141b, R-142b and R-134a) 

 

b. Safety: the fluid should be non-toxic, non-corrosive and non-flammable. The security classification 

of the ASHRAE is used as an indicator of the fluids’ degree of danger. 

 

c. Stability: chemical stability is an important characteristic of the fluid which can reduce the 

operating condition of the plant. Too high operating temperature could break down the fluid and 

produce toxic and irritating compounds that could induce health problems if leaks  occur. 

 

d. Pressure: The higher the pressure, the higher the equipment cost necessary to the plant in order to 

ensure high levels of resistance. 

 

e. Availability and low cost: High availability and/or low cost are preferred. 

 

f. Latent heat and molecular weight: The greater the molecular weight and latent heat of the fluid, 

the more energy can be absorbed from the heat source in the evaporator and, therefore, the size 

of the installation and the consumption of the pump can be smaller, due to decrease of the flow 

rate required. 

 

g. Curve of saturation: The thermodynamic properties of the fluid could have a great influence on the 

characteristic of the ORC. The slope of the saturation curve can be negative, vertical or positive as 

shown in Fig.1.4. The saturation curves are called wet, isentropic and dry respectively. ORC are 

designed to operate  at low and medium temperature  so the superheating of the vapor, as in the 

traditional steam Rankine cycle, is not suitable. Moreover, when an expansion of a wet fluid 

without superheating happens, it falls into the liquid/vapor area, causing damage to the turbine 

and inefficiencies in the cycle because of the phase change. Isentropic and dry fluids can expand 

and fall into the saturated vapor zone or in the superheated zone without causing problems. 
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Figure 1.4.Typical saturation curves for dry, wet and isentropic fluid 

 
Figure 1.5. Fluid state at the outlet of the turbine. 

From the previous considerations the influence of fluid selection on the cycle performance is clear. One of 

the most important factors which influence the choice of the fluid is the temperature of the heat source. A 

rough screening is based on the heat source temperature as shown in Fig. 1.6. 

 

 

Figure 1.6. Range of use of typical organic fluids. 
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1.3. Applications of the ORC technology according to the energy source 

Modularity, versatility and the possibility of using different temperature ranges are some of the most 

interesting characteristic of ORCs. This technology can be used in different ways in order to achieve 

different goals. One of the most attracting uses is the matching  of topping and bottoming cycles, producing 

heat and power. 

 

Figure 1.7. Waste heat recovery system. 

A review on the possible configurations that can be done with the ORC is reported below. 
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Figure 1.8. ORC applications. 

 

1.4. Mathematical model 

According to the first and second law of thermodynamics, the following equations can be applied to 

calculate the performance indexes of organic Rankine cycle. In order to simplify calculations some 

assumption are necessary.  The cycle operates at steady state and pressure drops are not considered in 

connecting pipes and heat exchangers. Moreover, heat losses in each component are ignored an the 

isentropic efficiency of pump and expander are fixed. 

 

Figure 1.9. (a)T-Q diagram of pre-heater and evaporator; (b) Organic Rankine cycle for r123. The most 

important state points are displayed. 

The available energy that can be extracted from the heat source can be calculated as 

 ̇    ̇   (              )   ̇   (     )                                          (   )  

The power necessary to the pump is: 

 ̇   ̇   (            )   ̇   (     )   ̇   (        )                         (   )  

The heat exchange in  the evaporator is obtained by: 

 ̇    ̇   (                )   ̇   (     )                                   (   )  

Along the isobaric process, sensible and latent heat transfer are expressed as: 
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 ̇         ̇   (     )                                                              (   )  

 ̇        ̇   (     )   ̇   (      )                                                    (   )  

 ̇         ̇   (      )                                                           (   )  

The power extracted by the expander can be calculated by the expression: 

 ̇   ̇   (            )   ̇   (     )   ̇   (        )                              (   )  

The heat exchange in  the condenser is: 

 ̇    ̇   (                  )   ̇   (     )                            (   )  

This heat is transferred to the cooling fluid (water): 

 ̇     ̇    (                )   ̇    (       )                            (   )  

 

Figure 1.10. (a) Isentropic expansion; (b) Isentropic compression. 

It is clear that the lower condensation temperature is, the more power will be generated by ORC unit. 

However, condensation temperature is strongly limited by the cooling source. Furthermore, a lower 

condensation temperature will inevitably lead to a larger cooling heat transfer surface and more complex 

sealing devices. Hence, a low condensation temperature implies high investment cost. 

The thermal efficiency of ORC is defined as: 

     
 ̇   

 ̇  

 
 ̇   ̇ 

 ̇  

                                                                  (    )  

The performance of evaporator is expressed by the effectiveness: 

  
 

    
 

 ̇  (     )

( ̇  )
   

(     )
 

 ̇  (     )

( ̇  )
   

(     )
                                   (    )  

Finally, the system efficiency can be calculated as the product of thermal efficiency and effectiveness.  
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                                                                                (    )  

Besides first law analysis, it is important to consider the irreversibility rate in various processes of the 

system in order to carry out an exergy (or entropy ) analysis of the ORC.  In a real process, the total entropy 

generation is caused by external and internal factors. The internal entropy generation mainly occurs due to 

pressure drop caused by friction, losses in the turbine and internal transfer of energy over a finite 

temperature difference in the components. The external entropy generation can be caused by the 

mechanical transfer of work and heat transfer over a finite temperature difference. 

The irreversibility rate can be calculated for each component of ORC defining an appropriate control 

volume: 

 ̇    

       

  
                                                                           (    )  

 ̇   ̇  [∑        ∑       
        

  
 ∑

  

  
 

]                            (    )  

Where    is the thermodynamic temperature of each heat source and    is the heat transferred across the 

control volume.    is the ambient temperature. The assumption that the system works at the steady state 

implies that 
       

  
  . 

Based on the cycle description above, the irreversibility rates for each component can be expressed as: 

  ̇    ̇    [(     )  
(     )

  
]   ̇    [(     )  (     )]                            (    )  

  ̇   ̇    (     )                                                                  (    )  

  ̇     ̇    [(     )  
(     )

  
]   ̇    [(     )  (       )]                            (    )  

  ̇   ̇    (     )                                                                  (    )  

If the control volume is defined around the ORC 

  ̇      ̇    [ 
(     )

  
 

(     )

  
]                                                 (    )  

From the previous expressions, it is possible to calculate the entropy generation simply dividing by   . 

 ̇     ̇  [(     )  
(     )

  
]   ̇  [(     )  (     )]                            (    )  

 ̇     ̇  (     )                                                               (    )  

 ̇      ̇  [(     )  
(     )

  
]   ̇  [(     )  (       )]                            (    )  

 ̇      ̇  (     )                                                              (    )  
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 ̇       ̇  [ 
(     )

  
 

(     )

  
]                                            (    )  

The Irreversibility ratio is defined as the ratio between the total irreversibility rate of the system and the 

total energy supplied by the thermal source: 

  
  ̇    

 ̇  

                                                                                 (    )  

Based on exergy destruction in the system, it is possible to calculate the second law efficiency. It is defined 

as the ration between the turbine output and the maximum work obtainable by the system: 

    
 ̇

 ̇    ̇    

                                                                            (    )  

The cycle considered is a simple cycle where the working fluid is saturated liquid at the exit of the 

condenser. A sub-cooling of 5°C can be taken in consideration. As explained before, no superheating is 

necessary. However, 5°C of superheating could be imposed. Minimum approach temperature of 10°C in the 

evaporator and 10 °C in the condenser is assumed when comparison of working fluid on the basis of the 

maximum power output is carried out. This imposition will be removed when comparison will be carried 

out with a fixed heat flux. The pinch point in the evaporator could be either at the point where evaporation 

starts or at the inlet of working fluid as shown in Fig.1.11. It is possible to forecast the position of pinch 

point considering  working fluid and boundary conditions, however, a check is necessary. 
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Figure 1.11.(a) Rankine cycle(b) Pinch point position. Inlet of pre-heater or inlet of evaporator. 

Pinch point plays a key role in influencing the heat transfer performance. This is the smallest heat transfer 

temperature difference in the vapor generator which determines the performance limit (heat transfer and 

entropy generation) of evaporator and economizer. 

 

1.5. Fluid candidates and their properties 

The screening of  more than 20 working fluids has been carried out based on thermodynamic and physical 

properties, stability and compatibility, environmental impacts, safety, availability and cost. Some of the 

most important saturation curves of the fluid are shown in the following figure: 

 

Figure 1.12. Saturation curve of typical organic fluids. 

Thermodynamic and physical properties are the first characteristics to take into consideration. The 

molecular weight is related to the density of the fluid whereas the critical point suggests the possible 

operating temperature and pressure range. Parameter  , is related to the type of the fluid (wet, isentropic 

or dry) thus influences the effectiveness of superheating. 

As described by Chen at all. [3], there are five groups of fluids that are similar characteristics.  

 Benzene and toluene. They are considered as isentropic fluids with relatively high critical 

temperatures. They are used for medium-high operating temperature. 

 Fluids R-170,R7-44, R-41,R-23,R-116,R-32,R-125 and R143a. This group of fluids can be considered 

as wet fluids with low critical temperatures and reasonable critical pressure. These characteristics 

are desirable for supercritical ORC. 
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 Fluids propyne , HC-270,R-152a, R-22 and R-1270. They are wet fluids with relatively high critical 

temperatures. Superheating is usually needed when they are applied in organic Rankine cycles. 

 Fluids R-21,R142b,R-134a,R-1234yf,R-290,R-141b,R-123,R-245ca,R-245fa,R-236ea,R-124,R-227ea 

and R-218. They are considered isentropic fluids and are widely used for low grade heat recovery. 

 Fluids R-601,R-600,R-600a,FC-4-1-12,RC318,R-3-1-10.  These fluids are considered dry fluids and 

can be used in supercritical Rankine cycles and organic Rankine cycles. 

 

       Fluid     Tcrit[K]   Pcrit[bar] Molar mass[g/mol]   Density[kg/m^3]  
      r245fa       427.16        36.51            134.05            516.08  
        r123       456.83        36.62            152.93            550.00  
       r141b       477.50        42.12            116.95            458.56  
       r142b       410.26        40.55            100.50            446.00  
      r236ea       412.44        35.02            152.04            563.00  
      r245ca       447.57        39.25            134.05            523.59  
     toluene       591.75        41.26             92.14            291.99  
     benzene       562.02        49.06             78.11            304.79  
         r11       471.11        44.08            137.37            554.00  
         r21       451.48        51.81            102.92            526.00  
       r134a       374.21        40.59            102.03            511.90  
      r227ea       374.90        29.25            170.03            594.25  
     r1234yf       367.85        33.82            114.04            475.55  
    cyclopen       511.69        45.15             70.13            267.91  
    cyclohex       553.64        40.75             84.16            273.00 

Table 1.1. Properties of typical organic fluids 

The decision on which fluids could be used may be based on how the operating temperature is tailored to 

cope with the heat source temperature profile. The parameters that can be used to evaluate the 

performance of different working fluids are the net power output (or the system efficiency) and the 

irreversibility ratio. 
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2                              Heat Exchanger Design 

 

 

 

2.1. Heat Exchanger Design Methodology 

The methodology of heat exchanger design is complicated because several quantitative and qualitative 

design aspects must be taken into account to get to an optimal solution. An overview of heat exchanger 

design approach is presented below but a more detailed description is shown in [8,9,10] . 

A methodology for designing a new heat exchanger is illustrated in figure 2.1; it is based on experience and 

presented by Kays and London (1998), Taborek (1988), and Shah (1982) for compact and shell-and-tube 

exchangers. Major design considerations include: 

 

 Process and design specifications 

 Thermal and hydraulic design 

 Mechanical design 

 Manufacturing considerations and cost 

 Trade-off factors and system-based optimization 

The design considerations are usually not sequential and there is a strong relation between several aspects. 

This implies a number of iterations to achieve the optimal solution.  

Multi-objective optimization can reduce iterations to find the optimal solution, hence less time is required. 
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Figure 2.1. Heat exchanger design 

methodology. (Taken from 

Shah,1982;Taborek, 1988; Kays and 

London,1988) 
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2.2.  Problem Specifications 

First of all it is necessary to define the design basis (i.e. design conditions). Design requires the specification 

of operating and the environmental conditions upon which the heat exchanger is going to be operated. It is 

important to analyze heat exchanger performance at the design point and off-design conditions.  

In a ORC the operating conditions could be: 

 Fluids and their thermo-physical properties 

 Inlet temperatures of both fluid streams 

 Inlet pressure of both fluid streams 

 Required heat duty 

 Maximum allowed pressure drop on both fluid sides 

 Maximum allowed space and weight occupied by HE 

 Corrosive and fouling characteristics of the fluids 

 Costs 

 Material 

In an organic Rankine cycle there are several aspects that influence the design of heat exchangers. A 

previous cycle optimization is important in order to select the right fluid and operating conditions.  

 

2.3.  Exchanger Specifications 

Based on the problem specifications, the exchanger construction type and flow arrangement are first 

selected. Selection of the construction type depends on several aspects: 

 Fluid (gas, liquid, evaporation/condensation) 

 Operating pressures 

 Operating temperatures 

 Mass flow rate 

 Fouling and cleneability 

 Fluids and material compatibility  

 Corrosiveness of the fluids 

 Costs 

In an ORC, typically, are used plate heat exchangers or shell and tube heat exchangers. Afterwards, it is 

necessary to select the core or surface geometry and material. The core geometry for a shell and tube 

exchanger includes shell type, number of passes, baffle geometry. The surface geometry is chosen for a 

plate heat  exchanger. The criteria for core and surface geometry are desired heat transfer performance 

within specified pressure drop, operating pressure and temperature, thermal/pressure stresses, leaks and 

corrosion characteristics of the fluids. 

 

 

2.4. Thermal and Hydraulic Design 
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Heat exchanger thermal and hydraulic design procedures involve exchanger rating and/or sizing and this is 

the core of the procedure. There are two main relations that constitute the entire thermal design 

procedure: 

I. Enthalpy rate equations 

    ̇      ̇ (            )                                                        

    ̇      ̇ (            )                                                        

 

                                                                                           

 

II. Heat transfer rate equation 

                                                                                         

The first equation relates the heat transfer rate with the enthalpy rate change for an open non-adiabatic 

system. The second equation reveals a convection-conduction heat transfer phenomena in a two fluid heat 

exchanger. It is possible to note the influence of the area ( ) and the overall heat transfer coefficient ( ) on 

heat transfer rate. The heat transfer rate is also proportional to the mean temperature difference (   ). 

This mean temperature difference is a log-mean temperature difference and takes into account the 

arrangement (countercurrent or parallel flow). 

 

2.5.  Mechanical Design 

Mechanical design is fundamental to ensure the mechanical integrity of the heat exchanger under steady-

state, transient, startup, shutdown, upset and part load operating conditions. The heat exchanger core is 

designed for the desired structural strength based on the operating pressures, temperatures, and 

corrosiveness or chemical reaction of fluids with materials. Pressure/thermal stress calculations are 

performed to determine the thicknesses of critical parts in the exchangers, such as the fin, plate, tube, 

shell, and tube sheet. In addition to the heat exchanger core, the proper design of flow distribution devices 

(headers, tanks, manifolds, nozzles, or inlet–outlet pipes) is made to ensure that there is uniform flow 

distribution through the exchanger flow passages, and that neither erosion nor fatigue will be a problem 

during the design life of the exchanger. 

 

 

2.6.  Manufacturing Considerations and Cost Estimates 

The overall cost, also called lifetime costs, associated with a heat exchanger may be categorized as the 

capital, installation, operating and sometimes also disposal cost. The capital (total installed) cost includes 

the costs associated with design, materials, manufacturing (machinery, labor, and overhead), testing, 

shipping, installation, and depreciation. Installation of the exchanger on the site can be as high as the 

capital cost for some shell-and-tube and plate heat exchangers. The operating cost consists of the costs 

associated with fluid pumping power, warranty, insurance, maintenance, repair, cleaning, lost 

production/downtime due to failure, energy cost associated with the utility (steam, fuel, water) in 

conjunction with the exchanger in the network, and decommissioning costs. Some of the cost estimates are 

difficult to obtain and best estimates are made at the design stage. 

2.7.  Trade-off factors and optimization 
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As mention before, several factors influence in different way the performance of heat exchangers. The 

complex procedure shown in figure 2.1 leads the designer to make a trade-off among different possible 

choices.  

In fact, heat exchangers are designed for many different applications, and hence may involve many 

different optimization criteria. These criteria for heat exchanger design may be: 

 Minimum initial and operating costs 

 Minimum weight 

 Minimum value of heat transfer surface area 

 Minimum pressure drop 

 Minimum entropy generation 

When a performance measure has been defined quantitatively it can be minimized or maximized and it is 

called an objective function in a design optimization. A particular application can also be subjected to 

certain requirements, such as required heat transfer, allowable pressure drop, weight or area limitations 

and so on. These limitations are called constraints in the design optimization. All the variables that can be 

changed are called design variables associated with a heat exchanger design. 

Nowadays, the possibility to use optimization algorithm to obtain optimal solution plays a key role in the 

thermo-economical design. Using multi-objective algorithm it is possible to evaluate the influence of a 

great number of variables on performance indexes of a system and obtain a set of solutions that have the 

best trade-off between several fitness functions. 

 

2.8.  General method for the optimum design of waste heat recovery  heat exchangers 

A key component in waste heat recovery is the heat exchanger. The profitability of an investment in waste 

heat recovery depends heavily on the efficiency of heat exchangers and their associated life cycle costs 

(purchase, maintenance, etc). The optimizations of pre-heater, evaporator, super-heater and condenser 

play an important role in the entire cycle design. According to the current technical practice, it can be 

organized at different levels of complexity with objectives sequentially defined: operating parameters, 

geometrical details and technological elements. 

According to A. Franco and N. Giannini [21] the optimization can be organized at two levels: the first one 

enables to obtain the main operating parameters of the heat exchangers, while the second involves the 

detailed designed of the component concerning the geometric variables of the heat transfer sections. The 

output of the first-level optimization is the input of the second level. 
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Figure 2.2. Two levels optimization 

Once that the optimization at the higher level is carried out, the emerged optimum results will become the 

boundary condition for the following optimization level. This means that the results coming from the higher 

optimization level represent the input data for the detailed design of the economizer and evaporator. The 

same approach can be implemented in order to optimize all the systems of the plant such as condenser, 

expander and pump.  

The first optimization aims to assess the operating parameters as pressures, mass flow rates and 

temperature profile in the evaporator. Those operating variables can be determined with thermodynamic, 

thermo-economic or economic optimization, minimizing a suitable objective function as the thermal exergy 

losses, the total cost per unit power installed or an alternative objective function.  

The second-level optimization involves the detailed design of the evaporator basing on  a thermal and fluid-

dynamic model. In this case, the objective function can be the minimization of the evaporator dimensions 

(volume, weight etc.), or the minimization of the pressure losses, for the heat flow rate defined at the 

previous level. The entropy generation minimization proposed by Bejan is another possible approach. This 

approach will be treated in the following chapters.  
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3                                            Thermal Design 

 

 

 

 

3.1. Thermal Design Theory  

In a heat exchanger two fluids are separated by a heat transfer surface and they ideally do not mix. Each 

fluids has an inlet temperature and an outlet temperature. If the temperature of inlet and outlet are equal 

means that the fluid is changing in phase. This is what happens in evaporator and condenser. The 

temperature difference along the heat exchanger  is the driving force for overall heat transfer.  Along the 

heat exchanger the fluids change their enthalpy following the first law of thermodynamics: 

    

  
  ̇    ̇    ̇ (        

  
 

 
   )   ̇ (        

  
 

 
   )               

Defining the enthalpy as: 

                                                                                     

the expression becomes: 

    

  
  ̇    ̇    ̇ (   

  
 

 
   )   ̇ (   

  
 

 
   )                         

Considering a control volume around heat exchanger at the steady state, the condition of the mass within 

the control volume and at the boundary does not vary with time. The mass flow rates and the rates of 

energy transfer by heat and work are also constant with time. There can be no accumulation of mass within 

the control volume so the mass rate balance takes the form: 

∑ ̇  

 

∑ ̇ 

 

                                                                       

Furthermore, at the steady state 
    

  
   and the equation can be rewritten as: 

 ̇    ̇    ̇ (   
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   )                              

Considering zero the terms  ̇   
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Defining as control volume each side of the heat exchanger: 

 ̇   ̇ (          )                                                                  

 ̇   ̇ (          )                                                                   

With the assumption of adiabatic system: 

 ̇   ̇                                                                                      

The subscript h and c denote hot and cold fluid, respectively. As shown in Fig. 3.1, the previous equation 

can be expressed for the differential element of area     

 

Figure 3.1. Heat transfer through a surface with conduction and convection. Radiation is neglected.(From 

Shah,1983) 

To perform the heat transfer analysis, it is necessary another equation that relate heat transfer rate  ̇, heat 

transfer area   and overall heat transfer coefficient  : 
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  ̇                                                                                         

Where   is the local overall heat transfer coefficient and is a parameter related to the overall differential 

thermal resistance    . As shown in Fig.3.2., the overall thermal resistance consists of component 

resistances in series: 
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Considering finite areas, one can obtain: 
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Figure 3.2. Thermal resistances (From Shah, 1983). 

The values of   and   are assumed to be local and the final value will be a mean value. As shown in the 

figure below, there are several resistances that influence the overall heat transfer coefficient: 
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(     )
 

                                                                       

 

The previous expressions are easy to manage but they do not take into considerations thermophysical 

properties changing with the temperature. In order to solve this problem it is possible to split up the heat 

transfer area in small portions where the heat is transferred. In this way, one can define thermophysical 

properties in each interval with better approximation. 

 

 

Figure 3.3. heat transfer surface divided in small intervals. 
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4                                Plate Heat Exchangers  

 

 

 

 

4.1. Plate Heat Exchangers 

Plate heat exchangers (PHE) consist of a stack of parallel thin plates that lie between end plates. Each fluid 

stream passes alternately between adjoining plates in the stack, exchanging heat through the plates. The 

plates are corrugated for strength and to enhance heat transfer by directing the flow and increasing 

turbulence. These exchangers have high heat-transfer coefficients and area, the pressure drop is also 

typically low, and they often provide very high effectiveness. However, they have relatively low pressure 

capability. 

The fluids are directed into their proper chambers either by a suitable gasket or a weld, depending on the 

chosen type of exchanger. Traditionally, plate and frame exchangers have been used almost exclusively for 

liquid to liquid heat transfer. The best example is in the dairy industry. Today, many variations of the plate 

technology have proven useful in applications where a phase change occurs as well. This includes 

condensing duties as well as vaporization duties. Plate heat exchangers are best known for having overall 

heat transfer coefficients (U-values) in excess of 3–5 times the U-value in a shell and tube designed for the 

same service. 

 
Figure 4.1. Plate heat exchanger 

Plate heat exchanger is an attractive option when more expensive materials of construction can be used. 

The significantly higher U-value results in far less area for a given application. The higher U-values are 
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obtained by inducing turbulence between the plate surfaces. Owing to this they are also known to minimize 

the fouling. 

Some inherent limitations of the plate heat exchangers are caused by plates and gaskets as follows. The 

plate exchanger is capable of handling up to a maximum pressure of about 3 MPa gauge but is usually 

operated below 1.0 MPa gauge.  

The gasket materials restrict the use of PHEs in highly corrosive applications; they also limit the maximum 

operating temperature to 260°C but are usually operated below 150°C to avoid the use of expensive gasket 

materials. Gasket life is sometimes limited. Frequent gasket replacement may be needed in some 

applications. For equivalent flow velocities, pressure drop in a plate exchanger is very high compared to 

that of a shell-and tube exchanger. However, the flow velocities are usually low and plate lengths are 

‘‘short,’’ so the resulting pressure drops are generally acceptable. 

Recently, the development of brazing techniques has allowed the use of PHEs as evaporators and 

condensers.  Brazed plate heat exchangers can manage high pressures (up to 40 bar) and temperatures (up 

to 200°C). Since the advent of the brazed plate heat exchangers (BPHE) in the 1990s, the studies on the 

condensation and/or evaporation heat transfer have been started for its application in refrigeration and 

power system application. The disadvantage of such a design is the loss of disassembling flexibility on the 

fluid sides where the welding is done.  

Table 4.1. 

Unit  

Maximum surface area 2500 m2 

Number of plates 3 to 700 

Port size Up to 400 mm 

  

Operation  

Pressure 0.1 to 3.0 MPa 

Temperature -40 to 260°C 

Maximum port velocity 6 m/s (for liquids) 

Channel flow rates 0.05 to 12.5 m3/h 

Maximum unit flow rate 2500 m3/h 

  

Plates  

Thickness 0.5 to 1.2 mm 

Size 0.03 to 3.6 m2 

Channel spacing 1.5 to 7 mm 

Width 70 to 1200 mm 

Length 0.4 to 5 m 

Hydraulic diameter 2 to 10 mm 

Surface area per plate 0.02 to 5 m2 

  

Performance  

Temperature approach As low as 1°C 

Heat exchanger efficiency Up to 93% 

Heat transfer coefficients for water-water duties 3000 to 8000 W/ m2K 
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4.2.  Geometry 

The corrugated grooves on the right and left outer plates have a ‘V’ shape but those in the middle plate 

have a contrary ‘V’ shape on both sides. This arrangement allows the flow to be divided into two different 

flow directions along the plates. Due to the contrary ‘V’ shapes between two neighbor plates the flow 

streams near the two plates cross each other in each channel. This cross flow results in significant flow 

unsteadiness and randomness. In this way, the flow is highly turbulent even when the Reynolds Number is 

low. 

 

 
Figure 4.2. (a) Geometric characteristics of chevron pattern; (b) flow inside a channel. 

 

Different geometric parameters of PHE are defined as follows: 

1. Chevron angle 

The angle of the herringbone    generally varies between 25° and 65°. This angle has a great 

influence on heat transfer coefficient and pressure drop. 

 

2. Mean channel spacing 

This is defined as the actual gap available for the flow. The depth of the corrugations generally 

varies between 3 and 5 mm: 
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  (   )                                                                            (   ) 

 

3. Enlargement factor 

The factor   is the ration between the developed length and the projected length. The value of   is 

related to the mean channel spacing     and the corrugation pitch   : 
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(  √      √  

  

 
)                                                         (   ) 

 

4. Channel flow area 

Channel flow area is the value of the cross flow section area between two plates: 

                                                                                    (   ) 

 

5. Channel equivalent diameter  

The behavior of the corrugation path can be evaluated using the hydraulic diameter: 

   
                   

              
 

   

   
 

  

 
 

 (   )

 
                                       (   ) 

 

6. Heat transfer area 

The heat transfer area can be the effective area of the plate including the corrugations or the 

projected area of the plate on a plane.  

                                                                                            (   ) 

                                                                                      (   ) 

 
Fig. 4.3. Plate patterns: (a) washboard, (b) zig-za , (c)chevron or herringbone ,(d) protrusions and 

depressions ,(e) washboard with secondary corrugations, (f) oblique washboard. 

 

When the plates are assembled in a stack, the corrugations on the adjoining plates form interrupted flow 
passages, and these inter-corrugation flow paths promote enhanced convective heat transfer coefficients 
and decreased fouling characteristics. The corrugations also increase the effective surface area for heat 
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transfer as well as plate rigidity, and the multiple metal-to-metal contact points between adjacent plates 
lend greater mechanical support to the stack. 
 

4.3.  Flow arrangement 

A large number of flow arrangements are possible in a plate heat exchanger depending on the required 

heat transfer duty, available pressure drops, minimum and maximum velocities allowed, and the flow rate 

ratio of the two fluid streams. In each pass there can be an equal or unequal number of thermal plates.  

There are three main ways to arrange the plates: 

4.3.1.  1/1 arrangement: one passage for cold fluid and one passage for hot fluid. Both fluid flow counter-

current. 

4.3.2.  n/n arrangement: multi-pass arrangements are used when NTU values greater than those given by 

single plate are required. 

4.3.3. m/n arrangement. This arrangement can be used when there is a great difference between the 

mass flow rates or a low value of pressure drop is required for one of the fluids. 

 
Fig. 4.4. Plate heat exchanger arrangements. 
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4.4.  Single-phase heat transfer and pressure drop 

There are over thirty correlations in literature [4] that could be considered. The base formulation is: 
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        ,   are respectively heat transfer coefficient, density, heat capacity, viscosity and thermal 

conductivity.           is the number of channel per pass. The values of constant   and exponents       

are obtained for different plate configurations and fluid flows. Generally the values of these parameters 

are: 

           

            

           

           

 

Following, it is reported Martin’s equation for the calculation of heat transfer coefficient of liquids that flow 

on herringbone plates. The correlation is valid for turbulent and laminar flow and takes into consideration 

chevron angle : 
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The influence of   on heat transfer coefficient and pressure drop is evident. With a fixed specific mass flow 

rate, the higher , the higher the heat transfer coefficient since more turbulence is created. On the other 

hand, the higher    the higher the pressure drop. 

 

4.5.  Two-phase heat transfer  

For two-phase applications, such as evaporators and condenser, the correlations available are less and the 

studies in this field are growing. Contrary to single-phase heat transfer, two-phase flow is strictly correlated 

with a lot of parameters such as quality, heat flux, surface characteristic, film thickness and mass flow rate.  

Recently, Yan and Lin [5] carried out experimental study on compact brazed heat exchangers with R-134a 

as a refrigerant. Their survey revealed interesting characteristics about flow evaporation in plate heat 

exchanger. They observed higher heat transfer coefficient as compared to circular tubes, especially at high 

vapor quality convective regimes. Furthermore, they noted a weak effect of heat flux on the overall heat 

transfer whereas mass flux played a key role. 

Further experimental studies have been conducted by Hsieh-Lin[6] and Han-Lee-Kim[7]. They carried out 

several experimental investigations and they observed that both, evaporation heat transfer coefficient and 

pressure drop increase with increasing mass flux and vapor quality and with decreasing evaporation 

temperature and chevron angle.  

They suggested empirical correlations of Nusselt number and friction factor including geometric factors for 

the tested brazed plate heat exchangers. The correlations are shown below: 
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One can observe that   ,           are non-dimensional geometric parameters that involve corrugation 

pitch (  ), hydraulic diameter (  ) and chevron angle ( ).       and     are respectively an equivalent 

Reynolds number and an equivalent boiling number. The deviation between correlations and experimental 

data are within ±20% for Nusselt number and ±15% for friction factor. 

 

4.6. Pressure drop for single phase flow 

The pressure drop of each fluid is given by the sum: 

                                                                                       (    ) 

Where: 

                        
  ⁄  is the pressure drop at the inlet and outlet channels. It is caused by 

the contraction and expansion losses through the ports.        is the number of passages of each 

fluid through the heat exchanger. 

            is the pressure drop due to the friction loss of the stream along one channel. It can be 

estimated with the following expression: 
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) is the contribute due to the variation of the momentum of the fluid. 

              is the contribute due to the variation of altitude. 

 

4.7. Pressure drop for two - phase flow 

The homogeneous flow model provides the simplest technique for analyzing two phase flow. In the 

homogeneous model, both liquid and vapor phases move at the same velocity: 

                                                                                        (    ) 

The homogeneous model considers the two-phase flow as a single-phase flow having average fluid 

properties, which depend upon mixture quality. The void fraction   based on the homogeneous model can 

be expressed as follows: 
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The void fraction   is defined as the ratio between the volume occupied by the vapor and the total volume. 

The quality    is the ratio between mass of vapor and liquid. Density and specific volume can be expressed 

as follows: 
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In the homogeneous flow model two phase stream is considered as single phase stream having mean 

velocity         and mean density  . 

For a straight channel of flow area , wetted perimeter P, hydraulic diameter       , inclination 

angle  , and length  , connected to inlet and outlet, the total pressure can be obtained from the steady‐

state momentum equation: 
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Note that the above equations are formally identical to the single‐phase case with the mixture density,    

used instead of the single‐phase density. The friction factor can be evaluated with the Kim’s correlation 

reported in paragraph 4.5. 
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5                        Shell and Tube Heat Exchangers  

 

 

 

 

 

5.1. Shell and tube heat exchangers 

Shell and tube heat exchangers are probably the most widespread and commonly used basic heat 

exchanger configuration in the process industries. This statement is based on several reasons. The shell and 

tube heat exchanger provides a comparatively large ratio of heat transfer area to volume and weight. It 

provides this surface in a form which is relatively easy to construct in a wide range of size and which is 

mechanically rugged enough to withstand stresses during fabrication and normal operating conditions.  

Furthermore, there are many modifications of the basis configuration, which can be used to solve special 

problems. The shell and tube heat exchanger can be easily cleaned, and those components most subject to 

failure, such as gaskets and tubes, can be easily replaced.  

Although several modification of the basis configuration can be perform, typical shell and tube heat 

exchanger is composed by a bundle of tubes encased in a shell. The tubes provide the heat transfer surface 

between one fluid flowing inside the tube and the other fluid flowing inside across the outside of the tubes. 

The tubes may be bare or with extended or enhanced surfaces on the outside. Extended surfaces are used 

when one fluid has substantially lower heat transfer coefficient than the other fluid. 

 

Figure 5.1.Shell and tube heat exchanger 
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Whereas one fluid flows inside the tubes, the other one flows inside the shell and it is driven by the baffles 

that increase the velocity and the heat transfer coefficient. Furthermore, baffles support the tubes in the 

proper position during assembly and operation and prevent vibration of the tubes caused by flow induced 

eddies. The most common baffle shape is the single segmental with a baffle cut of 20 to 45 percent of the 

diameter. Other typical baffle segmental are shown in literature [8,9].  

The baffle spacing should be correspondingly chosen to make the free flow areas through the “window” 

(the area between the baffle edge and shell) and cross the tube bank roughly equal. 

 

5.2. Allocation of streams in a shell and tube Exchanger 

In principle, either stream entering a shell and tube exchanger may be put on either side tube or shell side. 

However there are some considerations which can lead to a choice that could be the most economical: 

5.2.1. High pressure 

The higher pressure stream should be allocated to the tube side. In fact, high pressure tube are 

cheaper than high pressure shell. 

 

5.2.2. Corrosion 

Corrosion generally dictates the choice of material of construction, rather than exchanger 

design. The corrosive fluid will ordinarily be placed in the tubes so that at least the shell need 

not be made of corrosion-resistant material.  

 

5.2.3. Fouling 

Fouling enters into the design of almost every process exchanger to a measurable extent, but 

certain streams foul so badly that the entire design is dominated by features which seek: 

 To minimize fouling(high velocity, avoided of dead or eddy flow regions) 

 To facilitate cleaning (fouling fluid on tube-side, wide pitch and rotate square layout) 

 To extend operational life by multiple units. 

 

5.2.4. Low heat transfer coefficient 

If one stream has an inherently low heat transfer coefficient (such as low pressure gasses or 

viscous liquids), this stream is preferentially put on the shell-side so that extended surface may 

be used to reduce the total cost of the heat exchanger. 

 

5.2.5. Maximum allowable pressure drop  

The choice of tube side or shell side stream is influenced by the maximum allowable pressure 

drop. If the fluid that has the greater influence on the heat transfer has also a low pressure 

drop, that stream is put on tube side.  
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5.3.  Geometrical characteristics 

 

5.3.1. Tube diameter 

Tubes have inside diameter  , outside diameter   , length   and total number of tubes   . Total heat 

transfer area is: 

                                                                                            

Similarly, the total heat transfer area outside tube is: 

                                                                                           

Tubes dimensions are reported in Table 5.1 whereas in Table 5.2 are reported the thermal conductivity of 

the most common materials used. 

Table 5.1. Tube dimensions. Taken from Heat Exchanger Design Handbook, T. Kuppan 

Outside diameter [in] Outside diameter [mm] Wall thickness[mm] 

0.25 6.35 0.559 – 0.711 

0.375 9.525 0.711 – 0.889 – 1.245 

0.5 12.7 0.889 – 1.245 

0.625 15.875 0.889 – 1.245 – 1.651 

0.75 19.05 0.889 – 1.245 – 1.651 – 2.108 – 2.769 

0.875 22.225 0.889 – 1.245 – 1.651 – 2.108  

1.0 25.4  1.245 – 1.651 – 2.108 – 2.769 

1.25 31.75  1.651 – 2.108 – 2.769 – 3.404 

2.0 50.08 2.108 – 2.769  

Table 5.2. Thermal conductivity of the most common material used for tubes and shell. 

Material Cu Al Cu-Ni 
90-10 

Cu-Ni 
70-30 

Carbon 
steel 

stainless 
steel 

Titanium 

  [
 

  
] 

310 180 65 40 38 18 18 

 

5.3.2. Tube layout 

Tubes of the bundle are arranged with four different layouts. 30° Triangular staggered array is the most 

compact and it provides the highest heat transfer area and coefficient as well as the highest pressure drop. 

45° Triangular staggered array has lower heat transfer coefficient than the previous but it has also lower 

pressure drop. 90° Triangular staggered array should be avoided with laminar flow whereas with turbulent 
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flow provides the lowest pressure drop. In the table below are defined the various arrangements, the 

longitudinal and transverse pitch. 

Table 5.3. Tubes arrangements. 

                 
                

                    
            

                

             
            

                

            
       
       

 

Layout 

 

 

    

Transverse tube 
pitch    

   √       √    

Longitudinal tube 
pitch    

(
√ 

 
)   

  

 
      

√ 
 

5.3.3. Tube count 

The total number of tubes in a shell and tube heat exchanger depends on many geometric variables: 

 Tube diameter    

 Tube pitch     

 Layout 

 Number of tube passes 

 Type of floating head 

 The thickness and position of pass dividers 

 The omission of tubes due to no tubes in windows design or impingement plates. 

 
Fig.5.2. Nomenclature for basic baffle geometry relations for a single segmental exchanger. Shah and 

Sekulic [8] 
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The exactly tubes number is difficult to determine because the high number of variables involved. 

Although, only a direct count can define exactly the total number of tubes, some correlations are provided 

in order to estimate it. For a specified diameter of the circle through the centers of the outermost tubes, 

    , the effect of the tube bundle type on the total number of tubes    is eliminated. Taborek (1988) 

suggests an approximate expression for the tube count based on     : 
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The angle      is in radians and it is given in the following section whereas the value of    is obtained from 

figure 5.4. 

It is important to remember that the accuracy of these expressions is approximately 5-10% thus they can 

be used only in the first stage of designing. 

 

5.1.1. Window and crossflow section geometry 

In order to apply the Bell-Delaware method, it is necessary to define some geometrical characteristics of 

the single segmental E shell and tube heat exchanger. Figure 5.4 show the three sections in which can be 

divided shell and tube heat exchanger: internal crossflow, window, entrance and exit sections.  

As shown in Fig. 5.4, the window area is obtained by the expression: 

      
 

 
  

 (
  

  
 

     

  
)  

  
 

 
[
  

 
 (  

   
  

)      ]                                            

Where    is the angle in radians between two radii intersected at the inside shell wall with the baffle cut ad 

is given by: 
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Figure 5.3. Correction factor for tube count with multi-pass. Shah and Sekulic [8]. 

 

Sometimes could be necessary to calculate the fraction    of the number of tubes in one window section 

encircled by the centerline of the outer tube row: 

   
    

  
 

       

  
                                                                               

Where the angle      is expressed in radians and it represents the angle between the baffle cut and two 

radii of a circle through the centers of the outermost tubes as follows: 
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)                                                                      

Where                The number of tubes in the window section is computed as follows: 

                                                                                                      

And the area occupied by the tubes in the window section becomes: 
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Figure 5.4. (a) internal cross flow section, (b) window section, (c) entrance and exit section. Shah and Sekulic [8]. 

The net flow area in one window is then: 

                                                                                              

By application of the conventional definition, the hydraulic diameter of the window section of a segmental 

baffle can be expressed as the ratio between four times the area and the wetted perimeter: 
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The final geometrical input required for the window section is the effective number of tube rows in 

crossflow needed for the heat transfer and pressure drop correlations: 
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         ]                                                           

As far as the cross flow section, the first parameter to take into account is the fraction    of the total 

number of tubes in the cross-flow section: 
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)                                                      

The number of tubes rows       crossed during flow through one crossflow section between baffle tips may 

be estimated in the following way: 

      
      

  
                                                                              

The previous is only an approximation and a better value can be obtained from drawing and direct count. 

Another important parameter is the crossflow area at or near the shell centerline for one crossflow section. 

It may be estimated by: 

      [        
    

  

       ]                                                         

The previous expression is valid for 30° and 90° tube layout bundles. This equation is also valid for a 45° 

tube bundle layout having             and for a 60° tube bundle having            . For 45° and 60° 

tube bundle having       lower than those indicated in the preceding lines, the expression becomes: 

      [         
    

  

       ]                                                      

Finally, the number of baffles    is calculated on the basis of the geometrical parameters:                 

and    They are respectively the central baffle spacing, the inlet and outlet baffle spacing and the total 

length. 

   
           

    
                                                                          

 

5.1.2. Bypass and leakage flow areas 

In order to compute correctly the heat transfer and the pressure drop with the Bell-Delaware method it is 

necessary to consider the bypass and leakage flow areas. The flow bypass area of one baffle       is: 
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where    is the number of pass divider lanes through the tube field that are parallel to the crossflow 

stream(B) and   is the width of the pass divider pass lane. 

The tube to baffle leakage area for one baffle is: 
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The shell to baffle leakage area for one baffle is associated with the gap between the shell inside diameter 

and the baffle and it is estimated as: 

         

   

 
                                                                                

Where                 as shown below. 

 

Figure 5.5. Single segmental baffle geometry showing shell-to-baffle diameter clearance    . Shah and 

Sekulic [8] 

5.2. Heat transfer and pressure drop calculation 

As described in chapter 3, the relations used to compute heat transfer and are: 

 ̇   ̇ (          )                                                                         

 ̇   ̇ (          )                                                                         

Considering the heat capacity constant: 

 ̇   ̇     (          )                                                                         

 ̇   ̇     (          )                                                                         

The heat transfer surface can be estimated by the following expression: 

  
 ̇
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Where   is the overall heat transfer coefficient and      is the logarithmic mean temperature difference 

and is the correction factor: 

     
(          )  (          )
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According to A. Fakheri [46],    is calculated as follows: 
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Where    and    are respectively the heat transfer coefficient on the shell side and tube side,    and    

are fouling resistance and    is the thermal conductivity of the tube material. The correction factor   takes 

into consideration the reduction of the effective temperature difference due to the different arrangement 

(counter-flow/parallel-flow) of the tube when the number of passes is greater than one. 

5.2.1. Heat transfer on shell side 

Heat transfer analysis is the most important part of the design of an heat exchanger. The method that is 

applied for the calculation of the heat transfer coefficient is the Bell-Delaware method. It takes into 

account the effect of various leakage streams and bypass streams in addition to the main crossflow stream 

to the bundle. 

 

Figure 5.6. Leakage streams (A and E), bypass streams (C), crossflow stream (B). Shah and Sekulic [8] 
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In this method an ideal heat transfer coefficient     is calculated and is subsequently corrected by five 

correction factor that take into consideration the shell geometry and the effect of the above mentioned 

streams: 

                                                                                         

There are several correlations used to compute    . One of these is: 
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Shell-side mass velocity    and shell-side Reynolds number are calculated with the relations: 
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Another correlation for evaluating     is the following: 

     
         

     
                                                                         

Where   is the Colburn factor expressed in ref. [8]. 

The first correction factor in the calculation of the heat transfer coefficient on the shell-side,   , takes into 

account the baffle configuration: 

                                                                                       

The value of    represents the total number of tubes in the cross-flow section and it is calculated with 

Equation 10.15. 

The second factor in Equation 10.30 considers both tube-to baffle and tube-to-shell leakages and it is 

calculated by: 
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Where 

   
     

           
                                                                         

    
           

     
                                                                         

The expression of      ,       and       are given by Equations (10.22),(10.21) and (10.18) respectively.  

   is the correction factor that takes into account bundle and pass partition bypass stream: 
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Where 
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     represents the number of sealing strip pairs whereas       is the number of tube rows crossed during 

flow through one cross flow section baffle tips. 

The fourth correction factor    considers the variation of the baffle spacing at inlet and outlet. Usually, the 

baffles in the central sections of the heat exchanger are closer together than those at the inlet and outlet. 

The following expression estimates this influence: 

   
         

         
     

       
    

                                                                   

Considering: 
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Finally    is a correction factor for any adverse temperature gradient buildup in laminar flows: 
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Where  

                                                                                         

For            one can linearly interpolate    from the two formulas presented. 

 

5.2.2. Pressure drop on shell side 

Similar to the shell-side heat transfer calculation, the shell-side pressure drop is estimated using the Bell-

Delaware method. The expression to calculate the pressure drop considers an ideal term and some 

correction factors: 
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Where        is the ideal pressure drop in the central section and is given by 
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With the ideal friction factor 
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The pressure drop associated with an ideal one-window section        may be estimated with the 

correlation 
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Where, as described in the previous paragraphs,      is net flow area in one window section and       is 

the number of effective tube rows crossed during flow through one window zone. The correction factors 

         have the same role of          and are estimated witb the following expressions: 
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The value of   is obtained with the formula: 

   [              ]                                                                         

One can note the opposite behavior of           and        . In fact, in order to reduce the total pressure 

drop should be necessary to have the lowest possible values of           On the other hand          have to 

be as high as possible. The optimal geometry will be the result of a trade-off between the heat transfer and 

the pressure drop features and a multi-objective optimization can treat this problem. 

 

5.2.3. Heat transfer on tube side 

The tube side heat transfer coefficient is straightforward determined with the following correlation [8]: 
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Where the Reynolds number and the mass velocity     are 
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Tube-side flow area per pass     and the number of tube per pass are defined as 

     
 

 
  

                                                                                           

     
  

     
                                                                                      

 

5.2.4. Pressure drop on tube side  

The tube-side pressure drop is simply: 
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Where  
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Detailed expressions are described in ref. [8].  
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6                      Entropy Generation Minimization  

 

 

 

6.1. Entropy Generation Minimization 

Energy generation minimization is a new methodology of thermodynamic optimization based on exergy 

analysis. Inspired by the minimum production principle advanced by Prigogine [11], Bejan [12,13] 

developed the entropy generation minimization (EGM) approach to the thermal system optimization. This 

new approach is based on the simultaneous application of the first law and the second law in analysis and 

design. 

 

6.2. Energy and Exergy 

Energy is conserved in every device or process and it cannot be destroyed. The first law of thermodynamic 

states that energy flows into and out of a system along paths of mass flow, heat transfer and work but is 

conserved. Unlike energy, exergy is not conserved and it represents quantitatively the ‘useful energy’ or, in 

other words, the ability to do or receive work. One can define exergy as the maximum theoretical work 

obtainable when a system is in equilibrium with its reference environment.   

The destroyed exergy is proportional to the generated entropy. The destruction of exergy in a system is the 

cause of his departure from the ideal condition. By performing exergy analysis in a system or in a 

subsystem, it is possible to draw a map of how the destruction of exergy is distributed over the system 

considered. In this way, a designer can pinpoint the sources of high exergy destruction and concentrate 

efforts and resources for improving efficiency. 

The method of thermodynamic optimization or EGM developed by Bejan [12,13] is a field of activity that 

implies the simultaneous application of different theories an relations afferent to three fields: 

 Fluid mechanics 

 Thermodynamics 

 Heat transfer 
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Entropy Generation Minimization can be used in the preliminary stages of design and can be coupled with 

global cost minimization by using the method of thermo-economics. 

6.3. Entropy Generation and Exergy  Destruction 

The thermodynamics of a system consists of accounting for the first law and the second law (Moran and 

Shapiro, 1995) [14]: 
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Combining these two equations we obtain: 
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The power output or input in the limit of reversible operation  ̇      is 
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In engineering thermodynamics the terms on the right side of the previous equation are exergy contributes 

and the calculation of  ̇    is known as exergy analysis. Subtracting Eq. 6.3 from Eq. 6.4, one can arrive at 

the Gouy-Stodola theorem: 

 ̇     ̇     ̇                                                                               

Heat Transfer 

Fluid Mechanics Thermodynamics 

EGM 
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If we fix the power output in the limit of reversible operation since all the heat and mass flows (other than 

 ̇ ) are fix the lost power  ̇     ̇ is always positive. An important statement can be pointed out: to 

minimize lost power when  ̇    is fixed is the same as maximizing power output in a power plan, and 

minimizing power input in a refrigeration plant. Consequently, this operation is also equivalent to 

minimizing the total rate of entropy generation [15]. To calculate the total entropy generation rate 

correctly, one must recognize that the optimization process (e.g., the variability of the heat input) requires 

"room to move," i.e., an additional, usually overlooked, contribution to the total entropy generation rate. 

This additional source of entropy generation on the outside of the visible confine of the system is what 

gives the design room to move. 

The fact that the maximization of  ̇ and the minimization of the total  ̇    lead to the same optimal design 

allows the designer to choose the method that fits better on the application considered. In the case of 

power plant it is easier to explain the optimization process in terms of power output whereas in the 

optimization of many basic components such as heat exchangers, fins or storage systems, the preferable 

method is the EGM. 

Concluding, the entropy generation method can be used to: 

 Optimize streams and components so that they destroy least exergy subjected to constraints; 

 Make sure that the optimized entities match or can be fitted together into a new integrative design 

of the larger system. 

 
 

6.4. Heat exchanger Design by Entropy Generation Minimization 
 
In this work, the entropy generation method is used to optimize the design of heat exchangers. A heat 

exchanger can be modeled as an adiabatic control volume with two streams of mass as shown in Fig.6.1. 

 
 
 
 
 
 
 
 
 
 
 

Figure 6.1. Control volume around heat exchanger 
 

The degree of thermodynamic imperfection of the arrangements is measured by the entropy generation 
rate: 
 

 ̇     ̇ (         )   ̇ (         )                                                    

The previous expression can be expressed in terms of inlet and outlet temperature and pressures. In heat 

exchanger the heat conduction under finite temperature difference and fluid friction are two main 

irreversible factors to induce the entropy generation.  Thus, we can split the previous expression of  ̇    in 

two terms: 

 ̇     ̇        ̇                                                                          

 ̇             ̇            

 ̇             ̇            
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Where  
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We can rewrite Eq. 6.7 in the following way: 
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For the case of ideal gas with constant specific heat, the entropy generation contributed by pressure drop 

can be written as: 
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When the heat exchanger works as evaporator the entropy generated is calculated as: 

 ̇       
     

  
                                                                                      

Where     is the latent heat and    is the saturation temperature.  

Bejan [12,13] proposed to nondimensionalize the entropy generation with the following formula: 

      
 ̇      

 ̇  
                                                                                      

This expression leads to a paradox. In fact, with increasing the heat exchanger effectiveness,       reaches 

a maximum but it does not correspond to the lowest value of  . Therefore, we cannot say that the smaller 

the entropy generation, the better the heat exchanger performance is. To solve this phenomenon, 

Hesselgreaves [18] suggested another kind of nondimensionalizing method: 

      
     ̇      

 ̇
                                                                                

      
     ̇      

 ̇
                                                                                

The previous expressions show that the entropy generation rate is related with the inlet and outlet 

conditions of the streams. The outlet conditions can be estimated using the correlations provided by 

thermodynamics and fluid mechanics so that the entropy generation is strictly related to the physical 

dimension of the system and the thermal properties of the fluids. The modified entropy generation number 

decreases monotonously with increasing the exchanger effectiveness as discussed by Hesselgreaves [18]. 

This method allow the designer to optimize the heat exchanger minimizing the entropy generation rate by 

varying the internal and external geometrical features of the system, subjected to constraints.  
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6.5. Minimization of the total entropy generation rate 

The thermodynamic optimization described was concerned solely with the irreversibility of the counterflow 

heat exchanger. In some applications the hot stream is released to the environment so that it is necessary 

to take into account another source of irreversibility. This situation is sketched in Fig.6.2 where the total 

entropy generation rate in the heat exchanger is: 

  

 ̇     ̇ (         )   ̇ (         )  
 ̇

  
                                               

The cooling rate experienced by the exhaust is: 

 ̇   ̇     (       )                                                            

 
 

 
 

 

 

 

 

 

 

Figure 6.2. Control volume considering exergy released to the environment 
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 ̇             ̇            

 ̇            
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7                                          Genetic Algorithm  

 

 

 

7.1. Genetic algorithm 

In recent years, some optimization methods that are conceptually different from the traditional 

mathematical programming techniques have been developed. Most of these modern methods are based 

on certain characteristics and behavior of biological, molecular, swarm of insects and neurobiological 

systems: 

a. Genetic algorithm  

b. Simulated annealing 

c. Particle swarm optimization 

d. Fuzzy optimization 

e. Neural-network-based methods 

Particularly, genetic algorithm has attracted a lot of attention for the solution of complex engineering 

problems. In fact it requires only the function values (and not the derivate) and it can manage a lot of 

decision variables. The genetic algorithms are based on the principles of natural selection and are 

considered a stochastic method.  

Many practical optimum design problems are characterized by mixed continuous-discrete variables that 

cannot be solved efficiently with standard nonlinear programming techniques. Genetic algorithms (GAs) are 

well suited for solving such problems and in most cases they can find the global optimum solution with a 

high probability. The base of the method is the Darwin’s theory of the survival of the fittest. 

Genetic algorithms are based on the principles of natural genetics and natural selection. The fundamental 

elements of natural genetics are: 

 Reproduction 

 Crossover 

 Mutation 

 

 

 

 

 

 

 

 



51 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1. Flowchart of genetic algorithm procedure 

  

7.2. Characteristics of GAs 

Genetic algorithms have some important differences respect the traditional method of optimization: 

 The starting point of genetic algorithms is a population of points instead of a single design point. 

Since several points are used as candidate solutions, GAs are less likely to get trapped at a local 

optimum.  

 GAs use only the values of the objective function. The derivatives are not used in the search 

procedure. 

 In GAs the design variables are represented as string of binary variables that correspond to the 

chromosomes in natural genetics. 

 The objective function value corresponding to a design vector plays the role of fitness in natural 

genetics. 

 In every new generation, a new set of string is produced by using randomized parents selection 

and crossover from the old generation. The research techniques is not merely random because 

GAs explore the new combinations with the available knowledge to find a new generation with 

better fitness or objective function value. 

 

Initial 

Population 

Evaluation through 

fitness function 

Crossover and 

mutation 

Selection of parents 

Choose the best 

individual 

Termination 

criteria 

No 

Yes 
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Table 7.1. Differences between genetic classical algorithms and genetic algorithms. 

Classical Algorithms Genetic Algorithms 

Generates a single point at each iteration. The 
sequence of points approaches an optimal solution. 

Generates a population of points at each iteration. 
The best point in the population approaches an 
optimal solution. 

Selects the next point in the sequence by a 
deterministic computation. 

Selects the next population by computation which 
uses random number generators. 

As mentioned before, genetic algorithms are based on the survival of the fittest principle of nature so that 

they try to maximize (or minimize) a function called the fitness function. A general constrained 

minimization problem can be stated as: 

              

Subject to 

                   

                   

The solution of an optimization problem by GAs starts with population of random strings denoting several 

design vectors. Each design vector is evaluated to find its fitness value. If the termination criteria are not 

satisfied the algorithm operates three operations: reproduction, crossover and mutation to produce a new 

population. The new population is further valuated to find the fitness values and tested for the 

convergence of the procedure. One cycle of reproduction, crossover, mutation and evaluation of the fitness 

function is called generation.  

The vector that contains the design variable is represented by a string of binary digits: 

 

 

 

 

7.3. Reproduction 

Reproduction is the first operation applied to the population to select good design variable of the 

population to form a mating pool. It is a selection procedure that aims to select good elements of the 

population in order to achieve the optimum. The above-average individuals are picked up from the current 

population and they are inserted in the mating pool based on a probabilistic process. 

7.4. Crossover 

Crossover aims to create new strings of individuals by exchanging information among strings of the mating 

pool. In the commonly used process called single-point crossover operator, a crossover site is selected at 

random along the string length, and the binary digits (In genetic nature the alleles) lying on the right side of 

the crossover site are swapped between two strings. Following the nature principle, the two strings 

String 

1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 

X1 X2 X3 X4 
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selected for the crossover are called the parents and the strings generated by the crossover are known a 

child. An example of crossover is presented below: 

Parent 1    {                     } 

Parent 2    {                     } 

The results of crossover when the crossover site is 3, is given by 

Child 1     {                     } 

Child 2     {                     } 

 

7.5. Mutation 

Through crossover new strings with better fitness values are created for the new generations. The mutation 

operates changing of the binary digits (allele’s value) in order to obtain new strings with a specific small 

mutation probability. The aims of the mutation operator are: 

 To generate a string in the neighborhood of the current string, thereby accomplishing a local search 

around the current solution; 

 To safeguard against a premature loss of important genetic material at a particular position 

 To maintain diversity in the population 

 

Child 1     {                     } 

Child 1 with mutation    {                     } 

 

The use of these three operators successively yields new generation with improved values of average 

fitness of the population. If any bad strings are created at any stage in the process, they will be eliminated 

by the reproduction operator in the next generation.  

 

7.6. Multi-objective genetic algorithm 

Multi-objective optimization problems have received interest form researches since early 1960s. In a 

multi-objective optimization problem, multiple objective functions need to be optimized 

simultaneously. In the case of multiple objectives, there does not necessarily exist a solution that is 

best with respect to all objectives because of differentiation between objectives. A solution may be 

best in one objective but worst in another. Therefore, there usually exist a set of solutions for the 

multiple-objective case, which cannot simply be compared with each other. For such solutions, called 

Pareto optimal solutions or non-dominated solutions, no improvement is possible in any objective 

function without sacrificing at least one of the other objective functions. 
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Thus by using the concept of Pareto-optimality we can find a set of solutions that are all optimal 

compromises between the conflicting objectives. Pareto-optimality is a concept used economics, game 

theory, etc. A Pareto-optimal solution is one that is not dominated by any other solution i.e. it is one in 

which no objective can be improved without a deterioration in one or more of the other objectives. In 

the past few years, there has been a wide development in applying genetic algorithms to solve the 

multi-objective optimization problem, known as evolutionary multi-objective optimization or genetic 

multi-objective optimization. The basic features of genetic algorithms are the multiple directional and 

global searches, in which a population of potential solutions is maintained from generation to 

generation. The population-to-population approach is beneficial in the exploration of Pareto-optimal 

solutions. The main issue in solving multi-objective optimization problems by use 

of genetic algorithms is how to determine the fitness value of individuals according to multiple 

objectives. 
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8                                             ORC Optimization  

 

 

 

8.1. Organic Rangkine Cycle Optimization  

Theoretical analysis described in Chapter 1 shows that ORC performance is very sensitive to the 

evaporating pressure (or temperature) and to the working fluid. Fluid selection plays an important role in 

the ORC design. Besides power performance, it is extremely important to take into consideration 

characteristics such as environmental impact, stability, safety and cost.  This implies an accurate screening 

of the fluids and the evaporating temperature that provides the best trade-off between performance, 

environmental impact and safety.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.1. ORC system 

 

The objective of this work is to study the influence of the evaporating temperature and the working fluid on 

net power output, cycle efficiency and entropy generation of the system. 

   

Condenser 

Pump 

Pre-heater Evaporator Super-heater 

Expander 
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8.2. ORC analysis with fixed heat transfer rate 

The first analysis considers an organic Rankine cycle with fixed heat transfer rate. The assumptions are the 

followings: the system is at the steady state, there is no pressure drop in the evaporator, pipes and 

condenser, the heat losses in the components are neglected and isentropic efficiencies of the pump and 

the expander are given. The working fluid at the inlet of the expander inlet and at the outlet of the 

condenser is superheated and subcooled respectively. The thermodynamic properties of working fluids and 

the ORC performance are calculated using REFPROP and MATLAB. The design point specification of the ORC 

is presented in Table 8. Since the exhaust gases from gas turbines have quite substantial oxygen content, in 

case of leakage, the mixing of oxygen and carbon based working fluids may cause explosion. To avoid this 

problem an intermediate loop is placed between the ORC ant the heat source. The fluid selected for the 

intermediate loop is a glycol-based fluid named dowthermQ [19]. The properties of dowthermQ are shown 

in Table 8.3.  

For sake of clarity, the following notation is used: 

Table 8.1. 

State Number of node 

Inlet of pump 1 
Outlet of pump –inlet of pre-heater 2 
Isentropic outlet of pump  2s 
Outlet of pre-heater – inlet of evaporator 3 
Outlet of evaporator – inlet of expander 4 
Isentropic outlet of expander 5s 
Outlet of expander – inlet condenser  5 
Saturated vapor condition in the condenser 6 
Outlet of condenser – inlet of pump 1 
Heat source inlet 7 
Pinch point – heat source side 8 
Heat source outlet 9 
Cooler inlet 10 
Pinch point – cooler side 11 
Cooler outlet 12 

Table 8.2. ORC parameters 

Parameter Symbol Value Unit 

Waste heat source temperature - inlet    180 °C 
Waste heat source temperature - outlet    80 °C 
Mass flow rate of waste heat source  ̇   0,25 Kg/s 
Working fluid condensation temperature     30 °C 
Water temperature at the inlet of condenser     15 °C 
Pinch point on condenser         10 °C 
Environmental temperature    15 °C 
Environmental pressure    100 kPa 
Isentropic efficiency of the expander      80%  

Isentropic efficiency of the pump       60%  
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Fig. 8.2. State points 

Table 8.3. dowthermQ properties correlations.            . Obtained by interpolation from data table 

provide by dowthermQ company [19]. 

Parameter expression Unit 

Temperature t   
Enthalpy       (               )  (       

          )    
Heat  capacity                         

Density                     
Entropy 

          (    )          
 

  
 

     

   

The inlet and outlet temperatures and the mass flow rate of the heat source are given, thus, one can obtain 

the enthalpy using REFPROP and calculate the heat transfer rate: 

    (  )                                                                                    (   ) 

    (  )                                                                                    (   ) 

 ̇    ̇  (     )                                                                         (   ) 

The procedure to calculate net power output, efficiency and entropy generation rate is straightforward: 
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When all the thermodynamic states of the cycle are calculated, it is possible to compute the net power 

output, the efficiency and the total entropy generation rate: 

 ̇     ̇    (     )  (     )                                                  (    ) 

     
 ̇   

 ̇  

                                                                             (    ) 

 ̇     ̇     ̇     ̇      ̇                                                  (    ) 

Where: 

 ̇     ̇  [(     )  
(     )

  
]   ̇   (     )  (     )                          (    ) 

 ̇     ̇  (     )                                                                 (    ) 
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 ̇      ̇  [(     )  
(     )

  
]   ̇   (     )  (       )                          (    ) 

 ̇      ̇  (     )                                                               (    ) 

The model implemented needs a control on the pinch point caused by the variation of the evaporating 

temperature. The lower the pinch point, the higher the heat transfer surface area of the heat exchanger. A 

lowest value 10°C is fixed. Figure 8.3 shows the influence of the evaporating temperature to the pinch 

point. It can be see that the highest evaporating temperature in the cycle is the temperature where the 

pinch point is the minimum allowable. 

 

Fig. 8.3. a) T-Q diagram of pre-heater and evaporator with different evaporating temperature. b) T-s 

diagram of ORC with different evaporating temperature. 

As expected, the highest value of net power output is obtained with the highest evaporating temperature. 

since the higher the evaporating temperature, the higher the enthalpy drop in the expander. This 

observation is valid because the enthalpy drop in the pump is much smaller than the enthalpy drop in the 

expander and it could be neglected. As a conseguence the ORC thermal efficiency has the same trend.   
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Fig. 8.4.Net Power Output vs. Evaporating temperature for different fluids with fixed heat load 

 

Fig. 8.5. ORC efficiency vs. Evaporating temperature for different fluids with fixed heat load 
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The effectiveness of the heat exchanger increases with the evaporating temperature since more heat is 

transmitted to the fluid as shown in Fig. 8.6. The entropy generated in the components of the cycle is 

shown in Fig. 8.7.  It is evident that the lower the pinch point, the lower the entropy generation rate. In 

fact, the lowest value of entropy generated is related to the highest evaporating temperature. This is due to 

the fact that the entropy generated is caused by finite temperature difference and pressure drop. Because 

of the assumption of neglectable pressure drop, the only contribute is the finite temperature difference 

between the streams. The temperature that causes the highest power output is also the same that 

produces the lowest amount of entropy. This phenomenon is described by the Guoy-Stodola theorem: 

                                                                                 (    ) 

Where      is the maximum power that could be extracted if the cycle was reversible.      can be 

extracted only if      is equal to zero. 

 Finally, Fig. 8.8 shows the entropy generated by evaporator, condenser, expander and pump when r-236a 

is used as working fluid. It can be seen that evaporator has the greater entropy generation.  This means 

that it is the main component that should be improved in order to reduce the total entropy generation 

rate. Furthermore, the influence of the pinch point on the entropy generated by the evaporator is evident. 

In fact the entropy generated decreases with the increase of the evaporating temperature and, as a 

consequence, the reduction of pinch point. 

 

Fig. 8.6. Effectiveness vs. Evaporating temperature for different fluids with fixed heat load 
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Fig. 8.7. Entropy generation rate vs. Evaporating temperature for different fluids with fixed heat load 

 

Fig. 8.8. Entropy generation rate vs. Evaporating temperature for evaporator, expander, condenser and 

pump. Fluid is r236ea. 
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8.3. ORC analysis with variable heat transfer rate 

In the second model the assumption of fixed outlet temperature is removed, therefore the transfer rate is 

variable. For the purpose of this optimization, the minimum temperature difference between heat source 

and working fluid is imposed.  A value of 10 K is selected at the inlet of the evaporator.  

Table 8.4.  

Parameter Symbol Value Unit 

Waste heat source temperature - inlet    180 °C 
Mass flow rate of waste heat source  ̇   0,25 Kg/s 
Working fluid condensation temperature     30 °C 
Water temperature at the inlet of condenser     15 °C 
Pinch point on condenser        10 °C 
Pinch point on condenser         10 °C 
Environmental temperature    15 °C 
Environmental pressure    100 kPa 
Isentropic efficiency of the expander      80%  

Isentropic efficiency of the pump       60%  

The optimal evaporation temperature results in the optimization of the net power output.  Increase the 

evaporation temperature implies two antagonist effects: 

 The heat recovery efficiency is decreased since the heat source is cooled down to a higher 

temperature. In fact, the higher is the evaporating temperature the higher is the exhaust outlet 

temperature. 

 The expander specific work is increased since the pressure ratio is increased. 

The approach is similar to the previous model: 

    (  )                                                                           (    ) 

      (                )                                                              (    ) 
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 ̇     ̇  (     )                                                          (    ) 
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Fig. 8.9. Heat source Outlet Temperature vs. evaporating temperature for different fluids with variable heat 

load. 
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This analysis can be conducted for each candidate working fluid in order to define the optimum 

evaporation temperature. The results of this optimization are presented in figure 8.10. One can note the 

increase of the heat source outlet temperature with the increase of evaporation temperature and the 

consequent decrease of the heat transfer rate (Fig. 8.10.).  As a consequence, the lower the heat transfer 

rate, the lower the mass flow rate of the working fluid. 

 

 

Fig. 8.10. Heat Transfer Rate vs. evaporating temperature for different fluids with variable heat load. 

 

As described previously, pressure ratio and heat transfer rate have opposite effects on the maximum net 

power output. There is an optimal evaporating temperature (or pressure) that provides the maximum net 

power output for each fluid as shown in Fig. 8.12. In this case the ORC efficiency is not the best 

performance indicator since it does not consider the effect of the variable heat transfer rate (Fig. 8.13). The 

problem can be solved using the overall system efficiency that uses the maximum heat that can be 

extracted from the heat source as comparative value (Fig. 8.1). Contrary to the previous example, the 

effectiveness decreases with the increase of evaporating temperature since the outlet temperature of heat 

source increases as shown in Fig. 8.15.  The lower the effectiveness the lower the heat extracted by the 

working fluid from the heat source and the higher the heat unused and released to the environment.  
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Fig. 8.11. Working fluid mass flow rate vs. evaporating temperature for different fluids with variable heat 

load. 

Fig. 8.17 shows the entropy generated by evaporator, expander, condenser and pump. It can be noted the 

decreasing trend of total entropy generation rate that is due to the decreasing value of mass flow rate of 

the working fluid.  
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Fig. 8.12. Entropy generated by R-245fa in the evaporator, expander, condenser and pump. 

This phenomenon would be in contradiction with the Gouy-Stodola theorem if we did not consider the 

exergy released into the environment. The contribution of the heat released into the environment is 

fundamental in order to perform the properly the exergetic analysis. If we consider the external 

irreversibility of ORC: 

 ̇         ̇       (
     

  
   

  

  
)                                                     (    ) 

 ̇          ̇         (
      

  
   

  

   
)                                               (    ) 

We obtain the total entropy generated as follows: 

 ̇     ̇     ̇         ̇                                                             (    ) 

As shown in Fig. 8.18, the total entropy generated has a minimum and that minimum is reached at the 

same evaporating temperature that produces the maximum net power output. Comparing Fig. 8.13 and 

Fig. 8.19, one can note that the optimal evaporating temperatures are the same in accordance with the 

Gouy-Stodola theorem. 
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Fig. 8.13. Net Power Output vs. evaporating temperature for different fluids with variable heat load. 

 

Fig.8.14. ORC efficiency vs. evaporating temperature for different fluids with variable heat load. 
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Fig. 8.15. System efficiency vs. evaporating temperature for different fluids with variable heat load. 

 

Fig. 8.16. Effectiveness vs. evaporating temperature for different fluids with variable heat load.  
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Fig. 8.17. Entropy generated in the cycle by evaporator, condenser, expander and pump vs. evaporating 

temperature. External irreversibility are not considered.   

 

Fig. 8.18. Entropy generated in the cycle by evaporator, condenser, expander and pump vs. evaporating 

temperature. External irreversibility are considered.   
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Tab. 8.5. Optimal Temperatures (°C) obtained maximizing power and minimizing entropy.  

       Fluid   Teva_opt(°C)  Wnet_max[W] Teva_opt(°C)  S min[W/K]  S released 
      r245fa      117.000     7545.391      118.000       32.250        7.153  
     toluene      102.000     6329.927      103.000       36.330       12.706  
      r245ca      110.000     7184.852      111.000       33.481        7.948  
      r236ea      129.000     8792.866      129.000       27.976        3.531  
       r141b      105.000     6602.297      106.000       35.435       10.995  
     benzene      102.000     6302.794      103.000       36.421       12.827  
         r11      105.000     6523.932      106.000       35.699       11.405  
         r21      105.000     6475.204      106.000       35.868       11.375  
        r123      107.000     6874.740      108.000       34.527        9.376 

The minimum entropy generation is strictly influenced by fluid and boundary conditions. In fact the inlet 

temperature of heat source and its mass flow rate are fundamental in the optimization of the cycle. Wei et 

al.[20] explored the system performance analysis and optimization of ORC with r-245fa and found that it 

was a good way to improve the net power output of the system by maximizing the utilization of the waste 

heat as much as possible. In fact, the higher the exergy released into the environment, the lower the heat 

transferred to the working fluid. Each fluid has a different behavior and it is evident that boundary 

conditions are related to the exergy released into the environment. The higher the exergy (or the entropy) 

released into the environment the lower the power that can be extracted from the cycle. This consideration 

is demonstrated in Table 8.5. Toluene and Benzene give a higher entropy generation so that the net power 

output is lower than the other fluids. Particularly, r-236ea provides the lowest entropy released into the 

environment and the maximum power output. In fat, r-236ea matches very well with the boundary 

conditions defined instead of toluene and benzene that are usually employed with higher heat source 

temperature. In fact, exergetic losses are proportional to the area between the two curves in figure 8.19-a 

and 8.20-a; the higher the area, the lower the available work. The following figures show the optimal 

operating conditions of r-236ea and toluene.  

 

Fig. 8.19. T-Q diagram and T-s diagram of r-236ea.  
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Fig. 8.20. T-Q diagram and T-s diagram of toluene.  

 

8.4. Fluid selection 

Operating temperatures and pressures are fundamental in the selection of working fluid.  High evaporating 

pressure could be difficult to manage and influence the cost of pre-heater and evaporator. Fig. 8.21. shows 

the optimal evaporating pressure of each fluid. It can be noted the high pressure obtained by r-142b and r-

236ea.  
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Fig. 8.21.Evaporating temperature and pressure for different fluids with variable heat load. 

 

The operating pressure has an opposite effect on the net power output because the higher the pressure 

ratio the higher the enthalpy drop in the expander. As shown in Fig. 8.22 the fluids that provide the highest 

net power output are still r-142b and r-236ea.  
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Fig. 8.22. Net power output and ORC efficiency for different fluids with variable heat load. 

The Global-warming potential (GWP) is a relative measure of how much heat a greenhouse gas traps in the 

atmosphere. It compares the amount of heat trapped by a certain mass of a gas to the amount of heat 

trapped by a similar mass of carbon dioxide. A GWP is calculated over a specific time interval, commonly 

20, 100 or 500 years. GWP is expressed as a factor of carbon dioxide (whose GWP is standardized to 1). 

Montreal and Kyoto protocol define the guideline to calculate these indexes. High values of ODP and GWP 

limit the choice of fluid. Fig. 8.23 shows ODP and GWP indexes of fluids considered. One can see the high 

values of ODP presented by r-141b and r142b. Regarding GWP(base 100 years) it is evident the high value 

of r142b that excludes it from the final selection. 
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Fig. 8.23. ODP and GWP-100 for different fluids 

Finally, a comparison between the entropy generation rates of each fluid is presented. The fluids with the 

lowest entropy generation rate are R-236ea, R-142b R-245fa, R-245ca. These fluids have the lowest value of 

entropy generation rate in the evaporator. The entropy generation rate of the external process can strongly 

influence the total entropy generation rate. High external irreversibility occurs when high amount of hot 

source leaves the evaporator, as well as the cooling water leaves the condenser. One can note the high 

values of entropy generation rate in the expander and pump caused by the high pressure ratio. 

 

Fig. 8.24. Entropy generation for different fluids with variable heat load. 



75 
 

In order to perform the optimization of evaporator and economizer it is necessary to choose the fluids that 

fit better with the heat source boundary conditions. A trade-off between the previous considerations is 

required. Among all, the fluids that provide the best performance (in terms of power output and entropy 

generated) and the lowest environmental impact are: 

I. R-245fa 

II. R-236ea 

III. R-245ca 

These fluids and their optimal operating conditions will be used as input of the second-level optimization.  

The results of the optimization are listed in Table 8.6.     

Table 8.6.   Optimal solutions for three fluids.       

 R-245fa R-236ea R-245ca 

Temperature            
   T_eva [°C]    

              Tcond [°C]     
           Delta PP [°C]  

                 T1 [°C]     
                T2s [°C]     
                 T2 [°C]     
                 T3 [°C]    
                 T4 [°C]    
                 T5 [°C]     

                 T5s [°C]    
                 T6 [°C]    
                 T7 [°C]     
                T8 [°C]     
                 T9 [°C]     

                T10 [°C]     
                T12 [°C]     

Pressure 
              Pcond [kPa]    
             Pcond [bar]      
               Peva [kPa]   
              Peva [bar]     

Mass flow rate 
 Working fluid mass flow [kg/s]      

         Water mass flow [kg/s]           
 
Heat transfer rate 
Heat flux H.E. total work. Fluid[W]           

Heat flux H.E. total HS[W]           
Heat flux ECO work. Fluid[W]           

Heat flux ECO heat[W]                 
Heat flux EVA work. fluid[W]                     

Heat flux EVA heat source[W]                     
Heat flux cond. work. fluid[W]                     
Heat flux condenser water[W]  

 
Power                    

 
117.1  

    30.0  
    10.0  
    25.0  
    25.5  
    26.2  

   117.1  
   117.1  
    44.4  
    53.2  
    30.0  

   180.0  
   127.1  
    60.3  
    15.0  
    20.6  

  
   177.78  

     1.7778  
  1819.32  

    18.1932  
 

     0.235  
     2.175  

 
  

          58370.61  
          58370.61  
          31273.47  
          31273.47  
          27097.14  
          27097.14  
          50816.55  
          50814.91  

 
 

 
129.3  

              30.0  
           10.0  

                 25.0  
                25.9  

                 26.9  
                 129.3  
                 129.3  

                49.7  
                 57.8  

30.0  
                 180.0  
                 139.3  

                 35.8  
                15.0  
                20.8  

 
244.36  

             2.4436  
              2810.65  
              28.1065 

  
0.325  
2.474  

 
 

68988.32  
68988.32  
47935.30  
47935.30  
21053.02  
21053.02  
60150.94  
60147.72  

 
 

 
110.5  

              30.0           
           10.0  

                 25.0  
                25.3  

                 25.7  
                 110.4  
                 110.4  

                48.1  
57.0  

                 30.0  
180.0  

                 120.4  
64.3  

                   15.0  
                20.6  

 
121.66  

             1.2166  
               1172.40  
              11.7240 

 
0.213  

         2.092  
 
 

              56564.90  
56564.90  

        26190.96  
26190.96  
30373.93  
30373.93  
49374.83  
49372.98  
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       Pump power[W]             
   Expander power[W]            

        Net power output[W] 
 

Performance index            
      ORC efficiency               

             epsilon               
   System efficiency 

               
Entropy generation rate 

S_eva_i sensible [J/(s/K)]                        
      S_eva_i latent[J/(s/K)]            

       S_eva_i  [J/(s/K)]           
             S_eva_e  [J/(s/K)]                               

               S_exp  [J/(s/K)]                               
            S_cond_i  [J/(s/K)]                              

            S_cond_e   [J/(s/K)]                              
              S_pump   [J/(s/K)]                               

               S_gen   [J/(s/K)]                          

            479.11  
           8033.18  
           7554.07 

 
 

              0.129  
              0.778  
              0.101 

 
  

              5.38  
              5.89  

             11.28  
              4.78  
              6.24  
              7.63  
              1.69  
              0.64  

             32.25  

       973.75  
9811.12  

        8837.37 
 
  

      0.128  
0.942  

   0.120 
  
 

     2.87  
3.65  
6.53  
1.04  
7.50  

    9.38  
2.07  
1.30  

27.83 

       269.65  
   7459.72  

        7190.06 
 
  

      0.127  
                      0.749  

   0.095 
  
 

5.16 
      7.39  

       12.55  
             5.65  

               5.72  
7.55  

            1.65  
              0.36  

               33.50 

 

Fig. 8.25.Optimal cycle for r245fa 



77 
 

 

Fig. 8.26. Optimal cycle for r236ea 

 

 

Fig. 8.27. Optimal cycle for r245ca 
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9              Multi Objective Optimization of STHE  

 

 

 

9.1. Multi-Objective Optimization of Shell and tube Heat Exchanger 

Shell and tube heat exchangers are the most widespread and commonly used heat exchanger configuration 

in the process industries. In fact, shell and tube heat exchangers provide large ratio of heat transfer area to 

volume and weight and they can be constructed in a wide range of sizes in order to satisfy a great variety of 

operating conditions. Furthermore, there are many modifications of the basic configuration, which can be 

used to solve special problems. The shell and tube heat exchanger can be easily cleaned, and the 

components most subjected to failure such as gasket and tubes can be easily replaced. Finally, an accurate 

design method exists and a multi-objective optimization may be applied to optimize the performance of the 

system. 

 

9.2. Design problem formulation 

The aim of the work is the optimization of shell and tube heat exchanger for ORC application. The 

optimization of the geometry of shell and tube heat exchangers is not trivial. There is a competition 

between the heat transfer and the pressure drop aspects. In fact, a geometry that minimizes the heat 

transfer surface could lead to a strong increase of the pressure drop, hence a higher pumping power. 

Furthermore, the working fluid and the operating conditions (temperatures and pressures) play a key role 

in the system performances.  The procedure for the design problem can be summarized with the following 

steps: 

A. For given heat transfer duty ( ̇) and fluid streams inlet temperatures, compute the outlet 

temperatures using overall energy balances and fluid mass flow rates specified. If outlet 

temperatures are given, the heat duty requirement can be computed. 

 

 ̇   ̇     (          )   ̇     (          )                                     

 

B. Select a shell inside diameter, tube diameter, tube pitch, layout, baffle spacing, baffle cut, 

number of passes and fluid arrangement. Calculate the number of tubes. 
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C. Applying the Bell-Delaware method, the heat transfer coefficient on shell side can be 

calculated. Tube side heat transfer coefficient is computed with the Dittus-Boelter correlation 

(but other correlations could be used). 

  [
 

  
 

 

  
 

           

   
 

 

  

  

  
 

 

  

  

  
]

  

                                          

 

D. For a shell and tube heat exchanger, the heat transfer area can be estimated by the following 

relation as described in chapter 5: 

  
 ̇

       
                                                                             

     
(          )  (          )

  (
          

          
)

                                                        

E. The length of the tubes   is not known a priori because the total surface area   is not initially 

known. A value of   has to be guessed initially for estimating the heat transfer area and 

afterwards it is updated with the expression: 

  
 

     
                                                                               

The new value of   is used to calculate heat transfer coefficient and pressure drop until 

convergence. Therefore, an iterative procedure is required to determine   and    

In order to optimize the design procedure a multi-objective optimization has been carried out. Multi 

objective optimization minimizes several objective functions simultaneously, with a number of inequality or 

equality constraints. It can be mathematically expressed as follows: 

        [                   ]                                                               

Subject to 

                                                                                                          

                                                                                                   

Where   is a vector and is also called the decision vector because it contains the decision variables and   is 

the parameter space. If and only if,             for          and             for least one objective 

function  , a feasible solution   is said to dominate another feasible solution  . A solution that is not 

dominated by another solution in the feasible region is called Pareto optimal solution. The set of all Pareto 

optimal solution forms the Pareto optimal set whereas the values of the objective functions related to the 

Pareto optimal set are called Pareto front. The performance evaluation criteria for heat exchanger are 

generally based on the first law of thermodynamics but, recently, the entropy generation minimization 

(EGM) suggested by Bejan has attracted a lot of attention. Furthermore, a cost optimization can be carried 

out in order to evaluate the influence of geometrical parameters, working fluid and operating conditions on 

total annual cost. The objective functions of the optimization design of a shell and tube heat exchanger can 

be several: 

 Heat transfer area, volume or weight 

 Pressure drop 
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 Entropy generation 

 Total annual cost 

In this work different case studies are proposed in order to achieve a good sensibility in the heat exchanger 

design. The algorithm used to perform multi-objective optimization is a genetic algorithm. 

 

9.3. Test case and validation 

In order to validate the model a test case is carried out. The starting point is the example 9.4 of Shah and 

Sekulic, Fundamentals of Heat Exchanger Design[8]. In order to demonstrate the usefulness of GA for 

determining the optimal design for a specified process, the geometry of a shell and tube heat exchanger 

was optimized under the process requirements found in Table 9.1. 

Table 9.1. 

 Hot Fluid Cold Fluid 

Fluid Oil Water 
Inlet Temperature [°C] 65.6 37.4 
Outlet Temperature [°C] 60.4 32.2 
Mass Flow Rate [kg/s] 36.3 18.1 
Fouling Resistance [m2K/W] 0.000176 0.000088 
Tube Material Cu-Ni  
Type of shell and tube heat exchanger TEMA E heat exchanger  

Table 9.2. 

Fluid Density 

  [     ] 

Specific heat 
   [      ] 

Dynamic 
viscosity 
  [    ] 

Thermal 
conductivity 

  [      ] 

Prandtl 
Number 

   

Oil at 63°C 849 2094 64.6 x 10-3 0.140 966 
Water at 35°C 993 4187 0.723 x  10-3 0.634 4.77 
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Fig. 9.1.Temperature profiles 

The geometry of the heat exchanger proposed in the example is presented in  Table 9.3. 

Table 9.3. 

  

Shell diameter    [ ]        

Tube outer diameter    [  ]       

Baffle spacing at the center      [  ]       

Baffle spacing at the inlet and outlet                  

Baffle cut    [  ]             

Tube pitch    [  ]      

Layout of the tubes     

Fluid side                                  

Tube material                           

Thermal conductivity of tube wall [      ]     

Total number of tubes     

Tube length [ ]     

Number of tube passes   

Diameter of the outer tube limit [ ]        

Tube to baffle hole diametral clearance [  ]       

Shell to baffle hole diametral clearance [  ]       

  

Assuming the design parameters described above, it is possible to obtain the results listed in Table 9.4. The 

results obtained by the algorithm are closed to the results of the example presented. Table 9.4  and figure 

9.2 show the results of the algorithm. 
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Table 9.4.Comparison between the solutions 

 Example 9.4. Shah and 
Sekulic, Fundamentals of 
Heat Exchanger Design. 

Model implemented Relative error [%] 

Heat flux [  ]                        

Heat transfer coefficient – 
shell side  [      ] 

                     

Pressure drop – shell side  
[   ] 

                       

Heat transfer coefficient – 
tube side  [      ] 

                     

Pressure drop – tube 
side  [   ] 

                     

Overall heat transfer 
coefficient  [      ] 

                     

Heat transfer area  [  ]                      

Total pressure drop  [   ]                      

Tube length  [ ]                  

    

 

Fig. 9.2. Initial solution – A vs. Pressure drop 

9.3.1. Optimal solutions 

With an appropriate model in hand to assess the effect of the heat exchanger geometry on its 

performance, it is possible to optimize the heat exchanger.  As the number of geometrical features taken 

into account increases, so does the total number of possible heat exchanger configuration to be 

considered. Therefore, only with a genetic algorithm it is possible to find rapidly the optimal solution. 
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The problem explained before can be solved using multi-objective genetic algorithm. The design variables 

are can vary as described in Table 9.5. 

Table 9.5. 

Decision Variable Range of values 

   [  ]         
  [  ]            

                  
                  

                       
  [  ]              
                       

  

As shown in Fig. 9.3, the total region is divided into two regions by the Pareto optimal set. The design 

points with heat transfer area and pressure drop located above the PF are feasible, but not optimal. The 

ones in the region II are infeasible. Therefore, the solution in Pareto set is optimal in the sense that its heat 

transfer area and pressure drop achieves the minimum values under the design requirements and 

constraints. It is important to note that normally the optimal solution for the multi-objective optimization 

design is not unique. The designer can select one from the Pareto set according to the specific design 

requirements. Therefore, the multi-objective optimization design of heat exchanger is more flexible than a 

single objective optimization design. It can be seen the location of the initial solution indicated by the blue 

star. The effect of the optimization technique is evident. In fact, in order to achieve the same area of 26 m2, 

the pressure drop is reduced to 40 kPa.  

   

 Fig. 9.3.Pareto front – Area vs. Pressure drop   

Initial solution 

Region I 

Feasible but not-optimal 

solution 

Region II 

Infeasible  solution 

Pareto front 
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The influence of the design variables on heat transfer area and pressure drop are shown in figure 9.4. It can 

be seen in Fig. 9.4 that the higher the shell diameter the lower the pressure drop. On the other hand, the 

higher the shell diameter, the higher the heat transfer area. Furthermore, it can be noted that the design 

point with heat transfer area equals to 24 m2 and pressure drop of 60kPa corresponds to the intersection of 

the trends in figure 9.4. This is one of the closest points of Pareto optimal set to the ideal solution (heat 

transfer area=0, pressure drop=0 ). The behavior of the baffle spacing and baffle cut are similar. In fact, as 

shown in Fig 9.5. and 9.6, the larger the baffle spacing, the lower the fluid velocity, hence the lower the 

heat transfer coefficient. Further, the smaller the heat transfer coefficient, the higher the heat transfer 

area. Similarly, the higher the baffle spacing, the lower the fluid velocity, hence the lower the pressure 

drop. Similar considerations can be done in order to describe the effect of baffle cut. 

The effect of baffle spacing at inlet and outlet does not seem to have influence on heat transfer area and 

pressure drop. Even if it is not shown, tube pitch influences the number of tubes inside the shell. The 

selection of tube pitch is a compromise between a close pitch and an open pitch. Close pitch (small values 

of     ⁄ ) increases shell-side heat transfer and surface compactness. On the other hand, open pitch (large 

values of     ⁄ ) decreases shell-side plugging and ease in shell-side cleaning. Usually, Tube pitch    is 

chosen so that the pitch ratio is          ⁄     . 
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Fig. 9.4. Influence of Ds and do on objective functions  
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Fig. 9.5. Influence of Lbc and Lbi on objective functions 
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Fig. 9.6. Influence of Baffle cut and pitch on objective functions 

 

 

Fig. 9.7. Influence of tube layout on objective functions 
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The number of tubes can be calculated as a consequence of shell diameter, tube pitch and outer tubes 

diameter. The influence of this number is shown in Fig 9.8. Because tube diameter and pitch length have 

small range of variability, the effect on heat transfer area and pressure drop is similar to the one of shell 

diameter. One of the most important parameters to consider is the fluid velocity that must be inside a 

specific range. The velocity must be high enough to prevent any suspended solids settling, but not so high 

as to cause erosion. Furthermore, high velocities will reduce fouling. High velocities will give high heat-

transfer coefficients but also high-pressure drop. Generally, shell side velocity must be greater than 0.2 and 

lesser than 1.2 m/s. Tube side velocity must be greater than 1 m/s and lesser than 2 m/s. 

 
Fig. 9.8. Influence of number of tubes on objective functions. 
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Fig. 9.9. Fluid velocity on tube side. 

 

 

Fig. 9.10. Fluid velocity on shell side. 
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9.4. Multi objective optimization of economizers for organic Rankine cycle 

In this section a real case of study [23] is considered. The aim of the problem is to design a shell and tube 

heat exchanger for an organic Rankine cycle. The heat exchanger is an economizer with the following 

requirements: 

Table 9.6. 

 Hot Fluid Cold Fluid 

Fluid Dowtherm Q Cyclopenthane 
Inlet Temperature      [  ] 193.01 115.14 
Outlet Temperature      [  ] 129.96 178.01 
Mass Flow Rate [kg/s] 49.26 39.77 
Fouling Resistance [m2K/W] 0.0002 0.0002 
Tube Material Stainless Steel  
Heat Flux [kW] 6441.845 -6441.845 
Stream side Tube Shell 

The first consideration regards the general arrangement of the heat exchanger. The first screening takes 

into account the number of tube and shell passes, the tube layout and the hot fluid side. The screening can 

be done using the correction factor for the logarithmic mean temperature method based on equations 9.3 

and 9.4. 

 

Fig. 9.11. Temperature profiles of the economizer 

The following assumptions are made in the derivation of the temperature correction factor Ft, in addition 

to those made for the calculation of the log mean temperature difference: 

1. Equal heat transfer areas in each pass. 

2. A constant overall heat-transfer coefficient in each pass. 
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3. The temperature of the shell-side fluid in any pass is constant across any cross section. 

4. There is no leakage of fluid between shell passes. 

An economic exchanger design cannot normally be achieved if the correction factor    falls below 0.75. In 

these cases an alternative type of exchanger should be considered which gives a closer approach to true 

counter-current flow. The use of two or more shells in series, or multiple shell-side passes, will give a closer 

approach to true counter-current flow, and should be considered where a temperature cross is likely to 

occur. Temperature cross is the difference between the outlet temperatures of fluids. In this case the 

temperature cross is very high and several shell passes are expected. 

Different solutions are considered varying the number of heat exchangers used to provide the heat flux and 

the number of shell passes. The heat transfer rate requested can be obtained connecting two or more heat 

exchangers in series.  

Table 9.7.Correction factor for different arrangements 

                  NHE       N Shell Pass                   Heat flux [W]                  FT              Thout [°C]    Tcin [°C]    
1.0            1.0     6441844.50    0.4018      129.96     115.14 
1.0            2.0      6441844.50    0.3873      129.96     115.14 
1.0            4.0      6441844.50    0.7736      129.96     115.14 
2.0            1.0      3220922.25    0.3872      162.20     148.39 
2.0            2.0      3220922.25    0.7772      162.20     148.39 
2.0            4.0      3220922.25    0.9523      162.20     148.39 
3.0            1.0      2147281.50    0.4614      172.62     158.68 
3.0            2.0      2147281.50    0.9159      172.62     158.68 
3.0            4.0      2147281.50    0.9801      172.62     158.68 
4.0            1.0      1610461.12    0.7943      177.77     163.68 
4.0            2.0      1610461.12    0.9554      177.77     163.68 
4.0            4.0      1610461.12    0.9892      177.77     163.68 
5.0            1.0      1288368.90    0.8804      180.85     166.62 
5.0            2.0      1288368.90    0.9724      180.85     166.62 
5.0            4.0      1288368.90    0.9932      180.85     166.62 

The preferable solutions are indicated in table 9.7. One shell side (TEMA E) is preferable because is simpler 

and cheaper than one with two shell passes (TEMA F). Thus, the following solution is proposed: 
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Fig.9.12 Flow arrangement. Four heat exchangers in series. 

The aim of the work is to design and optimize the first stage of the series (with the highest temperatures). 

The other stages follow the same procedure. Different objective functions are used in order to compare the 

results. The requirements of the heat exchanger are listed in table 9.8.  

Table 9.8. 

 Hot Fluid Cold Fluid 

Fluid Dowtherm Q Cyclopenthane 
Inlet Temperature      [  ] 193.01 115.14 
Outlet Temperature      [  ] 177.77 163.68 
Mass Flow Rate [kg/s] 49.26 39.77 
Fouling Resistance [m2K/W] 0.0002 0.0002 
Tube Material Stainless Steel  
Heat Flux [kW] 1610.461 1610.461 
Stream side Tube Shell 

 

Fluid Inlet 

Fluid Outlet 

 Outlet 

1° Stage – 

High temperature 

2° Stage 

3° Stage 

 

4° Stage   

Low temperature 
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Fig. 9.13. Temperature profiles 

 

9.4.1. Volume and pressure drop minimization 

The decision variables considered in this case study are: 

1. The shell diameter    

2. The tube outer diameter    

3. The baffle spacing at the center      

4. The baffle spacing at the inlet and outlet           

5. The baffle cut    

6. The tube pitch    

7. The layout of the tubes  

8. Side of cold fluid 

Table 9.9. Design variables and range of values. 

Decision Variable Range of values 

   [  ]          
  [  ]            
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The objective functions are the volume and the total pressure drop: 

      
   

 

 
                                                                               

                                                                                         

 

Fig. 9.14. Pareto front – Volume vs. Pressure drop 

 

 

Fig. 9.15. Influence of design variables on volume and pressure drop 

Solution A 

Solution B 

Solution C 
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Fig. 9.16.Influence of design variables on volume and pressure drop 
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Fig. 9.17. Influence of fluid velocities on volume and pressure drop 

Three possible solutions are displayed in Table 9.10. 

Table 9.10.Three possible solutions 

 Solution A Solution B Solution C 

Volume [m3] 2.685     1.976     2.161     

Pressure drop[kPa] 24.507     78.415 51.475     

Shell Diameter[m] 0.899     0.748     0.829     

Tube outer diameter[m] 0.020     0.020     0.020     

Baffle spacing at center 0.396*Ds    0.322*Ds   0.308*Ds 

Baffle spacing at inlet/outlet 1.542*Lbc 1.465*Lbc 1.487*Lbc 

Baffle cut [%] 26.6     25.3     25.1     

Tube pitch 1.27*do  1.252*do 1.252*do 

Layout 30° 30° 30° 

Number of tubes 912  644 790  

Number of tube passes 4 4 4 

Number of shell passes 1 1 1 

Hot fluid side shell  shell shell 

Cold fluid side tube tube tube 

Tube length [m] 4.234   4.500   4.007   

Total surface area [m2] 244.939 183.577 202.427 

Fluid velocity on shell side [m/s] 0.768     1.429     1.217     

Fluid velocity on tube side [m/s] 1.208     1.715     1.386     

Type of heat exchanger TEMA E TEMA E TEMA E 

The designer can select one solution from the Pareto set in accordance with the specific design 

requirements. If the most important requirement is the volume, solution B is preferable. If a low value of 

pressure drop is required, solution A leads the design. A trade-off is represented by solution C.  

Using an algorithm, it is possible to draw the tube layout in order to have the exact number of tubes. As 

shown in figure 9.18, the number of tube of solution C is 769. This number is close to the value of 790 

calculated using an approximate expression.   
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Usually, the higher pressure stream should be allocated to the tube-side because the high-pressure tubes 

will be cheaper than a high-pressure shell. Furthermore, the stream in the tubes produces lower pressure 

drop and in an ORC the higher the pressure drop the lower the net power output. These considerations 

lead to allocate the cold fluid to the tube and the hot fluid in the shell.  

 

Fig.9.18. Tube layout of solution C 

In order to increase the heat transfer coefficient on shell side, finned tube can be considered. On the other 
hand, finned surfaces cause high pressure drop and high fouling factors. 

 

9.4.2. Volume, pressure drop and cost minimization 

The evaluation of heat exchanger performance must be coupled with the cost estimation in order to 

achieve the best performance with the lowest expenses. The total cost of a heat exchanger can be seen as 

the combination of two major costs: the initial cost and the operating cost. 

The initial cost (or capital cost) is the purchase cost of the heat exchanger. The estimation of the cost of 

purchase is usually based on the estimation of the heat transfer surface and on earlier knowledge and 

experience of exchanger manufacturing. The following correlation can be used for a carbon steel heat 

exchanger as suggested by Wild and Gosselin [25]: 

            (
 

  
)
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Where the purchase cost is expressed in $ and the heat transfer area is in   .  Because the purchase cost 

also depends on the operating pressure and temperature as well as the material of construction, some 

correction factors are necessary: 

                   (
 

  
)
    

                                                

Where       and    are correction factors that takes into account the material of construction, the 

operating pressure and temperature respectively.  

The operating cost is governed by the pumping power that is required for driving the hot and cold fluids 

through the exchanger. The operating cost can be determined from: 

                                                                                       

Where    and    are the required pumping powers (in W) for the shell and tube sides respectively,    is 

the annual operating period (in hours) and    is the electricity cost: 

   
     ̇ 

    
                                                                             

   
     ̇ 

    
                                                                             

The total cost of heat exchanger is expressed in annuities: 

          

       

        
                                                                 

Where   is the fractional interest rate per year and   is the expected lifetime of the heat exchanger.  

Table 9.11. 

Parameter Value 
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Fig. 9.19. Pareto front – Total annual cost vs. Volume vs. Pressure drop  

 

 

Fig. 9.20. Pareto front. A)Volume vs. Pressure drop B) Total cost vs. Pressure drop C) Total cost vs.Volume 

Using three objective functions the optimal Pareto set can be represented in a three dimensional plot. It 

can be seen the opposite influence of volume and pressure drop on total cost. In fact, capital cost is related 

to the heat transfer area (thus the volume) as expressed in equation 9.20. On the other hand, operating 

cost is proportional to the pressure drop. Figure 9.21-a shows the inverse relation between volume and 

pressure drop as widely described in the previous section. Figure 9.21-c shows the Pareto optimal set 

highlighting the relation between total annual costa and volume. As expected, the higher the volume the 

higher the total annual cost. However, when the volume is too low, pressure drop increases rapidly. This 

causes high operating cost. Therefore, a minimum is defined. It is important to say that total annual cost is 

only a rough estimation and more accurate research are necessary to validate this model. 

High capital 
costs due to 
High volume 

High operating 
costs due to 
High Pressure 
drop 

 

High capital 
costs due to 
High volume 

High operating 
costs due to 
High Pressure 
drop 
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Fig. 9.21.Influence of Ds and do on total annual cost. 

 

 

Fig. 9.22.Influence of Lbc, Lbi, Baffle cut and pitch on total annual cost. 

 
Optimized solution is obtained by means of the following design variables: 

Table 9.12. Solution of minimum total annual cost 

 Solution  

Volume [m3] 2.337 

Pressure drop [kPa] 32.147     

Total annual cost [$] 7643.667         

Shell Diameter[m] 0.898     

Tube outer diameter [m] 0.019     

Baffle spacing at center [m] 0.218*Ds     

Baffle spacing at inlet/outlet [m] 1.017*Lbc 
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Baffle cut [%] 25.6 

Tube pitch 1.268*do 

Layout 30° 

Number of tubes 1030  

Number of tube passes 4 

Number of shell passes 1 

Hot fluid side shell 

Cold fluid side tube 

Tube length 3.690   

Total surface area 227.275 

Fluid velocity on shell side 1.219     

Fluid velocity on tube side 1.401     

Type of heat exchanger TEMA E 

Material of construction CS shell, aluminum tubes 

Expected lifetime 20 

Annual operating period [hours] 5000 

Electricity cost [$/kWh] 0.1 

Fractional interest rate[%] 5 

 

 

Fig. 9.19.3D view of shell and tube geometry – solution C 

 



102 
 

 

 

 

10          Multi Objective Optimization of PHE  

 

 

 

10.1. Multi-objective optimization of plate heat exchangers 

Compact heat exchangers like plate heat exchangers are the best solutions for small scale organic Rankine 

cycles. In fact, the diffusion of the brazing technology has allowed the construction of high temperature 

and high pressure plate heat exchangers. The possibility to manage fluids with high temperature and high 

pressure is fundamental in the design of organic Rankine cycles. Thanks to the brazing process, plate heat 

exchangers are pressure resistant up to 45 bar and temperature resistant up to 200°C. Furthermore, 

carefully designed plate pattern of the corrugated plates easily achieves high thermal transfer rate in either 

counter flow or parallel flow arrangement. Finally, brazed Plate Heat Exchanger is much lighter in weight 

and smaller in size, if compared to shell tube exchangers and  easier to install and replace. 

A brazed plate heat exchanger consists of multiple corrugated steel plates stacked one on top of the other 

and vacuum brazed together. This design creates a series of parallel, non-intersecting channels through 

which the two liquids can flow without ever coming in contact with each other. Being separated only by a 

steel plate, the liquids move in close proximity to each other allowing for thermal energy exchange to 

occur. 

In the following work, a thermal modeling is conducted for optimal design of compact heat exchanger in 

order to maximize performance and minimize cost.  

10.2. Plate heat exchanger design 

The design of plate heat exchanger is very difficult because a lot of different plate configurations are 

available in the market and manufacturers do not provide correlations to calculate heat transfer coefficient 

and pressure drop. Information on the performance of the various patterns of plate used are not generally 

available. Furthermore, only few research about two phase heat transfer are available in literature 

[4,5,6,7].  

The design procedure is the following: 

1. Define the duty, the rate of the heat transfer required  ̇. 

2. If the specification of the problem is incomplete, determine the unknown fluid temperature or 

fluid mass flow rate from a heat balance. 

 ̇   ̇     (          )   ̇     (          )                                        
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3. Calculate the fluid parameters at the mean temperature such as density, viscosity, thermal 

conductivity and heat capacity. 

[        ]                                                                    

 

4. Calculate the mean log temperature difference 

     
(          )  (          )

  (
          

          
)

                                                   

 

5. Evaluate the log mean temperature correction factor    

 
6. Calculate the corrected mean temperature difference            

7. Propose a geometry for the plate heat exchanger and calculate the specific mass flow rate 

  
 ̇

                  
                                                                   

 

8. Calculate the heat transfer coefficient using Martin’s correlation (chapter 4) for single phase 

flow and Kim correlation for two phase flow. 

9. Calculate the overall heat transfer coefficient 

  [
 

  
    

 

  
    

 

  
]
  

                                        

 

10. Calculate the heat transfer area necessary to the heat transfer rate required 

  
 ̇

       
                                                                           

 

11. Compare the heat transfer area calculated at point 10 with the heat transfer area proposed at 

point 7. If the relative error is less than 10%, proceed. If unsatisfactory return to step 7 and 

modify the geometry 

12. Check the pressure drop for each stream. 

 

Figure 10. 

Log mean 

temperature 

correction 

factor for 

plate heat 

exchangers. 

Taken from 

Coulson and 

Richardson. 
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10.3. Test case and validation 

In order to validate the model a test case has been carried out. The starting point is the example 12.13 of 

the book “Coulson & Richardson, Chemical Engineering”. The aim of the problem is to design a plate heat 

exchanger with the following requirements: 

Table 10.1. 

 Hot Fluid Cold Fluid 

Fluid Methanol Water 
Inlet Temperature [°C] 95 25 
Outlet Temperature [°C] 40 40 
Mass Flow Rate [kg/s] 27.8 68.9 
Fouling factor [m2K/W] 1/10 000 1/6 000 
Tube Material Titanium  
Thickness [mm] 0.75  

 

Table 10.2. 

Fluid Density 

  [     ] 

Specific heat 
   [      ] 

Dynamic 
viscosity 
  [    ] 

Thermal 
conductivity 

  [      ] 

Prandtl 
Number 

   

Methanol at 
67.5°C 

750 2840 3.4 x 10-3 0.190 5.1 

Water at 32.5°C 995 4187 0.8 x  10-3 0.59 5.7 

 

Fig. 10.1. Temperature profiles 

The solution proposed in the book is shown in table 10.3: 
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Table 10.3. 

  

Plate width    [ ]      

Plate length    [ ]     

Plate spacing    [  ]     

Number of plates       

Number channel per pass        

  

Table10.4. 

 Solution of  
“Coulson & 
Richardson” 

Solution of the 
thermal model 
implemented 

Relative error [%] 

Channel velocity – Hot fluid [   ]             0.94 

Channel velocity – cold fluid [   ]             0.20 

Reynolds number –  Hot fluid           0.93 

Reynolds number –  Cold fluid           10.0 

Nusselt  number –  Hot fluid             6.13 

Nusselt  number –  Cold fluid             4.36 

Heat transfer coefficient –  Hot fluid 
[      ] 

          6.46 

Heat transfer coefficient –  cold fluid 
[      ] 

            0.38 

Overall heat transfer coefficient 
[      ] 

          0.01 

Pressure drop – Hot fluid [   ]               22.54 

Pressure drop – Cold fluid [   ]               21.26 

Total pressure drop [   ]                21.48 

    

As shown in table 10.4, the results are closed even though different correlations are used. The correlations 

adopted in the example are the following: 

    

  
                (

 

  
)
    

                                                 

      
  

  

   

 
                                                                          

Where 

   is the heat transfer coefficient of the fluid 

    
    

 
 is the Reynolds number 

  
 ̇

    
 is the channel velocity 

    (
    

 
)      is the cross sectional area for flow 

   is the hydraulic diameter 

   is the path length 
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              is the friction factor 

The corrugations on the plates will increase the projected plate area, and reduce the effective gap between 

the plates. For rough sizing, where the actual plate design is not known, this increase can be neglected. The 

channel width equals the plate pitch minus the plate thickness. There is no heat transfer across the end 

plates, so the number of effective plates will be the total number of plates less two. 

More accurate is the Martin’s correlation used in the model that takes into account chevron angle: 

   
   

 
           (

 

  
)

   

                                                          

 

√ 
 

    

                               
 

      

√     
                                         

 
If            

   
  

  
                                                                                 

 

   
      

  
                                                                               

If          
 

                                                                                    
 

   
    

       
                                                                               

 

10.4. Sensitivity analysis  

In order to increase the sensibility in the design of plate heat exchangers a sensitivity analysis is carried out. 

The aim off this section is to evaluate the influence of each geometric parameter on heat transfer area (or 

volume) and pressure drop. The procedure is to set all variables except one and observe the influence that 

this variable has on total heat transfer area (or volume) and pressure drop. 

10.4.1. Width of the plate, Channel spacing and number of plates 

As expected, the higher the plate width, the higher the volume and the lower the pressure drop. In fact it 

influences the cross section area, hence the fluid velocity through the channel. High velocity means low 

heat transfer area but also high pressure drop. Channel spacing and number of plates have the same 

behavior. 
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Fig. 10.2. Influence of plate width on pressure drop and volume 

 

 

Fig. 10.3. Influence of plate channel spacing on pressure drop and volume 
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Fig. 10.4. Influence of number of plate on pressure drop and volume 

 

10.4.2. Chevron angle 

As shown in figure 10.5, the chevron angle β has different influence on heat transfer coefficient and 

pressure drop respect the previous parameters. The higher  , the higher the heat transfer coefficient   

since more turbulence is created. On the other hand, the higher    the higher the pressure drop. 

 

Low heat trasnfer 

coefficient 

High heat trasnfer 

coefficient 

Low fluid velocity 

HIgh fluid velocity 



109 
 

 

Fig. 10.5. Influence of chevron angle on pressure drop and volume 

 

10.4.3. Channel aspect ratio 

The channel aspect ratio is related to the enlargement factor    The enlargement factor is the ratio 

between the developed length and the projected length. As described in chapter 5, the channel aspect ratio 

is the ratio between the mean channel spacing     and the corrugation pitch   : 

   
  

  
                                                                      

  
 

 
(  √      √  

  

 
)                                                  

The value of   is normally between 0.84 and 1.17 and describes the corrugation pattern. Corrugated plates 

induce turbulence and increase heat transfer area till 15%. The higher the channel aspect ratio, the higher 

the heat transfer since the developed area increases.    

High turbulence -High 

heat trasnfer coefficient 

High turbulence – 

High pressure drop 

Low turbulence -Low 

heat trasnfer 

coefficient 

Low turbulence – Low 

pressure drop 
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Fig. 10.6. A)Projected length vs. developed length. B) 1/1 floe arrangements 

 

10.5. Optimization 

In order to optimize the design procedure a multi-objective optimization is carried out. Multi objective 

optimization minimizes several objective functions simultaneously, with a number of inequality or equality 

constraints. It can be mathematically expressed as follows: 

        [                   ]                                                      

Subject to 

                                                                                       

                                                                                       

Where   is a vector and is also called the decision vector because it contains the decision variables and   is 

the parameter space. If and only if,             for          and             for least one objective 

function  , a feasible solution   is said to dominate another feasible solution  . A solution that is not 

dominated by another solution in the feasible region is called Pareto optimal solution. The set of all Pareto 

optimal solution forms the Pareto optimal set whereas the values of the objective functions related to the 

Pareto optimal set are called Pareto front. The objective functions considered in this case study are volume 

and total pressure drop: 

                                                                                    

                                                                                 

The design variables are: 

Table10.5. 

Design variable Range 

Plate width    [ ]          

Plate spacing    [  ]         

Number pass                

Chevron angle   [ ]         

Channel aspect ratio [ ]           
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Volume is calculated as follows: 

  [(    )     ]                                                               

Where   is the plate thickness and is assumed constant:           The arrangement considered is 1/1. 

This means that each fluid does only one passage as shown in figure 10.6-b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10.7. Scheme of multi-objective optimization with genetic algorithm. 
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Fig. 10.8. Pareto front. Initial solution is displayed in the feasible region. 

As shown in Fig. 10.8, the initial solution proposed in the example is in the feasible region. The Pareto 

optimal set describe all the optimal solutions obtained varying the geometric parameters of the heat 

exchanger. The influence of the design variables on volume and pressure drop is shown in figure 10.9-10-

11. It can be noted that the trends follow the considerations pointed out in the sensitivity analysis. 

 

 

Fig. 10.9. Influence of design variables on pressure drop and volume 

Feasible Region 
Unfeasible  
Region 

Initial solution 
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Fig. 10.10.Influence of design variables on pressure drop and volume 

 

10.6. Optimization of plate heat exchangers for organic Rankine cycles 

The optimization of heat exchangers for organic Rankine cycles follows the guidelines described previously 

but a real design procedure must consider the operating conditions of the heat exchanger.  In order to 

consider the operating conditions of the heat exchanger, the results of the cycle optimization reported in 

chapter 8 are taken as starting point. The aim of the work is the design and optimization of the heat 

exchangers (economizer and evaporator) for the three solutions proposed in table 10.6. 

Table10.6. 

 R-245fa R-236ea R-245ca 

Temperature            
   T_eva [°C]    

           Delta PP [°C]  
                 T1 [°C]     

 
117.1  

    10.0  
    25.0  

 
129.3                

           10.0  
                 25.0  

 
110.5              

           10.0  
                 25.0  



114 
 

                T2s [°C]     
                 T2 [°C]     
                 T3 [°C]    
                 T4 [°C]    
                 T5 [°C]     

                 T5s [°C]    
                 T6 [°C]    
                 T7 [°C]     
                T8 [°C]     
                 T9 [°C] 

     
Pressure  

               Peva [kPa]   
              Peva [bar]     

Mass flow rate 
 Working fluid mass flow [kg/s]      

 
Heat transfer rate 
Heat flux H.E. total work. Fluid[W]           

Heat flux ECO work. Fluid[W]           
Heat flux EVA work. fluid[W]                                        

                    
Power                    

        Net power output[W] 
 

Performance index            
             epsilon               

                  
Entropy generation rate 

S_eva_i sensible [J/(s/K)]                        
      S_eva_i latent[J/(s/K)]            

       S_eva_i  [J/(s/K)]           
             S_eva_e  [J/(s/K)]                               

                               
               S_gen   [J/(s/K)]                          

    25.5  
    26.2  

   117.1  
   117.1  
    44.4  
    53.2  
    30.0  

   180.0  
   127.1  
    60.3  

 
 

  1819.32  
    18.1932  

 
     0.235  

 
  

          58370.61            
          31273.47            
          27097.14            

           
          

           7554.07 
 
 

              0.778  
 
  

              5.38  
              5.89  

             11.28  
              4.78              

               
             32.25  

                25.9  
                 26.9  

                 129.3  
                 129.3  

                49.7  
                 57.8  

30.0  
                 180.0  
                 139.3  

                 35.8  
 
 

              2810.65  
              28.1065 

  
0.325  

 
 

68988.32  
47935.30  
21053.02  

 
 

        8837.37 
 
        

0.942  
 
 

     2.87  
3.65  
6.53  
1.04  

 
27.83 

                25.3  
                 25.7  

                 110.4  
                 110.4  

                48.1  
57.0  

                 30.0  
180.0  

                 120.4  
64.3  

 
 

               1172.40  
              11.7240 

 
0.213          

 
 

              56564.90  
        26190.96  

30373.93  
     
 

        7190.06 
 
        

                      0.749  
 
 

5.16 
      7.39  

       12.55  
             5.65                 

              
  33.50 

 

The operating requirements for the heat exchanger design are displayed in Table 10.6. In order to obtain a 

set of optimal solutions, six design variables are selected and their ranges are listed in Table 10.7: 

Table 10.7. 

Design variable Range 

Plate width    [ ]          
Plate spacing    [  ]         
Number pass           

Number of channel for pass               

Chevron angle   [ ]         
Channel aspect ratio [ ]           

The plate length,   , is the geometric parameter used to achieve the right heat transfer area, hence it 

depends from the other design variables.  The number of plates is obtained with the following expression: 
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    (              )                                                              

Where       is the number of passages through the heat exchanger of one fluid whereas          is the 

number of channels for each passage. With a fixed value of total channel, the higher       the higher the 

velocity of the fluid. High velocity means high heat transfer coefficient and low heat transfer area. 

 

 

 

 

 

 

 

On the other hand, high velocity implies high friction losses and high number of passages increase the 

length of the path to calculate the pressure drop. 

The objective functions considered are: 

                                                                                

                                                                              

                                                                                  

Where the thickness of the plate is assumed constant:          . Entropy is computed as follows: 

 ̇       ∫ (
 ̇    

 
)
   

 

 

  ̇       
    

    
  ̇       

    
    

                                   

 ̇       
   

  
 ̇ 

  
    

    

         
 

   
  

 ̇ 

  
    
    

         
                                           

 
The entropy generation caused by the heat transfer is constant since the operating temperatures are fixed. 

Thus, the entropy generation rate is influenced only by pressure drop. 

The Pareto front obtained by the multi-objective optimization design is shown in Fig 10.11-12-13-14-15. As 

expected, the optimal set for r236ea is shifted to higher volumes than r245fa and 245ca. This is due to the 

higher effectiveness of r236ea compared to the other fluids that causes higher heat transfer area. It can be 

seen that the value of entropy generation rate is higher than the value reported in table 10.6. In fact, in the 

optimization of the cycle presented in chapter 9 the pressure drop was neglected.  The design of the heat 

exchanger allows the designer to consider the pressure drop and improve the model of the organic Rankine 

cycle. As shown in Fig. 10.11, 10.12, 10.13 the higher the pressure drop the higher the entropy generation 

rate in the heat exchanger. Obviously, the higher is the entropy generation rate, the lower is the net power 
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output of the cycle. On the contrary, the lower the pressure drop the higher the volume. These 

considerations lead the designer to select the optimal geometry of the heat exchanger. 

 

Fig. 10.11. Pareto front of r245ca  

 

Fig. 10.12. Pareto front of r245ca  
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Fig. 10.13. Pareto front of r245ca  

 

Fig. 10.14 

Three solutions are selected from the Pareto front in order to show the design variables associated:    

Table 10.8.       

Design variable Solution A Solution B Solution C 

Fluid R245fa R236ea R245ca 

Plate width    [ ]                    

Plate length    [ ]                   

Plate spacing    [  ]               

Number pass             

Solution B 
Solution B 

Solution A 
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Number of channel for pass                

Number of plates            

Chevron angle   [ ]                

Channel aspect ratio [ ]                  

Volume [  ]                            

Pressure drop [kPa]                      

Entropy generation rate [J/(Ks)]                            

Heat transfer area                   

Hot fluid velocity [m/s]                   

Cold fluid velocity [m/s]                   

 

Fig. 10.15. Comparison of Pareto front for three fluids  

Generally, heat exchangers with pressure drop higher than 50 kPa are considered. When sizing a PHE, we 

have very little choice in the selection of plate dimensions, unlike plate-fin and tube-in heat exchanger 

designs, because we cannot arbitrarily select a plate width    or plate length   . Instead, we should select 

from a relatively small pool of available plate sizes from any manufacturer. 

 I propose the following solutions available in the market: 

 

 

 

 

 

 

 

 



119 
 

Table 10.9 

 Solution A Solution B Solution C 

Company Swep Swep Swep 

Product name               

Plate width    [ ]                    

Plate length    [ ]                   

Plate spacing    [  ]                

Number pass             

Number of channel for pass                

Number of plates            

Chevron angle   [ ]          

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Swep – model B25T 

Swep – model B35 
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10.7. Optimization of evaporator 

 

The same approach can be adopted to design the evaporator. As shown in figure 10.17, two cases are taken 

into consideration: one pass and two pass arrangements. Generally, two-phase heat transfer coefficient is 

higher than single-phase heat transfer coefficient. Therefore, the evaporator requires less area than the 

economizer. 

 
Fig. 10.16.Temperature profiles of evaporator. 

Table 10.10. 

Design variable Range 

Plate width    [ ]          
Plate spacing    [  ]         
Number pass           

Number of channel for pass               

Chevron angle   [ ]         
Channel aspect ratio [ ]           

The objective functions considered are the same of the previous case: 

                                                                                      

                                                                                   

                                                                                    

It can be noted that r245ca is the fluid that has the highest heat transfer rate in the evaporator.  This means 

that r245ca needs more heat transfer area than the other fluids. 
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Fig. 10.17. 

Table 10.11. 

Design variable Solution A Solution B Solution C 

Fluid R245fa R236ea R245ca 

Plate width    [ ]                    

Plate length    [ ]                   

Plate spacing    [  ]                

Number pass             

Number of channel for pass                

Number of plates           

Chevron angle   [ ]                

Channel aspect ratio [ ]                  

Volume [  ]                            

Pressure drop [kPa]                   

Entropy generation rate [J/(Ks)]                            

Heat transfer area                   

Hot fluid velocity [m/s]                   

    

There are three products in the catalog of Swep that meet the requirements: 

Table 10.12. 

 Solution A Solution B Solution C 

Company Swep Swep      

Product name               

Plate width    [ ]                    

Plate length    [ ]                   

Plate spacing    [  ]                

Solution B 

Solution A 

Solution C 
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Number pass             

Number of channel for pass                

Number of plates           

Chevron angle   [ ]          

 
Fig. 10.18 Entropy generation rate for r-236ea 

 
 Swep model B12 
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10.8. Techno-economic optimization 

 

For a complete optimal design of a heat exchanger the total annual cost must be considered. In fact, when 

the capital cost of a heat exchanger is high and the operating cost is low, the use of large pressure drops for 

a design may be beneficial. On the other hand, the same design may have to assume much lower pressure 

drops if the operating cost is high compared to the capital cost. In order to compare the total annual costs 

of different optimal solutions, a thermo-economic optimization is carried out. 

The total annual cost of a heat exchanger system is represented by: 

          

       

        
                                                             

The capital cost,        , is the purchase cost of the heat exchanger. L. Wang and B. Sundèn [22] suggested a 

rough model to calculate the capital cost of plate heat exchangers: 

                                                                                       

Where the Initial cost is expressed in $ whereas the area is in    . 

The operating cost      is governed by the pumping power that is required for driving the hot and cold 

fluids through the exchanger. The operating cost can be determined from: 

                                                                              

Where    and    are the required pumping powers (in kW) for hot and cold sides respectively,    is the 

annual operating period (in hours) and    is the electricity cost: 

   
     ̇ 

    
                                                                      

   
     ̇ 

    
                                                                       

The pressure drop influences in opposite way operating cost and capital cost. In fact, low pressure drop 

means low operational cost but, also, high volume and high initial cost.  

Table 10.13. 

Design variable Range 

Plate width    [ ]          
Plate spacing    [  ]         
Number pass           

Number of channel for pass               

Chevron angle   [ ]         
Channel aspect ratio [ ]           
  
Parameters  
Material                 
Operating hours                 
Lifetime          
Electricity cost            
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The objective functions are: 

                                                                                  

                                                                                

                                                                                   

 

Fig. 10.19. Pareto optimal set for the fluids selected. 

 

Fig. 10.20.Pareto optimal set for the fluids selected. 
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As expected, pressure drop and volume influence total annual cost. Since, three objective functions are set, 

Pareto front could be shown in three dimensions. The optimal point can be found as a trade-off between 

costs related to volume and costs related to pressure drop as shown in figure 10.22-23. It can be noted the 

linear trend of the cost related to the pressure drop as defined in the operating cost equation (Eq. 10.34). 

On the other hand, volume (or area) is related to the cost with a polynomial expression (Eq. 10.33).  

 

Fig. 10.21.Pressure drops vs. volume 
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Fig. 10.22.Total annual cost vs. volume 

 

Fig. 10.23.Total annual cost vs. Pressure drop. 

 

 

Peaks of cost due to high 

pressure drop 

Peaks of cost due to high 

volume 

Peaks of cost due to high 

pressure drop 

Peaks of cost due to high 

volume 
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                                                Conclusions 

 

 

 

 

In this study the influence of heat exchanger design on organic Rankine cycles is analyzed. In order to 

enhance the performance of the cycle a first screening of working fluids and operating conditions is carried 

out. The fluid plays a key role on power output, efficiency, effectiveness and entropy generation rate. 

Furthermore, environmental impact and safety are important factors that lead the designer to select the 

working fluid.  

Shell and tube heat exchangers are the most commonly used heat exchanger configuration in the process 

industries when high heat transfer rate is required. In fact, the configuration gives a large surface area in a 

small volume. 

In my work, I present an integrated model to evaluate the pressure drop and the heat transfer surface area 

required for a shell and tube heat exchanger. I consider nine design variables regarding the geometry of the 

heat exchanger and the side where the working fluid flows (i.e. shell or tube). The optimization is 

performed using multi-objective genetic algorithm. Volume, pressure drop and total annual cost are the 

fitness functions used to obtain the Pareto optimal set. Theoretically, the optimal solutions in the Pareto 

optimal set obtained from the multi-objective genetic algorithm are the best trade-off between the 

objectives functions considered. The results of heat exchanger optimization show that low volume means 

high pressure drop and vice versa. Total annual cost depends on the initial cost to purchase the heat 

exchanger and the operating cost. Initial cost is related to the heat transfer area whereas operating cost is 

proportional to the pressure drop. A trade-off between them leads to a minimum of total annual cost. 

For low heat source temperatures, plate heat exchangers are the best solution. Therefore, compact heat 

exchangers are proposed for economizer and evaporator. The optimization was performed using multi-

objective genetic algorithm. I consider six design variables to define the optimal geometry of plate heat 

exchanger. Volume, pressure drop, total annual cost and entropy generation rate are used as fitness 

functions. Three test cases are analyzed in order to compare volume, pressure drop and total annual cost. 

The results show that operating conditions and working fluid strongly affect the total annual cost of 

economizer and evaporator.  

Future work could exploit entropy generation minimization to optimize cycle performance and total annual 

cost of each component of the cycle. It is demonstrated that maximize net power output leads to the same 

results of minimize entropy generation rate. The cycle performance and the total annual cost can be 

optimized considering evaporating temperature, working fluid and geometric characteristics of each 

component as design variables. 

Total entropy generation rate can be minimized considering all the sources of irreversibility (including 

exergy released to the environment). 
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The following scheme shows the entropy generation rate of each component. Entropy generation rate 

depends on operating conditions (working fluid, evaporating temperature, condensing temperature, heat 

source temperature) and geometric characteristics of each component that affect pressure drop and 

isentropic efficiency (       ). 
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 ̇             ̇          

 ̇              ̇          
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