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Late Quaternary incision rates in the High Tinée catchment (France): 

use of numerical modelling and 10Be TCN dating 

 

 

Abstract 

With this study we try to decipher the message hidden in the longitudinal profiles 

of the High Tinée and of its main tributaries coupling numerical modelling and 

10Be Terrestrial Cosmogenic Nuclides dating. In order to understand the respective 

influence of active tectonic and climate on the fluvial erosion, we have applied, 

the inversion code developed by Goren et al. (2014) over the last 120 kyr.  The 

results indicate climate as the parameter driving the Tinée incision process 

highlighting the large effect of the post LGM deglaciation on the fluvial dynamic. 

However in the model signal is present a background noise, that is likely due to 

the regional uplift interesting the area. The TCN dating confirms the importance 

of the post LGM deglaciation. With it we have estimate a mean incision rate of 2 

mm/yr that is in accordance with the value obtained in the neighbouring valley of 

the Vesubie River and with the local uplift rate. Further, there are two evident 

periods of rapid incision around 15 and 4,5 kyr B.P. The two periods correspond 

to favourable fluvial incision conditions given by a rapid deglaciation, the first 

one and by more abundant rainfall the second one.  

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Stima dell'erosione fluviale nel bacino dell'alta Tinée (Francia) nel tardo 

Quaternario: utilizzo di modelli numerici e datazione TCN al 10Be 

 

 
Abstract 

 

Il presente studio tenta di carpire le informazioni nascoste nei profili longitudinali 

dell'alta Tinée e dei suoi principali affluenti. Per fare ciò sono state utilizzate  

tecniche di modellazione numerica e la datazione TCN al 10Be di 11 campioni 

prelevati da una superficie d'erosione fluviale in granito.   

Al fine di distinguere le rispettive influenze di clima e tettonica attiva sui profili 

longitudinali fluviali, si è applicato, a tutto il post “MIS 5e”, il modello sviluppato 

da Goren et al., (2014) basato sull'inversione della “stream power law”. Dai 

risultati ottenuti si evince che il clima è il fattore che più influisce sulle dinamiche 

d'incisione fluviale e che queste hanno fortemente risentito della regressione 

glaciale post LGM. In tutti i profili di “tasso d'incisione fluviale” ottenuti, è però 

costantemente presente un rumore di fondo; tale segnale è verosimilmente legato 

al sollevamento tettonico che interessa l'intera area di studio.  

La datazione ad isotopi cosmogenetici di 10Be ha sostanzialmente confermato e 

raffinato i risultati ottenuti nella fase di modellazione numerica. Si è infatti 

ottenuta conferma dell'importanza rivestita dallo scioglimento glaciale post LGM 

nell'attività d'incisione della Tinée e si è potuto quantificare, con accettabile 

precisione, un incisione media di circa 2mm/a per gli ultimi 20'000 anni. Tale 

valore concorda col tasso d'incisione noto per la Valle della Vesubie e con la 

velocità di “uplift” regionale. Infine la datazione TCN ha evidenziato il carattere 

impulsivo dell'incisione fluviale della Tinée, denunciando la presenza di due 

momenti erosivi relativamente recenti e temporalmente localizzati. Il primo, 

riscontrato a circa 15'000 anni da oggi, in piena regressione glaciale post LGM ed 

il secondo, posto a circa 4'500 a B.P, in corrispondenza d'un aumento delle 

precipitazioni rilevato in tutta la regione. 
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Introduction 

 

River incision drives the evolution of much of the earth surface topography, 

shaping its morphology. The relative roles played on river erosion processes by 

external factors (climate), and internal factors (tectonics or isostatic uplift) is a 

subject of debate and ongoing research (e.g., Adams, 1985; Molnar and England, 

1990; Isacks, 1992; Raymo and Ruddiman, 1992). Water runoff variations, base 

level change, glaciers melting, internal adjustment of river dynamics are processes 

working simultaneously, and causing changes of incision rate through time. The 

river runoff path and incision rates therefore carry out a complex signal that, once 

decrypted, can help the understanding of several phenomena interacting to shape 

the Earth’s surface. 

Determining river incision rates can be useful in many applications, from short 

term issues as nutrient flux variation or soil denudation, to larger time scale, as 

climate change estimates (e.g., Ferrier et al., 2013 and references therein). The 

study of incision rate variations is also a cornerstone of tectonic geomorphology, 

and may help understanding uplift patterns in active mountain ranges (e.g., Wobus 

et al., 2006; Kirby and Whipple, 2012; Baotian et al., 2013). 

All the aforementioned factors found a direct expression in the river longitudinal 

profiles and in their modelling with the Stream power law (e.g. Howard and 

Kerby,1983; Seidl and Dietrich, 1992; Seidl et al., 1994).  

Longitudinal river profiles may provide information about the relative uplift rate 

across a fluvial terrain (Snyder et al., 2000; Kirby and Whipple, 2001; Snyder et 

al., 2003; Whittaker and Boulton, 2012; Kirby and Whipple, 2012). This 

possibility becomes really useful in areas with low active tectonics, where the 

classical methods of uplift rate measuring (e.g. GPS), may not have the necessary 

sensibility, such as the Alps. The studies of river profiles could then lead to the 

comprehension of tectonic forcing and climate regime of a certain area. However, 

to decipher these natural features remains a problem, because of the 

contemporaneous influence of these factors on longitudinal river profiles. The 

influence of climate on river longitudinal profiles is indeed still not precisely 
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known. Several studies aimed at quantifying its role in the valley shaping process 

(e.g. Ferrier et al., 2013). However, the effects of the recent climate change on 

these profiles are still unconstrained.  

Starting from some studies evidencing a vertical movement of the whole Alpine 

chain by GPS data (e.g. Serpelloni et al. 2013; Walpersdorf et al., 2015), and from 

the work of Saillard et al. (2014) which showed that it is possible to study the 

incision rate and erosion dynamics on preserved polished river surface profiles, in 

the Vesubie Valley (Maritime Alps, SW Alps), it was decided to investigate the 

longitudinal profiles of the High Tinée tributaries.  

The Tinée valley is located in the Mercantour-Argentera massif, a region 

undergoing a low intensity but constant seismic activity, and an uplift rate of the 

order of 1-3 mm/yr (Sanchez et al., 2010b; Walpersdorf et al., 2015). In particular 

the attention has been focused on a small area encompassing the highest stem of 

Tinée River. This area has been chosen because it shows relatively simple 

catchment geometries with an almost linear main stem (the Tinée River). 

Moreover, the steep hill slopes are prone to large landslides, which suggests recent 

and fast river incision (Bouissou et al., 2012; Darnault, 2012). Working on a 

limited area (only one watershed) gives also the possibility to neglect spatial  

variations of rainfall in the given mountain range. 

 

The present study was carried out during a 6 months “Erasmus intership” in Nice 

(from March 1st to August 31th 2015), at the University of Sophia Antipolis, 

Géoazur Laboratory. The work was supervised by Prof. Yann Rolland (geological 

and geomorphological interpretation), Prof. Carole Petite (numerical modelling), 

and Prof. Marianne Saillard (TCN dating). The work is organised in two main 

sections:  

(i) a first one, based on the Goren-Willet-Fox model (2014) and a (ii) second one, 

consisting of a 10Be Terrestrial Cosmogenic Nuclides (TCN) direct dating of the 

river polished surfaces. 

 (i) The model has been used to produce an "incision rate – time" history 

for all Tinée's tributaries of the study area, obtaining so, for each of them, 
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the base level fluctuation, i.e. the incision rate of the Tinée itself . The 

obtained profiles have then been interpreted with the help of some 

previous works (Ferrier et al, 2013; Perron and Royden, 2013;Leith. et al, 

still unpublished). The modelling results interpretation has been coupled 

with a field geomorphological study.  

 (ii) To constrain the information provided by the model, a TCN dating was 

performed on 11 samples drawn from a 41m high river cliff located within 

a  gorge cut by the Tinée River. The cosmogenic nuclide dating technique, 

measuring the in situ-produced cosmogenic nuclide concentration, 

provides an accurate determination of the duration of the exposure to 

cosmic rays of a given rock surface, for instance of a river gorge polished 

surface. In this way, we have quantified the Tinée incision rates over the 

last 18 kyr.  

Lastly, combining the numerical modelling interpretation with geomorphological 

and geochronological quantitative evidences, and in light of the geodynamic and 

climatic contexts of the Southern French Alps, a possible interpretation of the 

river profiles and corresponding incision history is suggested. 
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I Numerical models and Terrestrial Cosmogenic Nuclides dating to estimate 

Quaternary incision rates: a brief review 

 

The relatively recent recognition of potential global-scale interactions between 

climate tectonics and surfaces processes (e.g., Adams, 1985; Molnar and England, 

1990, Isacks, 1992), has sparked the field of tectonic geomorphology. Since then, 

the dynamics of bedrock channel fluvial system has became one of the theoretical 

geomorphology most studied subject.  Starting from the 1980s, significant 

progresses have been made in developing numerical models for the simulation of 

bedrock channel system dynamics (Howard and Kerby, 1983; Seidl and Dietrich, 

1992; Anderson, 1994; Howard, 1994; Howard et al., 1994; Kooi and Beaumont, 

1994; Rosenbloom and Anderson, 1994; Seidl et al., 1994; Goldrick and Bishop, 

1996; Stock, 1996; Tucker and Slingerland, 1996; Stock and Montgomery, 1999; 

Whipple and Tucker, 1999; Whipple, 2001; Perron and Royden, 2013; Goren et 

al., 2014). Among all the proposed models, the most applied and used is the 

stream-power model, based on the Stream Power Law: E = KsnAm. Indeed, it is 

cast directly in term of the physics of the erosion (Howard and Kerby, 1983). The 

Stream Power Law states that river incision rate is given by the product of 

drainage area and channel slope respectively raised to the power exponents "m" 

and "n": 

E = KsnAm 

 
 where E is the erosion rate, K the erodibility, S the river slope and A the drainage 

area of the river. 

Ferrier et al.(2013) have applied the Stream Power Law to a series of river in the 

Hawaiian island of Kawa, where one of Earth's steepest rainfall gradient has been 

registered. The study has shown, through a time-averaged analysis and numerical 

modelling, that river incision efficiency is positively correlated with the upstream-

averaged mean annual precipitation rates. Its results provide empirical evidence 

for the correlation between climate and river incision.  Leith et al. (submitted) 

applied the Stream Power model to 18 tributaries of the Rhone River 

(Switzerland). Using high-resolution LIDAR data and integral long-profile 
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analysis, the authors attempted to predict the location of common knick points 

across the studied region and simulated approximately 800m of regional uplift, 

river incision, and hill-slope erosion in the lower half of each catchment over the 

last 0.7 Myr.  

In the Argentera-Mercantour area, a study on the river incision dynamics, 

coupling a Stream Power Law modelling approach with a TCN dating, has been 

conducted by Saillard et al. (2014) in the Vesubie Valley. The work studies the 

evolution of the Vesubie River longitudinal profile over a time period of 2 Myr, 

varying, on the stream power law, the erodibility coefficient through time. The 

results of this study suggest a long-term uplift rate lower than 2 mm/yr, with an 

increase in erodibility coefficient during the last 16 kyr. The Vesubie River is a 

Var tributary, joining this one just downstream the Tinée River.  

The present study applies, indeed, a similar analysis to the Tinée River. However 

our approach is indirect, and instead of trying to obtain a modelled profile as 

similar as possible to the topographic one, changing the model parameters, we try 

to infer these parameters starting from the topographic river profile. Further, we 

worked with a temporally-invariant erosion coefficient, fact that increase the 

incision-rate variations along time, but that may represent a possible 

simplification in model utilization and gives the possibility to study the model 

dependence to a more limited number of parameters. A 36Cl TCN dating has also 

been performed, in Saillard et al. (2014), in order to estimate the incision rate of 

the Vesubie River over the last 15 kyr. The analysis suggests two main incision 

phases at 4-5 and 11-12 kyr B.P.. These variations seem to indicate a 

predominance of climate influence on the short-term incision dynamics, but do 

not exclude a possible role of tectonic uplift. 

The Tinée Valley itself has been object of incision rate estimation through 

terrestrial cosmogenic nuclides dating (Darnault et al., submitted). The obtained 

incision rates underline an acceleration of river incision after the LGM and 

especially around 5 kyr B.P. with incision rates higher than 1 cm/yr. 

Finally the TCN dating technique has been applied, in the Tinée Valley, to date 

some glacier polished surface (Darnault et al., 2012). The obtained exposure ages 
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highlight three stages of glacial retreat. The dating has confirmed the three-step 

deglaciation previously dated in other sectors of the Alps (Kelly et al., 2004, 2006; 

Ivy-Ochs et al., 2009; Cossart et al., 2010; Ivy-Ochs, 2015). 
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II General Setting 
 

 

The Tinée River is the main tributary of the Var river located into the Mercantour-

Argentera massif, in the "Alpes du Sud". The latter, constituting the south western 

end of the Alpine chain (Figure 3). 

 

 

The Tinée River flows for c.a. 70 km, from the "Ravine de la Bonette", a gully cut 

into the Col de la Bonette (2860m) south side, where its source is situated, to a 

few kilometres south of the village of “la Courbaisse”, where it joins the Var River 

(Figure 1). Its 450 km2 extended catchment area represents, after the Var one, the 

largest basin of the Mercantour French side (Julian 1980).  The border of this one 

are made, at north, by the basin of Ubaye (a Durance tributary) located into the 

"Alpes-de-Haute-Provence" department, and by the "Stura di Demonte" basin (a 

Tanaro tributary) located into the Italian province of Cuneo. At the est side we 

found instead the basin of the Vesubie River, an other tributary of the Var, while 

the west side of Tinée's catchment area is in direct contact with the high part of the 

Var basin itself. 

The valley bottom elevation varies between the 900 m a.s.l. of the village of Isola, 

to the 2300 m a.s.l.  of "camp des fourches".  The ridges defining the Tinée Basin 

culminate above 2600 m a.s.l. with some peaks reaching altitudes of over 3000 m 

(Mont Ténibres 3041m a.s.l. is the highest peak). 

 

Figure 1:  map of the main north valleys of the Argentera-Mercantour massif.  In 
the red dotted box is possible to see the area interested by this job (GPS 

coordinates N: 44,16 -  44,35;  E:  6,78 – 7,03) and containing high stem of the 

Tinée River and 8 of its tributaries (modified from the morphological map of 

Maurice Julian, 1980). 
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II. 

1  

Geological and geomorphological setting 

The Mercantour-Argentera massif represents the most south-western part of the 

Alpine Chain and is located at the junction between the Western Alps and the 

Ligurian basin (Larroque, et al., 2001) into the external Alpine Domain (Figure 

3).  

 

 

 

Figure 2: the studied area with the Tinée river and its main tributaries; the 

numbered ones are those that have been analysed in this work. In order: 

1)Giarlogue 2) Ardon 3) Auron 4)Roya 5)Douans 6)Asueros 7)Rabuons 

8)Ténibres 9)The highest part of the Tinée itself. 
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II.1.1 The Argentera-Mercantour Massif and his "tégument" 

II.1.1.1 The European continental crust 

The Varisic basement of the Argentera-Mercantour is made of metamorphic units 

structured during the Varisican orogeny (Faure-Muret, 1955). It is composed by 

three principal units (Figure 4 and 5) outcropping in the left side of the High 

Tinée, and so defined: 

 Tinée western unit (Faure-Muret, 1955), consisting in three lithological set 

 

Figure 3: Simplified structural map of Western Alps, by Schwartz (2002). AM: 

Argentera-Mercantour Massif; MB: Mont Blanc Massif; DM:  Dora Maira 

Massif; GP: Grand Paradis Massif; MR: Mont Rose Massif.  
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and one intrusion: 

◦ The Varelois set, composed of plagioclase gneiss with biotite and 

sillimanite. 

◦ The Anelle set, composed of two micas gneiss and migmatite. 

◦ The Rabuons set, characterised by a two micas augen gneiss. 

◦ The Iglière intrusion, made of a quartz diorite also named as 

"Argentera Granit". The intrusion rocks have been dated of 293+/-10 

Ma (Upper Carboniferous – Lower Permian; Faure-Muret, 1969). 

 The eastern unit: (Faure-Muret, 1955) composed of anatectic gneiss with 

biotites and anphiboles, associated to the Argentera two micas granites 

(Malinvern-Argentera complex). 

 Valetta Molière mylonitic unit: consists in the fault zone separating the 

two previous units. 

In discordance on the metamorphic units lie, on the south and east side of the 

massif, the carboniferous sequences. These units dating to the Westphalian and 

Stephanian stages (315-295 Myr) are composed of black schist, arkose and 

conglomerate made of basement pebbles and can be easily found stuck into the 

fault zone also within the massif. 
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Figure 4: cross section through the metamorphic basement of Argentera 

(Bognadof, 1986) 
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II.1.1.2 The Permo-triassic "tégument" 

 

The Covers in direct contact with the crystalline basement date from Permian to 

Early Triassic (Werfen) and form the "tégument". During the Alpine Orogeny 

these layers remained structurally coupled to the basement and are now 

outcropping all around the massif and in the Dome du Barrot area.  

The Permian units are composed by detritic sediment: red pelites, sandstones, 

green red or grey conglomerates,  and overlie in discordance the carboniferous 

 

Figure 5: geologic map of Argentera-Mercantour massif illustrating the main 

lithologies of the crystalline massif (after Bogdanoff, 1986  
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sequence or, otherwise, are in direct contact with the basement as in the Tanneron 

Massif. 

 

II.1.2 The sedimentary cover: the foreland 

 

II.1.2.1 The Mesozoic sequence (Upper Triassic – Jurassic – Cretaceous) 

 

Overlying "tégument" and basement there are, in unconformity contact, secondary 

sedimentary covers with an average estimated thickness of 2300m and 3000m. 

These younger covers are basically made of Jurassic – Cretaceous limestone and 

marls suggesting a depositional paleoenvironment of continental shelf type 

(Campredon, 1977). The Jurassic sedimentary pile is represented by thick (600 m) 

calcareous deposits and is generally thought to be mechanically decoupled from 

the Lower Triassic by a detachment level in gypsum and cellular dolomites of the 

Upper Triassic (Keuper). The Cretaceous is marked by marls and calcareous marls 

with large thickness variations (600m to 1000m), which are principally controlled 

by the activity of normal faults during the Lower Cretaceous.  

 

II.1.2.2 The Paleogene 

 

The tertiary sequence of the external zone records a complete sedimentary cycle 

started after an emersion period of the foreland and of the Argentera-Mercantour 

massif during the Upper Cretaceous. This sequence is characterized by several 

unconformities on the Cretaceous strata, but also on the Jurassic and sometimes 

on the Triassic too.  

The Paleogenic sequence is made by units of marls and limestone (Nummulites 

limestone) at the bottom, overlapped by detritic units with increasing 

granulometry, from flysch to sandstone, toward the top.  This trend is the evidence 

of a progressive emersion of the European platform. 
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II.1.2.3 The Perialpine Neogenic basins 

 

The Neogenic basins are made of a sedimentary sequences going from the Upper 

Miocene to the beginning of the Quaternary. The bottom of this one consists in 

deltaic molassic formations, made of fluvial conglomerates composed by pebbles, 

results of alpine erosion.  Above we found molasses with a sandstone-

conglomeratic structure rich in Miocenic littoral fauna and at the top the chaotic 

Pliocenic sequence, made of marls and conglomerates enclosing sometimes 

Paleogenic and Neogenic blocks. 
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Figure 6: geologic setting of the Tinée and Var catchment areas. Southern French 

Alps (after Jourdon et al., 2014). Inset shows the tectonic setting of the study area 

in the framework of the western Alps.  

 

II.1.3 Deformation and tectonic 

 

The deformations that is possible to find within the crystalline massif of 

Argentera-Mercantour are the result of a superimposition of the effects linked to 

the Varisican and Alpine orogenesis. Five phases of Varisican deformation have 

been recognised and considered as giving rise to the global structure of the massif 

(Bogdanoff, 1986; Corsini et al. 2004).   

The structures appearing in the Argentera-Mercantour crystalline massif and in its 
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"tégument",  suggest an N-S shortening that caused, through a transpressive 

regime, strike-slip and transpressional faults (Valetta-Mollières), folds of the 

basement and folds affecting the permo-trias covers (Dome du Barrot, Cime du 

Diable, Mont Bégo). 

 

II.1.3.1 Seismicity and active tectonic: 

 

The Western Alps are considered as an area of low to medium seismicity (Giardini 

et al., 1999), nevertheless the western Alps system can be considered as a 

potentially destructive complex (Thouvenot et al.,1990), especially if considering 

events as the Lambesc earthquake of 1909 or other historical phenomena with 

intensities overcoming the value 6 in the MSK scale (corresponding to V in MCS 

scale). Particularly the areas of Briançon, Piemonte and Nice region can be 

considered submitted to a more important seismicity. 

Starting from the Forties the developing of seismic instruments has enabled to 

define two main seismic arcs, the Briançon one and the Piemonte one (Rothé, 

1941). The knowledge about the subject has progressively developed following 

the technological increment. During the years has been so possible to define 3 

important tectonic systems: 

 An extensional regime localised into the internal zones (Briançon and 

Piemonte Areas) and locally in the external zones N-W from the 

Argentera-Mercantour massif. (Sue, 1998; Sue et al.,2000; Delacou et al., 

2004; Bethoux et al., 2007; Larroque et al., 2009;) 

 A compressive regime localised in external zones, in the areas of Jura 

front, of Belledonne, of Provence, of the Ligurain Margin and of Po plain 

(Bethoux et al., 1992; Sue 1998; Barroux et al., 2001; Larroque et al, 

2001). 

 A strike-slip tectonic observed in the whole chain without internal/external 

distinction. It defines regions with transpressive behaviour and others with 

trans-extensif behaviour: 

◦ In the external domain the shortening compressive axes are fanned out, 
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radially to the Alpine Arc (Eva&Solarino, 1998; Sue et al., 1999; 

Baroux et al., 2001; Kyrstrup et al., 2004) going from a NNW – SSE 

direction in the eastern Suisse area, to a NE-SW direction in the South 

France. 

◦ In the internal domain these strike-slips structures are compatible with 

the extensive regional directions, N-S south of Vallais and from E-W 

to NE-SW in the Briançon and Argentera-Mercantour areas. 

 

The Southern French Alps are so submitted to an active transcurrent deformation 

that is active at least since the Holocene period and that is accommodated mainly 

by a N140° dextral segmented active fault system (JTF-STF), a conjugate N20 

sinistral fault (MDF GV-PFEF) and minor conjugate N20 sinistral (RF, VF, PLF) 

and N-S extensional (HDF) or dextral faults (DF, BAF, BF, SF) (Sanchez et al., 

2010b; Figure 7 and 8). The active character of the tectonics in the "Alps du Sud" 

has also been confirmed by geodetic studies (Walpersdorf et al., 2015) showing, in 

addition to a 0.5 mm/yr E – W extension, and an average uplift of 0.4 +/- 1.4 

mm/yr. This result has been obtained on data acquired during an only five years 

monitoring campaign, but are corroborate by the results of the two long standing 

permanent stations CHTL and MODA, situated just north of the network and 

attesting respectively uplift of 2.2+/-0.3 mm/yr and of 1.8+/-0.4 mm/yr. 
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Figure 7: Simplified structural map with a zoom on the 

studied area (modified from Sanchez et al., 2010b). To 

note the same orientation of the Tinée valley and the 

strike-slip fault system N140. This correspondence is also 

more marked in the studied part of the Tinée stem where a 

stirke-slip fault run along the river bed. 
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. 

II.1.4 Geomorphological context of the Tinée Valley 

 

From the beginning of Pliocene (5,3 Myr) the Argentera-Mercantour Massif is a 

mountainous region with altitude ranges from 400m to 3143m (Mt Gélas)  

(Fauquette et al., 1999).   

The Tinée Valley is the result of the combined action of fluvial and glacial 

processes. Unfortunately don't really exist recent geomorphological data 

concerning the valley and its glacial history. The last study concerning the subject 

dates up to the Eighties (Julian,1980), and still, only a chapter of it, is dedicated to 

the Tinée Valley. In his Phd thesis Romain Darnault (2012) has dated with the 10-

Beryllium TCN method some glacial polished surfaces located in the Vens and 

Fer valleys, secondary valleys of the Tinée basin. The obtained data attest, in 

accordance with other studies effectuated along the Alpine Arch (Ivy-Ochs et al., 

2006, 2008 and 2009; Böhlert et al., 2011; Federici et al., 2008;), three post LGM 

deglaciation phases: an oldest one around 15 kyr B.P, a second one around 11 kyr 

B.P. and the youngest one dating around 8,5 kyr B.P. Is anyway important to 

 

Figure 8: block diagram showing the active fault system in the north-

western part of the south-western Alps. The picture represents the pull-apart 

system with the two major dextral Jausier-Tinée fault and Serennes-Bersézio 

fault and the extensional High Durance fault system (from Sanchez et al., 

2010b). 
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remark that these data have been recollected above 2000m of altitude, while for 

lower  valley doesn't exist any kind of chronological information. However what 

is evident  is the change in section shape shortly upstream the village of Isola. If 

downstream the valley has the classical “V” shape, consequence of river incision, 

further upstream the fluvial features get lost or hidden by the opening of the 

valley, showing now some characteristics testifying a possible glacial origin; or at 

least a more important glacial contribution of the local geomorphology.  

An other evident characteristic of the valley is its amount of active landslides, first 

and foremost the “Clapiere” landslide. Probably, at the origin of this unstable 

situation, there is the combined activity of glacial and fluvial phenomena. The 

glacial retreat has indeed caused a distension in the steep sides of the valley, while 

the constant river incision keep digging the valley bottom undermining slopes 

stability (Darnault et al. 2012).  

 

 

II.1.4.1 Landslides and fluvial erosion: 

Numerous studies pointed out that since the LGM mass-wasting events may be 

correlated to climate changes in European mountain areas (e.g. Mattews et al., 

1997; Borgatti and Soldati, 2002; Soldati et al., 2004; Cossart et al., 2008; 

Sanchez et al., 2010a; Darnault et al., 2012).  The climate is directly linked to 

deglaciation and to rainfall rate, two of the most influential factors in terms of 

landslide triggering. The Tinée valley is indeed littered of landslides of all sizes 

(Darnault , 2012) (Figure 7 and 9). The valley indeed creates optimal condition 

for slope instability with mobilized volumes ranging from 5 x 10⁶  to 60 x 10⁶  

m³ (Jomard, 2006; Sanchez et al., 2010a; El Bedouiet al., 2011). The major Tinée 

valley landslides, “La Clapiére” and “Le Pra”, have largely been studied and 

investigated (Bigot-Cormier et al., 2005; EL bedoui et al., 2009; Sanchez et al., 

2010a;  Bouissou et al., 2012; Danault et.al., 2012). A third large landslide but less 

studied, is present in the valley: the “Isola” landslide. 
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Figure 9:one of the several active landslide present in the Tinée valley. The 

one in the photo is situated just downstream of the Roya and Tinée junction 

and is emblematic of the role played by river activity in landslides triggering. 
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II. 2 Climatic setting 

 

Once defined the geological setting, there is another essential constraints that must 

be considered if we have as aim the study of rivers longitudinal profiles and their 

possible geological and climatic meaning (Koppes et al., 2009): the glacial and 

interglacial phases. Starting from the Riss (MIS 6), all the most important glacial 

and interglacial phases can be found in the studied area. Obviously, to know the 

glacial phases is necessary to have data about the thermal fluctuations (Figure 10).  

 

II.2.1 Upper Pleistocene and Holocene glacial and interglacial phases 

 

 The MIS6 stadial: 

The end of Middle Pleistocene (250000 – 122000 years B.P.) is marked in the 

Alps by a cold and dry period during which the glaciers reached their maximal 

extension; e.g. the Rhone Glacier was stretched until the actual town of Lyon, and 

its altitude was over 1400 m. (Campy, 1982). It is during the MSI6 that the 

Argentera-Mercantour valleys got carved. 

 The MIS5 stadials and interstadials: 

The Upper Pleistocene (128000 – 11700 years B.P.) starts with a warming period 

(MSI5e) that caused the retreat of Alpine Glaciers. The MIS 5 (129000 – 72000 

years B.P. ) (Drysdale et al., 2005) (Corresponding to the previously called Riss – 

Wurm Interglacial) saw during its warm and humid first 13000 years (Eemian, 

MIS 5e),  the glaciers melting. This period ends with a progressive oscillating 

cooling trend. 

 The MIS4, 3 and 2 

In the global scale the so called “Wurm glaciation” begin 72000 year B.P., and is 

subdivided it into three internal stages: 

◦ MIS4 stadial, (c.a. 72000 – 60000 years B.P.), cold and humid at the 

beginning, cold and dry after. 
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◦ MIS3 interstadial, (c.a. 60000 – 25000 years B.P.), cold and dry. 

◦ MIS2 stadial, (25000 – 17000 ), marked by very low temperature 

(Guiot et al., 1989). 

Stadials MIS4 and 2 were, in the Alps, less important than MIS6 stadial in terms 

of glacier extension. –   For instance the Rhone Glacier remained upstream of 

“Les Echets”(Miribel, Ain, Rhone Alpes) and presented a maximal elevation of 

1200 m.  

In Sylvain Coutterand Phd thesis (2010)  is possible to find a well synthesized 

LGM (Last Glacial Maximum) history, explaining that there are two main currents 

about the LGM dating, one considering it previous to 28000 years B.P. and an 

other fixing it between 21000 and 17000 years B.P.. A different explanation for 

the multiple LGM dating is given by Jorda et al. (2000); they explain that is 

possible to have different precipitation regimes fact that could cause different 

climatic condition and so different dating of the LGM inside the Alpine Chain.  

The MIS2 advanced occurred between 22000 and 20000 years B.P. (Cossart et al. 

2010). In the “Alpes du Sud” the LGM is estimated to be around 21500 years B.P. 

(Jorda et al., 2000) with a maximum glacial thickness varying between 600 and 

1000 m, and covering an area going from the 3000m peak of the Argentera-

Mercantour massif, to the 600m m a.s.l. of the low valley (Cossart et al., 2008).    

 The post-glacial period 

The Tardiglacial period following the LGM (end of MIS2and beginning of MIS1: 

17600 – 11300 years B.P) is marked by a fluctuating warming trend (Heuberger, 

1966 and 1968; Patzel, 1972; Kerschner, 1986).  During this period two minor 

phases of glacial advance have been dated through several different methods 

(pollen, 14C, 10Be): 

◦ The Oldest Dryas, covers the period  from 18-17 to 14,7 kyr (Maisch, 

1992; Maisch et al., 1999; Ivy-Ochs et al., 2008). During this period 

hundreds meters thick glaciers re-descended to altitudes around 1000m 

a.s.l. (Cossart et al., 2010) and also after 15kyr little glaciers persisted 
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around the peaks. In the “Alpes du Sud” has been detected a juniper 

expansion dating around 15-14,7 kyr B.P., fact that attest rapid 

warming and deglaciation linked to the xeric condition of the area 

(Jord and Rosique, 1994). The same authors underline also the fact that 

this rapid melting of the glaciers caused a decompression on the flanks 

valley and a sudden rapid erosion breaking the previous balance and 

trigging movements in the valley slopes. 

 

 

◦ The Younger Dryas, dating from 12,6 to 11 kyr (Mangerud et al., 1974;  

Maisch et al., 1999; Ivy-Ochs et al., 2008; Ortu et al., 2008). This cold 

period results to be followed by a warm period between 11,6 and 9,0 

kyr (Warner et al., 2008). In the “Alpes du Sud” after Jorda et Rosique 

 

Figure 10: graphic reporting the temperature fluctuation 450 kyr with a zoom on 

the last 150 ("Ice Age Temperature". Licensed under CC BY-SA 3.0 via Wikimedia 

Commons - 

https://en.wiki2.org/wiki/File:Ice_Age_Temperature.png#/media/File:Ice_Age_Tem

perature.png) 
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(1994) this period caused less developed glaciers than the Oldest 

Dryas. The same authors estimate for this period an annual average 

lowering of several degree in less than a century. The end of the 

Younger Dryas, i.e. of the cold period, marks the beginning of the 

Holocene.  

These two post LGM glacial phases seem, in first approximation, in accordance 

with the δ18O record of the North GRIP core (North GRIP members, 2004).  
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II Methods 

 

With the purpose of better understanding the behaviour of fluvial incision in 

response to active tectonics and climate changes, the present study has employed 

two main techniques: numerical modelling and TCN dating.  

 

 

II. 1 Inversion of river longitudinal profiles 

 

II.1.1 The Goren, Willet and Fox model 

 

The model used for this study is based on the code developed by Goren, Willet 

and Fox (Goren et al., 2014) that proposes a formal linear inversion scheme for 

the stream power law, with the aim of translating topography features into uplift 

rate information (Appendix 2 for mathematical detail). Basically, environmental 

variations like tectonic forcing and climatic regime cause changes in the river 

incision rate through time. The river long-profile records the result of these 

variations. Indeed, climatic and tectonic changes influence the altitude of the base 

level of the river, so that the channel is forced to adapt and tries to reach a new 

equilibrium profile. Because of regressive erosion, the new equilibrium profile is 

first reached downstream and the environmental change information propagates 

upstream to modify the longitudinal profile accordingly until a new equilibrium 

profile is reached all along the channel, if possible. Understanding how temporal 

variations in the erosion rate are propagate upstream is fundamental for the 

interpretation of river long-profiles, and is what the Goren-Willet-Fox model aims 

to do. This code uses the non-dimensionaliation of the stream power law proposed 

by Perron and Royden (2013). The latter approach allows transformation of river 

concave-up profiles (Figure 11) into straight lines in non-dimensional chi-

elevation profiles where χ [-] is a non-linear distance coordinate (Appendix 2). 

This process reduced the problem to four variables: space, time, uplift rate and 

elevation, in a non-dimensional space coordinate χ (Perron et al., 2013 ).   
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Using these parameters, Goren's work (2014) shows how the linear inverse 

problem, produced by Royden and Perron’s normalization, can be used to 

determine a continuous record of the relative uplift rate and how is possible to 

reintroduce natural units calibrating them with external data and geological 

constrains.  

 

 

 

 

 

 

 

 

 

Figure 11: schematic representation of a river long-profile evolution consequent 

to a changing in uplift rate U at time t0 before present. The equation S(x) = 

(U/K)1/nA(x)m/n is just the stream power law expressed in function of slope 

considering a topographic equilibrium state (after Goren et al., 2014).  

 

 

Tectonic forcing can change in time and in space, but in the study area we 

consider it as spatially homogeneous, so the analysis performed here has been 

based on the “Block Uplift Conditions” where Goren parametrization considers 

the uplift as space invariant.  
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II.1.2 The Matlab code and how it works 

 

The Matlab inversion code developed by Liran Goren (Pers. Comm.) works as 

follows: 

- it reads topographic and hydrographic data extracted from DEM analysis as 

input grids in ASCII format (Appendix 1, Code 1). 

- it calculates a best-fitting concavity index (m/n) using the chi-plot method by 

computing the lowest residual between the actual river profile and a given number 

of linear segments, for different values of m (Appendix 1, Code 2). 

- it uses the pre-defined m value to linearise the river profile into a polyline 

composed by as many segments as required by the user (Appendix 1, Code 3). 

- it applies the inversion scheme and outputs the continuous signal of uplift rate in 

function of time (Appendix 1, Code 4). 

 

II.1.2.1 Topographic data production with free-software GIS WhiteBox  

(https://whiteboxgeospatial.wordpress.com/ ) 

 

The Matlab inversion scheme needs, as input, topographic and hydrographic data. 

These data have been produced using the free-software GIS WhiteBox, and are:  

the topography, the flow direction of every single cell of the DEM, the flow-path 

length from every single cell within the watershed, the Horton-Strahler order of 

the streams, a watershed index, the drainage area and the main stem for each 

watershed.. We used the Aster satellite DEM with a 30 m resolution. 

The Whitebox tools used for our study are as follows: 

- WB-tool "Fill Depressions":  DEM correction of artificial DEM depressions; this 

step eliminates local topographic minima that would invalidate the computing of 

the drainage pattern. 

- WB-tool “D8 Flow Pointer”: an “8-direction” (D8) method that considers the 8 

cells surrounding the working cell of the DEM grid, as the only 8 possible 

directions for the flow (Figure 12). The topography is the only input parameter 

used by this modelling tool, and the flow direction will point toward the cell 

https://whiteboxgeospatial.wordpress.com/
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located in the direction of the steepest slope. It is important to note that water is 

not partitioned between multiple neighbour cells depending on their slope, as for 

instance in the D-infinity algorithm. 

- WB-tool “D8 and Rho8 Flow Accumulation”:  this tool  allows to identify the 

spatial coverage of up slope (or down slope) nodes draining to each pixel of the 

DEM. The Flow-Accumulation process registers the number of “incoming-cells” 

for each cell; obviously, the cells with the highest number of “incoming cells” will 

be defined as the river bed. The river outlet has a flow accumulation value equal 

to the drainage area. 

- WB-tool “Extract Streams”:  it extracts raster cells in which flow accumulation 

exceeds a threshold value, given by the user, hence extracting the river beds from 

the flow accumulation grid. 

- WB-tool “Horton-Strahler Stream Order”: it calculates the H.S. order of each 

stream. 

- WB-tool “Down slope Flowpath Length”: it calculates the distance of each cell 

of the catchment area from the outlet cell of the main stem. 

 

64 128 1 

32 64 2 

16 8 4 

 

Figure 12:  Whitebox GAT stores D8 pointers as binary numbers; in the figure a 

possible representation of the flow direction for the yellow cell. Each code 

corresponds to the flow direction, e.g., 64 means that water will be routed north-

west from the “working cell”. 

 

- WB-tool “Create Blank Outlet Raster”: it creates a raster grid of zeros that can 

be modified changing by hand the value of each pixel. The pixels placed at the 

junction between main Tinée stem and each tributary have been given different 

indices. 

- WB-tool “Watershed”:  it selects all the cells “pointing” to the “output cell” with 
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a given index; this operation allows to put different indices on the catchments. 

- WB-tool “Find Main Stem”: it identifies the main channel of every network. 

 

II.1.2.2 Goren-Willet-Fox inversion code in “Block Uplift Conditions”. 

 

The Matlab inversion scheme in “Block Uplift Conditions” depends on the 

parameters n, m and K. These parameters have been chosen through a geological, 

geomorphological, geographical, and bibliographical analysis.   

The χ value defined as  







x

xb

nm

dx
A(x)

A
=χ

/

0  (Perron and Royden, 2013), represents 

space in a non-dimensional system and depends on the m/n exponent, called 

“concavity index”. The parameters “n” and “m”, are, in the stream power law, 

respectively the exponent of slope and catchment area. In Goren’s inversion 

scheme, a fundamental assumption is the linear dependency between the local 

slope “S” ad the erosion rate “E” in the stream power erosion model; that is to say, 

it assumes that n = 1.  

The n value found in the literature, when estimated with stream power modelling 

purposes, varies between n = 0,7 n = 1 and n = 1,05 – 1,45 (Howard and Kerby, 

1983; Tucker and Slingerland, 1997; Seidl and Dietrich, 1992; Whipple and 

Tucker, 1999; Attal et al., 2008).  Mathematical analyses show different migration 

rates for different slope-patches of different slopes (Perron and Royden, 2013), 

which means that river reaches are consumed or created along slope breaks. The 

main problem is that field estimations are hard to obtain, and anyway the 

cannibalization between slope patches is not expected to leave traces along river 

longitudinal profiles. Estimations of n from large data sets, suggest a value of n = 

1 for the Siwalik Hills, Nepal, and for Hawaii (Wobus et al., 2006; Ferrier et al., 

2013). Another evidence suggesting that the “n = 1” assumption is acceptable, 

comes from the results of several finite difference and non linear inversion 

methods (Roberts and White, 2010; Roberts et al., 2012a; Roberts et al.,2012b). In 

the afore-mentioned works it is also reported that n > 1 is, in threshold-

independent model, the way for modelling incision events that take place only  
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 Figure 13: Behaviour of the 

slope   patches for different n 

values. If n < 1, the less steep 

segments migrate upstream 

faster than the steeper ones 

and only concave-up 

migrating knick points 

persist. Conversely, if n > 1 

steeper segments are faster 

than less steep ones, and 

only concave-down 

migrating knick points are 

preserved. If n = 1, the 

segment have all the same 

horizontal migration rate. 

The displayed profiles are 

formed by two instantaneous 

changes in uplift rate, first 

from υ =0.5 to υ =2.0, 

followed by a change from 

υ=2.0 to υ =0.5, for (A) 

n=1.5, (B) n=0.5, (C) n=1.0. 

The straight, solid line 

segments consist of slope patches formed at base level during the periods of 

constant uplift rate. The curved, dashed sections formed during the moment of 

instantaneous change in uplift rate; for n=1 these curved sections are collapsed to 

a single point. Heavy solid and dashed lines are physically realized portions of the 

river profile; light solid and dashed lines are not physically realized but are still 

part of the slope patch solution”(cit. Perron and Royden 2013; figure taken from 

the same author). 
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whene the stream energy overcomes a given threshold. Considering that the rivers 

studied in this work, have in four cases a mean slope above 25% and in the other 

five a mean slope above 7%, it is acceptable with respect to the long-term fluvial 

landscape evolution, to neglect the threshold behaviour. Finally, looking at the 

sharpness of the knick points present in the analysed streams it is possible to 

exclude the case of n < 1, situation that would have preserved only the concave-up 

knick points (Perron and Royden, 2013) and would have led to a smoothing of the 

river topographical profiles (Tucker and Whipple, 2002).  

For all these reasons we have used an n=1 value for the High Tinée basin. 

Assumed n = 1, the concavity index m/n becomes automatically function of the 

only m parameter.  

To estimate the “m” value, the Goren code plots the χ – z linearised profiles. 

Starting from a χ(0) = 0 value for the outlet pixel of each river, it computes the χ 

value in the following way: 
m

xi

ji

xjxi
A

xx
+χ=χ


, where xj is the receiver of xi, 

whose χ value has already been updated.  Varying “m” between 0 and 1, since χ 

depends form m, it calculates the m minimizing the scatter between each m-

dependent profile and the measured one. For the evaluation of the scatter, the χ 

space is divided into several bins (elementary segments) and the scatter is defined 

as the mean over the standard deviation of z in each segment. In this study the 

number of bins has been fixed to 20. This number is chosen arbitrarily, as a too 

low number of bins will result in a low number of linear segments that will not fit 

observations, while a too large number will result basically in fitting the noise 

(Table 1). With the same purpose also the number of time intervals has been 

ascribed a value of 40. To reduce the incision rate change between two time 

intervals, the code uses a damping coefficient. For the present analysis it has been 

fixed to a value of 100.  The performed tests have demonstrated that the damping 

coefficient has a real effect upon the incision-rate-profile only for values of a 102 

order. Increasing the damping coefficient leads to a smoother incision rate time 

history, but degrades the fit between modelled and observed river profiles. 
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Figure 14: Effects of damping coefficient on the Tributary 1 incision-rate-profile. 

From left d.c. of 10, of 100 and of 1000. The other parameters remain the same: K 

= 1.3 10-5, m = 0.56. Note how the maximum incision rate values change of only 3 

mm/yr also with a d.c. of 100. 
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In our analysis, however, regression fit for the χ-plot and the linearisation of the 

river profile did not give a satisfying result for m. Most of the time the “m” values 

were neither univocal neither contained in a bibliography-acceptable range. 

Furthermore, the calculated residuals were quite elevated and did not variate much 

across the [0 – 1] range of m. We have therefore decided to fix the m value at 0,5 

·and gradually modify it inside the range [0.4 -  0,6],  in order to obtain the m – K 

couple giving the most “environmentally” logical U – t profiles.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To choose the “m” and “K” parameters leading to the most realistic results, we 

need to calibrate the model. The linearisation and the inversion of the stream 

power law indeed give a non-dimensional uplift rate U* =
m

0KA

U
, that has to be 

converted into a dimensional (space-time) variable with appropriate m and K 

values. During the model calibration we have noticed a good synchronization 

between the incision peaks of each rivers, and a very interesting concordance 

between incision peaks and post MIS5e world temperature fluctuations; i.e., there 

                                                                 

Table 1: scatters between 

topographic profiles and 

mathematical ones 

induced by the m 

minimizing them and by 

the m chosen for our 

modelling. 
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may be a strong climatic control on the valleys erosion and gorge shaping by 

global climatic changes. The model has then been calibrated based on the 

hypothesis that in a small area as the studied one (c.a. 270 km2) there must be a 

synchronization in the incision peaks of the different streams since they respond 

to similar climatic conditions. A second constrain imposed to the incision peaks, 

also linked to the climatic control assumption, has been the temporal 

concomitance between the peaks and lows of the Epica-Dome C Temperature 

(Figure 10) curve and those of the incision rate signal. A third factor taken into 

account has been the “age” of the incision rate signal. Considering that all knick 

points are moving at the same horizontal speed (Perron and Royden, 2013), it is 

evident that shorter and steeper rivers carry with them a shorter history than the 

longer ones, because older information were deleted by the upstream movement 

of the more recent knick points. In the choice of “m” and “n” we have tried to 

keep a logical ratio between topographic profiles lengths and incision rate ages. 

The variation range of the erodibility factor K has been chosen based on the 

results of Saillard et al. (2014) in the Vésubie River. The erodibility factors used 

in this study are slightly higher than those used for the Vésubie. The strong 

landslide activity registered in the Tinée Valley (Sanchez et al., 2010a; Darnault et 

al., 2012) indicates a stronger intensity of the river incision, which supports this 

choice. In this study, oppositely to the one by Saillard et al. (2014) we have 

decided to keep the K value constant over time. The consequence is that incision 

rate changes are converted into uplift rate changes rather than in K-value changes, 

but our interpretation takes into account this fact. The practical effect of varying m 

and K is that increasing their values gives a shortening (i.e. a rejuvenation) of the 

incision-rate-profile (Figure 15 and 16). Obviously indeed, a higher erodibility 

coefficient and a higher influence of the drained surface increase the incision 

efficiency. 
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Figure 15: K influence on incision-rate-profiles. Above each 

profiles is marked the relative K value divided by 10-6. 

 

Figure 16: m influence on incision-rate-profiles. Above each 

profiles is marked the relative m value.  
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It is anyway important to note that this modelling has been performed not with the 

aim of quantifying the incision rate, but rather to better understand the 

“behaviour” of the incision processes during the last MIS stadials and 

interstadials. The understanding of the time variation of the incision rate helps to 

clarify the relationships existing between longitudinal river profiles, active 

tectonics and climate. Late Pleistocene to Holocene incision rates have been 

constrained by TCN dating. 
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II.2 10Be Terrestrial cosmogenic nuclide (TCN ) analysis  

 

 

Cosmic rays are high-energy, charged particles that impinge on the Earth from all 

directions. These cosmic rays are originated by supernova explosion events that 

happen in our galaxy approximately once every 50 years (Dunai, 2010). 

Interacting with terrestrial atmosphere, primary cosmic rays (protons and α-

particles) produce, mainly through the spallation phenomenon, secondary cosmic 

rays (neutrons, protons, α-particles, electrons and positrons, gamma ray photon, 

pion and muon). Because the neutrons do not suffer of ionization, as protons do, 

there is a gradual shifting in the cosmic ray flux composition that becomes 

completely neutron-dominated at the ground surface (98% of nucleonic cosmic 

ray flux; Masarick and Beer, 1999). Once these rays reach the terrestrial surface 

they penetrate more or less deeply into the rock depending on its density, and 

produce “cosmogenic nuclides” by their interaction with rock elements nuclei. At 

the earth surface, more than 98% of the cosmogenic nuclide production derives 

 

Figure 17: Target minerals and product cosmogenic nuclides(after Darnault et al. 

2012). 

Nuclides half-lifes are given in Appendix 3. 
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from secondary cosmic-ray particles (neutrons and muons). The ray–rock 

interaction creates, mainly through a spallation process that takes the form of a 

cascade reaction, cosmogenic radionuclides. 

In the present study we used the 10-Beryllium cosmogenic radionuclides. 10Be has 

not yet a univocal accepted half-life; in this study we have used the one proposed 

by Nishiizumi et al. (2007) of 1.36 +/- 0,07 Ma. In surface rocks 10Be is mainly 

produced by spallation reactions from O, with a secondary contribution of Mg, Al, 

Si and Ca (Dunai, 2010). The 10Be production linked to muons activity is around 

3,6% at the first surface, and increases with depth (Hisingher et al. 2002a). 

Working with 10Be dating, it is important to remember that its atmospheric 

production is, on average, 10³ times faster than its rock one. This atmospheric 10-

beryllium can precipitate and be absorbed by the rock. Fortunately it has been 

demonstrated (Khol and Nishiizumi, 1992) that, for quartz samples, sequential 

chemical dissolution can reliably remove the meteoric component.  

The TCN 10Be methodology has already been used in the Tinée valley for dating 

polished surface of glacial and fluvial origins in Darnault’s (2012) PHD thesis. In 

the Vesubie valley a study on the river incision rate (Saillard et al. 2014) has used 

the 36Cl cosmogenic nuclides. 

To further constrain and discuss the modelling results we have performed a new 

10Be TCN dating on eleven samples collected on a river polished surface, along a 

vertical section in the Tinée valley.  

 

II.2.1 Sample-collection process 

 

The samples have been taken on a gorge surface located downstream of the 

village of Isola (see Chapter III). The samples have been collected abseiling from 

the top of the polished surface and with the help of hammer and chisel. The 

sampling has been made so that the distance between each sample was as constant 

as possible. Where possible the samples have been taken from quartz veins, which 

is the best target for 10Be production.  

All the samples have been given a name, an altitude, a thickness; GPS coordinates 
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and topographic shielding are identical for all the samples. The shielding has been 

measured using a compass and allows us to calculate with CRONUS – earth 

online calculators (http://hess.ess.washington.edu )(Figure 18), the reduction on 

10Be production due to the topographic obstruction and then the correct exposure 

age of the surface. Practically, twelve quadrants covering a horizon of 360° have 

been created (Table 2); to each quadrant has been associated the value 

corresponding to the angle between the base of the polished surface and the 

maximum topography within the considered quadrant.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2:Quadrants shielding, starting from N 190. 

 

Figure 18: Shielding profile obtained with 
CRONUS – earth online calculators                       

( http://hess.ess.washington.edu ) 

http://hess.ess.washington.edu/
http://hess.ess.washington.edu/
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II.2.2 Samples preparation 

 

Once recollected, the samples have been prepared for the AMS-analysis through a 

mechanical and chemical process. The samples preparation has followed the 

procedure sheets provided by the CEREGE laboratory. 

 

II.2.1.2 Mechanical preparation  

The mechanical preparation of the samples is divided into three steps:  

 

 Fine-grained fraction acquisition: the samples have been grounded and 

sifted in order to obtain a granulometry between 250μm and 800μm. 

 Samples pre-washing: this step allows us to eliminate lighter particles 

(clays and finer-grained particles). After the pre-washing the samples are 

dried in heating plates. 

 Quartz grain sorting: finally, with the use of a Frantz separator, magnetic 

and para-magnetic particles have been removed. By this way we have 

obtained samples made only of diamagnetic minerals, among which, of 

course, the quartz. 

 

II.2.2.2 Chemical preparation 

 

For chemical processing the samples have been introduced in weighted Nalgene 

bottles, expressly made to resist to the acid-washing.  

The chemical samples preparation is made in 7 steps,  

 

 H2SiF6 + HCl dissolution: impurities dissolution through 

hydrofluorosilicic (H2SiF6) and chloridric acid (HCl), both diluted at 50%. 

The Nalgene bottles containing the samples get filled with the solution and 

shaken for 24h. After the acid-washing the samples are rinsed with 

distilled water. The operation is repeated as many times as necessary to 

have a clear post-shaking-solution. 



 

 

44 

 

 HF decontamination: The HF-washing allows eliminating the atmospheric 

Beryllium contained into the rock and to conserve only the in-situ 

produced Beryllium. A series of three sequential HF-washings, dissolving 

10% of the quartz mass, allows us to completely purifies the samples 

(Brown et al., 1991). Afterwards the samples are rinsed with distilled 

water, dried and weighted.  Only 20 – 40 g of matter is kept for the rest of 

the process. The remaining is stored. 

The samples are, at this point of the process, almost entirely made of pure quartz 

and are then ready for the Beryllium extraction. 

 10Be / 9Be ratio fixation: water and entrainer are added in the Nalgene 

bottles. The water helps to mix the entrainer with the samples, and is 

necessary to reduce the heating produced by the following HF addition. 

The entrainer, 100μl of 9Be solution with a 3025ppm concentration, helps 

to fix the ratio 10Be / 9Be. It is fundamental to weight the exact amount of 

entrainer inserted, because this will be finally used to measure the quantity 

of Beryllium. The ratio 10Be / 9Be of the blank will be subtracted from 

those obtained from the sample analysis.   

 Sample dissolution: to dissolve the samples an in-excess quantity of HF is 

added into the bottle. The heat produced by this exothermic reaction is 

controlled by placing the bottle into a tray fulfilled with water. Once 

cooled, the samples are shaken for 24h.  

 The obtained solutions are transferred in into a Teflon beaker, and the not-

dissolved residual particles are recollected and weighted. Their mass will 

be subtracted from the effectively dissolved quartz mass. The beaker 

containing the samples solution is placed on heating plates, in order to 

evaporate the HF. The samples are now a dry dust that could anyway still 

be contaminated by Boron, abundant into the terrestrial environment and 

natural isobaric element of Beryllium.  To eliminate the Boron, 5 ml of HF 

are added in three subsequent steps. The Boron is transformed into boron 

fluoride (BF2) and then eliminated through evaporation (Delunel, 2010). 

Three following additions of 5ml of HNO3, and a last one of 10 ml, with a 
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final evaporation allow elimination of the remaining HF. Once dried, 3ml 

of pure chloridric acid are added into the beaker , and the whole solution is 

transferred into a test tube, with the help of a dropper. The test tube 

containing the samples is centrifuged. 

 Beryllium concentration: to concentrate and extract the Be, exchanging 

resins have been employed. These exchangers of ions are insoluble 

macromolecules bringing ionisable groups with the property of 

exchanging ions in a reversible way (Delunel, 2010). To concentrate and 

dissolve the beryllium, ammonia (NH4OH) has been inserted into the test 

tube. The quantity of ammonia has been chosen in order to reach a pH of 8 

– 9, acidity level that cause the precipitation of beryllium, but keep the 

Boron in solution. A centrifugation allows separation of the Be from the 

solution. A further solution is made by diluting the Be with 1,5ml of HCl 

(10,2 mol). 

- First column: the first column is a cationic resin DOWEX 1×8 (100-200 mesh). 

It keeps the metallic cations so that the solution is free from Fe2+ and Mn2+. 

- Second column: after a re-precipitation of Be with the addition of ammonia, a 

following centrifugation, and an addition of less concentrated HCl (1,0 mol ) the 

solution is filtered with a DOWEX 50Wx8 (100 – 200 mesh) resin. The resin 

retains the remaining Boron and the Al2+. 

 Samples oxidation: The Be precipitate is washed twice with water (with 

pH around 8 – 9).  200μl of nitric acid (HNO3) to re-dissolve the beryllium 

are added into the test tubes. Finally the samples are transferred into 

labelized crucibles, and dried at a temperature of 400°C for 10 minutes. 

Afterwards they are placed into a muffle furnace for 2h at 900°C. At the 

end of the process the samples have been reduced to BeOS. 

At the end of this process, the samples are chatodized, i.e. the beryllium oxide 

dust is mixed with Niobium (Nb, conductive metal ). This final mix is the one that 

will be used for the AMS (accelerator mass spectrometry ) measurement. In this 

study the AMS used is the ASTER of the CEREGE laboratory (Aix en Provence ). 

Once the AMS has calculated the ratio 10Be / 9Be, it is possible to obtain the 
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exposure age of the sample using the equation: 

     λtΛμfχμfλtΛμsχμsλtΛηχspalλt
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Where: Cχε is the 10Be concentration in function of depth χ [g·cm2] and of 

exposition time [yr];C0 is the 10Be concentration inherited before the exposition of 

the surface;Λη,  Λμs,  Λμf, are the effective attenuation factors [g /cm2]of 

respectively neutrons, negative muons and fast muons. 

Pspal + Pμs + Pμf , are respectively the spallation production rate the negative muons 

production rate and the fast muons production rate. 

Note that P = Pspal + Pμs + Pμf . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19: Scheme mass spectrometer of ASTER accelerator located in 

CEREGE laboratory (Aix en Provence).   

(from Klein et al., 2008, modified by Delunel 2010) 
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II.2.C Quantification of shielding factor and calculation of exposure ages with 

CRONUS – earth online calculators (http://hess.ess.washington.edu ) 

 

With the online program “Cronus” it is possible to obtain the shielding factor 

correction and the exposure ages with relative spallation and muons 10Be 

production rates. For the shielding factor evaluation the program needs the strike 

and dip of the sampled surface and the altitude in degree of all objects hiding the 

samples from the cosmic rays.  

To calculate the exposure the following parameters are needed: latitude, longitude, 

elevation, samples thickness, samples density, shielding correction, erosion rate,  

10Be concentration, uncertainty in 10Be concentration, standardization of 10Be to 

use, 26Al concentration, uncertainty in 26Al concentration, standardization of 26Al 

to use.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://hess.ess.washington.edu/


 

 

48 

 

III Results 

 

III.1 Incision rate profile modelling 

 

III.1.1 Parameters employed and general results 

 

Inverse modelling of incision rate variations in the High Tinée tributaries (Figure 

20, Table 3) has been performed, as seen in chapter 2 , assigning the m and K 

parameters values, constrained by geographical and geomorphological 

considerations. 

 

 

 

 

Figure 20:hydrographic network of the High Tinée: in dark blue is the Tinée stem 

and in light blue the 8 tributaries. 
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III.1.1.1 The concavity index “m/n” and the erodibility factor “K” 

 

Concavity index (m/n) and erodibility factor (K) have been chosen in order to 

obtain a similar incision signal from all the Tinée tributaries. “K” and “m” have 

been changed independently with the aim of reaching the best synchrony between 

all the incision rate profiles, and between the U* value variations (U / (k (Ao) ͫ )) 

and the Epica curve Temperature fluctuations. 

The concavity index varies within a range going from m/n=0,54 to m/n=0,59 

(Table 4) with a mean value of 0,55 and a standard deviation of 0,02. It is 

important to note that n has been considered equal to 1 such as: m/n = m. 

 

The erodibility factor, “K”, varies between 10·10-6 mm¹‾²ᵐyr‾ ¹ and 20·10-6 

mm¹‾²ᵐyr‾ ¹ (Table 5). Rivers flowing for the main part on marls or limestone 

lithologies (tributaries 1, 2, 3, 4) show slightly higher k values: 

- The mean k value of rivers with a crystalline substrate is 11,4·10-6 mm¹‾²ᵐyr‾ ¹ 

with a standard deviation of 1,5·10-6 mm¹‾²ᵐyr‾ ¹. 

- The mean K value for marls or limestone lithologies is 14,7·10-6 mm¹‾²ᵐyr‾ ¹ 

with a standard deviation of 3,6 ·10-6 mm¹‾²ᵐyr‾ ¹. 

 

Table 3: analysed rivers; eight of the Tinée tributaries and the highest 

stem of the Tinée itself. 
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Table 4:  values of the concavity index 

obtained for the Tinée tributaries and 

relative scatter. The scatter is defined 

as the mean over the standard 

deviation of chi – z in each of the 20 

bins used for the linearization process 

(see chapter methodologies). 

 

Table 5:values of erodibility 

coefficient (K [mm¹‾²ᵐyr‾ ¹]) 

obtained for the 9 tributaries. 
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III.1.1.2 Incision rate obtained for the different rivers  

 

The calibration of the incision rate with estimated K and m values gave the 

following results: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6:Umax and Umin: Highest and lowest incision rate for each tributary. ΔU: 

range of U fluctuations for each studied river. Uo: Current incision rate 

calculated for the Tinée tributaries at their outlet corresponding to the current 

Tinée incision rate. Min mean: Weighted mean of the minima of each incision-rate 

profile. Integral mean: integral mean of each incision-rate profile. It is important 

to know that for the tributary 5 the reported mean has been calculated between 

140 1nd 14 kyr B.P. to avoid the influence of the final probably over-estimated 

peak. In Table 10 are reported the means obtained using the whole profile. 
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The Uₒ value represents the inferred incision rate for the lowest part of the Tinée 

tributaries. Being the Tinée the base level of its tributaries, if we consider its 

variations as the trigger for the incision rate variations along them, we can 

consider the Uo incision rates as an approximation of the Tinée incision rate.  

It is also possible to note that the rivers joining the Tinée in approximately the 

same place have quite different incision rates (Figure 21).   

-Tributaries 2 and 8: difference in rate incision of 1,9 mm/yr; weight of the 

difference 23,3 %. 

-Tributaries 1 and 9: difference in rate incision of 1,4 mm/yr; weight of the 

difference 8.3 %. 

This fact derive probably from the fact that the reaction dynamics of a river to an 

external forcing depend from several factors, among which the steepness of the 

river itself. Steepness is really different in the opposite sides of the Tinée Valley 

(Table 3).  
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II.1.2 Incision-rate-profiles presentation and description 

 

All the incision rate profiles (U – time) produced with the Goren-Willet-Fox code, 

show, for every tributary, an incision peak around 14000 yr B.P. (MIS 1). Other 

three peaks recur regularly, with more or less precision, at the ages of 38, 57 and 

82 kyr B.P. It is important to note that for the quantification of m and K, necessary 

to calibrate the model in order to bring back the incision rate value to a 

dimensional system, the following criteria have been considered, in order of 

importance (see chapter II): 

- Presence in incision-rate profile of peak A (Table 7); 

- Constant horizontal migration of knick points, with a consequent major loss of 

information in shortest and steepest rivers; 

- Presence of peaks B, C, D (Table 7). 

 

Figure 21: incision rate at Tinée level. Each dot represents the incision rate of 

one tributary, calculated on his lowest linearised segment. The tributaries are 

ordered from the Tinée - Roya junction in upstream direction: T.4; T.5; T.3; T.6; 

T.7; T.2; T.8; T.9; T.1. The red dotted line represents the obtained Tinée incision-

rate mean, 16,03 mm/yr. For T5 has been used the value of 30. 
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- Presence of any incision-rate peak synchronous to Epica curve fluctuations. 

- To keep the incision rate possibly inside the range 0,8 – 25 mm/yr (values of 

local uplift rate and maximum erosion rate obtained in the Vesubie valley by 

Saillard et al, 2014). 

 

 

 

 

 

 

 

 

 

It is possible to divide the time – incision-rate profiles into three different groups 

characterized by common features in the incision-rate-profiles. It is worth to note 

that this division, made on numerical modelling data, group together rivers placed 

in the same zone of the studied area: tributaries 1, 2 and 9 for group 1 (North); 

tributaries 3, 4 and 5 for group 2 (West and South); tributaries 6, 7 and 8 (East) for 

group 3 (Figure 20). For every group of profiles has been calculated a “Mean 

Profile”. The punctual mean profiles highlight the features common to the 

tributaries of a certain area, underlying the incision characteristic linked to its 

geographical and geomorphological peculiarities.  

 

 

 

 

 

 

 

 

 

                                                                

Table 7:peaks used in calibrating the 

profiles parameters. 
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III.1.2.1 Group 1, with tributaries 1, 2 and 9 

 

This group contains three homogeneous time – incision-rate profiles, that, 

excepted for one case (incision peak at MIS4, profile 1; Figure 23), do not show 

incision peaks exceeding significantly 15 mm/yr. The common feature of these 

three rivers is their length. With tributary 4, these rivers are the three longest 

rivers studied in this work (Table 3) bringing the oldest incision rate information. 

These three rivers are the most upstream studied tributaries. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22:comparison between incision rate profiles of 

Tributary 1 (black), Tributary 2 (red) and Tributary 9 (blue). 

The green line is the Epica Dome Temperature record for the 

last 140000 yr. The vertical black continuous line represents 

the warm MIS (from right: MIS1, MIS3, MIS5a), the black 

dotted lines the cold MIS (from right: MIS2, MIS4). 
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◦ Tributary1:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Long 15040 m Tributary1 (Gialorgues) is the longest studied river and shows the 

longest incision-rate profile starting at 120-140 kyr. The four peaks common to all 

profiles (Table 3), are present with peak C slightly in advance if compared to the 

Epica peak of reference. The incision-rate profile shows also an anomalously 

elevated peak D, and an unexpected minimum after the MIS1. The 4 erosion 

peaks are visible also along the topographic profile (Figure 24), where is evident 

the elevated slope corresponding to incision-rate-peak D. It is also possible to see 

in Figure 23 (Table 8 for the values) a general augmentation in the mean erosion 

that starts from interstadial MIS5a.  

 

 

Figure 23:incision-rate profile of Tributary 1(blue line), 

with the Epica curve (green line).The vertical black 

continuous line represents the warm MIS (from right: 

MIS1, MIS3, MIS5a), the black dotted lines the cold MIS 

(from right: MIS2, MIS4). 
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Figure 24: topographic profile of tributary 1. The tangent 

segment with relative letter are the changing slope that 

have probably been read by the model as the incision 

peaks. 

                                                                                                    

Table 8:integral mean and incision-rate mean calculated over 

the minima of the profile for the whole profile, for the interval 

140 – 80 kyr B.P (1st part), for the interval 80 – 0 kyr B.P. 

(2nd part). In the last column are reported the difference 

between the incision rates of the two intervals. 
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◦ Tributary 2: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The incision-rate profile of tributary 2 (Ardon) shows a generally good synchrony 

between his fluctuations and those of the Epica curve. Despite the good 

synchrony, between the two profiles, there is not a correspondence in intensity. All 

the incision-rate-peaks have roughly the same values, while the Epica curve 

shows a marked difference between the post MIS1 temperature-peak and the 

previous ones. For this profile it has also been quite difficult to choose the 

appropriate K value. It has been indeed necessary to arise it well above the other 

erodibility factor (Table 5) to have a profile with the same age of the other river 

with similar length and slope (e.g. Tributary 1, Table 3), and to fit temperature and 

incision-rate-peaks. All the 4 expected peaks are present, with a well marked peak 

C. Two peaks, with an unexpected intensity, underline the two little fluctuations of 

the Epica curve in the middle of the MIS2 stadial. After peak A there is a decrease 

in the erosion rate. In Figure 25 is also possible to spot an increment in the mean 

 

Figure 25:incision-rate profile of Tributary 2 (blue line), 

with the Epica curve (green line). The vertical black 

continuous line represents the warm MIS (from right: 

MIS1, MIS3, MIS5a), the black dotted lines the cold MIS 

(from right: MIS2, MIS4). 
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erosion around 60 kyr B.P. (Table 9 for the values). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26: topographic profile of tributary 2. The tangent 

segment with relative letter are the changing slope that 

have probably been read by the program as the incision 

peaks. 

                                                                                                     

Table 9:integral mean and incision-rate mean calculated over 

the minima of the profile for the whole profile, for the interval: 

140 – 60 kyr B.P (1st part),   60 – 0 kyr B.P. (2nd part). In the 

last column are reported the difference between the incision 

rates of the two intervals.  
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◦ Tributary 9:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tributary 9 is actually the highest part of the Tinée itself. To fit the whole profile 

with the Epica curve, changing the parameter K and m inside acceptable range 

(1,5·106 +/-0,5·106 for K; 0,5 +/-0,1 for m; see chapter II for further explication), 

has resulted impossible. The choice has been to keep as first bond the coincidence 

between peak A and MIS1. This fact has led to a mis-fit of peak C that is shifted to 

younger ages. The peak B fits perfectly the Epica curve. After the MIS5a the 

profile shows a light but general increase in the incision-rates (Table 10). In 

Figure 28, it is possible to see how around 1100 m from the junction of the 

tributary with the Tinée, there is not any change in the topographic slope, as it is 

instead observed in the two previous profiles (the oldest inflection present in the 

profile is probably linked to the 110 kyr old peak). The absence of this change in 

slope could be the reason for which incision-rate-profile 9 doesn't show any peak 

D. 

 

Figure 27: incision-rate profile of Tributary 9 (blue line), 

with the Epica curve (green line).The vertical black 

continuous line represents the warm MIS (from right: 

MIS1, MIS3, MIS5a), the black dotted lines the cold MIS 

(from right: MIS2, MIS4). 
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Figure 28: topographic profile of tributary 2. The tangent 

segment with relative letter are the changingin slope that 

have probably been read by the program as the incision 

peaks. 

                                                                                                    

Table 10: integral mean and incision-rate mean calculated 

over the minima of the profile for the whole profile, for the 

inteval: 140 – 60 kyr B.P (1st part),   60 – 0 kyr B.P. (2nd 

part). In the last column are reported the difference between 

the incision rates of the two intervals.  
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A punctual mean effectuated on the three river incision-rate profiles, results to be 

in good synchronization with the Epica curve. It shows a general increase in 

erosion at the beginning of the MIS5a interstadial. It is interesting to see also, how 

in the punctual-mean profile the incision peak linked to the MIS5a warming up 

period, starts around 82 kyr B.P., but reaches his maximum around 71 kyr B.P. 

(beginning of stadial MIS4).  

 

 

 

 

 

 

 

 

 

 

 

Figure 29:punctual mean of incision rate of profile 1, 2 and 9 (red line), with the 

Epica curve (green line). 
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III.1.2.2 Group 2, with tributaries 3, 4, 5.  

 

The time – incision-rate profiles of these three rivers show, at the beginning of 

MIS1 (14000 yr B.P.), an incision maximum clearly above all the other incision 

peaks. Before this post MIS1 maximum, the profiles do not show large incision 

rate peaks, especially for Tributary 3 and 4. These three rivers are the three most 

downstream tributaries of the studied area. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30: comparison between the incision rate profiles of 

Tributary 3 (blue), Tributary 4 (black) and Tributary 5 

(green). The green line is the Epica Dome Temperature 

record for the last 140000 yr. The vertical black continuous 

line represents the warm MIS (from right: MIS1, MIS3, 

MIS5a), the black dotted lines the cold MIS (from right: 

MIS2, MIS4). 
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◦ Tributary 3: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The incision-rate profile of Tributary 3 (Auron) shows a very well marked peak A, 

a local incision maximum in correspondence of peak B, and an incision peak 

placed in correspondence with a positive fluctuation of the Epica curve, just 

before the beginning of the MIS4; it could be considered as a right-shifted peak D, 

but a proper peak D is absent. The peak C is not presents. The calibration of this 

profile seems difficult: to have an erosion peak A correctly placed, it is necessary 

to invoke quite old ages (c.a. 80 kyr) while the profile is short (Table 3). This 

would be in agreement with a displacement of the knick point at a much slower 

rate than in other tributaries of group 1, which seems unlikely. I also had to deal 

with the incision rate absolute value, that, to respect the position of peak A, has 

been forced to elevated values because quite elevated values of K (14·10-6) were 

used.  The possible acceptable alternative, would have anyway needed parameters 

K and m out of the range from the literature (Saillard et al, 2014) and the analysis 

 

Figure 31: incision-rate profile of Tributary 3 (blue line), 

with the Epica curve (green line).The vertical black 

continuous line represents the warm MIS (from right: MIS1, 

MIS3, MIS5a), the black dotted lines the cold MIS (from 

right: MIS2, MIS4). 
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would suggest for this area, or would have generated peak ages too elevated for a 

profile of neither 7 km. The incision is anyway concentrated in the last 50000 

years (Table 11 for values).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 32: along the topographic profile of Tributary 3 is 

possible to see the changes in slope that the code read as 

erosion peak A, B and, up on the right, the slope increase 

probably linked to the peak placed at 72 kyr B.P. 

                                                                                                          

Table 11:integral mean and incision-rate mean calculated over 

the minima of the profile for the whole profile and for the interval: 

80 – 50 kyr B.P (1st part),   50 – 0 kyr B.P. (2nd part). In the last 

column are reported the difference between the incision rates of 

the two intervals. 



 

 

66 

 

◦ Tributary 4: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the incision-rate profile of Tributary 4 (Roya), the difference in intensity 

between the incision-rate of peak A and the precedent peaks, is really marked 

(Figure 33, Table 12 for values). The profile follows quite well the Epica 

fluctuations. The peak B and D are present, while peak C is absent or anyway the 

incision-rate profile registers an augmentation a bit later, in correspondence of the 

following Epica peak, around 55 kyr B.P.. Due to the low amplitude of the 

incision-rate peaks, is a quite hard task to spot into the topographic profile their 

originating slopes. In the model calibration then I focused on the peak A position. 

Having Tributary 4 the oldest incision-rate profile, but being only few kilometres 

longer than profile 1, it is reasonable  to suppose his knick points to move slower. 

For this reason, knick points probably linked to the same incision events, appear 

to be closer to the junction with the Tinée river.  

 

Figure 33: incision-rate profile of Tributary 4 (blue line), 

with the Epica curve (green line).The vertical black 

continuous line represents the warm MIS (from right: MIS1, 

MIS3, MIS5a), the black dotted lines the cold MIS (from 

right: MIS2, MIS4). 
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Figure 34:  topographic profile of tributary 4. The 

tangent segment with relative letter are the changing in 

slope that have probably been read by the program as 

the incision peaks. 

                                                             

Table 12: integral incision rate 

mean, and incision rate mean 

calculated over the profile minima in 

the interval 140 – 14 kyr B.P.. 
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◦ Tributary 5: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tributary 5 (Douans) incision-rate profile, shows a very high incision rate value as 

compared to other rivers. This fact is the consequence of the calibration of m and 

k. The profile, with lower values of m, results into too “old” ages with respect to 

the length of the river (5300 m). With more elevated values of k, the incision-rate 

would have also been higher. The peak A is presents, although with an 

exaggerated value. A very elevated erosion mean characterised the incision-rate 

profile between 55 and 19 kyr B.P (Table 13 for values), with fluctuations 

following, a bit late, the Epica curve. This period of elevated incision rate is well 

evident in the topographic profile, where a homogeneous and steep slope goes  

from around1200 m of elevation above the Tinée River bed, to almost 400 m. An 

older peak is present around 70 kyr B.P, just after the beginning of stadial MIS4. 

This peak and another of lower intensity are marked in the topographic profile.  

 

Figure 35: incision-rate profile of Tributary 5 (blue line), 

with the Epica curve (green line).The vertical black 

continuous line represents the warm MIS (from right: MIS1, 

MIS3, MIS5a), the black dotted lines the cold MIS (from 

right: MIS2, MIS4). 
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Figure 36: topographic profile of Tributary 5. After the 

peak A, there are the tangent segment of the slopes 

linked to the high incision rate of the interval 55 – 20 

yr B.P., and to the following 2 peaks. 

                                                                                                          

Table 13:integral mean and incision-rate mean calculated over 

the minima of the profile for the whole profile, for the interval: 80 

– 55 kyr B.P (1st part),55 – 14 kyr B.P. (2nd part). In the last 

column are reported the difference between the incision rates of 

the two intervals. The global mean has been calculated 

considering the whole profile, also the peak A. Is than probably 

over estimated. For the global mean calculated without peak A 

see Table II. Is important to note that the minima-mean incision 

rate loose significance in the second part, where the minima are 

secondary fluctuation along a maximum of higher order. 
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The punctual mean effectuated on the three river incision-rate profiles, results to 

be in correspondence with the Epica curve only for what concerns the post MIS 1 

incision peak. It shows a general increase in erosion around 55kyr B.P.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Illustration 37:incision rate profiles of Tributary 3 (blue), Tributary 4 (black) and 

Tributary 5 (red thin line). The red thick line report the punctual mean calculated 

over the three profiles. 
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III.1.2.3 Group 3, with tributaries 6, 7 and 8. 

 

These three rivers flow next to one another on the left side of the Tinée (Figure 

20). With Tributary 5 they represent the shortest and also the steepest rivers 

studied in the High Tinée catchment area. In the three rivers it is possible to 

identify the peaks A, B and C, but not the Peak D. In all of them it is also possible 

to note a sharp decrease in the incision rates after the incision-rate-peak A. It is 

important to underline that the steepness of these three rivers is around 25%, 

which is very high as compared to average, and may accelerate the upward 

migration of the knick points and result in the lost of information regarding oldest 

incision history (not older than 70 kyr). The tributaries of this group show similar 

k (11·10-6 [mm¹‾²ᵐyr‾ ¹]) and m (0,56) values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 38:comparison between incision rate profiles of 

Tributary 6 (black), Tributary 7 (blue) and Tributary 8 

(green). The green line is the Epica Dome Temperature 

record for the last 140000 yr. The vertical black continuous 

line represents the warm MIS (from right: MIS1, MIS3, 

MIS5a), the black dotted lines the cold MIS (from right: 

MIS2, MIS4). 
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◦ Tributary 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tributary 6 (Asueros) is the shortest studied river and present an incision-rate 

profile of only 60000 yr. It presents the three peaks A, B and C (Table 7), and a 

sharp decrease in erosion rate after the MIS1. His mean erosion is particularly 

elevated between 60 and 14 kyr B.P (Table 6 for values). 

 

 

 

 

 

 

 

 

 

 

 

Figure 39: incision-rate profile of Tributary 6 (blue 

line), with the Epica curve (green line).The vertical 

black continuous line represents the warm MIS (from 

right: MIS1, MIS3, MIS5a), the black dotted lines the 

cold MIS (from right: MIS2, MIS4). 
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Figure 40: topographic profile of tributary 6. The 

tangent segment with relative letter are the changing 

in slope that have probably been read by the 

program as the incision peaks. 
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◦ Tributary7: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tributary 7 (Rabuons), presents a quite short incision-rate profile (Figure 22) with 

well developed peaks A and C. Peak B is absent. At the beginning of MIS2 there 

is the incision-rate absolute minimum. In the topographic profile (Figure 23) it is 

possible to see the gradual change in slope that has been interpreted as the change 

in the incision rate that has brought from the MIS2 minimum to peak C (change in 

inclination from tangent segment preceding “segment C” and this one). The 

segment tangent to the topographic profile, further on the right, is probably 

associated to the oldest peak of Figure 22, that is with good probability linked to 

local factors. Also for this river the average incision-rate is quite elevated (Table 

4). 

 

Figure 41: incision-rate profile of Tributary 6 (blue line), 

with the Epica curve (green line).The vertical black 

continuous line represents the warm MIS (from right: 

MIS1, MIS3, MIS5a), the black dotted lines the cold MIS 

(from right: MIS2, MIS4). 
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Figure 42:topographic profile of tributary 7. The tangent 

segment with relative letter are the changing in slope that 

have probably been read by the program as the incision 

peaks. 
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◦ Tributary 8: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tributary 8 (Ténibres), has an incision-rate profile quite well synchronised with 

the Epica curve, with only one peak that doesn't correspond to a positive 

temperature inflection. This peak is attributed to the first part of the MIS2. The 

incision peak corresponding to Epica Peak A is slightly shifted toward younger 

ages as compared to MIS1, while peak B and C are well marked. Also in this 

profile, in the last 10000 yr, there is a drop in the incision-rate.  

The erosion mean that has been calculated starting from 70 kyr B.P. is very high 

along the whole profile (Table 6 for values), which also reflects the very steep 

slope of this river. 

 

 

 

Figure 43: incision-rate profile of Tributary 8 (blue line), 

with the Epica curve (green line). The vertical black 

continuous line represents the warm MIS (from right: MIS1, 

MIS3, MIS5a), the black dotted lines the cold MIS (from 

right: MIS2, MIS4). 
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Figure 44: topographic profile of tributary 7. The 

tangent segment with relative letter are the changing in 

slope that have probably been read by the program as 

the incision peaks. 
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The punctual mean of the three river incision-rate profiles, results to have a 

general trend that follows, with good approximation, the Epica curve. In Figure 

26 is possible to see clearly peak A and peak C. Between the two peaks, anyway, 

the mean of the three profiles recalls the temperature fluctuations, with peaks 

slightly shifted toward lower ages.   

 

 

 

 

 

 

 

 

 

 

 

Figure 45:punctual mean of incision rate of profile 6, 7 and 8 (red line), with 

the Epica curve (green line). 
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III.1.3 Discussion of modelling results: 

 

III.13.1 Geomorphological peculiarities of analysed rivers 

 

In order to correctly interpret the incision rate profiles obtained through the 

numerical modelling, it is important to underline some geomorphological 

peculiarities characterising the studied rivers. 

 

Tributary 2: A particularity of the Ardon (Tributary 2) Valley, is its lack in hanging 

glaciers geomorphological evidences. The valley has been cut entirely on a 

limestone-marls substrate, and shows a pronounced V shape while the 

neighbouring ones, underneath their delimiting ridges,  conserve well preserved 

glacial cirque. The substrate entirely in marls and limestone could explain partly 

the elevated values of K (Table 5), and the younger ages (10 kyr) reached by the 

incision rate profile. The absence of glacial cirque may have led to a lower 

sensibility of this valley to the glacial retreat i.e. to temperature changing, while 

the profile show a good correlation in time with the Epica curve.  

 

Tributary 3 and 4 display, as seen above (Figure 33 and 35), an increased incision 

in the post LGM period. This fact may be linked to the glacier that those valleys 

hosted probably until the beginning of MIS1 (Darnault et al. 2012, Darnault et al. 

submitted). The glaciers hidden from south by elevated mountain ridges, 

concentrate their melting after the LGM. This fact could have led to a late 

discharge in water and sediment that engraved deeply and rapidly the river gorges 

as shown in the profiles. 

  

Tributary 5 has a very steep final reach, that is reflected in the modelling by a very 

fast change in the incision rate, which becomes very high due to a drop of the 

Tinée level. The field investigations associated to satellite images studied through 

Google Earth have revealed that the local steepness is due to a quite anomalous 

structure very inclined with several outcrops of gneiss. Some of these outcrops 
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show polished surfaces probably linked to glacial activity (Photo 3, A – B). This 

steep part of the valley east side, may be a local accentuated expression of a slope 

which extends at the scale of the mountain slope itself, showing, upstream in the 

valley and at more elevated altitude, glacier polished surfaces dated at 11 kyr 

(Darnault, 2012). Looking at a topographic profile perpendicular to the Tinée 

valley it is possible to see a change in slope steepness in both sides of the valley 

(Photo 2 – B). This changing is located at 1200m on the west side, and at 1250m 

on the east side (the Tributary 5 flowing side, Figure 47).  

 

 

 

Figure 46: Duans river (Tributary 5) cutting through the steep slope above the 

junction with the Tinée. (photo by Cassol D.) 



 

 

81 

 

 

 

 

 

Figure 47: A) The change in the mountainside inclination on the orographic left of 

Tinée river. Photo taken from south to north  

B) Elevation profile with, in the data tip, GPS coordinates and altitude of the slope 

changing. (profile created with Géoportail; http://www.geoportail.gouv.fr/). (Photo 

by Cassol D.) 

 

 

http://www.geoportail.gouv.fr/
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Some dating of glacier polished surfaces effectuated upstream in the Tinée valley 

(Darnault et al. 2012), report three stages of deglaciation after the LGM. A first 

one around 15 kyr B.P. , a second one around 11kyr B.P. and a third one around 

8,5 kyr B.P.. These data could justify the hypothesis of a glacial tongue arriving 

until the Douans level during the LGM. The steep slopes of Figure 46 could thus 

have a glacial origin. During field work I observed a polished surface, which it is 

preserved on the steep slope just downstream of the Douans valley, while others, 

better preserved, have been found above the village of Saint Etienne de Tinée, 

along the Ténibres valley (Figure 48 and 49). It is  important to note that the steep 

face cut by Tributary 5, has been affected, and still partially is, by gravitational 

processes. This unstable situation may be the effect of a post glacial distension, as 

modelled and dated by Sanchez (2010) and Darnault (2012) at ages between 7 and 

2 kyr, which doesn't help to find intact polished surfaces.  

 

 

 

Figure 48:A – B: polished surface in the left side of the Tinée. [ GPS coordinates : 

N 44°12'55.7'' ; E 6°58'22.8'' Altitude 1107 m a.s.l]. Polished surface orientation 

parallel to the Tinée valley axis, N/NW – S/SE. Little-notebook and pen for scale. 
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C – D: polished surface above Saint Etienne de Tinée village. [ GPS coordinates : 

N 44°15'21.5'' ; E 6°55'55.1'' Altitude 1256 m a.s.l.]. Polished surface orientation 

parallel to the Tinée valley axis, N/NW – S/SE. Little-notebook and pen for scale. 

 

 

 

 

 

 

 

 

Tributaries 6, 7 and 8 show instead the opposite trend of the incision rate profile: 

after the MIS1 their incision rates drop down to about a half of previous intensity 

(Figure 39, 41, 43). This sharp change is ascribed to the development of alluvial 

fans that each of the three tributaries develop out-coming from the gorges. These 

three rivers are the most steep of those here studied, have the highest mean 

incision rate, and flow through really narrow valleys that keep the flow energy 

elevated and doesn't create the conditions for sediment deposition. The energy 

dispersion caused from the sudden opening of the valley at the junction with the 

Tinée, induces the stop of the incision and sedimentation processes. This 

phenomenon is not present in Tributary 5, although it presents the same 

characteristics, because it runs into the Tinée valley where this one gets narrower. 

There, due to the flow energy increase, the formation of an alluvial fan is not 

possible (Figure 50A-B).  

 

Figure 49:polished surface above Saint Etienne de Tinée village. [ GPS 

coordinates : N 44°16'18.8'' ; E 6°56'26.6'' Altitude 1620 m a.s.l.]. Striations 

orientation N/NE – S/SW. GPS and pen for scale.  
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Figure 50: A)Google earth image of the Tènibres alluvial fan (Tributary 8, left) 

and of Rabuons alluvial fan (Tributary 7, right). In the photo it is evident the 
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landslide “La Clapiéres”, that adds ulterior sediments. B) Google earth image of 

Rabuons alluvial fan (Tributary 7, left) and of Asueros alluvial fan (Tributary 6, 

right). C) Google earth image of, from left to right: Tènibres, Rabuons, Asueros 

and Duans (Tributary 8, 7, 6, 5). 

 

In alluvial fan formation conditions, there is not incision, while our model 

estimates an incision rate anyway above 5 mm/yr. The Goren-Willet-Fox code has 

been conceived for the modelling of bed rock channel and doesn't consider 

depositional processes and soft sediment conditions. Furthermore the alluvial fans 

of Tributary 6, 7 and 8, full-fill the gap between the Tinée base level and the 

altitude at which the rock channels really arrive into the main valley. The alluvial 

fan, then, not only hide the real signal linked to the base level variations, but also, 

giving a slope to the bed river, induces the code to attribute a positive incision rate 

in a depositional area. 

 

III.1.3.2 Climatic significance of river profiles 

 

The estimated average-profiles, show, for each of the three groups, a relatively 

good correspondence between incision rates and the change in temperatures. This 

fact suggests that the shaping of longitudinal river profiles, at least for the studied 

area, is deeply influenced by climatic factors. Another evidence that leads to 

consider the climatic signal as the first information brought by studied profiles, is 

the high value of obtained incision rates. Even without taking into account the 

Tributaries 3, 5, 6, 7 and 8, that show the most elevated erosion mean of the area, 

we have a general average of incision rate of 6,7±2 mm/yr. The uplift rate in the 

area is considered to be around 0,8 mm/yr (Walpersdorf et al, , 2015), but could 

reach high values of several mm/yr (Serpelloni et al.,  2013), that appears to be 

slightly lower than the estimated incision rates (still considering only Tributary 1, 

2, 4, 9). However, the relationship between the regional rate and the river incision 

rate is not simple, and we do not expect to have similar rates. Further, it seems 
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logical that river incision is faster than the regional erosion rate, as it corresponds 

to a focussed erosion. This will be tested by the direct dating of the river polished 

surfaces which is presented in the second part of this work. 

Further, the part of incision which could be attributed to tectonics and isostasy is 

thought to be reflected in the incision rate minima in the profiles, which may 

highlight the part of the signal that most probably was influenced by the long-term 

uplift. From our data, we see a widespread augmentation in the minima incision 

mean starting between 80 and 55 kyr B.P. and still lasting until today, which is 

globally not correlated to the climatic signal. An increase in the incision rate 

minima, based only on climatic factors, would see fluctuations of the same order 

of the Epica curve temperature variations. It is then possible suppose a link 

between this changing and the active uplift, which would be driven by tectonics.  
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III. 2 10Be Terrestrial Cosmogenic Nuclides dating  

 

III.2.1 Sampling site and criteria  

 

To quantify Tinée incision rates, we have applied the TCN Be-10 dating method 

on 11 granite samples. The samples have been taken from a river polished surface 

situated in the gorges cut by the Tinée into the crystalline basement, 10 km 

downstream of the Isola settlement (Figure 51-B). 

The sampled surface is sufficiently compact and vertical to ensure a river-incision 

origin of the surface thereby ensuring the correspondence between the exposure 

age and the incision history.  

The sampling site has been chosen due to the other following advantages: 

 

- The homogeneity of the lithology, this fact implies that possible changes in 

incision rates are linked to climatic or tectonic changing and not to variation in 

rock texture. 

 

- The granite wall surface doesn't show any kind of rock fall. 

 

- The polished surface is nicely preserved and can confidently be attributed to 

river incision, and span a range of elevation up to 30 m above the river. 

 

- The valley's opposite side has a gentler slope, fact that augment the cliff 

exposition to cosmic rayon and reduce the shielding factor. 

 

- The sampling site is situated downstream from the lowest glacial evidence 

present in the valley (Julian, 1980), therefore it should be out of the zone 

influenced by glacier erosion. 

 

 

 



 

 

88 

 

 

Figure 51: A) The granite wall where the analysed samples have been collected. 

The red line indicates the approximate position of the sampled vertical profile.  

B) Position inside the Tinée valley and elevation profile of the sampled site, 

perpendicular to the valley axis. 

C) Elevation profile perpendicular to the valley axis. 

D) Profile of shielding seen from the sampling site (with the sampling side on the 

back).Obtained with CRONUS – earth online calculators 

(http://hess.ess.washington.edu). 

 

 

 

http://hess.ess.washington.edu/
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III.1.2 10Be exposure ages presentation and description  

 

The study of the in-situ-produced cosmogenic nuclides concentration, has given a 

series of 11 exposure ages going from 18257 to 2332 yr B.P. The obtained ages 

decrease from Ti – 1 to Ti – 4 with an evidently too elevated age for sample Ti – 

3. After the sample Ti – 4, the exposure ages of sample Ti – 5, Ti – 6 and Ti – 7, 

increase of 422 years despite a deepening inside the gorge of 9,9 m. The sample Ti 

– 6 shows the oldest exposure age of this group, 15463 yr BP. The increasing 

trend doesn't stop and samples Ti – 8 and 9 result to have exposure ages above 16 

kyr. Starting from Ti – 9 the exposure ages restart to decrease with the altitudes 

above the river bed (Figure 52).  

 

 

 

 

 

 

 

 

 

 

 

 

Table 14: Beryllium - 10 cosmogenic dating obtained applying a constant 

production rate model, with the Stone (2000 )scaling scheme for spallation and a 

shielding factor of 0,655. 
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The external uncertainties associated to these ages are included in a range with 

extremes of 468yr and 3366yr. The internal uncertainties instead are comprised 

between 421 yr and 2498 yr. The percentage error linked to the external 

uncertainties, goes from a maximum of 24,1% to a minimum of 10,3% with a 

mean value of 13,9 % ; 5,4%,  22,4% and 10,4% are minimum, maximum and 

average of percentage errors linked to internal uncertainties (Table 12). 

 

 

                                                                                                                                                                       

 

 

                       

Table 15:incision rate calculated for the relative intervals between samples. The  

intervals [2;9];9 – 10 means that the  incision rate has been quantified using the 

mean exposure age, calculated over samples 2, 4, 5, 6, 7, 8, 9,  and the altitude 

above the river of sample 9.                                                                                                                                                                                  

 

Figure 52:altitude above the river bed  and exposure ages of the eleven samples 

with associated error considered as the sum of internal and external uncertainties. 

Sample Ti – 3, marked by a blue has been considered as an outlier. 
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As shown in Figure 29, we see that the age repartition is not linear and can be 

divided into 2 ages groups. We can consider the sample Ti – 3, as an outlier. The 

incision rate shows a relevant increase between 14 and 20 kyr B.P. that engrave 

the river bed of 22,4 m. After this high incision event low incisions can be 

inferred (< 1mm/yr) until the Subboreal period (5200 – 2600 yr B.P.), where, 

again, the incision rate increases. This new incision pulse starts with the 

Subboreal and between samples 10 and 11 has been calculated a difference of 

2169 yr in 9,5 m, meaning a rate-incision-mean of 4,4 mm/yr.  

The overall incision mean, averaged for the whole cliff, has been estimated to 2,4 

mm/yr. 

 

III.2.3 Discussion of 10Be TCN dating profile 

 

The incision rate obtained from the TCN Be – 10 analysis, underline the notable 

effect of the post LGM deglaciation on the Tinée gorges shaping. Based on 

surface exposure ages, quantified incision rates are up to 2 cm/yr for that period 

which extends down to 14 kyr (Table 15). After this high incision period, follows 

a sharp deceleration in the fluvial deepening that starts after 14 kyr B.P. and lasts 

until 4,5 kyr B.P. During this interval the massif underwent the glacier phase of 

the Younger Dryas, especially at 12-11 kyr (Darnault et al., 2012) (Table 15). The 

last 4500 yr are marked by a second increase in the incision rate, which coincides 

with the climatic optimum of the Holocene featured by increased rainfall at 4000 

yr (Saillard et al., 2014). Consequently, we see that the river incision profile is not 

constant, and that pulses of erosion can be attributed to the major climate changes. 

The incision of 40 meters in only 20 kyr is however of the same order as the GPS 

rates obtained by Serpelloni et al.(2013), which suggests that, in the long term, the 

average incision rate could be of the same order as the subsidence-tectonic uplift. 
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IV Discussion 

 

IV.1 Numerical modelling results discussion 

 

Numerical modelling allows to test the role of one or several parameters in a 

given process. In this study I have worked modifying the values of K (erodibility 

factor) and m (concavity index when n = 1) hypothesising river with profiles in 

steady state conditions and with a linear ratio between slope and incision rate, i.e. 

n = 1. With such assumption I've been free to study the influence, above the 

incision-rate-profiles, of the only parameters K and m, and, aware of the limits 

that such approach involves, to study tectonic and climatic effects on fluvial 

incision rate.   

The results obtained through the model are, for what concerns the incision rate 

absolute values (Table 3), too high compared to those derived from the direct 10Be 

dating method. Considering for example the actual incision-rate-mean estimate for 

the Tinée River, from the tributaries incision rate (Figure 21), and the incision rate 

estimated with the TCN methodology (Table 15), we obtained a 16 mm/yr 

incision rate in the numerical simulation and a 4,4 mm/yr incision rate from the 

TCN dating.  

The adopted calibration methodology is based on the variation of m and k values 

(chapter 2). In order to obtain a signal showing “logical” ages with respect to 

climate fluctuations, we have decided to leave free the incision rate variation in 

terms of quantitative values. Another explanation for the systematic difference in 

the results could be found in the n value. For the reasons, explained in chapter II, 

and for an easier control of the model, the n value has been fixed to 1. This 

assumption allows to have a linear relation between incision rate and river slope. 

To assume n = 1 means, among the others consequences, to neglect thresholds 

effects (i.e. n > 1 in threshold-independent model) on the river slope. This 

assumption may be erroneous, especially for tributaries 1, 2, 4 and 9 and could 

generate the not consideration of the fact that an n > 1 would preserve only the 

erosion peak linked to concave down knick points (Figure 13; Perron and Royden, 
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2013). It would be interesting to conduct a study centred on the effect of the “n” 

parameter above the incision-rate-profiles of the High Tinée tributaries, to see if it 

could be the cause of the difference in incision rate estimates.  

Another point that would deserve further investigations is the knick point 

migration rate. Under the same long term tectonic forcing field and with n = 1, the 

knick points should have all the same horizontal-upstream migration rate (Perron 

and Royden, 2013). In steep river, then, knick point should move faster than along 

less steep  river, while in our modelling, the knick point, associated to the steeper 

river, have covered a lower distance (Table 16) than those associated to the less 

steep ones. One of the constraint that have been decided to use in calibrating the 

model for this study, has been the variation range accepted for “m” and “K” 

values. This fact has lowered the possibility of incision-rate-profile shortening 

(increasing of incision rate intensity) and/or extension (decreasing of incision rate 

intensity). In other words, to keep the correspondence between the Epica curve 

and the incision-rate-profiles through profiles younger or older than those 

obtained, I should have used values of K and m out of the prefixed range. 

However I've preferred to keep the prefixed working strategy, that moved from 

the idea that in a geographically, geologically and climatically homogeneous area, 

the erodibility factor should remain relatively constant. The m value has been kept 

around 0,5 because of the  elevated scatter values. This decision could have led to 

an over estimation of the ages of the “short river” incision rate peaks, and then to 

an under estimation of their knick point moving rate. Indeed, looking at the 

topographic profiles of the studied rivers (Figure 24, 26, 28, 32, 34, 36, 40, 42, 

44) it is possible to see how in T3, T5, T6, T7 and T8 the slope variations linked 

(probably) to Peak B and C are much closer to the Tinée junction than those of the 

long tributaries. However, in Table 16 it is possible to see how the Peaks A are all 

placed at more or less at the same distance of 150 +/- 50 m from the Tinée with 

only exceptions of T6, T7, T8. These last tributaries are those forming an alluvial 

fan at the Tinée junction (Figure 50), structure that move upstream the break in 

slope. Probably the reason of the same “distance”-coordinate for all the Peaks A, 

is that a 14 kyr time span was not sufficient to highlight the differences between 
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the migration rates of knick point belonging to different tributaries.  

 

In the rivers steeper than 20% (Table 3) it is important to consider the possible 

occurrence of debris-flows (Sklar et al., 1998). However in Tinée tributaries we 

registered an over estimation of incision-rate-peaks widespread all over the rivers, 

suggesting other causes for this systematic error. Further the debris-flows are 

phenomena intimately linked to precipitation amount, thus at most they can affect 

the incision rate value, but certainly won't shift the incision peak away from the 

climate ones. 

Despite the fact that the absolute values of incision are overestimated in the 

model, it is their relative variations that provide the most valuable information. 

The first evidence is that in all the incision-rate-profiles is present a post – Oldest 

Dryas incision rate increasing, situation underlined also by the TCN dating results. 

This marked change in incision dynamics around 15kyr B.P. is in agreement with 

the results of Darnault et al. (2012), that defines a first phase of glacier retreat at, 

indeed, 15kyr B.P. This glacial retreat, with the consequent water and sediment 

discharge, could be the reason of the post LGM incision acceleration evidenced by 

our results. However, as it will be discussed later in this chapter, the obtained 

incision rates corresponding to this period indicate, maybe, a more long-lasting 

                                                                                                                           

Table 16: distance from the junction with the Tinée of the topographic 

profile slope-breaking for each one of the studied rivers respectively 

associated to one of the incision rate peaks. 
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process of glaciation of the Tinée valley than previously thought. In all the 

incision-rate-profiles, indeed, is present a belated increase in the incision rate. For 

instance, the Roya (Tributary 4) incision-rate-profile shows for almost all its 

length a limited incision rate, that abruptly increases around 15 kyr B.P. 

Besides this main agreement between model and geochemical results, in the 

incision-rate-profiles obtained from the modelling of Tributaries 1 and 9 is present 

also the Holocene incision increase, clearly visible in the TCN profile. This 

incision peak is not visible in the other profiles, which is probably due to: the 

alluvial fan structure of Tributaries 6, 7 and 8; the over estimation of the incision 

rate value for what concerns Tributaries 3 and 5; the anthropic structures present 

in the lowest part of Tributary 2.  

Beyond this more recent and temporally localized influence of climate on the 

incision rates in the High Tinée basin, the model results, show a relatively good 

agreement with Epica curve over the last 80000 yr. Calculating a punctual mean 

profile for each one of the three groups defined in chapter 4, we aimed to reduce 

the local factors showing out for each of the different areas of the High Tinée 

basin, the common incision fluctuations. In Figures 29, 37, 45 this global relation 

between incision rate and climate is clearly shown. However, it is important to 

note that temperature variations do not necessarily reflect variations in rainfall 

rate. However, in a restricted area, along a glacial-interglacial period, a significant 

amount of river discharge is due to glaciers melting, fact that instead is directly 

depending on temperature. These profiles-punctual-mean lead to infer that the 

incision of the Tinée and its tributaries, is dominated by the climate influence. 

This climatic control above river behaviour is confirmed by the frequency of 

incision rate fluctuation, that is too elevated to be caused by changes in the 

tectonic behaviour. Changing in uplift rates would have led to variations in 

incision rates over a much longer time scale.  

With the purpose of analysing the uplift signal present in the obtained incision-

rate-profiles, I have tried to isolate the periods with lowest climatic influence. To 

do that I have calculated a mean over the incision rate minima. Considering 

indeed the active tectonics as a background noise, this one will be directly 
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detected only when the climatic activity becomes of second order. This kind of 

approach entails the risk of an under estimation of the tectonic uplift. It is indeed 

sufficient that the incision is concentrate only along the high discharge period, 

linked to the favourable climatic phases. These intensive erosive phases would 

allow to regain a steady state. However, along the not-climate-influenced periods, 

is convincing that the little accumulated incision is generated by tectonic or 

isostatic uplift.  

Although also in this case the values obtained from the model are too elevated, 

they bring anyway interesting information. Among the incision-rate-means two 

groups appear to be distinguishable: (i) a first one with values above 10mm/yr and 

(ii) a second one with values around 5mm/yr.  

(i) The rivers with the high incision rate means, are the Tinée east Tributaries, 

which are also the shortest and steepest ones. A possible explanation linked to 

tectonic reasons could be found in the strike-slip fault lying along the valley 

bottom (Figure 7). This interpretation seems however to be invalidated from the 

fact that also the highest stem of the Tinée (here called improperly Tributary 9) is 

located in the east side of the fault, but has a minima mean incision of 5,2 mm/yr. 

It is thus reasonable to think that the much more elevated incision rates of the east 

Tinée tributaries, is due to their steepness that cause a faster upstream migration 

of knick points. The incision means minima for these “shorts river” thus probably 

feature secondary fluctuations of the climatic effects on the incision rate, and 

probably do not give any information on the tectonic activity.  

Among the Tinée tributaries belonging to the “low incision rate” group (T1,T2, 

T3, T4, T9), it is interesting to note how their “background” incision-noise is 

always around 5mm/yr (what is worth is not the value itself but its stability). This 

stability could indicate a common constraint, that may be individuated as a ‘whole 

block uplift’. From the punctual-profile-mean of Figure 29 and 37 it is also 

possible to note an increase in the incision rate around 80 and 55 kyr B.P. Of 

course this result is associated to many uncertainties, but still it would be 

interesting to lead further research on this question.  
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IV.2 10Be Terrestrial Cosmogenic Nuclides dating results discussion  

 

As seen above, the modelling results have been partly confirmed by the Terrestrial 

Cosmogenic Nuclides dating. The TCN profile obtained, shows two sharp 

increases in incision rates respectively at 15 and 4,5 kyr B.P.  

The oldest one is the most evident in both the TCN and modelling results. This 

result matches well the main glacier retreat phase documented at 15 kyr in the 

valley (Darnault et al., 2012) as well as for the rest of the Alps (Ivy-Ochs, 2015). 

In Darnault et al. (2012) are reported the exposure ages of some polished surfaces 

placed at 2500m in the High Tinée valley. Dating 14.9 +/- 0.8 kyr, these data 

constrain the Oldest Dryas deglaciation at those altitudes. Our ages relative to the 

first incision-rate increase, are probably linked to the deglaciation period that 

followed the Oldest Dryas. However, for a better knowledge of the glacial retreat 

dynamic, would be interesting to date the polished surfaces found above the Tinée 

– Roya junction and at the level of the settlement of Saint Etienne de Tinée 

(Figure 48 and 49). The valley bottom at the Tinée – Roya junction level, has an 

elevation of 1020 m a.s.l., while the found polished surface (Figure 48 – A) is 

located at 1107m a.s.l. If we assume a mean erosion rate of 2 mm/yr (chapter III) 

for the last 18 kyr, and a valley bottom 36 m higher than now, the thickness of the 

hypothetical glacier would be of about 50 m. The rapid deglaciation at the end of 

the Oldest Dryas stadial, of the glacial front, would be perfectly fit by the results 

obtained from the 10Be nuclides dating. 

 The end of this high incision period dates approximately at 14500 yr, and could 

be explained by the Older Dryas stadial. Starting with this cold period the TCN 

profile highlights a low incision period that lasted until 4,5 kyr B.P. The incision 

rate doesn't seem to have been affected by the MIS1 warming phase and the 

related deglaciation (Darnault et al. 2012), as instead is clearly visible in the 

Vesubie river record (Saillard et al., 2014). An explanation for the low incision 

rate of this period could be found in the stabilization of river slopes by  

vegetation, that developed rapidly during the Holocene climatic optimum (Ortu et 

al., 2008; Mourier et al., 2010). Furthermore it is important to note that not 
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necessary all the incision events get registered by the river. Several factors as, for 

instance, sediment deposition and channel temporary damming, can affect the 

dating hiding incision events. 

The younger incision rate increase (4-5 kyr B.P.) corresponds in time to the 

middle-late Holocene transition at 4,2 kyr B.P., a period of increased runoff 

(Walker et al., 2012). Fluvial sequences of Holocene period show, in the French 

Riviera, a transition from fine to coarse sediment, which reflects a change in 

hydrological regime. From 8 to 5 kyr B.P.  energy of rivers was likely  low, while, 

starting around 4,5 kyr B.P. it probably increased, with a relative more abundant 

and coarser sediment transport,  likely related to a major incision phase in the  

upstream part of the catchments (Dubar and Anthony, 1995). In this period a 

sedimentological change in the Alpine lakes has also been documented, and, after 

some authors (e.g. Brisset et al., 2013), may represent an augmentation in the 

anthropic activity. The increase in agriculture pastoralism and other human 

activities, may have reduced the forest cover in the Tinée catchment, causing more 

slope instability and increase of sediment supply to river channels. A further 

indirect confirmation of a climatic change with relatively high hydrological pulses 

in this period and in this region, is given by the elevated landslide activity during  

the time period from 5,1 to 3,3 kyr B.P. (Sanchez et al., 2010a; Zerathe et al., 

2013, 2014). Finally, an enhancement in incision rates for the same period has 

been estimated also for the neighbouring Vesubie Valley (Saillard et al., 2014).  

Such elevated and fluctuating values of incision rates are then to be ascribed to 

climatic variability and to the concentration of the river energy inside narrow 

gorges.  

In the Tinée basin, beyond the TCN dating presented here, there exist four 

additional dating profiles carried out on river polished surface using the Terrestrial 

Cosmogenic Nuclides methodology. The dated surfaces are located (Figure 54): in 

the very north side of the Tinée catchment area in the gorge of Salso Moreno river, 

just upstream of the Isola settlement (Darnault et al., 2012), in the lower part of 

the Vesubie valley (Saillard et al., 2014), in the lowest part of the Tinée valley not 

far from the junction with the Var river (still unpublished data).  
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The comparison between the different datings suggests some questions. Looking 

at the two TCN profiles dating the incision rate of the Tinée (Tin Be, Tin Cl), is  

evident that the period of more intense incision activity of the 36Cl profile is 

younger than the peak of incision activity found in this study. It is also interesting 

that this increase of incision is located at the end of the Younger Dryas stadial, 

roughly at the same time of the one found for the Vesubie (profile VES, Saillard et 

al., 2014). These profiles are the lowest ones, and the youngest Dryas deglaciation 

seems to have had more influence on the incision of this part of the river network. 

What instead is clear, it is the transient character of the incision process, that 

alternate in all the 4 profiles, periods of very low incision to others reaching 

incision rates up to 20 mm/yr (Table 15). This erosion trend is another 

confirmation of the climate control over the incision processes of the Tinée basin. 

However, while the climatic control on the phases of increased incision can 

clearly be put forward, our data show that the rivers did not reach an equilibrium 

after the long-lasting glacial phases of the Quaternary. In this context of 

disequilibrium, it could be hypothesized that the peaks in river erosion allow to 

accommodate the long-term tectonic uplift. Thus, there could be a more complex 

interaction between tectonics and climate in the shaping of mountain valleys. 
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 Figure 53: Satellite image of the High Tinée basin showing  the sampling 

sites. The sampled site giving the TIN Cl data, and located in the lowest 

Tinée valley is visible only in the less-zoomed pictures on the right. 

 

Figure 54: TCN dating profiles effectuated in the Tinée valley: TIN Cl 

(N43°56'14.30 E7°10'02.77, 275 m, unpublished article) and TIN Be (N 

44°07'22,5'' E 07°05'42,5''), in the Salso Moreno valley. SM (N 44°19,8'21,1'' E 

6°52,2'24,3'', Darnault et al., 2012), and in the Vesubie valley, VES 

(N43°56'06,7'' E7°15'54,8'', Saillard et al., 2014). 
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V Conclusions 

 

Both the numerical and the geochemical approaches lead to the conclusion that 

the climate is the factor driving the fluvial incision processes, at least for what 

concerns the Tinée catchment area. 

The application of the Goren model suggests that climate is the parameter leading 

the Tinée incision process highlighting the remarkable effects of the post LGM 

deglaciation on the incision dynamic. However the model also shows a constant 

background noise, partly hidden by the high incision rate linked to the climatic 

erosion-favourable conditions. The model results are not reliable in what concern 

the absolute values of the incision rate. Anyway, with the help of the TCN profile 

(Figure 52 and Table 15), is not unreasonable to associate the long term incision 

rate value (2,0+/-0,5 mm/yr) estimated over the whole period covered by the 10Be 

dating (last 18 kyr), to the uplift influence upon the river incision rate. Incision 

rate is of the same order of magnitude of the vertical moving rate, derived by GPS 

measurements and proposed by Serpelloni et al. (2013). 

The successfully performed analysis of the in-situ produced 10Be Terrestrial 

Cosmogenic Nuclides has confirmed that climate is the most important factor in 

the Tinée valley incision. It has allowed to quantify the incision rate fluctuation 

over the last 18 kyr with a good resolution (int+ext uncertainties mean, of 3139 

yr). For the study period, the dating has provided a mean incision rate of 2mm/yr 

with two evident period of rapid incision around 15 and 4,5 kyr B.P. This periods 

correspond to climate changes causing, respectively, a rapid post LGM 

deglaciation and more abundant rainfall. Overall, this study confirms the results 

obtained by Darnault et al. (2012), with incision rate values clearly higher than the 

uplift rates measured for the area (Walpersdorf et al., 2015). Several open 

questions still remain. The Tinée valley deglaciation dynamics and timing is 

indubitably still waiting for a more detailed description. Other interesting topic is 

the calibration of the model, specifically of the n parameter. It would be 

interesting, also,  to apply the model to the area considering uplift varying within 

the catchment. In this way it would be possible to detect eventual difference in the 
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uplift rate between the two sides of the strike fault cutting the west tributaries of 

the High Tinée (Figure 7). Finally, an application of the model to rivers far away 

from tectonic areas could help to know and decipher the climatic effects on the 

Goren-Willet-Fox model signal. 
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Appendix: 

 

Appendix 1: the four Matlab script developed by Lirian Goren and employed 

during this study 

 

Code 1: Receives the topography ASCII grid as input, reproducing the river 

topographic profiles 

 

%%% extracts data from Whitebox files 

%%% once the latter converted into ARCGIS ASCII files 

%%% (it's not necessary to remove the 6-lines header) 

%%% exports at the format needed by Calctau 

%%% x:y:z:flow dir:flow length:basin:order:area:slope 

  

close all; 

clear all; 

  

  

%% CHANGE FOR EACH DEM 

ncols = 908; 

nligs = 694; %  

xll =  6.782638888888889; 

yll = 44.15513888888889; 

cellsize = 2.7777777777777794E-4; %cell size in degrees 

  

pixelsize=30*22; 

  

%%% 

  

slop = zeros(nligs,ncols); 

  

%%% INPUT FILES 

%%% 1 is the DEM topo file 

input_1 = dlmread ('C:\Users\Davide\Desktop\Codici_Matlab_WB_mod2\02-06-

2015\ASCIITinee\tin_topo.txt',' ',6,0); 

%%% 2 is the flow direction file 

input_2 = dlmread ('C:\Users\Davide\Desktop\Codici_Matlab_WB_mod2\02-06-

2015\ASCIITinee\tin_pointer.txt',' ',6,0); 

%%% 3 is the flow length file 

input_3 = dlmread ('C:\Users\Davide\Desktop\Codici_Matlab_WB_mod2\02-06-

2015\ASCIITinee\tin_dist.txt',' ',6,0); %HO USATO IL FILE FLOWPATH 

APPLICATO ALL'INTARO BACINO 

%%% 4 is the basin file (selects a watershed)%%TINEE 

%VESUBIE 

input_4 = dlmread ('C:\Users\Davide\Desktop\Codici_Matlab_WB_mod2\02-06-

2015\ASCIITinee\tin_watersheds.txt',' ',6,0);  
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%%% 5 is the flow order file 

input_5 = dlmread ('C:\Users\Davide\Desktop\Codici_Matlab_WB_mod2\02-06-

2015\ASCIITinee\tin_HS.txt',' ',6,0); %usato di nuovo file generale 

%%% 6 is the drainage area in pixels 

input_6 = dlmread ('C:\Users\Davide\Desktop\Codici_Matlab_WB_mod2\02-06-

2015\ASCIITinee\tin_accumPIX.txt',' ',6,0); %???? 

%%% 7 is the stream file 

%input_7 = dlmread ('D:\VESUBIE\DEMS\tineezoommain.txt',' ',6,0);  

input_7 = dlmread ('C:\Users\Davide\Desktop\Codici_Matlab_WB_mod2\02-06-

2015\ASCIITinee\tin_mains.txt',' ',6,0); %MS 

  

  

%% Makes a lat/lon grid coordinate 

latcoor = repmat((nligs:-1:1)',1,ncols)*cellsize+yll; 

loncoor = repmat (1:ncols,nligs,1)*cellsize+xll; 

  

%makes a km grid coordinate 

deglat = 40e6/360; % one degree of latitude in m 

deg2m = 90000;% one degree of longitude in m 

ycoor = (latcoor-yll)*deglat; 

coslat = cos(latcoor*pi/180); 

xcoor = (loncoor-xll)*deglat.*coslat; 

new_dir=ones(nligs,ncols); 

  

npts=1; 

  

%%% In this step we compute the along channel slope which is not properly 

%%% done in whitebox 

  

step_calc = 'computing along-channel slope ' 

for i=2:nligs-1 

    for j=2:ncols-1 

        % checks only for points within a channel 

        if input_7(i,j)>0 

         

            %% finds the flow direction and computes local slope 

    switch input_2(i,j) 

                case 1 

                    dist = sqrt((xcoor(i-1,j+1)-xcoor(i,j))^2 + (ycoor(i-1,j+1)-

ycoor(i,j))^2); 

                    slop(i,j) = -(input_1(i-1,j+1) - input_1(i,j))/dist; 

                    new_dir(i,j)=128; 

                case 2 

                    dist = sqrt((xcoor(i,j+1)-xcoor(i,j))^2 + (ycoor(i,j+1)-ycoor(i,j))^2); 

                    slop(i,j) = -(input_1(i,j+1) - input_1(i,j))/dist; 

                    new_dir(i,j)=64; 
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                case 4 

                    dist = sqrt((xcoor(i+1,j+1)-xcoor(i,j))^2 + (ycoor(i+1,j+1)-

ycoor(i,j))^2); 

                    slop(i,j) = -(input_1(i+1,j+1) - input_1(i,j))/dist; 

                    new_dir(i,j)=32; 

                case 8 

                    dist = sqrt((xcoor(i+1,j)-xcoor(i,j))^2 + (ycoor(i+1,j)-ycoor(i,j))^2); 

                    slop(i,j) = -(input_1(i+1,j) - input_1(i,j+1))/dist; 

                    new_dir(i,j)=16; 

                case 16 

                    dist = sqrt((xcoor(i+1,j-1)-xcoor(i,j))^2 + (ycoor(i+1,j-1)-

ycoor(i,j))^2); 

                    slop(i,j) = -(input_1(i+1,j-1) - input_1(i,j))/dist; 

                    new_dir(i,j)=8; 

                case 32 

                    dist = sqrt((xcoor(i,j-1)-xcoor(i,j))^2 + (ycoor(i,j-1)-ycoor(i,j))^2); 

                    slop(i,j) = -(input_1(i,j-1) - input_1(i,j+1))/dist; 

                    new_dir(i,j)=4; 

                case 64 

                    dist = sqrt((xcoor(i-1,j-1)-xcoor(i,j))^2 + (ycoor(i-1,j-1)-

ycoor(i,j))^2); 

                    slop(i,j) = -(input_1(i-1,j-1) - input_1(i,j))/dist; 

                    new_dir(i,j)=2; 

                case 128 

                    dist = sqrt((xcoor(i-1,j)-xcoor(i,j))^2 + (ycoor(i-1,j)-ycoor(i,j))^2); 

                    slop(i,j) = -(input_1(i-1,j) - input_1(i,j+1))/dist; 

                    new_dir(i,j)=1; 

            end 

         else 

            slop(i,j)=0;                   

        end 

     end 

end 

  

step_calc = 'writing table ' 

new_dir(nligs,:)=new_dir(nligs-1,:); 

 for i=1:nligs 

    for j=1:ncols 

        % checks only for points within a channel 

        if input_4(i,j)>-9999 && input_5(i,j)>-9999 && input_7(i,j)>0 && 

input_1(i,j)<2350  % selectionne en fonction de l'altitude 

         

        % writes a table for calctau with the following data 

        % x:y:z:flow direction:flow length:watershed number: stream order: 

        % :area:slope 
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         table1(npts,:)=[latcoor(i,j) loncoor(i,j) round(input_1(i,j)) new_dir(i,j)... 

      input_3(i,j)*deg2m input_4(i,j) input_5(i,j) input_6(i,j) slop(i,j)]; 

             npts=npts+1; 

        end 

    end 

end 

  

% outlet = min(table1(:,5)); 

table1(:,3)=table1(:,3)-min(table1(:,3)); 

table2 = sortrows(table1, [-3 -1]); 

table3 = sortrows(table1, 6); 

  

%%% Sorts stream for Inversion (for each individual basin)) 

number_basins = max(table3(:,6)); 

prefix = input ('enter files prefix ' ,'s') 

% delete allrivers.txt 

  

%%% The outlet of the basin must have a x=0 coordinate 

for k=1:number_basins 

%k=1;  

nodes=find(table3(:,6)==k); 

    mintop = min(table3(nodes(1):nodes(size(nodes,1)),3)); 

    minlen = min(table3(nodes(1):nodes(size(nodes,1)),5)); 

     

    filename=[prefix num2str(k) '.dat'] 

    ElevationTau2=table3(nodes(1):nodes(size(nodes,1)),:); 

    ElevationTau2(:,3)=ElevationTau2(:,3)-mintop; 

    ElevationTau2(:,5)=ElevationTau2(:,5)-minlen; 

    dlmwrite (filename,ElevationTau2,'delimiter',' ','newline','pc','precision',12) 

    dlmwrite ('allrivers_new.txt',ElevationTau2,'-append','delimiter',' 

','newline','pc','precision',12) 

    

end 

  

% dlmwrite ('tineezoomdat.txt',table3,'delimiter',' ','newline','pc','precision',12) 

%%% plots topo 

 

figure (1); 

scatter(table1(:,1),table1(:,2),20,table1(:,3),'o','filled'); 

colorbar;title('altitude'); 

  

 %% plots flow length 

figure (2); 

scatter(table1(:,1),table1(:,2),20,table1(:,5),'o','filled'); 

colorbar;title('flow length'); 
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%% plots flow order 

figure (3); 

scatter(table1(:,1),table1(:,2),20,table1(:,7),'o','filled'); 

colorbar;title('flow order'); 

  

%  

%  

% %%% plots ks 

% figure (5); 

% m=0.6; 

% ks =table3(:,9)./table3(:,8).^m ; 

% scatter(table3(:,2),table3(:,1),30,ks,'o','filled');colorbar; 

% title('ks') 

 

 

 

Code 2: calculates the various scatter linked to all the m values ranging between 

0 and 1 

 

%function res = CalcScatterForM 

  

%The function calculates tau for different values of m and presents the 

%scatter in tau-z plots 

  

all_data=load('MyDataAllData'); 

all_data = all_data(:,1:6); 

[r,c] = size(all_data); 

sort_data2 = sortrows(all_data,4); %sort by elevation 

sort_data=sort_data2(1:80,:); 

[r,c] = size(sort_data); 

rec_list=load('MyData_river_network'); 

  

%%% vector of tested m values 

m_vec = (0.2:0.01:1); 

  

scatter_vec = zeros(1,length(m_vec)); 

  

bins = 20; 

outlets = find(all_data(:,5)==0); %no flow length 

  

figure(1); 

hold off; 

for q = 1:length(m_vec) 

    tau_vec = zeros(1,r); 

    m= m_vec(q); 

    %calculate tau: 
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    for i=1:r 

        j=rec_list(i); % i and j are ids 

        if j~=0 

            ii = find(sort_data(:,1)==i); 

            jj = find(sort_data(:,1)==j); 

            %my tau = tau of my receiver + dx/A^m (for n=1) 

            tau_vec(ii) = tau_vec(jj) +... 

            sort_data(ii,5)/sort_data(ii,6)^m; 

             

%             tau_vec(ii) = tau_vec(jj) +... 

%             sort_data(ii,5)/sort_data(ii,6)^m/K; 

             

            plot([tau_vec(ii),tau_vec(jj)],[sort_data(ii,4),sort_data(jj,4)]) 

            hold on; 

        end 

    end 

    max_tau = max(tau_vec); 

    bin_size = max_tau/bins; 

    bin_std = zeros(1,bins); 

    for k = 1:bins 

        index = find(tau_vec >= (k-1)*bin_size & tau_vec < k*bin_size); 

        bin_z = sort_data(index,4); 

        bin_std(k) = std(bin_z); 

    end 

    scatter_vec(q) = mean(bin_std); 

    %hold off; 

end 

figure(2); 

plot(m_vec,scatter_vec); 

  

[a,b]=min(scatter_vec); 

mmin = m_vec(b) 

  

     

 

Code 3: chosen the m value for the river, calculate the chi-profile 

 

%function res=CalcTauFromTable 

clear all; 

close all; 

%pixelsize=88.7820251907; %area of pixel, depends on the DEM 

pixelsize=30; 

%pixeltoarea=pixelsize^2; %m^2 

m_of_concavity=0.57; 

pixelLatLon = 0.0002777777777; 

pixeltoarea=30*22; % approximate pixel area in m2 at this latitude 
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%this function expect an input ascii file 

%each row is one pixel and 

%the columns corresponds to  

%|x|y|z|flow direction|flow length|basin|order|area in pixel|slope 

% 1 2 3     4            5            6    7      8            9 

k= input('entrez numero bassin ') 

basin_index=k; 

%fileinput = ['tineeall' num2str(k) '.dat']; 

  

fileinput=['socchi',num2str(k),'.dat']; 

AllData=load(fileinput);% 

[r,c]=size(AllData); 

  

SortData=sortrows(AllData,[6 5]); 

  

% converts pixels into square meters (drainage area) 

SortData(:,8)=SortData(:,8)*pixeltoarea; 

  

% find receiver relations 

% go basin by basin. 

% find all 0 is flow length - this is the outlet of a basin 

  

%IMPORTANT - the script assumes lat-lon for x and y. 

outlets=find(SortData(:,5)==0); 

receiver_array=zeros(r,1); 

  

for i=1:length(outlets) 

    if i==length(outlets) 

        top=r; 

    else 

        top=outlets(i+1) - 1; 

    end 

    bottom=outlets(i); 

    receiver_array(bottom)=0; 

    for j=bottom+1:top 

        xlook=SortData(j,1) 

        ylook=SortData(j,2) 

        check_range=[(bottom:j-1) , (j+1:top-1)];   

        distmin=1.e-5; 

        switch SortData(j,4) 

            case 1 

                test = 'case 1' 

                xlook=xlook+pixelLatLon; 

                ind=find(abs(SortData(check_range,1)- xlook) < distmin & ... 

                    SortData(check_range,2) == ylook,1); 

            case 2 
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                test = 'case 2' 

                xlook=xlook+pixelLatLon; 

                ylook=ylook-pixelLatLon; 

                ind=find(abs(SortData(check_range,1)- xlook) < distmin & ... 

                    abs(SortData(check_range,2) - ylook)<distmin,1); 

            case 4 

                test = 'case 4' 

                ylook=ylook-pixelLatLon; 

                ind=find(SortData(check_range,1)== xlook & ... 

                    abs(SortData(check_range,2) - ylook)<distmin,1); 

            case 8 

                test = 'case 8' 

                xlook=xlook-pixelLatLon; 

                ylook=ylook-pixelLatLon; 

                ind=find(abs(SortData(check_range,1)- xlook) < distmin & ... 

                    abs(SortData(check_range,2) - ylook)<distmin,1); 

            case 16 

                test = 'case 16' 

                xlook=xlook-pixelLatLon; 

                ind=find(abs(SortData(check_range,1)- xlook) < distmin & ... 

                    SortData(check_range,2) == ylook,1); 

            case 32 

                test = 'case 32' 

                xlook=xlook-pixelLatLon; 

                ylook=ylook+pixelLatLon; 

                ind=find(abs(SortData(check_range,1)- xlook) < distmin & ... 

                    abs(SortData(check_range,2) - ylook)<distmin,1); 

            case 64 

                test = 'case 64' 

                ylook=ylook+pixelLatLon; 

                ind=find(SortData(check_range,1)== xlook & ... 

                    abs(SortData(check_range,2) - ylook)<distmin,1); 

            case 128 

                test = 'case 128' 

                xlook=xlook+pixelLatLon; 

                ylook=ylook+pixelLatLon; 

                ind=find(abs(SortData(check_range,1)- xlook) < distmin & ... 

                    abs(SortData(check_range,2) - ylook)<distmin,1); 

        end 

                receiver_array(j)=ind+bottom-1; 

    end 

end 

  

%At this point we should have a donor-receiver relationships stored in 

%receiver_array. To check for mistakes we plot the network using these 

%relationships. 
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figure; 

hold on; 

for i=1:r 

        l_rec=receiver_array(i); 

        if l_rec~=0 

            plot([SortData(i,1),SortData(l_rec,1)],... 

                [SortData(i,2),SortData(l_rec,2)]); 

        end   

end 

axis equal 

  

%prepare the results matrix 

%column 1: pixel id 

%column 2: lon 

%column 3: lat 

%column 4: z 

%column 5: distance to receiver  

%column 6: upstream drainage area 

%column 7: basin id 

%column 8: stream order 

%column 9: distance along river from base level 

%column 10: tau* value (==chi) 

  

DataTauMat=zeros(r,10); % 10 colums matrix 

DataTauMat(:,1)=(1:r); 

DataTauMat(:,2:4)=SortData(:,1:3); % xyz 

DataTauMat(:,6)=SortData(:,8); % drainage area 

DataTauMat(:,7:8)=SortData(:,6:7); % basin number and stream order 

  

%distance between donor-receiver 

for i =1:r 

    j=receiver_array(i); 

    if j~=0 

       DataTauMat(i,5)= pos2dist(SortData(i,2),SortData(i,1),... 

           SortData(j,2),SortData(j,1),1)*1000; 

    end 

end 

  

%calculate tau 

DataTauMat(outlets,10)=0; % at the outlets tau=0; 

for i=1:r 

    j=receiver_array(i); 

    if j~=0 

        DataTauMat(i,10) = DataTauMat(j,10) +... 

            DataTauMat(i,5)/DataTauMat(i,6)^m_of_concavity;  %update the tau 

        DataTauMat(i,9) = DataTauMat(j,9) + DataTauMat(i,5); %commulative 



 

 

125 

 

distance from base level 

         

    end 

end 

  

A_0 = 1e7; 

  

% figure; 

% scatter(DataTauMat(:,3),DataTauMat(:,2),20,DataTauMat(:,10));colorbar 

% %scatter(DataTauMat(:,2),DataTauMat(:,3),20,tau_real);colorbar 

% axis equal 

  

% plots response time depending on K in Ma 

figure; 

K_err=8e-6; 

scatter(DataTauMat(:,3),DataTauMat(:,2),20,DataTauMat(:,10)/K_err/1e6);colorb

ar 

  

%Saves individual basins 

  

number_basins = max(DataTauMat(:,7)); 

%for k=1:number_basins 

k=basin_index;  

clear ElevationTau2 

    nodes=find(DataTauMat(:,7)==k); 

    filename=['MyDataElevationTau' num2str(k)] 

    ElevationTau2(:,1)=DataTauMat(nodes(1):nodes(size(nodes,1)),4); 

    ElevationTau2(:,2)=DataTauMat(nodes(1):nodes(size(nodes,1)),10); 

    ElevationTau2(:,3)=DataTauMat(nodes(1):nodes(size(nodes,1)),9); 

    save(filename,'ElevationTau2','-ascii'); 

%end 

  

%  ElevationTau(:,1)=DataTauMat(:,4); 

%  ElevationTau(:,2)=DataTauMat(:,210); 

% save('MyDataElevationTau','ElevationTau','-ascii'); 

save('MyDataAllData','DataTauMat','-ascii'); 

save('MyData_river_network','receiver_array','-ascii'); 

  

% filename=['MyDataElevationTau' num2str(k)] 

%     save(filename,'ElevationTau','-ascii'); 

%  

  

%save('vesubiem08','DataTauMat','-ascii'); 
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Code 4: starting from the chi-profile, calculate the adimensional uplift rate and 

recalibrate it following the local characteristics and the parameters K and m 

chosen by the user 

 

%function 

[Ks_res,time_vec,ks_new,time_vec_n]=InvertKSWithRegularizationVardt(file,time

_interval_i,damp_coeff,K,color) 

%function 

[Ks_res,time_vec,ks_new,time_vec_n]=InvertKSWithRegularizationVardt(MyDat

aElevationTau,10,1,9e-6,jet) 

%file: a string with a file name. The file should have 2 columns. The 

%first column contains elevations and the second tau values. Such a file 

%is one of the outputs of CalcTauFromTable 

%time_interval: an integer value of how many time intervals should be 

%resolved. if 0, then the script loops over a predefined vector of time 

%intervals.  

%K: the erodibiility. If still unknown use 1. 

%color: a matlab color for the inversion results graph. 

  

clear all; 

close all; 

  

knum = input ('numero du bassin versant '); 

file=['MyDataElevationTau' num2str(knum)]; 

my_data=load(file); 

  

%%% K is the erodibility (assumed) 

%%% Time interval is the number of time intervals you wan to consider 

%%% damp_coeff will avoid too large U changes with time 

  

time_interval_i=40; 

damp_coeff=100; 

K = 13e-6; 

m_prime = 0.57; 

  

%K=1; 

color='jet'; 

  

%all_data = load('Inyo030AllData'); 

[r,c]=size(my_data); 

%an arbitrary choice 

A0 = 1e6; 

%A0 = 1; 

%IMPORTANT! m_prime has to be equal to the m used for the generation of the 

%z-tau data. 
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j=1; 

dataerr=10; % m vertical error of 30 m SRTM 

for i=1:r 

    if my_data(i,1)~=0 && my_data(i,2)~=0 

        my_data_no_zero(j,:)=my_data(i,:); 

        %all_data_no_zero(j,:)=all_data(i,:); 

        j=j+1; 

    end 

end 

r=j-1; 

sorted_data=sortrows(my_data_no_zero,2); 

%sorted_all_data = sortrows(all_data_no_zero,7); 

z=sorted_data(:,1); 

chi=sorted_data(:,2)*A0^m_prime; 

x=sorted_data(:,3); 

  

chi_max=max(chi); 

if time_interval_i~=0 

    time_interval=(time_interval_i); 

else 

    time_interval=(2:1:40); 

    %time_interval=[11,20,40]; 

end 

  

for p=1:length(time_interval) 

    data_per_interval=floor(r/time_interval(p)); 

    time_vec=zeros(1,time_interval(p)); 

    for i=1:time_interval(p) 

        time_vec(i)=chi(i*data_per_interval); 

    end 

    time_vec(end)=chi_max; 

    dt_vec=[time_vec(1),diff(time_vec)]; 

    G=zeros(r,time_interval(p)); 

     

    for i=1:r-1 

        chi_i=chi(i); 

        ind=find(time_vec>chi_i,1); 

        if ind>1 

            G(i,(1:ind-1))=dt_vec(1:ind-1); 

            reminder=chi_i - time_vec(ind-1); 

            if reminder>0 

                G(i,ind)=reminder; 

            end 

        else 

            G(i,1)=chi_i; 

        end 
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    end 

    G(r,:)=dt_vec; 

    ks_pri=mean(z./sum(G')')*ones(time_interval(p),1); 

    z_pri=G*ks_pri;   

    R=damp_coeff*eye(time_interval(p)); 

    denom=G'*G + R'*R ; 

    nom2=G'*(z-z_pri); 

    nom=G'*z; 

     

    ks=ks_pri + denom\nom2; 

    %ks=denom\nom; 

    Ks_res=ks;     

    j=1; 

    for i=1:time_interval(p) 

        if i-1==0 

            time_vec_n(j)=0; 

        else 

            time_vec_n(j)=time_vec(i-1); 

        end 

        time_vec_n(j+1)=time_vec(i); 

        ks_new(j)=ks(i); 

        ks_new(j+1)=ks(i); 

        j=j+2; 

    end 

    figure(1); 

     

    col=strcat('-',color); 

    col_vec = ['r','g','b']; 

    if K==1 

       % plot(time_vec_n'/K,ks_new*K,'r-','Linewidth',2) 

        %plot(time_vec_n'/1e-5/1e6,ks_new*1e-5*1e3,'r-','Linewidth',2) 

        %axis ([0 100 10 42]); 

    else 

        %plot(time_vec_n'/K/1e6,ks_new*K*1e3,col,'Linewidth',2) 

%        plot(time_vec_n'/K/1e6/A0^m_prime,ks_new*K*1e3*A0^m_prime,... 

%             'Color','g'); 

  

        % hl1 = line(-

time_vec_n'/K/1e6/A0^m_prime,ks_new*K*1e3*A0^m_prime,... 

        %    'Color','g');  

         

        time_up=-time_vec_n'/K/1e6/A0^m_prime; 

        uprate=ks_new*K*1e3*A0^m_prime; 

        %hold on; 

        %plot (Age_incis, Rate_incis, 'ko'); hold off 

      %  hl1 = line(time_vec_n'/K/1e6,ks_new*K*1e3,... 
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      %     'Color','g'); 

%         ax1 = gca; 

%         set(ax1,'XColor','k','YColor','k') 

%         set(ax1,'XLim',([0 5])) 

%         set(ax1,'YLim',([0.01 1.5])) 

        

%         ax2 = axes('Position',get(ax1,'Position'),... 

%            'XAxisLocation','top',... 

%            'YAxisLocation','right',... 

%            'Color','none',... 

%            'XColor','b','YColor','b'); 

%          

%         hl2 = line(time_vec_n',ks_new,'Color','b','Parent',ax2); 

%         xlimits = get(ax1,'XLim'); 

%         ylimits = get(ax1,'YLim'); 

%         %xinc = (xlimits(2)-xlimits(1))/5; 

%         %yinc = (ylimits(2)-ylimits(1))/5; 

%         set(ax2,'XLim',xlimits*K*A0^m_prime*1e6); 

%         set(ax2,'YLim',ylimits/K/A0^m_prime/1e3); 

        %set(ax2,'XTick',[xlimits(1):xinc:xlimits(2)],... 

        %'YTick',[ylimits(1):yinc:ylimits(2)]) 

        

    end 

     

    filenam = ['uplift_hist_' num2str(knum)] 

    time_hist = time_vec_n'/K/1e6/A0^m_prime; 

    up_hist =ks_new*K*1e3*A0^m_prime; 

    dlmwrite (filenam, [time_hist up_hist']); 

     

     save('uplift_hist.mat' , 'time_hist' , 'up_hist' ); 

     

    %calculate the resolution matrix 

    Resolution=(denom\G')*G; 

    figure(2) 

    image(Resolution,'CDataMapping','scaled') 

    %pause        

    nn=length(z); 

    misfit(p)=sqrt(sum((G*ks - z).^2))/(nn - time_interval(p)); 

    %misfit(p)=sqrt(sum((G*ks - z).^2))/(nn); 

    figure(3); 

    plot(sum(G'),G*ks,'k-','LineWidth',2) 

    lnL = -(log(2*pi)/2*nn + log(dataerr)*nn + 0.5*sum(((G*ks-z)./dataerr).^2)); 

    BIC(p)=-2*lnL+time_interval(p)*log(nn);   

   % pause 

end 

% if time_interval_i==0 
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%     figure(3) 

%     plot(time_interval,misfit)     

% end 

  

tempdat = dlmread('Epica-tpt-co2b.txt'); 

agebp = tempdat(:,1); 

temp = tempdat(:,2); 

  

U_over_K = ks_new*A0^m_prime; 

toto = time_vec_n'/K/1e6/A0^m_prime; 

  

ymax = 30 %max(ks_new*K*1e3*A0^m_prime); 

% ymax=20;  

ymin=-5; %min(ks_new*K*1e3*A0^m_prime); 

  

figure(1) 

%plot (time_up,up_hist); 

[ax,p1,p2] = plotyy(time_up,up_hist,agebp/1e6,temp) %U_over_K da sostituire a 

up_hist per plottare U/K 

axis(ax(1),[-0.14 0 -5 30]) % axe y correspondant a U/K 

axis(ax(2),[-0.14 0 -15 10]) % axe y correspondant aux temperatures 

  

% axis([-0.14 0 -5 30]); 

% xlabel('t in Ma','Fontsize',16); 

% ylabel('U in mm/y','Fontsize',16); 

  

ylabel(ax(1),'U in mm/y','Fontsize',16) 

ylabel(ax(2),'Epica Dome C temperatures','Fontsize',16) 

title (['K=',num2str(K),' ',' m=',num2str(m_prime),' ','dampcoeff = 

',num2str(damp_coeff) ]);%, '  ', 'n° of T.I.=',num2str(time_interval_i) ]) 

set(gca,'FontSize',12) 

res=0; 

hold on 

  

plot ([-0.014 -0.014], [ymin ymax], 'k'); 

plot ([-0.029 -0.029], [ymin ymax], '--k'); 

plot ([-0.057 -0.057], [ymin ymax], 'k'); 

plot ([-0.071 -0.071], [ymin ymax], '--k'); 

plot ([-0.082 -0.082], [ymin ymax], 'k'); 

plot ([-0.087 -0.087], [ymin ymax], '--k'); 

plot ([-0.096 -0.096], [ymin ymax], 'k'); 

plot ([-0.109 -0.109], [ymin ymax], '--k'); 

plot ([-0.123 -0.123], [ymin ymax], 'k'); 

  

  

 figure(4) 
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%plot(sum(G'),z,'k.');hold on 

%plot(sum(G'),G*ks,'r','LineWidth',2);hold off 

plot(x,z,'k.');hold on 

plot(x,G*ks,'r','LineWidth',2);hold off 

title (['Tributary number ', num2str(knum)]) 

  

U_over_K = ks_new*A0^m_prime; 

toto = time_vec_n'/K/1e6/A0^m_prime; 

  

save (['hist' num2str(knum),'.mat'],'U_over_K','toto') 
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Appendix 2: mathematical passages to linearise the stream power law for a river 

in steady state conditions. For a more comprehensive formal explication, please 

refer to Goren at al. 2014. 

 

Starting from the stream power law written in function of slope, 
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and the variation of the river bed elevation, for a river in stable state conditions, 
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is possible to write the river slope in function of the uplift rate, 
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and then, integrating,  
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and defining the integral part as a new variable χ [-], 
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we obtain the equation of a straight line in a  χ – z space:  χ
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With : U [L/T] : uplift rate.                            zb : altitude of river bed at initial time. 

E [L/T] : river incision rate.                           z [L]: altitude.  

K [L1-2mT-1] : erodibility coefficient.             A0 [L
2] : fix area chosen by the user. 

S [-]: river slope.                                            n [-] : slope exponent, erosion rule. 

A [L2] : catchment area.                                 m [-] : area exponent, erosion rule. 
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Appendix 3: Table taken from “Cosmogenic Nuclides: principles, concepts and 

applications in the Earth surface sciences” (Tibor J. Dunai, 2010) 

 

 

 

 

Appendix 4: Geological map of Saint Etienne de Tinée 

 
Faure-Muret, A. and Fallot, P. , 2012, Sheet 920, Saint Etienne de Tinée.  

 
http://infoterre.brgm.fr/viewer/MainTileForward.do#  

 

 

http://infoterre.brgm.fr/viewer/MainTileForward.do
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Appendix 5:  Table 17 of data used for the samples age estimation, by Cronus-

Earth online calculators (http://hess.ess.washington.edu/).                                                                    

 

 

 

 

 

http://hess.ess.washington.edu/
http://hess.ess.washington.edu/
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