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abstract. The present work deals with the noisy state reconstruction problem aimed at vir-
tual output prediction in the context of pre-heating operation of torus-shaped nuclear fusion
machines. The creation of a dynamic model based on finite-element method is first stud-
ied on a 2D domain and the full-order reconstruction problem is tackled with traditional
full-state and reduced-state asymptotic, feedback, observers. A simplified thermodynamic
model of a typical nuclear fusion machine is then considered and reduced by means of differ-
ent model order reduction techniques. Balanced-truncation reduction is retained and stud-
ied in the state reconstruction problem with infinite-horizon, optimal H2, and sub-optimal
H∞ estimators. From a design viewpoint, despite the system being observable, pole alloca-
tion is problematic for traditional observer design, resulting in high-gain/peaking phenom-
ena. Computation procedures for optimal, infinite-horizon filters are more elaborate but re-
sult in admissible solution of the withstanding Riccati equation. The observability property
is investigated numerically as a function sampling time and dimension of the state space.
Simulation results on the quality of the virtual output prediction indicate acceptable perfor-
mance of traditional observer and superior precision of optimal, infinite-horizon, estimators
on nominal measurements conditions. Results further indicate that traditional observers are
unsuited for virtual measurement prediction in noisy conditions while H∞ and H2 estima-
tors perform well with the latter being able to completely reject measurement white noise.
Finally, preliminary considerations towards realistic control operations are described and
the monitoring problem of the control loop during its operation is discussed.

abstract. Questo lavoro si occupa del problema di ricostruzione dello stato con il fine di sti-
mare una serie di output virtuali nelle operazioni di pre-riscaldamento di macchine toroidali
per fusione nucleare. Anzitutto, un modello termico dinamico basato su mesh 2D, e formu-
lato secondo il metodo degli elementi finiti, viene studiato e il problema della ricostruzione
viene risolto con osservatori di stato tradizionali. Poi, un modello termico semplificato di
una macchina a fusione viene considerato e sottoposto a operazioni di riduzione d’ordine
tramite diversi metodi. Il metodo balanced-truncation viene scelto e il problema della ri-
costruzione di stato viene studiato con osservatori basati su principi ottimi in norma H2

e H∞. Dal punto di vista del design, nonostante il sistema analizzato sia numericamente
osservabile, il problema di allocazione di poli si rivela problematico per gli osservatori
tradizionali dando luogo a fenomeni di oscillazioni molto ampie. Il calcolo degli stimatori in
norma ottima, invece, si conclude con soluzioni precise dell’equazioni di Riccati sottostante
I risultati di simulazione mostrano una qualità accettabile degli osservatori tradizionali e
una precisione superiore degli stimatori in norma ottima, in condizioni di misure nominali.
Si trova, inoltre, gli osservatori tradizionali non sono adatti alla stima degli output virtuali
in condizioni rumorose, mentre gli osservatori H2 e H∞ funzionano bene in condizioni di
rumore, con lo stimatore H2 che si dimostra in grado di rigettare rumore bianco. Infine,
alcune considerazioni preliminari relative all’implementazione realistica di operazioni di
controllo vengono discusse, e il problema del monitoraggio dell’anello di controllo durante
il suo funzionamento viene presentato.
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Chapter 1. Introduction

In this work, a simplified thermal model of RFX machine hosted at Consiglio Nazionale di
Ricerca in Padua, is studied as a representative model of a number of old and new nuclear
fusion devices. In particular, this work focuses on the dynamic state reconstruction problem
appearing as digital twin scenarios, where the measured outputs are used to infer predictions
on un-accessible, virtual outputs that can be later exploited by a real-time controller. All this,
is usually paired with a separate monitoring system that is able to explain the state-space
representation used by the control solution.

The pre-heating operations are necessary before the interesting part of nuclear fusion ma-
chine performs its duty. This activity is carried out by induced currents applied to the shell
of the machine. Such devices are usually torus-shaped and may be equipped with a great
number of instruments and sensors. The details of the pre-heating physics by induced cur-
rents will be approximated by a direct heat injection but a realistic machine geometry will
be used in finite-element analysis.

The goal of this work is to solve the reconstruction problem in order to make good predic-
tions on non-measured output locations (virtual). In other words, given the input signals
u(•) and the measured output signals ym(•), we seek an estimator that is able to compute a
state estimate x̂(•) that provides good predictions on the virtual outputs yv(•).

This thesis is structured as follows. Chapters 2 reviews the foundations of finite-element
modelling applied to thermodynamic settings. The creation of a first, simple, synthetic
model based on 2D geometry is described. Then, the RFX model is discussed. Chapter 3
reviews some basic concepts in model order reduction techniques, starting with practical
considerations and continuing to the the problem of addressing the quality of the reduced
model.

Chapters 3 and 4 are the heart of this work. First, traditional observer design is recalled and
applied to a full-order thermodynamic model based on simple 2D geometry. Then, more
advanced estimators are developed and applied to the same problem in a reduced-order
model of RFX machine.

In particular, Chapter 4 deals with state reconstruction of simple full-order thermodynamic
models aimed at virtual output predictions. The design of full-state and reduced-state ob-
servers is described and analysed from simulation results. Chapter 5, on the other hand,
solves the same reconstruction problem on reduced-order model of RFX by describing the
design of H2 optimal, and H∞ sub-optimal estimators framed for infinite-time prediction.

Finally, chapter 6 anticipates key issues in the design of control loop with an eye towards
practical implementation and presents the problem of monitoring for realistic operation.
A list of future work activities is proposed. A code repository (available online) has been
developed during the thesis activity and fundamental algorithms have been described with
great detail in appendix A. Appendix B contains further simulation results that could not fit
inside the main structure.
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Chapter 1. Introduction

Acronyms and notation

The following nomenclature conventions will be used. Finite-Element Method (FEM), par-
tial differential equation (PDE), and Model Order Reduction (MOR). Differential Algebraic
Riccati Equation (DARE), singular value decomposition (SVD), boundary condition (BC).

Output signals will be distinguished in measured and virtual . The former refer to signals
stemming from instruments and real sensors, while the latter refer to un-accessible signals
that the used wishes to predict.

Linear time-invariant (LTI) state-space systems will be represented with a tuple o four ma-
trices (A,B,C,D) or (F,G,H, J) (F,G,L,M) depending on the context. The two sets of
notations are used for distinguish fundamental changes in the representation of the same
system, such as the transformation from continuous-time to discrete time. A second variant
of the latter, is used when the virtual outputs need to be clearly separated from the measured
outputs.

Dynamic matrices of multi-input multi-output (MIMO) refer to LTI matrices of the state space
formulation, either in descriptor dynamic form (E,A,B,C,D)

Eẋ = Ax+Bu

y = Cx+Du

or in standard dynamic form (A,B,C,D)

ẋ = Ax+Bu

y = Cx+Du

In such representations, the letters x and u are general tokens for the state and the input,
respectively. Letters u and v are used to address control and noise inputs (respectively),
but the letter v can also be used in some contexts to represent measurement noise. Letters
ym ∈ Rp or yv ∈ Rq are generally referred to measured and virtual inputs (respectively)

State-space models can be formulated in continuous-time (CT) and/or discrete-time (DT)
depending on the context. When the state of a system is reduced though MOR routines,
the resulting system is referred to as reduced-order Traditional observer, will be called full-
state and reduced-space, to avoid confusion with the property of the state being full-order or
reduced-order

Lastly, Ma×b
R denote the set of rectangular matrices of size a× b whose entries are real R. The

set of square matrices of size n is denoted by Mn . Symbol † stands for pseudo inverse, and ∗
for complex conjugate. When • and ◦ are used inside a table, they represent graphically the
boolean values yes (true), and no (false), respectively.
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Chapter 2. Physical modelling: finite-element-based thermodynamics

2.1 Finite-element method for thermodynamic models

2.1.1 Foundations of finite-element theory

The traditional Partial Differential Equation (PDE) in strong formulation for a thermal prob-
lem can be written, at all times t and for all positions s⃗ in the domain D, as

ρc∂tT (t, s⃗) = −λ∇2T (t, s⃗) ∀t ∀s⃗ ∈ D

where ρ (density), c (specific heat), λ (specific conductivity) are constant with respect to
space and time.

Numerical treatment of this problem can be tackled with the definition of elementary subdi-
visions of the domain D with n nodes and a number of edges. By introducing test functions
v1(s⃗), . . . , vn(s⃗) [1] that allow to interpolate n mesh nodes (for example in linear fashion), the
strong formulation can be given a weak form∫︂

D

ρc∂tT (t, s⃗)v(s⃗)dV =

∫︂
D

−λ∇2T (t, s⃗)v(s⃗)dV ∀t ∀v(s⃗)

Integration by parts (Green’s first identity) allows to express second-order Laplacian ∇2φ
(with φ ∼ T ) in terms of two first-order gradients ∇v · ∇φ and additional conditions on the
boundary ∂D of the problem domain D∫︂

d

v∇2φdV =

∮︂
∂D

v∇φ · dS⃗ −
∫︂
D
∇v · ∇φdV

Galerkin method (FEM) consists of projecting the weak formulation onto trial functions ϕ1(s⃗), . . . , ϕn(s⃗)
in order to obtain a solution that can be written in the form T (t, s⃗) =

∑︁
j Tj(t)ϕj(s⃗), thus re-

sulting, for i = 1, . . . , n, in

n∑︂
j=1

Ṫ j

(︃∫︂
D

ρc viϕjdV

)︃
=

∮︂
∂D

−λvi(s⃗)∇T (t, x) · dS⃗ +
n∑︂

j=1

Tj

(︃∫︂
D

λ∇vi · ∇ϕj

)︃
dV

Often, the test functions vi(s⃗) are chosen identical to the trial functions ϕj(s⃗).

2.1.2 Elements of a thermodynamic model

Consider the partial differential equation

ρc∂tT −∇·(k∇T ) = ϱ + boundary conditions

where:

13/100



Chapter 2. Physical modelling: finite-element-based thermodynamics

• T (t, s⃗) is a time varying temperature field defined in a spatial domain D with boundary
∂D

• ρ > 0 denotes the material density

• c > 0 represents the specific heat

• k > 0 denotes the thermal conductivity

• ϱ is a power source density measured in Watt per unit volume (or unit surface, if the
domain is 2D)

Boundary conditions may take one of the following formulation:

• Dirichlet (set temperature) on a sector Γ of the boundary ∂D, impose T (t, s⃗) = T ∗ s⃗ ∈
Γ

• Robin (convection) on a sector Γ of the boundary ∂D, impose the gradient n⃗ · k∇T =
h(Tamb − T (t, s⃗)) s⃗ ∈ Γ where h > 0 is the convection coefficient

• Neumann (heat flow transfer) on a sector Γ of the boundary ∂D, impose the gradient
k∇T = qNeu

Let the temperature field be approximated as T (t, s⃗) ≈
∑︁

i Ni(s⃗)Xi(t) where Ni(s⃗) : D →
R are suitable basis functions (for example hat functions in 1D) and Xi(t) : R → R are
temperature values at mesh nodes. To apply Galerkin testing means to weight the differential
equation with test functions equal to the basis functions, thus obtaining (skipping detailed
integration)

Mẋ+Kx = q

where:

• x(t) is the vector of all note temperatures Xi(t), and ẋ denotes its time-derivative

• M ∈Mn is the mass matrix

• K ∈Mn is the stiffness matrix

• q is the resulting power source (Watts), integrated over the domain D.

Applying the boundary conditions to the PDE model results in the following modifications:

• Robin (convection) on a segment Γ1 of the domain boundary ∂D will produce two
contributions: one on the temperature variable x and the other on the power source q

Mẋ+Kx+Hx = q + qconv

where qconv =
∫︁
Γ1
NihTambds (line/ surface integral) and H ∈Mn
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Chapter 2. Physical modelling: finite-element-based thermodynamics

• Dirichlet on a segment Γ2 , let d denote the (set of) nodes indexes where Dirichlet
conditions have been imposed, then x[d] = T ∗

The modified system becomes:

Mẋ+Kx+Hx = q + qconv + rhsd

where:

• rhsd denote the (right hand side) imposed contributions from Dirichlet conditions

• if T ∗ = T ∗(t) then Ṫ
∗

also affects the dynamics of the model (see below)

In practice, the following steps may be implemented:

1. store qK = K[:,d], qH = K[:,d] and qM = M[:,d]. These represent the contributions of the
Dirichlet conditions on the free nodes

2. remove Dirichlet contributions from the system dynamics by setting M(:,d)=0, K(:,d)=0,
and H(:,d)=0.

3. the resulting system has zero-dynamics rows (algebraic constrains on the Dirichlet
nodes)

M ′ẋ+K ′x+H ′x = q + qconv + rhsd + (qK + qH)T
∗ + qM Ṫ

∗⏞ ⏟⏟ ⏞
input signal

4. remove the rows corresponding to Dirichlet nodes, thus reducing the number of equa-
tions and restricting the state dynamics

In this work, the full-order models will have Dirichlet boundary conditions only for the part
concerning chapter 4 (see SEC. 2.2 for details). chapter 5 will use a simplified state dynamic
equation where no Dirichlet conditions need to be handled.

M⏞⏟⏟⏞
E

ẋ = −(K +H)⏞ ⏟⏟ ⏞
A

x+
[︁
qconv q

]︁⏞ ⏟⏟ ⏞
B

(︃
Tref

u

)︃
(2.1)
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Chapter 2. Physical modelling: finite-element-based thermodynamics

2.2 Creation of thermodynamic models based of 2D mesh

MATLAB’s PDEs toolbox [2] can solve a system of the type (strong formulation):

m
∂2u

∂t2
+ d

∂u

∂t
−∇ · (c∇u) + au = f

After the geometry of the domain has been specified, and a mesh has been generated, the
function assembleFEMatrices allows to compute (weak formulation) the mass matrix
M ∈ Mn

R, the stiffness matrix K ∈ Mn
R, the internal matrix A ∈ Mn

R, and the load vector
F ∈ Rn. At the end of the research training activity it is not clear whether MATLAB’s PDEs
toolbox lets the user choose the basis functions used as projection for the FEM method.

The heat equation can be obtained by considering T ∼ u and setting

ρc∂tT = −λ∇2T {m, a, f} ← 0, d = ρc, c = −λ (2.2)

where ρ (material density), c (specific heat capacitance), and λ (specific conductivity) a con-
stant parameters with respect to space and time. This would result in a null internal matrix
A = 0 and null load vector F = 0.

Two kinds of boundary conditions can be set:

• Dirichlet boundary conditions on D̄ impose hu = r. This type of BC is assembled into
matrix H ∈Mn

R and vector R ∈ Rn by assembleFEMatrices.

• Neumann/Robin boundary conditions on ∂D (having normal direction n⃗) impose
n⃗ · (c∇u) + qu = g. These are collected into matrix Q ∈ Mn

R and vector G ∈ Rn by
assembleFEMatrices.

Imposing a gradient temperature on the boundary of the domain can be achieved by setting
q = 1 and g = 1 where 1 is chosen instead of Tref (constant, external temperature) because we
only require the structure. This would assemble matrices Q so that to have a 1 if the node is
in the boundary and vector G having component 1 in the corresponding node equation.

If Dirichlet conditions are imposed matrices H and R are not null and a suitable transforma-
tion can be found that eliminates the Dirichlet nodes from state dynamics. The FEM model
in descriptor’s form can then be obtained in the following way

M⏞⏟⏟⏞
E

ẋ = −
[︁
K +Q

]︁⏞ ⏟⏟ ⏞
A

x+
[︁
G ATX0 AUd −EUd

]︁⏞ ⏟⏟ ⏞
B

⎛⎜⎜⎝
TTref

u0

Td

Ṫ d

⎞⎟⎟⎠ (2.3)

where the nodes temperature has been denoted with x. Matrices T , and Ud are suitable
transformations that allow the removal of Dirichlet nodes from the state dynamics.
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Chapter 2. Physical modelling: finite-element-based thermodynamics

This workflow is implemented in ALG. 2 and ALG. 3 and is not described any further because
it is only used in chapter 4, as the RFX model handled in chapter 5 will not have Dirichlet
boundary conditions

FIG. 2.1 shows two possible 2D models obtained with the procedure described above and ex-
ecution of ALG. 2 on two different mesh geometry. The former rectangular shape is retained
for study in SEC. 4.4

(a) simple rectangle (b) more complex geometry

FIGURE 2.1: Two possible full-order thermodynamic models based on 2D mesh (a) a simple
rectangular domain meshed with a few elements: Nodes are printed on the image and prefixed
with the letter n. Edges that form the boundary of the rectangular domain are displayed in red,
while the color blue is used for edges in the boundary of mesh elements. The four shaded gray

circles represent selection latches used in the construction for the output equations. Nodes falling
inside each circle have been averaged to computed the corresponding output signal. Each output

signal has been labelled in white color and prefixed with a letter m or v depending on its
measured or virtual classification (respectively). (b) shows an example of a more complex

geometry (a pierced plate) and a considerably finer mesh. The same color conventions apply. The
second, smaller, hole in the lower right side if the plate can be used to model Dirichlet boundary

conditions.
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Chapter 2. Physical modelling: finite-element-based thermodynamics

2.3 Analysis of thermodynamic model based on RFX machine

The Reversed Field eXperiment (RFX) machine has the objective of studying plasma physics
and magnetic confinement using a configuration called reversed field pinch (RFP). The efforts
of this design have the goal of testing whether RFP configuration performs as well as the
tokamak configuration. These studies will be the foundations of future nuclear fusion reac-
tors to come [3].

The pre-heating problem on the RFX machine is typical of torus-shaped, high-energy devices
which need to be heated. In this work, a simplified model, representing the thermodynamic
behaviour of one quarter of the torus, will be studied. In particular, the thermal model will
be constructed with FEM techniques, in a similar fashion to what was presented in SEC. 2.1.
The peculiarities of the physical modelling, however, will be overlooked in the presentation,
and only a posteriori analysis will be performed (before control activities).

The meaning of the state space configuration can be summarised as follows. The state x of
the full-order system represents the temperature in each node of the finite-element mesh.
The will be two natural physical inputs: the external ambient temperature Tref, and the di-
rect heat injection u measured in Watts. The former is considered as noise input, while the
latter is the true control input. No Dirichlet-type boundary conditions will be used for this
simplified model, and another noise input will be added later, in order to allow for generic
initial condition (see SEC. 4.1.1). The output equation remains to be defined after the physical
model, and such definition will be presented later.

The overall request from the specialists of the FEM design department, is to find - if pos-
sible - a good algorithm for predicting the temperature output selected nodes that cannot
be measured with a probe. Temperature sensors are placed elsewhere (depending on the
geometry of the machine) and their output can be used to improve the prediction. While the
ambient temperature is easily measurable, the control input u corresponding to direct input
injection, is representative of a much more complex scenario deriving from electrical current
flows. These particular aspects and modelling choices will not be discussed in the present
document.

2.3.1 Geometry and problem definition

Sensor placement for both measurement and virtual signals is described in FIG. 2.2. The
specific case for RFX, is given as a set of possible locations for measurement instruments, and
for locations whose temperature should be predicted starting from measurements placed
elsewhere. In particular, measurement locations are positioned on the outer shell of the
torus, while desired virtual prediction should be made nearly inside the machine.

A static solution can be obtained by setting time derivatives in eq. (2.1) to zero. A heatmap
of the resulting temperature distribution is shown in FIG. 2.2 where a noticeable tempera-
ture gradient can be seen. This information could be used for setting up a more advanced
initial condition depending on the temperature difference between the ambient Tref and the

18/100



Chapter 2. Physical modelling: finite-element-based thermodynamics

(a) static solution u = 1.5 kW, Tref = 30deg (b) possible output locations

FIGURE 2.2: Description of RFX full-order thermodynamic model. (a) shows a heat map of a FEM
static solution and gives a qualitative idea of the overall temperature gradient that the machine

can withstand. (b) visualizes the possible output location used as specification for the design of the
output equations. RFX mesh points are painted with black dots, measurement locations for
potential temperature sensors are painted with a red cross, and virtual location for output

prediction are marked with a green circle.

measured outputs. See eq. (3.1) for a detailed discussion on the implementation of the initial
condition.

Selected properties of the resulting dynamic model have been summarised in TAB. 2.1: their
importance will be explained in the next chapter (and in particular in FIG. 3.1) when a choice
will be made with respect to possible computation paths in the model-order reduction work-
flow. Notice that the corresponding entries in eq. (2.1) are extremely sparse and feature con-
dition numbers of the order of 1 × 106 which appear reasonable from a FEM point of view
but are not a good starting point for control activities. Moreover, the inversion of the full-
order mass matrix M loses this low-density property and makes the corresponding system
in standard form, numerically cumbersome to simulate.

M M−1A A = −(K +H) B C
size 11 066 11 066 11 066 11 066× 2 (p+ q)× 11 066

square square square rect. rect.
sparse • ◦ • ◦ •
#nz/#tot 1.3× 10−3 1 1.3× 10−3 1 depends
symmetric • ◦ • ◦ ◦
∥X −XT ∥2 1.2× 10−14 5.1 1.2× 10−13 N/A N/A
condition
number 5.1× 105 1.9× 107 2.6× 106 1.5× 101 depends

TABLE 2.1: Approximated numerical properties of full-order, FEM-thermodynamic model based
on RFX machine with respect to its state-space representation in descriptor dynamic form

Mẋ = Ax+Bu, C represents the output matrix. First the shape of these matrices is discussed, then
the numerical density (sparsity) is displayed as a ratio between the number of non-zero elements
#nz and the total number of entries in the matrix #tot. Lastly, symmetry and condition number are

estimated using MATLAB methods normest and condest (respectively).
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Chapter 3. State of the art on model order reduction methods

3.1 Traditional model order reduction methods

The reader is referred to [4] for a well-structured introduction on the basic concepts of model
order reduction of dynamic systems. In the following, a number reduction methods will
be applied, and the balanced-truncation result will be retained and used for simulation
in SEC. 5.4. Given an LTI dynamic system expressed in state space form through matrices
(A ∈Mn, B, C,D), the concept of balancing [4, sec. 2.2.1] relates to the task of finding a state
transformation satisfying

X = Y = diag(σ1, . . . , σn)

where X and Y denote the reachability and observability Gramians [5], respectively; {σi}n1
are called Hankel singular values and are conventionally numbered in decreasing size. The
truncation procedure consists of choosing the reduced state-space size r < n and to approx-
imate original system with matrices

(︂
Â ∈Mr, B̂, Ĉ, D̂

)︂
obtained from discarding singular

values σr+1, . . . , σn and therefore considering the reduced Gramians

X̂ = Ŷ = diag(σ1, . . . , σr) r < n

All reduction methods aim at reducing the size of the state space by preserving the size and
the dynamic input/output behaviour. The quality of the reduction may be analysed with
different empirical metrics (see, for example, SEC. 3.3), and some methods may even offe
analytical error bounds. Let G(•) and Ĝ(•) denote the original and reduced system transfer
function (respectively), then Balance-truncation, allow to quantify the reduction error by [4,
eq. (2.19)]

∥G− Ĝ∥∞ ≤ 2
n∑︂

i=r+1

σi

Handling of nonzero (inhomogeneous) initial conditions is, in general, not trivial [4, sec. 2.2.5].
The main explanation is to be sought in the presence of an additional term in the system
transfer function [6], [7] and the corresponding modification of the Gramian matrices. As a
solution, a modified system is considered instead [8, sec. 2.1.8]:

[︁
E
]︁ ˜︁ẋ =

[︁
A
]︁
x̃+

[︁
B AX0

]︁(︃ u
u0

)︃
x̃ = x− x0

ỹ =
[︁
C
]︁
x̃+

[︁
0 CX0

]︁(︃ u
u0

)︃
x̃(0) = 0

(3.1)

where the initial condition is modelled as x0 = X0u0. This choice allows a great flexibility in
the description of the initial condition depending on the coordinates u0 ∈ Rn0 . In practice,
the n0 columns of matrix X0 are vectors that span a subspace of dimension n0 the state-space
(node temperature) describing the initial condition. The signal u0 allows to set different
initial conditions depending on the basis chosen in X0 For example, for spatially-constant
initial temperature X0 is chosen as a vector of all ones, and u0 ∈ R is the desired initial
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temperature for all nodes. If a more complex initial condition was to be considered (see
FIG. 2.2) the mesh nodes could be divided in n0 zones and the corresponding coordinate in
u0 would represent the initial temperature of each zone.

This procedure allows to handle non-zero initial conditions as standard homogeneous re-
duction methods but has at least two remarkable consequences:

• a new noise input signal u0 appears on the input side of the state-space representation
and augments by one unit the size of future observer/controller gain matrices.

• differently from other noise inputs, such as Tref, the noise inputs signal u0 cannot be
directly measured, thus adding considerable sensitivity problems in the state recon-
struction problem
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3.2 Implementation of model order reduction methods

3.2.1 The MORLAB library

From a practical viewpoint, techniques of model order reduction are seen as black-box oper-
ations performed via the MATLAB package MORlab [9]. Table TAB. 3.1 summarises available
methods in MORlab and highlights key references for possible future work were different
reduction methods may be studied.

method alias references MATLAB notes chosen

Bounded-Real BT brbt [4, sec. 2.3.2] bug dissipative (con-
traction) ◦

Balanced Stochastic Truncation bst [4, sec. 2.3.4] power spectrum,
spectral factors ◦

Balanced Truncation bt

[4, sec.
2.2.3],
nonzero
IC [6]

fundamental •

Frequency-Limited BT flbt ◦

H-infinity BT hinfbt
difference with
hna not explained ◦

Krylov subspace methods krylov
moment matching
according to MOR-
wiki

◦

Hankel-Norm Approximation hna [10] •

Linear-quadratic Gaussian BT lqgbt [4, sec. 2.3.3]

dissipative, also
suited for unstable
systems. No an-
alytical bound on
∥G− Ĝ∥

•

Modal Truncation mt
not implemented
for sparse systems ◦

Positive-Real BT prbt [4, sec. 2.3.1] dissipative (pas-
sive) ◦

Time-Limited BT tlbt ◦
Two-step model reduction not implemented ◦

TABLE 3.1: Routines available in MORlab for Continuous-time systems. Comments note down
practical remarks that came up thinking to a broad systematic comparison of the reduction results

computed with many available methods.

The notes column in TAB. 3.1 highlight practical considerations appeared while reading [4]
as a theoretic reference for the reduction routines implemented in MORlab. The MORlab
toolbox also features a dedicated online wikipedia documentation that sometimes does not
correspond one-to-one with acronyms and nomenclature chosen in the code of the scripts
and [4].
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3.2.2 Computation of the reduced, control model

FIGURE 3.1: All possible computation paths to obtain
a reduced, discrete-time, model in standard dynamic
form. From top to bottom: models can be
transformed from descriptor dynamic form to
standard dynamic form by inversion of the mass
matrix. From left to right: models can be sampled
from CT to DT by means of a suitable discretisation
method. Outer arrows represent model reduction
steps: depending on the nature of the starting system,
different families of methods could be considered.
The highlighted path describes the only option
considered in this thesis work.

FIG. 3.1 shows all possible computation paths that start from a continuous-time, full-order
system in descriptor dynamic form to a discrete-time, reduced-order system in standard
dynamic form. In the present work, two fundamental workflow choices are made:

1. all control operations are aimed at state-space systems in standard dynamic form (cir-
cled point in FIG. 3.1), therefore neglecting all possibilities related to a rectangular mass
matrix [11, p.1] and observer design applied to state-space systems in descriptor dy-
namic form [12] as these methods heavily rely on algebra of matrix pencils.

2. discrete-time reduction methods have not been considered (dashed external arrows in
FIG. 3.1). See [4].

The highlighted path in FIG. 3.1 shows the present computation choice: all achievements in
this document are the result of some observer/controller design that starts from a dynamic
system resulting from the highlighted path:

1. model order reduction of the full-order continuous-time system in descriptor dynamic
form.

2. conversion of the reduced-order descriptor system to standard dynamic form

3. sampling of the continuous-time system to obtain a discrete-time, reduced-order, state-
space model in standard dynamic form.

First, a reduction method is applied to the sparse, full-order system in descriptor dynamic
form. On the one side, this is convenient because the alternative of transforming the sys-
tem from descriptor to standard would result in a dense, quare, A matrix,of size ≈1 × 104

(TAB. 2.1). On the other side, sampling of the CT descriptor system to obtain DT descriptor
system would have required DT model order reduction methods which were not considered
in this work.
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Second, inversion of mass matrix is applied to the reduced system in order to obtain a stan-
dard dynamic formulation. This poses no numerical problem as long as the condition num-
ber of the reduced mass matrix E is acceptable. Again, the discrete-time conversion of a
system in descriptor dynamic form was not considered.

ẋ = (E−1A) x+ (E−1B) u

Third, the reduced system in standard form can be converted from continuous-time to
discrete-time with sampling time τ . The Euler-Backwards method has been used, by resort-
ing to the following transformation [13, Table 3] (other methods could have been considered,
such as the Tustin transform)

F =
[︁
I − Aτ

]︁−1
G =

[︁
I − Aτ

]︁−1
Bτ

H = C
[︁
I − Aτ

]︁−1
J = D + C

[︁
I − Aτ

]︁−1
Bτ

(3.2)

Possibilities presented in FIG. 3.1 may be further expanded if transformation of noise input to
state-space is applied. This was initially considered in the present work but later discarded
for the reasons explained in SEC. 4.1.1.
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3.3 Assessing the quality of the reduced, dynamic model

Once the reduced model has been obtained, there exists the problem of assessing the quality
of the reduced dynamics as compared to the original system. In particular, the the system
at hand is MIMO, the number of error signals and transfer functions increases considerably.
For this reason, a few metrics were selected in this work in order to measure the quality of
the reduced system among different reduction routines.

The proposed metric is twofold and may be expanded with different norms in future work.
On the one hand the error signal of the time response is computed for all outputs (measured
and virtual) and then two scores are computed: the ℓ2 norm and the max amplitude of
error signal. On the other hand, the error of Bode plots of all possible transfer functions is
computed and measured with the same two scores, thus providing 4 more indexes of quality
(2 for the magnitude, and 2 for the phase)
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FIGURE 3.2: Reference input/output dynamics of full-order RFX thermodynamic model. (a) upper
plot shows the simulated output of the full-order RFX system with inputs described in the lower
plot. This dynamics is used to compute the qualitative error on the time response of the reduced

model. (b) shows a Bode plot of the full-order model in descriptor form of all 18 transfer functions
from the third input u (direct heat injection) to the outputs defined in SEC. 5.1.1

As a concrete example, reference dynamics of RFX is shown in FIG. 3.2 where the full-order
system in descriptor dynamic form has been simulated with sinusoidal heat injection of
about 1 kW for 10 h. The Bode plots of all outputs (measured and virtual) with respect to the
only control input u has been computed as well. Application of balanced-truncation method
resulted in the errors shown in FIG. 3.3 where the difference between the time response and
the Bode have been displayed. Application of other order reduction methods has been sum-
marised in TAB. 3.2 where it can be seen that the balanced truncation is the only reduction
method that stays withing the≈1×10−3 worse error in the time response and≈1×10−6 error
in the Bode magnitude plot for all considered metrics.
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FIGURE 3.3: Input/output dynamic error due to balanced-reduction of RFX continuous-time
thermal model in descriptor dynamic form. (a) shows the error in time response with respect to

the time response plotted in FIG. 3.2. (b) shows the error in Bode plot with respect to the plot on
the right side of FIG. 3.2.

Error figures like FIG. 3.3 can be generated for any reduction method with the code provided
in appendix A. Error plots qualitative information is similar to that presented for balanced
truncation and are not reported here.

method (tolerance) reduced
state

metric yfom − yrom dBfom − dBrom ∠fom − ∠rom

bt (1× 10−5) 21 ∥•∥2 5.9× 10−3 (1) 6.7× 10−6 dB (4) 5.8◦ (6)
max(|•|) 3.5× 10−4 (1) 1.1× 10−6 dB (4) 1.2◦ (11)

hna (1× 10−5) 21 ∥•∥2 3.5× 104 (13) 1.1× 102 dB (6) 1.8◦ (17)
max(|•|) 1.9× 103 (14) 1.9× 101 dB (6) 1.9◦ (1)

lqgbt (1× 10−5) 20 ∥•∥2 1.1× 10−2 (13) 8.8× 10−6 dB (1) 5.1◦ (1)
max(|•|) 1.9× 103 (14) 1.9× 101 dB (6) 1.9◦ (1)

TABLE 3.2: Reduction comparison based on error analysis for different methods applied to RFX
full-order model. Considered method: balanced truncation (bt), Hankel-norm approximation

(hna), and linear quadratic Gaussian balanced truncation (lqgbt). Error metrics are applied to all
output signals (measured and virtual) and the worst error is reported. Numbers within round

brackets indicate the output signal index where the worse error was observed.

An interesting fact that is captured by neither FIG. 3.3 nor by TAB. 3.2 is the condition number
of the reduced-order mass matrix. As described in FIG. 3.1, the next step after the reduction
of the system’s order, is the transformation of the dynamic formulation from descriptor to
standard, and in this operation, the condition number of the mass matrix is not to be ne-
glected. For example, it was found that the condition number of the balance-truncation mass
matrix was always 1 while the one from Hankel-norm approximation was several orders of
magnitude bigger. This was another factor adding to the choice of balanced-truncation over
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other reduction methods.
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Chapter 4. State reconstruction for virtual output prediction of full-order thermodynamic models
based on 2D mesh

This chapter describes the design and simulation of two traditional observers on a simple
full-order thermal model based on 2D geometry. The first section describes the problems
encountered in handling this model while the next two sections recall essential formulation
of full-state and reduced-state, feedback, asymptotic, observer design. The last section con-
tains all design reports and simulation results, and it is longer than the preceding sections
due to the presence of large amount of tables and figures. In particular, simulation figures
presented at the end of this chapter show the behaviour of both traditional observers (two
observers) in two different input working conditions (nominal and noisy) for a total of four
figures.

4.1 Issues in the reconstruction problem of finite-element mod-
els

The aim of the present work is to solve the reconstruction problem in order to make good
predictions on non-measured output locations (virtual). In other words, given the input
signals u(•) and the measured output signals ym(•), we seek an estimator that is able to
compute a state estimate x̂(•) that provides good predictions on the virtual outputs yv(•).

4.1.1 Handling of modelled, noise, input signals

Following the assembly of the dynamic state-space matrices from FEM some of the signals
appearing on the input side of the state-space formulation, do not correspond to control
inputs, but rather to modelled noise inputs. For this reason, for a system where the original

input contribution can be partitioned as
[︁
Bv Bu

]︁⏞ ⏟⏟ ⏞
B

(︃
v
u

)︃
with v and u representing noise and

control input respectively, v can be moved to state with a modification of the state equation
(x̃ has been used as a reminder of eq. (3.1))

• if the system is continuous-time then place a zero block corresponding to the dynamics
of the noise input [︃

E 0
0 I

]︃(︃˜︁ẋ
v̇

)︃
=

[︃
A Bv

0 0

]︃(︃
x
v

)︃
+
[︁
Bu

]︁
u

• if the system is discrete-time, then place an identity block corresponding to the dy-
namics of v [︃

E 0
0 I

]︃(︃
x̃i+1

vi+1

)︃
=

[︃
A Bv

0 I

]︃(︃
xi

vi

)︃
+
[︁
Bu

]︁
ui

This operation, however, seems to make the observer design more difficult and, in general,
provides worse performance as compared to keeping the modelled, noise, input signals on
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the input side of the state-space representation. This behaviour, could not be explained from
a theoretical point of view, but a number of remarks are anticipated below:

• traditional observer design (SEC. 4.2 and SEC. 4.3) do not make use of input matrix B in
the allocation procedure. Yet, the resulting observer dynamic state-space system uses
an expanded version of B, and indeed, a controllability analysis could be performed
on the observer system alone (see, for example, FIG. 4.4)

• more advanced observer design methods, such as H2−optimal (SEC. 5.2) and H∞ sub-
optimal (SEC. 5.3), require assumptions on the controllability of the pair (A,B) on the
unstable boundary of the complex plane, but allow to perform a similar operation
when formatting the system as strictly causal (eq. (5.1))

4.1.2 Pole placement and bad numerical conditioning

FIG. 4.1 reports the dependency of the observability property with respect to the numerical
precision used in MATLAB by the method rank. This gives an idea of why the method
place may fail to allocate observer poles or generate high-gain entries in the observer gain
that lead to considerable peaking phenomena in the prediction error transient. FIG. 4.1 also
reports the conditioning the map (I − Aτ) that needs to be inverted in order to sample the
continuous time system with Euler Backwards method.

FIG. 4.2 (inspired by the representation of the four fundamental linear algebra subspaces
presented in [14]) represent the illustrates the relation in high-dimensional spaces between
the observable subspace, the non-observable subspace, the span of the virtual output ma-
trix, and the associated null space. The subspaces hosted in the state-space form a number
of angles (depending on the relative dimension of the subspaces) that are usually referred
to as angles between flats. In practice, if the SVD basis vectors of the observability and vir-
tual output matrices are available, the the projection cosines between the bases can be used
to compute the angles between the observability flat and the virtual output flat. It seems
that subspace angles between SVD basis may be used to assess the difficulty of the state
reconstruction problem for virtual output prediction and it relation to the bad numerical
conditioning of the observability matrix. For example, if a given system is not observable,
but the virtual output matrix requires a state subspace that is very close - in terms of angles
between flats - to the observable subspace, then it may be that the reconstruction problem
for the particular set virtual outputs at hand, is still well posed.
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(a) numerical observability (b) sampling conditioning

FIGURE 4.1: Numerical observability and discrete-time sampling condition number of full-order
2D model. The map τ ↦→ (I −Aτ) is required by the discrete time transformation of the original

system formulation via Euler-Backwards eq. (3.2) Quadrant (a) reports the dependency of the
observability matrix and of the (measured) output matrix from the numerical precision used in

computing the their. A dashed line is used to distinguish the discrete-time system from the
continuous-time counterpart. Quadrant (b) instead, reports the condition number of the map

τ ↦→ (I −Aτ) whose inversion is required for sampling the CT system (see eq. (3.2)) The dashed
line refers to transformation of the system where the non control inputs have been moved to

system state (see SEC. 4.1.1).

FIGURE 4.2: Observability
problem and subspace angles
in high dimensions. The
observability matrix is obtained
from the output equation
associated to the measured
outputs while the matrix C
appearing on the darker shapes
is referring to the virtual
output equation. The
observability subspaces (lighter
rectangles) and the virtual
output subspace in the state
space (middle sector of the
picture) form an angle in high
dimension. If the system is
observable kerO = {0}
whereas is the the virtual
output matrix is full-rank, then
kerC = {0} as well.

Clearly, these problems are independent of the full or reduced nature of the order of the sys-
tem to be analysed. In this study, however, no remarkable result was achieved in this direc-
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tion, and further exploration of these concepts should be considered in the future. In MAT-
LAB , the angle between flats can be computed using the subspace function [15, p. 2014]
which however uses row scaling in order to get an accurate estimate [16, p. 179]. Failure by
MATLAB place function to allocate observer pole may be explained as a limit of high-gain
and peaking phenomenon [17]. The state observation problem can be studied by resorting
to Principal Component Analysis to quantify structural instability [18]. For example, the
concept of Weak observability, as defined in [19] refers to measures of un-observability [20]
using a local observability Gramian.

Further, if the bad numerical conditioning of the observability matrix was to be justified
as fundamental cause of the high-gain/peaking phenomenon, a preconditioning transfor-
mation could be applied to the state dynamics in order to minimise the resulting condition
number. The minimisation of the conditioning number of a matrix, through preconditioning
can be formulated as standard optimisation problem [21] and solved fairly efficiently.

33/100



Chapter 4. State reconstruction for virtual output prediction of full-order thermodynamic models
based on 2D mesh

4.2 Design of full-state, feedback, asymptotic observers

The reader is pointed towards [22], [23] for standard literature on asymptotic, feedback full-
state observers. Here, the term full-state is used to distinguish this design process from
reduced-state observers ( SEC. 4.3 ) and the idea of full/reduced-order connected to the reduction
operations of the origina dynamic system.

Given a state space system (A,B) of dimension n with m inputs and a first, measured, output
equation ym = Cmx + Dmu, the key idea behind the full-state observer design is to build a
state space dynamic system

d

dt
x̂ = Ax̂+Bu+ L(y − Cmx̂−Dmu)

and to find a gain matrix L that stabilises the estimation error dynamics

d

dt
(x− x̂) = Ax+Bu− Ax̂−Bu− L(Cmx+Dmu− Cmx̂−Dmu)

= Ax− Ax̂− L(Cmx− Cmx̂)

= A(x− x̂)− LCm(x− x̂) =
[︁
A− LCm

]︁
(x− x̂)

After computing a stabilising gain L, the final observer structure with prediction on the
virtual outputs yv can be computed using the second, virtual, output equation:

d

dt
x̂ =

[︁
A+ LCm

]︁⏞ ⏟⏟ ⏞
obs.A

x+
[︁
B + LDm

]︁⏞ ⏟⏟ ⏞
obs.Bu

u+ −L⏞⏟⏟⏞
obs.By

ym

ŷv = Cv⏞⏟⏟⏞
obs.C

x+ Dv⏞⏟⏟⏞
obs.Du

u+ 0⏞⏟⏟⏞
obs.Dy

ym

(4.1)

A variation of this formulas was developed at the beginning of this work, allowing the ini-
tial condition coordinate signal u0 to be handled separately, and fed analytically into the
observer. The reason behind this necessity was explained in SEC. 4.1.1 and was later con-
sidered unnecessary. Such handling of u0 will, however, become a requirement again in
the future when the initial condition observation will be solved, as this signal will not be
computed by the same block that reconstructs the state of the system. In practice this can be
achieved fairly easily by moving u0 to state dynamics and then introducing a partition of the
state where certain coordinates are not estimated by the observer and are fed analytically.
The details on such transformation are not presented here but older scripts are available in
the code repository linked in appendix A.
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4.3 Design of reduced-state, feedback, asymptotic observers

For traditional formulation of reduced-state observers, the reader is pointed towards [22].
The idea behind this observers is to use the output signal map C ∈ Mp×n to reduce the
dimension of the state-space from n to n − p. The user chooses a basis of row vectors V

in order to make the state transformation T−1 =

[︃
V
C

]︃
full rank. The observer gain L ∈

M(n−p)×p is computed on the reduced vector v = w+Ly where z = T−1x =

(︃
w
y

)︃
denotes the

transformed state space.

This work considers two different output equations: one for the p measured outputs having
matrix Cm, and another for the q virtual outputs to be predicted having matrix Cv . The
matrix V completing the change of basis matrix T has been chosen by using the basis V T

v

provided by SVD computation of the virtual output matrix Cv = UvΣvV
T
v , eventually com-

pleted by additional vectors X to get a full rank matrix with Cm

T−1 =

[︃
V
Cm

]︃
M(n−p)×n ∋ V =

[︃
X
V T
v

]︃
(4.2)

Homogeneous formulation can be obtained from the transformation of the original dynamic
pair (F,G) by T to (A,B) and then considering the partitioning associated to the trans-

formed vector z =

(︃
w
y

)︃
with w ∈ Rn−p and y ∈ Rp. ALG. 7 implements the following

v̇ =
[︁
A[11] − LA[21]

]︁
v +

[︁
A[12] + LA[22] − A[11]L− LA[21]L

]︁⏞ ⏟⏟ ⏞
By

y +
[︁
B[1] + LB[2]

]︁⏞ ⏟⏟ ⏞
Bu

u

After computing a stabilising gain L, the final observer structure with prediction on the
virtual outputs yv can be computed using the virtual output equation by substituting y =
ym −Du with ym denoting the measured output of the non-homogeneous system:

v̇ =
[︁
A[11] − LA[21]

]︁⏞ ⏟⏟ ⏞
obs.A

v +
[︁
Bu −ByDm

]︁⏞ ⏟⏟ ⏞
obs.Bu

u + By⏞⏟⏟⏞
obs.By

ym

ŷv = CvTZv⏞ ⏟⏟ ⏞
obs.C

v +
[︁
Dv − CvT (Zy − ZvL)Dm

]︁⏞ ⏟⏟ ⏞
obs.Du

u +CvT (Zy − ZvL)⏞ ⏟⏟ ⏞
obs.Dy

ym
(4.3)

where (Zv, Zy) is a partition of the identity matrix allowing to write z = Zvw + Zyy.
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4.4 Simulation of simple, finite-element, full-order, dynamic
models

4.4.1 System description

So far, the working model consisted of a series of transformations that led from a continuous-
time full-order model in descriptor dynamic form (eq. (2.1) with the addition of output equa-
tion)

M⏞⏟⏟⏞
E

ẋ = −(K +H)⏞ ⏟⏟ ⏞
A

x +
[︁
qconv q

]︁⏞ ⏟⏟ ⏞
B

(︃
Tref

u

)︃
(︃
yv
ym

)︃
=

[︃
Cv

Cm

]︃
x +D

(︃
Tref

u

)︃
to a discrete-time full-order model in standard dynamic form (eq. (3.2))

xi+1 = Fxi +G

(︃
Tref

u

)︃
i(︃

yv
ym

)︃
i

=

[︃
Hv

Hm

]︃
xi +J

(︃
Tref

u

)︃
i

Differently from the overall procedure described in SEC. 3.2.2, for models based on 2D ge-
ometry, no order reduction has been performed, with the intent of studying the difficulties
related to a big state space. FIG. 4.3 illustrates the simulation diagram for testing the observer
design. There are four dynamic blocks: one block contains the full-order model in descriptor
dynamic form; two blocks represent the CT and DT full-order models in standard form, and
one more block is used to plug in the observer design to be tested.

FIGURE 4.3: Block scheme for
simulation of full-order models

based on 2D mesh. Clean
inputs (Tref, u0, Td) are fed

directly to reference models.
Noise can be added as the

signals are fed to the observer.
All models are in standard

dynamic form except for the
upper right full-order model

representing the physical
reference (descriptor dynamic

form).
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4.4.2 Design logs

The application of ALG. 4 and ALG. 6 corresponding to the full-state and reduced-space de-
sign methods described above, resulted in FIG. 4.4 and FIG. 4.5. It can be seen that, the re-
sulting observer is controllable in both continuous-time and discrete time but that the poles
of the original dynamics could not be moved much. This difficulty in moving the original
poles is summarised numerically in TAB. 4.1. The design of the observers starts with a spec-
ification for the pole allocation and finishes with a gain matrix that allows to change the
poles of the error associated to the observer dynamics. This change may be easy, hard, or
even impossible depending on the observability of the system, and this difficulty may be
assessed by looking at the magnitude of the components in the resulting gain matrix. In
TAB. 4.1 it can be seen that, for relatively slow error dynamics (first line), the magnitudes of
the continuous-time design are more bigger than the discrete-time ones, only if the design
is done in full-state (first column). Indeed, the opposite is observed for the reduced-state
design (second column).

A further study is presented in appendix B.1 where observability of the discrete-time system
is analysed as the size of the full-order state space increases considerably. The plots show
that the bigger the state space, the more difficult it becomes to observe the system, to the
point where, even at machine precision, the DT system results as un-observable while the
CT system is observable

full-state feedback
observer

reduced-state feed-
back observer

eig.Val result min −2× 10−2 −2× 10−2

max −1× 10−1 −1× 10−1

CT high-
gain min −2× 104 −9× 102

max 3× 104 8× 102

DT high-
gain min −2× 102 −2× 103

max 3× 102 1× 103

TABLE 4.1: Design results comparison between observers based on full-order 2D model. Three
aspects are analyzed: the resulting eigenvalue placement, the bounds of the entries in gain matrix

from the design based on the CT system, and the gain bounds resulting from the DT design.

These difficulties in the design of traditional observers seem to suggest that only certain
poles should be moved through feedback and the remainder of the poles could be left un-
touched. This could be the objective of future improvements where a hybrid combination of
feedback and open-loop observer is designed. In such case, the choice of the relevant poles
to move is not trivial, for a pole may be important for the prediction of the virtual outputs
but be very hard to observe due to the geometry of the problem. For this reason, analysis of
the angles between the vectors of the state space basis provided by SVD of Cm, Cv and of the
observability matrix, may lead to interesting results.
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FIGURE 4.4: Design plots of continuous-time and
discrete-time full-state observer based on 2D full-
order model (a) shows the rank of the controllabil-
ity matrix and of the input matrix for the CT and DT
observer with respect to numerical precision used by
MATLAB rank function. (b) depicts the CT place-
ment of original, specification, and resulting poles af-
ter allocation with MATLAB place method. (c) de-
picts the DT placement of original, specification, and
resulting poles after allocation with MATLAB place
method.
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FIGURE 4.5: Design plots of continuous-time and
discrete-time reduced-state observer based on 2D full-
order model. (a) shows the rank of the controllabil-
ity matrix and of the input matrix for the CT and DT
observer with respect to numerical precision used by
MATLAB rank function. (b) depicts the CT place-
ment of original, specification, and resulting poles af-
ter allocation with MATLAB place method. (c) de-
picts the DT placement of original, specification, and
resulting poles after allocation with MATLAB place
method.
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4.4.3 Results on transient prediction of virtual outputs

Simulation results from FIG. 4.6 to FIG. 4.9 are obtained by computing the block scheme pre-
sented in FIG. 4.3 with full-state and reduced-state observers in nominal and noisy condi-
tions. Nominal conditions do not inject any noise in the points defined in the block scheme.
Noisy conditions, on the other hand, add white noise to Tref and measurement outputs fed
into the observer block before prediction.
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As will be for SEC. 5.4, the structure of these figures is made of six quadrants each depicting
a different type of signal: the upper two represent noise inputs and control inputs, the two
quadrants at the center describe the measured outputs and their configuration with respect
to the FEM mesh and virtual output. The latter are shown in the bottom two quadrants
where the error with respect to the true model (simulation of full-order model in descriptor
form) has been plot.

On the one hand, nominal simulations in FIG. 4.6 and FIG. 4.8 seem to perform reasonably
well despite the difficulties encountered during the design process. The initial peaking due
to high-gain entries in L vanishes considerably faster that the overall dynamics.

On the other hand, noisy simulations in FIG. 4.7 and FIG. 4.9 adding white noise to both the
ambient temperature Tref and all measured outputs, reveal a bad prediction performance
where the injected noise is amplified of at least two order of magnitudes.

Overall, the transient behaviour of traditional observers on full-order the rectangular full-
order model is summarised in TAB. 4.2.

full-state observer reduced-state observer
nominal noisy ym nominal noisy ym

min peak ◦C −44 −4× 102 −123 −3× 103

max peak ◦C −11 3× 102 23 4× 103

peak time s 5× 10−3 4.6 5× 10−3 5
err. Tol. ◦C 1 10 1 50
asymptotic
error

◦C −0.2 1 <0.1 −7.6

error vari-
ance

◦C <0.1 ≈0 <0.1 ≈0

TABLE 4.2: Transient characteristic comparison between observers based on full-order 2D model

4.4.4 Empirical robustness findings

TAB. 4.3 summarises the findings on noisy measurements performed on a number of differ-
ent simulation conditions. Indeed, from FIG. 4.3 noise could be injected in different point
of the block scheme, and the noise could have different characteristics. In particular, two
representative scenarios where tested: white noise addition and bias noise addition. These
procedures were later applied to RFX simulation scheme and TAB. 5.3 was produced.

noise
type

full-state feedback
observer

reduced-state feed-
back observer

Tref white ◦ ◦
bias ◦ ◦

u0 bias ◦ ◦
ymeas white bad bad

bias ◦ ◦

TABLE 4.3: Empiric, robustness, results comparison between observers based on full-order 2D
model
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A number of noisy simulations could be performed used the code provided in appendix A
following the testing that has been done for RFX in appendix B. For example:

• noise can be injected in the ambient temperature signal Tref. This has been done (white
noise addition) in the noisy simulations of this section, and will be repeated for reduced-
order RFX model in SEC. 5.4. Addition of bias noise to Tref is explored in FIG. B.3.

• bias noise can be added to the measured output signal ym. Addition of white noise has
been done in this section and will be repeated for RFX reduced model as well. Effect
of bias noise on the measured outputs could be seen as a modelling error with respect
to reality, and is explored in FIG. B.4.

• noise can be added to the initial condition coordinate u0. This is yet to be studied as u0

is the only non-measured, modelled, noise input of the system, and required a separate
treatment that has been reserved for future activity.
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(b) control input
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FIGURE 4.6: Results of nominal simulation using full-state observer based on 2D model. (a) and (b)
show respectively noise and control input signals. (c) and (e) show measured and virtual output

respectively, according to the mesh configuration shown in (d). The error of the virtual prediction
against the true model is plotted in (f). 42/100
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(a) noise input (b) control input

(c) measured output (d) output configuration

(e) virtual output (f) virtual prediction error

FIGURE 4.7: Results of noisy simulation using full-state observer based on 2D model. (a) and (b)
show respectively noise and control input signals. (c) and (e) show measured and virtual output

respectively, according to the mesh configuration shown in (d). The error of the virtual prediction
against the true model is plotted in (f). 43/100
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(a) noise input (b) control input

(c) measured output (d) output configuration

(e) virtual output (f) virtual prediction error

FIGURE 4.8: Results of nominal simulation usingreduced-state observer based on 2D model. (a)
and (b) show respectively noise and control input signals. (c) and (e) show measured and virtual

output respectively, according to the mesh configuration shown in (d). The error of the virtual
prediction against the true model is plotted in (f). 44/100
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(a) noise input (b) control input

(c) measured output (d) output configuration

(e) virtual output (f) virtual prediction error

FIGURE 4.9: Results of noisy simulation usingreduced-state observer based on 2D model. (a) and
(b) show respectively noise and control input signals. (c) and (e) show measured and virtual

output respectively, according to the mesh configuration shown in (d). The error of the virtual
prediction against the true model is plotted in (f). 45/100
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Chapter 5. State reconstruction for virtual output prediction of reduced-order thermodynamic
model based on RFX machine

This chapter describes the design and simulation of two new observers on RFX reduced-
order thermal model. The first section describes the problems encountered in handling this
new model while the next two sections recall essential formulation of H2 and H∞ optimal,
infinite-horizon, design. The last section contains all design reports and simulation results,
and it is longer than the preceding sections due to the presence of large amount of tables
and figures. In particular, simulation figures presented at the end of this chapter show the
behaviour of both traditional and norm-optimal observers (four observers) in two different
input working conditions (nominal and noisy) for a total of eight figures.

5.1 Issues in the reconstruction problem of finite-element mod-
els

The problem of noise input handling was already addressed in SEC. 4.1.1. The same consider-
ations apply to the RFX model and, in particular, to the fact that noise input makes observer
design more difficult if moved to state space. For this reason, also in SEC. 5.2 and SEC. 5.3,
noise inputs corresponding to ambient, external temperature Tref and u0 corresponding to
the initial condition, are kept on the input side of the state space representation.

(a) numerical observability (b) sampling conditioning

FIGURE 5.1: Numerical observability and discrete-time sampling condition number of
reduced-order RFX model. Quadrant (a) reports the dependency of the observability matrix and of
the (measured) output matrix from the numerical precision used in computing the their. A dashed

line is used to distinguish the discrete-time system from the continuous-time counterpart.
Quadrant (b) instead, reports the condition number of the map τ ↦→ (I −Aτ) whose inversion is

required for sampling the CT system (see eq. (3.2)) The dashed line refers to transformation of the
system where the non control inputs have been moved to system state (see SEC. 4.1.1).

FIG. 5.2 shows how the choice of the sampling time of the CT system affects the observabil-
ity of the discrete-time system used as a starting point for design procedures of observers.
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(a) Ts = 5ms (b) Ts = 1minute (c) Ts = 1hour

FIGURE 5.2: Effect of sampling time with respect to numerical observability of reduced-order RFX
model

FIG. 5.1 plots the choice of the present works (1 minute) and displays the resulting condition-
ing of corresponding the Euler-Backwards map (eq. (3.2)). It can be seen that lowering the
sampling time τ below 1 s in order to obtain a better conditioned sampling matrix

[︁
I − Aτ

]︁
,

leads to loosing the observability property in the discrete-time systems. These aspects are
important because

• the sampling time directly relates to the overall dynamics of the control loop and af-
fects the requirements of the micro-controller board effectively implementing the re-
construction activity

• the loss of observability in the discrete-time system leads to high-gain entries in the
gain matrix L with the appearance of peaking phenomena in the error transiente (see
SEC. 5.4)

5.1.1 Choosing the number of outputs

The specification for sensor locations of RFX machine was described in FIG. 2.2 as possible
locations, but no choice was made in terms of number of sensors and their relative distribu-
tion. FIG. 5.3 shows the choice made in terms of the location of the measured temperatures,
and the position of the outputs to be predicted A combination of 4 measured outputs and
14 virtual outputs is retained. The location of the 18 outputs is selected in uniform fashion
from the possible locations. Such decision is make with a qualitative approach in mind and
could be the subject of further studies, in particular, it would be interesting to find a limit-
ing threshold that ensures good prediction quality on the virtual outputs based on the ratio
between the measured outputs and their locations.
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(a) possible output locations (b) measured and virtual location choice

FIGURE 5.3: Output definition for RFX full-order thermodynamic model (a) is the same as in
FIG. 2.2 and visualizes the possible output locations used as specification for the design of the

output equations. Measured outputs are marked in red while virtual outputs are marked in green
(b) shows the choice of the locations for measured signals (red) and virtual outputs t be predicted

(green).
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5.2 Design of infinite-horizon, H2 optimal, Kalman estimator

The following theorem describes sufficient conditions to design an infinite-horizon H2 Wiener-
Kalman filter and represents the heart of ALG. 10. Virtual outputs are denoted with the letter
s while measured outputs are referred to using the letter y.

Theorem 1 ( [theorem 13.2.1, 24] ). Consider a strictly causal discrete-time, state-space system of
dimension n having m inputs, p measured outputs with transfer function H(z) = H

[︁
Iz − F

]︁−1
G,

and q virtual outputs with transfer function L(z) = L
[︁
Iz − F

]︁−1
G . When the pair (F,H) is

detectable, and
(︂
F,GQ

1
2

)︂
is controllable on the unit circle, the problem

min
causal K(z)

∥
[︂
(L(z)−K(z)H(z))Q

1/2
u −K(z)R1/2

]︂
∥2

where the process noise variance Qu ≥ 0 and the measurement noise variance R > 0; admits solution
as state-system {︄

x̂i+1 = (F −KpH) xi +Kp yi

ŝi = L(I − PH∗R−1
e H) xi + LPH∗R−1

e yi

with Kp = FPH∗R−1
e , and Re = R +HPH∗ using the unique stabilising solution of the DARE

P = FPF ∗ +GQuG
∗ −KpReK

∗
p

According to [24, eq.(13.1.5)] any discrete-time, linear, time-invariant system with measure-
ment noise vi can be put in strictly-causal form by moving the control signals to state space,

thus resulting in a new state vector zi =
(︃
xi

ui

)︃
of dimension n̄ = n+m

zi+1 =

F̄⏟ ⏞⏞ ⏟[︃
F G
0 0

]︃(︃
xi

ui

)︃
+

Ḡ⏟ ⏞⏞ ⏟[︃
0
Im

]︃
ui+1

yi =

H̄⏟ ⏞⏞ ⏟[︁
H J

]︁(︃xi

ui

)︃
+vi

si =

L̄⏟ ⏞⏞ ⏟[︁
L M

]︁(︃xi

ui

)︃
(5.1)

Standard Riccati equation solvers are available in MATLAB , for example the command
idare [25] which solves a DARE of the form:

ATXA− ETXE − (ATXB + S)[BTXB + S]−1(ATXB + S)T +Q = 0 (5.2)

This solver can be set to compute a stabilising solution X ∼ P from the previous theorem,
eventually transposing the notation to strictly causal form, by choosing

E = I A = F T Q = GQuG
T

B = HT S = 0 R
(5.3)
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The implemented algorithm is described in appendix A.3.2 with reference to MATLAB script
in the repository source code. Depending on the particular choice of the solver, a number of
necessary or sufficient conditions should be checked before starting the computation of P .
For example, in ALG. 10, the former are checked by assert while the latter are logged with
a warning.

The final observer structure for a dynamic state-space block can be computed using the
original notation as:

x̂i+1 = Zx(F̄ −KpH̄)ZT
x⏞ ⏟⏟ ⏞

obs.A

x̂i +Zx(F̄ −KpH̄)ZT
u⏞ ⏟⏟ ⏞

obs.Bu

ui +ZxKp⏞ ⏟⏟ ⏞
obs.By

yi

ŝi = L̄(I − PH̄
∗
R−1

e H̄)ZT
x⏞ ⏟⏟ ⏞

obs.C

x̂i + L̄(I − PH̄
∗
R−1

e H̄)ZT
u⏞ ⏟⏟ ⏞

obs.Du

ui + L̄P H̄
∗
R−1

e⏞ ⏟⏟ ⏞
obs.Dy

yi
(5.4)

where (Zx, Zu) is a partition of the the identity matrix in the strictly causal space of dimen-
sion n̄ allowing to write zi = Zxxi + Zuui

The structure of eq. (5.4) may appear different and cumbersome with respect to what is
presented in [24]. This can be explained in two steps. First, the reference book presents a
formulation that does not include the D term in the output matrix, which is required for the
work presented here. Second, as a consequence of this modification, the formulas are solved
in an augmented state space what requires further algebraic handling in order to obtain the
estimator block in traditional input/output form. This is done by developing the original
formulation with the partitioning (Zx, Zu) allowing to come back to classical observer inputs
u and y.

As a final remark, notice that this formulation is LTI and different from a structural point
of view to more classical finite-horizon Kalman filters [26], [27] where the covariance matrix
is updated every at every step. The infinite-horizon formulation here implemented, has at
least two advantages:

• it is static and therefore less demanding in terms of computations and memory usage
of the controller board

• being LTI, it can be compared with traditional full-state and reduced-state, feedback
observers, as the only difference consists on the values of the observer dynamic matri-
ces.

51/100



Chapter 5. State reconstruction for virtual output prediction of reduced-order thermodynamic
model based on RFX machine

5.3 Design of infinite-horizon, H∞ sub-optimal estimator

The following theorem describes equivalent conditions for computing an infinite-horizon
H∞ sub-optimal estimator, is reported below, as it represents the heart of ALG. 9. Virtual
outputs are denoted with the letter s while measured outputs are referred to using the letter
y.

Theorem 2 ( [theorem 13.3.1, 24]). Consider a strictly causal discrete-time, state-space system of
dimension n having m inputs, p measured outputs with transfer function H(z) = H

[︁
Iz − F

]︁−1
G,

and q virtual outputs with transfer function L(z) = L
[︁
Iz − F

]︁−1
G . When the pair (F,H) is

detectable, and (F,G) is controllable on the unit circle, a causal estimator with transfer function
K(z) solving the problem

∥
[︁
L(z)−K(z)H(z) −K(z)

]︁
∥∞ < γ

exists if and only if:

• ∃P ∈ Mn solving the DARE P = FPF ∗ + GG∗ −KpReK
∗
p with Kp = FP

[︁
H∗ L∗]︁R−1

e

and Re =

[︃
Ip 0
0 −γ2Iq

]︃
+

[︃
H
L

]︃
P
[︁
H∗L∗]︁

• P is stabilising, in the sense that F −Kp

[︃
H
L

]︃
has all eigenvalues inside the unit circle

• Re and
[︃
Ip 0
0 −γ2Iq

]︃
have the same inertia, meaning that they have the same number of positive,

negative, and zero eigenvalues

• P ≥ 0 has positive semi-definite character

If the original system is given in non strictly-causal form, the eq. (5.1) can be used to trans-
pose the notation to a strictly causal state space system, generally denoted with a bar over
the dynamic matrices (F,G,H,L)→

(︁
F̄ , Ḡ, H̄, L̄

)︁
The idare[25] solver, can be set as in the case of H2 estimator eq. (5.2) compute a stabilising
solution X ∼ P from the previous theorem, eventually transposing the notation to strictly
causal form, by choosing

E = In A = F T Q = GGT

B =
[︁
HT LT

]︁
S = 0 ∈Mn×(p+q) R =

[︃
Ip 0
0 γ2 Iq

]︃
(5.5)

The implemented algorithm is described in appendix A.3.2 with reference to MATLAB script
in the repository source code. Depending on the particular choice of the solver, a number of
necessary or sufficient conditions should be checked before starting the computation of P .
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For example, in ALG. 9, the former are checked by assert while the latter are logged with
a warning.

After a solution P meeting al criteria from theorem above, and from solver requirements,
the Central estimator [24, eq. 13.3.8] can be formulated in state space form using the strictly
causal notation zi =

(︁
xi ui

)︁T :{︄
ẑi+1 = F̄ zi − F̄P H̄

∗
(Ip + H̄PH̄

∗
)−1(yi − H̄ẑi)

ŝi = L̄zi + L̄P H̄
∗
(Ip + H̄PH̄

∗
)−1(yi −Hẑi)

which can be manipulated to obtain a gain matrix

Kc = PH̄
∗
R−1

He RHe = Ip + H̄PH̄
∗

The final observer structure for a dynamic state-space block can be computed using the
original notation as:

x̂i+1 =(F +
[︁
F G

]︁
KcH)⏞ ⏟⏟ ⏞

obs.A

x̂i +(G+
[︁
F G

]︁
KcJ)⏞ ⏟⏟ ⏞

obs.Bu

ui + (−
[︁
F G

]︁
Kc)⏞ ⏟⏟ ⏞

obs.By

yi

ŝi = (L−
[︁
L M

]︁
KcH)⏞ ⏟⏟ ⏞

obs−C

x̂i +(M −
[︁
L M

]︁
KcJ)⏞ ⏟⏟ ⏞

obs.Du

ui +
[︁
M L

]︁
Kc⏞ ⏟⏟ ⏞

obs.Dy

yi
(5.6)

The structure of eq. (5.6) may appear different and cumbersome with respect to what is
presented in [24]. This can be explained with the same justification discussed previously for
the Kalman estimator in SEC. 5.2
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5.4 Simulation of RFX finite-element, reduced-order, dynamic
model

5.4.1 System description

So far, the working model consisted of a series of transformations that led from a continuous-
time full-order model in descriptor dynamic form (eq. (2.1) with the addition of output equa-
tion)

M⏞⏟⏟⏞
E

ẋ = −(K +H)⏞ ⏟⏟ ⏞
A

x +
[︁
qconv q

]︁⏞ ⏟⏟ ⏞
B

(︃
Tref

u

)︃
(︃
yv
ym

)︃
=

[︃
Cv

Cm

]︃
x +D

(︃
Tref

u

)︃
to a discrete-time full-order model in standard dynamic form (eq. (3.2))

xi+1 = Fxi +G

(︃
Tref

u

)︃
i(︃

yv
ym

)︃
i

=

[︃
Hv

Hm

]︃
xi +J

(︃
Tref

u

)︃
i

According to the overall procedure described in SEC. 3.2.2, the model order reduction has
been carried out in full-order continuous-time descriptor form. FIG. 5.4 illustrates the sim-
ulation diagram for testing the observer design. There are four dynamic blocks: one block
contains the full-order model in descriptor dynamic form; two blocks represent the CT and
DT full-order models in standard form, and one more block is used to plug in the observer
design to be tested.

FIGURE 5.4: Block scheme for
simulation of reduced-order

models based on RFX machine.
Clean inputs (Tref, u0, Td) are

fed directly to reference
models. Noise can be added as

the signals are fed to the
observer. All models are in

standard dynamic form except
for the upper right full-order

model representing the
physical reference (descriptor

dynamic form).
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5.4.2 Design logs

The application of ALG. 10, and ALG. 9 corresponding to the H2 optimal and H∞ sub-optimal
design methods described above, resulted in FIG. 5.8, and FIG. 5.7. Traditional observers
from ALG. 4 and ALG. 6 were also computed and results are shown, respectively, in FIG. 5.5
and FIG. 5.6, It can be seen that the pole placement of infinite-horizon design techniques pre-
serves the slow poles of the original system. TAB. 5.1 shows a comparison between the new
observer designs (H2 and H∞) to traditional observers. Results from TAB. 4.1 regarding the
amplitude of gain components in traditional observer, are confirmed. Equivalent gain ma-
trices could not be computed straight forwardly from eq. (5.4) and eq. (5.6) and therefore no
a priori comparison could be made on possible high-gain effects. Interestingly, the resulting
eigenvalue placement of the observer system for both H2 optimal and H∞ sub-optimal are
much more relaxed than those obtained for traditional observer. This will be seen in the
next section where considerably softer peaking phenomena will be observed in these new
observer arhitectures.

full-state feedback
observer

reduced-state feed-
back observer

infinite-horizon H2

kalman
infinite-horizon
H∞ sub-optimal

eig.Val result min −6× 10−3 −5× 10−3 −8× 10−1 −8× 10−1

max −1× 10−3 −1× 10−5 −7× 10−6 −4× 10−6

CT high-
gain min −2× 104 −5× 104 N/A N/A

max 3× 103 8× 104 N/A N/A
DT high-
gain min −5× 106 −6× 105 N/A N/A

max 6× 106 1× 106 N/A N/A

TABLE 5.1: Design results comparison between observers based on rduced-order RFX model.
Specifications are defined for continuous-time design and then converted to discrete-time poles.
Three aspects are analyzed: the resulting eigenvalue placement, the bounds of the entries in gain

matrix from the design based on the CT system, and the gain bounds resulting from the DT design.
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FIGURE 5.5: Design plots of continuous-time
and discrete-time full-state observer based on RFX
reduced-order model. (a) shows the rank of the con-
trollability matrix and of the input matrix for the CT
and DT observer with respect to numerical precision
used by MATLAB rank function. (b) depicts the
CT placement of original, specification, and resulting
poles after allocation with MATLAB place method.
(c) depicts the DT placement of original, specifica-
tion, and resulting poles after allocation with MAT-
LAB place method.
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FIGURE 5.6: Design plots of continuous-time and
discrete-time reduced-state observer based on RFX
reduced-order model. (a) shows the rank of the con-
trollability matrix and of the input matrix for the CT
and DT observer with respect to numerical precision
used by MATLAB rank function. (b) depicts the
CT placement of original, specification, and resulting
poles after allocation with MATLAB place method.
(c) depicts the DT placement of original, specifica-
tion, and resulting poles after allocation with MAT-
LAB place method.
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(a) observer num. controllability
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FIGURE 5.7: Design plots of H∞ discrete-time observer based on RFX reduced-order model (a)
shows the rank of the controllability matrix and of the input matrix for the DT observer with

respect to numerical precision used by MATLAB rank function. (b) depicts the DT placement of
resulting poles after allocation with MATLAB idare method.
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FIGURE 5.8: Design plots of H2 discrete-time observer based on RFX reduced-order model. (a)
shows the rank of the controllability matrix and of the input matrix for the DT observer with

respect to numerical precision used by MATLAB rank function. (b) depicts the DT placement of
resulting poles after allocation with MATLAB idare method.

58/100



Chapter 5. State reconstruction for virtual output prediction of reduced-order thermodynamic
model based on RFX machine

5.4.3 Results on transient prediction of virtual outputs

Simulation results from FIG. 5.9 to FIG. 5.12 are obtained by computing the block scheme
presented in FIG. 5.4 with full-state and reduced-state observers in nominal and noisy condi-
tions. Nominal conditions, do not inject any noise in the points defined in the block scheme
except for the external ambient temperature Tref. Noisy conditions, on the other hand, add
white noise to measurement outputs fed into the observer block before prediction.

As al ready presented in SEC. 4.4, the structure of these figures is made of six quadrants each
depicting a different type of signal: the upper two represent noise inputs and control in-
puts, the two quadrants at the center describe the measured outputs and their configuration
with respect to the FEM mesh and virtual output. The latter are shown in the bottom two
quadrants where the error with respect to the true model (simulation of full-order model in
descriptor form) has been plot. Differently from SEC. 4.4, however, only a few selected sig-
nals have been plotted in the results of this section: the scripts linked in appendix A allow
the readed to reproduce fully all the output signals.

Firstly, clean simulations on traditional observers on FIG. 5.9 and FIG. 5.11 confirm the ac-
ceptable behaviour of full-state and reduced-state observers with RXF reduced model. This
is also the case for noisy simulations on FIG. 5.10 and FIG. 5.12, where both designs amplify
white noise in the measured output, thus proving these observers unsuitable to the real
reconstruction problem.

Secondly, clean simulations on infinite-horizon estimators on FIG. 5.13 and FIG. 5.15 suggest
better reconstruction performance of H2 and H∞ filters as they show considerably smaller
error amplitude on the virtual inputs. Noisy simulation on H2 and H∞ filters on FIG. 5.14
and FIG. 5.16 confirm their superior performance as compared with traditional observers.
In particular, H∞ does not amplify white noise on measured outputs, and H2 effectively
filters out white noise from measured signals. Finally, transient behaviour is summarised in
TAB. 5.2 where good properties of H2 and H∞estimators can be found.

full-state observer
(nominal)

reduced-state ob-
server (nominal)

infinite-horizon H2

(noisy ym)
infinite-horizon
H∞ (noisy ym)

min peak ◦C −3 −6.5 ≈0 −3.7
max peak ◦C 2.5 3.6 <0.1 3.2
peak time h 1.8 3.2 1.9 1.3
err. Tol. ◦C 3 5 0.1 2
asymptotic
error

◦C 0.7 0.6 <0.1 <0.1

error vari-
ance

◦C 1.1 1.9 <0.1 ≈1

TABLE 5.2: Transient characteristic comparison between observers based on reduced-order RFX
model

59/100



Chapter 5. State reconstruction for virtual output prediction of reduced-order thermodynamic
model based on RFX machine

5.4.4 Empirical robustness findings

Considering the noise injection points in FIG. 5.4, many different simulations could be run.
Here, only two settings are studied: white noise and bias noise. While the former has been
plot in the noisy simulations of this section, the latter has been explored in appendix B.2.2.
The results of this exploration have been summarised in TAB. 5.3 .

noise
type

full-state feedback
observer

reduced-state feed-
back observer

infinite-horizon H2

kalman
infinite-horizon
H∞ sub-optimal

Tref white • • • •
bias ◦ ◦ • •

u0 bias ◦ ◦ ◦ ◦
ymeas white bad bad • ◦

bias ◦ ◦ • ◦

TABLE 5.3: Empiric, robustness, results comparison between observers based on reduced-order
RFX model White noise corresponds to approximately ±3 ◦C, bias noise were set to 5 ◦C.

Notice, that no noise was ever added in the control input (injected heat) u. Looking at
TAB. 5.3, it can be seen that results from TAB. 4.3 are confirmed with the exception of ro-
bustness in white noise added to Tref which may be explained as an added bonus from the
order reduction operations. Un surprisingly, such kind of robustness is found on the more
advanced H2 and H∞ estimators as well.

Particular attention, should be put to u0 line in TAB. 5.3, where it is found that none of the pro-
posed observers tolerates bias error on the initial condition coordinate (eq. (3.1)). This high-
lights a fundamental flaw in the proposed solution to the reconstruction problem analised
so far. Indeed, if a wrong initial condition is set with respect to the physical reality of the
machine, there is no good expectation of accurate virtual output prediction.
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(a) noise input (b) control input

(c) measured output (d) output configuration

(e) virtual output (f) virtual prediction error

FIGURE 5.9: Results of nominal simulation using full-state observer based on RFX model. (a) and
(b) show respectively noise and control input signals. (c) and (e) show measured and virtual

output respectively, according to the mesh configuration shown in (d). The error of the virtual
prediction against the true model is plotted in (f). 61/100
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(a) noise input (b) control input

(c) measured output (d) output configuration

(e) virtual output (f) virtual prediction error

FIGURE 5.10: Results of noisy simulation using full-state observer based on RFX model. (a) and (b)
show respectively noise and control input signals. (c) and (e) show measured and virtual output

respectively, according to the mesh configuration shown in (d). The error of the virtual prediction
against the true model is plotted in (f).
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(a) noise input (b) control input

(c) measured output (d) output configuration

(e) virtual output (f) virtual prediction error

FIGURE 5.11: Results of nominal simulation using reduced-state observer based on RFX model. (a)
and (b) show respectively noise and control input signals. (c) and (e) show measured and virtual

output respectively, according to the mesh configuration shown in (d). The error of the virtual
prediction against the true model is plotted in (f). 63/100
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(a) noise input (b) control input

(c) measured output (d) output configuration

(e) virtual output (f) virtual prediction error

FIGURE 5.12: Results of noisy simulation using reduced-state observer based on RFX model. (a)
and (b) show respectively noise and control input signals. (c) and (e) show measured and virtual

output respectively, according to the mesh configuration shown in (d). The error of the virtual
prediction against the true model is plotted in (f).
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(a) noise input (b) control input

(c) measured output (d) output configuration

(e) virtual output (f) virtual prediction error

FIGURE 5.13: Results of nominal simulation using H∞ observer based on RFX model. (a) and (b)
show respectively noise and control input signals. (c) and (e) show measured and virtual output

respectively, according to the mesh configuration shown in (d). The error of the virtual prediction
against the true model is plotted in (f). 65/100
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(a) noise input (b) control input

(c) measured output (d) output configuration

(e) virtual output (f) virtual prediction error

FIGURE 5.14: Results of noisy simulation using H∞ observer based on RFX model. (a) and (b)
show respectively noise and control input signals. (c) and (e) show measured and virtual output

respectively, according to the mesh configuration shown in (d). The error of the virtual prediction
against the true model is plotted in (f). 66/100
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(a) noise input (b) control input

(c) measured output (d) output configuration

(e) virtual output (f) virtual prediction error

FIGURE 5.15: Results of nominal simulation using H2 observer based on RFX model. (a) and (b)
show respectively noise and control input signals. (c) and (e) show measured and virtual output

respectively, according to the mesh configuration shown in (d). The error of the virtual prediction
against the true model is plotted in (f). 67/100
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(a) noise input (b) control input

(c) measured output (d) output configuration

(e) virtual output (f) virtual prediction error

FIGURE 5.16: Results of noisy simulation using H2 observer based on RFX model. (a) and (b) show
respectively noise and control input signals. (c) and (e) show measured and virtual output

respectively, according to the mesh configuration shown in (d). The error of the virtual prediction
against the true model is plotted in (f). 68/100
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6.1 Missing physical value of reduced state coordinates

Suppose working observer/controller is implemented that efficiently solves the reconstruc-
tion/control problem with acceptable error. How can such control loop be monitored con-
sidering that the coordinates of the states appearing in the reduced state-space do not have
the same physical meaning (temperature) of the original full-order model ? Ideally, a second
machine, for monitoring operations should receive measurements of the current reduced
state of the system and be able to explain these signals with the same physical meaning of
the full-order model (formulation of the FEM thermodynamics).

A first, trivial attempt in solving this problem, is to look at the dimensions of the dynamic
matrices of the full-order system(︁

A ∈Mn, B ∈Mn×m, C ∈Mp×n, D ∈Mp×m
)︁

and compare them with the corresponding matrices in the reduced-order system(︁
A′ ∈Mr, B′ ∈Mr×m, C ′ ∈Mp×r, D′ ∈Mp×m

)︁
in order to find a meaningful relation. The following two propositions come from the fact
that output signals and input signals are shared by both models, in fact this is a key principle
for MOR methods

C# =
[︁
CTC

]︁†
CT · C ′ B# =

[︁
BBT

]︁†
B ·B′T

A second, more advanced attempt on the monitoring problem, stems from the equation
AX = XB referred to as the intertwining relation [28, p.112] and the fact that projection-
based MOR can be set using Sylvester equation [29], [30]. Let (A,C) and (A′, C ′) denote the
state-output pair dynamic matrices of the full-order and reduced-order model respectively,
then solving either

ATPy + PyA
′ + CTC ′ = 0 ATPx + PxA

′ +BB′T = 0

for the projectors Py or Px should not only be numerically feasible (by resorting to stan-
dard numerical methods, such as [31]), but also provide a static, linear approximation to the
monitor problem.

Unfortunately, due to time constraints on the duration of the present work, none of the
claims in the two paragraphs above could be studied in depth, and both ideas remain to be
explored in future studies.

70/100



Chapter 6. Preliminary considerations on control of reduced-order thermodynamic models

6.2 Minimum requirements of real-time controller board

The importance of sampling time for the discrete-time, reduced-order model has been shown
in FIG. 5.2. From the experience gained in the present work, It appears that a good sampling
time is of the order of minutes.

Concerning the memory dimension required by a controller board, the total number of en-
tries to be stored may be computed as

( n2⏞⏟⏟⏞
A

+ nm⏞⏟⏟⏞
B

+ nn0⏞⏟⏟⏞
AX0

) + ( pn⏞⏟⏟⏞
C

+ pn0⏞⏟⏟⏞
CX0

)

where X0 is a basis in the state space Rn describing an initial condition of dimension n0. This
number is to be compared against the number of nonzero elements (nnz) in order to assess
the sparsity of the matrices.

Finally, the multiplication of a matrix Ma×b
R by a vector in Rb requires b sums of vectors in Ra

(each obtained with a multiplications) thus giving a total of ba+a = a(b+1) scalar operations
(sums or multiplications). For a linear dynamic system, we can summarise the number of
operations as follows:

ẋ =

n(n+1)⏟⏞⏞⏟
Ax +

n(m+1)⏟⏞⏞⏟
Bu +

n(n0+1)⏟ ⏞⏞ ⏟[︁
AX0

]︁
u0

y = Cx⏞⏟⏟⏞
p(n+1)

+
[︁
CX0

]︁
u0⏞ ⏟⏟ ⏞

p(n0+1)

Further, after the model order reduction has been performed, more storage and computation
efficiency may be gained by considering state of the art lossless compression algorithms
for real-valued matrices, and in particular, for matrix-vector multiplications and inversion.
Possible directions might include recent articles such like [32] and [33].
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Peculiar properties of the dynamic systems generated from finite-element formulation of
thermodynamic models have been analysed. It was found (TAB. 2.1) that the resulting sys-
tems tend to be extremely sparse and badly conditioned from an algebraic point of view.

These properties led to the fundamental choice of the reduction path highlighted in FIG. 3.1 ,
where different issues about model order reduction were addressed. The RFX themal model
was reduced with several methods and the reduction based on balanced-truncation was
retained for its superior performance (TAB. 3.2).

Then, the study of the reconstruction problem on full-order synthetic thermal models showed
key issues in the design of traditional observers. Despite the discrete-time being observable
to machine precision (FIG. 4.1), both full-state and reduced-state feedback observers featured
difficult pole placement and resulted in high-gain peaking phenomena (TAB. 4.1). Moreover,
their behaviour in response to noisy measurements was not acceptable.

Next, the state reconstruction problem of the balanced-truncation reduced-order RFX model
was studied. Drawbacks of traditional observers were confirmed, and importance of sam-
pling time for model observability was discovered. Two more advanced observer design
procedures were implemented based on the concepts of infinite-horizon H2 and H∞ norm
optimisation. Both showed superior prediction capabilities (TAB. 5.2) as compared to tra-
ditional observers. The former H2 estimator was able effectively reject noise measurement
(TAB. 5.3), while the latter overcame the error amplification issue found in traditional ob-
servers.

Lastly, some practical considerations about real-time micro-controller requirements were
formulated and a number of ideas were presented for the problem of monitoring the the
control loop.
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Future work directions may include the following deviations from basic theory settings

• to consider descriptor form systems theory which may unlock more efficient simula-
tion procedures at the cost more advanced theoretical tools such as matrix pencils.

• to test different reduction methods other than those already selected, with the possi-
bility of preserving useful properties of the original system

• to apply discrete-time MOR methods

• to investigate the potential application of algebraic lossless compression models as a
further reduction step

Concerning the observer design for state reconstruction aimed at virtual output prediction,
the following should not be overseen

• develop an initial condition estimator that allows to infer the initial condition based
on the first few measured samples

• implement hybrid traditional observer allowing to place only selected poles through
feedback, and to estimate the rest with an open loop-observer

• study the effect of designing state observers based on models that differ from reality

• advanced optimal controller design based on linear matrix inequalities enforcing more
robust properties on H2 and H∞ estimators [34], [35]

Finally,

• the angles between the observable subspace and the spanning subspace of the virtual
output matrix may provide a useful tool for assessing numerically the difficulty of the
reconstruction problem for virtual output prediction.

• the two maps proposed for the monitor problem could be investigated by solving a
Sylvester equation.

• the ratio between measured and virtual outputs should be the subject of a separate
study, allowing the designer to find empirical rules to place confidently a minimum
number of sensor.
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Appendix A. Codebase and algorithms

A.1 Repository conventions and overview

The entire code is available in a git repository at gitlab.dei.unipd.it. The scripts have been
developed using MATLAB revision 2023b and using primarily the pdetoolbox [2] and
MORlab [9] toolbox.

A number of progressively numbered folders have been stored as the scripts for this project
were developed. The progressive number corresponds to a date expressed in the YYMMDD
format, where Y,M,D denote year, month, and day (respectively).

A structured file name convention has been used for naming the .mat files resulting from
the computation of the dynamical state-space systems in the steps defined below.

♢(n−m− p)♠(r−m− p)#♡(n′ −m′ − p′)_♣.mat

where:

• ♢ ∈ {D, S, . . .} identifies the dynamic formulation of the first model. D represents
descriptor dynamic form, while S denotes a standard dynamic form. Most of the mod-
els start from descriptor dynamic form. The following (n,m, p) denote the size of the
system’s state, input, and output (respectively).

• ♠ ∈ {bt, hna, . . .} corresponds to the short name abbreviation of the

• # identifies when the transformation from descriptor system to standard dynamic
form took place (inversion of the mass matrix E). The following (r,m, p) describe the
size of the reduced system’s state, input, and output (respectively).

• ♡ ∈ {C,O, . . .} is a short hand for describing either control-type transformations (letter
C) or observer design (letter O). The following (n′,m′, p′) allow to note down the size
of the dynamic system after such operation

• ♣ represents a final alias given to similar models in order to distinguish the content of
the .mat file more easily

Most importantly, the proposed naming convention exploits the following:

• the order of the elements of the file name may change depending on the order of the
computations, see discussion about FIG. 3.1

• missing elements correspond to missing operations and have a meaning in describing
the workflows that has been followed for computing a particular model.

• the final alias description is very often neglected, especially when there is no conflict
in the naming of the files.
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Appendix A. Codebase and algorithms

The overall workflow to reproduce the results of this thesis can be split in six steps:

1. Creation of the full-order, continuous-time, LTI state-space model in descriptor dy-
namic form, this includes the definition of an output matrix

2. Computation of the reduced model and assessment of the reduction quality

3. general pre-processing required to transform the system to a discrete-time state-space
model in standard dynamic form. Formatting on the noise input may be applied, see
SEC. 4.1.1

4. Design of state observers

5. block-scheme initialisation and simulation run

6. post-processing required to compute properties of the error and plot selected signals

Gained experience with long simulations containing both continuous-time and discrete-time
models, suggests to:

• leave Simulink solver to all auto/default values and to impose discrete-time operations
with explicit discrete-time blocks and/or zero-order hold.

• prefer data-inspector to traditional scopes and limit the amount of data stored by
logged signals by tweaking the settings

• limit the number of simulated continuous-systems as they tend to slow down the over-
all simulation performance.

Most of the scripts described in the following algorithms are meant to take a dynamic system
as an input, to perform some computations, and to store a new dynamic system as output.
During such computations, however it may be necessary to assess quantities and check hy-
potheses, and for this reason the scripts stores a text file with .log extension in order to
save error messages, and user choices. Plots of various kind that are computed during the
execution of the script may be saved to .pdf file through the use of the global, boolean,
variable EXPORT. While the logging procedure appends information to any existing log, the
export task overwrites any existing file matching the same name without warning the user.
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A.2 Working with full-order models based on 2D mesh

Algorithm 1: Description (one) of (possible) script OUTFOLDER/init.m
Input : filenames containing a structure with LTI matrices (A,B,C,D) of the

dynamic systems in the simulation scheme
Input : (Jm, Jv) ← row indexes corresponding to measured and virtual outputs

(respectively)
Output: no output
// true models

1 DsysCt ← ground truth dynamic system in descriptor form ;
2 SsysCt ← continuous-time dynamic system in standard form;
3 SsysDt ← discrete-time dynamic system in standard form;
// (Jm, Jv) are used to replicate true signals for measured and

virtual outputs

4 fullObs ← load full-state feedback observer ; // optional
5 redObs ← load reduced-state feedback observer ; // optional

6 HooObsDt ← load H∞ sub-optimal estimator; // optional
7 H2KObsDt ← load H2 Kalman estimator; // optional
// simulation configuration

8 Warning display solver name and type;
9 ts ← sampling-time for discrete-time systems;

10 tend ← simulation stop time in seconds;
// input signals

11 Tref(•) ← reference temperature (external ambient) modelled as noise input;
12 u0 ← initial condition amplitude with respect to the spanning basis X0 used in the

models, x(0) = X0u0;
13 u(•) ← remaining signals in the input matrix, modelled as control input;
// blocks initial conditions

14 fullObs.x0← observer initial condition ; // optional
15 redObs.x0← observer initial condition ; // optional
16 HooObs.x0← observer initial condition ; // optional
17 H2KObs.x0← observer initial condition ; // optional

A.2.1 Algorithms for the creation of dynamic models

Theory formulas for ALG. 2 and ALG. 3 can be found in SEC. 2.2

A.2.2 Algorithms for computing traditional observers

Theory formulas for ALG. 5 used by ALG. 4 can be found in SEC. 4.2 which uses function
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Algorithm 2: Description of script makePDEnd.m
Input : λ thermal, specific, conductivity
Input : ρc density by specific heat
Input : hmax maximum allowed distance between adjacent mesh nodes
Input : gd,sf,ns domain geometry definition from pdetoolbox
Output: fem structure containing finite-element matrices

(M ∈Mn, H ∈Mn, K ∈Mn, G ∈Mn×m, Q ∈Mn) assembled form 2D
geometry

1 pdeModel= initialize partial, differential, equation model;
2 geo← decsg(gd,sf,ns);
3 geometryFromEdges(pdeModel,geo);
4 Plot loaded geometry displaying edge labels;

5 Choose edge indexes En where to apply Neumann-type boundary conditions;
6 applyBoundaryCondition(pdeModel,Neumann, En);
7 Choose edge indexes Ed where to apply Dirichlet-type boundary conditions;
8 applyBoundaryCondition(pdeModel,Dirichlet, Ed);

9 pdeModel← specify coefficients using λ and ρc according to eq. (2.2);

10 generateMesh(pdeModel, hmax);

11 fem = assembleFEMatrices(pdeModel)

Theory formulas for ALG. 7 used by ALG. 6 can be found in SEC. 4.3

which uses function
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Algorithm 3: Description of script dynamicModel.m
Input : fem structure containing finite-element matrices

(M ∈Mn, H ∈Mn, K ∈Mn, G ∈Mn×m, Q ∈Mn) assembled form 2D mesh
Output: Σ structure containing matrices

(E ∈Mn, A ∈Mn, B ∈Mn×m, C ∈Mp+q×n, D ∈Mp+q×m) of the LTI system in
descriptor dynamic form

// handle Dirichlet boundary conditions
1 (T,Or) ← kerSpanBasis(H)

2 Choose X0 basis vector spanning the initial condition in the nodes space x(0) = X0u0

according to eq. (3.1);
3 Let n denote the number of nodes in the 2D mesh, and m denote the number of input signals

comprising modelled noise and initial condition;
4 Ud ← contribution of Dirichlet inputs;
5 (E ∈Mn, A ∈Mn, B ∈Mn×m) ← compute state dynamics according to eq. (2.3);

6 Let p denote the number of measured output signals, and q denote the number of virtual
outputs to be predicted;
// define measured output (nodes average)

7 Choose {xi}p1 centers for measurement sensors;
8 Choose R radius for circular selection of nodes;
9 Im ← set of p indexes resulting from the intersection of all mesh nodes with circles of

radius R and centers xi;
10 Plot circular patches and nodes to be considered as measured output against full 3D mesh;
// define virtual output (nodes average)

11 Choose {xi}q1 centers for virtual sensors;
12 Choose R radius for circular selection of nodes;
13 Iv ← set of q indexes resulting from the intersection of all mesh nodes with circles of

radius R and centers xi;
14 Plot circular patches and nodes to be considered as virtual output against full 3D mesh;

15 Save resulting output node selection against full 3D mesh;

16 (Cm ∈Mp×n, Cv ∈Mq×n) ← initialize sparse matrices;
17 Let ni be the number of nodes inside the i−th circular patch with center xi;

18 C =

[︃
Cv

Cm

]︃
where Cv

[i,Iv ] =
1
ni

i = 1, . . . , q Cm
[i,Im] =

1
ni

i = 1, . . . , p;

19 D ← contribution of initial condition, according to eq. (3.1);
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Algorithm 4: Description of script designFullstateAsymptoticObserver.m
Input : Σ continuous-time system in standard dynamic form
Input : Σd corresponding discrete-time system
Output: obsCt structure containing dynamic matrices of continuous-time asymptotic

observer
Output: obsDt structure containing corresponding dynamic matrices of

discrete-time asymptotic observer
1 Jv ← row indexes of the output matrix corresponding to virtual output ;
2 Jm ← row indexes of the output matrix corresponding to measured output ;

// inspect properties of the original systems
3 info ← studyObservability(Σ, Jm, Jv);
4 info ← studyObservability(Σd, Jm, Jv);
5 Save plot observability against numerical tolerance;

// compute continuous-time observer
6 Choose desired pole locations eeigs;
7 obsCt← fullstateFeedbackObserver(Σ, eeigs, Jm, Jv);
8 Save plot

// compute corresponding discrete-time observer
9 Choose desired pole locations eeigz;

10 obsDt← fullstateFeedbackObserver(Σd, eeigz, Jm, Jv);
11 Save plot

// check properties of the resulting observer systems
12 info ← studyReachability(obsCt);
13 info ← studyReachability(obsDt);
14 Save plot reachability against numerical tolerance;
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Algorithm 5: Description of function fullstateFeedbackObserver.m

Input : stdSys containing matrices (A,B,C,D) of LTI system in standard dynamic
form

Input : eigVals specified pole locations for the eigenvalue allocation problem
Input : Jm list of row indexes in the output matrix corresponding to measured

signals
Input : Jv list of row indexes in the output matrix corresponding to virtual

prediction
Output: obs structure containing dynamic matrices of allocated asymptotic observer

1 Plot original eigenvalues of A against desired specification in eigVals;
2 Let (Cm, Dm) denote matrices of the measured output equation ym = Cmx+Dmu;
3 Let (Cv, Dv) denote matrices of the virtual output equation yv = Cvx+Dvu;
4 L← allocationSolver(A,Cm, eigVals);
5 Warning show min-max bounds of high-gain entries in L;
// observer block scheme matrices

6 obs.A, obs.B, obs.C, obs.D ← compute observer dynamic as in eq. (4.1)
using measurements ym and predicting yv as output;

7 Plot resulting observer poles in obs.A against original and specified eigenvalues;
8 Plot zeros of obs system;
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Algorithm 6: Description of script designReducedstateAsymptoticObserver.m
Input : Σ continuous-time system in standard dynamic form
Input : Σd corresponding discrete-time system
Output: obsCt structure containing dynamic matrices of continuous-time asymptotic

observer
Output: obsDt structure containing corresponding dynamic matrices of

discrete-time asymptotic observer
1 Jv ← row indexes of the output matrix corresponding to virtual output ;
2 Jm ← row indexes of the output matrix corresponding to measured output ;

// inspect properties of the original systems
3 info ← studyObservability(Σ, Jm, Jv);
4 info ← studyObservability(Σd, Jm, Jv);
5 Save plot observability against numerical tolerance;

// compute continuous-time observer
6 Choose basis vectors V defining the reduced space;

7 Assert that the resulting state space transform T−1 =

[︃
V
Cm

]︃
is square full-rank;

8 Choose desired pole locations eeigs;
9 obsCt← reducedstateFeedbackObserver(Σ, eeigs, Jm, Jv, V );

10 Save plot;

// compute corresponding discrete-time observer
11 Choose basis vectors V defining the reduced space;

12 Assert that the resulting state space transform T−1 =

[︃
V
Cm

]︃
is square full-rank;

13 Choose desired pole locations eeigz;
14 obsDt← reducedstateFeedbackObserver(Σd, eeigz, Jm, Jv, V );
15 Save plot

// check properties of the resulting observer systems
16 info ← studyReachability(obsCt);
17 info ← studyReachability(obsDt);
18 Save plot reachability against numerical tolerance;
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Algorithm 7: Description of function reducedstateFeedbackObserver.m

Input : stdSys containing matrices (A ∈Mn, B ∈Mn×m, C ∈Mp+q×n, D ∈Mp+q×m)
of LTI system in standard dynamic form

Input : eigVals ∈ Rn−p specified pole locations for the eigenvalue allocation
problem in the reduced state space

Input : Jm list of row indexes in the output matrix corresponding to measured
signals

Input : Jv list of row indexes in the output matrix corresponding to virtual
prediction

Input : V ∈Mn−p×n row basis vector defining a basis for the reduced state space
Output: obs structure containing dynamic matrices of allocated asymptotic observer

1 Let (Cm ∈Mp×n, Dm ∈Mp×m) denote matrices of the measured output equation
ym = Cmx+Dmu;

2 Let (Cv ∈Mq×n, Dv ∈Mq×m) denote matrices of the virtual output equation
yv = Cvx+Dvu;

// state space reduction transformation

3

(︃[︃
A[11] A[12]

A[21] A[22]

]︃
,

[︃
B[1]

B[2]

]︃)︃
← compute partitioned dynamics in the reduced state-space

according to eq. (4.2);
4 Plot original eigenvalues of A against desired specification in eigVals;

5 L← allocationSolver(A[11], A[21], eigVals);
6 Warning show min-max bounds of high-gain entries in L;
// observer block scheme matrices

7 obs.A, obs.B, obs.C, obs.D ← compute observer dynamic as in eq. (4.3)
using measurements ym and predicting yv as output;

8 Plot resulting observer poles in obs.A against original and specified eigenvalues;
9 Plot zeros of obs system;
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A.3 Working with reduced-order models based on RFX ma-
chine

A.3.1 Algorithms for the creation of dynamic models

Theory reference formulas for ALG. 8 can be found in SEC. 2.3.1

Algorithm 8: Description of script dynamicModel_RFX.m
Input : femRFX structure containing finite-element matrices

(M ∈Mn, H ∈Mn, K ∈Mn, qconv ∈ Rn, q ∈ Rn) assembled form RFX mesh
Output: Σ structure containing matrices

(E ∈Mn, A ∈Mn, B ∈Mn×m, C ∈Mp+q×n, D ∈Mp+q×m) of the LTI system in
descriptor dynamic form

// Dirichlet boundary conditions are not considered for RFX
model

1 Choose X0 basis vector spanning the initial condition in the nodes space x(0) = X0u0

according to eq. (3.1);
2 Let n denote the number of nodes in the 3D mesh, and m denote the number of input signals

comprising modelled noise and initial condition;
3 (E ∈Mn, A ∈Mn, B ∈Mn×m) ← compute state dynamics according to eq. (2.1);

4 locs←manual definition of possible nodes representing measurement sensor and
virtual signals;

5 Let p denote the number of measured output signals, and q denote the number of virtual
outputs to be predicted;
// define measured output

6 Choose {θi}p1 corresponding to desired locations of measurement sensors;
7 Im ← set of p indexes resulting from the intersection of possible locations locs and

selected angles θi;
8 Plot nodes to be considered as measured output against full 3D mesh;
// define virtual output

9 Choose {θi}q1 corresponding to desired locations of virtual sensors;
10 Iv ← set of q indexes resulting from the intersection of possible locations locs and

selected angles θi;
11 Plot nodes to be considered as virtual output against full 3D mesh;

12 Save resulting output node selection against full 3D mesh;

13 (Cm ∈Mp×n, Cv ∈Mq×n) ← initialize sparse matrices;

14 C =

[︃
Cv

Cm

]︃
where Cv

[Iv ] = 1 Cm
[Im] = 1;

15 D ← contribution of initial condition, according to eq. (3.1);
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A.3.2 Algorithms for computing infinite-horizon observers

Theory reference formulas for ALG. 9 can be found in SEC. 5.3

Theory reference formulas for ALG. 10 can be found in SEC. 5.2
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Algorithm 9: Description of script designHinftyObserver.m
Input : Σd discrete-time system in standard dynamic form
Output: obs structure containing dynamic matrices of infinite-horizon, H∞

sub-optimal, discrete-time estimator

1 Ic ← columns indexes of the input matrix to be considered ;
2 Jv ← row indexes of the output matrix corresponding to virtual output ;
3 Jm ← row indexes of the output matrix corresponding to measured output ;

4 (F,G,H,L) ← dynamic matrices of Σd in strictly proper form according to eq. (5.1);
5 Let n,m denote the resulting state and input size (respectively);
6 Let p,q denote the number of measured and virtual outputs (respectively);

// inspect properties of the original system
7 info ← studyReachability(Σd, Jm, Jv);
8 Save plot reachability against numerical tolerance;
9 info ← studyObservability(Σd, Jm, Jv);

10 Save plot observability against numerical tolerance;

11 Choose γ suboptimal H∞ norm bound;
12 (E,A,Q,B, S,R) ← transpose notation and compute arguments for Riccati solver, as

defined in eq. (5.5);

// Check hypotheses for DARE solver
13 Assert necessary condition: full rank reachability of pair (A,B);
14 Warning condition number of matrices E and R;

15 Warning sufficient condition:

⎡⎣BS
R

⎤⎦ has column rank p+q;

16 Warning sufficient condition:
[︃
Q S
ST R

]︃
≥ 0 by computing its eigenvalues ;

17 Warning sufficient condition: observability matrix of pair
(︁
A−BR−1ST , Q− SR−1ST

)︁
has rank n ;

18 P,K,eeigz = DAREsolver(A,B,Q,R, S,E);
19 Warning check if solver found an accurate solution;

// check conditions for infinite-horizon observer
20 Assert stability of the closed loop: |p| < 1 ∀p ∈eeigz;
21 Assert matrices (Re, R) have the same inertia: compute and compare positive, negative,

and zero eigenvalues;
22 Assert positive semi-definite character of solution: P ≥ 0 by computing its eigenvalues;

// if all conditions are met, compute central estimator
23 obs.A, obs.B, obs.C, obs.D← compute dynamic system with stabilizing gain

KP = KT , according to eq. (5.6);
// check poles and zeros of the observer dynamic system

24 zz,pp← compute zeros and poles of obs dynamic system;
25 Save plot of zz,pp on the complex plane
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Algorithm 10: Description of script designH2KalmanObserver.m
Input : Σd discrete-time system in standard dynamic form
Output: obs structure containing dynamic matrices of infinite-horizon, H2 optimal,

discrete-time Kalman estimator

1 Ic ← columns indexes of the input matrix to be considered ;
2 Jv ← row indexes of the output matrix corresponding to virtual output ;
3 Jm ← row indexes of the output matrix corresponding to measured output ;

4 (F,G,H,L) ← dynamic matrices of Σd in strictly proper form according to eq. (5.1);
5 Let n,m denote the resulting state and input size (respectively);
6 Let p denote the number of measured outputs;

// define variance matrices on process and measurement noise
7 Choose noise variance matrix Q ∈Mn;
8 Choose noise variance matrix R ∈Mp;
9 Assert positive-definite character of Q: λ ≥ 0∀λ ∈ σ(Q);

10 Assert positive character of R;

// inspect properties of the original system
11 info ← studyReachability(Σd, Jm, Jv);
12 Save plot reachability against numerical tolerance;
13 info ← studyObservability(Σd, Jm, Jv);
14 Save plot observability against numerical tolerance;

15 (E,A,Q,B, S,R) ← transpose notation and compute arguments for Riccati solver, as
defined in eq. (5.3)

// Check hypotheses for DARE solver
16 Assert necessary condition: full rank reachability of pair (A,B);
17 Warning condition number of matrices E and R;

18 Warning sufficient condition:

⎡⎣BS
R

⎤⎦ has column rank p+q;

19 Warning sufficient condition:
[︃
Q S
ST R

]︃
≥ 0 by computing its eigenvalues ;

20 Warning sufficient condition: observability matrix of pair
(︁
A−BR−1ST , Q− SR−1ST

)︁
has rank n ;

21 P,K,eeigz = DAREsolver(A,B,Q,R, S,E);
22 Warning check if solver found an accurate solution;

// check conditions for infinite-horizon observer
23 ;
24 Assert stability of the closed loop: |p| < 1 ∀p ∈eeigz;
25 Warning compute corresponding continuous-time poles

26 if all conditions are met, compute estimator;
27 obs.A, obs.B, obs.C, obs.D← compute dynamic system according to

eq. (5.4);

28 check poles and zeros of the resulting observer dynamic system;
29 zz,pp← compute zeros and poles of obs dynamic system;
30 Save plot of zz,pp on the complex plane
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Appendix B. More simulation results

B.1 Full-order models based on 2D mesh

Initial exploration on bad behaviour of full-order models based on 2D mesh started as a
search for finding a ratio between the number of outputs and the dimension of the state
space, that lead to unacceptable observer response, if any. With the workflow described in
SEC. 2.2 implemented in ALG. 2, this study can be asily implemented by tweaking the size
of the maximum allowed mesh element, as this indirectly controls the size of the resulting
state space for the assembled dynamics. The number of outputs is kept constant.

FIG. B.1 shows why after certain threshold, design of traditional observes, such as the ones
proposed in SEC. 4.2 and SEC. 4.3, fails without being able to place any of the system’s poles.
As the size of the state space increases, the observability of the discrete-time system is lost
with respect to numerical precision, which can be assumed to be of about 1× 10−16.
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(a) numerical observability (b) sampling conditioning

(c) numerical observability (d) sampling conditioning

(e) numerical observability (f) sampling conditioning

FIGURE B.1: Bad conditions of full-order model based on 2D model. As the size of the state is
increased too much (by lowering the size of mesh elements), the DT model loses observability

property, this can be seen in (a), (c), and (e). On the other hand (b), (d), and (f) show that the size of
the state space does not affect the conditioning of the map (I −Aτ) required by Euler-Backwards

method eq. (3.2)
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B.2 Reduced-order models based on RFX machine

B.2.1 Response to step input heat injection

On real operation scenarios, the expected heat injection profile is that of a step signal rather
than a sinusoid like it was discussed in SEC. 4.4 and SEC. 5.4. The reason for the choice of
the sinusoid the main results of this work was to force major excitation on error profile so to
characterise the precision of the estimators in a more difficult operation senario.

FIG. B.2 shows the result of the simulation of block scheme FIG. 5.4 with constant 1.5 kW
heat injection. and bias noise of about 3 ◦C in both the ambient temperature Tref and in the
measured output sensors ym. The observer is the same H∞ sub-optimal estimator described
in FIG. 5.7. It can be seen that properties observed in SEC. 5.4 are confirmed and the acceptable
behaviour of the estimator is presented.

B.2.2 Error with respect to variations of original model

When designing any type of observer/controller, the precision of the resulting application
can only be as good as the original model compared to reality. In other words, it the design
of any of the observers described on this work starts with a bad original full-order model,
it is unlikely that the resulting control loop is accurate. In practice, this may be tweaked
depending on the robustness properties featured by the estimator at hand. Figures below,
show the behaviour of FIG. 5.4 when bias noise is injected in input signals Tref, u0, and ym.

FIG. B.3, shows the simulation result of H∞ observer described in FIG. 5.7 to bias Tref noise.
The clean Tref signal is not plotted in sub-quadrant (a). We see that that the estimator well
behaves in the 10 h time span but shows the development of a drift that could lead to asymp-
totic estimation error within days.

FIG. B.4 depicts the response of H2 estimator described in FIG. 5.8 o bias error in all mea-
surement outputs. The clean measurement signals are not shown in sub-quadrant (c). We
observe robustness in the proposed observer with respect to this kind of noise. In particular,
the bias error introduced in the measurement could be seen as a difference between the orig-
inal full-order model and reality, there the true dynamic matrices would differ from those
used for the design of the observer.

Finally, FIG. B.5, reports the response of the same H2 estimator described in FIG. 5.8 to bias
error added to the initial condition coordinate eq. (3.1). It can be seen that the observer is
not robust to this kink of noise, and this behaviour is representative of that of all observers
studied in this work. For this reason the precision of the estimate of the initial condition,
which is the only non-measurable, modelled, noise input of the reconstruction problem, is
of paramount importance. This important aspect should be the object of detailed research
in future works.
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Appendix B. More simulation results

(a) noise input (b) control input

(c) measured output (d) output configuration

(e) virtual output (f) virtual prediction error

FIGURE B.2: Result of simulation using H∞ observer based on RFX model with step heat injection.
(a) and (b) show respectively noise and control input signals. (c) and (e) show measured and

virtual output respectively, according to the mesh configuration shown in (d). The error of the
virtual prediction against the true model is plotted in (f). 97/100



Appendix B. More simulation results

(a) noise input (b) control input

(c) measured output (d) output configuration

(e) virtual output (f) virtual prediction error

FIGURE B.3: Result of simulation using H∞ observer based on RFX model with 5 ◦C bias noise on
input Tref. (a) and (b) show respectively noise and control input signals. (c) and (e) show measured
and virtual output respectively, according to the mesh configuration shown in (d). The error of the

virtual prediction against the true model is plotted in (f). 98/100



Appendix B. More simulation results

(a) noise input (b) control input

(c) measured output (d) output configuration

(e) virtual output (f) virtual prediction error

FIGURE B.4: Result of simulation using H2 observer based on RFX model with 5 ◦C bias noise on
all measured outputs. (a) and (b) show respectively noise and control input signals. (c) and (e)

show measured and virtual output respectively, according to the mesh configuration shown in (d).
The error of the virtual prediction against the true model is plotted in (f). 99/100



Appendix B. More simulation results

(a) noise input (b) control input

(c) measured output (d) output configuration

(e) virtual output (f) virtual prediction error

FIGURE B.5: Result of simulation using H2 observer based on RFX model with 5 ◦C bias noise on
u0 initial condition. (a) and (b) show respectively noise and control input signals. (c) and (e) show
measured and virtual output respectively, according to the mesh configuration shown in (d). The

error of the virtual prediction against the true model is plotted in (f). 100/100


	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Physical modelling: finite-element-based thermodynamics
	Contents
	Finite-element method for thermodynamic models
	Creation of thermodynamic models based of 2D mesh
	Analysis of thermodynamic model based on RFX machine

	State of the art on model order reduction methods
	Contents
	Traditional model order reduction methods
	Implementation of model order reduction methods
	Assessing the quality of the reduced, dynamic model

	State reconstruction for virtual output prediction of full-order thermodynamic models based on 2D mesh
	Contents
	Issues in the reconstruction problem of finite-element models
	Design of full-state, feedback, asymptotic observers
	Design of reduced-state, feedback, asymptotic observers
	Simulation of simple, finite-element, full-order, dynamic models

	State reconstruction for virtual output prediction of reduced-order thermodynamic model based on RFX machine
	Contents
	Issues in the reconstruction problem of finite-element models
	Design of infinite-horizon, H_2 optimal, Kalman estimator
	Design of infinite-horizon, H_\infty sub-optimal estimator
	Simulation of RFX finite-element, reduced-order, dynamic model

	Preliminary considerations on control of reduced-order thermodynamic models
	Contents
	Missing physical value of reduced state coordinates
	Minimum requirements of real-time controller board

	Conclusion and future work
	Bibliography
	Codebase and algorithms
	Contents
	Repository conventions and overview
	Working with full-order models based on 2D mesh
	Working with reduced-order models based on RFX machine

	More simulation results
	Contents
	Full-order models based on 2D mesh
	Reduced-order models based on RFX machine


