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A B S T R A C T ( E N )

Model predictive control (MPC) is an established technique for high-performance con-
trol that is used in many application fields, ranging from the automotive sector to the
control of biological systems. In particular, the possibility of applying MPC in a real-
time fashion has led to its successful implementation in demanding scenarios like car
driving and motorcycle riding. However, the dissimilarity between the internal model
and the real system often represents a crucial issue of MPC, especially when dealing
with nonlinear systems. For that reason, new research in the field has been devoted to-
wards the introduction of learning techniques into MPC frameworks, notably in order
to reduce the mismatch between the model used by the controller and the controlled sys-
tem itself. Such approaches belong to the general field of learning-based MPC (LbMPC).
This thesis revolves around the previously cited themes of LbMPC. Specifically, learn-
ing techniques are explored in order to improve the nonlinear physics-based model of a
motorcycle system to be used for Nonlinear Model Predictive Control. The objective is
to design a Virtual Rider for high performance motorcycle riding. The main challenges
are related to the determination of which parts of the dynamic model would benefit
most from the addition of a learnt component and which learning strategy to pursue.
Most of the effort has been devoted to Gaussian Process Regression strategies, with the
exploration of both black-box and grey-box approaches and the investigation of sparse
approximations in order to guarantee the real-time implementation of learning-based
MPC.
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A B S T R A C T ( I T )

Il controllo predittivo (MPC) si è imposto come tecnica avanzata di controllo ad alta
prestazione, con applicazioni di vario tipo, a partire dal settore automotive fino al con-
trollo di sistemi biologici. La possibilità di usare il controllo predittivo in real-time ne
ha permesso l’applicazione in scenari complessi come la guida di auto e moto. Le dif-
ferenze presenti tra il modello usato dal controllore e il sistema reale rappresentano
tuttavia una forte criticità tipica di molte delle applicazioni del controllo predittivo,
soprattutto quando il sistema in questione presenta nonlinearità significative. Di con-
seguenza, negli scorsi anni un interessante ambito di ricerca ha riguardato l’inclusione
di tecniche di Machine Learning negli approcci di controllo predittivo al fine di ridurre
le discrepanze del modello predittivo rispetto al sistema oggetto dell’azione di controllo.
Approcci di questo tipo apprertongono al mondo del Learning-based MPC (LbMPC).
Questa tesi si pone quindilo scopo di esplorare tematiche proprie del controllo predit-
tivo con applicazioni di learning. In particolare, le tecniche di Machine Learning sono
state implementate al fine di migliorare il modello nonlineare usato dal controllore
MPC nell’ambito della guida simulata di una motocicletta. Lo scopo è infatti quello
di creare un pilota virtuale (rappresentato da un controllore predittivo) che sappia si-
mulare una guida ad alte prestazioni. Le sfide principali affrontate nel corso della tesi
sono state l’individuazione delle porzioni della dinamica di veicolo che possano bene-
ficiare dall’applicazione di tecniche di Machine Learning e la scelta delle strategie di
learning da usare. Gran parte dell’attenzione è stata rivolta alle tecniche di regressione
con processi gaussiani, con le quali sono stati esplorati sia approcci di modellizzazione
black-box che grey-box. Sono state inoltre esplorate le approsimazioni sparse dei pro-
cessi gaussiani, che possono essere utilizzate per la creazione di modelli che siano im-
plementabili in tempo reale nel controlo predittivo.
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1
I N T R O D U C T I O N

The development of Virtual Riding strategies has been a core project at the University of
Padua in the past years [1][2]. The project’s objective is in line with the efforts towards
virtual prototyping for the automotive industry. Virtual prototyping’s advantages range
from the reduced costs and time-to-market to the increased safety. Significant results
have been attained exploiting MPC schemes, which allow for high-performance real-
time control of the motorcycle system, while emulating a realistic riding behavior. As
mentioned, efforts towards physics-based modeling of the motorcycle system for MPC
control date back to [1], which set the foundation for an MPC-oriented and Lagrangian-
based bicycle model of the motorcycle system. Further refinements came along the years,
culminating with [8], which provided a comprehensive modeling of the the motorcycle
system, avoiding non-holonomic constraints, in favor of a sliding plane approach. Ad-
ditional modeling improvements included the lateral tire forces generation according
to Pacejka Magic formula [9] and the incorporation of the wheel gyroscopic effects. Ad-
vancements in the modeling front were accompanied by significant progress on the
MPC solving tools front. A notable endeavor was in fact the development of an efficient
and open-source MATLAB toolbox, MATMPC [11], which allows for real-time solution
of the NLP optimization problem associated to MPC. The final modeling adjustments
came with [2], which enriched the physical model with a point-mass motorcycle rider
and added the associated lateral movement to the set of system inputs. It is evident
that riding solutions so far relied on internal modeling which was exclusively physics-
based; however, significant limitations remained, as the accuracy of the physics-based
motorcycle model was still questionable when compared to the real system behavior;
for that reason, the advent of learning-based MPC (LbMPC) frameworks [3] represent
an exciting new direction for the exploration of new data-driven modeling approaches,
to be used for the improvement of the MPC internal accuracy.
LbMPC is a broad research field which generally refers to the implementation of learn-
ing techniques into MPC control schemes. In particular, it has developed into two main
subfields: the learning dynamics one, which involves the data-based adaptation of the
prediction model, and the learning design one, whose efforts entail the use of data-
driven techniques for controller design and improvement. This thesis deals with the
former, as learning techniques were employed in order to improve the internal model
of the Virtual Rider. Gaussian Process Regression (GPR) was the prime candidate in
order to construct learning-based dynamical models, in view of its success stories in
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2 introduction

multiple MPC-related applications [4][5]. GPR is a probabilistic and non-parametric re-
gression approach which has found large application in the world of nonlinear dynam-
ics modeling due to its flexibility. A direct implementation of GP-based models into
MPC schemes is generally not viable, especially in view of its computational require-
ments and due to the added optimization complexity. For that reason, a large amount
of research revolved around the exploration of sparse GP approximations [20][18]; at
the same time, additional research was directed into feature selection procedures [25],
which are fundamental as they lead to computational savings and to better conditioned
learning-based models.
The contributions of this thesis are thus related to the implementation of learning-based
modeling techniques into the MPC framework, in the context of the Virtual Rider, which
constitutes a relevant and challenging case study. The adopted solutions were tailored
to guarantee the feasibility of the global strategy and a satisfactory performance of the
MPC controller. In particular, the beneficial impact of learning-based solution w.r.t. to
the physics-based one will be highlighted, proving the relevance of the novel LbMPC
approaches and justifying further research in this direction.
The first part of the thesis deals with the most relevant methodologies for the purpose
of the conducted research. Firstly, an overview of the state-of-the-art physics-based im-
plementation of the Virtual Rider will be provided. This includes a review of the mod-
eling approach, a presentation of the NMPC problem to be solved by the Virtual Rider
and the introduction to the co-simulation environment which was used for the testing
phase. After highlighting the issues faced by the physics-based model in the Virtual
Riding task, the attention will be shifted towards a recap of the main GP methodologies
of interest. This includes an overview of the general GP framework, which is followed
by an investigation of scalable GP models [6], that can be used for the derivation of
computationally efficient models to be implemented into the MPC framework.
The second part is centered on the experimental development of this thesis, including
an overview of the research phases and the presentation of the main results and analy-
ses obtained from the undertaken trials. A large part of research focused on the feature
selection procedure, since only the relevant state-input information should be used for
a given regression target. It will become clear that the choice of features has a deep im-
pact on the performance of the models when implemented into the Virtual Rider. The
devised feature selection procedures led to working solutions, but showed that addi-
tional refinements should be investigated, as the established selection criteria generally
did not provide satisfactory guarantees for the closed-loop performance. The most in-
teresting learning-based models were then thouroghly tested in the co-simulation envi-
ronment; the obtained results will thus be compared with the corresponding outcomes
of the physics-based solution. Model evaluation criteria were multiple and included the
general tracking properties of the Virtual Rider, the system input management, the lap
times and the computational requirements of each solution.
The third and last part is devoted to the conclusive remarks, with a discussion of the
advantages and limitations of the devised strategies. A final overview of prospective
research directions that could be undertaken in the LbMPC field concludes the thesis.



Part I

S TAT E O F T H E A RT A N D M E T H O D O L O G I E S

This section is devoted to the introduction of the problem of Nonlinear
Model Predictive Control and its application to the motorcycle Virtual Rider,
which has been a core project at University of Padua. The learning-based
MPC approaches that have been used are also detailed in order to delineate
the background of the thesis project and to motivate the research directions
that have been undertaken.





2
A V I RT U A L M O T O R C Y C L E R I D E R F O R H I G H P E R F O R M A N C E
D R I V I N G

Virtual prototyping and simulative tools have become a pillar for many industries, in
order to reduce both costs and the time-to-market. That is also the case for the automo-
tive industry, and specifically for the motorcycle sector, with the development of virtual
riding solutions that go back to [7], in which a simple PID control action was used,
and to [1], in which the first MPC-based solutions to virtual riding were employed. As
often highlighted in those works, a motorcycle is a complex dynamical system, with the
added obstacle of instability, as it has to be maintained to the upright position while
following a desired path. It is also characterized by complex dynamics, that include
suspensions, chain pull effects and tire profiles, among the others.
Solutions based on MPC appear particularly appealing in order to simulate a human-
like riding behavior, as the approach to input generation of a Model Predictive Con-
troller is based on the prediction of how the system trajectory will evolve in the future
on the basis of the internal model that is used. That is conceptually similar to how an
actual rider would ride, i.e. by choosing the appropriate input (e.g. in terms of steering
and throttling) based on future projections and the desired trajectory. MPC also allows
for constraint enforcement, which may be used in order to guarantee that a human-like
behavior (in terms of roll angle etc.) is maintained along the track.
The next sections will be devoted to an overview of the most recent developments in
the design of a physics-based virtual rider at the University of Padua, whose results
have been published in [8] and [2].

2.1 a physics-based virtual rider

This section is devoted to an overview of the later developments of a physics based Vir-
tual Rider for high performance motorcycle driving [2]. The rider is constituted by a real-
time capable NMPC controller, which is based on a nonlinear internal model derived
through Lagrangian modeling. In particular, the motorcycle is represented through a
sliding plane model with two contact points on the ground, while the rider is mod-
eled as a point mass that can move in the lateral direction. Lateral slipping is regarded
through Pacejka Magic Formula and additional gyroscopic effects along with the roll
and caster effect on the steering angle on the ground have been considered.

5
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Figure 2.1: Scheme and reference frame for the motorcycle model. The main parameters of the model and
the generalized coordinates are highlighted.

2.1.1 Model for Control Synthesis

The nonlinear internal model used in the NMPC algorithm is based on a sliding plane
representation, in which the plane is allowed to roll and slide both in the x- and y-
directions; a point mass with a lateral movement DoF represents the rider (Figure 2.1).

2.1.1.1 Dynamics

Dynamic equations for the combined motorcycle-rider system have been derived
through the Euler-Lagrangian method, using q = [x, y, ψ, θ] as the generalized coor-
dinates for the system, with (x, y) being the rear wheel contact position coordinates, ψ

the yaw angle and θ the roll angle (see Figure 2.1). The rider lateral freedom of move-
ment is exemplified by the frontal and sagittal plane views in Figure 2.2.
The first step is to derive the Lagrangian L = Kb + Kr − Ub − Ur, which includes the
kinetic energy components of both the motorcycle body (Kb) and the rider (Kr):

Kb =
1
2

mb(ẋ2
cm,b + ẏ2

cm,b + ż2
cm,b) +

1
2

ωT
b Iωb (2.1)

Kr =
1
2

mr(ẋ2
cm,r + ẏ2

cm,r + ż2
cm,r) (2.2)

and their potential energy (Ub and Ur respectively):

Ub = mbghbcθ (2.3)

Ur = mrghrcθ (2.4)
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Figure 2.2: Frontal and sagittal views of the motorcycle highlighting the rider movement direction and the
sign convention from behind (a) and from above (b).

The center of mass (CM) and the angular velocity of the motorcycle body are derived
as:

xcm,b = x + bbcψ + hbsθsψ (2.5)

ycm,b = y + bbsψ − hbsθcψ (2.6)

zcm,b = hbcθ (2.7)

ωb = [θ̇, ψ̇sθ , ψ̇cθ ]
T (2.8)

while the rider CM is defined as:

xcm,r = x + brcψ + (hrsθ + yrcθ)sψ (2.9)

ycm,r = y + brsψ − (hrsθ + yrcθ)cψ (2.10)

zcm,r = hrcθ − yrsθ (2.11)

The parameters involved are the following:

1. mb/r, mass of the motorcycle body/rider;

2. bb/r, longitudinal distance from the rear wheel contact position to the motorcycle
body/rider CM;

3. hb/r, height of the motorcycle body/rider CM;

4. pb, rear to front wheel contact positions’ distance;

5. I = diag([Ixx, Iyy, Izz]), inertia matrix of the motorcycle body.

Using the generalized forces formulation, it is possible to derive the effect of the forces
on the minimal coordinates’ system.

Qj =
N

∑
k=1

Fk ·
∂rk

∂qj
, j ∈ {1, ..., 4}, k ∈ {1, ..., 5} (2.12)
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where Fk is the force vector at point k and rk is the position vector of point k according to
the inertial reference frame. The generalized forces Qj j ∈ {1, ..., 4} can be expressed
as B(q) · w, where w is the vector of forces that are applied to the system, i.e.

w = [Fx f , Fy f , Fxr, Fyr, Fd]
T (2.13)

with the subscripts assigned according to the following convention:

1. x/y: longitudinal/lateral wheel forces

2. f /r: front/rear wheel forces

3. Fd: longitudinal drag force

The frontal tire forces are defined w.r.t. the motorcycle longitudinal direction according
to the steering angle on the ground δG, which is derived from the handlebar angle δ

according to

δG = atan
(

cϵsδ

cθcδ − sθsϵsδ

)
(2.14)

with ϵ being the caster angle, namely the angular displacement of the steering axis
w.r.t. the vertical axis of the frontal wheel. One may thus obtain the typical equation of
motion (EoM)

M(q)q̈ + C(q, q̇) + G(q) = B(q)w (2.15)

where M(q) is the inertia matrix, C(q, q̇) includes the centrifugal and the Coriolis com-
ponents and G(q) the gravitational components. The equation is then reformulated, ac-
cording to a reference frame that rotates jointly with the motorcycle around the global
Z − axis, using a velocity transformation T that leads to the following velocity coordi-
nates:

˙̃q =


vx

vy

ψ̇

θ̇

 =


cψ sψ 0 0

−sψ cψ 0 0

0 0 1 0

0 0 0 1




ẋ

ẏ

ψ̇

θ̇

 = TT q̇ (2.16)

where vx and vy are the longitudinal and lateral velocities in the new frame. One may
now find the relationship between accelerations in the two frames by differentiating
(2.16), yielding:

q̈ = T ¨̃q + Ṫ ˙̃q (2.17)

which, when substituted in (2.15) and after premultiplying by TT leads to the modified
EoM:

TT M(q)T ¨̃q + TT[M(q)Ṫ ˙̃q + C(q, T ˙̃q)] + TTG(q) = TTB(q)w (2.18)

which may be rewritten as

M̃(q) ¨̃q + C̃(q, ˙̃q) + G̃(q) = B̃(q)w (2.19)

using the following substitutions:

M̃ = TT MT, G̃ = TTG, C̃ = TT(MṪ ˙̃q + C(q, T ˙̃q)), B̃ = TTB (2.20)
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2.1.1.2 Forces

The forces which are applied to the combined motorcycle/rider system are defined as
follows.
The longitudinal forces are computed as

Fx f = −γBλ
τ

f
b

rw f
(2.21)

Fxr = −γb(1 − λ)
τr

b
rwr

+ γt
τM

t
rwr

+ (1 − γt)
τm

t
rwr

(2.22)

with γt ∈ [0, 1] being the normalized throttle input, γb ∈ [0, 1] the normalized brake
input, λ ∈ [0, 1] the front-rear brake bias, τ

f /r
b the maximum front rear torque, τM

t the
maximum positive transmission torque, τm

t the maximum negative torque given by en-
gine braking, rw f /r the front and rear wheel radii. The maximum transmission torque
parameters τM

t τm
t are varied online in order to model the effect of the gearshift.

The lateral forces’ formulas are instead derived from the Pacejka Magic Formula for mo-
torcycles [9]:

Fy,i =Di
ysin[Ci

yatan(Bi
y − Ei

y(Bi
yαi − atan(Bi

yαi)))

+ Ci
θatan(Bi

θθ − Ei
θ(Bi

θθ − atan(Bi
θθ)))] i ∈ f , r

(2.23)

where αi are the frontal/rear side-slip angles of the tires, which are defined as

αr = atan
(

vy

vx

)
(2.24)

α f = atan
(

vy + pbψ̇

vx

)
− δG (2.25)

Additionally, the normal forces are computed starting from an estimation of the load
transfer torque as

Fz f =
mTbTg − τLT

pb
(2.26)

Fzr =
mT(pb − bT)g + τLT

pb
(2.27)

where the load transfer torque is

τLT = (Fx f + Fxr)hTcos(θ) (2.28)

and the total inertial and geometric parameters are

mT = mb + mr

bT =
bbmb + brmr

mT

hT =
hbmb + hrmr

mT

(2.29)

Finally, the longitudinal drag force is modeled through the simplified formula

Fd =
1
2

ρCd Av2
x (2.30)

where ρ is the air density, Cd is the drag coefficient and A is the frontal section area.
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2.1.1.3 Auxiliary Dynamics

The model accuracy is finally enhanced through the addition of the gyroscopic torques
that are generated by the motion of the wheels to the yaw and roll components of the
damping matrix as

C̄ = C̃ +


0

0

Cyaw
gyro

Croll
gyro

 (2.31)

where the added components are defined as

Cyaw
gyro = (Iw f ωw f + Iwrωwr)θ̇ (2.32)

Croll
gyro = −(Iw f ωw f + Iwrωwr)ψ̇cθ (2.33)

with ωwi = (vx/rwi), i ∈ { f , r} being the front and rear wheels’ rotational velocities
and Iwi, i ∈ { f , r} being the front and rear wheel rotational inertias. With this auxiliary
components the EoM may be revised to the final formulation:

¨̃q = M̃−1(B̃w − C̄ − G̃) (2.34)

2.1.1.4 Dynamics Spatial Reformulation

Another key ingredient in the system dynamics’ formulation to be employed for the
NMPC solution is their conversion into spatial coordinates, such that s, the arc length
along the track, is the independent variable to be integrated over, rather than time. This
is done so that the position reference that is fed to the MPC is not dependent on the
velocity. To this end, the reference trajectory σ is parameterized on s and the curvature
ζ = (1/ρ), with ρ being the instantaneous curvature radius, which can be computed as:

ζ =
x′y′′ − y′x′′

((x′)2 + (y′)2)
3
2

(2.35)

where f ′ = (d f (s)/ds) and f ′′ = (d2 f (s)/ds2) indicate first and second order derivation
w.r.t. the arc length. One may thus define the tracking errors geometrically according to
the scheme shown in Figure 2.3:

eψ = ψ − ψs (2.36)

ey = cψs(Ys − Y) + sψs(Xs − X) (2.37)

where ψs is the reference yaw angle, (Xs, Ys) is the absolute position reference at the
current spatial coordinates and (X, Y) is the current absolute position.
One may now derive the tracking error dynamics:

ėψ = ψ̇ − ζ ṡ (2.38)

ėy = vxseψ + vyceψ (2.39)
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Figure 2.3: Lateral and heading errors definition according to the spatial coordinates system

Using the chain rule, it is possible to compute the derivative of any time-dependent
function Ψ(t) w.r.t. the curvilinear abscissa s, i.e.

Ψ′ =
dΨ
ds

=
dΨ
dt

dt
ds

=
dΨ
dt

1
ṡ
=

Ψ̇
ṡ

(2.40)

where the arc length time derivative si given by

ṡ =
vxceψ − vyseψ

1 − ζey
̸= 0 ∀t (2.41)

2.1.1.5 Complete Model

Using the obtained dynamics model, the following state vector may be defined

ξ =



eψ

ey

θ

vx

vy

ψ̇

θ̇

δ

γt

γb

yr



⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒

Yaw trajectory error

Lateral trajectory error

Roll angle

Longitudinal velocity

Lateral velocity

Yaw rate of change

Roll rate of change

Steering angle

Normalized throttle input

Normalized brake input

Rider lateral movement

(2.42)
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and the input vector

u =


δ̇

γ̇t

γ̇b

ẏr


⇒
⇒
⇒
⇒

Steering angle rate of change

Throttle input rate of change

Brake input rate of change

Lateral rider movement rate of change

(2.43)

One can see that the input used in the MPC formulation is composed by the derivatives
of the actual motorcycle inputs. This is intentional, as it has been proven to allow for
a smoother action of the controller, leading to less aggressive and more realistic riding
behavior.
The final spatial-based system dynamics may now be expressed as:

ξ ′ = ϕ(ξ(s), u(s); σ(s)) (2.44)

2.1.2 NMPC formulation

After defining and tuning the internal physics-based model to be used for prediction
and optimization, the nonlinear Model Predictive Control problem to be solved can now
be formulated, in order to generate the desired input quantities (namely the steering
angle, the throttle and brake commands and the rider lateral displacement) to be fed to
the simulated motorcycle system at each control instant.
The NMPC problem is initially formulated in its continuous variant (in terms of dynam-
ics and cost function) in order to be discretized according to the OCP (Optimal Control
Problem) framework. This is done considering a prediction horizon T = [t0, t f ], to be
subdivided into N shooting intervals [t0, t1, ..., tN ]. The resulting optimization problem
will be a NLP (Nonlinear Programming Problem) that can be summarized as follows:

min
ξ·|i ,u·|i

N−1

∑
k=0

1
2
||hk|i(ξk|i, uk|i)||2Wk

+
1
2
||hN|i(ξN|i)||2WN

(2.45a)

s.t. 0 = ξ0 − ξ̂0, (2.45b)

0 = ξk+1|i − ϕk(ξk|i, uk|i; σk|i), k = 0, 1, . . . , N − 1, (2.45c)

rk|i ≤ rk(ξk|i, uk|i) ≤ rk|i, k = 0, 1, . . . , N − 1, (2.45d)

rN|i ≤ rN(ξN|i) ≤ rN|i (2.45e)

in which the following decision variables are involved:

ξ·|i =
[
ξ⊤0|i, ξ⊤1|i, . . . , ξ⊤N|i

]⊤
,

u·|i =
[
u⊤

0|i, u⊤
1|i, . . . , u⊤

N−1|i

]⊤ (2.46)

• ξk|i ∈ Rnξ are the system states at the discrete time instants tk for k = 0, ..., N,
while uk|i are the piecewise continuous inputs for k = 0, ..., N − 1.
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• hk|i : Rnξ × Rnu → Rny , hN|i : Rnξ → RnyN are vector functions of the state and
the control input (ξ, u) that define the cost function terms along the prediction
horizon.

• The cost function terms are weighted according to Wk, WN .

• ξ̂0 is the measurement/estimation of the current state, which is used as the start-
ing point for the numerical integration process and for the predicted trajectory.

• The functions r(ξk|i, uk|i) : Rnξ × Rnu → Rnc and r(ξN|i) : Rnξ → Rnc,N are used in
order to enforce user-defined constraints along the trajectory. They can be linear
or nonlinear and are restricted by the lower and upper bounds rk, rk.

• ϕk(ξk|i, uk|i) is a numerical integration operator that solves the initial value prob-
lem (IVP) obtained by imposing ξ(0) = ξ0|i in ξ ′ = ϕ(ξ(s), u(s); σ(s)) (2.44) and
returns the solution at tk+1. Intuitively, 0 = ξk+1|i − ϕk(ξk|i, uk|i; σk|i) represents the
continuity constraint, guaranteeing the continuity of the predicted trajectory.

In the specific case of the motorcycle system, the cost function should be employed in
order to guarantee the reference trajectory’s tracking and a realistic riding behaviour,
neither too aggressive or too laid back. These requirements have led to the choice of the
following vector functions to be employed in the NLP cost formulation:

hk(ξk, uk) =



eψ + α

ey

ėψ

ėy

ev

α

yr

γt · γb

δ̇

γ̇t

γ̇b

ẏr



hN(ξN , uN) =



eψ + α

ey

ėψ

ėy

ev

α

yr

γt · γb



(2.47)

where ev = v − vre f
1 is the vehicle velocity error, which is defined w.r.t. the velocity

reference which is fed to the controller and α = atan((vy + bψ)/vx) is the motorcycle
side slip angle.
The role and the meaning of the various cost function components can be summarized
as follows:

• eψ, ey and ev are employed in order to guarantee the reference tracking (both in
terms of position and velocity);

1 v =
√

v2
x + v2

y is the instantaneous velocity along the plane
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• ėψ, ėy (the derivatives of tracking errors) are introduced to guarantee smoother
tracking;

• the α penalty can be used to tone down the aggressiveness of the controller, as
large values of the side slip angle are related to a riskier riding behaviour;

• yr is used to guarantee that the rider returns to the vertical position; namely, the
vertical position is imposed as the rider’s base reference;

• γt · γb is used to avoid concurrent throttling and braking, which would be a
’waste’, as it would represent an atypical and inefficient riding behaviour.

The constraints are instead imposed on the following state and input quantities:

rk =



δ

γt

γb

yr

δ̇

γ̇t

γ̇b

ẏr



rN =


δ

γt

γb

yr

 (2.48)

with the following purposes:

• constraints on δ, γt, γb and yr are intrinsic control input bounds

• constraints on δ̇, γ̇t, γ̇b and ẏr are added to enforce a smoother input generation.

According to the general MPC framework, the NLP is solved at each control time step
(the specifics are detailed in the next section) in order to obtain the optimal control se-
quence u∗

·|i along the horizon. Only the first element of the sequence u∗
i = u∗

0|i is applied
to the controlled system. Note that the input employed in the NMPC formulation is
constituted by the derivatives of the actual system’s input, meaning that integration is
required in order to obtain the actual input to be applied, i.e.

δ

γt

γb

yr



∗

i

=


δ

γt

γb

yr



∗

i−1

+ ∆t · u∗
i =


δ

γt

γb

yr



∗

i−1

+ ∆t ·


δ̇

γ̇t

γ̇b

ẏr

 (2.49)

2.1.3 NLP solution strategy: Sequential Quadratic Programming

After setting up the Nonlinear Programming problem as shown in the previous section,
one may choose among different solver algorithms in order to find a solution to the
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optimization problem. The two most prominent approaches are Interior Point Methods
(IPM) and Sequential Quadratic Programming (SQP). They have been both analysed
extensively in terms of performance and properties. A comparison of their effectiveness
as solvers for optimization problems arising from optimal control schemes is available
in [10]. In this section, only the SQP scheme is reviewed, as it is the algorithm that
has been employed in all the trials that were attempted as part of this thesis. The gen-
eral reference is [11], where the NMPC solving toolbox MATMPC, which will also be
referenced in the next section, is detailed.

2.1.3.1 Sequential Quadratic Programming

The SQP is the algorithm that has been employed to solve problem (2.45). The basic idea
at the basis of SQP is to solve the NLP by iteratively reformulating it into a Quadratic
Programming (QP) problem, for which many high-performance commercial and open-
source solvers have been developed. In order to retrieve the QP problem, the objective
functions appearing in (2.45a) are replaced by their local quadratic approximation; also,
the constraints appearing in (2.45c-2.45e) are replaced by their local affine approxima-
tions. At each iteration l of SQP, the following QP problem will be obtained:

min
∆ξ,∆u

N−1

∑
k=0

1
2

[
∆ξk ∆uk

]
Hl

k

∆ξk

∆uk

+ gl
k

T

∆ξk

∆uk

+
1
2

∆ξT
N Hl

N∆ξN + gl
N

T
∆ξN (2.50a)

s.t. ∆ξ0 = ξ̂0 − ξ0, (2.50b)

∆ξk+1 = Al
k∆ξk + Bl

k∆uk + al
k, (2.50c)

cl
k ≤ Cl

k∆ξk + Dl
k∆uk ≤ cl

k, (2.50d)

cl
N ≤ Cl

N∆ξN ≤ cl
N , (2.50e)

where ∆ξ = ξ − ξl , ∆u = u − ul are the optimization variables resulting from the com-
pact notation ∆ξ = [ξT

0 , ξT
1 , ..., ξT

N ]
T, u = [uT

0 , uT
1 , ..., uT

N ]
T of the discrete state and control

variables. Note that ξl and ul represent the guess for the state and control trajectories
derived from the previous SQP iteration. The solution (∆ξl , ∆ul) to the QP (2.50) is then
used to update the solution to the NLP (2.45) according to:

ξl+1 = ∆ξl + βl∆ξl , (2.51)

ul+1 = ∆ul + βl∆ul (2.52)

where βl is the step length which is determined by the globalization strategy employed.
For completeness’ sake, the linearization matrices involved in (2.50) are now reported:

Al
k =

∂ϕ̂

∂ξk
, Bl

k =
∂ϕ̂

∂uk
, al

k = ϕ̂(ξl
k, ul

k)− ξl
k+1,

Cl
k =

∂rk

∂ξk
, Dl

k =
∂rk

∂uk
, Cl

N =
∂rN

∂ξN
,

cl
k = rk − rk(ξ

l
k, ul

k), cl
k = rk − rk(ξ

l
k, ul

k),

cl
N = rN − rN(ξ

l
N), cl

N = rN − rN(ξ
l
N)

(2.53)
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The Hessian matrices Hl
k, Hl

N appearing in the modified cost function (2.50a) are instead
approximated by means of the Gauss-Newton method, i.e. as

Hl
k =

∂hl
k

∂(ξk, uk)

T
∂hl

k
∂(ξk, uk)

(2.54)

which is guaranteed to be always positive semi-definite.

2.1.3.2 QP iteration solution

The iterative QP problems can then be solved according to different strategies, among
which sparse solvers like HPIPM, OSQP and Ipopt, which may be used to exploit the
generally sparse structure arising from the linearization of the NMPC problem. An
alternative is to instead condense problem (2.50) (and integrating the state variables in
the process) in order to obtain a dense QP problem of the type

min
∆u

1
2

∆uT Hc∆u + gT
c ∆u (2.55)

s.t. cc ≤ Cc∆u ≤ cc (2.56)

In this case solvers like qpOASES may be employed. A final alternative may be to in-
stead perform partial condensing, which leads to a smaller but still sparse QP problem.
HPIPM was the preferred solver for the NLP problem arising from the Virtual Rider’s
NMPC.

2.2 simulative results and drawbacks of the physics-based virtual

rider

This section is devoted to a brief overview of how the Virtual Rider/NMPC controller is
tested in simulation and how the NMPC problem is set up and solved in the MATLAB
environment. Finally, when discussing the performance of the physics-based Virtual
Rider, the main drawbacks of this approach will be highlighted.

Figure 2.4: A still taken from the VI-BRT Animator software, providing animations of the simulated track
traversal using the NMPC-based Virtual Rider
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2.2.1 Simulative Environment

The Virtual Rider is tested in a co-simulation environment: the NMPC controller is in
fact tested on a high-fidelity simulative environment called VI-BikeRealTime, provided
by VI-Grade in its 20.0 version [12]. The general simulation scheme is reported in
Figure 2.5, showing how the different components are interconnected in the general
Simulink environment.
As it can be seen, there is a specific block named as VI − BRT, which refers to the
simulation model of the motorcycle, which is integrated into the Simulink framework
by means of an s-function, having both inputs (produced by the Virtual Rider/NMPC
controller) and outputs (to be used e.g. for state/trajectory errors’ estimation). The sim-
ulation model in question counts 11 DoFs, including 6 for the sprung mass, 2 for each
wheel-suspension and 1 for the rotation between pinion and chassis. It also includes
comprehensive dynamics of the tires, suspensions, brakes, driveline and gyroscopic ef-
fects. Additionally, a moving mass with lateral DoF simulates the rider. It is clear that
significant deviations between the simulation model and the internal model of the Vir-
tual Rider are to be expected.
The simulation block is connected to the designed NMPC controller, which solves the
NLP problem at each control instant according to the strategy outlined in the previ-
ous section. The solution itself is attained through the open-source MATLAB toolbox
MATMPC [11].
The MATMPC-computed controls (which are the derivatives of the actual motorcycle
inputs) are then integrated using a simple Euler scheme, in order to be fed to the sim-
ulation block. In particular, the trials performed with the physics-based Virtual Rider
entailed a VI-BRT simulation frequency fsim = 1000Hz of the vehicle dynamics, while
the controls are updated at a fc = 100Hz frequency.

Figure 2.5: Scheme of the Co-Simulation Environment
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2.2.2 Performance of the physics-based Virtual Rider

Once the general simulation has been set up according to the scheme of Figure 2.5, it is
possible to perform a simulation, using a given internal model and the chosen NMPC
configuration. In particular, a suitable weight configuration may be found through a
tuning procedure. An interesting approach is the one provided by the Non-dominated
Sorting Genetic Algorithm NSGA-II, as described in [13]. Using such approach, the
NMPC weights may be tuned in order to find the desired configuration, in a range
that goes from performance-oriented to stability-inducing. The tuning procedure must
be performed w.r.t. a given task, i.e. a given track to be completed. In particular, the
configuration which was adopted for the main comparisons of this thesis was a mid-
range one (in the performance ↔ stability spectrum). More specifically the weights along
the prediction horizon and at the the terminal step (according to the weighting approach
already presented in (2.47)) are:

hk(ξk, uk) =



0.951

0.130

0.900

10−4

0.103

2.084

10−3

105

0.500

10−4

8 · 10−4

0.600



hN(ξN , uN) =



0.951

0.130

0.900

10−4

0.103

2.084

10−3

105



(2.57)

As previously mentioned, the weight configuration has to be chosen according to the
driving task. For the purposes of this thesis the general framework for comparative
analysis is the so called VI-Track, which is a test track provided by VI-BRT, which is
shown in Figure 2.6a. The track is supposed to be completed according to a corner-
cutting route that is computed off-line. A suitable velocity profile to be tracked is also
generated off-line using the tools provided by VI-Road. A sufficiently conservative veloc-
ity profile is chosen in order to guarantee a comparative framework that is sufficiently
easy to approach. The velocity profile to be tracked is shown in Figure 2.6b.
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(a) VI-Track, the track to be used as the testbed for comparisons

(b) The longitudinal velocity reference to be tracked

Figure 2.6: General testbed for trials and comparisons of the devised Virtual Rider control strategies

In terms of constraints to be satisfied along the trajectory, the chosen configuration
(according to framework shown in (2.48)) was the following:

rk =
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 rN =


π/20

1

1

+0.15

 (2.58)

Using this base configuration with the nominal (physics-base) model as the internal
model for the Virtual Rider satisfactory results can be attained, with a lap time of 66.94s
when using a uniform grid for integration, consisting of N = 80 shooting intervals of
Tst = 1m and including two integration steps per shooting interval.
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Figure 2.7: Plots showing a comparison between the real accelerations (shown in red) and the accelerations
estimated by the internal physics-based model. Specifically, (a) shows the longitudinal acceler-
ation v̇x, (b) shows the lateral acceleration v̇y, (c) shows the yaw acceleration ψ̈, (d) shows the
roll acceleration θ̈

At the same time the physics-based model presents some drawbacks, which are mainly
related to the significant mismatch that exists w.r.t. the real motorcycle system. This is
exemplified by the plots of the 4 accelerations of the system reported in Figure 2.7: it
can be seen how the accelerations that are estimated by the internal white-box model
are generally very different w.r.t. the real system accelerations. Barring the longitudi-
nal acceleration (v̇x), for which there is a close similarity, it is clear that for the others
(namely the lateral acceleration v̇y, the yaw acceleration ψ̈ and the roll acceleration θ̈) the
internal model is only able to capture the general tendencies, while it often greatly over-
estimates accelerations. This does not appear to affect the general efficacy of the NMPC
controller, which seems to cope with such discrepancies when it is appropriately tuned.
Still, it begs the question as to whether improving the internal modelling capabilities
of the NMPC controller may lead to improvements in the riding performance. For the
task at hand, performance may formulated in terms of lap time and trajectory tracking
capabilities, but also in terms of accuracy of the NMPC internal model.
This is where this thesis work comes into play, as the main focus was placed into explor-
ing learning paradigms that may employed in order to augment the white-box dynam-
ics with additional learning-based ones or alternatively to substitute the physics-based
dynamics with black-box models to be derived by learning from data. This is done with
the stated objective of improving the general performance. Such research direction falls
under the general framework of learning dynamics, inside the broader world of Learning-
based MPC (LbMPC), whose main objective is to improve the internal model accuracy
in order to elicit improvements to the general control performance.
The next chapter is thus devoted to an overview of the main learning techniques (mostly
related to Gaussian Process Regression) that were explored and tested for this thesis in
order to model dynamics.
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G A U S S I A N P R O C E S S R E G R E S S I O N F O R D Y N A M I C S L E A R N I N G

This chapter is devoted to the topic of Gaussian Process Regression, which has been
the main methodology used in order to move towards the world of Learning-based
MPC. Gaussian Process Regression has been demonstrated to be a prime approach to
tackle the problem of learning dynamics to be employed in the NMPC’s internal model,
as highlighted in reviews on LbMPC [3], according to which GP regression is the most
commonly employed technique, as it provides a flexible stochastic non-parametric ap-
proach to modeling. It is known for not being prone to overfitting and its probabilistic
nature lends itself to active learning strategies [14] and to advanced frameworks like
stochastic MPC (SMPC), where the stochastic state distributions are propagated over
the prediction horizon.
GP-based strategies have already led to various success stories, also in the applicative
field, including the automotive world [4] and the robotics field [5]. Their usefulness has
also led to the development of dedicated toolboxes, including the one developed at the
University of Padua, namely LbMATMPC [15], whose framework has been at the basis
of this thesis with proper alterations.
This chapter is thus devoted to introducing the mathematical tools and the general
concepts related to Gaussian Process Regression, with a particular focus on the model
approximations that are found in literature and that are best suited for application in
a demanding scenario like the one posed by NMPC, especially when applied to high
performance motorcycle riding.
Finally, an overview of how GPR is integrated in the general framework introduced in
Chapter 2 will be presented.

3.1 gaussian process regression

The reference used to introduce the general framework of Gaussian Processes and their
application to the (dynamics) regression problem is the seminal work by Rasmussen
and Williams [16]. In particular, an insightful understanding of GP inference may be
gained by taking the so-called function-space view, according to which a GP may be
used to describe a distribution over function. In such sense, it must be recalled that a
Gaussian Process is a collection of random variables, any finite number of which have
a joint Gaussian distribution. A GP f (x) (in our case the learnt dynamics) may be

21
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completely defined through a mean function m(x) and a covariance function k(x, x′),
which take the form:

m(x) = E[ f (x)] (3.1a)

k(x, x′) = E[( f (x)− m(x))( f (x′)− m(x′))] (3.1b)

leading to the general notation

f (x) ∼ GP(m(x), k(x, x′)) (3.2)

The random variables represent the value of the function f (x) at the location x, the
input for regression, which for the purpose of this thesis can be considered as a direct
transformation of the state and control quantities of the motorcycle system (ξ and u
respectively).
Starting from this general framework, the simple formulas to be used for prediction
may be derived by incorporating the knowledge that the training data provides about
the function. The simplest case to be considered is when the observations in the training
dataset are noise-free, i.e. the training dataset is of the type {(xi, fi)|i = 1, ..., n}. In this
case, it is possible to derive the joint distribution of the training outputs, denoted as
f, and the test outputs, denoted as f∗. According to the prior and assuming the mean
function to be m(x) ≡ 0, the joint distribution is f

f∗

 ∼ N

0,

 K(X, X) K(X, X∗)

K(X∗, X) K(X∗, X∗)

 (3.3)

Assuming there are n training points and n∗ test points K(X, X∗) denotes the n × n∗

matrix comprising the covariances evaluated for all pairs of training and test points; in
particular, given the training points {xi, i = 1, ..., n} and the test points {x∗,j, j =

1, ..., n∗}, the covariance matrix K(X, X∗) will be

K(X, X∗) =


k(x1, x∗,1) . . . k(x1, x∗,n∗)

. . . . . . . . .

k(xn, x∗,1) . . . k(xn, x∗,n∗)

 (3.4)

The other covariance entries K(X, X), K(X∗, X∗) and K(X∗, X) are similarly defined.
What is done next is to retrieve the posterior distribution over functions by restricting
the prior distribution represented by (3.2) to contain only the functions that agree with
the observed data points; this process may be graphically represented as in Figure 3.1.
Fortunately, this may be done easily by exploiting the Gaussianity assumption on the
R.V.s f and f∗, which makes it easy to condition the joint prior distribution on the obser-
vations to give

f∗|X∗, X, f ∼ N (K(X∗, X)K(X, X)−1f,

K(X∗, X∗)− K(X∗, X)K(X, X)−1K(X, X∗))
(3.5)

The next step is to move towards a more realistic modelling setup, by assuming that
we do not have direct access to function values themselves, but to their noisy versions,
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Figure 3.1: Panel (a) shows 3 functions sampled from a GP prior, i.e. from f (x) ∼ GP(m(x), k(x, x′). Panel
(b) shows 3 random functions drawn from the posterior, i.e. the prior conditioned on the five
noise-free observations. The shaded area indicates the 95% confidence region. Figure taken
from [16]

denoted as y = f (x) + ϵ. One generally makes the usual assumption that ϵ is additive
i.i.d. Gaussian noise having variance σ2

n , which leads to the modified prior of the noisy
observations

cov(yp, yq) = k(xp, xq) + σ2
nδpq

or cov(y) = K(X, X) + σ2
n I more compactly

(3.6)

where δpq is the Kronecker delta. The joint distribution of the observed noisy target
values and the function at the test locations thus becomes: y

f∗

 ∼ N

0,

K(X, X) + σ2
n I K(X, X∗)

K(X∗, X) K(X∗, X∗)

 (3.7)

The analogous posterior distribution of (3.5) will thus be

f∗|X, y, X∗ ∼ N (µ∗, Σ∗) (3.8)

where

µ∗ ≜ E[f|X, y, X∗] = K(X∗, X)[K(X, X) + σ2
n I]−1y (3.9a)

Σ∗ = K(X∗, X∗)− K(X∗, X)[K(X, X) + σ2
n I]−1K(X, X∗) (3.9b)

A softer notation may be derived by defining K = K(X, X) K∗ = K(X, X∗) and
k∗ = k(x∗, X) to denote the vector of covariances between a single test point and the n
training points, so that equations (3.9a) and (3.9b) become

µ∗ = k∗(K + σ2
n I)−1y (3.10a)

V [ f∗] = k(x∗, x∗)− k∗(K + σ2
n I)−1k∗

T (3.10b)

This notation makes it clear that the mean prediction can be seen as a linear combination
of n kernel functions, each one centered on a training point:

µ∗ =
n

∑
i=1

k(x∗, xi)αi = k∗α (3.11)
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where α = (K + σ2
n)

−1y. This is a notation that will be used recurrently, as it relates to
an efficient way to compute predictions. It also highlights how a GP may be represented
in terms of (possibly infinite) basis functions, which is a manifestation of the representer
theorem [17].
Through a simple analysis of eq. (3.9b) it can be noted how the predictive variance does
not depend on the observed targets but only on the inputs, which is a property of the
Gaussian distribution. One can also see how it is the difference between two terms,
with K(X∗, X∗) being the prior covariance and with K(X∗, X)[K(X, X) + σ2

n I]−1K(X, X∗)

being the information that the observations give about the function.

3.1.1 Covariance functions

As anticipated in the previous section, a Gaussian Process is defined by two main
elements: the mean function, which in many cases is chosen to be equal to 0, and the
covariance function, which is the most crucial ingredient, as it encodes the assumptions
on the function that has to be learnt. The basic idea is that it encodes a measure
of nearness or similarity under the GP view. It is interesting to consider a pair of
covariance functions that are of interest for the purpose of dynamics learning.

3.1.1.1 The Squared Exponential kernel

The most commonly used covariance function is the squared exponential (SE), which has
the general form

kSE(x, x′) = σ2
f · exp

(
−1

2
||x − x′||2Γ−1

)
= σ2

f · exp
(
−1

2
(x − x′)TΓ−1(x − x′)

)
= σ2

f · exp

(
−

D

∑
i=1

([x]i − [x′]i)2

2l2
i

) (3.12)

where the matrix

Γ =



l2
1 0 0 . . . 0

0 l2
2 0 . . . 0

...
. . . . . . . . .

...

0 . . . 0 l2
D−1 0

0 . . . 0 0 l2
D


(3.13)

has as its diagonal elements the so-called length-scales, which determine the influence
of each input feature (i = 1, ..., D) on the similarity measure expressed by the covari-
ance. σ2

f instead represents the overall GP variance and is also known as amplitude. An
exponential kernel results in a smooth prior and is generally preferred when no specific
knowledge on the modelled function properties is available.
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Other kernels of interest exist. Among those that are useful for dynamics modeling, the
Matérn one must certainly mentioned, as it is able to gauge high-frequency dynamics
that the SE kernel is not always able to interpret.
A focused research into kernels different from the SE kernel was avoided as other di-
rections were favored. Still, future research should be concerned with the study of co-
variance functions as the kernel’s choice is of the uttermost importance in determining
the properties of the GP model. One can use simple kernels and also their combination
(e.g. the sum or the product of kernels, which is still a valid kernel) in order to embed
prior knowledge on the properties of the (dynamics) function that needs to be learnt.

3.1.2 GP Hyperparameters

As can be seen from the introductory section on GP covariance functions, there are some
free parameters that need to be set. One can take as example the previously introduced
SE kernel, which has also been the main covariance function of interest for this thesis in
view of its ease of use. Looking at kernel (3.12), rewritten for the noisy targets y rather
than for the underlying function f , i.e.

kSE(x, x′) = σ2
f · exp

(
−

D

∑
i=1

([x]i − [x′]i)2

2l2
i

)
+ σ2

nδxx′ (3.14)

the following adjustable parameters can be identified

1. the length-scales li

2. the signal variance σ2
f

3. the noise variance σ2
n

which are referred to as hyperparameters. They are fundamental as they directly influence
the properties of the predictive mean and variance structure of the GP model.

A simple example of how they influence the nature of the modelled function is shown
in Figure 3.2, where a 1-dimensional toy example is shown. In particular, data generated
through a SE kernel with (l, σf , σn) = (1, 1, 0.1) is fit by using GP models using different
hyperparameters sets, specifically:

(a) (l, σf , σn) = (1, 1, 0.1)

(b) (l, σf , σn) = (0.3, 1.08, 5 · 10−5)

(c) (l, σf , σn) = (3, 1.16, 0.89)

When using the right hyperparameters (i.e. Figure 3.2(a)) it is possible to retrieve a
proper predictive model, characterised by a good fit of the data and by low variance
when sufficiently close to the regions explored by training data.
If instead predictions are made using a process having a lowered length-scale l = 0.3
the results are of the type shown in Figure 3.2(b). A lower length-scale is associated to
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Figure 3.2: A figure (from [16]) showing the effect of varying the hyperparameters used in the GP model
employed for prediction. The training data are shown as + and have been generated them-
selves by a GP with (l, σf , σn) = (1, 1, 0.1). Panel (a) shows the predictive mean ± 2 stan-
dard deviations resulting from a prediction GP model having the exact hyperparameters
(l, σf , σn) = (1, 1, 0.1). Panels (b) and (c) instead show the results deriving from a subopti-
mal hyperparameters choice, i.e. (l, σf , σn) = (0.3, 1.08, 5 · 10−5) and (l, σf , σn) = (3, 1.16, 0.89)
respectively

a larger flexibility of the model, which may even fit the training data perfectly. At the
same time, the resulting model may suffer from low generalizability, as shown by the
exploding predictive variance in the same example, even in the vicinity of the training
data.
A higher than needed length-scale l = 3 is associated to a smoother and slower-varying
predicted function affected by a higher amount of noise, which cannot fit the presented
training data properly, as shown in Figure 3.2(c).
Finding the right hyperparameters to fit data is probably the most fundamental step
when using GPs for regression tasks and is thus the main requirement when training a
GP for prediction. To that end, the most elegant methods that can be employed involve
marginal likelihood maximisation.
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3.1.3 Model Selection (Hyperparameter Tuning) for GPR through Marginal Likelihood Opti-
mization

A brief overview of how hyperparameters are optimized when considering the full GP
model is now presented. In particular, the general framework of marginal likelihood
maximization is prioritized, as it was the method employed in the context of this thesis.
Other approaches for hyper parameter tuning, like cross validation, are available.
A preliminary step is the derivation of the marginal likelihood (also called evidence)
p(y|X)). Mathematically speaking, it is the integral of the likelihood times the prior,
i.e.

p(y|X) =
∫

p(y|f, X)P(f|X)df (3.15)

In particular, under the Gaussian process model, the prior is Gaussian, f|X ∼ N (0, K).
In log terms, this corresponds to

logp(f|X) = −1
2

fTK−1f − 1
2

log|K| − n
2

log2π (3.16)

The likelihood is instead a factorized Gaussian y|f ∼ N (f, σ2
n I). By making use of

formulas (A.2-A.4), it is possible to perform the integration in (3.15), yielding the log
marginal likelihood

logp(y|X, θ) = −1
2

yT(Ky)
−1y − 1

2
log|Ky| −

n
2

log2π

= −1
2

yT(K + σ2
n I)−1y − 1

2
log|K + σ2

n I| − n
2

log2π

(3.17)

where the conditioning on the hyperparameters θ has been highlighted. It can be noted
that (3.17) is also a direct consequence of y|X ∼ N (0, K + σ2

n I).
It is now possible to outline a model selection (hyperparameter tuning) procedure based
on Bayesian principles, which provide a consistent framework for inference. Before delv-
ing deeper into that, it is interesting to highlight the roles of the three terms of the
marginal likelihood in (3.17):

1. − 1
2 yTK−1

y y, which is the only term involving the observed targets, is the data-fit
term

2. 1
2 log|Ky|, which depends only on the covariance function and the inputs, is the
complexity term

3. n
2 log2π is a normalization constant

In particular, the data-fit term decreases monotonically with the length-scales as the
model becomes less and less flexible. The negative complexity term instead increases
with the length-scales as the model becomes less complex with growing length-scales.
What needs to be found is a hyperparameter configuration that accomodates both crite-
ria, that is neither too complex (leading to overfitting) or too simple (causing underfit-
ting).
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In order to find a suitable configuration, one thus aims to maximise the marginal like-
lihood (equivalently minimize the negative log marginal likelihood). In order to do so,
a gradient-based approach may be employed, with the gradient of (3.17) w.r.t. each
hyperparameter being

∂

∂θj
log p(y|X, θ) =

1
2

yTK−1 ∂K
∂θj

K−1y − 1
2

tr
(

K−1 ∂K
∂θj

)
=

1
2

tr
(
(ααT − K−1)

∂K
∂θj

)
where α = K−1y

(3.18)

What is done next is to use a gradient-based algorithm to retrieve the marginal like-
lihood maximum (the negative log likelihood minimum). It must be emphasized that
the marginal likelihood may suffer from multiple local optima (each representing a dif-
ferent interpretation of data), even though they are not too much of a problem when
employing simple covariance functions

3.2 sparse gp approximations

Even though GPs provide a powerful Bayesian Regression framework, that is nonpara-
metric and interpretable, they suffer from scalability problems, considering the cubic
complexity of the complete model w.r.t. data size. That is why a lot of research has
been devoted towards sparse GP model approximations to reduce the related compu-
tational complexity. This is especially important for online applications like the Virtual
Rider, which require learning solutions that are scalable and that do not compromise
the real-time feasibility of the NMPC controller. Scalable GP techniques have been re-
viewed in [6] and include both global approximations, which distillate the entire data,
and local approximations, which divide the data for subspace learning. Through this
thesis the focus has been on global approximators, while simple local approximations
have been used only in the online context (see Section 3.4). In the next sections the ba-
sics of two global approximators, generally known as FITC (Fully Independent Training
Conditional) and VFE (Variational Free Energy), are introduced. What they have in com-
mon is the hypothesis that the information stored in the training dataset can actually be
synthesized through a set of inducing points (the so called inducing point assumption).

3.2.1 The inducing input assumption

The idea of this assumption is to use a set of m inducing points Xu having as correspond-
ing function values fu. One then assumes that f and f∗ are conditionally independent
given fu, namely that

p(f, f∗|fu) = p(f|fu)p(f∗|fu) (3.19)



3.2 sparse gp approximations 29

The choice of the inducing points is itself a research subject; different procedures have
been followed, as will become clear in the rest of the thesis work. Using the inducing
point assumption, the prior distribution may be adjusted using the relation

p(f, f∗, fu) = p(f|fu)p(f∗|fu)p(fu) (3.20)

All the probabilities appearing in (3.20) are Gaussian. This allows to formulate the
following complete prior

p(f, f∗, fu) ∼ N




m(X)

m(X∗)

m(Xu)

 ,


K f f Q f ∗ K f u

Q∗ f K∗∗ K∗u

Ku f Ku∗ Kuu


 (3.21)

where the notation Qab = KauK−1
uu Kub (which refers to the Nyström approximation) has

been used. One can see how K f ∗ has now been substituted by Q f ∗, which highlights
how f (the observations) and f∗ (the targets) communicate through fu (the function
values at the inducing inputs’ locations). The new posterior of f∗, given the new prior,
will be

p(f∗|f) ∼ N (µ∗, Σ∗)

µ∗ = m(X∗) + Q∗ f K−1
f f (f − m(X)) (3.22a)

Σ∗ = K∗∗ − Q∗ f K−1
f f Q f ∗ (3.22b)

Alternatively, by first finding the posterior distribution of fu

p(fu|f) ∼ N (µu, Σu)

µu = m(Xu) + Ku f K−1
f f (f − m(X)) (3.23a)

Σu = Kuu − Ku f K−1
f f K f u (3.23b)

it is possible to obtain an alternative but equivalent formulation of (3.22a) and (3.22b)

µ∗ = m(X∗) + K∗uK−1
uu (µu − m(X)) (3.24a)

Σ∗ = K∗∗ − K∗uK−1
uu (Kuu − Σu)K−1

uu Ku∗ (3.24b)

3.2.2 The FITC GP approximation

The rationale behind the FITC approximation has been developed by Snelson and
Ghahramani in [18] and is well summarized in [19]. In particular, starting from the
base inducing input assumtpion, a stronger one must be added: given fu, also all other
function values f are independent w.r.t. each other:

p( fi, f j|fu) = p( fi|fu)p( f j|fu) (3.25)
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which is the FITC assumption. A new prior of the form

p(f, f∗, fu) ∼ N





m(x1)
...

m(xn)

m(X∗)

m(Xu)


,



K f1 f1 . . . Q f1 fn Q f1∗ K f1u
...

. . .
...

...
...

Q fn f1 . . . K fn fn Q fn∗ K fnu

Q∗ f1 . . . Q∗ fn K∗∗ k∗u

Ku f1 . . . Ku fn Ku∗ Kuu




(3.26)

is thus derived. It is important to note that the assumption is made only for the elements
of f and not for f∗, as K∗∗ does not need to be inverted. The covariance matrix K f f from
(3.21) is thus reformulated as

K̃ f f = Q f f + diag(K f f − Q f f ) = Q f f + Λ f f (3.27)

Λ f f = diag(K f f − Q f f ) (3.28)

while K∗∗ remains unchanged. After additional manipulations (that can be found in
Section A.2) the final posterior formulas are finally obtained:

µ̃∗ = m(X∗) + k∗uΣKu f Λ−1(f − m(X)) (3.29a)

Σ̃∗ = K∗∗ − Q∗∗ + K∗uΣKu∗ (3.29b)

where

Σ = (Kuu + Ku f Λ−1K f u)
−1 (3.30)

Λ = diag(K f f − Q f f ) (3.31)

Note that when considering noisy observations y rather than f, the posterior is modified
by simply tweaking Λ, which becomes Λ = diag(K f f − Q f f + σ2

n In).
It is now easy to note the significant advantage provided by the FITC assumption, as
the only n × n matrix to be inverted is Λ, which is diagonal. The other matrices to be
inverted are m × m, which leads to meaningful reductions in computational complexity
when choosing m << n inducing points. This may be used effectively when applying
GPR in an online setting like the one constituted by the virtual rider, especially when
online matrix inversions are required.

3.2.3 The VFE GP approximation

The approach behind the VFE approximation (introduced in [20]) is conceptually differ-
ent w.r.t. the FITC one as it is based on a posterior approximation (inference is approx-
imated rather than the prior itself). In particular VFE inference aims at minimizing a
distance between the exact posterior GP and a variational approximation. In doing so,
the inducing inputs Xu become variational parameters which are rigorously selected
as to minimize the distance. As a consequence, this approach inherently considers the
inducing input selection as part of the GP training, which generally aims to determine
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the optimal GP hyperparameters through marginal likelihood maximisation.
The first step is to approximate the posterior GP (3.9), which can also be described by
means of the predictive Gaussian p(f∗|y) =

∫
p(f∗)p(f|y)df, where p(f∗|f) denotes the

conditional prior over any finite set of function points f∗. As done before, the objective
is to approximate such Bayesian integral by using a small set of m auxiliary inducing
variables fu evaluated at the pseudo-inputs Xu, that are independent from the training
inputs. By using the augmented joint model p(y|f)p(f∗, fu, f), the predictive Gaussian
may be rewritten as

p(f∗|y) =
∫

p(f∗|fu, f)p(f|fu, y)p(fu|y)dfdfu (3.32)

As a next step, it is supposed that fu is a sufficient statistic for f, namely that f∗ and
f are independent given fu, i.e. p(f∗|fu, f) = p(f∗|fu), leading to the reformulation of
(3.32) as

q(f∗) =
∫

p(f∗|fu)p(f|fu)ϕ(fu)dfdfu =
∫

p(f∗|fu)ϕ(fu)dfu =
∫

q(f∗, fu)dfu (3.33)

where q(f∗) = p(f∗|y) and ϕ(fu) = p(fu|y). In particular, the fact that p(f|fu) =

p(f|fu, y) has been used. It is true since y is just a noisy version of f and it has been
assumed that f∗ is conditionally independent from f given fu.
The approximation is evident by observing that in practice it is hard to find inducing
variables fu that are sufficient statistics, meaning that q(f∗) itself will always be an ap-
proximation of p(f∗|y). Consequently, one takes the additional step of choosing ϕ(fu) as
a free variational Gaussian distribution, such that in general ϕ(fu) ̸= p(fu|y). The varia-
tional distribution ϕ(fu) will depend on a mean vector µ and a covariance matrix A, that
will have to be selected. Through (3.33) it is finally possible to obtain the approximate
posterior GP mean and covariance functions, which are of the type:

µ∗
q = µq(x∗) = K∗uk−1

uu µu (3.34a)

Σq
∗ = K∗∗ − K∗uK−1

uu Ku∗ + K∗uBKu∗ (3.34b)

where B = K−1
uu AK−1

uu . This is a general sparse posterior GP that may be computed in
O(nm2). The important question that VFE answers is how to select the ϕ distribution
(namely (µu, A)) and the inducing inputs Xu. This is done through a variational method
that allows to jointly specify these quantities and to treat Xu themselves as a variational
parameter to be selected by minimizing the KL divergence.
What is done in practice is to minimize a distance between the augmented true pos-
terior p(f, fu|y) and the augmented variational posterior q(f, fu), keeping into account
that q(f, fu) = p(f|fu)ϕ(fu) from (3.33).
To determine the variational quantities (Xu, ϕ), the KL divergence KL(q( f )||p(f, fu|y))
has to be minimized. Such minimization is equivalent to the maximization of the fol-
lowing variational lower bound of the true log marginal likelihood:

FV(Xu, ϕ) =
∫

p(f|fu)ϕ(fu)log
p(y|f)✘✘✘✘p(f|fu) p(fu)

✘✘✘✘p(f|fu)ϕ(fu)
dfdfu ≤ logp(y) (3.35)
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The optimal choice for the variational distribution ϕ can be derived analytically and
leads to the following revised bound:

FV(Xu) = log[N (y|0, σ2
n I + Q f f )]︸ ︷︷ ︸

data fit + complexity penalty

− 1
2σ2

n
tr(K̃)︸ ︷︷ ︸

trace term

(3.36)

where

1. Q f f = K f uK−1
uu Ku f according to the previously introduced notation

2. K̃ = Cov(f|fu) = K f f − K f uK−1
uu Ku f

The real novelty of this objective function is the regularization trace term − 1
2σ2

n
tr(K̃).

Further maximization of the bound can be achieved by optimizing over Xu and option-
ally over the number of inducing points, which determines the flexibility of the vari-
ational distribution q(f, fu) = p(f|fu)ϕ(fu) as both p(f|fu) and the underlying optimal
distribution ϕ∗ are adapted when tuning Xu. In order to obtain the optimal ϕ∗, which
will be needed for prediction, it is sufficient to differentiate (3.35) without constraints
to obtain

ϕ∗(fu) ∼ N (µu, A)

µu = σ−2
n Kuu(Kuu + σ−2

n Ku f K f u)
−1Ku f y (3.37a)

A = Kuu(Kuu + σ−2
n Ku f K f u)

−1Kuu (3.37b)

Along with (3.34), this now fully specifies the variational GP and allows for predictions
at unseen input points. The predictive distribution is not novel per se, as it is exactly
the one resulting from the projected process (PP) formulation [21]. In fact, it must be
stressed again that the real novelty is given by how the inducing inputs and the kernel
hyperparameters are selected. The additional trace term in the objective function pe-
nalises the sum of the conditional variances at the training inputs, conditioned on the
inducing inputs. Intuitively, this ensures that VFE not only models the specific training
dataset y, but also approximates the covariance structure of the full GP K f f . Addition-
ally, when the variational lower bound is maximized, the hyperparameters (σ2

n , θ) (in
the case of the SE kernel (σ2

n , σ2
f , l1, . . . , lD)) are regularized (e.g. the noise variance will

tend to be higher w.r.t. other sparse approximations).

3.2.4 The advantages of VFE for inducing input selection

A comparison between sparse approximation methods has been conducted in [22],
where the main differences between the two main approaches, namely FITC and VFE,
are highlighted and will now be briefly summarized:

1. FITC may severely underestimate the noise variance, while VFE tends to overesti-
mate it due to their respective objective functions
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2. VFE tends to improve with additional inducing inputs while FITC may ignore
them. This is due to the fact that adding an inducing input always leads to an
improvement of the VFE bound while it may cause an additional penalty with
the FITC cost function. When increasing the number of inducing variables, it will
happen that FITC tends to place some of them on top of each other, whereas VFE
spreads them out, tending to recover the full GP; this is highlighted by the exam-
ple shown in Figure 3.3, which shows the inducing input positioning following
the optimization procedure on a toy example.

3. FITC does not recover the full GP posterior when adding inducing inputs while
VFE does, meaning that FITC may not utilise additional resources to model the
data, as highlighted by the clumping effect.

4. VFE may be hindered by local optima and may cause underfitting. One has to put
care when optimizing.

Because of the listed FITC pathologies, it is generally recommended to use VFE when
looking for inducing inputs. One still has to pay attention to optimisation difficulties,
which may be mitigated by careful initialisation, random restarts and other optimisation
tricks.
The FITC approximation still provides a very useful framework that may be used in the
online implementations of GPR, as will be demonstrated in Part ii.

Figure 3.3: Fits for 15 inducing inputs using FITC and VFE (the black crosses being the initial configuration
and the red ones the optimised one). One can see how FITC avoids the penalty of added
inducing inputs by clumping some of them on top of each other (appearing as single red
crosses) while VFE spreads out the inducing inputs to get closer to the true full GP posterior.
The approximated models’ predictive means and variances (in terms of 2 stds) are shown in
red, while the true full GP posterior’s ones are depicted in grey. The figure is taken from [22].

3.3 gp-based mpc

This section is devoted to an overview of how GP models may be used to augment
or partially substitute the physics-based internal dynamics model in order to provide
higher-fidelity representations of the actual motorcycle dynamics, leading to improve-
ments in the predictions and in the virtual rider’s driving behavior. While technical
specifications of the derived data-based models will be deferred to the next chapter, the
general approach to model augmentation is now presented.
Considering that NMPC modeling is done starting from the continuous-time model



34 gaussian process regression for dynamics learning

(see Chapter 2), with the derivation of the accelerations w.r.t. the chosen minimal coor-
dinates (denoted as q̈), the chosen approach is to employ continuous-time acceleration
modeling also when using GPR, according to the procedure outlined in [23].
In particular, it is assumed that the real accelerations of the motorcycle system q̈ can
be modeled by an augmented model, where the physics-based dynamics are combined
with the GP-based ones and an additional i.i.d process noise, which is placed in order to
explain the unmodeled dynamics. More formally, the general dynamics structure will
be of the type:

q̈(t) = ¨̃q + ϕq̈(t) + e(t)
v̇x

v̇y

ψ̈

θ̈

 =


˙̃vx(t)

˙̃vy(t)
¨̃ψ(t)
¨̃θ(t)

+


ϕv̇x(t)

ϕv̇y(t)

ϕψ̈(t)

ϕθ̈(t)

+


ev̇x(t)

ev̇y(t)

eψ̈(t)

eθ̈(t)


(3.38)

where

1. ¨̃q represents the physics-based (white-box) dynamics

2. ϕq̈(t) represents the GP-modeled dynamics (grey-box if used in combination with
the physics based dynamics, black-box otherwise).

3. e(t) represents the process error, which for the simulated motorcycle system can
describe both unmodeled dynamics and other mismatches between the true model
and the Virtual Rider’s one.

Note that each additional dynamics component (i.e. ϕv̇x(t), ϕv̇y(t), ϕψ̈(t), ϕθ̈(t)) is mod-
eled through a different GP model, as it is assumed that they are independent. This
choice leads to a significant simplification of the models to be trained and allows for the
possibility of augmenting just part of the dynamics (setting the other GP components
to 0). Moreover, it is easy to see that, when aiming for black-box modeling of a given
acceleration, it is possible to just set the corresponding white-box dynamic component
(among ˙̃vx(t), ˙̃vy(t), ¨̃ψ(t), ¨̃θ(t)) to 0.

3.4 online local approximations for gp-based mpc

This section is devoted to the exploration of local approximations, possibly based on
the sparse models presented in the previous section, that may be employed in an online
setting (e.g. for the Virtual Rider) by exploiting the nature of the NMPC problem. These
approaches may allow to speed up computations further than sparse approximations,
as they exploit a subset of the inducing variables that are selected beforehand. The
strategies that were tested as part of this thesis may be referred to as the nearest neighbor
approach and the transductive learning approach. This second name follows the naming
convention established in [4].
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3.4.1 The nearest neighbor approach

The nearest neighbor approach is quite simple in nature and has been proposed in differ-
ent works, among which [24]. It uses a predictive model for the query point x∗ that is
based just on its nearest neighbors from a given GP model. In order to find the nearest
neighbors, distances w.r.t. x∗ have to be computed taking into account the length-scales
of the employed GP model; more precisely, given a point xi of the full GP model, its
distance from the query point x∗ will be

d∗i = ||x∗ − x′||Γ−1 = (x∗ − x′)TΓ−1(x∗ − x′) =

√√√√ D

∑
i=1

([x∗]i − [x′]i)2

l2
i

(3.39)

After finding the k nearest neighbors of x∗ within a given set (e.g. the set of inducing
points), it is possible to provide a prediction at the query location, using the full GP
formulas on the neighbors’ subset, i.e.

µ∗ = k∗kαk (3.40)

V [ f∗] = k∗∗ − k∗k(Kkk + σ2
n I)−1kk∗ (3.41)

where αk = (Kkk + σ2
n I)−1yk, with k representing the subset of the k nearest neighbors.

It can be noted that the matrix of covariances Kkk may be quickly derived from the (pos-
sibly precomputed) Kuu matrix, by selecting the elements corresponding to the chosen
neighbors.
Regarding the application to the NMPC problem, the main problem is related to the
choice of of the neighbors at each control step, as the necessary query points (which
are defined over the prediction horizon) are not known a priori. The nearest neighbors
may be instead chosen w.r.t. the points belonging to the N-step prediction of the previ-
ous NMPC iteration or alternatively w.r.t. the current state estimation. Both choices will
lead to a neighbor subset that will be closely related to the trajectory to be computed
by the NMPC problem.
The advantages are apparent, as lowering the number of GP points (e.g. using 10-20

neighbors) to be employed for prediction, the complexity of the optimization problem
to be solved as part of the NMPC may be significantly reduced. What remains unclear
is whether such solution is sufficiently robust to guarantee a good closed-loop perfor-
mance of the Virtual Rider. This will be partly addressed in Chapter 5.

3.4.2 The transductive learning approach

The usefulness of the so-called transductive learning approach in the context of GP-aided
MPC is testified by the successful implementation obtained in [4]. Its main point of
strength is given by the fact that it exploits the structure of the NMPC problem in order
to simplify the predictive model.
The transductive property refers to the fact that the approximation is adjusted according
to the available information on the test points (similarly to the nearest neighbor approach).
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Information on plausible test points is provided by the approximate trajectories com-
puted by the NMPC at the previous steps. In particular, the previous state-input tra-
jectories may be used in order to place informative inducing variables directly. More
formally, given

ξ·|i−1 =
[
ξ⊤0|i−1, ξ⊤1|i−1, . . . , ξ⊤N|i−1

]⊤
, (3.42)

u·|i−1 =
[
u⊤

0|i−1, u⊤
1|i−1, . . . , u⊤

N−1|i−1

]⊤
(3.43)

which are the state-input predicted trajectory from the previous NMPC iteration, the
corresponding evolution of the features to be used for regression (see (4.2)) may be
summarized as

x·|i−1 =
[

x⊤0|i−1, x⊤1|i−1, . . . , x⊤N|i−1

]⊤
(3.44)

According to the transductive approach, inducing variables may be placed directly along
the previous iteration trajectory x·|i−1, as it is highly probable that the next NMPC tra-
jectory (which is computed just Ts = 10ms later) will be in the same region. To do so, a
transduction ratio may be defined, in order to determine how may points from the pre-
vious trajectory will be employed for transduction. More precisely, given a transduction
ratio h ∈ N and s = ⌊N/h⌋, points may be sampled from the previous trajectory as:

Xs =
[

x⊤0|i−1, x⊤h|i−1, x⊤2h|i−1, . . . , x⊤(s−1)·h|i−1

]⊤
(3.45)

The sampled points Xs may now be used to provide a local GP approximation to be
employed for the current NMPC control action. This is done using a general (possibly
already sparse) GP model based on dataset Xu and the FITC approximating formulas,
i.e.:

µ̃∗ = k∗sΣKsuΛ−1f (3.46)

Σ̃∗ = K∗∗ − Q∗∗ + K∗sΣKs∗ (3.47)

with

Σ = (Kss + KsuΛ−1Kus)
−1 (3.48)

Λ = diag(Kuu − Quu) (3.49)

Using the online approximation approaches it is thus possible to provide 2 subsequent
dataset reductions:

• an offline reduction (to be obtained through VFE) to determine the most informa-
tive points from the original dataset to be used for prediction;

• an online reduction (based on the FITC formulas when employing the transductive
approach) that uses information from the previous NMPC iteration to further
reduce the computational load.



Part II

E X P E R I M E N TA L D E V E L O P M E N T A N D R E S U LT S

This part is devoted to the presentation of the main directions of research
that were followed and to the analyses that were undertaken during the
thesis work. The most relevant results are also shown in order to highlight
the most promising lines of investigation. Thorough comparisons are then
conducted in order to highlight the main differences and the advantages/
drawbacks of learning-aided control schemes w.r.t. the base white-box Vir-
tual Rider.





4
I N P U T A N A LY S I S A N D D Y N A M I C S M O D E L L E A R N I N G

This chapter is devoted to describing the main approaches that were used in order to
create and train GP-based learning models to represent unmodeled dynamics w.r.t. to
the white-box ones (according to a grey-box strategy) or to represent the whole dynam-
ics (according to a black-box strategy). The first step in this direction was to devise
criteria to be used for model selection, as a fundamental objective was to construct
models by selecting the portion of data (in terms of features and inducing points) that
is most beneficial for the subsequent implementation into the NMPC scheme.
Formally speaking, the available dataset is of the type

zij = (xi, yij) xi ∈ RD yij ∈ R i ∈ 1, . . . , N j ∈ 1, . . . , 4 (4.1)

where

• N is the cardinality of the dataset

• xi represent the regression input (features), which are originally D-dimensional

• yij represent the regression targets, which are 1-dimensional

• zij represent the whole datapoints, comprising the features xi and the targets yij

• index j refers to the 4 different targets of interest, which are modelled as indepen-
dent and, as such, require separate learning

– j = 1: v̇x for the black-box model, ϕv̇x = v̇x − ˙̃vx for the grey-box one

– j = 2: v̇y for the black-box model, ϕv̇y = v̇y − ˙̃vy for the grey-box one

– j = 3: ψ̈ for the black-box model, ϕψ̈ = ψ̈ − ¨̃ψ for the grey-box one

– j = 4: θ̈ for the black-box model, ϕθ̈ = θ̈ − ¨̃θ for the grey-box one

In order to perform learning, an ample dataset was gathered. In particular, data was
retrieved undertaking riding tasks along different test tracks (shown in Figure 4.1),
including the VI-track used as the final testbed. This was done using the nominal con-
troller presented in Chapter 2. The data that was gathered is related to the accelerations’
evolution along the tracks, as well as the corresponding mismatch of the physics-based
model’s estimates. Data collection was performed according to the Virtual Rider control
frequency fc = 100Hz, using the output of the VI − BRT simulation block, previously
shown in Figure 2.5. This procedure led to a dataset of 24580 points, to be used for both
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(a) VI-Track (b) Additional track #1 (c) Additional track #2

Figure 4.1: Tracks used for data generation

training and testing of grey-box and black-box regression models.
Data was gathered in order to provide continuous-time modelling for the accelerations,
according to the framework already developed in [23]. This means that the features xi

and the corresponding targets yij were collected at the same time-step t.
After data collection, the following step was an input analysis for each regression tar-
get, as not all features are relevant for the prediction of each acceleration and the ones
that do not appear as important should be discarded in order to avoid harmful or mis-
leading correlations. Such attempt towards model reduction is also significative since the
computational complexity associated to the NMPC problem is closely related to the
complexity of the internal model itself. In such sense, the complexity of a GPR model
directly depends on the dimension of the input space.
The first section of this chapter is thus devoted to an overview of the input analysis
that was undertaken in order to find grey/black-box minimal models for the system
accelerations.

4.1 input analysis for the gpr models

As previously mentioned, the objective is to select the most significative features for
each regression task, starting from a general set of features, given by:

x =



θ

vx

vy

ψ̇

θ̇

δ

γt

γb

yr

δ̇

γ̇t

γ̇b

ẏr

αr

α f

cθ

sθ



⇒

⇒

⇒

⇒

⇒

⇒

⇒

⇒

⇒

⇒

⇒

⇒

⇒

⇒

⇒

⇒

⇒

1. Roll angle

2. Longitudinal velocity

3. Lateral velocity

4. Yaw rate of change

5. Roll rate of change

6. Steering angle

7. Normalized throttle input

8. Normalized brake input

9. Rider lateral movement

10. Steering angle rate of change

11. Throttle input rate of change

12. Brake input rate of change

13. Lateral rider movement rate of change

14. Rear slip angle

15. Frontal slip angle

16. Cosine of the roll angle

17. Sine of the roll angle

(4.2)
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The feature set includes:

• Part of the system state (θ, vx, vy, ψ̇, θ̇, δ, γt, γb, yr)

• The system input (δ̇, γ̇t, γ̇b, ẏr)

• Additional composite features (αr, α f , cθ , sθ)

Since the regression problem deals with nonlinear models, classical approaches to fea-
ture selection that are typical of linear regression are not suitable. Not surprisingly, it
appears that a general consensus on which criteria to use for feature selection in the
nonlinear context does not exist in the literature.
As a consequence, the attempts to model reduction were mainly related to two different
strategies: one that is based on a mutual information criterion used to link each ac-
celeration target with the most relevant features and the other one that is based on a
quality-of-fit measure.

4.1.1 Input analysis through mutual information criteria

The idea for this type of analysis stems from the work presented in [25], which deals
with the problem of selecting the most relevant independent variables to be used for
nonlinear modelling of a given dependent variable. In particular, it highlights the
difficulty of trying to force a dimensionality reduction of the input space through
projection methods, as linear projections will generally not be appropriate and will
lead to an interpretability loss, especially in the nonlinear context. As a consequence, a
simple selection among the available variables should instead be preferred. To that end,
the proposed method is a selection procedure based on the information theory concept
of mutual information, with the stated objective of measuring the amount of information
contained in a variable or a group of variables in order to predict the dependent one.
The main advantages of this approach is that it is model-independent (no assumption is
made about the model to be used for regression) and nonlinear (it measures nonlinear
relationships, contrarily to correlation, which only measures linear ones).

4.1.1.1 Mutual information

The general concept of uncertainty of random variables is given by Shannon’s informa-
tion theory [26]. Given the random variables X and Y, their joint probability density
function may be denoted as µX,Y. The relative marginal density functions are given by

µX(x) =
∫

µX,Y(x, y)dy (4.3a)

µY(y) =
∫

µX,Y(x, y)dx (4.3b)
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The uncertainty on the variable Y is given by its entropy, which is defined as

H(Y) = −
∫

µY(y)logµX,Y(x, y)dy (4.4)

If knowing X provides indirect knowledge on Y, then the uncertainty on Y knowing X
is given by the conditional entropy, which may be formulated as

H(X|Y) = −
∫

µX(x)
∫

µY(y|X = x)logµY(y|X = x)dydx (4.5)

Finally, there is the joint uncertainty of the (X, Y) pair, which is given by the joint
entropy

H(X, Y) = −
∫

µX,Y(x, y)logµX,Y(x, y)dxdy (4.6)

Now, the mutual information between X and Y is essentially a measure of the amount
of knowledge that X provides on Y. It is thus expressed as

I(X, Y) = H(Y)− H(Y|X) (4.7)

namely the reduction of the uncertainty on Y when X is known. When Y is the de-
pendent variable in a prediction context, I(X, Y) measures the pertinence of X in a
model employed for the regression of Y. Through the properties of entropy, the mutual
information may be finally rewritten as

I(X, Y) = H(X) + H(Y)− H(X, Y) =
∫

µX,Y(x, y)log
µX,Y(x, y)

µX(x)µY(y)
dxdy (4.8)

By (4.3) and (4.8), it can be concluded that estimating µX,Y is sufficient in order to
estimate the mutual information between X and Y.

4.1.1.2 Estimation of the mutual information

As previously mentioned, the estimate of the mutual information (MI) relies on the es-
timation of the joint pdf of (X, Y), which may be conducted on the available dataset.
Since the mutual information index must be computed on a high-dimensional feature
space, histogram and kernel-based pdf estimations are not convenient, as they suffer
from the curse of dimensionality. Due to this reason, the paper in question [25] sug-
gests an MI estimate based on a k-nearest neighbor statistic. For the presentation of the
associated algorithm, the set of real-valued independent variables will now denoted
through a unique vector-valued variable X.
The algorithm for MI estimation is based on the available dataset, composed of the
input-output pairs zi = (xi, yi), not to be confused with the ones introduced in (4.1), as
xi now indicates a subset of features of the whole feature vector (4.2) to be used for the
prediction of the target y (among the targets of interest introduced at the beginning of
the chapter). Basically, index j, indicating a given regression target, has been dropped
for a lighter notation. The procedure that is described below will then be performed
independently for each target of interest. Note that datapoints zi = (xi, yi) are assumed
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to be i.i.d. realizations of a R.V. Z(X, Y) with pdf µX,Y.
Input-output pairs are to be compared through the maximum norm: given zi = (xi, yi)

and zl = (xl , yl), such norm is defined as

||zi − zl ||∞ = max(||xi − xl ||, ||yi − yl ||) (4.9)

where || · || indicates a suitable norm for the input and output space (with the euclidean
one being the most immediate, even though others may be chosen based on the available
domain knowledge). The idea is then to estimate I(X, Y) using the average distance of
zi from its k-nearest neighbors in the X, Y and Z spaces, to be averaged over all z∗.
We may now consider the point zi and the k-th nearest neighbor zk(i) = (xk(i), yk(i))

(according to the maximum norm in (4.9)). It can be noted that xk(i) and yk(i) are the
input and output parts of zk(i) and thus not necessarily the kth nearest neighbors of xi

and yi. Finally, the following distances are defined:

• ϵi = ||zi − zk(i)||∞ = max(ϵX
i , ϵY

i )

• ϵX
i = ||xi − xk(i)||

• ϵY
i = ||yi − yk(i)||

Using such distances one may count

• the number nX
i of points xl whose distance from xi is strictly less than ϵi

• the number nY
i of points yl whose distance from yi is strictly less than ϵi

It has been proven in [27] that I(X, Y) may now be accurately estimated as

Î(X, Y) = Ψ(k)− 1
N

N

∑
i=1

[
Ψ(nX

i + 1) + Ψ(nY
i + 1)

]
+ Ψ(N) (4.10)

where Ψ is the digamma function given by

Ψ(t) =
Γ′(t)
Γ(t)

=
d
dt

lnΓ(t) (4.11)

with

Γ(t) =
∫ ∞

0
ut−1e−udu (4.12)

The quality of the estimator Î(X, Y) is linked to the value chosen for k, with small values
of k leading to large variance and small bias and large values of k causing small variance
and large bias. A suggested mid-range value is k = 6.

4.1.1.3 Application of the information-based criterion to the motorcycle dataset

The information criterion presented in the previous section has been employed in order
to evaluate the significance of the features to be used for each regression task. Since
the objective is to find the subsets of features that best represent a given regression
target, it makes sense to employ the mutual information criterion in order to establish
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the most informative subset of x to be used for the corresponding black-box/grey-box
target yj. A general search among all possible input features combinations is generally
unfeasible, as it requires the computation of the mutual information between each target
and 217 possible feature subsets. Nevertheless, since the subsets of interest should have
a sufficiently low cardinality in order to be successfully applied in the NMPC scenario
without aggravating the computational load disproportionately, it may be advisable to
perform the search for the most informative features among combinations of m ≤ D
features.
Consequently, the estimate Î(x, y) (see (4.10)) was computed for all combinations (x)
of less than 6 features and w.r.t. each regression target y (grey/black-box v̇x dynamics,
grey/black-box v̇y dynamics, grey/black-box ψ̈ dynamics, grey/black-box θ̈ dynamics).
Note that the final closed-loop implementation of the learning-based models made use
of just those related to ψ̈ and θ̈, as will be further discussed in Chapter 5. For this reason,
only the results associated to those accelerations will be shown from here on, while the
analyses associated to v̇x and v̇y will be deferred to Appendix C.
The combinations were ordered according to the corresponding mutual information
content, in order to determine the best feature subset of a given cardinality for each
acceleration target. The results are summarized in Table 4.1 (for black-box targets) and
Table 4.2 (for grey-box targets). For each target, the 3 best feature combinations of a
given cardinality (from 1 to 5) are shown, together with the corresponding mutual
information value.
In particular, features are denoted according to a reference number, in accord with the
convention introduced in (4.2).
A quick look at the summary tables for the mutual information analysis leads to some
straightforward observations:

• A single input feature is not generally very informative for a given acceleration
target, which could be expected considering the complexity of dynamics learning.

• In terms of mutual information content, combinations made of 2-3 features seem
to be preferable, with information content slightly reducing with a higher number
of features.

• For each feature cardinality (from 1 to 5), there generally are multiple "competi-
tive" combinations, having close mutual information indexes.

• There generally appears to be a consensus on some of the features that are most
useful for a given regression target. An example is provided by features [1,6] (roll
angle and steering angle respectively) appearing in all of the most informative
feature combinations for the grey-box target ϕψ̈.

The most informative combinations pertaining to each feature number have been se-
lected in order to be tested in terms of actual fitting capabilities, as will be shown later
in the chapter.
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Table 4.1: Feature combinations with the highest information content for the black-box targets. For each
black-box target (ψ̈, θ̈), the 3 best combinations of 1, 2, 3, 4 and 5 features are shown, along with
the corresponding mutual information index.

targets ψ̈ θ̈

1
st

2
nd

3
rd

1
st

2
nd

3
rd

1 feat

[6] [5] [15] [4] [6] [14]

1.1931 1.1691 1.1301 1.1275 1.0933 1.0587

2 feat

[5, 6] [4, 5] [2, 5] [5, 6] [4, 5] [3, 5]

2.321 2.2822 2.2575 2.1997 2.1986 2.1975

3 feat

[2, 5, 6] [2, 5, 15] [1, 2, 5] [2, 3, 5] [2, 5, 14] [2, 4, 5]

2.2105 2.1978 2.1901 2.1767 2.1717 2.1602

4 feat

[2, 5, 6, 14] [1, 2, 5, 7] [2, 5, 8, 14] [2, 3, 4, 5] [2, 5, 6, 14] [2, 3, 5, 6]

2.0149 2.013 2.0109 1.9669 1.964 1.9639

5 feat

[4, 5, 8, 11, 15] [4, 5, 11, 12, 15] [4, 5, 6, 8, 11] [2, 3, 5, 6, 12] [2, 5, 6, 12, 14] [2, 3, 4, 5, 12]

1.8934 1.8879 1.8821 1.8195 1.818 1.8171

Table 4.2: Feature combinations with the highest information content for the grey-box targets. For each
grey-box target (ϕψ̈, ϕθ̈), the 3 best combinations of 1, 2, 3, 4 and 5 features are shown, along
with the corresponding mutual information index.

targets ϕψ̈ ϕθ̈

1
st

2
nd

3
rd

1
st

2
nd

3
rd

1 feat

[1] [4] [15] [4] [6] [1]

2.3659 2.1769 2.1348 1.6752 1.6495 1.6309

2 feat

[1, 6] [1, 3] [1, 2] [2, 15] [4, 5] [2, 3]

3.4268 3.4046 3.3634 2.9226 2.9105 2.9096

3 feat

[1, 6, 14] [1, 3, 15] [1, 6, 15] [2, 3, 6] [2, 4, 5] [2, 6, 14]

3.3465 3.3339 3.3325 2.8589 2.8536 2.847

4 feat

[1, 6, 14, 15] [1, 4, 14, 15] [1, 6, 7, 15] [2, 4, 8, 15] [2, 4, 6, 8] [1, 2, 6, 8]

3.1314 3.119 3.1154 2.6904 2.6835 2.6739

5 feat

[1, 4, 6, 14, 15] [1, 6, 8, 14, 15] [1, 4, 8, 14, 15] [1, 2, 4, 8, 15] [2, 3, 4, 6, 8] [2, 3, 6, 8, 9]

2.9273 2.9224 2.9217 2.5067 2.5062 2.5027
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4.1.2 Input analysis through a fitting quality measure

A simpler method was also used to find alternative model frameworks in terms of in-
put features. In particular, in this second solution full GP models were trained on a
subset of the complete dataset, comprising 2000 points, by performing exact inference,
according to the framework of Section 3.1.3. In order to do so, the MATLAB toolbox
gpml, provided by Rasmussen [16], was employed. In terms of inference, the standard
Squared Exponential kernel and the Gaussian likelihood function were used.
In order to perform feature selection, the following pipeline is followed. Any given
model to be evaluated is trained on the 2000 random points in order to obtain a suit-
able hyperparameters’ configuration. The trained model is then tested on the complete
dataset, by evaluating its prediction capabilities on possibly unseen data. The fit quality
is finally measured through the average R2 index (also known as coefficient of determi-
nation) across the data resulting from each of the 3 tracks. In particular, given a track’s
data, the R2 index is computed comparing the real target evolution y and the predicted
evolution ŷ as follows:

R2 = 1 − SSres

SStot
(4.13)

where

SSres = ∑
i
(yi − ŷi)

2 = ∑
i

e2
i (residual sum of squares) (4.14a)

SStot = ∑
i
(yi − ȳ)2 (total sum of squares) (4.14b)

ȳ =
1
N

N

∑
i=1

yi (4.14c)

As is known, the best case scenario is when the predicted values exactly match the
observed ones, corresponding to SSres = 0 and R2 = 1. Baseline models, always
correctly predicting ȳ will have R2 = 0, while worse models will have a negative R2.
Since this evaluation procedure would be unfeasible on all the 217 possible feature
subsets, it is advisable to instead employ an iterative approach. In order to construct
subsets that provide a good general fit, it is possible to start by selecting the best single
feature and then continue by adding the features that provide the biggest improvement
to the fitting properties of the model. This study is repeated for all regression targets, in
order to determine the sequence of significant features, while monitoring the possibly
beneficial impact of newly added features. The results are reported in Table 4.3 (for the
black-box models) and Table 4.4 (for the grey-box models), where the optimal choice
for the feature subset of a given cardinality is shown along with the corresponding
fit measure. The fit measure of a model is given by R2, the average R2 index that the
GP model based on the 2000-point training set attains on the data obtained from the 3

tracks.
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Again, since the main objective is to obtain models that may be easily implemented in
an online scenario, meaning that they do not add too much to the optimization problem
complexity, the search is limited to models including a low number of features.
Only models consisting of m ≤ 7 features are thus reported, even though the most
interesting (from an implementability point of view) are the ones employing less than
5/6 features. The feature reference numbers are again related to the convention shown
in (4.2). Note that the corresponding results for v̇x and v̇x can be found in Table C.3 and
Table C.4.

Table 4.3: Feature combinations providing the best fit for the black-box targets on the whole dataset after
training on a subset of 2000 points. The fit measure is given by R2, the average R2 index over
the 3 tracks’ data, which is reported for each feature combination. For each black-box target (ψ̈,
θ̈), combinations of up to 7 features are shown.

targets ψ̈ θ̈

1 Feat
[5] [4]

0.3660 0.1838

2 Feat
[5,4] [4,2]

0.5018 0.5622

3 Feat
[5,4,12] [4,2,9]

0.6192 0.7377

4 Feat
[5,4,12,1] [4,2,9,1]

0.7006 0.7283

5 Feat
[5,4,12,1,7] [4,2,9,1,12]

0.6238 0.7999

6 Feat
[5,4,12,1,7,14] [4,2,9,1,12,8]

0.6443 0.8152

7 Feat
[5,4,12,1,7,14,13] [4,2,9,1,12,8,6]

0.8192 0.8484

Table 4.4: Feature combinations providing the best fit for the grey-box targets on the whole dataset after
training on a subset of 2000 points. The fit measure is given by R2, the average R2 index over
the 3 tracks’ data, which is reported for each feature combination. For each grey-box target (ψ̈,
θ̈), combinations of up to 7 features are shown.

targets ϕψ̈ ϕ θ̈

1 Feat
[1] [1]

-0.0194 -0.6903
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2 Feat
[1,5] [1,8]

0.3459 0.5156

3 Feat
[1,5,2] [1,8,2]

0.6280 0.6998

4 Feat
[1,5,2,9] [1,8,2,6]

0.6588 0.7857

5 Feat
[1,5,2,9,17] [1,8,2,6,4]

0.6970 0.8425

6 Feat
[1,5,2,9,17,4] [1,8,2,6,4,13]

0.7142 0.8740

7 Feat
[1,5,2,9,17,4,8] [1,8,2,6,4,13,7]

0.7332 0.8819

A brief analysis of the tables reported above may lead to the following considerations:

• Contrary to the information criterion, according to which the preferable feature
combinations should include 2 − 4 features, the fit criterion suggests that adding
more relevant features generally leads to improvements in the fit measure. This is
true for both grey-box and black-box targets.

• The addition of the first features to the GP model leads to the biggest increases
in the fit measure, while later additions appear as less significant, with the fit
measure tending to plateau. It should thus be possible to assume that models
employing less than 6 features are sufficiently representative for the acceleration
targets.

• Grey-box models with a low number of features (e.g. 1-2) do not compare well
with the corresponding black-box models. This may be related to a more demand-
ing regression task, as grey-box targets may include both unmodeled dynamics
and inaccuracies of the white-box model. Conversely, grey-box and black-box
models based on a higher number of features lead to a similar fit measure.

4.2 comparative analysis of the dynamics models

Two separate feature analyses have been conducted, one based on a mutual information
criterion and the other based on a fit measure computed on the available dataset. The
preliminary results of those analyses have been reported in the previous sections. It is
now useful to conduct a comparative analysis between the found models on a common
framework. In particular, considering the final objective of applying the GP models in
the context of the Virtual Rider, it makes sense to move towards the sparse approximate
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models that will be used in practice. In such sense, the first step is to distill the informa-
tion contained in the available dataset into GP model approximations that employ a low
amount of inducing points (e.g. 50, 100). The general framework is the VFE (Variational
Free Energy) one that has been presented in Section 3.2.3, meaning that a simpler GP
model representation is obtained by means of inference approximation, while the prior
is kept unchanged. In particular, the inference procedure proposed in [20] considers the
selection of the inducing inputs as part of the optimization procedure and leads to an
approximation of the full GP model that is in general superior to other approximation
methods (see Section 3.2.4).
In order to apply the VFE inference procedure, the MATLAB toolbox provided by Tit-
sias [20] was employed.1 The provided toolbox allows to create a Variational Sparse
Gaussian Process (VSGP) model object, with the possibility of specifying:

• the objective function, which can be either the variational objective from (3.36) or
a custom alteration;

• the likelihood function (the Gaussian one was used as it is preferable when per-
forming regression);

• the number m of inducing inputs to be placed through inference;

• the kernel to be used (with the SE kernel being the preferred choice for the scope
of this thesis).

It is then possible to proceed with model optimization, after choosing:

• the number of objective function evaluations to be performed;

• the variables to be optimized, according to 3 possible options:

– joint optimization of model hyperparameters (for the kernel and the likeli-
hood) and inducing variables. This is the main case of interest.

– optimization of just the inducing variables.

– optimization of just the hyperparameters.

For the comparative analysis and the creation of the desired VSGP models, joint opti-
mization was employed. In particular, the best feature combinations from the previous
analyses were considered and compared. At the same time, VSGP models with a vari-
able amount of inducing inputs were trained in order to assess their influence on the
reduced model performance. Models based on 50, 100, 250 and 500 pseudo-inputs were
tested for each regression task and for each candidate feature combination. The results
are reported in Figure 4.2 (black-box) and in Figure 4.3 (grey-box), where the average
fit (R2) attained by the sparse GP models over the three tracks’ data is reported.
Note that y-axis scaling may vary in order to guarantee better visibility of the graphs.
The corresponding plots for v̇x and v̇y can be found in the appendix (Figure C.1 and
Figure C.2).

1 The toolbox in question is available @ https://www2.aueb.gr/users/mtitsias/code/varsgp.tar.gz

https://www2.aueb.gr/users/mtitsias/code/varsgp.tar.gz
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(a) R2 index for ψ̈

(b) R2 index for θ̈

Figure 4.2: Results of the comparative analysis of the VSGP models for the black-box targets

(a) R2 index for ϕψ̈

(b) R2 index for ϕθ̈

Figure 4.3: Results of the comparative analysis of the VSGP models for the grey-box targets
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Some considerations on the results of the comparative analysis of the VSGP models
trained on the best feature combinations are now in order:

• Feature combinations with a low numerosity (e.g. 1-2) resulting from the informa-
tion analysis generally do not compare well with the corresponding feature com-
binations resulting from the fit analysis. Feature combinations derived from the
information criterion are instead very competitive when the numerosity is higher,
often outperforming the fit-based counterparts (especially in terms of grey-box tar-
gets). This seems to confirm the validity of the information criterion as a feature
selection approach.

• The addition of features generally leads to better performing models, with some
exceptions, like ϕψ̈ and the information-based models for ψ̇ and θ̈. In general, it
must be said that the impact of a higher number of features tends to be progres-
sively less significant.

• The number of inducing variables has an impact on the performance of the VSGP
models, as it is known that when their number is increased, VFE inference tends to
reconstruct the full GP model. Still, it is interesting to observe that the best VSGP
models employing 50, 100 points are generally quite close to the best models based
on 250, 500 points in terms of fit quality. This is of the utmost importance when
considering the importance of finding inexpensive models to be implemented in
the Virtual Rider.

• Comparing grey-box and black-box strategies, it generally appears that the latter
provides an all-around better performance, as the grey-box models for ψ̈ do not
reach a comparable fit. This does not mean that grey-box models should be dis-
carded, as they provide an inherent robustness that the black-box ones lack, since
the latter are exclusively data-based. This may be relevant when applying learning
models in the Virtual Rider.

After training the VSGP models, it is possible to derive their more implementable ver-
sion, according to the formulation µ∗ = ∑n

i=1 k(x∗, xi)αi = k∗α for the predictive mean
at a query point, which was already introduced in (3.11). In particular, when using the
VSGP models (see Section 3.2.3) α takes the form

α = σ−2
n ΣKu f y (4.15)

where Σ = (Kuu + σ2
nKu f K f u)

−1. The predictive variance formula instead has the form

V [ f∗] = k∗∗ − K∗uK−1
uu Ku∗ + K∗uΣKu∗ (4.16)

Pre-computation of α and Σ leads to a more efficient implementation of the VSGP
models, as online matrix inversions are no longer required. The simplified formulas
were finally tested in order to provide a graphical analysis of the performance of the
devised VSGP models. Figure 4.4 (black-box) and Figure 4.5 (grey-box) show the fit of
the best 50-point VSGP models on the data from VI-Track.
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(a) Fit of the best 50-point ψ̈ model

(b) Fit of the best 50-point θ̈ model

Figure 4.4: The fit of the best 50-points black-box VSGP model configurations (with µ∗ shown with a
dashed blue line and the light blue area representing [µ∗ − 2σ, µ∗ + 2σ]), compared with the
target acceleration (shown in red).

(a) Fit using the best 50-point ϕψ̈ model

(b) Fit using the best 50-point ϕθ̈ model

Figure 4.5: The fit of the best 50-points grey-box VSGP model configurations (with ¨̃q + µ∗ shown with a
dashed blue line and the light blue area representing [ ¨̃q+ µ∗ − 2σ, ¨̃q+ µ∗ + 2σ]), compared with
the target acceleration (shown in red).
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The plots shown in Figure 4.4 and Figure 4.5 (with Figure C.3 and Figure C.3 complet-
ing the picture for v̇x and v̇y) highlight the general efficacy of the trained VSGP models
on the data retrieved from the trial performed on VI-Track, which will be the general
testbed for the closed-loop implementation. In particular, they demonstrate that even
a low number of inducing variables (e.g. 50) may lead to satisfactory model fits. This
is especially true for the black-box models (which outperform the grey-box models for
the lateral and yaw acceleration targets).
While these base models are promising, as they fit the dynamics data well, it is still
unclear whether this is a sufficient condition for a successful implementation into the
Virtual Rider. The results shown up to now were all related to trials performed on data
that was first collected and then analysed in an offline fashion. This means that there
is not a general guarantee that the devised models will behave as well in the online
closed-loop context, in which the modified internal model may have a direct impact on
the explored dynamics and may even cause the failure of the combined strategy.
The next chapters are thus devoted to exploring how the devised GP strategies may be
included in the Virtual Rider framework. An analysis of which dynamics model aug-
mentations provide improvements to the performance of the Virtual Rider is conducted,
along with some observations on why some of the learnt models may fail in the online
context.





5
P R E L I M I N A RY C L O S E D - L O O P T R I A L S O F T H E G P - B A S E D
V I RT U A L R I D E R

Chapter 4 showed the main techniques that were employed in order to perform feature
selection, with the objective of determining a small subset that is sufficiently informative
for a given regression target. The reason behind this was twofold:

• unnecessary input information may worsen the prediction capabilities of the GP
models and lead to undesired phenomena in the closed-loop implementation and
should thus be discarded;

• in order to maintain the real-time feasibility of the NMPC problem, the imple-
mented GP models should be sufficiently simple.

The second point was also addressed through sparse GP approximations and in partic-
ular through the VFE one (see Section 4.2), as it allows to summarize the information
contained in ample datasets using few inducing variables.
Using the devised reduced models (both in terms of features and inducing points), the
impact of learning may finally be tested in the closed-loop scenario, by modifying the
internal model of the Virtual Rider accordingly (Section 3.3).
This chapter is thus devoted to the description of the results obtained in the final Vir-
tual Rider scenario. Such trials led to some significant insights into the advantages and
the limitations of the learning dynamics strategy. In particular, it soon became clear that
some acceleration models required additional training procedures.
All of the trials and analyses that are shown in the next sections were performed on
VI-track, the test track that was presented in Section 2.2.2.

5.1 preliminary trials on the virtual rider

The first trials that were attempted in the closed-loop scenario were realized by apply-
ing the models developed in Chapter 4 through the feature selection and the sparse
approximation procedures. In particular, models were evaluated according to the com-
parative analysis in Section 4.2. Both black-box and grey-box strategies were considered,
using a variable amount of input features and of inducing variables. The most promis-
ing models from that first feature analysis were thus tested in the closed-loop scenario.
While some results of interest were obtained, the need for additional feature analyses

55
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was soon highlighted. Before delving into that, some key observations resulting from
the first trials are in order:

a. Using a low amount of features, grey-box solutions appear as more robust than the
black-box counterparts; even when the learnt grey-box model is of "low quality",
meaning that it does not provide the hoped for performance in the closed-loop
implementation, the Virtual Rider is able to complete the track trial. This is in
general not true for black-box models, which work only if they also provide a
good fit of the accelerations in the closed-loop trials (the fit quality shown in the
offline trials is not a sufficient guarantee in general). This may attributed to the
fact that the physics-based part of the grey-box models allows to ride even in
conditions that are unknown to the learning portion of the models.

b. The addition of learning for the lateral acceleration’s modeling did not provide sig-
nificant improvements to the general performance of the Virtual Rider (in terms
of tracking), while causing the rise of oscillatory behaviors in the accelerations’
evolutions. While no conclusive evidence was collected in order to prove the inef-
fectiveness of having a GP-modeled v̇y, efforts towards v̇y modeling were avoided
in order to favor in-depth research into the more promising ψ̈ and θ̈

c. Likewise, learning improvements to the longitudinal acceleration v̇x appear avoid-
able. In this case, the main reason is related to the fact that the physics-based
modeling of this acceleration was already top notch, as already shown in Fig-
ure 2.7. Adding a learning component does not provide any clear benefit, as it
would barely improve the prediction capabilities while adding an unnecessary
computational load.

d. The most important takeaway from the first trials was that some feature combina-
tions, while successful in the offline tests, were not sufficient in order to provide
a satisfactory fit of the data obtained in the closed-loop scenario; this may be
interpreted as a consequence of an inadequate variety in the dataset that was em-
ployed in the first feature analysis (see Chapter 4). Specifically, it is easy to show
that some black-box models provide an unsatisfactory fit on data that is collected
from the new closed-loop trials undertaken with the addition of GP models.
In such sense, Figure 5.1 provides a couple of examples for the black-box target
ψ̈. The figure in question shows the fit provided by the "best" ψ̈ black-box model
on newly collected data. Such model was deemed satisfactory in the original fea-
ture analysis, showing an impressive fit value of R2 = 0.817 on the VI-track data
belonging to the original dataset, but it is clear that it fails at representing some dy-
namics. Figure 5.1(a) shows that the model itself is not completely inadequate, as
it correctly detects the general tendencies of the yaw acceleration, but if fails when
significant acceleration oscillations are present (e.g. between 10-20s and between
40-60s). This is further highlighted by Figure 5.1(b), showing a trial characterised
by large oscillations, which are completely undetected by the model. Such consid-
erations may lead to the conclusion that the models obtained until now, while not
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bad per se, may not be representative of all dynamics. This is the most probable
reason behind their failure in the closed-loop scenario.

Point (D) in particular motivates a new analysis of the features, in light of the new data
that was collected from the first closed-loop trials. This is especially true for the black-
box target ψ̈, but a new analysis was performed for all of the different targets of interest,
in order to verify whether improvements could be made. The next section is devoted
to the description of the repeated feature analysis, which mirrors the fit approach from
Chapter 4, with some tweaks related to the dataset and the selection algorithm.

(a) Fit of the current best 50-point ψ̈ model on new closed-loop data

(b) Fit of the current best 50-point ψ̈ model on new closed-loop data

Figure 5.1: Fit of the best 50-point black-box VSGP model configuration for ψ̈ (see Section 4.2) on addi-
tional track data resulting from the first closed-loop trials. µ∗ is shown with a dashed blue line
while the light blue area represents [+µ∗ − 2σ, µ∗ + 2σ]); the real yaw acceleration is shown in
red.
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5.2 revised feature analysis

Before delving into the revised feature analysis, some considerations are in order. In
particular, it must be stressed that the feature selection procedure was a particularly
delicate phase of research, whose importance cannot be overstated. The original ap-
proach from Chapter 4 showed some limitations, as some of the devised models did
not provide satisfactory closed-loop results. The revised analysis presented below fixed
some of the problems through a couple of significant changes. Still, it soon became
clear that it was not optimal either, as it did not provide sufficient guarantees for the
closed-loop performance. As a consequence, the choice of features for each target of in-
terest (the black-box ψ̈, θ̈ and the grey-box ϕψ̈, ϕθ̈) was done according to the following
scheme:

• The models originating from the original feature analysis (Chapter 4) were singu-
larly tested in the closed-loop scenario in order to verify which ones worked well
already (e.g. θ̈) and which ones required an additional feature analysis (e.g. ψ̈,
which did not work at all, and ϕψ̈, ϕθ̈ to a lesser extent, as they caused oscillatory
closed-loop behaviors).

• If the additional feature analysis led to more satisfactory results for a given target,
the corresponding model was assumed to be the gold standard; otherwise, the
model obtained from the previous analysis was kept.

According to to this work scheme, it resulted that the θ̈ model could not be improved
through the revised analysis, while improvements were attained for the ψ̈, ϕψ̈ and ϕθ̈

targets. For this reason, the revised analysis for the former will be omitted, while the
analyses related to the latter will be reported. Before doing that, the revised feature
selection approach will be described in more detail.
The revised feature analysis takes inspiration in large part from the fit-based analysis
described in Section 4.1.2, with two major tweaks:

• The new analysis is performed on an enlarged dataset, that contains additional
data w.r.t. the original one (which comprised data from the 3 physics-based trials
performed on the corresponding tracks shown in Figure 4.1). The new data re-
sults from 4 additional trials that were performed on VI-Track with different learn-
ing augmentations (both grey-box and black-box). Such results were specifically
chosen as they highlighted the limitations of some of the previously developed
models, meaning that they could be used in order to perform a more informed
feature selection. The newer dataset was thus composed by 51180 points (w.r.t.
24580 of the original one). The approach used for the fit evaluation was instead
kept unchanged: a full GP model is trained (in terms of hyperparameter tuning)
on a limited subset of 2000 points and its prediction capabilities are evaluated on
the whole dataset, computing R2, the average R2 index (see (4.13)) across the 7

trials’ data.
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• The feature selection procedure is slightly modified. It is still incremental in na-
ture, in the sense that at each iteration the feature leading to the highest R2 index
is added to the mix of features, but a backtracking step has been added, in ac-
cord with a principle also highlighted in [25]. In particular, at each iteration, after
adding a new feature a backwards analysis is performed in order to verify whether
the removal of previously added features leads to an improvement of the fit index.
This is done in order to remove features that become redundant or harmful along
the iterative procedure. The general procedure is schematized in Listing 5.1. It was
employed for the different targets and specifically to revise the feature selection to
be applied for the black-box target ψ̈ (the model for θ̈ obtained from the original
analysis proved to be already optimal) and the grey-box targets ϕψ̈ and ϕθ̈ .

It must be stressed that an analogous procedure could have been followed also using
the mutual information criterion, as it is not specific to any quality measure. This may
have led to alternative candidate models, which can be a great help, since the fit-based
criterion does not always lead to the optimal solution, as will soon become clear.
The procedure from Listing 5.1 was undertaken on the different targets, performing 10

search iterations for each. The results for the black-box target ψ̈ are shown in Figure 5.2
and led to the feature combinations shown in Table 5.1 (to be interpreted according to
(4.2)). One can see that finding suitable feature combinations that can fit data belonging
to the larger dataset is no easy task: no combinations having few features provide a sat-
isfactory fit, countering the parsimony assumption that was made in Chapter 4. Starting
from iteration 6, the quality of fit finally starts increasing and continues to do so in the
following iterations, with the last being the best one. It is interesting to note how the
new feature selection algorithm is different w.r.t. the one from Chapter 4: subsequent
iterations do not necessarily lead to a larger feature combination, as it can be seen that
a couple of iterations are characterized by a feature removal. This appears to be useful,
as it allows to discard input information that appears as useful at the beginning of the
selection procedure, before becoming unnecessary as new additions are made.

Listing 5.1: Revised feature analysis

1 f o r a c c e l e r a t i o n t a r g e t
good_features = [ ] ;
f o r i t e r = 1 :N

f o r f e a t u r e not in good_features
s imulate addi t ion of f e a t u r e to good_features ;

6 evaluate average R^2 ;
end
add f e a t u r e leading to max( average R^2) to good_features ;
f o r f e a t u r e in good_features

s imulate removal of f e a t u r e from good_features ;
11 evaluate average R^2 ;

i f average R^2 i n c r e a s e s
remove f e a t u r e ;

end
end

16 end
end
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Figure 5.2: The R2 index obtained from the full GP models trained according to the revised feature analysis
on the extended dataset.

Table 5.1: Feature combinations resulting from the revised input analysis for the black-box target ψ̈

iter 1 2 3 4 5

[5] [5,16] [5,16,17] [5,16,12] [5,16,12,2]

iter 6 7 8 9 10

[5,16,2,6] [5,16,2,6,3] [5,16,2,6,3,7] [5,16,2,6,3,7,13] [5,16,2,6,3,7,13,4]

In order to verify the validity of the newly developed black-box ψ̈ model, it comes as
natural to check whether it actually absolves the task of representing the dynamics that
were neglected by the previous ψ̈ models (see Figure 5.1). After training a sparse GP
model based on the features obtained at iteration 10 ([5,16,2,6,3,7,13,4]) and 50 inducing
points (through the usual VFE approach), a quick test was done on the same data from
Figure 5.1(b), resulting in the predictions which are shown in Figure 5.3. It is clear that
the revised feature selection procedure has managed to find a sufficiently expressive ψ̈

model, also thanks to the enlarged dataset, as the large oscillations that were neglected
by earlier models are now fit perfectly.
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Figure 5.3: Fit provided by the revised 50-point 8-feature ψ̈ model.

As previously mentioned, the same revised procedure was undertaken on the grey-box
targets ϕψ̈ and ϕθ̈ , in order to gain more clarity on which features are most useful also
in the grey-box context. This was also done as to provide a fair comparison between the
strategies, with the end goal of determining the gold standard among the black-box and
the grey-box implementations of the yaw and roll accelerations. The revised analysis for
the aforementioned targets led to the results shown in Figure 5.4.
In the case of the grey-box models, good feature combinations appear already in the
initial iterations. Increases in the R2 index continue up to the 9

th iteration for the ϕθ̈

target and to the 6
th iteration for the ϕθ̈ target. The feature combinations corresponding

to the various iterations are reported in Table 5.2 (ϕψ̈) and Table 5.3 (ϕθ̈).

Figure 5.4: The R2 index obtained from the full grey-box GP models trained according to the revised
feature analysis on the extended dataset.
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Table 5.2: Feature combinations resulting from the revised input analysis for the grey-box target ϕψ̈

iter 1 2 3 4 5

[17] [17,7] [17,7,12] [17,7,12,8] [17,7,12,8,9]

iter 6 7 8 9 10

[17,7,12,8,9,2] [7,12,8,9,2,1] [7,12,8,9,2,1,16] [7,12,8,9,2,1,16,17] [7,12,8,9,2,1,16,15]

Table 5.3: Feature combinations resulting from the revised input analysis for the grey-box target ϕθ̈

iter 1 2 3 4 5

[17] [17,8] [17,8,5] [17,8,5,12] [17,8,5,12,4]

iter 6 7 8 9 10

[17,8,5,12,4,2] [17,8,5,12,4,2,15] [17,8,5,12,4,2,15,14] [17,8,5,12,4,2,15,14,9] [17,8,5,12,4,2,15,14,9]
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D E F I N I T I V E C L O S E D - L O O P R E S U LT S

6.1 testing of the revised learning-based models

The current section is devoted to the presentation of the results that were derived by
testing the best grey-box and black-box models in the Virtual Rider scenario. In partic-
ular, learning-based augmentation entailed improvements to the ψ̈ and θ̈ dynamics to
be applied in the closed-loop scenario. Among the tested configurations, the ones that
provided the most promising results are the following:

• Black-box modeling of ψ̈ (using features [5(θ̇), 16(cθ), 2(vx), 6(δ), 3(vy), 7(γt), 13(ẏr),
4(ψ̇)]), according to the revised feature analysis and of θ̈ (using features [1(θ), 2(vx),
4(ψ̇), 9(yr)]), according to the original feature analysis.

• Grey-box modeling of ψ̈ (using features [17(sθ), 7(γt), 12(γ̇b), 8(γb), 9(yr), 2(vx)])
and θ̈ (using features [17(sθ), 8(γt), 5(θ̇), 12(γ̇b), 4(ψ̇), 2(vx)]), both in accord with
the revised feature analysis.

• Grey-box modeling of ψ̈ and θ̈ using the same features as the black-box models;
this additional solution was tested in order to investigate the differences between
the two strategies (black/grey-box) when using the same exact information.

In particular, the devised models were tested according to a common framework. First
of all, reduced models employing 50 inducing points for each learning target were used
for all models. After that, the augmented models were tested on VI-Track on a prelimi-
nary trial. Before evaluating the final closed-loop performance of the models, a further
learning improvement is made. Specifically, data from the first run that appears as use-
ful is employed to refine the models, according to an approach that may be linked to the
general field of incremental learning [28]. The complications of adapting learning models
through streaming data are avoided for the scope of this thesis, meaning that adapta-
tion of the models is performed inbetween runs through a new training procedure.
The incremental learning procedure may be summarized as follows:

1. A trial run is performed in the closed-loop scenario employing the base models
trained on the extended dataset and reduced to 50 inducing points.

2. Data that appears as "interesting" in order to improve the learning models is col-
lected. In particular two main criteria are used to determine the usefulness of new
data:

63
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• A variance criterion: new datapoints are considered as "interesting" if the pre-
dictive variance of the model on the location is sufficiently high, which means
that the point belongs to a scarcely known region. More formally, new data-
points z∗ = (x∗, y∗) are collected if

V [ f∗] ≥ 2 · V[f] (6.1)

where V [ f∗] is the predictive variance on the new datapoint and V[f] is the
average variance over the datapoints of the base model.

• A mean criterion: new datapoints are selected if they are interpreted as "non-
disruptive", meaning that the regression target at the new location is suffi-
ciently in line with the base model in terms of predictive mean. This is done
as to discard outliers. More formally, selection is performed when

µ∗ − 3σ ≤ y∗ ≤ µ∗ + 3σ (6.2)

with y∗ being the acceleration target at the current location, µ∗ the predictive
mean at the current location and σ the corresponding standard deviation.

The idea behind these criteria is thus to select datapoints that store new informa-
tion and that are guaranteed not be disruptive to the base models. It was largely
inspired by [29].

3. The newly collected points are used for a retraining of the sparse GP models
to be used for the definitive run: 50-point reduced models are created using the
established features and the additional datapoints in order to be finally tested in
the closed-loop scenario on the usual VI-Track.

The results that will be presented in the next sections are derived from the models
trained according to the pipeline presented above, which led to the best performances
all-around. Since incremental learning leads to models that are based on partly different
data, it may be interesting to also perform comparisons on the base models which
depend on the same dataset, especially to study their generalizability properties. Such
analyses are deferred to Appendix D.

6.1.1 Prediction quality analysis

The models that underwent the procedure of Section 6.1 were finally tested in the gen-
eral Virtual Rider scenario. As a first step, the quality of the models was verified in
an offline test aimed at determining the prediction capability of each model. Such test
was conducted exploiting the data obtained by the physics-based Virtual Rider on VI-
Track. In particular, given the real state-input trajectory along the track, it is useful to
verify how close each model is to recreating the real system behavior: this may be done
studying the predictions provided by the model starting from each state and comparing
them with the actual evolution of the system trajectories. Comparisons were provided
in terms of velocities: starting from a given state, the model predicts the future velocity
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evolution according to the input trajectory. The predicted velocities are then compared
to the actual ones. 1 The specifications of the test are provided in the following.
In the devised test, the obtained dynamics models underwent k-step integration
in order to verify the adherence of the k-step ahead velocity predictions w.r.t.
the real physical quantities. In particular, subsequent prediction steps are sepa-
rated by Ts = 10ms and the different models introduced in Section 6.1 (plus the
physics-based model) are evaluated at k = [1, 3, 8, 15, 30, 50, 100, 200, 500] steps (i.e. at
[10, 30, 80, 150, 300, 500, 1000, 2000, 5000]ms). To do so, the real inputs along the trajec-
tory have been used. The prediction results are then compared with the real physical
evolution in terms of R2 index, in order to evaluate how closely the models match the
real motorcycle system. The results obtained for the velocity quantities, namely vx, vy,
ψ̇, θ̇, have been reported in Figure 6.1, in which comparisons between the 3 different
learning-based schemes and the physics-based model are shown. Despite having pro-
vided learning improvements only to ψ̇ and θ̇, it makes sense to also evaluate vx and vy

predictions, as dynamics are highly coupled. As a consequence, it is generally expected
that improvements to a given acceleration model will have an impact on the other ac-
celerations/velocities as well.
The obtained results may lead to the following observations:

• All learning-based models provide better predictions than the white-box (physics-
based) one. This is true for all 4 velocities, both in the short and long term range.
It can be noted that improvements are present for both the quantities that are
directly related to learning (i.e. ψ̇ and θ̇) and those that are not (i.e. vx and vy),
thus indicating that there is also an indirect (positive) impact of learning-based
dynamics models.
Additionally, it can be seen that the prediction quality of the white-box model
degrades faster (especially for vy and θ̇), while the learning-based models provide
good results up to 1s (vy, ψ̇ and θ̇) and 2s (vx).

• When comparing the learning-based models between each other, it must be noted
that the black-box one generally appears as the superior one, providing better
predictions than the others for vx, ψ̇ and θ̇ up to 1s, after which predictions are
less meaningful.
Among the grey-box models, a clear distinction in the prediction capabilities is
not apparent, even though the grey-box with custom features seems to perform
slightly better than the grey-box model employing the same features as the black-
box one.

The models, which have now been tested off-line in terms of prediction capabilities,
will now be tested in closed-loop scenario, in order to gauge whether they provide
improvements to the general riding performance.

1 Predictions are computed for all velocities, both those that are directly related to the learning-based accel-
erations (ψ̇, θ̇) and those that aren’t (vx, vy). This is due to the fact that modifications to a given dynamics
portion normally have a generalized impact, due to the significant coupling effects.
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(a) R2 index evolution for the vx predictions

(b) R2 index evolution for the vy predictions

(c) R2 index evolution for the ψ̇ predictions

(d) R2 index evolution for the θ̇ predictions

Figure 6.1: Prediction analysis of the learning-based models. The R2 index evolution of the k-step predic-
tion for vx (a), vy (b), ψ̇ (c) and θ̇ (d) is reported for each model (the white-box one in blue, the
black-box one in green, the grey-box one w/ custom features in yellow, the grey-box one w/
bb features in purple). Note that the x-axis is freely-scaled for better visibility.
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6.1.2 Closed-loop analysis

After performing the off-line prediction analysis presented in Section 6.1.1, the 3

learning-based models were finally tested in the closed-loop scenario, employing a
common NMPC configuration (the one already presented in (2.57)). As previously
mentioned, the riding task used for testing is given by the completion of VI-Track
according to a reference tracking strategy. The results that were obtained for the 3

models are reported and analysed in this section. In particular, the 3 learning models
are compared between each other and w.r.t. the physics-based models.

6.1.2.1 Closed-loop prediction analysis

First of all, the accuracy of the models will be evaluated and compared with the one
shown by the white-box model. In such sense, it is natural to check how the new models
compare in terms of acceleration estimation, since learning is employed for continuous
dynamics modeling. Since the models are augmented w.r.t. the ψ̈ and θ̈ accelerations, it
is natural to check how each of the models fares in terms of acceleration estimation w.r.t.
the actual evolution of those two targets. The results of the learning-based models are
shown in Figure 6.2(b-d), while the corresponding white-box estimations are reported
in Figure 6.2(a). Specifically, the fit provided along the trajectory by the black-box model
is represented in green (with the dashed line representing the predictive mean and the
light green area being the 2σ region). The fit attained by the grey-box model with
custom features is shown in yellow, while the estimations obtained using the grey-box
model with the black-box model’s features are shown in purple.
Such results lend themselves to the following observations:

• In general, all learning solutions lead to closed-loop acceleration estimations that
are significantly improved w.r.t. the physics-based ones; in particular, the fits pro-
vided by the learning-based models lead to a R2 index that ranges from 0.48 to
0.77 for the ψ̈ acceleration and from 0.62 o 0.87 for the θ̈ acceleration.

• When compared to each other, it can be seen that the black-box solution provides
the best fit for ψ̈, while the grey-box (w/ custom features) leads to the highest θ̈

accuracy (with black-box being a very close second). The grey-box model using
the black-box features leads to the lowest acceleration estimation accuracy.

• As could have been expected, the grey-box model employing custom features
fares better than the other grey-box solution. This is intuitive, as features were
deliberately selected as to maximise the prediction capabilities. Still, other perfor-
mance criteria will show that a better fit capability does not always lead to the
best closed-loop riding behavior.
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(a) Closed-loop fit for the white-box model.

(b) Closed-loop fit for the black-box model.

(c) Closed-loop fit for the grey-box model w/ custom features.

(d) Closed-loop fit for the grey-box model w/ bb features

Figure 6.2: The fit provided by learning-based models in their respective closed-loop trials. Results for
the ψ̈ and θ̈ targets are shown according to the following color scheme: green for the black-box
model (b), yellow for the grey-box model w/ custom features (c), purple for the grey-box model
w/ bb features (d). The 2σ region is shown as a colored shaded area.
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An additional test on the closed-loop predictive capabilities was also conducted. In
particular, the reliability of the internal model used by the Virtual Rider was compared
when using different strategies. In such sense, the internal model reliability may be eval-
uated by testing whether the NMPC predicted trajectories match the future behavior of
the real system. In such sense, Figure 6.3 and Figure 6.4 provide a graphical comparison
between the physics-based model (left) and the best internal model (the black-box one,
on the right), showing some sample NMPC trajectories (in dotted lines) and how they
compare w.r.t. the real trajectories (in red). It can be seen how the NMPC predictions are
much more representative of the future system trajectories when using the black-box
model, both for the yaw-related quantities (ψ̈, ψ̇, in Figure 6.3) and the roll-related ones
(θ̈, θ̇, θ, in Figure 6.4). For completeness’ sake, the corresponding results obtained for
the two grey-box models have been reported in the appendix (Figure D.1). In particular,
they show that NMPC predictions based on the grey-box model w/ optimized features
are not satisfactory (a numerical comparison will follow), while the grey-box model
employing the black-box features leads to higher quality NMPC predictions, even if not
at the same level of the black-box counterpart. This is in contrast with the punctual
acceleration estimations from Figure 6.2, which showed better results when using the
grey-box solution w/ custom features. This reversal will also appear in the forthcoming
comparisons and is a testament to the fragility of the feature selection procedure.

(a) Sample NMPC predicted trajectories for yaw-
related quantities using the physics-based inter-
nal model.

(b) Sample NMPC predicted trajectories for yaw-
related quantities using the black-box learning-
based internal model.

Figure 6.3: Graphical comparison showing the reliability of the physics-based model for the yaw-related
quantities (a) w.r.t. learning-based black-box internal model (b). Sampled NMPC predicted tra-
jectories are shown with dotted lines (blue for the physics-based model, green for the learning-
based one).
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(a) Sample NMPC predicted trajectories for roll-
related quantities using the physics-based inter-
nal model.

(b) Sample NMPC predicted trajectories for roll-
related quantities using the black-box learning-
based internal model.

Figure 6.4: Graphical comparison showing the reliability of the physics-based model for the roll-related
quantities (a) w.r.t. the learning-based black-box internal model (b). Sampled NMPC predicted
trajectories are shown with dotted lines (blue for the physics-based model, green for the
learning-based one).

Beside the graphical evidence behind the higher reliability of the learning-based inter-
nal models, it is possible to produce a numerical comparison, evaluating how close the
predictions at k spatial steps are to the actual trajectory. A quick comparison, showing
the reliability of NMPC predictions at k = 20m for some selected quantities is reported
in Table 6.1, where predictions are evaluated in terms of R2 index w.r.t. the real tra-
jectories. They highlight that NMPC velocity predictions at k = 20m are improved
all-around when employing the black-box model, confirming the previous prediction
analyses, which also showed this learning solution coming on top. The other solutions
do not always provide improvements, with the grey-box "1" solution being better only
for vx and ψ̇ and the grey-box "2" solution improving on vx, vy and ψ̇.

Table 6.1: Reliability of NMPC predictions: accelerations and velocity predictions are compared to the real
trajectories in terms of R2 index. Note that grey-box 1 indicates the grey-box model w/ custom
features and grey-box 2 indicates the grey-box model w/ bb features.

R2(k = 20m) nominal black-box grey-box 1 grey-box 2

vx 0.901 0.908 0.906 0.906

vy 0.835 0.863 0.824 0.863

ψ̇ 0.786 0.830 0.839 0.909

θ̇ 0.328 0.400 0.185 0.273
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6.1.2.2 General closed-loop performance

After analysing the predictive/accuracy properties of the learning-based models, it is
interesting to focus on other evaluation criteria, that are more indicative of the actual
riding performance. In such sense, Table 6.2 provides a synthesis that includes some
track averages of interest for the white-box model (nominal), the black-box one and the
two grey-box ones (the one w/ custom features is denoted as "1", while the one w/ bb
features is denoted as "2"). In particular, the following quantities have been highlighted:

• In terms of tracking performance, the average absolute errors along the track were
evaluated. It is clear that learning-based models provide a much better tracking
performance, with the black-box model reducing the lateral error (the more signif-
icant one from a path following point of view) by 66% and the velocity tracking
error by more than 80%, while the grey-box model w/ the same features manages
to reduce the average yaw tracking error by 65%

• The average input commands along the track were also evaluated. They gener-
ally highlight a less "wasteful" approach to riding when using the learning-based
strategies, w/ a reduced steering action, less braking and a lowered reliance on
the rider lateral movement.

• Riding aggressiveness was also evaluated in terms of average absolute side-slip
angles. They are not in general an indicator of "good" or "bad" riding performance,
but lowered side-slip angles indicate a less risky riding behavior, which is the case
for the learning-based strategies (in particular for the black-box model)

• Lap times were also compared: they were up to 0.8s lower for the learning-based
solutions; this may be attributed to the generally improved riding behavior.

• Finally, average computational times required for the NMPC solution were anal-
ysed. They emphasize the added computational load of learning-based solutions.
Still, it must be said that the current solutions were aimed at determining the
maximal improvements that could be provided through learning, without taking
computational matters into account (as will be done in Section 6.2).

It is interesting to note that the grey-box model using the same features as the black-
box one has an all-around better performance than the grey-box model with custom
features. This seems to testify a general observation of this thesis work: models that
provide the best fit and prediction capabilities in a priori trials are not necessarily the
best performing in the closed-loop scenario, as will be further discussed in Chapter 7.
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Table 6.2: Summary table of the closed-loop results in terms of performance.

nominal black-box grey-box 1 grey-box 2

Tracking performance

|ey| [m] 0.277 0.0936 (-66.2%) 0.221 (-20.3%) 0.149 (-46.0%)

|eψ| [°] 0.908 0.472 (-48.0%) 0.485 (-46.6%) 0.318 (-64.9%)

|ev| [m/s] 0.268 0.0451 (-83.2%) 0.0861 (-67.9%) 0.0580 (-78.3%)

Input commands

|δ| [°] 1.194 1.026 (-14.0%) 1.132 (-5.2%) 1.091 (-8.6%)

γt [0-100] 48.84 48.90 (+0.14%) 48.48 (-0.73%) 48.83 (-0.02%)

γb [0-100] 4.24 3.67 (-13.4%) 3.45 (-18.7%) 3.72 (-12.37%)

|yr| [m] 0.130 0.068 (-47.7%) 0.104 (-19.7%) 0.105 (-19.23%)

Riding aggressiveness

|α f | [°] 1.055 0.837 (-20.6%) 0.993 (-5.89%) 0.918 (-13.0%)

|αr| [°] 0.564 0.474 (-15.9%) 0.545 (-3.3%) 0.511 (-9.5%)

Lap Time

Tlap [s] 66.94 66.14 (-1.20%) 66.30 (-0.96%) 66.25 (-1.03%)

Computation Time

Tsolver [ms] 6.57 22.84 (+248%) 24.08 (+267%) 19.12 (+191%)

The detailed error trajectories obtained using the different strategies are reported in
Figure 6.5 and they highlight the improvements provided by the learning-based strate-
gies, as errors are consistently below the physics-based counterpart and the path fol-
lowing task is attained with a higher degree of success. This seems to be a general
statement to the improved riding behavior of the learning-based solutions.
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(a) Evolution of the lateral trajectory error ey.

(b) Evolution of the yaw trajectory error eψ.

(c) Evolution of the velocity trajectory error ev

Figure 6.5: Tracking errors’ evolution attained using the physics-based model (blue) and the learning-
based ones (the black-box one in green, the grey-box one w/ custom features in yellow, the
grey-box one w/ bb features in purple). From top to bottom the lateral error ey (a), the yaw
error eψ (b), the velocity error (c).
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A further error analysis is reported in Figure 6.6, where a specific focus was given
to the tracking performance in the chicane maneuver of VI-Track. Again, it can be seen
that learning-based strategies lead to the strongest adherence to the reference path.

Figure 6.6: Greater detail of the tracking performance in the chicane maneuver of VI-Track.

From the analyses that were conducted up to now, the beneficial impact of learning-
based NMPC strategies is evident. In particular, the black-box strategy appears as the
gold standard, as it possesses the best predictive properties and leads to the best closed-
loop performance. The grey-box learning strategies, while still providing improvements,
are not up to par. It is also interesting to note that the grey-box model using the custom
features found through the associated input analysis is better than the grey-box solution
employing the black-box features in terms of prediction quality, but the converse is true
in terms of performance. This highlights a general limitation of the feature selection
procedure, as it does not necessarily lead to the best performing models in the closed-
loop scenario.
Since a meaningful objective is to also reduce the computational complexity of the
devised solutions, the next section is devoted to finding more computationally-sound
strategies, taking the black-box model as a comparative benchmark, as it led to the best
results so far.
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6.2 computationally-sound learning-based solutions

The analysis undertaken in Section 6.1 was meant to compare high-fidelity models in
order to establish a higher ceiling performance that could be attained through learning-
based solutions. The computational load of the models was not a priority in such anal-
ysis.
This section is thus devoted to filling this gap, as new models were investigated in order
to reduce the computational load of the resulting optimization problem. Before delving
into the strategies that produced the most interesting results in such sense, some key
observations are in order:

• The reduction produced by VFE, which leads to models depending on few induc-
ing points, is not generally sufficient to guarantee a significant computational load
reduction. Other online reductions should be considered, as already mentioned in
Section 3.4. There, two main methods were presented:

1. The nearest neighbor approach, which employs the closest GP points to the
current state for prediction at each NMPC step;

2. The transductive learning approach, which employs the previous-step NMPC
trajectory in order to provide transductive predictions for the current state
using the FITC formulas.

• Trials employing the two online approximation approaches highlighted two main
facts

1. The transduction approach leads to better prediction properties and to better
closed-loop performances than the nearest neighbor counterpart.

2. Online approximation methods work well only with grey-box modelling ap-
proaches. This might be related to the fact that the physics component grants
additional robustness, which in turn can be exploited in order to further ap-
proximate the learning-based components.

• The computational load of GP models is also largely influenced by the number of
features used for the learning models.

The considerations above led to exploring grey-box models based on few features that
could be employed with online approximations, in order to reduce the computational
load while maintaining part of the benefits shown by learning-based models. This
twofold objective resulted in the following strategies:

• Strategy I: Grey-box modeling of ψ̈ and θ̈ through a 100-point reduced GP model
for each. Both targets are to be predicted with a reduced number of features:

– 3 features for ψ̈ ([1(θ), 5(θ̇), 2(vx)]), according to the original analysis from
Chapter 4

– 3 features for θ̈ ([1(θ), 8(γb), 2(vx)]), according to the original analysis from
Chapter 4.
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Transduction is used for both models employing a ratio of h = 4 (meaning that
given a NMPC grid of 80 points, 20 of them are used for transduction).

• Strategy II: Grey-box modeling of ψ̈ through a 100-point reduced GP and black-
box modeling of θ̈ through a 50-point reduced GP. Modeling entails a reduced
number of features:

– 3 features for ψ̈ ([1(θ), 5(θ̇), 2(vx)]), according to the original analysis from
Chapter 4

– 4 features for θ̈ ([1(θ), 2(vx), 4(ψ̇), 9(yr)]), according to the original analysis
from Chapter 4.

Transduction is used only for the yaw model, employing a ratio of h = 4. This
"mixed" strategy (in terms of grey/black-box modeling), which may seem unusual,
will soon be justified, as it retains most of the improvements provided by the
high-quality GP models of Section 6.1, while leading to a reduced computational
complexity.

• Strategy III: Black-box modeling of ψ̈ and θ̈ through a 50-point reduced GP; it
corresponds to the black-box model analysed in in Section 6.1. It is here used as
benchmark for the other two more computationally-sound solutions.

Strategies I/II will now be analysed in terms of prediction capabilities, performance and
computational cost in order to verify how they compare with the gold-standard solution
(strategy III). The testing approach is analogous to the one undertaken in Section 6.1.

6.2.1 Prediction quality analysis

A brief prediction analysis is conducted by simply comparing the fit that models from
strategies I/II attain on the targets ψ̈ and θ̈ in the closed-loop trials w.r.t. the gold-
standard solution of strategy III. The results of such analysis are reported in Figure 6.7,
with strategy I in plot (a), strategy II in plot (b) and strategy III in plot (c). They highlight
the following:

• Strategies I/II understandably provide worse fits than strategy III, especially in
terms of ψ̈, as they employ additional approximations. The fit attained by strat-
egy II on θ̈ is higher quality as it entails no online approximation. In any case,
even when using online reductions, the general tendencies of the accelerations are
assessed correctly.

• The acceleration evolution shows some additional oscillatory behavior when em-
ploying strategy I. This is not true for strategy II, which is closer to the benchmark
provided by strategy III in terms of acceleration evolution.
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(a) Closed-loop fit using strategy I.

(b) Closed-loop fit using strategy II.

(c) Closed-loop fit using strategy III.

Figure 6.7: The fit provided by computationally-sound learning-based models in their respective closed-
loop trials. Results for the ψ̈ and θ̈ targets are shown according to the following color scheme:
blue for strategy I, yellow for strategy II, purple for strategy III (the performance benchmark).
The 2σ region is shown as a colored shaded area.
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6.2.2 Closed-loop performance analysis

The closed-loop performance is evaluated according to criteria that are analogous to
those used in Section 6.1. In particular, average quantities of interest have been com-
puted and reported in Table 6.3. First of all, it can be noted that both Strategy I and II
lead to a reduced computational time w.r.t. the benchmark of Strategy III. This is espe-
cially true for I, having Tsolver = 11.5ms; this is easily explained by the fact that both ψ̈

and θ̈ models employ the transduction approach. The mixed Strategy II leads to smaller
computational improvements (Tsolver = 17.8ms). At the same time, it retains most of
the performance enhancements, with the tracking performance being close and in some
regards better than the benchmark (Strategy III). It shows a similar performance also
in terms of input requirements and riding aggressiveness. The same cannot be said for
Strategy I, which has more muted performance improvements w.r.t. the physics-based
model. As a consequence, it appears that Strategy II (the "mixed" model) constitutes
a valid compromise between computational savings and performance requirements. A
more detailed view of the trajectory error evolution is reported in Figure 6.8, which
shows the improvements brought by strategy I and in particular Strategy II, as it be-
haves quite similarly to Strategy III in terms of tracking properties.

Table 6.3: Summary table of the closed-loop performance results for the computationally-sound learning-
based strategies.

nominal strategy i strategy ii strategy iii

Tracking performance

|ey| [m] 0.277 0.293 (+5.92%) 0.083 (-70.0%) 0.094 (-66.2%)

|eψ| [°] 0.908 0.673 (-25.9%) 0.393 (-56.7%) 0.472 (-48.0%)

|ev| [m/s] 0.268 0.142 (-47.0%) 0.054 (-79.7%) 0.045 (-83.2%)

Input commands

|δ| [°] 1.194 1.149 (-3.74%) 1.050 (-12.0%) 1.026 (-15.9%)

γt [0-100] 48.84 48.35 (-0.99%) 48.99 (+0.31%) 48.90 (+0.14%)

γb [0-100] 4.24 3.47 (-18.1%) 3.71 (-12.5%) 3.67 (-13.4%)

|yr| [m] 0.130 0.107 (-17.4%) 0.056 (-57.0%) 0.068 (-47.7%)

Riding aggressiveness

|α f | [°] 1.055 1.008 (-4.45%) 0.873 (-17.2%) 0.837 (-20.6%)

|αr| [°] 0.564 0.525 (-3.33%) 0.489 (-13.4%) 0.474 (-15.9%)

Lap Time

Tlap [s] 66.94 66.48 (-0.69%) 66.20 (-1.11%) 66.14 (-1.20%)

Computation Time

Tsolver [ms] 6.57 11.5 (+75.3%) 17.79 (+171%) 22.84 (+248%)
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(a) Evolution of the lateral trajectory error ey.

(b) Evolution of the yaw trajectory error eψ.

(c) Evolution of the velocity trajectory error ev

Figure 6.8: Tracking errors’ evolution attained using Strategy I (light blue), Strategy II (yellow) and Strategy
III (green), compared with physics-based model (blue). From top to bottom: the lateral error ey

(a), the yaw error eψ (b), the velocity error (c).
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The presented comparisons prove that approaches for computational load reduction
exist. In the case of the Virtual Rider implementation, reducing the number of features
and using online approximations proved useful. Further analyses should be conducted
in order to determine whether VFE-reduced models are effective even with less induc-
ing points (i.e. m ≤ 50) and if transduction may be applied with higher ratios h, in order
to further reduce the computational complexity of the NMPC problem.

6.3 lap time performance

One final analysis was undertaken in order to determine which is the best lap-time per-
formance attainable through learning-based solutions and to verify how they compare
with the physics-based counterpart. Such test was performed on the usual VI-Track.
In such sense, the already cited genetic tuning procedure from [13] was employed in
order to find the best-performing NMPC configuration (in terms of Tlap) for the physics-
based model and the gold standard learning-based model (the one employing black-box
modeling of ψ̈ and θ̈). As already noted, the genetic algorithm finds ideal configurations
exploring a performance ↔ robustness spectrum.
In particular, the procedure entailed the optimization of the NMPC weights attributed
to eψ, ey, ev and α, while a constant velocity reference was maintained. Performing a 25-
generation tuning on a population of 50 individuals, the obtained results are the ones
shown in Figure 6.9. The configurations are evaluated and compared in terms of lap
time and sensitivity index (a measure of robustness). The sensitivity index obtained for
the tested strategies is in general very low, as the velocity reference is not particularly
demanding (note that sensitivity is measured on a 0-100 scale). What is interesting to
note is how much the different strategies may be pushed in order to reduce the lap time,
with the best-performing configurations leading to:

• Tmin
lap,p = 66.24s for the physics-based model

• Tmin
lap,l = 65.38s for the learning-based model

where p refers to the physics-based model and l to the learning-based one. Such re-
sults show that a performance-oriented tuning again leads to a lower lap time when
employing the learning-based strategy w.r.t. the physics-based one. This confirms that
the improvements provided by learning are not limited to the model accuracy.
Additionally, the tuned weight configurations corresponding to the fastest trials are:

h f ast,p




eψ + α

ey

ev

α



 =


0.683

0.047

0.970

7.30

 h f ast,l




eψ + α

ey

ev

α



 =


6.23

0.01

0.001

389

 (6.3)

The configurations from (6.3) highlight some key differences between the strategies.
Specifically, the fast configuration for the learning-based solution relies on considerably
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low error weights, which may be attributed to the higher accuracy of the model, while
more importance is given to the side-slip angle.
All in all, it is clear that the learning-based strategies provide improvements also in
terms of lap-time, highlighting the all-around importance of moving towards higher-
accuracy models.

(a) Genetic tuning results for the physics-based
model.

(b) Genetic tuning results for the learning-based
model.

Figure 6.9: Results obtained from the genetic tuning of the physics-based model (left) and the learning-
based one (right).





Part III

C O N C L U S I O N S A N D F U T U R E D E V E L O P M E N T S

The objective of this conclusive section is twofold. First of all, a recap includ-
ing the methodologies that were employed and the main experimental find-
ings will be presented, along with an analysis of what worked according to
expectations and what did not. Secondarily, a brief overview of the prospec-
tive research directions that may be undertaken in the world of LbMPC
according to the gained insight will be presented.





7
C O N C L U S I O N S A N D F U T U R E D E V E L O P M E N T S

The main objective of this thesis was to explore the cutting edge field of learning-based
MPC (LbMPC), which aims at improving the performance of NMPC control frame-
works through the implementation of learning techniques. In particular, the sub-field
of learning dynamics was investigated, as Gaussian Process-based dynamics modeling
was the main focus of methodological research. In order to provide experimental sig-
nificance to the devised learning strategies, the highly complex scenario constituted by
the NMPC-based Virtual Rider was approached as a central case study to check the
implementability and the usefulness of the devised learning-based models. The main
keypoints and contributions of this thesis will now be summarized, before delving into
prospective directions for future research.

7.1 conclusive remarks

The Virtual Rider has been a case study of interest at the University of Padua during
the past years. It falls under the general umbrella of virtual prototyping for the automo-
tive industry. In particular, successful solutions for simulative motorcycle riding have
already been attained in the past, employing a physics-based internal model to be used
for the NMPC control problem. Such solutions were evaluated using a high-fidelity
co-simulation environment, which includes a commercial simulation software (VI-BRT)
that reproduces the motorcycle-rider behavior in a highly realistic way. The physics-
based solutions proved successful in the assigned riding tasks, completing them in a
timely fashion and reproducing a realistic riding behavior. This was done in conjuction
with the real-time requirements of the control action. Still, open questions remained:
it was clear that the underlying model was not particularly accurate, as the estimated
dynamics (in terms of accelerations) were often off the mark w.r.t. the real ones. Such
observation begged the question as to whether improving the accuracy of the NMPC
internal model could foster significant improvements in the performance of the Virtual
Rider in terms tracking, system input management and lead to lowered lap-times.
This thesis thus had as its main purpose the exploration of learning-based techniques
to be used for the improvement of the Virtual Rider’s internal model. The biggest fo-
cus was placed on Gaussian Process Regression modeling, which had already shown
a lot of promise when applied into LbMPC schemes, proving successful also in practi-
cal implementations, as proven by the literature on the matter. Its achievements can be
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traced to the high flexibility it allows, as it is a non-parametric probabilistic learning
approach which can be adapted to most nonlinear modeling problems. GPR cannot be
implemented without precautions in a time-sensitive field like NMPC: models should
be carefully selected to be as computationally-sound as possible. For that reason, a
lot of attention was devoted to researching sparse GP approximations, namely proce-
dures that allow to distill the information of entire datasets into few inducing variables.
Two main approximation methods exist in literature: the VFE one, which includes a
variational objective function to be used for both hyperparameters and inducing input
optimization, and the FITC one, which is based on an approximated prior which sim-
plifies the GP predictive formulas from a computational point of view. The former is
superior in terms of inducing variable selection; as such, it was used extensively to re-
duce the available datasets. The latter provides useful simplified formulas that may be
employed online in order to provide additional computational savings (e.g. according
to transductive learning schemes).
Another fundamental aspect to be investigated was feature selection: the acceleration
dynamics clearly have different properties and should be predicted using only the most
pertinent state-input information. This should be done in accord with the parsimony
principle: the unnecessary feature information should be discarded to avoid misleading
correlations and to simplify the model structure. To that end, feature selection meth-
ods were explored: two main criteria were devised, one based on a mutual information
measure and the other based on a quality-of-fit measure. They led to competitive re-
duced models that could provide a satisfactory offline accuracy on the dataset used for
learning. Nevertheless, it soon became clear that a satisfactory offline performance does
not guarantee an effective closed-loop performance. This was particularly highlighted
by some of the black-box models (the ψ̈ one especially), as they failed to gauge all of
the acceleration dynamics properly. As a consequence, a new feature selection proce-
dure was undertaken: it was now guided by an extended dataset, used to highlight
all of the relevant dynamics. As a result, the most useful features to be used for each
acceleration target were finally derived, according to both a grey-box and a black-box
modeling strategy. Exploiting the feature analyses, 3 different modeling structures were
derived: a grey-box model and a black-box one for the ψ̈ and θ̈ accelerations using the
optimized features, in addition to a grey-box model of the same accelerations employ-
ing the features derived for the black-box model. This last solution was added in order
to verify how grey-box and black-box strategies fare when using the same information.
v̇x and v̇x model improvements were instead avoided as they appeared unnecessary, if
not harmful.
The devised learning-based strategies were then tested extensively. First of all, their
predictive capabilities were evaluated in an off-line scenario, comparing their k-step ac-
curacy. Secondly, they were tested in the closed-loop scenario: they were compared in
terms of acceleration estimation accuracy, but also in terms of tracking performance, in-
put management and lap-times. The black-box strategy proved to be the gold standard
in view of its all-around quality results. The grey-box models were generally a little
worse, but still provided improvements w.r.t. the physics-based solution. In particular,
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the grey-box model employing the optimized features fared better in terms of predic-
tions but worse in terms of closed-loop performance w.r.t. the grey-box solution using
the same features as the black-box model. This highlighted a key finding of this thesis:
models with carefully picked features have better accuracy but do not necessarily pro-
vide the best closed-loop performance. This, in turn, represents a critical limitation of
the undertaken feature selection procedure and of the learning design framework in gen-
eral, as the accuracy of the models seems to be a necessary but not sufficient condition
for a good closed-loop performance.
Further tests were conducted in order to reduce the computational load of the employed
models. This entailed the exploration of transductive methods, which allow to signifi-
cantly reduce the complexity of the optimization problem to be solved by the NMPC.
They proved effective only with grey-box learning formulations, presumably because
the physics-informed foundation grants additional robustness. Trials showed that most
of the learning-related improvements shown by the black-box model (the "gold stan-
dard") could be retained when using a simpler model, in which ψ̈ was modeled through
a grey-box strategy (allowing transductive approaches) while θ̈ was modeled through a
black-box strategy.

7.2 future directions

Making the most of the insight which was gained through this thesis, a discussion on
which branches of research may be investigated next is conducted.

7.2.1 Providing a link between learning and performance through learning design approaches

As mentioned multiple times, a critical limitation of the learning dynamics approach that
was undertaken in this thesis is that it generally provides no a priori guarantees: it
has become clear that models that seem to correctly represent the system dynamics in
offline tests do not always fare as well in the closed-loop scenario. Such problem, which
was in part tackled through an enlarged training set and a revised feature analysis, was
never properly solved. While it is certainly possible that more robust feature selection
approaches and more finely tuned models may be the key, it could be interesting to
also explore learning approaches that explicitly take the closed-loop performance into
account. That is the case when adopting a learning design point view. Works like [30]
show that it is in general possible to link learning and performance objectives. In that
case, Bayesian MPC is employed in order to provide a control policy that trades-off
information extraction and knowledge exploitation when applied to the system. In such
sense, it takes a step further w.r.t. the passive dynamics learning approach which has been
followed in this thesis. The latter, while mostly beneficial, has proven that a general link
between model accuracy and MPC efficacy cannot be provided in a straightforward
way.
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7.2.2 Further Improvements to the Learning Dynamics approach

While extending the point of view beyond dynamics learning is certainly appealing, there
is still much to explore in this field.
It is clear that complex dynamical systems like the motorcycle one require a lot of care
when implementing learning-based internal models. In particular, the success of a given
model stems not only from its fit capabilities, but also from its properties; these, in turn,
mostly depend on two factors when employing GP-based models: the features that are
used for prediction and the kernel structure. In such sense, it is evident that renewed at-
tention should be devoted to the feature selection procedure, which proved particularly
fragile, as it provided no general guarantee for the closed-loop performance. Additional
selection criteria and a refinement of the strategies devised as part of this thesis should
be considered. Additionally, it would be advisable to embed the desired dynamic mod-
els’ properties directly into the kernel structures; this could go a long way in providing
additional guarantees for the closed-loop performance.
Possible GP model improvements do not end with kernel structure exploitation. Ditch-
ing the independence assumption made for the system accelerations, favoring instead a
multi-output GP solution [31], could be beneficial for applications like the Virtual Rider,
which entails highly coupled dynamics. Detecting such couplings may in fact lead to
more robust learning-based dynamics models.
As a final note, active learning strategies [32] should be mentioned. This thesis mostly
dealt with passive learning strategies, save for the incremental learning aspects: data is
retrieved passively through simple trials and then exploited for model training. Con-
versely, active learning strategies aim to embed exploration ↔ exploitation schemes di-
rectly into the MPC controller, so that safe exploration of the state-input space may
be fostered. The additional system knowledge resulting from exploration can then be
exploited to attain a better control performance.



Part IV

A P P E N D I X

The Appendix includes supplemental material to the thesis, including:

• Appendix A, where some complementary math to Chapter 3 is re-
ported.

• Appendix B, where a comprehensive specification of the physics-based
model presented in Chapter 2 is reported, along with the exact param-
eter configuration of the motorcycle model.

• Appendix C, where the feature analysis’ results for v̇x and v̇y are re-
ported; they are complementary to the results shown in Chapter 4.

• Appendix D, where additional results of the closed-loop trials employ-
ing the learning-based models are shown. It is supplementary w.r.t. the
material shown in Chapter 5.





A
M AT H E M AT I C A L A P P E N D I X

a.1 gaussian identities

The following Gaussian properties have been used for the derivation of the marginal
likelihood for the full Gaussian Process model.
The general notation is of the following type:

p(x|m, Σ) = (2π)−D/2|Σ|−1/2exp
(
−1

2
(x − m)TΣ−1(x − m)

)
(A.1)

where

1. m is the mean vector (of length D)

2. Σ is the symmetric and positive definite covariance matrix (of size (D × D))

In particular, the product of two Gaussians gives another (un-normalized) Gaussian

N (x|a, A)N (x|b, B) = Z−1N (x|c, C) (A.2)

where

c = C(A−1a + B−1b) (A.3a)

C = (A−1 + B−1)−1 (A.3b)

The normalizing constant has the form

Z−1 = (2π)−D/2|A + B|−1/2exp
(
−1

2
(a − b)T(A + B)−1(a − b)

)
(A.4)

a.2 fitc posterior derivation

The complete procedure for the derivation of the FITC posterior distribution is here
reported.
The starting point is the FITC prior already introduced in (3.26), which is:

p(f, f∗, fu) ∼ N





m(x1)
...

m(xn)

m(X∗)

m(Xu)


,



K f1 f1 . . . Q f1 fn Q f1∗ K f1u
...

. . .
...

...
...

Q fn f1 . . . K fn fn Q fn∗ K fnu

Q∗ f1 . . . Q∗ fn K∗∗ k∗u

Ku f1 . . . Ku fn Ku∗ Kuu




(A.5)
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Clearly K̃ f f = Q f f + diag(K f f − Q f f ) = Q f f + Λ f f . Starting from this prior, it is easy
to find the posterior distribution for the targets f∗, which will be of the type p(f∗|f) ∼
N (µ̃∗, Σ̃∗), where

µ̃∗ = m(X∗) + Q∗ f K̃−1
f f (f − m(X)) (A.6a)

Σ̃∗ = K∗∗ − Q∗ f K̃−1
f f Q f ∗ (A.6b)

Similarly, the posterior distribution for the inducing inputs will be p(fu|f) ∼ N (µ̃u, Σ̃u),
where

µ̃u = m(Xu) + Ku f K̃−1
f f (f − m(X)) (A.7a)

Σ̃u = Kuu − Ku f K̃−1
f f K f u (A.7b)

The above equations are clearly not satisfactory as they require the inversion of a n × n
matrix (K̃ f f ). In order to find expressions that are computationally advantageous, the
matrix inversion lemma (Woodbury matrix identity) must be applied repeatedly to the
expressions (A.7a-A.7b) to obtain:

µ̃u = m(Xu) + Σ̃uK−1
uu Ku f Λ−1

f f (f − m(X)) (A.8a)

Σ̃u = Kuu(Kuu + Ku f Λ−1
f f K f u)

−1Kuu (A.8b)

which leads to the final posterior formulas for the targets:

µ̃∗ = m(X∗) + K∗uK−1
uu (µ̃u − m(Xu))

= m(X∗) + k∗uK−1
uu Σ̃uK−1

uu Ku f Λ−1
f f (f − m(X))

= m(X∗) + k∗u✚
✚✚K−1
uu ✟✟Kuu (Kuu + Ku f Λ−1

f f K f u)
−1

✟✟Kuu✚
✚✚K−1
uu Ku f Λ−1

f f (f − m(X))

= m(X∗) + k∗u(Kuu + Ku f Λ−1
f f K f u)

−1Ku f Λ−1
f f (f − m(X))

= m(X∗) + k∗uΣKu f Λ−1
f f (f − m(X))

(A.9)

Σ̃∗ = K∗∗ − K∗uK−1
uu (Kuu − Σ̃u)K−1

uu Ku∗

= K∗∗ − K∗uK−1
uu (Kuu − Kuu(Kuu + Ku f Λ−1

f f K f u)
−1Kuu)K−1

uu Ku∗

= K∗∗ − K∗u✚
✚✚K−1
uu ✟✟Kuu K−1

uu Ku∗ + K∗u✚
✚✚K−1
uu ✟✟Kuu (Kuu + Ku f Λ−1

f f K f u)
−1

✟✟Kuu✚
✚✚K−1
uu Ku∗

= K∗∗ − K∗uK−1
uu Ku∗ + K∗u(Kuu + Ku f Λ−1

f f K f u)
−1Ku∗

= K∗∗ − Q∗∗ + K∗uΣKu∗

(A.10)

where the notation Σ = (Kuu + Ku f Λ−1
f f K f u)

−1 has been used.
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M O D E L PA R A M E T E R S A N D S P E C I F I C AT I O N S

b.1 physics-based model dynamics specifications

The physics-based model dynamics are characterized by the following matrices. The
inertia matrix is

M̃ =


M̃11 M̃12 M̃13 M̃14

M̃21 M̃22 M̃23 M̃24

M̃31 M̃32 M̃33 M̃34

M̃41 M̃42 M̃43 M̃44

 (B.1)

with entries

• M̃11 = mb + mr

• M̃12 = M̃21 = 0

• M̃13 = M̃31 = hbmbsθ + hrmrsθ + mryrcθ

• M̃14 = M̃41 = 0

• M̃22 = mb + mr

• M̃23 = M̃32 = bmb + brmr

• M̃24 = M̃42 = mryrsθ − hrmrcθ − hbmbcθ

• M̃33 = Iyy + b2mb + b2
r mr + h2

bmb + h2
r mr − Iyyc2

θ + Izzc2
θ − h2

bmbc2
θ − h2

r mrc2
θ

+ mry2
r c2

θ + 2hrmryrcθsθ

• M̃34 = M̃43 = brmryrsθ − brhrmrcθ − bhbmbcθ

• M̃44 = mbh2
b + mrh2

r + mry2
r + Ixx

The gravitational effects matrix is of the form

G̃ =


G̃11

G̃21

G̃31

G̃41

 (B.2)

with entries:
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• G̃11 = G̃21 = G̃31 = 0

• G̃41 = −gmr(hrsθ + yrcθ)− ghbmbsθ

The input matrix has the structure:

B̃ =


B̃11 B̃12 B̃13 B̃14 B̃15

B̃21 B̃22 B̃23 B̃24 B̃25

B̃31 B̃32 B̃33 B̃34 B̃35

B̃41 B̃42 B̃43 B̃44 B̃45

 (B.3)

and entries

• B̃11 = cδG

• B̃12 = −sδG

• B̃13 = 1

• B̃14 = 0

• B̃15 = −1

• B̃21 = sδG

• B̃22 = cδG

• B̃23 = 0

• B̃24 = 1

• B̃25 = 0

• B̃31 = psδG

• B̃32 = pcδG

• B̃33 = B̃34 = 0

• B̃35 = −hdsθ

• B̃41 = B̃42 = B̃43 = B̃44 = B̃45 = 0

Finally, the Coriolis and centrifugal effects matrix has the form

C̄ =


C̄11

C̄21

C̄31

C̄41

 (B.4)

and entries

• C̄11 = ψ̇(mbvy + mrvy + bψ̇mb + brψ̇mr − 2θ̇hbmbcθ − 2θ̇hrmrcθ + 2θ̇mryrsθ)

• C̄21 = ψ̇mbvx + ψ̇mrvx + θ̇2hbmbsθ + θ̇2hrmrsθ + ψ̇2hbmbsθ + ψ̇2hrmrsθ + θ̇2mryrcθ +

ψ̇2mryrcθ

• C̄31 = Iw f θ̇ωw f + Iwr θ̇ωwr + bψ̇mbvx + brψ̇mrvx + Iyy θ̇ψ̇s2θ − Izz θ̇ψ̇s2θ + bθ̇2hbmbsθ +

br θ̇2hrmRsθ + br θ̇2mryrcθ + θ̇ψ̇h2
bmbs2θ + θ̇ψ̇h2

r mrs2θ − θ̇ψ̇mry2
r s2θ − ψ̇hbmbvysθ −

ψ̇hrmrvysθ − ψ̇mrvyyrcθ + 2θ̇ψ̇hrmryrc2θ

• C̄41 = 1
2 Izzψ̇2s2θ − 1

2 Iyyψ̇2s2θ − Iw f ψ̇ωw f cθ − Iw f ψ̇ωwrcθ − 1
2 ψ̇2h2

bmbs2θ −
1
2 ψ̇2h2

r mrs2θ +
1
2 ψ̇2mry2

r s2θ + ψ̇mrvxyrsθ − ψ̇2hrmryrc2θ − ψ̇hbmbvxcθ − ψ̇hrmrvxcθ
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b.2 motorcycle and rider parameters

In the following table the main parameters of the motorcycle and the rider are reported

Table B.1: Motorcycle and rider parameters

parameter symbol value unit of measure

Bike mass mb 144.010 kg

Distance between wheel contact patches pb 1.32 m

Bike’s CM x-coordinate bb 0.64515 m

Bike’s CM z-coordinate (height) hb 0.60226 m

Bike’s moment of Inertia along z-axis Izz 93.9329 kg m2

Bike’s moment of Inertia along y-axis Iyy 150.3812 kg m2

Bike’s moment of Inertia along x-axis Ixx 61.8557 kg m2

Caster angle ϵ 25
180 π rad

Front wheel mass mw f 10.004 kg

Rear wheel mass mwr 10.004 kg

Front wheel radius rw f 0.306 m

Rear wheel radius rwr 0.322 m

Front wheel spin inertia Iw f 0.4347 kg m2

Rear wheel spin inertia Iwr 0.8032 kg m2

Initial Max engine torque τM
t,start 28.50 N m

Initial Min engine torque τm
t,start 0 N m

1
st gear ratio gr1 0.3333 −

2
nd gear ratio gr2 0.4255 −

3
rd gear ratio gr3 0.5263 −

4
th gear ratio gr4 0.5882 −

5
th gear ratio gr5 0.6369 −

6
th gear ratio gr6 0.6667 −

Primary gear ratio grprimary 0.5714 −
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Final gear ratio gr f inal 0.4000 −

Maximum frontal braking torque τ
f

b 648 N m

Maximum rear braking torque τr
b 67.5 N m

Front-rear brake bias λ 0.75 −

Air density ρ 1.225 kg/m3

Drag coefficient Cd 0.41 −

Front section area A 0.6 m2

Air density ρ 1.225 kg/m3

Rider mass mr 70 kg

Rider’s CM x-coordinate w.r.t. gyro ref-
erence frame

xcm,r 0.5519 m

Rider’s CM z-coordinate (height) w.r.t.
gyro reference frame

zcm,r 0.9140 m



C
F E AT U R E A N A LY S E S I N V O LV I N G v̇ x A N D v̇ y

This chapter is devoted to reporting the feature analysis results obtained for v̇x and
v̇y, which were omitted from Chapter 4, as they were not part of the final closed-loop
implementation.
Table C.1 and Table C.2 show the results for the mutual information feature analysis.
Table C.3 and Table C.4 show the results derived from the fit-based feature analysis.

Table C.1: Feature combinations with the highest information content for the black-box targets. For each
black-box target (v̇x, v̇y), the 3 best combinations of 1, 2, 3, 4 and 5 features are shown, along
with the corresponding mutual information index.

targets v̇x v̇y

1
st

2
nd

3
rd

1
st

2
nd

3
rd

1 feat

[7] [2] [6] [6] [5] [1]

2.6355 2.2729 2.0352 1.3692 1.3159 1.2655

2 feat

[2, 7] [6, 7] [4, 7] [5, 6] [3, 5] [4, 5]

3.9853 3.6959 3.6153 2.5371 2.5148 2.4977

3 feat

[2, 7, 8] [2, 7, 12] [2, 7, 9] [2, 5, 15] [1, 2, 5] [2, 3, 5]

3.921 3.7867 3.5814 2.4082 2.404 2.3973

4 feat

[2, 7, 8, 12] [2, 7, 8, 9] [6, 7, 8, 15] [3, 5, 8, 11] [3, 5, 6, 8] [4, 5, 8, 15]

3.6405 3.406 3.3524 2.1941 2.1884 2.1857

5 feat

[2, 7, 8, 9, 12] [2, 7, 8, 12, 13] [6, 7, 8, 12, 15] [3, 5, 8, 11, 15] [1, 4, 5, 8, 11] [3, 5, 8, 11, 12]

3.1357 3.1047 3.0917 2.0392 2.0375 2.031
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Table C.2: Feature combinations with the highest information content for the grey-box targets. For each
grey-box target (ϕv̇x , ϕv̇y ), the 3 best combinations of 1, 2, 3, 4 and 5 features are shown, along
with the corresponding mutual information index.

targets ϕv̇x ϕv̇y

1
st

2
nd

3
rd

1
st

2
nd

3
rd

1 feat

[4] [3] [6] [1] [3] [15]

1.5006 1.4959 1.458 2.0644 2.0088 1.9068

2 feat

[2, 14] [2, 3] [4, 7] [2, 3] [2, 14] [1, 2]

2.7163 2.7043 2.6991 3.2181 3.1962 3.1789

3 feat

[1, 2, 7] [2, 4, 7] [2, 7, 14] [1, 6, 14] [2, 3, 6] [1, 3, 7]

2.74 2.7285 2.7215 3.1438 3.1314 3.1283

4 feat

[2, 4, 7, 12] [1, 2, 7, 12] [2, 7, 12, 16] [1, 6, 8, 15] [1, 6, 14, 15] [1, 3, 4, 15]

2.5375 2.5278 2.527 2.9597 2.9586 2.9539

5 feat

[1, 4, 7, 8, 12] [1, 6, 7, 8, 12] [4, 7, 8, 12, 16] [1, 3, 6, 8, 15] [1, 3, 4, 8, 15] [1, 6, 8, 14, 15]

2.3817 2.3714 2.371 2.8135 2.8026 2.802

Table C.3: Feature combinations providing the best fit for the black-box targets on the whole dataset after
training on a subset of 2000 points. The fit measure is given by R2, the average R2 index over
the 3 tracks’ data, which is reported for each feature combination. For each black-box target (v̇x,
v̇y), combinations of up to 7 features are shown.

targets v̇x v̇y

1 Feat
[7] [5]

0.8861 0.3665

2 Feat
[7,2] [5,10]

0.9718 0.5619

3 Feat
[7,2,1] [5,10,9]
0.9828 0.6042

4 Feat
[7,2,1,9] [5,10,9,14]
0.9850 0.7305

5 Feat
[7,2,1,9,8] [5,10,9,14,2]

0.9882 0.7463

6 Feat
[7,2,1,9,8,5] [5,10,9,14,2,15]

0.9901 0.8393

7 Feat
[7,2,1,9,8,5,14] [5,10,9,14,2,15,16]

0.9905 0.8499
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Table C.4: Feature combinations providing the best fit for the grey-box targets on the whole dataset after
training on a subset of 2000 points. The fit measure is given by R2, the average R2 index over
the 3 tracks’ data, which is reported for each feature combination. For each grey-box target (ϕv̇x ,
ϕv̇y ), combinations of up to 7 features are shown.

targets ϕ v̇x ϕ v̇y

1 Feat
[8] [3]

0.9849 -0.4384

2 Feat
[8,12] [3,5]

0.9909 0.2394

3 Feat
[8,12,15] [3,5,2]

0.9947 0.5369

4 Feat
[8,12,15,2] [3,5,2,4],

0.9955 0.7015

5 Feat
[8,12,15,2,5] [3,5,2,4,15]

0.9961 0.7727

6 Feat
[8,12,15,2,5,3] [3,5,2,4,15,12]

0.9962 0.8175,

7 Feat
[8,12,15,2,5,3,14] [3,5,2,4,15,12,14]

0.9962 0.8627

The chapter is completed by a comparative analysis of the best performing models
(according to the feature analyses) as the feature numerosity and the number of induc-
ing points varies (Figure C.1 for the black-box models and Figure C.2 for the grey-box
models); finally, the fits provided by the 50-point models leading to the best R2 index
on the VI-Track data are shown in Figure C.3 (black-box) and Figure C.4 (grey-box).
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(a) R2 index for v̇x

(b) R2 index for v̇y

Figure C.1: Results of the comparative analysis of the VSGP models for the black-box targets v̇x, v̇y.

(a) R2 index for ϕv̇x

(b) R2 index for ϕv̇y

Figure C.2: Results of the comparative analysis of the VSGP models for the grey-box targets ϕv̇x , ϕv̇y .
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(a) Fit of the best 50-point v̇x model

(b) Fit of the best 50-point v̇y model

Figure C.3: The fit of the best 50-points black-box VSGP model configurations for v̇x, v̇y (with µ∗ shown
with a dashed blue line and the light blue area representing [µ∗ − 2σ, µ∗ + 2σ]), compared with
the target acceleration (shown in red).

(a) Fit using the best 50-point ϕv̇x model

(b) Fit using the best 50-point ϕv̇y model

Figure C.4: The fit of the best 50-points grey-box VSGP model configurations for ϕv̇x , ϕv̇y (with ¨̃q + µ∗
shown with a dashed blue line and the light blue area representing [ ¨̃q + µ∗ − 2σ, ¨̃q + µ∗ + 2σ]),
compared with the target acceleration (shown in red).





D
A D D I T I O N A L C L O S E D - L O O P T R I A L S

This chapter is devoted to showing some additional results that are supplementary to
the analyses from Chapter 5.

(a) Sample ψ-related NMPC predictions. (b) Sample ψ-related NMPC predictions.

(c) Sample θ-related NMPC predictions. (d) Sample θ-related NMPC predictions.

Figure D.1: Sample NMPC trajectories for the yaw-related and roll-related quantities provided by the grey-
box model w/ custom features (left, in yellow) and the grey-box model w/ bb features (right,
in purple).
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d.1 generalizability analysis of the models from Section 6 .1

As already mentioned in Section 6.1, the models employed in the general analysis were
subjected to a specific procedure, which included an incremental learning phase to im-
prove their accuracy. It is still interesting to evaluate how the same models would fare
when employing the same base dataset, in order to better gauge their generalizability
properties.
In such sense, Figure D.2 shows the accuracy of the learning-based models trained just
on the extended dataset (including 51180 points) and reduced to 50 inducing points
through VFE inference. A quick analysis highlights how models employing the cus-
tom features obtained through the dedicated analysis (i.e. the black-box model shown
in green and the grey-box one shown in yellow) perform well even without the in-
cremental learning phase, showing satisfactory generalizability properties. Still, some
reductions to the fit quality are present w.r.t. Figure 6.2, especially for the black-box
modeled yaw acceleration. Nevertheless, the worst performance is related to the grey-
box model which employs the same features as the black-box one (in purple), which
seems to confirm the importance of feature selection in order to devise models that are
sufficiently generalizable.
Further analysis is provided by Table D.1, showing some key average quantities re-
sulting from the closed-loop trials. Again, they testify that the black-box and grey-box
solutions employing dedicated features hold up well even without incremental learning
(see Table 6.2 for comparison). The same cannot be said for the grey-box model employ-
ing the black-box features, whose performance is quite degraded w.r.t. the counterpart
enriched with incremental learning (especially in terms of ey, i.e. path following). Again,
this seems to highlight the importance of dedicated features in order to guarantee an
optimal closed-loop performance under varying conditions.
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(a) Closed-loop fit for the black-box model.

(b) Closed-loop fit for the grey-box model w/ custom features.

(c) Closed-loop fit for the grey-box model w/ bb features

Figure D.2: The fit provided by learning-based models in their respective closed-loop trials. The models
are based on the common extended dataset, without going through an incremental learning
phase. Results for the ψ̈ and θ̈ targets are shown according to the following color scheme:
green for the black-box model, yellow for the grey-box model w/ custom features, purple for
the grey-box model w/ bb features. The 2σ region is shown as a colored shaded area.
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Table D.1: Summary table of the closed-loop results in terms of performance.

nominal black-box grey-box 1 grey-box 2

Tracking performance

|ey| [m] 0.277 0.100 (-63.8%) 0.256 (-7.4%) 0.323 (+16.7%)

|eψ| [°] 0.908 0.452 (-50.3%) 0.595 (-34.4%) 0.883 (-2.77%)

|ev| [m/s] 0.268 0.050 (-81.3%) 0.088 (-67.1%) 0.110 (-59.1%)

Input commands

|δ| [°] 1.194 1.050 (-12.1%) 1.122 (-6.1%) 1.038 (-13.1%)

γt [0-100] 48.84 48.93 (+0.19%) 49.11 (+0.57%) 49.28 (+0.92%)

γb [0-100] 4.24 3.71 (-12.6%) 3.03 (-28.3%) 4.09 (-3.6%)

|yr| [m] 0.130 0.049 (-62.4%) 0.102 (-21.0%) 0.061 (-52.8%)

Riding aggressiveness

|α f | [°] 1.055 0.881 (-16.5%) 0.973 (-7.8%) 0.826 (-21.7%)

|αr| [°] 0.564 0.496 (-12.0%) 0.535 (-5.2%) 0.471 (-16.6%)

Lap Time

Tlap [s] 66.94 66.11 (-1.24%) 66.37 (-0.85%) 66.37 (-0.85%)

Computation Time

Tsolver [ms] 6.57 21.43 (+227%) 21.78 (+232%) 22.29 (+240%)
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