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Abstract

Cloud Radio Access Network is a promising architecture for 5G net-
works. However the computational complexity of the decoding pro-
cess over this architecture results prohibitively high. In particular,
with proposed Gaussian message passing algorithms, the compu-
tational complexity grows quadratically with the number of users
and base stations. We will introduce two different approaches to
overcome this issue: a centralised one, where reduction of the com-
putational complexity is achieved via channel sparsification, and a
distributed one, where the reduction of computational complexity
is achieved via pre-coding performed at each base station. Notice
that the centralised approach still requires that all signals received
at each one of the base stations must be sent to the central BBU
Pool, whereas the distributed approach reduces the burden of in-
formation that has to be sent to the BBU Pool. Hence the latter
approach not only reduces the computational complexity but also
the amount of information that flows through the network connect-
ing the base stations with the central Pool. Both approaches will
have different implementations and will be tested in terms of relative
error, computational complexity and achievable sum-rate.
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Chapter 1

Introduction

As mobile data transmission volume continuously rises, novel mobile
network architectures have been proposed to address the challenges
imposed by modern communication scenarios. Cloud Radio Ac-
cess Network (C-RAN) is one of the above mentioned architectures,
which is expected to meet the need of data-hungry users, while main-
taining a low price for data usage. The main idea behind C-RANs is
to centralize baseband processing in a pool, which is shared among
sites, in such a way that adaptation to non-uniform traffic is possible
and resources (i.e. base stations) are used more efficiently. However,
the signal processing needed to handle communications in such an
architecture has a high computational complexity, due to the above
mentioned fact that all antennas Remote Radio Heads (RRH) in a
certain area refer to a central parallel elaboration unit. This means
that operations as full-scale RRH coordination become impractical
due to prohibitively high computational complexity. However the
centralised BBU pool enables the exploitation of the diversity and
interference present in a communication channel for decoding pur-
pose.
Algorithms of message passing decoding have been proposed in [2],
where the high computational complexity issue has been addressed
via channel sparsification, i.e. by setting to zero some channel ma-
trix coefficients according to a certain rule.
In this work we will first introduce more details about C-RANs,
especially about the architecture of such a system and the main ad-
vantages it brings respect to classical architectures. Then we will
introduce the system model for the communication scenario over
which decoding algorithms will be applied, the theory behind mes-
sage passing decoding and then introduce the message passing al-
gorithms proposed in [2]. Then, conscious of the fact that in large
network message passing decoding presents an high computational
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complexity, we search for metrics that allow a sparsification of the
channel matrix or methods to reduce the amount of data that has
to be processed for the decoding of the transmitted signals. All
methods will then be analysed in terms of relative error, amount
of introduced sparsification and channel capacity of the system ex-
ploiting such methods, as well as their computational complexity.
This metrics will then be used for a comparison of the proposed
algorithms.



Chapter 2

Cloud Radio Access Network
technology

2.1 Mobile Network Architecture

C-RAN is mobile network architecture implemented over a cellular
network, where baseband resources are pooled in a central unit, so
they can be shared among several base stations. The networks we
are here introducing are called cellular network as the area covered
by a mobile network is divided into cells, each one with its own an-
tennas and responsible for the users located in it.
C-RAN architecture is targeted by mobile network operators and
is seen as a typical mobile network supporting supporting soft and
green fifth generation technologies (5G). The traditional communi-
cation model for cellular networks expects users referring to a Base
Station (BS), which handles communications in its coverage area.
We can divide the function of a BS in two main groups:

1. Baseband Processing: in this group we find functions for modu-
lation and demodulation, sampling, channel coding and decod-
ing, Fast Fourier Transform (FFT) and Inverse Fast Fourier
Transform (IFFT) among others;

2. Radio Functionalities: among which we find digital processing
modules, frequency filtering, power amplification and resource
allocation.

Traditionally, radio and baseband processing functionalities are
integrated into each single base station. A first evolution from this
model is provided by BS with RRHs architecture, in which BSs are
separated into RRH and Base Band processing Unit (BBU). RRHs
are statically assigned to BBUs, so that each cell has its own BS
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where the radio module refers to is own BBU. BSs with RRH archi-
tecture can be seen in Fig. 2.1 (a).
In order to optimize BBU utilization between heavily and lightly
loaded BSs, C-RAN architecture has been introduced. BBUs are
centralized in the BBU Pool, a virtualized cluster which is capable
of base band processing operations and is shared among cells. An
example of this type of architecture can be seen in figure 2.1 (b).
A few words must be spent on the virtualization concept. In fact we
stated that the base band processing in C-RANs is carried out by
a central virtualized pool. With the word virtualization we mean a
logical structure which enables the creation of logically isolated net-
works over possibly shared abstracted physical networks. In the
BBU pooling contest this concept can be used to separate data
storage, applications, operating systems and management control.
Hence the functions of a base station are realized by a Virtual BS,
implemented as a software instance.

Figure 2.1: Cellular network architecture: BS with RRH (a) and C-RAN (b)

In C-RANs, in order to reduce transport network overhead, the
split between BBU and RRH can be implemented in two different
ways: fully centralized solution and partially centralized solution.
In fully centralized solutions functionality of levels 1, 2 and 3 of
International Organization for Standardization Opens System In-
terconnection (ISO/OSI) stack are implemented in the central BBU
pool, a solution that intrinsically generates high bandwidth data
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transmission between the two modules. The second solution, par-
tially centralized, co-locates level 1 functionality in both RRH and
BBU in order to reduce the burden in terms of bandwidth on trans-
port links. However this latter solution considerably reduces re-
source sharing, making impossible to efficiently support advanced
feature. Thus, this second approach is considered sub-optimal re-
spect to the first one. The choice of the solution also influences the
physical medium to be used. In fact, if the latter solution is im-
plemented, microwave connections between RRHs and BBU can be
considered, whereas, if the first solution is implemented, full C-RAN
deployment is possible only with fibre connections. Copper-based
physical medium solutions are not considered for C-RAN architec-
ture, as Digital Subscriber Lines (DSL)-based access can offer only
up to 10-100Mb/s connections.

2.1.1 RRH and BBU Implementation

Even if we used the same name for RRH passing from traditional
architectures to C-RAN, requirements and solutions have to be re-
visited in order to make them compatible with C-RANs. The first
main difference is that, in the analysed architecture, signals have
to propagate over many kilometres, therefore an additional delay
is incurred. The second difference is that C-RAN architecture is
expected to have a bigger amount of traffic flowing at higher speed
with respect to traditional architectures. Therefore RRHs must sup-
port higher data rates, up to some dozens of Gb/s, and hence both
radio modules and communication protocols must be revised. Ex-
isting RRHs are expected to work in a plug-and-play manner when
connected to a C-RAN.
As before stated, a BBU pool is composed by a set of intercon-
nected BBUs. Such connections between modules are expected to
work with low latency,high speed and high reliability besides the
support of dynamic carrier scheduling and high scalability. A BBU
pool intended to manage a medium-sized urban network needs to
support 100 base stations distributed in a 5 × 5 km and it is ben-
eficial when it supports additional services as Content Distribution
Network (CDN), Deep Packet Inspection (DPI) and Distributed Ser-
vice Network (DSN). Hence we need a method for hiding physical
characteristics of the BBU pool and enable dynamic resource alloca-
tion. This can be obtained with virtualization methods, which are
intended to create logically isolated networks over abstracted phys-
ical network, enabling a flexible and dynamic sharing of network
resources. Hence Virtual Base Stations (VBS) are created as soft-
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ware instances realizing the functions of a BS, enabling furthermore
a separation of data storage, operating systems and management
control. The key features and hence requirements of a virtualized
network are isolation, customization and efficient resource alloca-
tion. In particular, for what concerns our work, we are interested
in:

• computational resources virtualization, including clock synchro-
nization among BSs, to ensure massive parallelism for real time
applications, minimization of computational latency between
different operating systems and reducing communication la-
tency;

• network resources virtualization, including different authentica-
tion and security methods, switching between virtual network
operators and different usage of bandwidth resources.

2.2 Advantages and Challenges of the C-RAN
Architecture

The C-RAN architecture results advantageous for macro cells as well
as for small cells. In fat, a centralized BBU Pool enables an efficient
utilization of BBUs and reduction the cost of BSs deployment and
operation, while reducing power consumption and increasing flexi-
bility. Furthermore, even mobile network operators can benefit from
C-RAN architecture; since response time of application servers is no-
ticeably shorter if data is cached in BBU Pool, they can offer users
more attractive Service Level Agreements (SLAs).
One of the key features of the C-RAN architecture is its adaptabil-
ity to non-uniform traffic. In fact, if we consider the daily traffic
distribution in each cell, we can notice that peaks of traffic occur at
different hours, especially if we consider cell located in residential
areas and in office areas. Hence, since the required base band pro-
cessing is performed in the central Pool, the overall utilization can
be improved. Moreover during the night, since resource demand is
lower, some BBUs in the pool can be switched off without affecting
the overall network coverage.
Another advantage of C-RAN architecture is the easiness of up-
grades. In fact, if we need to expand network coverage area, we can
simply connect a new RRH to the already existing BBU Pool. If
network coverage must be enhanced, we can split existing cells or
add additional RRHs to the BBU Pool. Furthermore, if the overall
network capacity shall be increased, we can easily upgrade the BBU
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Pool either by adding hardware or by substitution of the existing
BBUs with more powerful ones.
However C-RAN architecture comes with requirements as the need
for high bandwidth, strict latency and jitter as well as low cost trans-
port network. In fact the links between RRHs and BBU Pool are
affected by a huge overhead, and the centralized Pool is expected
to support 10-1000 BSs sites, meaning a vast amount of data that
moves towards it.
Furthermore we need to manage BBUs cooperation interconnec-
tion and clustering. In fact the number and deployment of active
BBU/RRHs units within the Pool must be optimized in order to
achieve energy savings, whereas cells must be optimally clustered
to the Pools in order to prevent BBU Pool and transport network
overload. Another challenge imposed by C-RAN architecture is its
large Inter Cell Interference (ICI), thus calling for new transmis-
sion/reception schemes in order to deal with such problem on the
cell edges and achieve optimal throughput at this points.

2.3 C-RAN Architecture Deployment Scenarios

C-RAN architecture is intended as a deployment applicable to most
typical scenarios, as macro-cell, micro-cell, pico-cell as well as indoor
applications.
In case of green field deployment, we need to place RRHs and
BBU Pool according to the network planning. Furthermore phys-
ical medium and transport solutions can be designed according to
C-RAN specific requirements. In [4] are evaluated the most bene-
ficial C-RAN deployments, concluding that the best strategy is to
serve 20-30% of office BSs and 70-80% of residential BSs in one BBU
Poo.
C-RAN can be also implemented for capacity boosting. In fact, as
stated in [5], the most promising way to increase network capacity
is to add new cells. In mobile network within an underlying macro
cell we can employ a certain number of small cells to boost network
capacity. Small cells can take advantage from C-RAN architecture
as required signalling resources are reduced and they are supported
by a single BBU Pool. In order to exploit C-RAN for capacity im-
provement existing BBUs can hence be moved to the central pool,
whereas existing RRHs can be left in their positions or new ones can
be added.
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2.4 System Model:Multi-Cell MIMO Networks

In section 2.2 we have seen that one of the key limiting factors in cel-
lular systems is the frequency reuse factor, which implies inter-cell
interference problems. In order to overcome such an issue we intro-
duce the concept of multi-cell cooperation, which has been proved to
be one of the best solutions to dramatically increase system’s perfor-
mance in terms of capacity. The key idea behind this type of systems
is to literally exploit inter-cell interference by processing data com-
ing from different interfering cells in a jointly manner. Therefore
the system mimics a large virtual Multiple-Input Multiple-Output
(MIMO) array, inheriting the benefits of such a technology. Current
designs for Code Division Multiple Access (CDMA) or frequency
hopping spread spectrum systems do allow full frequency re-use in
each cell. In particular in CDMA networks a mobile can commu-
nicate with several base stations and, thanks to selection diversity,
select the best of this connections at any given time. The com-
bination of soft hand-off techniques and power control allow a full
frequency reuse in each cell. All comes however with a severe inter-
ference condition at the cell edge. Interference is treated as noise
at the receiver, and hence all signals come with useful information,
which will be exploited in the decoding process.

2.5 Mathematical Model for MIMO Systems

Consider a transmitting device equipped with K transmitting an-
tennas which sends information to a receiving device equipped with
N receiving antennas. Each transmitting antenna sends signals to
all receiving antennas and each one of such signals experiences path
loss and fading, elements that characterise the transmission channel.
We will denote as hn,k ∈ C the channel coefficient expressing effects
of path loss and fading for the signal transmitted from transmitting
antenna k to receive antenna n. The overall channel can be hence
characterised by the channel matrix which entries are elements of
the type hn,k, hence resulting in a CN×K matrix.
If we denote as x = [x1, x2, ..., xK ] the transmitted signal vector,
with entry k being the signal transmitted from antenna k, and with
H the channel matrix, the received signal is

y = Hx + w (2.1)

where w = [w1, w2, ..., wN ]T , with []T denoting the transposed ver-
sion of the vector, is the additive white Gaussian noise vector, with
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wn being the noise component of the nth channel. We will hence-
forth assume that each one of the entries of vector w is a Gaussian
random variable with zero mean and variance N0

2
.

Fig. 2.2 shows the block schema of a MIMO channel.

Figure 2.2: Block scheme of a MIMO channel

2.6 Multiple Antenna Channels

Given the previously depicted transmission scenario and the received
signal (2.1), we obtain the block scheme of Fig. 2.2 by applying
the Singular Value Decomposition (SVD) to the channel matrix H,
obtaining

H = UDVH (2.2)

where U is a N ×N unitary matrix, V is a K ×K unitary matrix
and D is an N ×K diagonal matrix, with all zero elements except
the main diagonal, that contains the singular values, and they cor-
respond to the square roots of eigenvalues of either HHH or HHH.
If we denote

xp = Vx (2.3)

and

yp = U∗y (2.4)

and apply the inverse mapping V and U to the block scheme of
Figure 2.2 we obtained the block representation of Figure 2.3.

Since D is a diagonal matrix, by applying a pre-coding and post
processing operations respectively at transmitter and receiver, we
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Figure 2.3: Block scheme for MIMO channels with SVD for H

can obtain the representation of the MIMO channel as a parallel of
channels of the type

yp = Dxp + wp (2.5)

where
wp = UHw (2.6)

We can notice that the input-output relations in (2.5) and (2.6)
assume slightly different forms depending on the values of K and
N . In particular, if N ≤ K we have

yp,n = Dnxp,n + wp,n (2.7)

for n = 1, ..., N , so that contributions xp,N+1, ..., xp,K do not con-
tribute to the received signal. If we instead have N > K the received
signal is

yp,n = Dnxp,n + wp,n (2.8)

for n = 1, ..., K, whereas

yp,n = wp,n (2.9)

for n = K + 1, ..., N , i.e. outputs are associated to noise only for
this index set. Given this consideration we can compute the number
of active channels as min(N,K).

2.7 Cellular Network Modelling

We stated that, in order to exploit ICI, we can see the C-RAN-
based cellular system as a virtual MIMO. Fig. 2.4 presents one of
the possible communication scenarios. We consider Nc cells with BS
equipped with Na omnidirectional receive antennas, whereas users
are Nu per cell and equipped with single antenna devices. The total
number of receiving antennas is hence N = NcNa, whereas the total
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number of users is K = NcNu.
We suppose that the channel matrix H is composed by elements of
the type

hn,k = γn,kd
−α

2
n,k , (2.10)

where γn,,k is the independent identically distributed (i.i.d) Rayleigh
fading coefficient, with meanmγ = 0 and variance σ2

γ = 1, dn,k is the
distance between the kth user and the nth antenna of cell c and α be-
ing the path loss coefficient. If we denote as A(c) = [n1, n2, ..., nNa ]
the set of coefficients of antennas of cell c, then n ∈ A(c). The
overall channel matrix is a full CN×K matrix.
Furthermore, we will assume that the noise component is a complex
normal random variable with zero mean and N0I covariance matrix.
We will denote the noise component as w = [w1, w2, ..., wNa ]

T , with
i.i.d. entries.
We also assume unitary variance of the transmitted signal, hence
E[xkx

H
k ] = I.

Notice that power control techniques can be applied to the sys-
tem in order to obtain a better performance. This implies a pre-
multiplication of the transmitted signal by P

1
2
k , where Pk is the trans-

mit power allocated for the kth user. We assume that all users are al-
located the same transmission power, i.e. Pk = P ∀k ∈ {1, 2..., K}.
Equation (2.1) is hence updated for power control by a simple mul-
tiplication, obtaining

y = P
1
2Hx + w (2.11)

Now we assume that, on average, noise power is −10dB. Since
users signal powers decrease with the inverse of the distance from
the BS, we notice that, if users transmit with power P = 0dB and
is situated on the cell border, at the receiver it will suffer an SNR
of −16dB. We hence multiply all channel matrix coefficients by a
factor 50 in order to bring border cell’s users SNR to 0dB.
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Figure 2.4: Cellular network scenario for message passing algorithms extension:
users are denoted with red circles, while antennas with back circles
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Message Passing Decoding

3.1 Marginal Functions

Let us consider a collection of K variables x = [x1, x2, ..., xK ], each
one assuming values in a finite domain or alphabet X . Consider a
function f(x), i.e. a function of the entries of vector x with domain
S = X ×X × ...×X of dimension K and co-domain R. If we assume
that sum operations in R are well defined, then associated to each
function f(x) are K marginal functions fk(xk). In order to obtain
the value fk(x) for each xk = x ∈ X we must sum f(x) over all the
configurations that have xk = x and we denote this sum as

fk(x) =
∑
∼xk

f(x1, x2, ..., xK) =
∑
x1

∑
x2

...
∑
xk−1

∑
xk+1

...,
∑
xK

f(x1, x2, ..., x).

(3.1)
With message passing algorithm we aim at finding efficient ways to
compute marginal functions by exploiting the way in which global
function factors. In the next section we will introduce factor graphs,
a graphical representation of procedures needed to compute marginals
of functions.

3.2 Factor Graphs

A Factor Graph (FG) is a bipartite graph which expresses the fac-
torization (3.1). The representation of a factor graph is hence based
on the function to expressed and is composed by:

• a variable node for each one of the variables xk, denoted with
a circle;

• a factor node for each one of the local functions fk, denoted
with a square;

13
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• an edge connecting variable node xk to factor node fk if and
only if xk is argument of fk.

An example of a FG is showed in Fig. 3.1. In order to compute
marginal values we use Message Passing (MP) algorithms applied
over FGs. Notice that MP algorithms can be applied on loopy-
free FGs as well as on loopy FGs. However convergence cannot be
assured on the latter. We will hence first introduce the sum-product
algorithm, which computes marginal values for local functions and
hence discuss convergence of the presented algorithm.

Figure 3.1: Factor graph example. Fig taken from [7].

3.3 The Sum-Product Algorithm

The message passing algorithm starts at the leaves of the FG, where
each leaf variable node sends an identity function message to its
parent and each leaf factor node fk sends a description of fk to its
parent. Once a vertex receives a message from all of its children it
computes the message to send to its parent. If such a vertex is a
variable node it simply sends the product of the messages received
from its children, whereas a factor node fk with parent xk forms the
product of fk with all messages received from its children and then
sums this result as in (3.1), i.e.

∑
∼xk . Notice that with product

of the messages we mean an appropriate description of the point-
wise product of the corresponding functions. The computation ends
at the root node, where marginal value is computed as product of
all incoming messages. The operations executed by sum-product
algorithm can be summarized in the following 4 rules:

1. half edges for variables xi shall be interpreted as edges with
leaf factor fj(xi) = 1;
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2. the message exiting a leaf node is µfj→xi(xi) = fj(xi);

3. the message exiting a factor node shall be updated via the
sum-product rule

µfj→xi(xi) =
∑
∼xi

fj(xi, xa, xb...)µxa→fj(xa)µxb→fj(xb)... (3.2)

4. the marginal on variable xi is obtained as

h(xi) = µfk→xi(xi)µfj→xi(xi), (3.3)

where fk and fj are two adjacent nodes.

Among the others, a class of functions which can be represented via
FGs is the one of probability distributions. Given the transmitted
signal vector x and the corresponding received signal vector y, for
each fixed observation y the corresponding a-posteriori probability
(APP) distribution p(x|y) for the components of x is proportional
to the function

f(x) = p(y|x)p(x), (3.4)
where p(y|x) is the conditional probability of received signal vector y
when x is transmitted and p(x is the a-priori probability distribution
of the transmitted signal vector x. Since we fixed the value of y,
f in (3.4) is a function of x only with y as parameter. Hence we
can write p((y|x) as fy(x), meaning that the parametric form is
the same when different decoding instances are analysed, whereas
parameter y changes. Furthermore if the channel is memoryless we
have the factorization

p(y1, y2, ...yN |x1, x2, ..., xN) =
N∏
n=1

p(yi|xi) (3.5)

and hence

f(x) =
N∏
n=1

p(yi|xi)p(xi). (3.6)

Hence a FG can be built with factor nodes being the different
p(yi|xi)p(xi).
This graph is characterized by loops, meaning that the MP algo-
rithm is implemented in an iterative form with no natural termina-
tion. Hence messages will be passed multiple times over the same
edge. In practice this means that, if MP algorithm converges, it
is not clear whether the results are good approximations of the
marginals. We demand to [8] for sufficient conditions for conver-
gence of the sum-product algorithm.
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3.4 Gaussian Message Passing and Channel Spar-
sification

We now apply the theory introduced for message passing algorithm
to C-RAN architecture. We assume that transmitted signal entries
x = {x1, x2, ..., xK} are distributed as i.i.d. complex Gaussian vari-
ables, so that, together with the received signal (2.1), they are jointly
Gaussian. We can hence apply the optimal linear detector minimum
mean square error (MMSE), which returns the decision statistics of
the transmitted signal as

x̂ = P
1
2HH(PHHH +N0I)

−1y, (3.7)

where y = [y1, y2, ..., yN ]T . If our aim was to solve this problem with
the matrix inversion (3.7) the computational complexity would be
O(N3). This results to be prohibitively high in large networks with
hundreds or thousands of users and RRHs, i.e. very large H. So we
wish to derive an algorithm with linear computational complexity
in the number of users and/or RRHs.
Thanks to the hypothesis, the MMSE results to be the maximum
a posteriori probability (MAP) detector [3], where the a-posteriori
probabilities are of the type p(x|y).
Notice that

p(x|y) ∝ p(y|x)p(x), (3.8)

which, since we assume that all entries in x are independent, can be
rewritten as

p(y|x)p(x) =
N∏
i=1

p(yi|x)
K∏
j=1

p(xj), (3.9)

where

p(yn|x) =
1√

2πN0

e
− (yn−hHn x)(yn−hHn x)H

2N0 , (3.10)

with hn being the nth row of the channel matrix, and

p(xk) =
1√
2π
e

−xkx
∗
k

2 , (3.11)

with []∗ denoting the complex conjugate.
The idea is to exploit the factorization in (3.8) and (3.9) to resolve
Maximum a-Posteriori Probability (MAP) problem by iteratively
update the values of p(yn|x) and x̂k by means of the max-product
algorithm.
An example of a factor graph representation of a C-RAN is given
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in figure 3.2, where input symbols xi are treated as variable nodes,
whereas function nodes are given by input symbol probabilities p(xk)
at the user side and by probabilities p(yn|x) at the RRH side.

Figure 3.2: Factor graph representation of a C-RAN with 3 users and 4 RRHs

However convergence cannot be guaranteed, because of the fact
that the graph used to represent the scenario includes loops, ad it
has been demonstrated that message passing over loopy graphs does
not always converge. We hence introduce the channel sparsification.
With this approach we want to overcome the scalability problem.
Since users and BSs can be distributed over large areas, RRHs may
receive only few strong signals, the ones coming from the nearest
users. Therefore we can sparsify the channel matrix by neglecting
entries associated to distances above a certain threshold d0. In par-
ticular, we can say that entry hn,k of the channel matrix is different
from zero if and only if the distance between user k and RRH n is
lower than a certain threshold distance.
Denoting the sparsifyied channel matrix with Ĥ and defining Ḣ =
H− Ĥ, the received signal can be expressed as

y = P
1
2 Ĥx + P

1
2 Ḣx + n, (3.12)

and the MMSE estimation of x becomes

x̂ = P
1
2 ĤH(P ĤĤH + N̂0I)

−1y, (3.13)

with

N̂0 = PE

[∑
j 6=k

|Ḣn,j|2
]

+N0. (3.14)

After the sparsification of the channel matrix we can rewrite the
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probability density function (3.8) as

p(x|y) =
N∏
i=1

p(yi|xIi)
K∏
j=1

p(xj), (3.15)

where In is the set of indices of users whose distance with RRH n
is less than the specified threshold.
We can state that the number of messages that will be exchanged
will be lower respect to full channel matrix case, since only users
located in a circle centred in a BS and with constant radius equal to
the distance threshold will be served by a certain RRH. The thresh-
old value is assumed to be predetermined and constant regardless
of the network size. This assumption is valid for a scenario where
the number of involved RRHs N scales as the number of users K,
where it has been demonstrated that the distance threshold does
not increase with the network size to achieve a certain signal to
interference plus noise ratio [3].

3.4.1 Gaussian Message Passing Algorithm

The Gaussian Message Passing (GMP) algorithm is the MP algo-
rithm where all variables are Gaussian distributed. This is the case
of our scenario, since both {xk} and {yn} are Gaussian distributed,
even messages will follow the same distribution and will be hence
characterized by their mean and variance. This fact also character-
izes the name of the algorithm, i.e., the adjective Gaussian refers to
the fact that entries follow this distribution.
Given the iteration number t, the mean and variance information
messages sent by check node p(yn|x) to variable node xk are de-
noted as m(t)

yn→xk and v(t)yn→xk . At the same manner, we denote mes-
sages sent by variable node xk to factor node p(yn|x) as m(t)

xk→yn and
v
(t)
xk→yn .
Given the channel sparsification method, we can state that messages
will be exchanged only among users located in a radius d0 from a
certain RRH. The algorithm steps are shown in Algorithm 1.
The algorithm receives as input the channel matrix, whether sparsi-
fied or not, and the received signal vector and returns the estimates
of the components of the transmitted signal vector. We see that
algorithm steps are repeated estimates of mean and variance of the
components of both transmitted and received signals. Initialization
is based on the assumptions for the statistics of the transmitted
signal, i.e. We notice that estimates of mean and variance values
are firstly computed and then updated in an iterative way, until a
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stopping criterion is satisfied.
The convergence of the algorithm is poorly improved with this ap-
proach. In fact it is known that tree-type factor graph guarantee
message passing convergence, but this is not our case. Precisely, the
convergence of the algorithm depends on the schedule of messages
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to be exchanged.

Data: Ĥ,y
Result: x̂k∀k
initialization: t = 0, m(0)

xk→yn = 0,v(0)xk→yn = 1∀k, n ;
while stopping condition unsatisfied do

t← t+ 1;
for n=1 to N do

for k=1 to K do
if Ĥn,k 6= 0 compute

v(t)yn→xk =
1

Pk|Ĥn,k|2

(
N̂0 + Pk

∑
j 6=k

|Ĥn,j|2v(t−1)xj→yn

)
(3.16)

m(t)
yn→xk =

1

P
1
2
k Ĥn,k

(
yn − P

1
2
k

∑
j 6=k

Ĥn,jm
(t−1)
xj→yn

)
(3.17)

end
for k=1 to K do

if Ĥn,k 6= 0 compute

v(t)xk→yn =

( ∑
Ĥj,k 6=0,j 6=n

1

v
(t)
yj→xk

+ 1

)−1
(3.18)

m(t)
xk→yn = v(t)xk→yn

( ∑
Ĥj,k 6=0,j 6=n

m
(t)
yj→xk

v
(t)
yj→xk

)
(3.19)

end
end

end
for k=1 to K do
compute:

vk =

( ∑
Ĥn,k 6=0

1

v
(t)
yn→xk

+ 1

)−1
(3.20)

x̂k = vk

( ∑
Ĥn,k 6=0

m
(t)
yn→xk

v
(t)
yn→xk

)
(3.21)

end
Algorithm 1: Gaussian Message Passing (GMP)
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3.4.2 Randomized Gaussian Message Passing Algorithm

The main issue arising in Algorithm 1 is convergence. In fact, as
before stated, message passing over loopy graphs is not guaranteed
to converge. In order to address this problem we consider a ran-
domized scheduling update of messages obtaining the Randomized
Gaussian Message Passing (RGMP) algorithm showed in Algorithm
2. While in Algorithm 1 messages are updated in parallel in a syn-
chronous message passing, here the update is executed in a sequen-
tial randomly permuted order. In fact, as we can see in Algorithm
2, before the computation of the messages, a permutation σ of the
set {1, ..., K} is picked at random, following a uniform distribution,
i.e. every permutation has the same probability of being chosen.
Then messages are sequentially updated following the indexes of σ.
In order to clarify this aspect let us consider the permutation of
the set {1, 2, 3} obtained at the nth iteration being σ = {3, 1, 2}.
The message passing update first considers user’s variable node x3,
and first updates all messages on the edges connecting such a node.
Then the update of messages on edges connecting x1 and then x2.
We can see that the computational complexity is unchanged respect
to Algorithm 1, the only difference being the scheduling approach,
which tries to mitigate the loopy effect on algorithm’s convergence.
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Data: Ĥ,y
Result: x̂k∀k
initialization: t = 0, m(0)

xk→yn = 0,v(0)xk→yn = 1∀k, n ;
while stopping condition unsatisfied do

t← t+ 1;
chose randomly a permutation σ of {1, ...,K};
for n=1 to N do

for i=1 to K do
if Ĥn,σ(i) 6= 0 compute

v(t)yn→xσ(i) =
1

Pk|Ĥn,σ(i)|2

(
N̂0 + Pσ(i)

∑
j<i

|Ĥn,σ(j)|2 (3.22)

v(t)xσ(j)→yn + Pσ(i)
∑
j>i

|Ĥn,σ(j)|2v(t−1)xσ(j)→yn

)

m(t)
yn→xσ(i) =

1

P
1
2

σ(i)Ĥn,σ(i)

(
yn − P

1
2

σ(i)

∑
j<i

Ĥn,σ(j) (3.23)

m(t)
xσ(j)→yn − P

1
2

σ(i)

∑
j>i

Ĥn,σ(j)m
(t−1)
xσ(j)→yn

)
end
for i=1 to K do

v(t)xσ(i)→yn =

( ∑
Ĥj,σ(i) 6=0,j 6=n

1

v
(t)
yj→xσ(i)

+ 1

)−1
(3.24)

m(t)
xσ(i)→yn = v(t)xσ(i)→yn

( ∑
Ĥj,σ(i) 6=0,j 6=n

m
(t)
yj→xσ(i)

v
(t)
yj→xσ(i)

)
(3.25)

end
end

end
for k=1 to K do

compute:

vk =

( ∑
Ĥn,k 6=0

1

v
(t)
yn→xk

+ 1

)−1
(3.26)

x̂k = vk

( ∑
Ĥn,k 6=0

m
(t)
yn→xk

v
(t)
yn→xk

)
(3.27)

end
Algorithm 2: Randomized Gaussain Message Passing (RGMP).
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3.4.3 Computational Complexity Analysis

Let us first assume that no channel sparsification method is applied
and, hence, the channel matrix results to be a full CNxK , with N
and K being respectively the number of RRHs and users. Analysing
Algorithms 1 and 2, we can see that the main iterations consist on
two cycles, one into the other. We can start as an example to iterate
on the index k of the users and then, inside this main cycle, iterate
on the number n of users. Due to the message updating schedule
required by the algorithms, i.e. the use of values for the mean and
variance of signal computed at iteration t or t−1, we have to include
two cycles on the index value of the user n, where, for each one of
the values of n, a sum over K elements is performed as a cycle.
Given the full channel matrix H, and given the check on the value
of Hn,k made by the algorithms before starting an iteration, we can
see that if all channel matrix entries are non-zero the complexity of
the algorithm is O(NK2). If the number of users and BSs grows in
the same way, i.e. K ∝ N the complexity is O(N3), equal to the
one obtained for MMSE resolution.
If we consider instead a sparsified channel matrix the number of iter-
ations will be reduced by the fact that some of the users are located
at a distance beyond the threshold, and hence the corresponding en-
try in the channel matrix will be set to zero. Therefore, considering
the condition Hn,k 6= 0 before every computation of the algorithm,
each one of the N iterations on the BSs will not necessarily include
an iteration for each users. However, the computational complexity
results to be O(N3), given the same considerations made for the
previous case.
Same considerations can be made for Random Gaussian Message
Passing, where the only difference is the message update schedule.
We can hence state that the computational complexity of the algo-
rithms depend on the number of users and on the number of BSs.
However no improvement has been made on the computational com-
plexity, since we started from an O(N3) for the pure MMSE to a
O(NK2) with message passing decoding.
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3.4.4 Convergence of the Algorithms

Message passing algorithms are characterized by the number of it-
erations over which they are run. In particular, if we take a closer
look to Algorithms 1 and 2, we can notice that, before the estima-
tion of the variance, messages are exchanged among FG nodes for
a certain number of times. Different number of iterations lead to
different results and hence different errors.
As a first observation we present the results obtained with the set-up
used in [3]. We consider a network composed by 4 cells and hence
4 BSs, with a single user per BS, ie.e N = 4,K = 4. The chan-
nel is characterized by an SNR, defined as P/N0, of 100dB and by
transitions determined by matrix

H = 10−5


−0.1458+0.2401i −2.0998−0.7353i −2.1459−2.0284i 21.5306+6.5308i

17.7199+18.8315i 1.8431−2.4183i 5.7441+2.0536i 0.4837−3.0383i
5.1714−14.5292i 0.1184−1.5314i −10.3012+0.1049i 2.4388−0.8546i
−25.2041−16.2758i 1.1697−0.3792i 2.2858−0.2858i 6.0425−2.6317i


(3.28)

We consider the received signal
y = [1.6847−7.1280i,−20.9794+3.6052i,−3.0214+3.8041i, 21.5306+6.5308i]T (3.29)

In order to evaluate the performance of the decoding algorithm we
show the relative error versus the number of iterations, where we
define the relative error as

ε =
||PHHHx(t) − P 1

2HHy||
||P 1

2HHy||
(3.30)

Figure 3.3 reports the results obtained with GMP and RGMP.
We can see that random scheduling for message update performs
better than sequential update with order {1, 2, 3, 4}. In particular
we can notice that a larger number of iterations does not necessarily
mean better estimates. In fact, with GMP we reach a minimum
relative error at about 22 iterations. Different considerations should
be made regarding the number of iterations of RGMP, where after
about 20 iterations the relative error becomes negligible and hence
further efforts in decoding process do not lead to significantly better
results. We can hence state that RGMP is preferable over GMP
because the same relative error is reached with a smaller number
of iterations. Such a parameter does not significantly influences
system’s performance in terms of speed of the decoding process in
the presented scenario where only 4 users and 4 BSs are present,
but will be significantly impact decoding time in larger networks.
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Figure 3.3: Relative error vs. number of iterations with Fan et al. set up.

We now investigate the effects of noise on system’s performance
in terms of relative error. We compared a set-up similar to the one
presented in [3], where the number of BSs is equal to the number of
users, i.e. N = K = 4, but where we generate random transmitted
signal and channel matrix. The transmitted signal vector is com-
posed by 4 entries, generated as complex Gaussian random variables
with zero mean and unitary variance, while the channel matrix is
generated as zero mean complex Gaussian random variables as well,
but with variance 1/N . The received signal is affected by com-
plex Gaussian noise with zero mean and variance N0. We tested the
algorithms with two SNR values, 5dB and 100 dB, where the trans-
mission power has been maintained constant. The obtained results
strongly depend on the realization of the channel matrix for high
SNR values, but we mainly observed two behaviours presented in
Fig. 3.4 and 3.5, where in both figures upper case shows 5dB SNR
results whereas the lower one shows 100dB SNR results. We can
see that in both cases a relative error equal to 0 can be obtained, the
main difference is the way this result is reached with GMP. In fact
we can see that in figure 3.4 a zero relative error can be obtained
with a small number of iterations and, while increasing such param-
eter the error diverges. Figure 3.5 presents the opposite case, i.e.
we start with an high relative error and by increasing the number
of iterations it decreases until reaching almost zero. We can hence
state that about 20 iterations is a good choice for GMP, since it can
guarantee a small relative error for both cases. We can also state
that RGMP does not diverge. In particular we can see that in fig-
ure 3.4 a zero relative error is reached for every iteration number,
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whereas in figure 3.5 we need approximatively the same number of
iterations required by GMP in order to obtain a small relative error.
The 5 dB SNR case performs approximatively the same in both
cases, the main difference is the number of iterations after which
GMP reaches the minimum relative error, whereas RGMP requires
approximatively the same number of iterations to reach such a min-
imum.
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Figure 3.4: Relative error vs. number of iterations with random signal genera-
tion case 1: upper figure 5dB SNR, lower 100dB SNR.
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Figure 3.5: Relative error vs. number of iterations with random signal genera-
tion case 2: upper figure 5dB SNR, lower 100dB SNR.
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Chapter 4

Channel Capacity

In this chapter we aim to compute the capacity of the transmission
links of the previously depicted scenario. We define the capacity of
a transmission link as the upper limit rate at which information can
be reliably transmitted and we can compute it as

C = max
px(a)

I(x; y) [bit/ch.use] (4.1)

with I(x; y) representing the mutual information.
Since the communication channel is characterized by matrix H,
which is assumed to be square given the fact that we assumed that
users and BSs grown in the same way, we compute the capacity for
different constant matrices. In particular, we consider:

1. a full CN×K channel matrix,

2. an orthogonal CN×K channel matrix,

3. a diagonal CN×K channel matrix,

4. a sparse CN×K channel matrix.

We henceforth consider the same communication scenario described
in previous chapters, where all signals (transmitted, noise and re-
ceived) are Gaussian distributed.
Before starting the discussion about capacities, we recall a funda-
mental result, named after Shannon-Hartley theorem, which states
what follows:

Theorem 4.0.1. The capacity C of a channel with bandwidth B and
with additive white Gaussian noise is given by

C = B log2(1 + Γ) [bit/s], (4.2)

with Γ being the signal-to-noise ratio.

This result will be used in the following sections.

29
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4.1 Full Channel Matrix

Let us consider a channel matrix of the type

H =


h1,1 h1,2 · · · h1,K

h2,1 h2,2 · · · h2,K
...

... . . . ...

hN,1 hN,2 · · · hN,K

 (4.3)

Given the definition of the received signal expressed by (2.1), we
can expand it at the nth receiver as

yn = P
1/2
1 hn,1x1 + P

1/2
2 hn,2x2 + ...+ P

1/2
K hn,KxK + wn. (4.4)

Such a representation enables the view of the component of the
received signal. We can identify the useful signal as P1Hn,nxn, and
hence all the other elements depending on xk 6=n can be identified as
interference. Hence we can rewrite the received signal as

yn = P 1/2
n hn,nxn + sn. (4.5)

where sn represent the contributions of both noise and interference
at the receiver’s BS n.
If now recall the fact that both x and w are Gaussian distributed,
in particular with zero mean and variance respectively one and
σ2
w, we can define the statistic of the received signal sn. In fact,

as such a signal results in being a sum of Gaussian variables, it
is Gaussian distributed too, with zero mean and variance σ2

sn =∑K
j=1,j 6=n Pj|hn,j|2 + σ2

w.
If we implement a MMSE receiver, in order to find estimates of the
transmitted signal, the received signal y will be multiplied by the
matrix P

1
2HH(PHHH +N0I)

−1, which will be referred to as MMSE
matrix. Therefore, both the useful signal and interference/noise
components sn, will be multiplied by this matrix, operation that
further modifies the statistics of the signal components. If we denote
with M the MMSE matrix and with D the matrix resulting from
the multiplication of the channel matrix H with the MMSE matrix,
we can state that the useful signal will be Gaussian distributed with
zero mean and variance given by

σun = P |Dn,n|2, (4.6)

whereas sn will be Gaussian distributed with zero mean and variance

σ2
sn =

K∑
j=1,j 6=n

(P |Dn,j|2 +Mn,jσ
2
w) (4.7)
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The total sum-rate capacity of the channel hence is

C =
N∑
n=1

log2(1 +
σ2
un

σ2
sn

) [bit/s/Hz] (4.8)

4.2 Diagonal Channel Matrix

Let us consider a channel matrix of the type

H =


h1,1 0 · · · 0

0 h2,2 · · · 0
...

... . . . ...

0 0 · · · hN,K

 (4.9)

Given the definition of the received signal as expressed by (2.1),
we can see that with this matrix the received signal at the nth re-
ceiver is

yn = P 1/2
n hn,nxn + wn. (4.10)

We can see that (4.10) differs from the one presented in previous
section from the fact that, thanks to the diagonal form of the channel
matrix, the received signal is only composed by useful signal and
additive Gaussian noise, without interference.
If we adopt an MMSE receiver and the same notation introduced
in previous section we can state that the signal-to-noise ratio at the
receiver for the nth user will be

Γn =
P |hn,n|2∑K

j 6=n |Mn,j|2σ2
w

(4.11)

Hence the capacity for a single user is

Cn = log2(1 + Γn) [bit/s/Hz] (4.12)

as stated from Shannon-Hartley theorem, and the total sum-rate
capacity of the channel hence results

C =
N∑
n=1

log2(1 + Γn) [bit/s/Hz] (4.13)

4.3 Orthonormal Channel Matrix

An orthonormal matrix is defined as a square matrix whose rows and
columns are orthogonal unit vectors. Let us consider a particular



32 CHAPTER 4. CHANNEL CAPACITY

orthogonal channel matrix of the type

H =


0 0 · · · h1,K

h2,1 0 · · · 0
...

... . . . ...

0 hN,2 · · · 0

 (4.14)

with rows/columns composed by all zero elements except for one.
With this configuration the received signal at BS n is

yn = P
1/2
k hn,kxk + wn. (4.15)

We can notice that (4.15) has the same form of (4.10), where the
only difference is the channel coefficient associated to the input sig-
nal.
By adopting an MMSE receiver, the matrix resulting from the prod-
uct of channel matrix H and MMSE matrix M assumes a diagonal
form. The sum-rate capacity hence is the one obtained for the di-
agonal matrix case, i.e. (4.13).

4.4 Sparse Channel Matrix

Let us consider a channel matrix of the type

H =


h1,1 0 · · · h1,K

0 h2,2 · · · h2,K
...

... . . . ...

hN,1 hN,2 · · · 0

 (4.16)

where some row entries assume zero value. The received signal at
the nth BS is

yn =
K∑
k=1

P
1/2
k hn,kxk + w. (4.17)

We notice that (4.17) is similar to (4.4), except for the fact that
some entries hn,k of the channel matrix are zero. Hence, if we adopt
an MMSE receiver and consider as useful signal P 1/2

n dn,nxn we can
follow the same considerations made for the full channel matrix and
obtain that the total sum-rate capacity for the system is given by
(4.8) Notice that the value of σ2

s also suffers the sparsification of the
channel matrix, i.e. the sum of the variances will be composed by
the only elements with dn,k 6= 0.
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4.5 Capacity with GMP and RGMP Receivers

We will here analyse the capacity obtained with message passing
receivers. This type of computation is independent from the type
of channel matrix, since the message passing task is to retrieve the
transmitted signal by means of iterative operations, and hence it
returns a value which is assumed to be the MMSE of trasnmitted
signal.
Since along with the estimate of the transmitted signal components
we obtain measures of their variances, we can use this values to com-
pute the capacity of a channel employing a GMP/RGMP receiver.
In fact, we can take as a measure of SNR for the nth sub-channel
the ratio between the estimated signal power and the variance as-
sociated to that estimate. Notice that the estimated signal power
will be given by the power allocated to that user, since GMP and
RGMP return the exact value of the transmitted signal.
The capacity of the channel hence is

C =
N∑
n=1

log2(1 +
Pn
σ̂xn

) [bit/s/Hz]. (4.18)

Statistical measures of SNR can also be taken . In fact, if we
consider a certain number of decoding processes for a transmitted
signal which will be affected by noise that changes with iterations,
the SNR at the receiver can be written as

Γstat =
E[|x̂|2]

E[|x̂− x|2]
, (4.19)

which results in a sum-rate capacity

C = log2(1 + Γstat) [bis/s/Hz]. (4.20)

This result holds for both GMP/RGMP and MMSE receivers.

4.6 Achievable Sum-Rate Results

In this section we present the achievable sum-rate results obtained
by simulations for channels characterized by the four different matri-
ces and receivers employing MMSE, GMP and RGMP. The achiev-
able sum-rate has been computed by mean of the statistical SNR
presented in previous section as a function of SNR. The scenario
over which the simulations have been run is characterized by 4 users
and 4 BS and each user is associated to a BS. Furthermore we assume
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that all users have been allocated the same constant transmission
power, i.e. Pk = P ∀k ∈ {1, .., K}. Diagonal and orthonormal
channel matrix realizations have i.i.d. entries, distributed as zero
mean and unit variance Gaussian random variables, whereas full
and sparse channel matrices entries are i.i.d. Gaussian random vari-
ables with zero mean and sum of the variances per row equal to N0.
Message passing algorithms have been run over different number
of iterations, depending on whether the receiver employs GMP or
RGMP. In particular we choose to run GMP over 40 iterations,
whereas RGMP has been run over 15 iterations. Results are pre-
sented in figures 4.1, 4.2 and 4.3.
Before discussing the results we recall here that both GMP and
RGMP aim at reproducing the same results obtained with MMSE,
i.e. the decoding process is different but the result shall be the same.
Therefore we expect to obtain the same achievable sum-rate with
the different receivers. We can notice that our hypothesis is veri-
fied. In fact, looking at the evolution of the capacity vs. SNR over
figures, we can see that they both have the same performance.
A second consideration shall be made about the comparison be-
tween capacity with diagonal and orthogonal matrices. Recalling
what presented and discussed in section 5.3 for the orthogonal ma-
trix, the MMSE receiver aims at diagonalizing the overall matrix,
i.e. the product of channel matrix and MMSE matrix. Therefore
what we see at the receiver is a channel characterized by a diagonal
matrix and hence we expect that the achievable sum-rate of such
a channel matches that of a diagonal channel matrix. We can see
that this is verified in all figures, recalling again the fact that the
presented message passing algorithms emulate MMSE detection.
The last consideration is about the results obtained with full and
sparse channel matrices. Achievable sum-rate in this cases follows a
different behaviour respect to diagonal and orthogonal channel ma-
trices, in particular it assumes lower values. This is due to the fact
that each user suffers from interference from other users.
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Figure 4.1: Achievable sum-rate results with MMSE receiver over the 4 types
of channel matrices.
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Figure 4.2: Achievable sum-rate results with GMP receiver over the 4 types of
channel matrices.
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Figure 4.3: Achievable sum-rate results with RGMP receiver over the 4 types
of channel matrices.



Chapter 5

Channel Sparsification
Modelling and Analysis

We stated in section 3.4.3 that both MMSE and message passing
decoding complexity depend on the number of users and BSs of the
network: in the previously analysed case, where only 4 users and
BSs were present, decoding time was relatively low, but now that we
are introducing decoding of the signals coming from K = 64 users
received from N = 128 BSs a complexity of O(N3) or O(NK2)
strongly impact on the advantages that C-RANs should have.
In next sections we hence introduce methods to sparsify the channel
matrix, i.e., reduce the number of coefficients 6= 0, in order to reduce
the complexity of the message passing decoders. The number of
iterations of the message passing algorithm to be used obviously
impacts system’s performance in terms of execution time. Hence,
recalling the results obtained in section 4.3.4, we prefer RGMP over
GMP.
Our aim is to reduce the computation complexity of message passing
algorithms in order to make them more advantageous over MMSE
signals estimation obtainde by channel matrix inversion. We hence
extend the number of users and BSs of the analysed network and
investigate techniques which can lead to simplifications of the model
and hence to better exploitation of message passing decoding.

5.1 Sparsification Methods

As stated before the computational complexity of message passing
algorithms depend on the number of elements present in the network
we are considering. In particular, since RGMP receives as input the
channel matrix and the received signal and operates only on couples

37
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(n, k) with H(n, k) 6= 0, our aim is to introduce zeros in the channel
matrix making reasonable assumptions and modifying the algorithm
in order to support the correct decoding of received signals with
the lowest possible amount of time. Next sections will present the
selected methods and results obtained for channel sparsification.

5.1.1 Power-Based Sparsification

Let us consider the signals received from a single BS of the cellular
network. The main idea behind this approach is that users located
away from the cell reach BS’s antennas with lower average power
than users located nearby the BS. Therefore we pre-process the es-
timated channel matrix and put a threshold on the power of its
coefficients. In particular, denoting with Pmin the minimum square
module of the coefficients of the channel matrix that can seriously
interfere with a user in the selected cell, we set all channel matrix
coefficients below Pmin to zero, whereas all coefficients above Pmin
remain unaffected. Obviously we can not discard the effects of the
users received with low power, as they however affect the signal
received by the considered BS. Denoting with H the full channel
matrix and with Ĥ the sparsified channel matrix we can subtract
the second from the first, and obtain the matrix H̃ = H− Ĥ, which
is composed only by channel coefficients below the selected thresh-
old. We can hence use (3.14) (substituting Ḣ with H̃) to modify
noise power in order to take into account the interference played by
neglected entries in Ĥ. In formulas, consider channel matrix entry
Hn,k. Then

Ĥn,k =

{
Hn,k if |Hn,k|2 ≥ Pmin

0 otherwise.
(5.1)

This approach is similar to the one presented in [3], but with the
main difference that thresholding is not applied on distance but on
channel coefficients squared module.
We can see that a fundamental role is played by Pmin. In fact, if
we select a too small value for this parameter channel sparsification
do not affect sufficiently system’s performance in terms of execution
time of decoding algorithms, whereas if we set a too high thresh-
old value the result is that we loose useful informations and hence
decoding algorithms will introduce too much errors.
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5.1.2 Orthogonal Users-Based Sparsification

Let us consider the scenario of Fig. 2.4, where Nc cells and a total
number of Nu users are present. We assume that signals coming
from the same BS are on adjacent entries of the received signal vec-
tor y, thus adjacent rows of H belong to the same BS. We can hence
divide the overall channel matrix H into Nc sub-channel matrices
Hc ∈ CNc×Nu with c ∈ {1, 2, .., Nc} representative of a single cell.
We can here highlight the effects of every user to a single antenna
of a BS and consider the fact that two or more users can perform
orthogonal transmission. We can hence introduce the second ap-
proach for channel sparsification. Recalling the fact that each BS
is responsible for messages sent from users located into its cell, if a
user located outside such a cell is performing an orthogonal trans-
mission with respect to the BS’ users we set to zero the sub-channel
matrix coefficients of the outside-located user. After performing this
operation for every sub-channel matrix we can put them together
and retrieve the overall channel matrix.
In formulas, let us consider the channel

hk1 = [H(n1, k1), H(n2, k1), ..., H(nNa , k1)] (5.2)

from user k1 to all RRHs belonging to a certain BS with indices
in the set A = {n1, n2, ..., nNa}. Considering a second user k2, the
channel to the same RRH set is

hk2 = [H(n1, k2), H(n2, k2), ..., H(nNa , k2)]. (5.3)

The orthogonality among channels to the same BS is established
by the internal product of the channels and we consider that two
channel are semi-orthogonal if the product is below a threshold Tprod,
i.e.,

hk1h
T
k2
< Tprod. (5.4)

As done for power-based channel sparsification, we select a threshold
which leads to approximatively the same relative error of RGMP
with full channel matrix while reducing the cost in terms of time of
the decoding process. Notice that, in this case, we do not take into
account the fact that users are however present and interfere with
users for which the BS is responsible as done for the previous case,
since we are analysing orthogonality, condition over which users do
not interact in any way.

5.1.3 Antennas-Selection-Based Sparsification

Let us examine again the presented scenario: the entire area has
been divided into Nc cells, each one containing Nu users and a BS
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with Na omnidirectional antennas located in the same place. We
consider another type of channel sparsification assuming that the
Na signals coming from the Na antennas are over-representative of
signals transmitted by Nu users, i.e. the ones located in the consid-
ered cell. We can therefore sparsify the channel matrix by reducing
the number of its row selecting the 4 antennas of a BS which are
more representative of the users located inside the cell. We can
hence consider the sub-channel matrices introduced in previous sec-
tion choose the most representative antennas. After completing this
task over each one of the sub-channel matrices we can reconstruct
the overall channel matrix and feed it to RGMP algorithm.
Antennas selection hence results in an optimization problem, where
we must choose the parameter we want to optimize. We aim at op-
timizing the channel capacity in order to maintain high the number
of bit/s/Hz we can transmit over the resulting channel.
Let us assume that all antennas in our cellular network scenario are
receiving signals from all single antenna users. If we denote Nt as
the number of transmitting antennas (equal to the number of users)
and with Nr the total number of receive antennas, we can write the
overall system’s capacity as

C = log2

[
det

(
INr +

Γ̄

Nt

HHH

)]
, (5.5)

with INr being the Nr × Nr identity matrix and with Γ̄ the mean
SNR per receiving branch. In order to select the Lr receiving an-
tennas that maximize capacity we should compute

Csel = max
S

{
log2

[
det

(
ILr +

Γ̄

Nt

H̃H̃H

)]}
(5.6)

with S being the set of all possible channel matrices obtained by
deleting Nr − Lr rows from H and whose cardinality is

(
Nr
Lr

)
. The

selection of the optimal set of antennas requires the computation of
a number of determinants which is equal to the cardinality of S.
Based on results obtained in [6], we decided to implement two differ-
ent receive antenna selection algorithms, namely correlation based
method (CBM) and mutual information based method (MIBM).
Notice that normalization of the channel matrix is here performed
over rows, since we are interested in antennas characteristics and
not users ones.
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Correlation Based Method

Let us consider the previously depicted scenario, where we choose
Nr − Lr representative antennas out of 8 from each one of the
cells composing our cellular network, where Nr is the total num-
ber of antennas per BS, while Lr is the number of antennas we
are not going to consider. With correlation based method (CBM)
we consider couples of antennas, and hence channel matrix rows
hn∈A(c) = [H(n, 1), H(n, 2), ..., H(n,K)], where A(c) denotes the set
of indexes of antennas belonging to cell c, and measure their corre-
lation as

cn1,n2 = E[|hn1h
T
n2
|2] (5.7)

for each couple {n1, n2} ∈ A(c), where E[] denotes the expected
value. CBM steps are shown in Algorithm 2.

Data: H,Nac
Result: H
for c=1 to Nc do

for n=1 to Na −Nac do
1. compute correlation for each couple {n1, n2}
∈ A(c) with (5.7),

2. choose the couple with highest correlation,

3. set to zero the row of H corresponding to the
antenna of the considered couple with lower
value of

∑K
k=1 |H(n, k)|2

end
end

Algorithm 3: Correlation Based Method (CBM)

Since we are considering a distributed scenario, where antennas
are located in groups of eight in different locations, we will not
consider the correlation of a row with all the others, but only with
the rows corresponfing to antennas located in the same cell.
We therefore proceed as follows. Recalling the definition of sub-
channel matrices given in section 5.1.2, we divide the overall channel
matrix into 16 sub-channel matrices and, for each row, we compute
the correlation with all the other rows. When we find the maximum
over this values we delete one of the two rows resulting with highest
correlation, choosing the one with smaller power. We iterate this
operation until we are left with 4 rows out of 8. The resulting sub-
channel matrices are then grouped together to form the channel
matrix that will be feed to RGMP decoder.
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Mutual Information Based Method

Let us consider the received signals ym and yl from antennas respec-
tively m and l belonging to a certain cell, and consider their mutual
information value I(yl; ym). If mutual information value is small
we can state that the two received signals carry almost completely
different information, whereas if mutual information value is high
we can state that the two signal are carrying similar information.
In mutual information based method (MIBM) we choose one from
this two signals and set to zero the sub-matrix row of the other one
without loss of information. This approach is very similar to the one
discussed before, where the only difference is that we are interested
in the highest mutual information value instead of correlation.
In formulas, as shown in [6], mutual information is upper bounded
by

I(yl; ym) ≤ min

{
log2

(
1 + ||hl||2

Γ̄

Nt

)
, log2

(
1 + ||hm||2

Γ̄

Nt

)}
,

(5.8)
with hl and hm being the nth and lth rows of the channel matrix and
Γ̄ being the average SNR at the receiver.
Mutual information between signal components can be written as

I(xl;xm) = log2

‖hl‖2 ‖hm‖2

‖hl‖2 ‖hm‖2 + | 〈hl, hm〉 |2
, (5.9)

which can be normalized as

I0(xl;xm) =
I(xl;xm)

min{| log2(‖hl‖
2)|, | log2(‖hm‖

2)|}
. (5.10)

MIBM steps are showed in Algorithm 2, with the only difference
that correlation (5.7) must be substituted with normalized mutual
information (5.10) in step 1.

5.2 Simulation Results

5.2.1 Relative Error and Sparsification Level: Power-Based

Results regarding relative error are presented in figure 5.1, where
each user transmits a signal generated as complex Gaussian ran-
dom variable with zero mean and unitary variance. We can see that
the relative error has been plotted vs. the number of RGMP itera-
tions for pure RGMP (i.e. without sparsification) and RGMP with
Pmin = 0.001, Pmin = 0.005, Pmin = 0.01 and Pmin = 0.1, for both 5
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and 100 dB SNR.
We can notice that, as we expected, a higher value of Pmin nega-
tively impacts the system relative error, which becomes larger as
Pmin increases.
We can see that with Pmin = 0.001 we reach approximatively the
same of relative error obtained with the full channel matrix, in par-
ticular when SNR = 100 dB.
Even if we consider Pmin = 0.005 we can see from figure 5.1 that the
relative error differs from the full channel matrix one of ≈ 5 ·10−2 in
100 dB SNR case, and a smaller difference is present when SNR = 5
dB, value that could be acceptable if we really want to reduce al-
gorithm’s execution time. In fact we can see that the minimum
relative error is obtained with a smaller number of iterations in 100
dB case and that channel matrix coefficients different from zero are
reduced to 1345, approximatively 8 times less.
However our aim was to simplify the algorithm by sparsification of
the channel matrix, and different thresholds necessarily mean dif-
ferent amounts of sparsification. Table 5.1 reports the number of
channel matrix coefficients different from zero after the sparsifica-
tion process with different threshold values.
From the table we can notice that, with Pmin = 0.001, the number
of channel matrix coefficients different from zero has been reduced
from 8192 to 4121, meaning that each RGMP iteration will take a
smaller amount of time to be concluded.

Full H Pmin =
0.001

Pmin =
0.005

Pmin =
0.01

Pmin =
0.1

number of
H(n, k) 6= 0

8192 4121 1345 755 154

Table 5.1: Sparsification levels for power-based method.
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Figure 5.1: Relative error vs. number of RGMP iterations for different Pmin:
upper Fig. with 5 dB SNR, lower with 100 dB SNR.
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5.2.2 Achievable Sum-Rate: Power-Based

In order to show thresholding effects on system’s performance we
computed the achievable sum-rate of the channel when the above
mentioned values of Pmin are applied to sparsify its matrix. The
obtained results can be seen in figure 5.2. Achievable sum-rate is
plotted versus SNR, where users transmission power is maintained
constant. We can see that, as we expected, the achievable sum-
rate of the channel is quite the same for RGMP with full channel
matrix and with Pmin = 0.001 (at least for small SNR values),
whereas all the other cases differ from pure RGMP of dozens of
bit/s/Hz, expecially for high SNR values. We can hence state that,
even if relative error is not so distant from pure RGMP’s one, the
transmission capacity is strongly affected by the selected threshold
value.
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Figure 5.2: Achievable sum-rate vs.SNR for different Pmin values

5.2.3 Relative Error and Sparsification Level: Orthogonal
Users

Relative error is a good measure for testing system’s performance
in order to choose a suitable parameter value. Figure 5.3 reports
relative error vs. SNR for pure RGMP (i.e. without orthogonal
users analysis) and for RGMP with Tprod = 0.0025, Tprod = 0.005,
Tprod = 0.0075 and Tprod = 0.01. We to report results obtained with
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both 5 and 100dB SNR and with users transmission power kept
constant in order to highlight effects of noise on relative error with
this sparsification method. We notice that the noisy case (i.e. 5
dB SNR)is more performing in terms of distance of relative errors
for sparsified matrices from pure RGMP’s one, whereas the 100 dB
SNR case presents a relative error that grows with Tprod. Since
typical scenarios are affected by noise levels which more resembles
5dB SNR case, we can state that this sparsification method is quite
effective for maintaining an error level similar to the full channel
matrix case. Furthermore, by taking a closer look to the line plots
for the 5dB SNR case (figure 5.4), we can see that the distance
from sparsification methods relative error from pure RGMP’s one is
lower than 10−5 . In particular, by setting Tprod = 0.0075, we get
the lowest relative error. Notice also that all sparsification methods,
except for Tprod = 0.005, exhibit a relative error lower than pure
RGMP after 3 MP iterations.
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Figure 5.3: Relative error vs. number of RGMP iterations for different Tprod:
upper Fig. 5 dB SNR, lower 100 dB SNR case.
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Figure 5.4: Relative error vs. number of RGMP iterations for different Tprod:
5dB SNR.

We focus now on channel matrix sparsification. Table 5.2 reports
the number of coefficients which are different from 0 after the spar-
sification with different Tprod.
We notice that, with respect to results obtained with power-based
sparsification method, the sparsification level is here lower, i.e. the
number of channel coefficients that can be set to zero without too
much affecting system’s error is lower. Hence decoding time for al-
gorithms is higher in this case. However we must consider the fact
that with orthogonal-users based sparsification method we can use a
lower number of message passing iterations to obtain the same rela-
tive error given by RGMP. Hence the computational complexity for
the entire decoding process results lower respect to pure RGMP’s
one. Furthermore we must say that orthogonality is a more stringent
condition to be verified,i.e. threshold values for orthogonality, in or-
der to be significative, shall be set to low values. We can augment
sparsification level with higher Tprod values, but at the cost of higher
relative errors for high SNR values and with losses in capacity as
will be discussed in following section.

5.2.4 Achievable Sum-Rate: Orthogonal Users

We want to show the effects of the different thresholding values
in terms of achievable sum-rate, comparing the plots of achievable
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Full H Tprod =
0.005

Tprod =
0.0075

Tprod =
0.01

Tprod =
0.05

number of
H(n, k) 6= 0

8192 6728 5560 4288 648

Table 5.2: Sparsification levels for orthogonal users-based method

sum-rate vs. SNR for pure RGMP and RGMP with Tprod values
before discussed. Notice that transmission power of users has been
kept constant and hence the varying part of SNR is noise level. The
number of RGMP has been set to 4, given the considerations made
on relative error and relative obtained results.
achievable sum-rate plots are shown in figure 5.5. As we could ex-
pect, achievable sum-rate at low SNR is similar for all RGMP real-
izations, whereas they start to diverge while SNR increases. This
is in accordance to relative error results discussed above. We can
hence state that the best threshold value can be decided if we can
estimate SNR at the receiver, and hence decide to use the highest
Tprod, which leads to a greater sparsification, or a lower one, which
leads to a smaller sparsification but maintains the characteristics
of full-matrix RGMP. Notice that, at low SNRs, achievable sum-
rate loss with high Tprod is negligible, encouraging us to consider as
threshold value a high Tprod, which maintains system’s achievable
sum-rate and considerably sparsifies channel matrix.
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Figure 5.5: Achievable sum-rate vs. SNR for different Tprod values.

5.2.5 Relative Error and Sparsification Level: CBM

We are now interested in selecting the number of receive antennas
to be used in order to decode the transmitted signal with the lowest
possible relative error. In order to chose such a parameter we run
simulations for pure RGMP (i.e., without antenna selection), and for
RGMP with Nr−Lr = 7,Nr−Lr = 5,Nr−Lr = 3 and Nr−Lr = 1
receive antennas. We report results at two different SNR levels,
respectively 5 dB and 100 db in order to highlight effects of noise
over message passing algorithms. Notice that users transmitting
power has been kept constant, i.e. different SNR means different
noise level. Results are shown in figure 5.6.
We can notice that the relative error grows as the number of receive
antennas decreases after ≈ 3 RGMP iterations for low SNR values
(except for 1 receive antenna, wich leads to approximatively the
same relative error obtained with 5), whereas for high SNR values
we can notice that the single receive antenna sparsification method
leads to approximatively the same relative error obtained with pure
RGMP and with a lower number of message passing iterations. We
can also notice that for high SNR values RGMP run over matrices
with different number of receive antennas can reach approximatively
the same relative error, with the only difference in the number of
required message passing iterations.
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Figure 5.6: Relative error vs. number of iterations for CBM with different
number of receive antennas: upper Fig. with 5 dB SNR, lower with 100 dB
SNR.
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We now discuss the sparsification level. Table 5.3 reports the
number of coefficients of the channel matrix which are different from
zero after that CBM antenna selection has been applied. Since we
eliminate Lr rows from each sub channel matrix, table’s results are
easily obtainable.
We can hence state that if we know the SNR at the receiver we
can make a better choice. In fact, as previously discussed, in a high
SNR regime not only single receive antenna implementation leads
to a minimum relative error with a lower number of message passing
iterations, it also leads to the biggest sparsification of the channel
matrix.

Full H Lr = 1 Lr = 3 Lr = 5 Lr = 7

number of
H(n, k) 6= 0

8192 7168 5120 3072 1024

Table 5.3: Sparsification levels for CBM antenna selection.

5.2.6 Achievable Sum-Rate: CBM

We now report simulation results obtained for achievable sum-rate
when antenna selection is applied. We tested systems where the
number of receiving antennas is 8, 7, 5, 3 and 1 as done for relative
error and sparsification level. Results are shown in figure 5.7. We
can see that the achievable sum-rate suffers the decreasing in receiv-
ing antennas number. In fact we notice that decreasing the number
of receive antennas decreases the achievable sum-rate. Hence we can
state that, equivalently from what stated in relative error and chan-
nel sparsification level, the best approach is here to keep all receiving
antennas on. We can also state that in real system a threshold ex-
ists, i.e. in order to take a decision on which approach to follow we
must consider both sparsification level and channel capacity. The
choice depends on the performance measure we are interested in.
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Figure 5.7: Capacity with antenna selection sparsification: CBM.

5.2.7 Relative Error and Sparsification Level: MIBM

We now discuss the relative error obtained with MIBM sparsifica-
tion with different number of receive antennas and compare them to
relative error obtained with RGMP with a full channel matrix. The
relative error versus the number of RGMP iteration for both 5 dB
and 100 dB SNR values are shown in Fig. 5.8, where users trans-
mitting power has been kept constant, while noise power varied.
We notice that relative error, for low SNR values, grows as the
number of receive antennas decrease after a certain number of mes-
sage passing iterations, as for CBM antenna selection. However
with 7 receive antennas we obtain the minimum among relative er-
ror values with a lower number of message passing iterations than
pure RGMP’s. Instead, at high SNRs all implementations reach
the same relative error after 15 message passing iterations. Fur-
thermore as for CBM, for 100 dB SNR the single receive antenna
implementation reaches the minimum relative error (equal to pure
RGMP’s one) with the lower number of message passing iterations,
even smaller than pure RGMP’s.
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Figure 5.8: Relative error vs. number of iterations for MIBM with different
number of receive antennas: upper Fig. with 5 dB SNR, lower with 100 dB
SNR.
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Sparsification levels are the same shown in 5.3. Consideration
and results are the same made for CBM antenna selection. Even in
this case the knowledge of the SNR value at the receiver influences
our parameter choice. In fact, as for CBM, if we are transmitting in
a high SNR receiver the single antenna sparsification leads to the
lowest relative error with the lower number of RGMP iterations.

5.2.8 Achievable Sum-Rate: MIBM

We now consider MIBM achievable sum-rate. Fig. 5.9 shows results
obtained wit 8, 7, 5, 3 and 1 receive antenna out of 8. Although
difference in relative errors was low, difference in achievable sum-rate
is significant when varying the number of selected receive antennas.
In particular we can state that capacity decreases with the number
of selected receive antennas. Hence, although from a relative error
and sparsification level prospective the single antenna MIBM is the
best choice, from a channel capacity point of view is the worse.
Therefore we have a trade-off between complexity and achievable
sum-rate.
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Figure 5.9: achievable sum-rate with antenna selection sparsification: MIBM.
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5.3 Pre-Coding Sparsification

We have seen in previous sections sparsification methods that try
to analyse the channel matrix at the receiver and, before feeding it
to the receiver, set some coefficients to zero according to a certain
rule. The problem of this approach is that we however need the
entire channel matrix at the BBU pool, besides signal coming from
the 8 antennas of each BS. We now porpose to reduce the amount
of information flowing from RRHs to the BBU pool by performing
receive beamforming of each BS before forwarding signals to the
central BBU Pool. Recalling the received signal (2.1), if the consid-
ered BS has Na antennas, we want to multiply the received signal
by a matrix B of the type CNr×N , in order to reduce the number
of signals that will be passed to the central BBU pool from Na to
Nr. Matrix B can assume different forms and consequently differ-
ent meanings. The first implemented method tries to reduce the
number of signal coming from BS’s antennas by multiplication by a
matrix whose rows are equal to the number of users located inside
the considered cell. We hence recall the definition of sub-channel
matrix given in previous sections, and consider the sub-channel ma-
trix belonging to the nth cell and denote it as Hn. If the number of
users located inside such a cell is Nu received signal at the nth cell
can be written as

yn = PHn(n1, ...nNa ;u1, ..., uNu)x+ (5.11)

Hn(n1, ..., nNa ;uNu+1, ..., uK)P i + w,

where x is the vector containing signals coming from users located
inside the considered cell, i is the vector containing signals coming
from users located outside the considered cell, w is additive white
Gaussian noise with zero mean and variance N0 at the N receivers
and Hn(n1, ...nNa ;u1, ...uNu) is the sub channel matrix of cell n with
{n1, ..., nNa} ∈ A(n) being the set of indexes of antennas located in
n and {u1, ...uNu} ∈ U(c) being the set of indexes of users of interest
for cell n (concept that will be later discussed). The same form is
assumed if we do not consider interferers all users located outside
the cell, but only some less powerful ones. The only difference is
the dimensions of matrix Hn that will multiply useful signals and
interferers.
Multiplying the received signal by matrix B provides

Byn = BHn(n1, ...nNa ;u1, ..., uNu)Px+ (5.12)

BHn(n1, ..., nNa ;uNu+1, ..., uK)P i + Bw.
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We can see that noise vector entries are correlated and that the
message passing algorithms must be modified. Since noise power
remain the same in all branches we can modify the power level passed
to the message passing algorithm as follows

N0(n) = N0

Nu∑
k=1

|Bn;k|2 (5.13)

Therefore we pass to the message passing algorithms a vector of
noise power values.
In what follows we are first going to present three different ap-
proaches in order to choose a set of users over which matrix B will
be built. For each one of these three methods we choose both the
set user and matrix operation that will lead to the required form
of B. Then we are going to test all presented approaches in terms
of relative error and channel capacity, in order to derive system’s
performance.

5.3.1 Known Users Pre-Coding

Suppose that each BS is equipped with Na receive antennas. Then
the received signal at the nth BS that has to be passed to the central
pool in order to decode messages sent by all users can be represented
as a vector of length Na. As we discussed in previous section, this
amount of information can be prohibitive to be sent over links from
BS to BBU. Let us assume we now users location and, in particular,
in which cell a user is located. Hence we know exactly which signals
represent the useful information and which ones are interferers in
(5.11) and hence we also know which columns of the sub-channel
matrix of the considered cell are representative of users and inter-
ferers. Let us consider the set of columns of the sub-channel matrix
of the considered cell relative to users located inside this cell and de-
note it as Hn, which is CNa×Nu matrix. In order to obtain B, we can
consider different matrix operations over matrix Hn. In particular
we will consider:

1. B = HH
n ;

2. B = (HH
n Hn)−1HH

n .

This two different types of matrix assume different meaning. The
first one is a matched receiver and will be denoted as TC, whereas
the latter is the pseudo-inverse of matrix Hn and is a zero-forcing
receiver and will be denoted as ZF. Matrix B will always be of
the type CNu×Na and the pre-coding operation will be applied as in
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(5.12).
We can see that this type of approach tries to take advantage of
the knowledge of the users located in a cell in order to apply a pre-
coding method that will hopefully be advantageous for such a set of
users.
The message passing algorithm that will be applied for the decoding
is the modified version presented in previous section.

5.3.2 Power Based Pre-Coding

We now consider another approach based on received power. As
in known users pre-coding, in order to build matrix B, we need a
matrix Hn derived from a sub-set of columns of the sub-channel
matrix for a certain cell, but in this case we do not assume to know
users location. Instead we choose the set of Nu users with the higher
received power and buildHn as the set of columns of the sub-channel
matrix relative to such users. Therefore, recalling (5.11), the set of
Nu most powerful users will be considered as useful signal, whereas
other users will be considered as interferers. Hence we can multiply
the received signal at the considered BS by thisB matrix as in (5.12),
and obtain a representative vector to be passed to the central pool
of length Nu.
In formulas, consider the set A(c) of indexes of antennas located in
cell c. Given the channel from user k to the BS in c, we compute

p(k) =
∑
n∈A(c)

|H(n, k)|2 (5.14)

for each user in the cellular network, and consider the Np users with
highest p(k) for building matrix B.
As for known users pre-coding the massage passing algorithm to be
used is the modified version.

5.3.3 Known Users plus Powerful Ones

This approach exploits the theory presented for known users pre-
coding with the difference that we do not consider only the users
located inside the cell, but even a certain number of users located
outside the considered cell and that reach the considered BS with the
highest power. We then assume to know users’ locations and decide
a number of additional users to consider, denoted as Nadd. Then,
among all the users located outside the cell, we consider the Nadd

ones that arrive to the cell’s BS with the highest power. The ma-
trix Hn will hence be composed by the columns of the sub-channel
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matrix associated to users inside the cell and by the columns of the
sub-channel matrix associated to the Nadd selected users. Matrix B
will then be built with the previously depicted different approaches.
In formulas, we consider users located in cell c and compute p(k)
(5.14) for each one of the users located outside the cell and choose
the Nadd most powerful. The matrix B will be built based on users
located inside the cell and the Nadd most powerful, chosen based on
their p(k) value.

5.4 Simulation Results for Pre-Coding Sparsifi-
cation Methods

We are here going to present simulation results obtained with the dif-
ferent methods explained in previous section. First we will analyse
and discuss results regarding known users pre-coding, then power
based pre-coding and then compare the two methods.

5.4.1 Known users pre-coding: relative error and channel
capacity

We here want to analyse results obtained for knonw users pre-
conding. We assumed that 4 users with the same transmitting power
and 8 receiving antennas are present in each cell, hence matrix B
is a C4×8 matrix. Simulation have been run for 2 different types of
matrices B and results are compared in the following figures. Notice
that we denoted as pure RGMP results obtained with no pre-coding,
with HH

n results obtained with pre-coding matrix B = HH
n and with

ZF results obtained with pre-coding matrix B = (HH
n Hn)−1HH

n .
Notice that relative error formula for the pre-coding case is different
from the one presented for pure RGMP in (3.30), since we must
take into account that multiplication by B has been applied. Hence
relative error for pre-coding results in being

εpre−c =
||P
∑Nc

c=1BcHcx
(t)
c − P

1
2

∑Nc
c=1Bcyc||

||P 1
2

∑Nc
c=1Bcyc||

(5.15)

where []c denotes vectors and matrices of cell c.
Figure 5.10 shows the relative error results obtained for the different
types of B matrices. We show results obtained for two SNR values,
respectively 5 dB and 100 dB in order to show effects of noise over
results. We can see that ZF results in having a relative error higher
than other methods in 5 dB case, whereas for 100 dB SNR we see
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that all methods converge to the same relative error after 5 MP
iterations.
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Figure 5.10: Relative error with different pre-coding matrices: upper case with
5 dB SNR, lower case with 100 dB SNR.
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Fig. 5.11 reports the achievable sum-rate results obtained with
the previously discussed pre-coding matrices B with the same nota-
tion used for relative error. Every method presents a lower achiev-
able sum-rate than pure RGMP’s one. We can also notice that
there is an SNR threshold value, before which HH ,i.e. TC, has
a bigger achievable sum-rate than ZF and after which ZF has a
bigger achievable sum-rate than HH .
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Figure 5.11: achievable sum-rate with different pre-coding matrices.
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5.4.2 Power Based Pre-Coding: Relative Error and Achiev-
able Sum-Rate

We want here to analyse results obtained for power based pre-
conding. We assumed that 4 users with the same transmitting power
and 8 receiving antennas are present in each cell, and that power
based pre-coding is performed by choosing the Nu most powerful
signals coming from each one of the users present in the cellular
network. We show results relative to different number of most pow-
erful users, in particular 1, 3, 5 and 7 and test the different types of
matrices that we presented in previous sections.

Case 1 :B = Hn

Figure 5.12 presents relative error results for power-based pre-coding
with B = HH

n for the different number of selected users compared
to pure RGMP,i.e. without pre-coding, for both 5 and 100 dB SNR
values. We can see that, when noise level is high (i.e. 5dB), relative
error increases with the number of selected users and that, overall,
is higher than pure RGMP’s one. When noise level is low however
we notice that every realization reaches approximatively the same
relative error obtained with pure RGMP with different numbers of
message passing iterations.
Figure 5.13 presents a closer vision to the obtained results. In the
5 dB SNR case, for 1 message passing iteration, both 1 user and 3
users power based pre-coding exhibit a lower relative error than pure
RGMP’s one, but with a higher number of iteration pure RGMP
reaches the lowest relative error. When SNR is 100 dB however,
power based pre-coding with a single users reaches a relative error
which is the minimum among all realizations and iteration numbers
with a lower number of iteration with respect to pure RGMP.
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Figure 5.12: Relative error with different number of powerful users with B =
HH
u : upper case with 5 dB SNR, lower case with 100 dB SNR.
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Figure 5.13: Relative error with different number of powerful users with B =
HH
u : upper case with 5 dB SNR, lower case with 100 dB SNR, zoom.
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Figure 5.14 compares in terms of relative error between known
users and power based pre-coding with 4 users for the selected type
of B matrix for both 5 dB and 100 dB SNR. We can see that, when
noise is high, known users pre-coding presents a lower relative error
than power based, whereas, when the noise level is low, the two pre-
coding approaches exhibit approximatively the same relative error
after 4 message passing iterations.
Figure 5.15 shows the capacity results obtained with power based
pre-coding with different number of selected users. We can see that,
as in previous, case system’s capacity decreases as the number of
selected users decreases.
Figure 5.19 shows the capacity comparison between power based
with 4 selected users and known users pre-coding. We can see that
both methods exhibit approximatively the same capacity, except
for high SNR values, where known users pre-coding reaches higher
achievable sum-rate values. In order to confirm this results we can
see in Fig. 5.16, 5.17 and 5.18 the cumulative distribution functions
(CDFs) of achievable sum-rate values respectively 0, 2 and 4 dB
SNR values. Results are confirmed and we state that this pre-
coding method achieves higher sum-rate values for the considered
SNR values and number of users.
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Figure 5.14: Relative error comparison between known users and power based
pre-coding with B = HH

n : upper case with 5 dB SNR, lower case with 100 dB
SNR.
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Figure 5.15: achievable sum-rate with different number of powerful users with
B = H†u.
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Figure 5.17: CDF of achievable sum-rate values for pure RGMP and power
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Figure 5.19: achievable sum-rate comparison between known users and power
based pre-coding: B = HH

n .

Case 2 :B = (HH
u Hu)

−1HH
u

We investigate now relative error results when matrix B is of the
form (HH

n Hn)−1HH
n .

Figure 5.20 reports relative error results for both 5 dB and 100 dB
SNR values. We can see that in 5 dB SNR case relative error in-
creases with the number of selected users and that each one of such
realizations present a relative error over the number of message pass-
ing iterations higher respect to pure RGMP’s one. We obtain differ-
ent results at low noise regime, where we can see that all realization
present a relative error that converges to pure RGMP’s one at ap-
proximatively 10 message passing iterations. Figure 5.21 presents a
closer vision to the relative error obtained results. We can notice
hat power based pre-coding with a single user reaches pure RGMP’s
relative error with two message passing iterations and decreases as
the number of iterations increases.



5.4. SIMULATION RESULTS FOR PRE-CODING SPARSIFICATION METHODS67

0 5 10 15 20 25 30

Number of iterations

0.1

0.2

0.3

0.4

0.5

0.6

R
el

at
iv

e 
er

ro
r

pure RGMP

Power 1

Power 3

Power 5

Power 7

0 5 10 15 20 25 30

Number of iterations

0

0.1

0.2

0.3

R
el

at
iv

e 
er

ro
r

pure RGMP

Power 1

Power 3

Power 5

Power 7

Figure 5.20: Relative error with different number of powerful users with B =
(HH

n Hn)
−1HH

n : upper case 5 dB SNR, lower case 100 dB SNR.
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Figure5.22 presents the difference in relative error for both 5 db
and 100 dB SNR for known users and power based pre-coding with
4 selected users. We can see that power based for this B imple-
mentation exhibits a higher relative error. In particular we can see
that in 5 dB case power based pre-coding does not reach the same
relative error of known users, whereas in 100 dB case in reaches the
same relative error with approximatively 30 message passing itera-
tions.
In this case the known users pre-coding is preferable over the power
based pre-coding with 4 users if we are interested in relative error
minimization.
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Figure 5.22: Relative error comparison between known users and power based
pre-coding for B = (HH
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−1HH

n : upper figure with 5 dB SNR, lower figure
with 100 dB SNR.
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Figure 5.23 presents cchievable sum-rate results obtained with
power based pre-coding with 1,3,5 and 7 selected users compared to
pure RGMP’s. We can notice that there is a threshold value on the
number of considered users over which achievable sum-rate stops to
grow with the number of users and starts to decrease with them.
We can in fact notice that achievable sum-rate grows when passing
from 1 user to 3, but then decreases for low SNR values passing
from 3 to 5 users, and is lower for all SNR values when passing
from 3 to 7 users.
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Figure 5.24 shows achievable sum-rate results comparison for
known users and power based pre-coding with 4 selected users. We
can see that the two implementations achieve the same sum-rate
values.
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5.4.3 Known Users plus Powerful Ones Pre-Coding: Rel-
ative Error and Achievable Sum-Rate

Case 1 :B = HH
n

As previously discussed B matrix can be implemented in several
ways. In this section we are going to analyse obtainable results with
known users plus powerful ones pre-coding when B = HH

n .
Figure 5.25 presents relative error results for pre-coding methods
compared to pure RGMP’s one. Both 5dB and 100dB SNR cases
are presented in this figure. We can notice that additional users
worsen relative error in 5dB SNR case, whereas in 100dB case we
can notice that all methods reach approximatively the same relative
error after ≈ 0 message passing iterations.
From figure 5.26 we can however notice that none of the presented
methods can reach the same relative error reached by pure RGMP.
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Figure 5.25: Relative error comparison with known users plus powerful ones for
B = HH

n : upper figure with 5 dB SNR, lower figure with 100 dB SNR
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Figure 5.26: Relative error comparison with known users plus powerful for B =
HH
n : upper figure with 5 dB SNR, lower figure with 100 dB SNR, zoom.

Figure 5.27 shows achievable sum-rate results obtained with the
presented method compared to the one obtainable with pure RGMP.
We can notice that for low SNR values known users plus 2, 3 and 4
powerful users pre-coding achieves higher sum-rate values than pure
RGMP. After ≈ 3 dB SNR we however notice that pure RGMP is
the best performing, while achievable sum-rate for the presented
pre-coding method decreases with the number of considered users.

Figures 5.28, 5.29, 5.30 reports CDFs for achievable sum rates of
pure RGMP and pre-coding sparsification with parameters that in
Fig. 5.27 achieved higher sum-rate values than pure RGMP. We see
that CDFs confirm the results obtained in Fig. 5.27, where for low
SNR values, known users pre-coding plus 2, 3 and 4 users achieves
higher sum-rate values.
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Figure 5.27: Achievable sum-rate comparison with known users plus powerful
for B = HH
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Figure 5.29: CDF of achievable sum-rate values for pure RGMP and known plus
powerful users: B = HH
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Case 2 :B = (HH
n Hn)

−1HH
n

We now discuss results obtained for know users plus powerful ones
pre-coding when B is ZF. Fig. ?? shows relative error results. We
see that in 5 dB SNR case relative error obtained with pre-coding
methods is higher than pure RGMP’s and, in particular, that it
grows with the number of considered users (except for known users
+ 4). In 100 dB SNR case we notice that all methods converge to
approximatively the same relative error obtained with pure RGMP
after 10 MP iterations. In particular Fig. 5.32 shows that after
seven MP ioterations all methods except for known users+4 reach
approximatively the same relative error, whereas known users + 4
need 5 more MP iterations to reach this relative error value.
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Figure 5.31: Relative error comparison with known users plus powerful for B =
(HH

n Hn)
−1HH

n : upper figure is for 5 dB SNR, lower figure for 100 dB SNR.



76CHAPTER 5. CHANNEL SPARSIFICATION MODELLING AND ANALYSIS

1 2 3 4 5 6 7 8 9 10 11

Number of iterations

0

0.05

0.1

0.15

0.2
R

e
la

ti
v
e

 e
r
r
o

r

pure RGMP

Known users

Known users+1

Known users+2

Known users+3

Known users+4

Figure 5.32: Relative error comparison with known users plus powerful for B =
(HH
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−1HH

n : 100 dB SNR case, zoom.

Figure 5.33 shows achievable sum-rate results obtained with known-
users pre-coding plus powerful ones with B of type ZF. We notice
that achievable sum rate decreases with the number of considered
users, and hence the best performing strategy is keeping only known
users.
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5.5 Decoding Computational Complexity Analy-
sis

We recall that all presented sparsification methods aim at reduc-
ing the computational complexity of the decoding algorithm while
maintaining the same system performance.
In order to state if proposed algorithms are effectively reducing the
computational complexity we have first to obtain a way to measure
it. Since all sparsification methods are performed before RGMP al-
gorithm we analyse its computational complexity by looking at steps
of Algorithm 2. We see that, after checking whether the considered
channel matrix entry is or not equal to zero, two sums over the total
number K of users are performed if the considered entry is different
from zero. Hence the total number of operations at this point is
given by the multiplication of the number of channel matrix entries
different from zero and 2 times the number of users in the considered
scenario. Then this number of operation is repeated until stopping
criterion is satisfied. Hence the total number of operations required
for decoding are

Nop = 2K s I (5.16)

where s denotes the number of channel matrix entries different from
0, and I the number of message passing iterations needed to satisfy
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the stopping criterion.
Since the decoding algorithm is iterative we stated that convergence
is not assured and furthermore we do not know whether computed
marginals are correct. We hence decided to set a stopping criterion
based on relative error. Considering iteration t we decide to stop
here the decoding process is future values of relative error do not
increment or decrement of a value equal to the 1% of relative error
at iteration t. This criterion allows us to save computational time,
since further efforts in the decoding process do not lead to lower
errors, i.e. a more precise decoding.
In following tables we report, for all of the presented methods and
for each analysed parameter value, the sparsification level and the
computational complexity in terms of number of required operation
for the decoding process for three different SNR values. Each ta-
ble reports the used sparsification method, its parameter and the
corresponding value, the sparsification level, the number of MP it-
erations to satisfy the stopping criterion and the total number of
operations. We see that, among all presented methods and corre-
sponding parameter values, some of them allow a reduction of the
computational complexity analysis respect to pure RGMP.
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SNR = 0dB

Sparsification method Parameter Spasification level Number of MP iterations Total number of operations

Pure RGMP . 8192 2 2097152

Power-based Pmin = 0.001 4121 3 1582464

Power-based Pmin = 0.005 1345 3 516480

Power-based Pmin = 0.01 755 3 289920

Power-based Pmin = 0.1 154 2 39424

Orthogonal users Tprod = 0.005 6728 2 1722368

Orthogonal users Tprod = 0.0075 5560 3 2135040

Orthogonal users Tprod = 0.01 4288 2 1097728

Orthogonal users Tprod = 0.05 648 2 165888

CBM Lr = 1 7168 2 1835008

CBM Lr = 3 5120 3 1966080

CBM Lr = 5 3072 3 1179648

CBM Lr = 7 1024 2 262144

MIBM Lr = 1 7168 1 917504

MIBM Lr = 3 5120 2 655360

MIBM Lr = 5 3072 2 786432

MIBM Lr = 7 1024 2 262144

Power-based pre-coding HH , 1usr. 1024 2 262144

Power-based pre-coding HH , 3usr. 3072 3 786432

Power-based pre-coding HH , 4usr. 4096 3 1572864

Power-based pre-coding HH , 5usr. 5120 3 1966080

Power-based pre-coding HH , 7usr. 7168 4 3670016

Power-based pre-coding (HHH)−1HH , 1usr. 1024 2 262144

Power-based pre-coding (HHH)−1HH , 3usr. 3072 1 393216

Power-based pre-coding (HHH)−1HH , 4usr. 4096 1 524288

Power-based pre-coding (HHH)−1HH , 5usr. 5120 1 655360

Power-based pre-coding (HHH)−1HH , 7usr. 7168 2 1835008

Power-based plus pow.ones pre-c HH , 4usr. 4096 2 1048576

Power-based plus pow.ones pre-c HH , 5usr. 5120 4 2621440

Power-based plus pow.ones pre-c HH , 6usr. 6144 2 1572864

Power-based plus pow.ones pre-c HH , 7usr. 7168 2 1835008

Power-based plus pow.ones pre-c HH , 8usr. 8192 5 5242880

Power-based plus pow.ones pre-c (HHH)−1HH , 4usr. 4096 1 524288

Power-based plus pow.ones pre-c (HHH)−1HH , 5usr. 5120 1 655360

Power-based plus pow.ones pre-c (HHH)−1HH , 6usr. 6144 2 1572864

Power-based plus pow.ones pre-c (HHH)−1HH , 7usr. 7168 2 1835008

Power-based plus pow.ones pre-c (HHH)−1HH , 8usr. 8192 2 2097152

Table 5.4: Decoding computational complexity for presented sparsification
methods: 0dB SNR case
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SNR = 5dB

Sparsification method Parameter Spasification level Number of MP iterations Total number of operations

Pure RGMP . 8192 4 4194304

Power-based Pmin = 0.001 4121 3 1582464

Power-based Pmin = 0.005 1345 4 688640

Power-based Pmin = 0.01 755 3 289920

Power-based Pmin = 0.1 154 2 39424

Orthogonal users Tprod = 0.005 6728 4 3444736

Orthogonal users Tprod = 0.0075 5560 3 2135040

Orthogonal users Tprod = 0.01 4288 3 1646592

Orthogonal users Tprod = 0.05 648 3 248832

CBM Lr = 1 7168 4 3670016

CBM Lr = 3 5120 5 3276800

CBM Lr = 5 3072 2 786432

CBM Lr = 7 1024 2 262144

MIBM Lr = 1 7168 3 2752512

MIBM Lr = 3 5120 2 1310720

MIBM Lr = 5 3072 4 1572864

MIBM Lr = 7 1024 2 262144

Power-based pre-coding HH , 1usr. 1024 2 262144

Power-based pre-coding HH , 3usr. 3072 4 1572864

Power-based pre-coding HH , 4usr. 4096 4 2097152

Power-based pre-coding HH , 5usr. 5120 4 2621440

Power-based pre-coding HH , 7usr. 7168 7 6422528

Power-based pre-coding (HHH)−1HH , 1usr. 1024 2 262144

Power-based pre-coding (HHH)−1HH , 3usr. 3072 2 786432

Power-based pre-coding (HHH)−1HH , 4usr. 4096 2 1048576

Power-based pre-coding (HHH)−1HH , 5usr. 5120 3 1966080

Power-based pre-coding (HHH)−1HH , 7usr. 7168 2 1835008

Power-based plus pow.ones pre-c HH , 4usr. 4096 2 1048576

Power-based plus pow.ones pre-c HH , 5usr. 5120 4 2621440

Power-based plus pow.ones pre-c HH , 6usr. 6144 5 3932160

Power-based plus pow.ones pre-c HH , 7usr. 7168 7 6422528

Power-based plus pow.ones pre-c HH , 8usr. 8192 5 5242880

Power-based plus pow.ones pre-c (HHH)−1HH , 4usr. 4096 3 1572864

Power-based plus pow.ones pre-c (HHH)−1HH , 5usr. 5120 2 1310720

Power-based plus pow.ones pre-c (HHH)−1HH , 6usr. 6144 2 1572864

Power-based plus pow.ones pre-c (HHH)−1HH , 7usr. 7168 3 2752512

Power-based plus pow.ones pre-c (HHH)−1HH , 8usr. 8192 4 4194304

Table 5.5: Decoding computational complexity for presented sparsification
methods: 5dB SNR case
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SNR = 10dB

Sparsification method Parameter Spasification level Number of MP iterations Total number of operations

Pure RGMP . 8192 6 6291456

Power-based Pmin = 0.001 4121 31 16352128

Power-based Pmin = 0.005 1345 31 5336960

Power-based Pmin = 0.01 755 31 2995840

Power-based Pmin = 0.1 154 31 611072

Orthogonal users Tprod = 0.005 6728 7 6028288

Orthogonal users Tprod = 0.0075 5560 5 3558400

Orthogonal users Tprod = 0.01 4288 6 3293184

Orthogonal users Tprod = 0.05 648 5 414720

CBM Lr = 1 7168 5 4587520

CBM Lr = 3 5120 6 3932160

CBM Lr = 5 3072 5 1966080

CBM Lr = 7 1024 2 262144

MIBM Lr = 1 7168 5 4587520

MIBM Lr = 3 5120 6 3932160

MIBM Lr = 5 3072 6 2359296

MIBM Lr = 7 1024 3 393216

Power-based pre-coding HH , 1usr. 1024 3 393216

Power-based pre-coding HH , 3usr. 3072 7 2752512

Power-based pre-coding HH , 4usr. 4096 7 3670016

Power-based pre-coding HH , 5usr. 5120 8 5242880

Power-based pre-coding HH , 7usr. 7168 10 9175040

Power-based pre-coding (HHH)−1HH , 1usr. 1024 3 393216

Power-based pre-coding (HHH)−1HH , 3usr. 3072 3 1179648

Power-based pre-coding (HHH)−1HH , 4usr. 4096 2 1048576

Power-based pre-coding (HHH)−1HH , 5usr. 5120 4 2621440

Power-based pre-coding (HHH)−1HH , 7usr. 7168 2 1835008

Power-based plus pow.ones pre-c HH , 4usr. 4096 3 1572864

Power-based plus pow.ones pre-c HH , 5usr. 5120 10 6553600

Power-based plus pow.ones pre-c HH , 6usr. 6144 11 8650752

Power-based plus pow.ones pre-c HH , 7usr. 7168 11 10092544

Power-based plus pow.ones pre-c HH , 8usr. 8192 13 13631488

Power-based plus pow.ones pre-c (HHH)−1HH , 4usr. 4096 4 2097152

Power-based plus pow.ones pre-c (HHH)−1HH , 5usr. 5120 3 1966080

Power-based plus pow.ones pre-c (HHH)−1HH , 6usr. 6144 2 1572864

Power-based plus pow.ones pre-c (HHH)−1HH , 7usr. 7168 3 2752512

Power-based plus pow.ones pre-c (HHH)−1HH , 8usr. 8192 5 5242880

Table 5.6: Decoding computational complexity for presented sparsification
methods: 10dB SNR case
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5.5.1 Comparison of Presented Sparsification Methods

Results presented in previous section do not take into account the
loss in achievable sum-rate that we encountered when discussing
simulation results. In this section we compare the different spar-
sification methods in terms of bot computational complexity and
achievable sum-rate. Three different SNR values have been used,
respectively 0, 5 and 10 dB.
Fig. 5.34 shows results obtained with centralised sparsification meth-
ods (i.e. power-based, orthogonal users-based, CBM, MIBM) for 0
dB SNR. We notice that with orthogonal users-based sparsification
we obtain the best performing system, with an achievable sum rate
of 60 bit/s/Hz with a computational complexity of 1.0977 ·106 oper-
ations. However notice that if a small loss in achievable sum-rate is
acceptable for system’s requirements, with MIBM antenna selection
we can obtain a system with an achievable sum-rate of approxima-
tively 57 bit/s/Hz with a computational complexity of 0.9175 · 106

operations.
Figure 5.35 shows results obtained with centralised sparsifica-

tion method when SNR = 5 dB. We see that with power-based
sparsification we obtain a system with achievable sum-rate of ap-
proximatively 120 bit/s/Hz and with a computational complexity
of 1.5525 · 106 operations. Notice however that if we accept a loss in
achievable sum-rate of approximatively 20 bit/s/Hz with orthogonal
users-based sparsification we can reduce the computational complex-
ity to 0.2488 · 106 operations.
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Figure 5.34: Achievable sum-rate versus number of operations for different meth-
ods 0 dB SNR: upper left power-based, upper right orthogonal-users, lower left
CBM, lower right MIBM.
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Figure 5.35: Achievable sum-rate versus number of operations for different meth-
ods 5 dB SNR: upper left power-based, upper right orthogonal-users, lower left
CBM, lower right MIBM.
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Figure 5.36 shows results obtained for dcentralysed sparsification
methods for 10 dB SNR. We see that with power-based sparsifica-
tion we obtain a system with an achievable sum-rate of approxima-
tively 175 bit/s/Hz with a computational complexity of 1.6352 · 106

operations. Notice that this is the best result, since in order to re-
duce computational complexity, we must accept a loss in achievable
sum-rate of dozens of bit/s/Hz.
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Figure 5.36: Achievable sum-rate versus number of operations for different meth-
ods 10 dB SNR: upper left power-based, upper right orthogonal-users, lower
left CBM, lower right MIBM.
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We now analyse results obtained for distributed sparsification
methods (i.e. pre-coding with different types of matrices). We com-
pare the different methods in terms of both achievable sum-rate and
computational complexity for SNR values of 0, 5 and 10 dB.
Figure 5.37 shows results for SNR = 0 dB. We see that the best
compromise between achievable sum-rate and computational com-
plexity is obtained for known users plus powerful ones with ZF ma-
trix, which presents an achievable sum-rate of approximatively 45
bit/s/Hz with a computational complexity of 0.3932 · 106 opera-
tions. In order to increase achievable sum-rate we notice that other
methods can achieve higher values for this parameter, however the
computational complexity significantly grows.
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Figure 5.37: Achievable sum-rate versus number of operations for different meth-
ods 0 dB SNR: upper left power based TC, upper right power based ZF, lower
left known users plus powerful ones TC, lower right known users plus powerful
ones ZF.

Figure 5.38 shows results obtained for distributed sparsification



5.5. DECODING COMPUTATIONAL COMPLEXITY ANALYSIS 87

methods when SNR = 5 dB. We see that the best compromise is
obtained with power-based pre-coding with TC matrix, obtaining
a siystem with achievable sum rate of approximatively 90 bit/s/Hz
and a computational complexity of 1.0488 · 106 operations. Notice
that, in order to augment achievable sum-rate of 15 bit/s/Hz (max-
imum obtaiable values among all methods) computational complex-
ity shall be increased to 5.2429 · 106 operations.
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Figure 5.38: Achievable sum-rate versus number of operations for different meth-
ods 5 dB SNR: upper left power based TC, upper right power based ZF, lower
left known users plus powerful ones TC, lower right known users plus powerful
ones ZF.

Figure 5.39 shows results obtained with distributed sparsification
methods when SNR = 10 dB. We see that the best approach in
this case is known users plus poiwerful ones with ZF matrix, which
presents an achievable sum-rate pof approximatively 150 bit/s/Hz
and a computational complexity of 1.0488 · 106 operations. Notice
that the maximum achevable sum-rate among all methods is ap-
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proximatively 160 bit/s/Hz, obtainable with a computational com-
plexity of 9.1750 · 106 operations, which justifies our choice for the
best approach to follow.
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Figure 5.39: Achievable sum-rate versus number of operations for different meth-
ods 10 dB SNR: upper left power based TC, upper right power based ZF, lower
left known users plus powerful ones TC, lower right known users plus powerful
ones ZF.
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Conclusions

In this work we presented C-RAN, a promising architecture to be
implemented on 5G networks. We then introduced a model for com-
munication over this architecture, where we interpreted communica-
tions between users and BSs as MIMO channels. We then reviewed
MP algorithms of [3] and discussed their convergence properties as
well as their computational complexity. As stated before, this algo-
rithms require a computational complexity that grows quadratically
with the number of users and RRHs in the network and result hence
in a prohibitively high computational complexity. Subsequently, we
introduced methods to overcome such an issue by sparsifying the
channel matrix, as we observed in Algorithms 1 and 2 that the num-
ber of operations required for the decoding process depends on the
number of entries of the channel matrix that are different from zero.
We introduced and tested two different approaches: a centralised
one, in which sparsification is applied at the central BBU Pool and
a distributed one, in which sparsification is performed as pre-coding
at the BS of each cell. Different approaches have been proposed
for both distributed and centralised sparsification and each one has
been tested in terms of relative error, sparsification level (i.e. num-
ber of channel matrix coefficients that are different from zero) and
achievable sum-rate.
We presented first the power-based centralised channel sparsifica-
tion, in which we set a threshold value Pmin on the squared module
of coefficients of the channel matrix and set to zero those which
were below Pmin. Secondly, we introduced orthogonal-users based
sparsification, another distributed sparsification method, in which
channel matrix entries of users located outside the considered cell
have been set to zero in case their transmission were orthogonal to
the one of users inside the cell. Lastly, the third and fourth cen-
tralised sparsifcation methods, based on receive antenna selection,
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were introduced. The third method performs antenna selection by
computing correlation values among the rows of the channel matrix
related to a BS, whereas the fourth replaces correlation measures
with normalised mutual information measures.
As regards the category of distributed sparsification methods, we
considered three main users selection approaches, which are known
users, powerful users and known users plus powerful ones. In the
first method we assume the knowledge of the position of users and,
in particular, whether they belong to a specific cell or not. In the
second we consider only a number Np of users that reach the BS
with the highest power. The last one considers both known users
and the Np powerful ones. All distributed sparsification methods
has been tested for two different pre-coding matrices, implementing
a matched and a zero forcing receiver.
In the last two chapters we presented the obtained results for com-
putational complexity and compared the different methods in terms
of both computational complexity and achievable sum-rate. We
showed that we can decrease the total number of operations required
for the decoding process while maintaining values of achievable sum-
rate similar to the ones obtained without channel sparsification. The
selection of the method to be used as well as its parameter value is
however a choice that depends on the SNR value and furthermore a
trade-off between achievable sum-rate and computational complex-
ity must be always performed. In fact we have seen that the best
choice in achievable sum-rate does not always match the computa-
tional complexity one.
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