
UNIVERSITY OF PADUA

Department of Information Engineering

Master degree in Bioengineering

Implementation of a calibration protocol

for a BMI-driven robotic exoskeleton

Supervisor Candidate

Prof. Luca Tonin Valentino Marchesan

Co-Supervisor

Dr. Stefano Tortora

December 12, 2022

Academic Year 2021-2022





Implementation of a calibration

protocol for a BMI-driven robotic

exoskeleton

Valentino Marchesan

Master Degree in:

Bioengineering

Supervisor:

Prof. Luca Tonin

Co-Supervisor:

Dr. Stefano Tortora

Date:

December 12, 2022





Abstract

Brain-machine interfaces (BMIs), based on electroencephalography (EEG),

have been proved to play an important role in motor rehabilitation. BMIs can

classify EEG signals and translate the brain activities into useful commands

for external devices. The aim of this work is the creation and implemen-

tation of a calibration protocol for a BMI to control a lower-limb exoskele-

ton. In contrast with the literature, the innovative aspect of the proposed

method is the achievement of a robotic-aided calibration protocol in which

the EEG data are collected while the user is inside the exoskeleton. The idea

is to minimize the difference in brain activity between the calibration phase

and the effective usage of the system. In particular, a paradigm based on

the self-paced attempt of stepping movements have been implemented and

the experiment involved the participation of seven healthy subjects. The

EEG signals collected were used to test the performances of three different

classifiers (Linear Discriminant Analysis (LDA), Logistic Regression (LR),

supervised Gaussian Mixture Model (sGMM)) and two features selection ap-

proaches (Fisher score (FS), Common Spatial Patterns (CSP)). Finally, an

exponential integrator was used to better recognize the movement intention

and were identified the best integrator parameters that maximize the true

positive-false positive ratio on average on the considered population. I found

that 1 s is a good time for the detection of a pre-movement state and the LDA



ii

classifier works better than the others with a mean sample-by-sample accu-

racy of 59.2506%± 3.7142 and a mean cross entropy loss of 0.6669 ± 0.031.

Then I found a mean true positive rate of 76.32%± 10.05 and a mean false

positive rate of 31.46%± 24.20. I believe that neuro-controlled exoskeleton

will be the key solution to improve the quality of life of people with walking

impairments.
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1 | Introduction

According to the Oxford English Dictionary, the term “rehabilitation” has

many definitions, and that relating to the semantic area of medical health

considers rehabilitation as the “restoration to some degree of normal life by

appropriate training” [1]. Medical rehabilitation is the process targeted to

promote and facilitate the recovery from physical damage, psychological and

mental disorders, and clinical disease [2]. The World Health Organization

considers disabilities as an umbrella term that covers impairments, activity

limitations, and participation restrictions. An impairment is a problem in

body function or structure, an activity limitation is a difficulty encountered

by an individual in executing a task or action, while a participation restric-

tion is a problem experienced by an individual when involved in everyday-life

situations. So the physical problem becomes also a social problem.

Lower limb disability can have various origins, either medical (e.g., stroke

[3], multiple sclerosis [4] or Parkinson’s disease [5]) or traumatic (e.g., spinal

cord injury [6]). In these conditions, either leg muscles become inefficient for

walking or the brain motor signals do not even properly reach the spinal mo-

toneurons commanding the leg muscles. The consequences are similar: the

disabled person cannot properly stand up or walk autonomously anymore.

One of the aim of the rehabilitation engineering is to restore a comfortable life

to these people with disabilities. This can be done through the development
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of technological tools to empower the lower limbs of disabled people with

walking disability. This will drastically change their day-to-day life, as they

will perform most usual daily activities more independently, both at home

and outside. This is very important because brings to their own inclusion in

society [7].

In recent years, with the current advancements in robotics and Artificial In-

telligence (AI), robots have the potential to support the field of healthcare.

Robotic systems are often introduced in the care of the elderly, children, and

persons with disabilities, in hospitals, in rehabilitation and walking assis-

tance, and other healthcare situations [8]. In the context of assisted rehabili-

tation through the use of robotic devices, the exoskeletons can be introduce,

because it is used to restore the natural gait to people with lower limb impair-

ments [9]. The lower limb rehabilitation exoskeleton is connected with the

human body in a wearable way and can control the movement of all joints in

the training process. According to their application, these robots are divided

into two types, namely for treadmill-based and overground applications [10].

Patients can receive gait training from treadmill-based exoskeleton robots on

a treadmill. In these robots, in addition to the exoskeleton that is used to

provide assistance to leg movement, a body weight support (BWS) system

is required to reduce gravitational forces acting on the legs, ensuring safety,

and maintaining balance; the most famous exoskeleton on a treadmill is the

Lokomat (Figure 1.1). Overground exoskeleton robots help patients in re-

gaining overground gait; in this thesis I will focus on this type of exoskeletons

(see Chapter 3.1.3).

Very important was the discovery of training-induced plastic changes in the

functional topography of the primary motor cortex [11]. This has provided

new opportunities for neurorehabilitation: the strategy of intensive, regular
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Lokomat

Cyberdine’s HAL

Figure 1.1: Treadmill-based and overground exoskeletons

and motivated movement training has been developed. Exoskeletons appears

to be ideal technical devices for this strategy implementation.

The traditional control mode for exoskeleton robots is based on physical

sensor signals, such as accelerometers, IMUs, and potentiometers. In re-

cent years, biological signals such as the electroencephalography (EEG) sig-

nal through the brain-machine interface (BMI) have become a new method

for human-machine interaction in rehabilitation robots [12]. This leads to

the introduction of a new multi-disciplinary research field known as neuro-
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robotics. Neurorobotics refers to the branch of science combining neuro-

science, robotics, and artificial intelligence. It hence refers to all robots de-

veloped for interacting with or for emulating the nervous system of humans

or other animals. A neurorobot can be developed for clinical purposes, for

example neurorehabilitation or neurosurgery [13]. The main features of the

neurorobots belonging to the walking assistance category are the ability to

allow the patient to physically (or virtually) navigate the environment, either

indoor or outdoor, and the capability to partially (lower-limb exoskeleton, leg

prostheses) or totally (powered wheelchair) support their weight to alleviate

fatigue due to possible disorders.

The closed-loop control of rehabilitative technologies by neural commands

has shown a great potential to improve motor recovery in patients suffering

from paralysis [14]. BMIs can be used as a natural control method for such

technologies. BMI provides a continuous association between the brain activ-

ity and peripheral stimulation, with the potential to induce plastic changes in

the nervous system. Paraplegic patients constitute a potential target popu-

lation to be rehabilitated with brain-controlled robotic systems, as they may

improve their gait function after the reinforcement of their spared intact neu-

ral pathways [14].

Following this line, in this thesis I firstly created a protocol for the EEG

signals acquisition and adjust the exoskeleton software to allow a walk of the

robot as is defined in the protocol. Then I studied the EEG of people that

walked with exoskeleton. Finally, I define a machine learning-based classi-

fier of the EEG signal’s features which target is to identify the onset of a

movement of the person. This because the next step of the project will be to

create an online closed-loop control of the exoskeleton that allows a person

to trigger the exoskeleton assistance through the identification of walking
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intention from brain activity.
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2 | State of the art

2.1 Brain Machine Interface

Physical disability caused by neurologic disease is the reason while neurore-

habilitation born. The conditions that are most frequently encountered on a

neurorehabilitation service are stroke, traumatic head injury, spinal cord in-

jury, multiple sclerosis, Parkinson’s disease, and devastating peripheral neu-

ropathies. The aim of neurorehabilitation is improve patients’ ability to

perform daily activities and self-care and to achieve functional independence

[15]. One method to restore the ability of the patient is neurofeedback.

Neurofeedback (NF) is a non-invasive close-loop technique that take infor-

mation from EEG activity that is recorder by a low number of electrodes;

after the acquisition there is a little computation, and this activate some

output which are then captured from the patient. NF targets the brain and

cognitive functions through the use of electroencephalography (EEG), hence

neurofeedback is sometimes referred to as EEG biofeedback. In classical NF,

EEG and brainwave activity is provided as a visual or auditory cue to the

user. Using these cues the user can consciously adapt their brainwave activity

to reach targeted training thresholds. NF relies on operant conditioning to

stimulate the neuroplastic abilities of the brain. Physiologically stimulating

specific band frequencies over damaged areas stimulates cortical metabolism.
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Figure 2.1: Neurofeedback scheme

NF is also used to counter excessive slow wave activity (i.e. theta waves and

sometimes alpha waves) that typically follow stroke [16]. In Figure 2.1 is

shown the functioning of neurofeedback [17].

Another neurorehabilitation method is brain-machine Interface (BMI)

also called brain-computer Interface (BCI). The term BMI refers to a system

capable of measuring the activity of the brain and translating it into instruc-

tions for various types of peripheral devices (wheelchairs [18], prostheses [19]

and orthoses [20]); in fact brain-machine interfaces give their users communi-

cation and control channels that do not depend on the brain’s normal output

channels of peripheral nerves and muscles [21]. For this the BMI provides an

alternative interaction channel for people suffering from severe motor disabil-

ities by circumventing the normal-usually damaged neural pathways [22, 23].

BMIs are based on neurofeedback. For this reason, it could take in consid-

eration that neurofeedback is a container of BMIs technology. Both could

induce plasticity and enable control of brain activity in a closed loop. How-

ever, there are many differences: neurofeedback is just a mirror on our brain

activity, there is any multivariate association. Neurofeedback is only one way



2.1 Brain Machine Interface 9

Figure 2.2: BMI close-loop scheme

directional, in fact, is only the subject that know how to modulate the sig-

nal, while, in BMI are also implemented some machine learning algorithms

in which the BMIs learn from the patients’ neural data. This concept of

learn how to use the BMI and the learning process of BMI about the pa-

tient’s behaviour is called mutual learning [24]. Moreover, another difference

between BMI and neurofeedback is the number of electrodes used, which is

usally much higher in the BMI context.

As neurofeedback, also BMI is based on a closed-loop architecture [25] (Fig-

ure 2.2) where user and machine interact with each other to achieve optimal

control of the external device, but in BMI the user’s intentions are translated

not into virtual movements of an abstract element on a screen, but rather

into tangible actions of a device. Two concepts therefore become essential in

the design of the BMI closed-loop: a fast response by the robot to the user’s

intention and a bidirectional interaction between the robot and BMI.

As it can seen in Figure 2.2, the closed-loop architecture is composed by

three main blocks:

• Signal acquisition: deal with the acquisition of the EEG signal that
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can be done in an invasive or non-invasive way;

• Signal Processing: this block can be divided in three sub-blocks:

– Preprocessing: which role is filtering, downsampling, remove the

artifact, interpolating the channels and re-referencing the EEG

raw signals;

– Features Extraction: which aim is to determine and select the

most discriminant features;

– Classification: which classify the extracted features.

• Feedback: generate actions of the external device and provide the re-

sults of the actions back to the user.

Signal acquisition

In BMI systems there are two possible types of signal acquisition: invasive or

non invasive. Invasive BMIs can directly access the spiking activity of single

neurons or local field potentials by means of microelectrodes implanted at the

cortical or subcortical level (iEEG) [26]. Less invasive acquisition techniques

rely on electrocorticogram signals read by electrodes placed on the surface

of the cortex. Although invasive recordings allow high spatial and temporal

resolution, signal quality may be affected by the reaction of the cerebral tis-

sue to the implant [27]. The non-invasive BMI are based on technologies that

scan the brain without surgery and invasive techniques, such as as Functional

magnetic resonance imaging (fMRI) or Functional near-infrared spectroscopy

(fNIRS) or other technique like EEG and Magnetoencephalography (MEG).

FMRI is a technology that could detect the major brain area which contains
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the main concentration of blood oxygenated [28]. This technique has a high

spatial resolution but a low temporal resolution. This last aspect is quite

important to obtain rapid response from the technology. With this charac-

teristic the technique cannot be used to implement BMI paradigms. FNIRS

is similar to fMRI with the only difference to have as acquisition component

a cap and not very big, large coil [29]. The concept is very similar to fMRI,

in fact, also in this case, the technology could help to detect the main brain

region which present the highest concentration of blood oxygenated. So, this

technology has high spatial resolution but, for the same reason of fMRI slow-

ness, it has low temporal resolution. MEG is a technique that could help

to achieve the detection of a very low amplitude magnetic fields [30]. This

technology has high spatial and temporal resolution but low usability due to

the use of superconducting quantum interference devices (SQUIDs) to detect

the neuromagnetic field. A positron emission tomography (PET) scan is an

imaging test that can help to reveal the metabolic or biochemical function

of tissues and organs [31]. The PET scan uses a radioactive drug (tracer) to

show both normal and abnormal metabolic activity. A PET scan can often

detect the abnormal metabolism of the tracer in diseases before the disease

shows up on other imaging tests, such as fMRI. A PET scan is an effective

way to help to identify a variety of conditions, including cancer, heart disease

and brain disorders. In this case it isn’t use due to the high time resolution

needed. Electroencephalogram (EEG) measures the electrical activity of a

population of neurons by the usage of cap of electrodes. It has low spatial

resolution due to the physical dimension of electrodes. Nowadays the max-

imum number of electrodes is 256 in the most advance EEG system. The

ones used in clinical practice consist normally of 64 electrodes to speed up the

wearing process. So the reasons why the EEG is the most used acquisition
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Figure 2.3: Spatial and temporal resolution of different type of acquisition
techniques

technique in BMI is that it has high temporal resolution, high usability, and

low access cost. The scheme in Figure 2.3 represents the resolution of the

different techniques that could be used to record the brain activity [32].

2.1.1 Electroencephalography (EEG)

For the reason already explained (low cost, high usability, high temporal res-

olution) my BMI system will use the EEG as signal acquisition technique.

An EEG sensor is a non-invasive electronic device that can measure electri-

cal signals of the brain. EEG sensors typically measure the varying electrical

signals created by the activity of large groups of neurons (cortical pyramidal

cells) near the surface of the brain, that have to fire in synchrony to generate

a signal detectable by the electrodes. They work by measuring the small

fluctuations in electrical current between the skin and the sensor electrode

[33]. In the EEG measurements, the cerebral cortex is the most relevant
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structure, and it is responsible for high order cognitive tasks (problem solv-

ing, language comprehension, movement and processing of complex visual

information). Due to its surface position, the electrical activity of the cere-

bral cortex has the greatest influence on EEG recordings. EEG measures the

difference in voltage over the scalp in microvolt (µV).

EEG signals have two mainly characteristics: amplitude and frequency. The

Brain waves have commonly a sinusoidal shape. Usually, they are measured

from peak to peak and normally range from 0.5 to 100 µV in amplitude.

From a spectral point of view, the EEG signal occupies a frequency range

between 0.1 Hz and 100 Hz. The brain waves can be categorized into five

basic groups (Figure 2.4) in different frequency range [34]:

• Delta (0.5-4 Hz): it tends to be the highest in amplitude and the slowest

waves. It is normal as the dominant rhythm in infants up to one year

Figure 2.4: Brainwaves



14 State of the art

and in stages 3 and 4 of sleep. It is usually most prominent frontally

in adults and posteriorly in children;

• Theta (4-8 Hz): it is perfectly normal in children up to 13 years and in

sleep but abnormal in awake adults. It can be recorder using temporal

and frontal electrode;

• Alpha (8-13 Hz): it appears when closing the eyes and relaxing, and

disappears when opening the eyes or alerting by any mechanism; it is

the major rhythm seen in normal relaxed adults. It is usually best

seen in the posterior regions of the head on each side, being higher in

amplitude on the dominant side;

• Beta (13-30 Hz): it is the dominant rhythm in patients who are alert

or anxious or have their eyes open. Beta rhythm is also associated

with motor activity, and is modulated during both real movement and

motor imagination. It is usually seen on both sides in symmetrical

distribution and is most evident frontally. It is generally regarded as a

normal rhythm.

• Gamma (>30 Hz): it occurs in relation to certain motor functions as

during maximal muscle contraction and during high cognitive tasks.

Gamma rhythm are less used in EEG based BCI systems because they

are more susceptible to muscular or EEG artefacts.

It is important to notice that with the increment of frequency, the amplitude

of the signal decreases following a 1/f -like trend, as shown in Figure 2.5. So

the Delta waves have the biggest amplitude in µV, while the Gamma waves

the smallest.
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Figure 2.5: 1
f
trend of the EEG spectrum

The main characteristic that could be retrieved from Figure 2.5 is that

there is an alpha peak which is around 10 Hz, whose precise position in

frequency is strongly subject-specific. The next structure after the alpha

peak that could be detected is an another rebound which is usually call the

beta peak and it is present according to the specific task. This rebound in

beta synchronization is observed after the end of voluntary movements as well

as after somatosensory stimulation and is believed to describe the return to

baseline of sensorimotor networks [35]. It could be seen that in the gamma

range the amplitude of the component is small and has a high risk to be

overlapped with the muscular electrical activity from neck muscle, and thus

they are rarely used in BMI applications.

2.1.2 BMI based on EEG modulation

The activity of the EEG can be influenced and modulated by different meth-

ods. There are mainly two ways that can be used to do that and that are

involved in the BMI system: the Event-related Potentials (ERP) [36] and

the Spontaneus signals [37]:
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• Event-related potentials (ERP): they are potential difference fluctua-

tions that are both time-locked and phase-locked to a discrete physical,

mental, or physiological occurrence, referred to as the event. They are

called also evoked phenomena;

• Spontaneus signals: they are time-locked phenomena but are not phase-

locked, because they are endogenous of the patient. It is possible to

refer to them as induced phenomena.

Event-related potentials

The Event-related potentials, also called evoked potentials (EP), are the

measurement of brain responses to specific external event [38]. It is a sen-

sitive and qualified neurophysiopathological investigation technique, which

provides and objective measure of the functioning of specific sensory nerve

pathways (visual, acoustic, sensory). EPs are usually described as a number

of positive and negative peaks characterized by their polarity, shape, ampli-

tude, latency and spatial distribution on the scalp. All these characteristics

depend on the type of event. Each realization of an EP is named a sweep or

trial. Mathematically they could be described as:

y(t) = v(t) + u(t)

where v(t) component is the EP and the u(t) is the noise which is contained

into the EEG signal due to the other brain activities active during the elabo-

ration. The signal is time-locked to the stimulus and most of the noise occurs

randomly, allowing the noise to be averaged out with averaging of repeated

responses :

û(t) =
1

N
·
∑

N · yi(t)
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The most common EPs used in BMI are the following:

• Steady State Visual Evoked Potentials (SSVEP) [39]: it is a

very simple technique. The key point is that if there are two stim-

uli (leds) that are blinking at a certain frequency, could be find an

oscillatory pattern and frequency component in the occipital region de-

pending on the frequency of the led that is paying attention to. The

frequency of the component that is find in the occipital region is the

same of the flickering frequency of the stimulus. In this case may have

different kind of visual stimuli each connected to a different action and

activity;

• P300 : the P300 could be triggered by an exogenous visual or au-

dio stimulation [40]. P300 evoked potential is the manifestation of

attention-involved activity (cognitive process). An example of tech-

nique to elicit a P300 is made up of a time presentation of square

target which are interspersed by square non target. It is asked to the

user to count all the target square and by doing so, the patient is paying

attention to the sequence and each time the target stimulus is presented

a P300 EP is elicited. A key point of the series presented is that the

target stimulus needs to be presented randomly. This activity could

also be done by the usage of sound stimulation. The P300 appears

after 300 ms of latency from the onset;

• Error potentials: when there is the detection of an erroneous stimu-

lus (identifiable by only a cognitive process) an error potential is evoked

[41]. This last type of EP is elicited in the anterior cingulate cortex

(ACC) and comes out after 100-200 ms after the error recognition. By

detecting this EP could be reacted to this information by modify the
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(a)

(b)

Figure 2.6: Cortical organization (a), Motor homunculus (b)

behaviour of the system in order to correct wrongly executed actions

of the BMI system.
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Spontaneus signals

Spontaneous signals are the brain modulation generated spontaneously/voluntarily

by the subject without any external stimulation. Part of this family of sig-

nals are: sensorimotor rhythms (SMR), slow cortical potentials and cortical

neuronal action potential; these signals are mostly related to motor activities

and thus their are mostly visible over the sensorimotor cortex (Figure 2.6a).

As shown in the Figure 2.6a there are different lobes in the cortex which are

referred to specific brain activity. Every brain region is specific to detect a

particular brain rhythm. The most important area for BMI technology is

the sensorimotor cortex [42]. In this specific region could be find a specific

organization which is called the homunculus-motorius where all the segments

of our body are represented. In Figure 2.6b is reported the organization of

the sensorimotor area.

Motor execution and motor imagery can be decoded from the sensori-

motor rhythms [43], which forms the basis of neural control in SMR-based

BMIs, where

• Motor imagery (MI): is the the kinesthetics imagination of the move-

ment, so it fell like that it is doing that movements but the activity is

blocked and this block does not allow the real motor execution;

• Motor execution (ME): is the real movement.

The main difference between these two sensorimotor signals are that mo-

tor execution and motor imagination do not activate the same brain regions

[44, 45]. Studies have demonstrated that people can learn to modulate their

sensorimotor signals to control physical or virtual devices [43, 46]. Another

important fact is that SMR are readily detectable in healthy as well as dis-

abled individuals with neuromuscular diseases or injuries [47], so it is possible
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to use SMR-based BMI in the rehabilitation process. Task related modula-

tion in sensorimotor rhythms is usually manifested as amplitude (or power)

decrease in the alpha-beta band components before the movement execution,

also known as event-related desynchronization (ERD) [43]. To describe more

mathematically the rest and movement condition, Pfurtsheller introduced a

formula to quantify the power of the cerebral event analysed when a specific

condition occurs [48]. In particular this relation is able to distinguish two

different cases:

• Event related synchronization (ERS): that reflects a cortical “idling

state”, they are produced by synchronous activation of the neuronal

network and they are associated with activity increase (positive values).

This condition arises when the patients is in a rest condition.

• Event related desynchronization (ERD): instead indicates oscillations

in cortical activation and asynchronous activation of the neuronal net-

work. They are associated with activity decrease of the underline neu-

ronal population (negative values). The ERD especially manifests in α

and β bands during movement.

The analytical expression introduced by Pfurtsheller is:

ERPx =
Px,active − Px,rest

Px,rest

× 100 (2.1)

where positive values represent ERS while negative values the ERD. Be-

fore and during the movement, could be had an ERD over the primary motor

cortex while during the rest phase could found an ERS over the sensorimo-

tor cortex. Planning and execution of movement has been found to lead

to predictable decreases in the alpha and beta frequency bands [48]. Also,

many studies have demonstrated that motor imagery and motor execution
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(a)

(b)

(c)

Figure 2.7: PSD during rest state (a), PSD during a MI/ME task (b), Beta-
rebound (c)

can cause ERD (and often ERS) in primary sensorimotor areas [49]. To

identify these brain rhytms could be seen that during motor imagination
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or execution task, there is an attenuation of the activity of corresponding

brain areas. This attenuation is the one that could be find during the spec-

tral power analysis. For example, during the imagination hand movement

the desynchronizations activated (ERD) lead to an attenuation of the main

alpha peak. This is due to the desynchronization of the populations of neu-

rons that take part to the subject mental tasks. During MI and ME task

the spectral power density is characterised of a attenuation in alfa and beta

band (Figure 2.7), while if we analysed the power spectral density compute

during a cognitive task we will see a development of a peak in gamma band.

The reason is due to the recruitment of different populations of neurons. In

fact, it has been shown that during a MI or a ME task neurons or popula-

tions of these, works not in synchrony and this leads to an attenuation of the

alfa and beta band, while during cognitive process due to the high specificity

of the task the number of neurons recruited are just a few but these works

in synchrony [48, 44, 49, 50]. One more thing that need to be highlighted,

that was reported also at the end of 2.1.2 section and that is possible to see

in Figure 2.7, is that when it is speaking of MI and ME is that after the

ERD in the EEG could be detected, after 300-500ms, a beta rebound which

represents the end of the movement and the activation of cognitive feedback,

so a new synchronisation of neurons [51]. An important derivation of motor

execution is the movement attempt (MA), in fact many of the robot-assisted

motor rehabilitation therapies rely on the patient’s attempt to move, based

on residual movements. Usually rehabilitation based on this sensorymotor

rhytm uses the combination of a EEG signal and an EMG signal to establish

when the patient try to move himself. This SMR signal can be used for the

rehabilitation of patient that have some residual movements and with the

use of a neurorobots driven by a BMI the movement can be completed when
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the BMI detect the moving intention of the patient.

2.2 Related works

Recent engineering and neuroscience applications have led to the develop-

ment of BMI systems that improve the quality of life of people with motor

disabilities [52]. In the same area, a significant number of studies have been

conducted in identifying or classifying upper-limb movement intentions. On

the contrary, a few works have been conducted concerning the identification

of movement intention for lower limbs, in particular to control lower limb

exoskeletons [53].

2.2.1 Motor imagery

In [54] the aim was distinguish motor imagery (MI) of flexion and extension

of both legs from the EEG correlates, to control with a BMI a lower-limb gait

training exoskeleton. The experimental protocol is composed by two sessions

for each run: one offline session for training and one online session for the

validation. Each session consists of five successive runs with a rest period in

between. In each run, trials of extension and flexion were randomized and

balanced and a total of 60 trials were performed (around 10min). During the

experiment, the subject was seated in a customized gait training exoskeleton

with a monitor in front of the robot. The visual cues were presented with a

customized script and synchronized with the lower-level routines. Visual bars

pointing upwards indicated leg extension MI and downwards for leg flexion

MI. Focusing on training sessions, the preparation period in each trial was

2s followed by MI period lasting 4s.

The Ferrero et al.’s paper [55] shows a lower-limb motor imagery BCI that
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has been designed to control a treadmill. The aim of this work is to design

a lower-limb motor imagery BCI to control a treadmill and test it. Two ex-

periments were conducted. In the first one, the activation and deactivation

of the treadmill was remotely executed by an operator, subjects had to per-

form ten trials. During each trial, they had to alternate periods of relaxation

(10s), that started and finished with an acoustic sound, motor imagery of

gait (10s) and regressive count (20s), but before performed the MI task the

user had to wait 10s, while before perform the regressive count he had to

wait at least 4s. The second experiment consist in a closed-loop trial where

the treadmill was controlled by the BMI and consisted of five trials. So in

this experiment there isn’t a visual feedback of the MI task but the feed-

back is given by the moving or not of the treadmill. In [56] the aim was the

developing of an asynchronous brain-computer interface (BCI)-based lower

limb exoskeleton control system based on motor imagery (MI). They decoded

EEG signals in real-time, allowing the users to walk forward, sit down, and

stand up while wearing the exoskeleton. EEG feature vectors associated with

the motor imagery were extracted from the filtered EEG signals with com-

mon spatial patterns method. Finally support vector machine was employed

to address an EEG-based three-class motor imagery classification task. The

experiment was composed by 10 session, each composed by 3 phases: prepa-

ration, imagination of designed action and rest. The study of Choi et al.

[57] aimed to develop an intuitive gait-related motor imagery (MI)-based hy-

brid brain-computer interface (BCI) controller for a lower-limb exoskeleton

and investigate the feasibility of the controller under a practical scenario in-

cluding stand-up, gait-forward, and sit-down. The developed MI-based BCI

exoskeleton control system consists of three parts, namely data acquisition,

EEG signal processing, and exoskeleton control. While the subject performs
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MI tasks, a signal processing algorithm extracts features and trains the offline

classifier. A decoded control command is sent to the exoskeleton via a real-

time online control interface. All subjects successfully completed a gait task

by wearing the lower-limb exoskeleton through the developed real-time BCI

controller. The BCI controller achieved a time ratio of 1.45 compared with

a manual smartwatch controller. The developed system can potentially be

benefit people with neurological disorders who may have difficulties operating

manual control.

2.2.2 Motor execution

In the work of Sburlea et al.[58] the aim was investigate the ability of a BCI

to detect the intention to walk in stroke patients from pre-movement EEG

correlates. For each of the three sessions each trial was composed by two

parts: relaxation and movement. Both parts had variable time lengths ac-

cording to the patient needs. The relaxation part started with an auditory

cue that instructed the patients to relax and reduce movements. After ap-

proximately 10s another auditory cue instructed the patients to start walking

whenever they want. Patients were previously instructed to wait a couple of

seconds after hearing the second auditory cue. After every twenty trials there

were break intervals with a duration adjusted to the need of the patients. A

session had five phases, comprising a total of an hundred trials. In another

work, Sburlea et al. [59] create a protocol for the detection of pre-movement

state. The experimental protocol was composed by three sessions. Each trial

was composed of two parts: relaxation and self-initiated movement. In the

relaxation part that lasted 10s they were asked to stop moving, relax their

muscles and to fixate their eyes on a point in the middle of the screen located

at the end of the stage. The beginning of the movement part was marked
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by a fixation cross. The participants were previously informed that after the

appearance of the fixation cross they can start walking whenever they want,

but not earlier than 1.5s. The movement task was always initiated with the

right leg. After each ten trials there were break intervals. In Dong Liu et

al. work [60], the aim is the decoding of lower-limb movement-related corti-

cal potentials. The experimental procol isn’t base on a free body movement

but is introduced a customized gait trainer where the subjects performed

self-initiated ankle plantar flexion. Participants were seated in a gait trainer

(the legoPress) which can mobilize the user’s legs to emulate gait movement.

Visual stimuli were handled with a script and provided by a monitor to the

user. Each experimental session consisted of three consecutive tasks: relax

and fix a cross, perform a self-paced platar flexion with the leg indicated

by a directional cue and rest. The subject was instructed to perform the

movement within 7s, but not early than 2s, without explicitly counting the

time. Each run consisted of sixty trials, with left and right directional cues

randomized and balanced inside. Finally, the work of Lopez-Lazar et al.[14],

proposes a closed-loop BMI system to control an ambulatory exoskeleton

without any weight or balance support—for gait rehabilitation of incomplete

spinal cord injury (SCI) patients. Using a cue-guided paradigm, the elec-

troencephalographic signals of the subjects were used to decode their gait

intention and to trigger the movements of the exoskeleton. The experimental

protocol consisted of familiarization sessions and BMI sessions. The familiar-

ization sessions allowed the subjects to get used to the protocol timings and

the exoskeleton movements. On these sessions, one experimenter triggered

the movements of the exoskeleton manually, warning the subject before ev-

ery movement. The sessions were composed of rest and movement attempt

(MA) intervals. The BMI sessions were composed of trials with four inter-
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vals: ”Rest”, ”Preparation”, “Movement Attempt” and ”Movement”. During

the “Rest” state (5s), the subjects were not required to perform any task,

but just to relax after the previous trial. After that, a low tone was played,

which marked the beginning of the “Preparation” interval (3s), during which

they were instructed to relax and be prepared for the upcoming cue. A high

tone denoted the start of the “Movement Attempt” interval (maximum 3s),

in which they were asked to attempt to move their right leg. If the BMI de-

tected the intention to move at any time during these 3s, the system started

the “Movement” interval, in which the exoskeleton controller unblocked the

joints and moved for one gait cycle: one step with right leg and one with left

leg (6s). Otherwise, after the 3s, a new trial started in rest state.

2.3 Thesis aim and structure

The aim of the thesis is the implementation of a calibration protocol for

a BMI-driven robotic exoskeleton. The intention is to define a calibration

protocol that allow to determine the pre-movement intention of the subject.

Starting from an online research, I noticed that a lot of works on the BMI

to control a lower limb exoskeleton use the motor imagery or ERP [61] to

detect the intention to walk of the patient. To go beyond the state-of-the-art

and produce a better interaction between the exoskeleton and the subject,

I propose a protocol based on motor execution of stepping movement while

the subject wears a powered lower-limb exoskeleton. My work has been

organized in two consecutive phases: firstly, I designed and realized the ex-

perimental protocol and setup for the recording of EEG data during lower

limb exoskeleton usage. Secondly, I focused on the analysis of the EEG data

and the implementation of a data-driven classifier of pre-movement neural
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correlates to predict the walking intention.

The thesis is structured in six chapters: Chapter 1 ’Background’ and Chapter

2 ’Introduction’ aim to provide an overview of the issues addressed in this

work, to describe the landscape of the neurorehabilitation and neurorobotics

and how BMI can be useful in this application. Chapter 3 ’Materials and

Methods’ will list the tools used and describes the proposed approach. In

’Results’, Chapter 4, the efficacy and performance of the processing of the

EEG data collected to train a BMI will be evaluated. Finally, in Chapters 5

and 6, respectively ’Discussion’ and ’Conclusions’, the results obtained will

be discussed and the contribution that this work has made in relation to the

state-of-the-art will be highlighted.
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Overview

In this chapter I will describe all the flow of my work. I start with the

description of the experiment. It include the description of the subjects that

partecipated at the experiment, the way in which I collected the EEG signal

and the description of the instrumentation that I used, i.e. the EEG cap and

the exoskeleton. Then I will describe the experimental paradigm that is at

the base of my thesis. First I will focus on the different phases that compose

it and then I will introduce how communication takes place between the

three computer needed for the experiment. After that I will introduce how

I did the processing of the EEG signal collected and then how I extracted

the most discriminant features of the EEG signal. Then I will speak about

the three classifiers that I considered for my thesis and the different metrics

that I used to evaluate the best among them. Then will be presented the

method of the integration of probabilities, used to smooth the outcomes of

the classifier and the ROC curve that is computed starting from the true

positive rate and false positive rate computed considering different values of

the smoothing factor. Finally is done a study on different possible threshold’

values to discover that can give the best true-positive false-positive rate.
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3.1 Experiment

3.1.1 Partecipants

Seven subjects participated voluntarily in the experiments. They were four

males and three females with an average age of 24.57 ± 1.13. They did not

report any neurological disease and had no movement impairments. Three

of them had already experienced BMI usage. They signed an informed con-

sent that briefly reassumed the purposes and nature of the experiment, in

accordance with the principles of the declaration of Helsinki.

3.1.2 EEG acquisition

To collect the EEG signals, a gel-based EEG cap, the wavenguardTM original

(ANT Neuro, Netherlands) with 64 channels was employed. The cap has the

10 - 20 distribution of the international system. All the 64 electrodes record

the brain activity at 512 Hz, except one that is used for the electrooculo-

gram (EOG) recording, that measures the ocular bio-signal when the eyes

move. The CPz electrode is the reference electrode while the AFz channel

is the ground. The EEG cap was linked to eegoTMsports mobile amplifier

(ANT Neuro, Hengelo, Netherlands). This EEG technology was specifically

chosen because of the active shielding of both waveguard cap electrodes and

amplifier, which deliver data with good quality and protect the signal from

external disturbances (e.g., power line noise, electromagnetic noise from the

exoskeleton actuators). The frequency of signal acquisition is 512Hz and be-

fore the starting of the experiment a visual inspection of the EEG signal was

done to asses the good quality of the signal recorded.
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3.1.3 Exoskeleton

For the robotic part of the experiment the ALICE exoskeleton was used

(Figure 3.1a). ALICE is an open-source machine designed by INDI Engineer

and Design, a France-based interactive technology studio. ALICE robot was

designed to provide physiotherapists a new tool to help in rehabilitation pro-

cess, allowing them to reduce their workload. The exoskeleton is suitable to

be used by adults and is intended to research purposes. From the mechanical

point of view, ALICE is adjustable for adult patients with femur and tibia

lengths between 35 and 50 cm and a pelvic width from 29 to 40 cm. ALICE

has a support that can be adhered to the pelvis and two adjustable elements

that adapt to the leg and tibia. Moreover, ALICE includes 4 active degrees of

freedom (DoF), 2 for each leg, that correspond to the hip flexion-extension

and the knee flexion-extension. Each joint is equipped with 2 motors and

2 linear encoders controlling the gait generation [62, 63]. The software to

control ALICE exoskeleton is a closed-loop system that can reproduce the

kinematic of the human walking. To make the ALICE exoskeleton works it

must be powered by a battery and connected with the low-level control system

that is an ArduinoMega board. It is worth noticing that the exoskeleton has

no self-balancing capabilities, thus and external support system –a walker–

needs to be used for stabilization (Figure 3.1b).

3.2 Experimental paradigm

All the experiments took place at Intelligence Autonomous Systems LAB of

Padova University. As in [14], this session was composed by an initial period

of ’Familiarization’, in which the partecipant familiarizes with the exoskeleton

and the walker. Then, the experiment consisted of 5 runs in which the subject
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(a) (b)

Figure 3.1: Alice exoskeleton (a), Walker (b)

made 8 step trials for each leg (16 steps in total per run). At the end of each

run there was a variable period of break to avoid fatigue and/or abituation.

The first thing to do is the preparation of the strumentation and of the

subject. I measured subject’s thigh and shank, because I need to adjust the

exoskeleton’s dimension to that of the subject. After that the subject was

seated and wore the EEG cap with due precautions. All the electrodes were

filled with the conductive gel. The quality of the EEG signal acquisition

was visually verified. After that the subject wore the exoskeleton and the

experimental protocol started. In the ’Familiarization’ session, an operator

controlled the exoskeleton and the subject had to follow the robot movement

(in this phase no EEG signal was collected). Then, start the second part,

i.e the ’Acquisition’. For each of the 5 runs, the paradigm was the following

(Figure 3.2):

• Fixation: the subject fixes a white cross on the screen for 4s;

• Cue right leg: a violet circle appears on the screen. The subject was

instructed to start the movement of the leg after approximatly 2 s fol-
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(a)

(b)

Figure 3.2: Experimental paradigm from PC GUI point of view (a), and
subject point of view (b)

lowing the cue appearance, so to ensure that the movement generation

was self-paced. As explained in 3.1.4, if the movement overcomes the

baseline computed during fixation period then the exoskeleton receives

the command to help the subject in taking the step, otherwise after 10
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s from the appearance of the cue circle the exoskeleton starts moving

by itself;

• Delay: after the movement of the leg there are a 3 s of black screen in

which the subject can stabilize himself and retrieve the balance;

• Fixation: other 4 s of fixation;

• Cue left leg: this time the color of the cirle is green except for the eighth

step of the left leg in which the color of the circle is red, to indicate

that it is the last step and to allow the subject to arrive in the stand

position;

• Delay: as previous.

3.2.1 Setup

The experimental setup consists of three modules: robotic exoskeleton, EEG

system and graphical interface. For the proper conduct of the experiment I

need to create a Robot Operating System (ROS) architecture that connects

the three modules that where implemented in three laptops and connected

using the ROS communication infrastructure (Figure 3.3): (i) a PC MAS-

TER, connected to the ArduinoMega board and that sends the commands

to control the exoskeleton movements; (ii) a laptop connected to the EEG

acquisition system (PC EEG) placed on a backpack worn by the user; (iii) a

laptop placed on the walker to provide a visual feedback of the protocol to

the user through a graphical user interface (PC GUI).
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(a)

(b)

Figure 3.3: Experimental setup

PC MASTER

The PC MASTER is the one that control the exoskeleton movement but also

manage the communication with the other two laptops. This PC MASTER

is also the ROS Master of the ROS architecture. The ROS Master provides

naming and registration services to the rest of the nodes in the ROS sys-
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tem. It tracks publishers and subscribers to topics as well as services. The

role of the Master is to enable individual ROS nodes to locate one another.

Once these nodes have located each other, they communicate with each other

peer-to-peer. The Master also provides the parameters to the server. The

communication between the three PC used in the experiment is done thanks

to the ROS-Neuro architecture [64]. Robot Operating System (ROS)-Neuro

is an open-source framework for neurorobotic applications based on ROS.

ROS-Neuro has been designed to represent the first open-source neurorobotic

middleware that places human neural interfaces and robotic systems at the

same conceptual and implementation level. ROS-Neuro provides several stan-

dard interfaces to acquire neurophysiological signals from different commer-

cial devices to process EEG and EMG signals with traditional methods and

to classify data with common machine learning algorithms. As in the case of

ROS, the aim of ROS-Neuro is to allow the development of neurorobotic ap-

plications among different research groups as well as the possibility to easily

compare heterogeneous methodological approaches and to rely and evalu-

ate solutions proposed by others. This is guaranteed by its multi-process

architecture where several stand-alone executables can coexist and can com-

municate through the provided network infrastructure.

About the control of the exoskeleton the first thing I had done was find a

possible interaction between the ROS-Neuro architecture and the Arduino

board (Figure 3.3b). This because I need to know the joint’s position of

exoskeleton and based on these measures I will understand if the subject

is starting the gait. This idea is implemented thanks to a ROS publisher

that continuosly publishes the value of the four joints’ angle. During the

’Fixation’ period of the paradigm is computed a baseline value based on the

angles’ values pubblished. During the ’Cue’ period the subject will try to
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move and when the hip joint angle or the knee joint angle of the leg that the

subject is trying to move overcome the baseline, the exoskeleton receives a

command that permits its to guide the subject to the complete of the gait

movement (Figure 3.2b). This command wasn’t initially implemented in the

ALICE exoskeleton software. To make this possibile I created a ROS server

on Arduino. The server communicates with the client placed on the ROS

MASTER’s node, that basing on the angles’ joints value and on the leg that

will be moved, will send a command to the server. This information will be

taken by the server and passed to the callback function. This function will

control the motors of the exoskeleton’s joints and will make the gait move-

ment possible. After the creation of all of these links, that due to the fact

that there are very few works on ROS with Arduino and their connections,

it took me a lot of time, I need to create the ROS network that will permit

at the MASTER PC to launch ROS nodes on the two SLAVE PCs. To make

the network works the three laptops must be connected to the same wifi and

with the use of the SSH protocol the MASTER will know the private and the

public key of the two SLAVE laptops (Figure 3.3b). Finally I need to modify

the launcher file, that will be launch by the MASTER, where is indicated

for each SLAVE laptop the node needed. When all the setup of the ROS

MASTER laptop is finished, with the only execution of the launcher file all

the ROS network will work and the protocol can start.

PC EEG

As shown in Figure 3.3 the PC EEG during the experiment is placed on

the subject’s backpack. Besides this pc in the backpack there is also the

ANTNEURO eegoTMsports mobile amplifier. The wavenguardTMoriginal

cap with 64 electrodes is connected at the amplifier which in turn is connected
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to the laptop. When the experimental protocol start, the ROS MASTER will

launch the ’ROS-NEURO ACQUISITION’ and ’ROS-NEURO RECORDER’

[64] nodes on the PC EEG which makes the ANTNEURO acquisition system

work. The EEG signal acquired will be saved on the laptop and subsequently

will be processed for creating the movement intention classifier.

PC GUI

Finally I need to create a Graphical User Interface (GUI) to give at the

subject the information needed for the experiment. I created a Phython

script that allow to appear a white cross for the ’Fixation’ part, a violet

circle for the ’CUE’ of the right leg, a green circle for the ’CUE’ of the left

leg, and for the last step with the left leg a red circle. As it is possible to

see in Figure 3.3 the PC GUI during the experiment is placed on the walker,

this to allow the user to see easily the graphical interface.

3.3 Data acquisition

Even if the Antneuro cap is provided with 64 electrodes [65], I decided to focus

principally on the central 27 electrodes (the CPz electrode isn’t considered

because is used as reference) (Figure 3.4). So the considered channels are:

FC5, FC1, FC2, FC6, C3, CZ, C4, CP5, CP1, CP2, CP6, P3, PZ, P4, FC3,

FCZ, FC4, C5, C1, C2, C6, CP3, CP4, P5, P1, P2, P6. The data was

acquired with a frequency of 512 Hz.
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Figure 3.4: 27 selectioned electrodes

3.4 Data analysis

The data collected for each run was saved in the PC EEG in a .gdf extension.

This type of data are composed by the signal acquired and some information

about that signal, as the sample rate and the ’event’ of the signal acquired

that is important to extract relevant information from the EEG data. For

example is possible to extract the type, the duration and the position of the

data. The type indicates at which phase of the paradigm that part of the

signal belong, the duration indicates how long it lasts and finally the position

indicates when it happens. This extraction of the ’event’ is possible thanks

to the interaction with ROS.

3.4.1 Processing

The first thing I did to the data acquired is the application of an independent

spatial filters, the small laplacian. The Laplacian method calculates for each

electrode location the second derivative of the instantaneous spatial voltage
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distribution, and thereby emphasizes activity originating in radial sources

immediately below the electrode. Thus, it is a high-pass spatial filter that

accentuates localized activity and reduces more diffuse activity [66]. The

laplacian mask is obtained by subtracting the mean activity of the neighbours

of each electrode:

ei
LAP = ei −

∑
j∈Si

hij × ej (3.1)

where

hij =

1
dij∑

j∈Si

1
dij

where ei is the raw signal of electrode i, Si are the neighbours of electrode i

and finally dij is the distance between the pair of electrodes (i,j). This filter is

data independent but also time independent. It just do linear transform of the

signal and so it could be represented in matrix vector form. It can be directly

applied in online BMI processing thanks to the independence with time. I

manually created and applied the laplacian mask, in fact filtered signal =

signal × lap where lap is the laplacian mask created. This filter allow us to

augment the spatial distribution and a consequence is also the removal of a

little part of muscular artifact [67].

3.4.2 Power Spectral Density and event-related desynchro-

nization

After this pre - processing of the signal I computed the power spectral density.

The power spectral density (PSD) refers to the spectral energy distribution

that would be found per unit time, since the total energy of such a signal

over all time would generally be infinite. I computed the PSD with the

Welch method [68]. The Welch method takes a window of the signal and
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(a)

(b)

Figure 3.5: FFT on Welch method (a), PSD computed with Welch method
(b)

then it splits the window into overlapping segments. Then, for each of these

segments it computes the Fast Fourier Transform (FFT) of the signal and

then it applies a windowing in order to remove the border effect (Figure

3.5a). Finally, it averages all the values computed for each sub -window to

obtain the whole spectrum associated to a specific instant of time. From

the practical point of view, at the end of computation I obtain a 3D matrix

organized as window × frequency × channel that is shifted over the whole



42 Materials and Methods

acquisition period (Figure 3.5b). I used as the size of the outer window

(wlength) 0.5 s, the shift applied to the outer window (wshift) is 0.0625 s

and I used 0.25 s as the shift of the inner segment (pshift).

To detect the ERD related to movement execution, I divided each trial

into an activity period and a reference period. The reference period, called

also baseline, was 1 s before the appearance of the circle that represents

the cue, while as activity period I considered a window of 1 s before the

onset of the movement, in order to predict the movement intention before its

execution. The computing of ERD is done in this way:

ERD% = 100× A−R

R
(3.2)

where the letter A is referred to the activity of the signal during the activity

period while R represent the reference period.

3.4.3 Features selection

After computing the PSD I needed to find a way to select the more discrim-

inant features, which allowed us to create a good classifier for the detection

of the pre-movement state.

In order to classify the EEG signal I need to extract the most informative

feature from the EEG signal that is discriminant for that specific task. In

motor imagery and motor execution the power of the signal is discriminant

for different task. This feature is made up of amplitude, phase, and other

information. More in general features can rely on different domains as in-

stance: temporal, spatial, frequency or combination of those. In my case

I considered the temporal-frequency domain, because my features were the

values of PSD. Initially I thought to use a manual method for the selection



3.4 Data analysis 43

of the features. This consisted in the computing of the Fisher Score and the

manual selection of the features thanks to the features map. The Fisher Score

computes the distance between the distributions of two classes, in my case

they were the fixation and the pre-movement class. With the Fisher Score

values I created the Fisher Score matrix, that is represented with the symbol

F and it is defined by observations × features. In fact the rows of this matrix

is the so-called observations which are usually windows or samples while the

columns are the different features that I take in consideration; in my case

I used the PSD so the observations were the windows while a feature was

a combination of channel × frequency. For each run, I had to compute the

Fisher Score for each feature k, so:

FS(k) =
|µC1(k) − µC2(k) |√
σ2
C1
(k) + σ2

C2
(k)

(3.3)

Finally I computed a features map with the mean value of the Fisher Score

matrix of each run. From this last map I could identify the most discriminant

features and then I selected them, considering also if the features was stable

over the runs. I also tried to select the features automatically thanks to the

Common Spatial Pattern (CSP) [69]. The CSP is a mathematical procedure

that finds a spatial filter to project EEG segments onto a space so that

its variance from one class is maximized while that from another class is

minimized. For the analysis, the raw EEG data of a single trial is represented

as an N × T matrix E , where N is the number of channels (i.e., recording

electrodes) and T is the number of samples per channel. With the CSP is

found a projection matrix W that give the decomposition of a trial matrix

E in such a way : Z = WE, where the columns of W−1 are the common

spatial patterns and can be seen as time-invariant EEG source distribution
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vectors. In my procedure I decided to apply the CSP to all the PSD data of

fixation and pre-movement concatenated for each trial and I didn’t divide it

basing on the run. This because the CSP works better with a bigger sample

size. After the application of CSP, I selected the best pattern-frequency pairs

applying again the Fisher Score on the CSP-projected EEG data.

3.4.4 Classifiers

To identify the best classification pipeline, I tested three machine learning

models that are commonly employed in BMI. All the classifiers have been

trained and evaluated with a 5-fold cross-validation procedure with the pre-

viously extracted features from each subject. Their performance have been

compared considering the average sample-by-sample accuracy and loss on the

validation folds.

Linear Discriminant Analysis (LDA)

Linear discriminant analysis (LDA) or discriminant function analysis is a

generalization of Fisher’s linear discriminant, a method used in statistics

and other fields, to find a linear combination of features that characterizes or

separates two or more classes of objects or events. The resulting combination

may be used as a linear classifier, or, more commonly, for dimensionality

reduction before later classification [70]. LDA focuses primarily on projecting

the features in higher dimension space to lower dimensions. It can achieve

this in three steps:

• Firstly, it needs to calculate the separability between classes which is

the distance between the mean of different classes. This is called the

between-class variance (Sb).
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• Secondly, it calculates the distance between the mean and sample of

each class. It is also called the within-class variance (Sw).

• Finally, it constructs the lower-dimensional space which maximizes

the between-class variance and minimizes the within-class variance.

P is considered as the lower-dimensional space projection, also called

Fisher’s criterion.

PLDA = argmax
P

|P T Sb P |
|P T Sw P |

(3.4)

The representation of LDA is pretty straight-forward. The model consists of

the statistical properties of its data that has been calculated for each class.

Predictions are made by providing the statistical properties into the LDA

equation. The properties are estimated from the data. Finally, the model

values are saved to file to create the LDA model. The assumptions made by

an LDA model about the data are that each variable in the data is shaped in

the form of a bell curve when plotted, i.e. Gaussian, and that the values of

each variable vary around the mean by the same amount on the average, i.e.

each attribute has the same variance. The LDA model is able to estimate

the mean and variance from the data for each class with the help of these

assumptions. LDA models uses Bayes’ Theorem [71] to estimate probabil-

ities. They make predictions based upon the probability that a new input

dataset belongs to each class. The class which has the highest probability is

considered the output class and then the LDA makes a prediction.
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Figure 3.6: Logistic Regression function

Logistic Regression (LR)

Logistic Regression is a powerful supervised machine learning algorithm used

for binary classification problems. The best way to think about LR is that

it is a linear regression but for classification problems. Logistic Regression

essentially uses a logistic function defined below to model a binary output

variable [72]. The Logistic Regression’s range is bounded between 0 and 1,

in addition does not require a linear relationship between inputs and output

variables. This is due to applying a nonlinear log transformation to the odds

ratio:

Logistic function =
1

1 + e−x
(3.5)

where x is the input variable. LR uses a loss function referred to as “max-

imum likelihood estimation (MLE)” which is a conditional probability. If

the probability is greater than 0.5, the predictions will be classified as class

0. Otherwise, class 1 will be assigned. In Figure 3.6 is possible to see the

functioning of logistic regression function.



3.4 Data analysis 47

Figure 3.7: Gaussian distribution

Supervised Gaussian Mixture Model (SGMM)

A Gaussian Mixture is a function that is comprised of several Gaussians,

each identified by k ∈ 1, . . . , K, where K is the number of clusters in which

the dataset is divided. Each Gaussian k in the mixture is comprised of the

following parameters:

• A mean µ that defines its centre;

• A covariance Σ that defines its width. This would be equivalent to the

dimensions of an ellipsoid in a multivariate scenario;

• A mixing probability π that defines how big or small the Gaussian

function will be.

In Figure 3.7 there are three Gaussian functions, hence K = 3. Each

Gaussian explains the data contained in each of the three clusters available.

The mixing coefficients are themselves probabilities and must meet this con-

dition:
K∑
k=1

πk = 1 (3.6)

To determine the optimal values for these parameters it must ensure that

each Gaussian fits the data points belonging to each cluster. This is exactly
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what maximum likelihood does. In general, the Gaussian density function is

given by:

N(x|µ,Σ) = 1

(2π)D/2|Σ|1/2
exp(−1

2
(x − µ)T Σ−1 (x − µ)) (3.7)

Where x represents its data points, D is the number of dimensions of each

data point, µ and Σ are the mean and covariance. Could also be useful to

take the log of this equation, which is given by:

lnN(x|µ,Σ) = −D

2
ln(2π) − 1

2
ln(Σ) − 1

2
(x − µ)T Σ−1 (x − µ) (3.8)

If this equation is differentiated with respect to the mean and covariance and

then equate it to zero, then it will be able to find the optimal values for these

parameters, and the solutions will correspond to the Maximum Likelihood

Estimates (MLE) for this setting. But the traditional Gaussian Mixture

Model (GMM) is an unsupervised learning method. The parameters in the

model are derived only by the training samples in one class without taking

into account the effect of sample distributions of other classes, hence, its

recognition accuracy is not ideal sometimes. In [73] is presented an approach

for estimating the parameters in GMM in a supervising way. The supervised

Gaussian Mixture Model (sGMM) improves the recognition accuracy of the

GMM.

3.4.5 Performance metrics

To understand the performance of the classifiers I need to estimate the ac-

curacy, the total error rate (the misclassified also known as the one classified

wrongly) and the test on new data not used for the training. The problem

that a classifier solves is to assign to a specific belonging class one specific
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Figure 3.8: Confusion matrix

vector of features, representative of the phenomenon analysed. So, one obser-

vation x could be assign to a specific true class represent in our mathematical

analysis as y. In my case I used a binary classification, so the class consid-

ered are 2, the fixation, which label was 0, and the pre-movement, which

label was 1. To evaluate the goodness of the results obtained with the clas-

sifier chosen I computed the confusion matrix, which holds different types

of information. In Figure 3.8 is reported a confusion matrix computed for a

two class generic classifier. The components of this matrix are very impor-

tant. In the main diagonal there is the presence of the fraction or percentage

of correct classification of my classifier, while in the secondary diagonal is

reported the fraction or percentage of incorrect classification output of our

classifier. The elements in the main diagonal represent: in the upper left

corner the probability to classify an event as positive while this one is pos-

itive, so the True Positive (TP), in the lower right corner there is the True

Negative (TN), so the probability to classify an event as negative while this

one is negative. The two elements in the secondary diagonal have a different

meaning. The one reported in the lower left corner defines the probability

to classify an event as negative while this one is positive, so this is the False
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Negative (FN), while the element reported in the upper right corner could

be interpreted vice versa, so the probability to classify an event as positive

while this one is negative, so this is the False Positive (FP). In general, in

a classification problem the main problem is to maximize the content of the

main diagonal and minimize the content in the secondary diagonal. Usually,

prefer to have more false positive of more false negative or vice versa is ap-

plication dependent. To quantify the goodness of the classifier or the model

it has been introduced other two important indexes, the sensitivity, and the

specificity.

Sensitivity =
True Positive

All Positive
=

TP

TP + FN
(3.9)

Specificity =
True Negative

All Negative
=

TN

TN + FP
(3.10)

These are two important metrics. Generally, the sensitivity and the speci-

ficity are inverse related one from each other. In fact, as specificity increases

the sensitivity decreases and so I need to find a right balance between these

two terms. Another important effect of increase the specificity and sensitiv-

ity are that if I increase the specificity, and so the ability to classify negative

an event I would also increase indirectly the false negative rate, and this will

decrease the sensitivity. Vice versa, if I increase too much the sensitivity, I

will increase the possibility to classify correct a result, but this will lead to

an increase of the false positive fraction. Another important metric to quan-

tify the goodness of the classifier is the accuracy. Classification accuracy is

a metric that summarizes the performance of a classification model as the

number of correct predictions divided by the total number of predictions. It

is easy to calculate and intuitive to understand, making it the most common
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metric used for evaluating classifier models.

Accuracy =
Number of correct predictions

Total number of predictions

and in the case of a binary classifier is possible to compute the accuracy with

the terms used in the confusion matrix:

Accuracy =
TP + TN

TP + TN + FP + FN
(3.11)

One problem of the accuracy is that isn’t considered how much strong is the

choice done, so a sample that is near the threshold is considered as the same

as a sample that strongly belong to a class, i.e a sample with a probability of

0.45 weighs the same as a sample that belong to the class 0 with a probability

of 0.2. To consider also this fact I also introduce the cross-entropy loss. Cross-

entropy loss, or log loss, measures the performance of a classification model

whose output is a probability value between 0 and 1. Cross-entropy loss

increases as the predicted probability diverges from the actual label. In a

binary classification the cross-entropy can be calculated as:

c.e. loss =
1

N
×

N∑
i=1

− [yi log(pi) + (1− yi) log(1− pi)] (3.12)

where N is the number of observations, y is the binary indicator of the consid-

ered observation i and p is the associated probability. A smaller cross-entropy

loss value indicate a better classification. Basing on this, I considered as in-

dicator for the best classifier the cross-entropy loss. I decided to test three

classifiers: Linear Discriminant Analysis (LDA), Logistic Regression (LR)

and a Supervised Gaussian Mixture Model (SGMM). The different classifiers

were tested on the training dataset and the prediction was done on the vali-
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dation dataset. The division in training ad validation was performed starting

from the PSD fixation and pre-movement data and applying a k-fold cross

validation, with k=5. This allowed to test each classifier k-times and I took

the predicted probabilities that gave the smallest cross-entropy loss value. It

is important to notice that I considered a trial based approach, so the sam-

ple of the same trial can’t be divided in training and validation, but all the

sample of the same trial or belong to the training set or to the validation set.

Each classifier gives me two different type of data that are linked one to each

other:

• Predicted probabilities: indicates the probabilities that a sample have

to belong to one class or the other;

• Predicted label: indicates the class at which the classifier assigned the

sample.

The predicted label given by the selectioned classifier was compared to the

real class label, that thanks to a priori knowledge contains the real belonging

class of each sample. This comparison allowed me to compute the accuracy

and the cross-entropy loss for each of the 5 folds. At the end I decided to

take the classifier that in mean gave the lesser cross-entropy loss.

3.4.6 Integration of probabilities and ROC curve

As presented in [74], in order to smooth the outcomes of the classifier an

exponential integrator has been used to accumulate the evidence over time

with the following decision making formula:

D(yt) = α×D( yt − 1) + (1 − α)× p( yt |xt) (3.13)
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where D(yt) is the current level of decision making and α (0 < α < 1) is

the integration parameter, called also smoothing factor. Smaller values of α

actually reduce the level of smoothing, and in the limiting case with α = 0

the output series is just the current observation. Values of α close to zero

have less of a smoothing effect and give greater weight to recent changes

in the data, while values of α closer to one have a greater smoothing effect

and are less responsive to recent change. This exponential smoothing for the

accumulation of the probabilities was applied at each trial of the validation

set. The idea of this approach was to find a good threshold that allowed

me to better classify a trial as true positive, i.e trial that I know is a pre-

movement trial and is classified as pre-movement trial, or as false negative,

i.e trial that I know is a fixation trial and is classified as fixation trial. In

fact if the actual decision probability D(yt) overcomes the threshold the trial

is classified as pre-movement, otherwise is considered a fixation trial.

The problem of this approach is that I have two degree of freedom, one is

Figure 3.9: ROC curve and AUC
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the smoothing factor α, the other is the threshold. To solve this, I used the

following method:

1. Creation of a vector with different values of smoothing factor α. In my

case I test the following values: [0.98, 0.96, 0.94, 0.92, 0.90, 0.88, 0.86,

0.84, 0.82, 0.80, 0.75, 0.7, 0.65, 0.6, 0.55, 0.5, 0.4];

2. Creation of a vector with different values of the threshold. In my case I

test the following values: [0.75, 0.7, 0.65, 0.6, 0.55, 0.5, 0.45, 0.4, 0.35,

0.3, 0.25, 0.2];

3. Creation of a table with the values of TP rate and FP rate for each

combination between α and threshold;

4. For each value of α, create a ROC curve and compute the area under

the curve (AUC);

5. Choose the best smoothing factor α, i.e the one that gives the bigger

AUC. In the case of more α take the bigger one.

A receiver operating characteristic curve, or ROC curve , is a graphical plot

that illustrates the diagnostic ability of a binary classifier system as its dis-

crimination threshold is varied [75]. The ROC curve is created by plotting

the true positive rate (TPR) against the false positive rate (FPR) computed

with different values of the threshold (Figure 3.9). It is usually used in BMI

protocol to compare the results of different classification sessions [54]. Con-

sidering the best α for each subject, I considered for each of them the mean

accumulation of probabilities, both for fixation and pre-movement, computed

by averaging the different trials. Starting from this I considered a ’mean sub-

ject’. This ideal subject had the accumulated probabilities of fixation and

pre-movement that correspond to the the mean values of that of the others
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subject. After the choice of the best smoothing factor, so the reduction of the

degrees of freedom from two to one, I analyzed the threshold. The idea was

to find the best threshold for each subject, so the threshold that can maxi-

mize the rate between the true positive and the false positive. This because

higher is the rate and higher is the probability to define a pre-movement trial

as such, and so at the same time the probability to take a fixation trial as

pre-movement trial will be very small. Notice that I considered only the case

where the TP rate where bigger than the 65% of the case.
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4 | Results

4.1 Acquisition

Due to the high temperature in the lab, the subject S.04 and S.05, didn’t

complete all the run provided by the experimental protocol, but I had only

3 runs for the subject S.04 and 2 runs for the subject S.05

4.2 Event-related desynchronisation

In Figure 4.1 there is the PSD ERD average map for the subject 01, focusing

on Cz and FCz channels since the lower limb are mostly represented in the

central area of the motor cortex. In the Figure 4.1 is seen a good desynchro-

nization, marked by deep blue zone, approximately 1 s before the movement

onset (occuring at 0 s).

4.3 Fisher Score map

For each subject I computed two Fisher Score matrices, one with the use of

the CSP decomposition and one with the data in the channel domain. For

both cases, I principally focused on the α (8Hz - 12Hz) and β (13 Hz - 30Hz)

band, but sometimes I considered also the frequencies between the 4Hz and
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Figure 4.1: ERD map of subject 01. For the computing was considered all
the data of all the S.01 files.

8Hz if a feature in that range shows a discriminancy.

In Figure 4.2 are shown the features maps for the subject 01. The top map

has the frequency on the x-axis and the channels on the y-axis, while bottom

one has the frequency on the x-axis and the common patterns on the y-axis.

Is shown how the CSP works in a good case: the decomposition allow to

better divide the classes, bringing to a graph in which the more discriminant

patterns are the first or the last, while in the middle there are principally non

discriminant features. In Additional files the features map of all the subjects

are provided.

For both the cases, I decided to take the 6 most discriminant features, and if

there were more than 6, I took the ones that show more consistency over the

runs. Table 4.1 shows the features selectioned for each subject in the case

without CSP, while in Table 4.2 there are the features selectioned in the case

with CSP. Finally, in Figure 4.3 are shown the more present frequencies that
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characterize the selected features in the case without CSP, while in Figure

4.4 that with CSP.

(a)

(b)

Figure 4.2: Features map S.01 (a), Features map CSP S.01 (b)
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Subject Features normal case

S.01 8Hz - P6 10Hz - P5 16Hz - P3 20Hz - C6 24Hz - FC6 28Hz - FCz

S.02 10Hz - P4 10Hz - P2 16Hz - P5 16Hz - C3 18Hz - FC1 18Hz - CP3

S.03 4Hz - FCz 6Hz - FCz 14Hz - P5 16Hz - C1 18Hz - FC6 26Hz - P4

S.04 8Hz - C3 8Hz - P3 12Hz - FC5 16Hz - C3 20Hz - FC6z 24Hz - CP5

S.05 8Hz - P3 12Hz - P5 14Hz - FC3 18Hz - CP6 20Hz - CP5 28Hz - C6

S.06 6Hz - C1 14Hz - FC1 16Hz - FC3 22Hz - C5 24Hz - Pz 30Hz - P6

S.07 6Hz - FCz 14Hz - C2 16Hz - FC6 22Hz - Cz 26Hz - FC6 28Hz - FC2

Table 4.1: Table containing the selectioned feauteres for each subject in the
case without CSP.

Figure 4.3: Histogram of features’ frequencies in normal case

Subject Features CSP case

S.01 8Hz - p.27 10Hz - p.1 16Hz - p.26 26Hz - p.4 28Hz - p.2 28Hz - p.25

S.02 14Hz - p.4 18Hz - p.2 20Hz - p.1 22Hz - p.3 24Hz - p.1 24Hz - p.25

S.03 4Hz - p.27 14Hz - p.27 16Hz - p.2 28Hz - p.2 28Hz - p.22 30Hz - p.1

S.04 8Hz - p.2 10Hz - p.2 16Hz - p.5 20Hz - p.1 24Hz - p.26 28Hz - p.25

S.05 16Hz - p.27 20Hz - p.24 24Hz - p.27 26Hz - p.27 28Hz - p.27 30Hz - p.26

S.06 10Hz - p.2 14Hz - p.27 18Hz - p.1 26Hz - p.1 28Hz - p.1 30Hz - p.1

S.07 14Hz - p.2 20Hz - p.2 22Hz - p.3 24Hz - p.3 26Hz - p.26 28Hz - p.2

Table 4.2: Table containing the selectioned features for each subject in the
case with CSP.

4.4 Classification

Once the best features were selected I needed to select the classifier that give

the best performance.
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WITHOUT CSP WITH CSP

S.01 max accuracy mean accuracy min c.e.loss mean c.e.loss max accuracy mean accuracy min c.e.loss mean c.e.loss

LDA 70.1172% 65.4297% 0.5405 0.6035 62.8906% 59.6875% 0.6265 0.6745

LR 71.0938% 65.3906% 0.5670 0.6264 64.0625% 61.2500% 0.6229 0.6552

sGMM 65.2344% 61.0938% 0.7178 0.9232 61.9141% 54.1016% 0.7143 1.2376

(a) Table with classifiers’ values for the S.01

WITHOUT CSP WITH CSP

S.02 max accuracy mean accuracy min c.e.loss mean c.e.loss max accuracy mean accuracy min c.e.loss mean c.e.loss

LDA 59.3750% 53.5939% 0.6754 0.7008 58.0729% 46.8269% 0.6874 0.7188

LR 58.0729% 52.8646% 0.6795 0.6919 61.1979% 47.3838% 0.6872 0.7056

sGMM 65.3646% 55.7572% 0.6810 0.8829 50.2604% 47.2997% 0.9084 1.1700

(b) Table with classifiers’ values for the S.02

WITHOUT CSP WITH CSP

S.03 max accuracy mean accuracy min c.e.loss mean c.e.loss max accuracy mean accuracy min c.e.loss mean c.e.loss

LDA 62.5% 59.1964% 0.637 0.6647 57.1429% 47.6339% 0.6835 0.7146

LR 63.3929% 61.3393% 0.6344 0.6520 62.5000% 48.2143% 0.6906 0.7061

sGMM 56.0268% 51.6518% 0.7007 0.8367 56.6964% 50.1339% 0.9577 1.1815

(c) Table with classifiers’ values for the S.03

WITHOUT CSP WITH CSP

S.04 max accuracy mean accuracy min c.e.loss mean c.e.loss max accuracy mean accuracy min c.e.loss mean c.e.loss

LDA 69.6429% 60.5580% 0.5774 0.6826 51.3393% 40.5580% 0.6975 0.7653

LR 67.1875% 58.7054% 0.6124 0.6882 51.3393% 40.1228% 0.6980 0.7811

sGMM 70.0893% 58.6830% 0.5383 1.0420 61.1607% 46.4509% 0.6647 1.0997

(d) Table with classifiers’ values for the S.04

WITHOUT CSP WITH CSP

S.05 max accuracy mean accuracy min c.e.loss mean c.e.loss max accuracy mean accuracy min c.e.loss mean c.e.loss

LDA 69.5313% 61.0938% 0.5657 0.6647 71.8750% 67.9688% 0.6569 0.6685

LR 66.4063% 60.6250% 0.5792 0.6523 73.4375% 66.7188% 0.6123 0.6590

sGMM 70.0893% 61.5625% 0.5742 0.9980 72.6563% 63.9063% 0.5673 0.9316

(e) Table with classifiers’ values for the S.05

WITHOUT CSP WITH CSP

S.06 max accuracy mean accuracy min c.e.loss mean c.e.loss max accuracy mean accuracy min c.e.loss mean c.e.loss

LDA 67.7083% 58.1250% 0.6325 0.6693 58.3333% 51.5104% 0.6879 0.7111

LR 71.0938% 58.8021% 0.6478 0.6748 61.7188% 52.6042% 0.6848 0.7151

sGMM 62.2396% 57.3958% 0.7795 0.8080 60.9375% 52.9167% 0.8332 1.0513

(f) Table with classifiers’ values for the S.06

WITHOUT CSP WITH CSP

S.07 max accuracy mean accuracy min c.e.loss mean c.e.loss max accuracy mean accuracy min c.e.loss mean c.e.loss

LDA 64.8438% 56.7578% 0.6475 0.6825 54.6875% 49.9219% 0.6862 0.6963

LR 62.5% 55.4227% 0.6755 0.6860 55.0781% 50.8594% 0.6920 0.6930

sGMM 56.6406% 53.9453% 1.0042 1.1396 51.7578% 50.7031% 0.8783 1.0774

(g) Table with classifiers’ values for the S.07

Table 4.3: Table that summarizes the accuracy and c.e.loss values for all the
subjects
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Figure 4.4: Histogram of features’ frequencies in CSP case

Table 4.3 shows for each subject the performance achieved by the three

tested classifiers trained with channels’ domain data or CSP components.

The ’max accuracy’ indicates the maximum accuracy of the 5 folds, the

’mean accuracy’ indicates the mean accuracy value across the folds, the ’min

c.e.loss’ indicates the minimum value of cross entropy loss between the 5

folds and finally the ’mean c.e.loss’ indicates the mean cross entropy loss

value across the folds. From these results, it can be said that on average the

CSP-based classifiers achieved lower performances that the classifiers trained

with data from the channels’ domain. In fact, the values of the maximum

accuracy and the mean accuracy for the case without CSP are larger than

the case with CSP and the values of the minimum cross entropy loss and the

mean cross entropy loss are smaller in the case without CSP respect the case

with CSP. This can also be seen in Table 4.4, where are reported the average

results across subjects of each classifier. Considering both the accuracy and

the cross entropy loss, the best performance is achieved by the LDA classifier

and thus it was used for the following analysis. Once the classifier was chosen,
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I took the predicted probabilities and the predicted label of the fold that gave

the smaller cross-entropy loss value.

WITHOUT CSP

Classificator mean accuracy mean c.e. loss

LDA 59.2506% ± 3.7142 0.6669 ± 0.031

LR 59.0214% ± 4.0726 0.6674 ± 0.024

sGMM 57.1556% ± 3.6486 0.9472 ± 0.119

WITH CSP

Classificator mean accuracy mean c.e. loss

LDA 52.0153% ± 9.0866 0.7070 ± 0.032

LR 52.4505% ± 8.9364 0.7022 ± 0.042

sGMM 52.2160% ± 5.8415 1.1070 ± 0.101

Table 4.4: Values of the mean subject

4.5 ROC curve

For each trial in the validation set, the outcome of the LDA classifier was

accumulated using the exponential integrator of section 3.4.3. In the trials

belonging to the pre-movement state, if the integrated probability overcomes

the threshold, the trial is considered a TP, as the movement was correctly

predicted from the EEG data, and as a FN otherwise. For the fixation trials,

if the integrated probability overcomes the threshold, the trial is considered

a FP, and as TN otherwise.

Table 4.5 shows the smoothing factor α selected for each subject. The selec-

tion was performed by looking to the variation of the ROC for the different

values of α, as shown in Figure 4.5 for S.01.
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(a)

(b)

Figure 4.5: ROC curves for S.01 (a), ROC curve with the best AUC for
S.01 (b)

4.5.1 Smoothing factor α

The best smoothing factor is the one that gave the bigger AUC for each

subject. In Figure 4.5 and in Figures from 7.7 to 7.12 there are the different
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Subject α AUC

S.01 0.7 0.9023

S.02 0.96 0.6746

S.03 0.82 0.6939

S.04 0.6 0.7857

S.05 0.9 0.9688

S.06 0.4 0.8229

S.07 0.94 0.7461

Table 4.5: Smoothing factor chosen for each subject and bigger AUC

ROC curves for each subject and the ROC curve with the biggest AUC, while

Table 4.5 reassumes the smoothing factor that gives the biggest AUC for each

subject.

4.5.2 Integration of probabilities and threshold

Subject Threshold TPR FPR

S.01 0.65 75% 6.25%

S.02 0.5 66.67% 41.67%

S.03 0.55 85.71% 50%

S.04 0.55 71.43% 28.57%

S.05 0.6 75% 0%

S.06 0.6 66.67% 25%

S.07 0.5 93.75% 68.75%

Table 4.6: Threshold’s best values

In Figure 4.6 is shown the grand-average of the integrated probabilities

across subjects for fixation (a) and pre-movement (b) trials. To find the

best threshold for each subject, I analysed and considered the threshold that

maximize the ratio between the TPR and the FPR. I used a small number

of possible thresholds because I wanted a linear shape of the ROC curve. If

I considered more possible values of the threshold, due to the fact that there
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Figure 4.7: Trend of TPR and FPR of S.01

Addional Materials. In Table 4.6 is shown the best threshold selected for

each subject and the corresponding TPR and FPR.
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5 | Discussion

Recalling section 2.2, for the experimental protocol I took the idea of using

some visual stimuli for the paradigm from [54, 60, 59] while in the other

papers they used some auditory cue. About how the paradigm is structered

I’m based on [14, 59] that divide a first part of relaxation/fixation and a

second part of movement attempt and movement. About the timing, the

number of trials and the number of runs I took some information from ev-

eryone. In Figure 4.1 is possible to see a good desynchronization, marked by

deep blue zone, approximately 1 s before the movement onset. This result

is expected and in line with neuroscientific literature [76], as an ERD should

appear approximately from 0.3 s to 0.5 s before the starting of the movement

in the brain area related to the body part interested by the movement. This

feature indicates the subject’s preparation to the movement. The choice of

1 s before the self-paced movement onset is also confirmed by [76], where

they even consider 2 s before the movement onset. I took the same number

of samples for fixation and pre-movement to have balanced classes to which

apply the classifier.

The Fisher Score is a good method for the selection of the most discriminant

features, and often is used in BMI based on self-paced movement or motor

imagery [77]. I expected that each subject had a small number of very dis-

criminant features and others some important features, but this happen only
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for the subject 01 and 07, while for the others there were a lot of number

of discriminant features, that made the selection very difficult. Instead, in

the case of CSP application I found a less number of discriminant features

(except for the subject 04 and 05, that are also the subjects with least num-

ber of runs), so the selection was easier. Interestingly, as shown in Figure 4.3

and Figure 4.4, the most discriminant features have been found on average in

the α and β bands, strengthening the fact the BMI is effectively identifying

task-related brain features and it is not significantly affected by movement-

related low-frequency artifacts (e.g., cable movements) and high-frequency

noise (e.g., EMG contamination).

About the classifiers I decided to use only that are supervised, because I

already knew the class at which each trial belong. I used the LDA because is

one of the most used in BMI to decode the user gait intention [78, 79]. The

Logistic Regression and the supervised Gaussian Mixture Model are also ap-

plied because they are simple to apply and fast. I had applied the cross

validation to the dataset, divided it into 5 folds, each composed by a training

set and a validation set, with the training set that contained approximately

the 80% of the trials. I applied each classifier at each fold and in Table 4.3

there are the best performances for each classifier. In general is possible to

see that the performances in the case without CSP are better for each clas-

sifier, both in accuracy and in cross-entropy loss. The CSP, in fact, works

well when there are a lot of data for each subject and this isn’t the case. The

small amount of data for the calibration of the BMI is a common problem

in BMI applications [80], especially for the BMI used is clinical environment.

This fact must be taken into account in the development of a BMI proto-

col. So considering the case without CSP, the LDA is the classifier that has

the best performance on average, both in accuracy and in cross-entropy loss
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(Table 4.4). This was also anticipated by Table 4.3 where is possible to see

that in the case without CSP the bigger values of mean accuracy (in bold)

are mixed between the three classifiers, while the smaller ’min c.e loss’ be-

long 5 times at the LDA classificator and the smaller values of ’mean c.e

loss’ belong 4 times to LDA case. This provides that the LDA will be the

classifier with the best performance. Starting from this, for the computing

of the smoothing factor I used the predicted probabilities computed on the

validation set with the small cross entropy loss. In Table 4.5 there is the

smoothing factor chosen for each subject, so that gave a bigger area under

the ROC curve. In Figure 4.6 I considered the case of a mean subject and

analyze the accumulation probabilities for the two classes. Is shown as the

mean value for pre-movement (Figure 4.6b) stays over the default probability

threshold of 0.5, this implies that our classifier on average classifies correctly

the pre-movement trial. But the probabilities still stand under 0.6, while I

hope probabilities that increase more. Furthermore at the start of the pre-

movement trial the standard deviation (SD) stays under the 0.5 value, this

implies that in some cases, the pre-movement trial is initialy confused with a

fixation trial. For the fixation case (Figure 4.6a) the average behavior stays

under the 0.5 value, so in general the fixation trial is correctly classified, in

fact in this case also the SD never overcome the 0.5 value. Notice that the

SD go under the 0.4 values, so it means that for some subject the fixation

trial is classified very well. Once the threshold was selectioned I was also

interested in the comparison between the number of true positive and that

of false positive (Table 4.6). In fact I ideally want that all the pre-movement

trials are correctly classified, so the number of TP correspond to that of the

pre-movement trials, and then all the fixation trials are correctly classified,

so the number of FP is zero. The best result is obtained by S.05 with a
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75% TPR of the pre-movement trials and a none of the fixation trials are

missclassified. Similarly, S.01 achieved a good movement prediction while

generating only a few false positive commands. The worst cases are the S.02

and the S.07. S.02 shows TPR and FPR performance close to the chance

level, while S.07 shows a bias towards the positive class as he presents both

a high TPR and FPR. Noticed that all the best thresholds are in the range

0.5-0.65. In fact in Figure 4.7 and from 7.13 to 7.18 is possibile to see how,

with the value of α that is fixed, the TPR and FPR trend change with the

change of the threshold value. The changing in the TP/FP rate is localized

in the 0.4-0.7 range, while before 0.4 there is the 100% of TPR and FPR and

after 0.7 there is small value of TPR and 0% of FPR.

5.1 Limitation

This work presents some limitations that should be accounted for in future

work. The first limition was the small dataset collected for each subject. As

shown by recent literature on BMI [81, 82, 83], to obtain stable features and

high classification performance it is important to create a mutual interaction

between the user and the BMI decoder. However, this can be achieved after

several sessions of BMI training, as shown in [84, 85]. On the other hand,

in this work I could analyse only the performances in a single session due to

time limitations, preventing any user learning effect that could have improved

the classification performance. Furthermore for the subjects S.04 and S.05

I couldn’t record 5 runs due to technical problems during the experiments.

In future, a longitudinal training of the BMI in a closed-loop conditions

should be considered to overcome this limitation. In this experiment I try to

make the protocol more realistic and like to a real ’everyday’ situation. This
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brings to some results that are logically less evident respect to a ’laboratory

case’. For example the use of the walker to maintain the balance can divert

the subject’s attention from the movement of the lower limb to that of the

hands, also activating some parts of the cortex that aren’t connected to a

lower limb motor execution. Furthermore the possible loss of balance can

bring to a muscular artifact. This muscular artifact is a bit deleted by the

laplacian filter but surely remains alterating our EEG dataset. A possible

solution to this problem could be increase the time of the ’familiarization’

session to make the subject more confident with the equipment and use other

real time filters to a better cancellation of the muscular artifact. For example

a Indipendent Component Analysis can be a solution, but it is a non-real time

filter, so it is necessary to take it and find a real time application.
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6 | Conclusions

In this thesis I propose and implemented a calibration protocol for a BMI-

driven robotic exoskeleton. The peculiarity of this protocol was the idea of

detecting a self-paced movement intention of the subject. The exoskeleton

has been programmed to follow it and thanks to ROS architecture the three

computer needed for the sight of the protocol, the movement of the exoskele-

ton and the acquisition of the EEG signal were connected. The computing of

PSD was at the base for the detection of the pre-movement state of the per-

son. Three classifiers were used to this purpose and the LDA is shown to be

the more accurate. To increase the classification robustness, an exoponential

integator was used to enhance the results. The final BMI system obtained

an average prediction accuracy of lower limb movement of 76.32% with a

false positive rate of 31.46%. Even if this performance must be improved

to be effectively used as controlled input of the exoskeleton, the obtained

results within a single-session recording are promising and comparable with

BMI performance in the literature. In fact, I believe that the use of this

BMI paradigm in a long-term training protocol will significantly improve the

performance, following the concept of mutual learning between the user and

the interface.
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(a)

(b)

Figure 7.1: Features map S.02 (a), Features map CSP S.02 (b)
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(a)

(b)

Figure 7.2: Features map S.03 (a), Features map CSP S.03 (b)
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(a)

(b)

Figure 7.3: Features map S.04 (a), Features map CSP S.04 (b)
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(a)

(b)

Figure 7.4: Features map S.05 (a), Features map CSP S.05 (b)
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(a)

(b)

Figure 7.5: Features map S.06 (a), Features map CSP S.06 (b)
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(a)

(b)

Figure 7.6: Features map S.07 (a), Features map CSP S.07 (b)
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(a)

(b)

Figure 7.7: ROC curves for S.02 (a), ROC curve with the best AUC for
S.02 (b)
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(a)

(b)

Figure 7.8: ROC curves for S.03 (a), ROC curve with the best AUC for
S.03 (b)
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(a)

(b)

Figure 7.9: ROC curves for S.04 (a), ROC curve with the best AUC for
S.04 (b)
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(a)

(b)

Figure 7.10: ROC curves for S.05 (a), ROC curve with the best AUC for
S.05 (b)
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(a)

(b)

Figure 7.11: ROC curves for S.06 (a), ROC curve with the best AUC for
S.06 (b)
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(a)

(b)

Figure 7.12: ROC curves for S.07 (a), ROC curve with the best AUC for
S.07 (b)
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Figure 7.13: Trend of TPR and FPR of S.02

Figure 7.14: Trend of TPR and FPR of S.03
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Figure 7.15: Trend of TPR and FPR of S.04

Figure 7.16: Trend of TPR and FPR of S.05
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Figure 7.17: Trend of TPR and FPR of S.06

Figure 7.18: Trend of TPR and FPR of S.07
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