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Introduction

The development of the theory of derived categories began with J.-L. Verdier’s thesis in
1967 [Ver96]' under A. Grothendieck. This was a successful attempt to give a proper
context to the existing theory of hypercohomology of complexes, the framework with
which we generalize the (co)homological theory of left (right) exact functors from sequences
of objects in an abelian category A to a theory that can handle sequences of complexes.

The key insight is that a resolution of an object is a quasi-isomorphismes, i. e. a morphism
that induces an isomorphisms in cohomology. Therefore the main idea is to build a new
category, from the homotopy category K(.A), where all quasi-isomorphisms are formally
inverted. This yields an identification between objects in A and all of their resolutions.
Thereby the derived category adopts complexes from the beginning and the idea that
an object is “made” of possibly simpler objects, i. e. objects whose cohomology have less
degrees of complexity.

The epistemological justification for this procedure is the desire of a coherent description
of semi-exact functors, which appear as naturally as profusely across all disciplines. By
way of example, take F ® — or I'(X, —), in the context of sheaves of abelian groups over a
topological space X. Their “naive” definitions should be applied only to special objects,
namely the objects that lie in their respective adapted class (i. e. locally free and flasque
sheaves, respectively). The reason is that we want to preserve relationships between those
objects that might hold relevant information, e.g. kernels and cokernels of morphisms?.
Therefore it is ideal to replace 7 ® — with Z®* ® —, where Z° is a complex of locally free
sheaves, and extend the functor to handle complexes as well.

So to summarize, we functorially go through the following layers of successive abstractions,

A ClA) K(A) 245 D(A)

S~ A

where, at each layer we surgically modify our notion of what a relation between objects
means. The toll we take for undertaking such transformations is—already at level of
K(A)—that the category we land on is not abelian. Nonetheless the notion of exactness as
we mean for complexes in C(.A) is inherited by the triangulated structure we can endow
K(.A) and, consequently, D(.A) with.

It is worth underlining that the structures of triangulated and abelian categories are not
necessarily related by inclusion. The former is not a weaker notion of the latter, as the

intersection consists only of semisimple categories®.

Among the many blatant achievements of this shift in perspective to the framework of
derived categories, there is an overt description of the derived functor of a composition
G o F, namely the following isomorphism holds

R(G oF) ~ RG o RF,

as showed in Theorem 1.4.10. This result relived from the formal theory the weight of what
previously had to be described through spectral sequences, although actual computations
cannot avoid them. This trade-off will be manifest in the proof of Proposition 4.2.15 and
Theorem 4.2.19.

1Only belatedly published in 1996
20r, indeed, their sygyzies. See [GM03], TIL1 A
31e. categories where all exact sequences split, e.g. Vecti", see [H]10] 5.3



Since the 60s the theory of derived categories has permeated through many disciplines
within mathematics and physics. Among those we list:

* Algebraic analysis, microlocal sheaf theory and their applications in symplectic
topology.

e Homological mirror symmetry, which relates the derived category of coherent
sheaves on a complex algebraic variety X to the derived Fukaya category of its mirror
partner, a symplectic manifold Y.

¢ Algebraic geometry and the study of derived equivalences between algebraic varieties
through Fourier-Mukai Transforms.

This work focuses on the last point of the list. Chapter 1 deals with the foundational
aspects of derived categories as described in the above paragraphs. Here we lay down the
stage where the later chapters build upon. The main references of this are [KS90; Sch23;
Wei95; GMO03].

Chapter 2 is devoted to instantiate the object of most interest, D®(X)—the bounded
derived category of coherent sheaves on a smooth projective variety X. This category
is of considerable geometric interest, to quote A. Bondal and D. Orlov in their paper
Semiorthogonal decompositions for algebraic varieties [BO95],

This leads to the idea that the derived category of coherent sheaves might be
reasonable to consider as an incarnation of the motive* of a variety.

Here the main references are the [Har77; Har06; Huy06] and J.-P. Serre seminal paper
Faisceaux algébriques cohérents [Ser55].

In Chapter 3 we delve in the theory of Fourier-Mukai transforms, these functors were
first introduced by S. Mukai in [Muk81]. Beyond the basic definitions and properties we
put particular emphasis on equivalence criteria of functors of Fourier-Mukai type. The
main sources here are again [Huy06] and T. Bridgeland’s paper [Bril9]. At the end of the
chapter we mention Orlov’s famous Representability Theorem 3.3.11.

Lastly, Chapter 4 is split in three main sections:
1. The derived category of P™,
2. The Bondal-Orlov’s Reconstruction Theorem,
3. Mukai’s Theorem.

In the first section we discuss a result due to A. Beilinson in [Bei78], which lays bare the
structure of the derived category of coherent sheaves on IP™. This will be generated by the
following exceptional sequence

<(9Pn(_n), Opn(—n+1), ..., Opn(—1), O]Pn>.

The discussion follows A. Caldéraru’s paper [Cal05].

The middle section exposes the most important result of this work, which is part of the
modern approach to the study of algebraic varieties through the lens of their derived
categories. Bondal-Orlov’s Reconstruction Theorem 4.2.19 proves that is possible to exhibit
an isomorphism X >~ Y between smooth projective varieties over an arbitrary field k from
an equivalence DP(X) ~ DY (Y), provided the canonical or the anticanonical bundle of X
w)f] is ample.

This follows the trail paved by well known results: in 1961, (P. Gabriel, [Gab62])

Let X and Y be smooth projective varieties, then an equivalence CohX ~ CohY,
induces an isomorphism X ~ Y.

#T formulated the notion of “motive” associated to an algebraic variety. By this term, I want to suggest
that it is the “common motive” (or “common reason”) behind this multitude of coho- mological invariants
attached to an algebraic variety, or indeed, behind all cohomological invariants that are a priori possible.” —
A. Grothendieck, [Gro23]



And later in 1996° (A. L. Rosenberg, [Ros07])

Let X, Y be quasi-separated schemes. If the categories QCohX and QCohY are
equivalent, then X ~ Y.

The previous theorems go under the framework of “reconstruction theorems”. Their main
scope is to deal with the problem of rebuilding an object from either the information given
about its invariants—therefore the underlying geometry, or its representation into another

object. This section ends with the explicit description of the group of autoequivalences of
D (X),
AuteqD®(X) ~ AutX x (Pic(X) @ Z).

Here the references are the article [BOO01], [Huy06] and I. Dolgachev’s notes [Dol09].

Finally, the third section traces back the origins of the notion of Fourier-Mukai transform.
We expound the proof of the theorem that sprang the whole field, namely

Let A an abelian variety, A its dual and P the Poincaré bundle over A x A.
Then the Fourier-Mukai functor

®p : DP(A) — DP(A)
is a triangulated equivalence. Moreover,
PA A 0 DA ~ 1% 0[]

where g = dim A and 1 is the inverse map of A.

The references for the general theory of abelian varieties are [Mil08; MRMO08], as for the
proof of Mukai’s Theorem, [Muk81] and [Huy06].

5See the expository paper [Bra14]



Vedi, in questi silenzi in cui le cose
s’abbandonano e sembrano vicine

a tradire il loro ultimo segreto,

talora ci si aspetta

di scoprire uno sbaglio di Natura,

il punto morto del mondo, I'anello che non tiene,
il filo da disbrogliare che finalmente ci metta

nel mezzo di una verita.

Eugenio Montale — Ossi di seppia

To whomever planted the first seed of curiosity

in my Orchard,

to the reckless forest of interests it became,

to my family and friends who nurtured the ground
and fostered its growth,
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1 Derived Categories

We don’t want definitions,
we want properties.

Sergey Shadrin

1.1 Motivation

The construction of the derived category addresses to two main desiderata:

1. A functor that expresses the association of an object in an abelian category A to its
resolution in C(.A), the category of complexes made of objects in A.

2. A proper way to identify an object or a complex of objects with a complex having
same cohomology which is somehow computationally less cumbersome.

For (1) the naive attempt to construct a functor from A to C(.A) easily fails since for a fixed
object neither its resolutions nor the maps induced on resolutions are unique. Somehow
an hint that we might want to slightly change the target category C(.A) is given by the
following key fact

Every map between two object of A lift to a map of resolutions which is unique
up to homotopy.

Therefore the association we want is indeed functorial only if the target is K(.A), the
homotopy category of A. In fact, the procedure outlined so far, describes how classical
derived functors are usually defined: e.g. let A L B a left exact functor between abelian

categories, and 0 — X —— I* an injective resolution of X € A, we denote Z the full
additive subcategory of A of injective objects, then the classical right derived functor is
defined as the following composition:

RIF: A —2 L KHI) —— KT (B) —H B

\[ K

K*(A)

The diagram is commutative, A is indeed a functor since any two resolution I°, J* of the
same object X are isomorphic in K*(Z), for any morphism X — Y, A(X — Y) is unique
up to homotopy, hence unique in K+ (Z)!

0 X —2 51
Jidx Jz
0 X —2 5

But in general the homotopy category is no longer abelian, therefore we cannot speak of
exact sequences.

In the homotopy category of an abelian category the identity of an object is sent in the class of homotopic
equivalences of that object



For (2) we adopt the notion of quasi-isomorphism (q.is). In fact, let X € A, we assume
that exist an injective resolution on X

00— X —S551°

We can build a morphism of complexes as follows

0 X 0 0
le L
0 10 I 12

Therefore if we want to identify objects with their resolutions we have to invert quasi
isomorphisms, so that we can fully shift our attention to complexes.

1.2 The triangulated structure of K(.A)

Throughout this chapter we assume A to be and abelian category.

1.2.1 Triangles as generalized short exact sequences

Definition 1.2.1. A triangle in C(.A) is a diagram of the form

X — Ty ye z° X*[1]

Definition 1.2.2. A triangle is called distinguished (d.t.) if it is isomorphic to one of the
following diagrams (a choice is equivalent to the other),

X* — 5 y* — 5 cone(f)* —— X°[1] [Huy06]

9. X1 [GMO3]

X®* —— cyl(f) S N cone(f)

Definition 1.2.3. The mapping cylinder of X* LYy isa complex constructed in the
following way:

X ax Xn+1
—1 n+1

® X ®

1 —ax i = doX _Jix 8
cy e Xn+1 X Xn+2 eyl(f) = —ax

n+1 0 f dY

® f ®

yn d{} Yn+1

Remark 1.2.4. The cone of f is the given by the last two rows on the LHS and the lower
left 2 x 2 submatrix on the RHS.

Theorem 1.2.5. The homotopy category K(.A) endowed with the shift functor (1] is triangulated.
[KS90]

Remark 1.2.6. For an morphism X* —L Y* there exist the following commutative diagram
in C(A) with exact rows.



0 Y* cone(f)® —— X°*[1] —— 0

] o]
0 —— X* —— cyl(f)* —— cone(f)* ——— 0 Ty
| [s =0 1 1y
Xt Y

This construction is functorial in f. Moreover we have Boc = 1y and o3 ~ Ty () (i-e. are
homotopic), so that it is an isomorphism in K(A) (i.e. an homotopic equivalence), in
particular this implies that o« and (3 are quasi-isomorphisms.

Lemma 1.2.7. Any short exact sequence (SES) in C(.A) is quasi-isomorphic to the middle row of
an appropriate diagram above, as given in the following diagram

0 X —f sye 9 70 0
0
B v=I[0 gl
\
0 10 I 12

Remark 1.2.8. The previous Lemma states that every SES can be completed into a d.t. in
K(A), this shows how distinguished triangles can generalize the notion on short exact
sequences, they will, as a matter of fact, replace the notion of exactness whenever a
triangulated structure is available

Remark 1.2.9. Cohomological properties of distinguished triangles in K(.A) resemble those
of short exact sequences, i. e. given a d.t.

0 A* B® ce A*[1]
Then we obtain a the long exact sequence (LES) in cohomology
. Hi(Ao) Hi(Bo) Hi(co) Hi+1 (A.)

Proof: Follows by definition of d.t., H® is a cohomological functor and axiom TR2 (rotation)
of triangulated categories O

In the following we will adopt also the following shorthand notation for a d.t.

A® B* ce *

1.3 The construction of D(.A)

Definition 1.3.1. A null system N is a family of objects of A that satisfy the following
conditions

(N1) 0 e V.

(N2) if X®* € N then X*[1] € V.

(N3) for any d.t.

X* Y* VA k[1]®
such that X®,Y* € \V, then Z* € NV.



Recall that in a general triangulated category a null system gives rise to a multiplicative class

of morphisms (as in [KS90])?

S(N) =< X® Ty | f is embedded in a d.t. X*® Toye —>\Z:_/—> X*[1]
eN

Remark 1.3.2. The family of objects in K(.A)
Ny ={X* € K(A) | HM(X®) ~ 0, Vn € Z}

is a null system. Conditions (N1) and (N2) clear, (N3) follows from the long exact sequence
in cohomology.

Consequently we can construct its multiplicative system S(Nj). By exploiting once again
the following LES

. Hi—] (Zo) Hi(X.) - Hi(Y') Hi(z.)

4 2
0 0

Therefore S(Ny) can be described as the set of quasi-isomorphisms in K(.A), i.e.

S(Noy) = { X* o Y* [X®,Y* e K(A)}

Note that homotopic complexes give rise the same cohomology groups and if the cone(f)*
is acyclic (i.e. H'(cone(f)®*) ~ 0 for all i € Z) then f is a q.is . We will implicitly adopt the
following notation for quasi-isomporhisms

X* Lo ye
Definition 1.3.3. The derived category of A is the localization >
D*(A) = K*(A)/N*(A)

where x = @, b, +, — *. We will denote the localization functor as

Q=Qu:K(A)— D*(A)

Remarks 1.3.4.
* Quasi-isomorphisms in K(A) are isomorphisms is D(.A) .

® Morphisms in D(.A) are denoted as triples f = (X*, s, g) called roofs

X®
s 9
A® KJJJH{T\; B*®

two roofs (X®,s,g) and (Y®,t, h) are equivalent if and only if exist Z* and a q.is

z* L A® making the following diagrams commute

20r localizing class as in [GMO03]
3The procedure of localizing categories here refers to the books [KS90] and [KS06]
4Unbounded, bounded, bounded below and bounded above, respectively




B. L]
PN N
Xt —— 20—y Xt v
S TS
Ao
[KS90] [GMO3]

e D*(A) are triangulated categories [KS06].
1.3.1 Generalized Objects
Recall in C(.A) can define the following truncation functors,

=T s X — kerd} —— 0 —— 0 — -+

e ]

=N C oy X X imd} — 0 — -
=N - —0 0 cokerd 7! — X1 — ...
Wl LT
P o= 0 — imd} ! X" Xt

Therefore the morphisms above are isomorphisms in D(.A)
Remark 1.3.5. [KS90]. Let X € D(.A)®, the following are distinguished triangles

o TSMX — 4 X —— rSnHIX

o TSMIX 5 aSNX 5 HY(X)[-n] ——

o H™“(X)[-n] —— T2"X —— =X £,

By employing the distinguished triangles above and the axioms of triangulated categories
is possible to prove the following result.

Theorem 1.3.6. [GMO3]. There exists an equivalence of categories A ~ D¢ (.A), between the
abelian category A and the full subcategory Do(A) C D(A) consisting of all complexes X with
cohomology concentrated in degree 0, i.e. H*(X) ~ 0, Vi # 0.

This implies that the original category A lives inside D(.A) but its objects are identified up
to quasi-isomorphic chain complexes.

1.3.2 Morphisms in D(.A)

Morphisms of a localized category do not behave nicely in general, this makes intuitive
sense since we successively packed morphisms into classes when passing from C(.A) to
K(A) and then again when localizing the latter to get D(.A). Therefore we had to lose
some “control” in order to make the pattern we wanted—i. e., the idea of generalized
object—emerge. We delve into few examples that let us grasp the behaviour of such
morphisms.

Remarks 1.3.7.

5We temporarily drop the bullet notation for complexes. It will be resumed if necessary, in order to avoid
confusion

10



e Itis possible to find morphisms in D*(.A) that do not arise from chain maps in C(.A).
Consider the following resolution in A = Ab

X: 0 Z Z 0
Zl
| oA
\ \
Z/27Z°—1] ir — 3 0 —— Z/27Z —— 0

so the inverse exists in D(Ab) but Hom¢ (ap)(Z/2Z,X) = 0.
¢ In general only the following relations hold true:
[f=0in C(A)] = [f=0in K(A)] = [f=0in D(A)] = [H"(f) =0 Vn].

all the implication are strict (cf. [GMO03], [KS90])

e It is possible to add morphisms. Since S(Ny) is a multiplicative class, it satisfies the

Ore condition:
Z
X O Y
A

then given two roofs (X,s,f),(Y,t,g) in D(A) we can construct the sum in the
following way

z
Z

x{ \Y ‘
LT T,

Therefore we can replace the two roofs with the an equivalent one given by the sum
of f and g in K(A).

e Cohomology functors are well defined: there exists a unique functor that makes the
following diagram commute

K(A) H™ A

>

\ O 7
Qu oo 3

D(A)

We only need to define it on roofs, since quasi-isomorphisms induce isomorphisms
in cohomology we have:

X H™(X)
y lf —_— H“s‘/ o
A . B H™(A) ————— H™(B)
H™fo (H"s) !

So morphisms in D(.A) can be tricky to work with, however in some cases it is possible to
work with a special class of complexes for which it is available a simplified description.

11



Proposition 1.3.8. Let A ~~» B a quasi-isomorphism and let 1 (P ) a complex of injective
(projective resp.) objects of A. Then

HomK+(A)(B, I) — HomK+(A)(A,I)
(dually Homy—(4)(P,B) —— Homy—(4)(P,A) )

are isomorphisms.

proof (sketch): Since Homy +( 4)(—, 1) is cohomological ([KS90]), by completing the mor-
phism A — B to a d.t. (in K(A)) and by the corresponding LES, we have

- — Hom4(C,I) — Hom4(B,I) — Hom 4(A,I) — Hom 4(C[1],I) — ---

(claim) 2 2
0 0

By definition of d.t. we know that C must be isomorphic to cone(f) , since f is a
q.is, C is acyclic, thus we only need to prove the following

Claim For any C acyclic in C(A) (i.e. C ~» 0), holds
Homy (4)(C, 1) =0

The idea is to construct, for any map f € Homg(4,(C,I), an homotopy to the
0 complex by successively killing the map f™ : C™ — I™ at step n, exploiting
the injectivity of I™ and pullbacks of the commuting squares (cf. [Huy06] for
details). O

Now present the key result for the subsequent definition of derived functors between
derived categories.

Corollary 1.3.9. If A is an arbitrary complex in C* (A) and 1 a complex with injective terms,
then
HomK(A) (A, I) >~ HomD (A) (A, I)

Proof: For every roof

there exists a unique morphism f given by the isomorphism

HOI’HK(A)(A,I) 4)735 HOI’I’IK(A)(B, I)
g ——— f
By last proposition. O

The tag line is the following:

Hom in D(A) is what we are interested most, Hom in K(.A) is what we can
compute.

Application
Theorem 1.3.10. For any X,Y € A, we have®:

Homp 4)(X®,Y*) ~ Exty(X,Y), Vi >0

We reintroduce bullets to avoid confusion, furthermore for X € A, then we will denote X°® the complex
concentrated in degree 0,i.e. 0 — X — 0 in C(A)

12



Proof: Let us consider an injective resolution’” 0 — Y — I°® i.e.

0 0

Then

Homp (4)(X®, Y*[i]) =~ Homp (4)(X®, I°[i])
~ HomK(A) (X., I. [l])

Where the second isomporhisms comes from last Corollary. More explicitly let
fe HOHIK(A) (X®,I°[i])

0

0 X .
l / lf / %
Ii—] Ii Ii+] e
dif] di di+]

The diagram above is to be considered up to homotopy. Then we apply the covariant
functor Hom 4 (X, —) to obtain the following LES

- —— Hom(X, I""1) —4 Hom4(X, I!) —— Hom 4(X, I\+1) —— ...

sTdiqos:fTO

Where exactness in the first slot tells us that 8
felm(d o) e=f~0ie f=(d"""os+0),
and exactness in the second slot means
f € Ker(d' o —) < f is a chain map

Therefore chain maps modulo homotopy are exactly:

Hom 4 (X*, 1°i]) ~ —<erd"e—)

S Imf(a o) 1 HomAX )

= Exty(X,Y)

O

Remark 1.3.11. [KS90] The construction given in the last theorem can be generalized to
arbitrary complexes X*,Y* € C(.A). We obtain the following isomorphisms

HO (Hom{, (X*,Y*)) ~ Homyc( 4)(X*,Y*)

Example 1.3.12 (Computation). Let us consider the following free (i. e. projective) resolu-
tion of Z/27Z in Ab

0 zZ 2.7 Z)27 — 0

In order to compute Extp,, (Z/2Z,7./2Z) we apply the contravariant functor Homay,(—, Z /227
to the sequence above,

"Recall A is assumed to be abelian with enough injectives
8This has to be read as maps of complexes, with appropriate induced maps at degrees i —1,i,i+ 1

13



0 —— Homjup(A,B) —— Homup(A,B) —— Hompp(A,B) —— Extkb(Z/ZZ,Z/ZZ) — 0

Thus we have’

Ext3,(Z/2Z, Z/2Z) = Z/2Z = Homp ay,)(Z/2Z, Z/2Z)
Extp,(Z/2Z, Z/2Z) = Z/2Z = Homp a1, (Z/2Z, Z/2Z[1))

Where the non trivial element in the latter corresponds to

7.)27° 0 0 727 — 0
pe . 0 zZ —2 .7 0
Z.)27° - 0 — Z7/27 0 0

1.4 Derived functors

We fix the full additive subcategory Z C A of all injective objects. Then K*(Z) '7, the cor-
responding homotopy category, is well defined and triangulated. Therefore the inclusion
of Z in A yields a natural functor

Z——— A
K*(Z) —— K*(A) —% D*(A)

~ 1

Theorem 1.4.1. Suppose A has enough injectives. Then
K¥(I) —= D¥(A)

is an equivalence of categories.
proof (sketch):

(1) Since T is cogenerating!!, then it is possible to add a layer of abstraction
and prove that every complex in K*(A) embeds quasi-isomorphically into a
complex of injectives'?

(2) Nz =NT(K(Z)) = N(K(A)) NKH(Z) is a null system.

(3) From the theory of localization of subcategories and the previous step, we
obtain

KY(Z)/N7 C KT (A)/Ng=D"(A)
Is a full embedding

9As complex concentrated in zero, shifted by 1: Z/2Z[1]

WEor x = &,b,+, —

11Cf. [KS06]. Let J be a full additive subcategory of A. We say that J is cogenerating if for all X in A, there
exist Y € J and a monomorphism X »— Y.

121bid.

14



(4) Let I* — J* in C*(Z) then!3
I~ 0 = f~0

Therefore elements in S(N7) are already isomorphisms:

KHZ)/ Nz =K (D)

(5) Any object of D (.A) is isomorphic to an object in K*(Z)

Observe, (2) and (3) set i to be fully-faithful, (5) is merely a restatement of (1)

which in turn assure essential surjectivity. O
Proposition 1.4.2. Let A B any additive functor between abelian categories, then F naturally

extends to a functor K*(A) LS K*(B). Furthermore, if F is exact, we have:

1. K'(F) maps q.is to q.is (in particular, acyclic to acyclic), so induces the following commutative
diagram.

k*(A4) T k()

2. DF maps distinguished triangles in distinguished triangles'* (i.e. is triangulated™).

Remark 1.4.3 (Important). Last proposition doesn’t hold true if F is not exact to and the
naive extension (term-wise) of F to a functor D*(.A) — D*(B) doesn’t make sense for
obvious reasons.

But the good news is we can ask for exactness only on one side and still retrive a unique
lift on the respective derived categories

Definition 1.4.4. Let A P, Bleft exact

K*+(T)  K+(4) T k+(B)

N Jo

i D*(A) ---=--> D (B)

Then we define the right derived functor RF as the following composition

RF:= QoK (Floi™!

Dually, if F is right exact, we define the left derived functor LF by replacing K (A) with
the homotopy category K~ (P) of complexes made of projective objects.

Remarks 1.4.5.

1. Everything in this section can be dualized, i.e. if F is right exact, we define the
left derived functor LF by replacing K*(.A) with the category K—(7P)' and repeat
the same arguments, provided that the categories have enough projectives.

13Cf. [GMO3]. Recall that we already know (;;add ref) f ~0 = f =0 in D(A)

14Cf. [GMO03]. Any additive functor maps cones to cones, cylinders to cylinders, then to prove (b) is enough to
apply (a)

15When working with derived categories “triangulated” and “exact” are used s synonyms labeling an additive
functor

160r even an adapted classes of object to a specific functor
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2. The choice of a quasi inverse i~

that on objects we have:

amounts to the choice of a q.is X® —~~> I® |, s0

RF(X*) .= KTF(I*) € D" (B).

3. This definition leads to some ambiguity, namely the choice of a quasi inverse i~ is
not unique .

To atone point 3, we need the following proposition:

Proposition 1.4.6. Let RF the right derived functor of F: A — B left exact, then

1. RF is triangulated, i. e. sends distinguished triangles to distinguished triangles.

2. Exists a morphism of functors Qg o K+ (F) =5 RFo Q4

D" (A)
Qu RF
KT (A) €F D1 (B)
K\ Qr
K*(B)

satisfying the following universal property: for any Dt (A) S, D+ (B) triangulated functor
and any morphism Qg o K+ (F) = G o Q 4 there exists a unique morphism of functor n:

RF

T N
Dt (A) Hlnﬂ D (B)

~_

G

such that the internal triangle of morphisms of functors commute:

RFoQu
\1°QA
KT (A) ---|-- GoQu----- > DT(B)
EF /
€
QpoK*+F

Proof:

1. Because RF is the following composition of triangulated functors:

RF: A+ ,p_KF , o _Q

where:
e i~ is triangulated since i ' -1 and 1 is triangulated (cf. [Huy06]).
e KF is triangulated because F is exact on Z.
¢ Qg is triangulated by definition.
2. Cf. [GMO03]



Remarks 1.4.7.
¢ Last proposition determines RF up to unique isomorphism

¢ The derived functor can be defined as the couple (RF, ef) being the right localization
of the functor Qg o K™ (F), that is, the representative of the following functor 17

[DT(A), D (B)] Set
G ——— Hom+(4),x+(5)(Qp 0 K*(F), G o Qp)
Thus, last proposition is hidden behind all the machinery of the construction of the
localization of functors.
* We could replace from the beginning of this section the category Z with Z¢ the full

additive subcategory of F—adapted'® objects and repeat the same arguments above

Definition 1.4.8. Let RF the right derived functor of a left exact functor .A L, B. Then for
any complexes X* € D" (A) we define:

RYF(X®) := (H' o RF)(X®).

Note that these correspond to the classical derived functors whenever X*® is a complex
concentrated in degree 0

Remarks 1.4.9.

1. Since RF is triangulated and HC is cohomological, we obtain for a d.t.

X* % z° —*

the associated long exact sequence

- — RWF(X*) —— R'F(Y*) —— RIF(Z*) —— RYTF(X®) —— -+

2. Recall that
HomY (X*,Y*) = tot (Hom®%*(X®,Y*)).
We can define
RHom?(X*,—) : D*(A) — D*(Ab)
and set 4 .
Ext%(X®,Y*) := H" (RHom% (X*®, Y*))
So that we can generalize what we saw before: for X* € D™ (A) and Y* € DT (A)

Hom 4(X®,Y*) ~ Hom 4(X*,I°)
~ Hom 4(X*,I°®)
~ Hom 4(X®,Y*)

Theorem 1.4.10. Let A —— B -5 C be two left exact functors between abelian categories. Since
G o F is left exact, by the universal property of (R(G o F), egor) we have a natural morphism of

functor RG o RF —~3R(GoF).

17Cf. [KS06]. We adopt the shorthand notation [A, B] for the category of functors between two categories A and
B

18Als0 called F—injective if F is left exact, or F—projective for F right exact

17



Recall from Proposition 1.4.6 we have

(RGoRF)oQuy R(GoF)

T N i
K+ (A) ”ﬂ DT(C) = KA ”ﬂ!a D*(C)
NS NS
Qco (KT (GoF)) RG o RF)

Where 1 is the horizontal composition of the following two morphism of functors:

DHA) — CDTB) D) Nxe: QeoKTG(KTF(X*)

l
Qu \QB \QC K*GoQp(KFF(X*)

I
KF(A) g KF(B) g . KT(C) K*G o KFF(Qu(X*))

Moreover if we assume that exists the full additive categories Iy C A,Zg C B, where Iy is

F—adapted and Zg is G—adapted such that F(Zr) C Zg. Then the morphism of functors € is an
isomorphism

Proof: Note that the assumption F(Zy) C Zg implies that Zf is also (G o F)—adapted. Now
let X* € K™ (A), we know that exists a q.is X

R(GoF)(X*) — X RGo (RF(X*))
~ (KT G o KTF)(I*) ~ RG o (RF(I*))
~ KT Go (KTF(I*))

Is an isomorphism for all X* € K (.A), therefore ¢ is an isomorphism. O

18



2 The Derived Category of Coherent
Sheaves

I never saw a moor,
I never saw the sea;
Yet know I how the heather looks,
And what a wave must be.
Emily Dickinson

2.1 Preliminaries: Sheaves of Modules

The notion of sheaves of modules over a ringed space (X, Ox) allow us to refine our
understanding of the geometry of the space! by making, broadly speaking, more functions
or function-like objects available. Within this setting there are two particularly relevant no-
tions, namely quasi-coherent and coherent sheaves, they will be the “non-local” analogous
of the usual notions, respectively, of modules and of finitely generated modules over a
ring.

Definition 2.1.1. Let Ox be a sheaf of rings on a topological space X, an Ox-module is a
sheaf F of abelian groups over X with the following additional requirement: for all U € X
open, F (U)? has the structure of an Ox (U)-module compatible with restrictions, i. e. for
V C Uin Op(X)3

u MU, Ox) x T(U,F) —2tn , py, F) u
l{ }L Jresgu J res{:/uJ <—?—* l{ (1)
\% T(V,0x) x T(V,F) -2t roy 7 \%

Where res{T,u : F(U) — F(V) denote the usual restriction of the sheaf /. A morphism
F — G of Ox-modules is a morphism of sheaves such that for each open set U C X,
F(U) — G(U) is an Ox(U)-module homomorphism.

We now present few more constructions and known facts (cf. [Har77] IL.5).

Definition 2.1.2. Let 7, G be Ox-modules, we denote the group of morphisms from F to
G by Homp, (F,G)(= Hom(F,G) whenever it causes no harm). If U C X is open, then
the restriction F/y; is an Ox|;-module, where the restrictions have to be understood as
functors Op|}’ — Rings.

* The presheaf U — Hom o, (Fly,B Gly) is indeed a sheaf that we will call
sheaf Hom and denote as

Homo, (F,G) (abbr. Homx(F,G))

* The sheaf associated* to the presheaf

U= F(U) ®o, u) (U

1For “geometry” on a topological space X we mean what kind of structure sheaf we give to X

2We will also use I'(U, F) to denote the sections of a sheaf F

3The notation Opy stands for the poset category of all open sets of the topological space X

4The functor (—)? denotes the sheafification functor, we call (F) the sheaf associated to a presheaf F
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is called the tensor product of 7 and G , and it will be denoted

.7:®(9X G (abbr. F ®xG)

We now focus on particular examples of Ox-modules
Definition 2.1.3. Let F be an Ox-module.
* We say that F is a free sheaf of rank n, if there is an isomorphism F ~ O{™.

* We shall say that F is locally free if there is an open cover of X, U;;ic; such that
F ‘U-i id free for all U;. If X is connected then the rank of a locally free sheaf is well
defined and it will be the same across all the open sets of the cover of X.

e A locally free sheaf of rank 1 is called invertible sheaf.

Example 2.1.4. Every vector bundle can be casted as a locally free sheaf, in fact the
respective categories are equivalent (cf. [PM97], 1.1.8)

Remark 2.1.5. The category of locally free sheaves is not abelian. The following bundle
exemplify the problem

E=00,1]xR-5R.
Then the kernel and the image of the map below are not locally free

E——E
(x,t) — (x,xt)

This problem is solved by encasing the category of locally free sheaves into reasonable,
larger abelian categories, so that we are able to apply the tools of homological algebra.
We'll soon discover which properties we would like to address as reasonable.

We first need to add further syntax to the language of sheaves of modules, in order to
operate fully.

Definition 2.1.6. Let f : (X,Ox) — (Y, Oy) be a morphism of ringed spaces, F an
Ox-module and G an Oy-module, then

e f.F is an f,Ovy-module, since we have the morphism of ringed spaces
f# : OY — £y OX

as part of the datum coming along with f. There is a natural structure of Oy-
module® on f,F, we will call this sheaf the direct image or pushforward of F along
the morphism f.

¢ Likewise f~1G is an f~!'Oy-module, by adjointness of the pair f~! - f, in the
category of ringed spaces, there is an unique morphism f~'Oy — Ox. ©

Then in order to provide a structure of Ox-module to f~'G we rely on the following
tensor product:

G =1'G @10, Ox
This will be called the inverse image or the pullback of G along f. 7

Remark 2.1.7. f* - f, is an adjoint pair between the categories of Ox-modules and
Oy-modules.

Lemma 2.1.8. (Cf. [Sta23], 17.10; ibid. 26.7). Let X be a scheme and F an Ox-module, then the
following are equivalent

SThe structure of an Oy-module is given by further composing the diagram (1) with the morphism f*
6Recall f~1G(U) = l_irl} G(U), as a presheaf
V2f(U)

7Recall that if A, B are rings, given a ring homomorphism A « B and an A-module M, then M can be made
also a B-module via the morphism f, thus Ox (U) is an =1 Oy-module via the adjoint map to *
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* [Gro60]: There exists a covering {Uu} of X such that on each open Uu, Fly fits the
following exact sequence

OxIGl =2 OxIf) — Fly, — 0
Where 1o and ] o may be infinite.®
e [Har77]: For any affine open subscheme Spec A of X and any f € A, the map induced by the

universal property of the localization

I'(SpecA, F)f —— T'(A¢, F)

is an isomorphism.
Definition 2.1.9. Let X be a scheme and F an Ox-module
e F is of finite type if for any affine open Spec A = U, the A-module M =T'(U, F) is
finitely generated i.e. exists a surjective morphism

OxIi™ — Fly — 0

where n here is finite, thus J is locally generated by finitely many sections.
e F is quasi-coherent if any of the two equivalent conditions in Lemma 2.1.8 are met.

® F is coherent if It is quasi-coherent with I, and ] finite, i.e.

. finite type ...

Sla

0X|ua

| OX|S9i“ Al e
. kery = Im o

" finite type

Theorem 2.1.10. The categories of quasi-coherent sheaves QCoh(X) and of coherent sheaves
Coh(X) are both abelian.

i Quasi-coherent Coherent locally free
Ox bmlf?d”les D sheaves D sheaves o sheaves
(abelian) (abelian) (abelian) (not abelian)

Remark 2.1.11. Given an affine scheme SpecR over a commutative ring R, then there is an
equivalence of categories:

F ——— T'(SpecR, F)
QCoh(SpecR) .~ R—Mod

M+— M

Where M refers to the following construction: let U C SpecR then we define I'(Ul, M) to
be the set of sections s : U — [ [,y My such that s(p) € M;, and are locally given by a
fraction i.e., exists an open subset U(p) C U such that Vq € U(p), s(q) = F form e M
and f € R’

8A sheaf satisfying (1) is also called locally presentable
9This construction is referred as the Espace Etalé, see for instance [Ten75]
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2.2 Lack of Injectives and Consequences

We now expose the key environment that later results will inhabit.
Definition 2.2.1. Let X be a scheme, we define its derived category D®(X) to be the
bounded derived category of the abelian category Coh(X), in symbols:

DP(X) :== D°(Coh(X)

Recall that, given k a field, an additive category C is said to be k-linear if every group
Hom¢ (A, B) is endowed with the structure of a k-vector space, compatible with the
composition, i. e.

Hom¢ (A, B) x Hom¢ (B, C) — Hom¢ (A, C)

is a k-bilinear map forall A,B,C € C.

Moreover an additive functor C —— D between k-linear categories is called k-linear, if it is
linear at the level of morphisms, i.e.

F:Hom¢(A,B) — Hom¢(FA, FB)

is k-linear for all A,B € C

Definition 2.2.2. Two schemes X and Y over a field k are called derived equivalent if there
exists a k-linear triangulated (exact) equivalence

DY (X) —— DPb(Y)

Recall from the previous chapter, for an abelian category .4 with enough injectives we
have the following equivalence of triangulated categories

K+ (1) —— D*(A)

Then for a left exact functor F: A — B between abelian categories we could construct its
right derived functor as
RF:= Qg o K(F)oi™!

Remark 2.2.3. In general the category of coherent sheaves Coh X over a scheme X does
not possess enough injectives

Example 2.2.4. Let us consider X = Spec(Z), then Coh X is equivalent to the category of
finitely generated abelian groups, let I be an injective in such category. Fix i € I we have

0 V4 T Z

1 l P
% IL]%

Maps from Z — I are uniquely identified by where they send the unit. Since I is injective,
the above diagram must commute, thus we have nI = I for every n € IN. This means that
I is divisible, but there are no non trivial finitely generated divisible abelian groups.

Therefore in order to compute derived functors we need to go through a bigger category.

Proposition 2.2.5. ([Har06], 11.7.18). On a Noetherian scheme X any quasi-coherent sheaf F
admits a resolution

10 I! 12

by quasi-coherent sheaves 112° which are injective in Mod (Ox). Indeed, the injective hull in
Mod (Ox) of any quasi-coherent sheaf is quasi-coherent.
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Proposition 2.2.6. (Cf. [Huy06], 3.5). Let X be a Notherian scheme. Then the functor induced by
the inclusion
DP(X) —— D" (QCohX)

defines an equivalence of categories between D® (X) and the full triangulated subcategory D2 ; (QCoh X)
of bounded complexes of quasi-coherent sheaves with coherent cohomology.

Remark 2.2.7. By the characterization of morphisms in derived category in the previous
chapter we have

EXtélCohx(]:'g) = Hompy (x) (F, Gli])

for any F,G coherent sheaves. This can be extended to complexes £°, F* of coherent
sheaves. Cf. [Huy(06] 2.57.

2.3 Duality and Dimension

2.3.1 Serre functors, Serre duality

Definition 2.3.1. Let A a k-linear category. A Serre functor is a k-linear equivalence
S: A — A, such that for any two objects A, B € A exists an isomorphism

Hom 4 (A, B) — Ham 4(A, S(B))
of k-vector spaces, functorial in both slots. Then we will write the induced pairing as:
Hom 4(B,S(A)) x Hom4(A,B) ——— k
(f,9) ———— (flg)
Remark 2.3.2. For any locally free sheaf M on X, the functor

Coh X —— Coh X
Fr—FM

is exact. To see this, it is enough to work locally on stalks. Let:

0 F1 Fr F3 0
be an exact sequence in Mod(Ox ), then

04>.F]®M4f>fz®Mi>f3®M

Is in principle only right exact, but Vx € X, My ~ (Ox){™, therefore

0 —— (FAOM)xy — (FLM)y —— (F3M)x —— 0
[ [2 12
(FI)E™ ——— (F)F™ ———— (F)E™

is exact. Then in particular M ® — induces a triangulated functor on the derived category

of X

D*(x) M5 D*(x) x=+,b

Now consider a smooth projective variety X over a field k, wy its canonical bundle.

Definition 2.3.3. Let X be a smooth projective variety of dimension n. Then we define Sx
to be the following composition of triangulated functors
D*(X) —— D*(X) —— D*(X)

wWx®— [n]
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Theorem 2.3.4 (Serre’s Duality). (Cf. [Huy06], 3.12) Let X be a smooth projective variety over a
field k. Then Sy : D®(X) — D" (X) is a Serre functor, more explicitly: for any £°,F* € D®(x)
we have an isomorphism

Homy (€%, F*) ~ Homy (F*,€* @ wxn])”

Remark 2.3.5. In the some setting as above, we can actually retrieve more information
Ext' (£°, F*) ~ Hompy x) (£°,F*[i])
~ Hompy (x (F*[il, £* @ wx[n])¥
~ Homppy (F*,E°® wx[n—i])v
~ Ext™H(F®,E @ wx) Y

All isomorphisms are functorial in both £* and F*
Serre functors can mold left adjoints into right adjoints and vice versa.

Theorem 2.3.6. Let F: C — D be a functor between k-linear categories that admit both Serre
functors S¢, Sp, respectively. Assume F has a left adjoint G 4 Fso G: D — C. Then

H:=Sc0GoS,':D—C
is a (the) right adjoint to F.
Proof:

Homp (FX,Y) ~ Homp(S5'Y, FX)Y ~ Hom¢(GS,'Y, X)
~ Hom¢ (X, S¢ GS{)] Y) := Hom¢ (X, HY)

2.3.2 Interlude: Homological Dimension

Definition 2.3.7. Let A be an abelian category, then we say that it has finite homological
dimension if there exists an integer 1 such that Homp 4 (A,B[i]) =0forall A,B € A and
i> L. If A has enough injectives then this is equivalent to require

Ext4(A,B)=0 forall A,B€ A i>1

m such cases we say that A has homological dimension < 1 and it will be denoted
dh(A) <1

To some extent the complexity of the derived category D(A) is measured (or at least
captured) by its homological dimension.

Remark 2.3.8. Exty(X,Y) =0 fori <0
Proof: Consider the following diagram in D(.A), leti >0

K.
L
// ) \ ,J,_,—/;F/ \d/‘
) G—— R S > Y[*l] f
\1\ / &N o
t X Y[—il
Le
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We can construct a complex L* and quasi-isomorphisms t, s such that the diagram
commutes, so that ¢ would be equivalent to the zero morphism.

So we set L* = 1St 1K®, i.e.

i—3 i-2
ay di

Le: ... Ki—3 Ki=2 X kerdl ! —— 0 —— -

Then T is just the natural inclusion, t} = s) for all j < i. For s is a quasi-isomorphism
we have )
HO (K*) =X and H) (K*) =0 forall j #0

Since i > 0 it is clear that both r and t ore quasi-isomorphisms. Then the commuta-
tivity of the two equivalent diagrams above follows immediately. O

Proposition 2.3.9. (Cf. [Sch23]). Let A an abelian category of homological dimension dh(A) < 1,
let X € D®(A). Then :

X* ~ PH (X*) []
j

Proof: Call the amplitude of X® the smallest integer k such that HJ (X*) = 0 for j not in an
interval of length k. If k = 0, this means that exists i such that

X®* ~ HY(X*)[—i] inDP(A)
We then proceed by induction on the amplitude: consider the following distin-

guished triangle

esnlxX s aSnX s HY(X)[-n] —— )

as
TIX P H (X))
j<n
where X*® is bounded.
Claim: the d.t. (2) splits.

To show this, it is enough to show that
Hompu (4 (H™(X*)[=nl, T="1X*[1])
~ P Hompu (4, (H™(X*), H (X*) [n—j+1]) =0
j<n
But this follows sincen—j+1>1forall j <nand dh(A) < 1.

Now, to produce the splitting, simply notice that Homp (4) (—, Y*) is cohomolog-
ical for all Y* € D®(A), by applying it to (2) with Y* = t="~1X* yields an exact
sequence equivalent to the existence of a splitting. O

Now we move back to our previous setting to collect two important results.

Corollary 2.3.10. Let F,G coherent sheaves on a smooth projective variety X of dimension n.
Then (h(CohX) <n

Proof: By Serre duality, forn —i <0
Ext'(F,G) ~ Ext™ 1 (G, F ® wx)" ~0
O

Corollary 2.3.11. Let C be a smooth projective curve, then any object in D®(C) is isomorphic to a
direct sum ©E; (1], where E; are coherent sheaves on C

Proof: Follows from the previous results and Serre duality O
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2.4 Functors in Derived Geometry

Definition 2.4.1. A thick subcategory C of an abelian category A is a full abelian subcat-
egory such that any extensions in A of objects of C is again in C, i.e. for all short exact
sequence

0 M e ML M 0
with M/, M € C then also M € C.
Proposition 2.4.2. (Cf. [Huy06], 2.42). Let A C B a thick subcategory, suppose that any object
A € A can be embedded in an object A’ € A injective as an object of B. Then the natural inclusion

induces an equivalence of triangulated categories. between the derived category D (A) and the
full triangulated subcategory of D'} (B) C D™ (B) of complexes with cohomology in A.

Corollary 2.4.3. (Cf. [Huy06], 2.68). Suppose F : K+ (Ak™ (B) is exact, then we know that ( can
be lifted to a triangulated functor

RF: D" (A) — DT (B)

Moreover, assume that A has enough injectives:

1. Suppose C C B is a thick subcategory with R'F(A) € C for all A € A, then RF take values
in D{(B), i.e.
RF: D" (A) — D (B)

2. If RF(A) € D (B) for any object A € A then RF(A) € D (B) for any complex A €
DY (A), i.e. RF induces a triangulated functor:

RF:D®(A) — DY (B)

2.4.1 Global Sections

Taking into account the previous preliminary results, let now X to be a Noetherian scheme.

Then we know
I': QCohX —— Vecty

Fr—T(X,F)

is a left exact functor. Since QCoh X has enough injectives, we can grant the existence of
its derived functor:
RI[: DT (X) —— DT (Vecty)

we will denote the higher derived functors as
HY (X, F*) = R'T (F*)

which for a complex concentrated in degree zero F, these are just its i-th sheaf cohomology,
for an arbitrary complex they go under the denomination of hypercohomology.

Since every complex of vector spaces splits, dh(Vecty) < 1 and by the results of the
previous section, we can conclude that

RM(F*) ~ P HU(X, F*)[-i]

The following non trivial result will help us to route the desired lift of I’

Theorem 2.4.4 (Grothendiek’s Vanishing Theorem). (Cf. [Har77], 111.2.7). Let X be a
Noetherian topological space of dimension n. Then for all abelian sheaves F on X :

HY(X, F) =0

Foralli>n
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Theorem 2.4.5 (Serre). (Cf. [Har77], 11.5.19; [Ser55], 11.3.44). Let F € Coh X on a projective
scheme X over a field k. Then all cohomology groups H' (X, F) are of finite dimension.

Remark 2.4.6. For i = 0 we obtain a left exact functor
r: CohX—— Vectin

to the category of finite dimensional vector spaces. However, computing its right derived
functor is trickier, since Coh X does not have enough injectives as already noted. But for X
Noetherian scheme we can leverage the theory that rests upon us

D®(X) D2, (QCoh X) —XL— DY (Vecty)

(3)

b ~ b fin
DVect{i“(VeCtk) Prp s O (Vecti™)

N
Prp.2.2.6

[Vect%“ e Vectk}
2.4.2 Direct Image

Let f : x — Y be a morphism of Noetherian schemes. The direct image is a left exact
functor
fx : QCoh X — QCohY

So we may construct its derived functor as usual:
Rf, : DT (QCohX) — D™ (QCohY)

we call higher direct images of a complex F*, the following sheaves:
RUf, (F*) = H (Rf, (F*))

In particular for any quasi-coherent sheaf /" on X we obtain quasi-coherent sheaves R, F.
To further clarify the discussion, the following result aims to show what R*f,F on an
affine open set.

Proposition 2.4.7. (Cf. [Har77], 11.8.5). Let x be a Noetherion scheme and f : X — Spec A a
morphism of X to an affine scheme. Then for any quasi-coherent sheaf F on X, we have

R, (F) ~ HY(X, F)

Remark 2.4.8. Thus for a general morphism 7t: X — Y and F € QCohX, let SpecA C Y
the sheaves

—_~—

Hi(mi—1(SpecA, F))
patch together to form a quasi-coherent sheaf.

Remark 2.4.9. Therefore the Vanishing theorem applies so that
R'f.F =0 for i >dimX
and by ([Huy06], 2.68) we have that Rf, induces a triangulated functor

Rf, : D?(QCohx) — D®(QCohy)

We now list yet another known and important result of algebraic geometry.
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Theorem 2.4.10 (Grothendieck Coherence Theorem). ([Har77], 11.8.8). Suppose w: X — 'Y
is a proper morphism '° of locally Noetherian schemes. Then for any coherent sheaf F on X, Rirt, JF
is coherent on Y.

Therefore by repeating similar arguments as above, we can construct
Rf,: DP(X) —— DP(Y)

whenever f is proper.

Definition 2.4.11. A sheaf F is called flasque (or flabby) if for any open subset U C X, the
restriction map resyy x : I'(X, F) — T'(U, F) is surjective.

Lemma 2.4.12. Any flasque sheaf F om X is f.-acyclic for any morphism f : X — Y. Moreover
f« F is again flasque.

Furthermore if we consider a composition
X—sy—2s7
of two morphisms, then it holds in general
g« ofy =(gof) (4)

But, recall that by the last result of the previous chapter, in order to lift (4) to the derived
categories we need an f,-adapted class ZC QCoh X such that f(Z) is contained in an
gs-adapted class in QCohY. Since QCoh X has enough injectives and injective sheaves
are flasque by the lemma above, indeed wee can consider the following isomorphism of
functors

R(fog)x =~ RgsoRf,: QCohX —— QCohZzZ

Remark 2.4.13. Let f : X — Y a morphism of Noetherian schemes over a field k. Then
the composition

X%Y%Speck

yields
RT(Y,—) o Rf, = RT'(X,—)

Its Leray spectral sequence becomes

D9 = HP (Y,RIf, (F*)) = HP 9 (X, F*)

2.4.3 Local Homs
Let f € QCoh(X), where X is a Noetherian scheme. Then the functor

Homx (F,—): QCoh(X) —— QCh(X) )

is left exact and Homx (F, £) is quasi-coherent F, £ € QCoh X. To see this we can work
locally on an Uy, since Homx (F, )y, ~ Homx (Fly, ., €Iy, ) and F € QCohX, from

OX|u£x Emd OX|uO‘ —_— f‘ucx Emd 0
we apply Homx (—, £l )

0 —— Homx (Fly, , Ely,) — Homx ((Dxlf‘ﬁi“,slua) s Homy (oxhifv«,au“)

10Separated, of finite type and universally closed, cf. [Sta23], 29.41
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we can pull out the sums and since Homx ((’)X|u(x , 5|ua) ~ 5|ua we have
0 —— Homx (‘F‘u“, 5|ucx) N @]cx g|u£x SN @ch €|U¢x

is exact, and we know that QCoh X is abelian, so it is closed under kernels and sums.

Again, since QCoh X has enough injectives, we can build its derived functor
RHomx (F*,—) : DT (QCoh X) — DT (QCoh X) (6)
By definition
ExtY(F,E) =R  Hom(F,E) € QCoh X

Then we can restrict (5) to coherent sheaves on X (cf. [Huy06], 3.3; [Sta23] 17.22) along the
same lines as above
Homx (F,—): CohX —— CohX

In particular if £, F are coherent on a Noetherian scheme X, also &xti (F, &), computed in
the category QCoh X, are coherent. This is due to the existence of a locally free resolution
of any coherent sheaf F over X, and by the following non trivial fact (cf. [Har77], I1.5.2;
ibid. I11.6.8)

Ext(F,E)x =H' (R Hom(F, E)y)
:Ext}ox)X (Fx,Ex)
=R HOI’H(OX)X (.FX, 8X)

by which the latter is finitely generated for F and & finitely generated, the restriction of
(6) to the derived category of X is well defined

RHomx (F,—): DT(X) —— DT (X)
If in addition we assume X smooth and projective !! then we get
RHomx (F,—): DP(X) — DP(X)

as higher Ext’s vanish. To summarize, we have:

+ +

D*(X) __J Coherent D*(X)

Db(X) X Smooth Db(X)

Remark 2.4.14. We define the dual of a complex F* € D~ (QCoh X) as

F*Y = RHom(F*, Ox)

1t g possible to relax the assumptions by letting X to be a regular scheme cf. [Sta23] 28.9
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2.4.4 Tensor Product

Let 7* € K~ (Coh X) we define the following exact functor
F*®—: K (CohX)—— K (CohX)

Where, given £° € K™ (Coh X) we define: (F* ® gt = Dpiq=i FPREI, d=dr®
Te + (=)' £ ® dg The class of locally free sheaves is adapted for this functor, thus we can
construct its left derived functor

]:’G%—: D™ (X) —— D~ (X)

If additionally X is smooth, we an define

F* é —: DP(X)—— DP(X)

indeed any bonded complex of coherent sheaves is quasi isomorphic to a bounded complex
of locally free sheaves and their tensor product is again bounded. We define

. L
Tori(F®,E%) =H Y F* @ &E°) for F*,E* € DY(X)

Lastly, the following functorial isomorphisms hold

2.4.5 Inverse Image

Let f: (X, Ox) — (Y, Oy) be a morphism of ringed spaces, then consider the exact functor
=11 Mod(Oy) — Mod(f~' Oy))
and the right exact functor
Ox®p10,—: Mod(f~'Oy)) —— Mod(Ox)

Their composition yields our definition of inverse image f*, and we define its left derived
functor as follows:

L
Lf* = ((’)X Qe-10y (—)) of1: D (Y)—— D (X)
If f is of finite Tor-dimension'?(e.g. f is flat or Y is regular) then we can consider the
restriction to bounded complexes
Lf*: DP(Y)—— DP(X)

Moreover when f is flat Lf* = f*.

2.4.6 Compatibilities

Let f : X — Y be a proper morphism of schemes over a field k. We have the following
natural isomorphisms

1. Projection formula : let 7*,£* € D°(X)

L L
Rf.(F®) ® £* —— Rf(F* @ L*(E*)

12Cf. [Sta23] 15.66
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. let F*,E€° € DP(Y)
L - L
Lf*(F®) ® Lf*(£®) —— Lf*(F* @ E°)

. Pull-Push Adjunction: Lf* 4 Rf,, i.e. for any £° € D?(X) and F* € DP(Y), the

following is an isomorphism

Homy (Lf*F*,£®) —— Homy (F*, RfE®)

. Hom-Tensor Adjunction:

RHomx (F* © £°,G*) ~RHomx (F*, RHomx(€°,G*))
R%mx(f.,g.) é g. er}'{DmX(]:.,g. é go)

In particular

L
RHomyx (F*,E%) ~ F*V ® &°
F* o~ (FY)Y
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3 Fourier-Mukai Transforms

(defn rose [x]
(with-out-str (print x "is a rose")))
(rose (rose (rose '"rose")))

"rose is a rose is a rose is a rose"
Getrude Stein — Sacred Emily

rewritten as Clojure procedure

In past chapters we have been procedurally frosting new layers of abstraction to the
already calcified theory underneath. We went from the homotopy category of an abelian
category to its derived category, from varieties to the derived category of coherent sheaves
on them. This chapter exemplifies what we mean by “studying geometry”: probing the
“space” with a suitable notion of “transformation” and examine the shards of what has
been fixed by it. The provision of such transformations will inevitably add yet a new layer
of abstraction to the body of the theory.

Thus we focus on Fourier-Mukai Transforms, an instance of the broader subject of integral
transforms between categories. The core idea of such transformations is that an object in
the derived category of the product of the varieties conveys almost all functorial information
there is to know between the derived categories of the two varieties.

In here we develop the basic theory and examples to get us acquainted to this new
instrument. By the end of the chapter we will be able to spot already uncanny patterns
brought out by this kind transforms, namely the criteria concerning equivalences of
Fourier-Mukai type and Orlov’s Theorem.

3.1 Definition and Examples

We will adopt the following conventions: Let X and Y be smooth projective varieties over
a field. We have the projections

T X XY X, my:XxY—oY

Definition 3.1.1. Let P € D®(X x Y), the induced Fourier-Mukai transform is the compo-
sition of the following functors

L L
R7tx s (My € @ P) «+——— My & @ P 1 iy E i £
R, L ot
XY DP(X) i DP(X xY) AL DP(X x Y) &———— DP(Y) tOREY

T R7ty.

E iy ——— i€ (ELQ P —— Ry, (my & (%) P)

The definition is symmetric, the same object P parametrizes two transforms:

L L
O 7Y(E) =Ry, (M E @ P), (03T =)DF7X(E) == Rrx, (4 € © P)
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Note that projections mx, my are flat, therefore we don’t need to derive their pullbacks
i, 74!, We say P is the Fourier-Mukai kernel of ®p. Such varieties X and Y are called in
the literature (e.g. [HuyO06]) Fourier-Mukai partners when ®p is an equivalence.

For ease of reading we will denote ®p = ®X Y whenever the direction of the tranform
does not arise to confusion and use the notation d)]t, to refer at the transform from the
other direction.

Remark 3.1.2. Since ®@p is a composition of triangulated (exact) functor, it is itself triangu-
lated.

We list few examples in order to exploit how common this type of functor is. Recall the
projection formula of last chapter:

fEPQF ~ 1, (E°RFF*)

Examples 3.1.3.
1. Identity functor:
id: D®(X) — D®(X)
can be casted as a Fourier-Mukai transform with kernel O where A is the diagonal

in X x X. In fact, let i: X — A C X x X we have 1,0Ox = O, then by the projection
formula, we obtain

(D@A (E®) = m (MT"E* ®1.,0x)
=1 (1. ("1 E° @ Ox))
= (moi)y ((moi)"€* ® Ox)
=&°

2. For a function X -5 Y we have the graph X T8 X x Y where I'r =id x f. We have
I't, Ox = Or, so similar to the identity case we get

Doy, (E%) = (myoTy), ((mx oT¥)" €° ® Ox) = f.E°
We can reverse the roles of 7ty and 7tx to get
X—Y Y—X
In particular for f : X — Speck we have f, =T, therefore taking global sections can

be seen as a special case of the above Fourier-Mukai transform

3. Taking the shift of the diagonal gives the shift, we have

(DOA[H (5.) =& ®OX[” = g.[ﬂ

4. The Serre functor 7 — F ® wx[n] is of Fourier-Mukai type with kernel i,wxn] €
DP(X x X), where n = dim X and 1i is the diagonal embedding above

5. The tensor product F* ® — is of Fourier-Mukai type, using the kernel i, (F*) with
L X = XxX

6. Let P € D?(X x Y) be flat over X of base filed k , x € X be a closed point and
k(x) ~ k be its residue field. For the purpose of the example we can think of a family
of sheaves {Px}xcx on Y parametrized by elements of X, or as a deformation of the
sheaf Py, for a distinguished closed point xy. Consider then the Fourier-Mukai
transform ®p : D?(X) — DP?(Y), we have

@p(k(x)) =~ Px

IRecall the pullback is defined as a tensor product
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Where k(x) is the skyscraper sheaf supported at the closed point x with stalk the

base field k i. e.
k ify=x
k =
(kG)y {O otherwise

and Py = (P| {x}xv) as a sheaf on Y. To see this, we apply the definitions: ®p(k(x)) =

Rty (P é@ miyk(x)). Looking more closely as the argument the derived pushforward
we have that by flatness of P over X, the functor Coh(X) > G — n{\ G ® P is exact,
therefore its derived functor will be just the operation of applying the tensor product
term-wise, but k(x) is a complex concentrated in degree zero, so the input of the
Fourier-Mukai transform is just a sheaf.

L
P ® myk(x) ~ P@1,i*Oxxy (wherei:{x} x Y <= X xY)
~ 1, (1*Oxxy ®1*P) (Classical Projection Formula)
~ i1, (P ® Oxxy) (= Pligny)

Then by applying Ry, as ix is also exact, we obtain
Dp(k(x)) =~ R(7ry4 0 14)(1*P) ~ (ry 0 1)4(1*)P ~ Py € Coh(Y)

where the middle isomorphism follows by the fact that my oi: {x} X Y < Y is an
isomorphism, therefore exact.

Example 6 exhibits the following philosophy: the evaluation of the Fourier-Mukai trans-
form at the skyscraper sheaf with support on a closed point, ®p(k(x)), has to be thought
as the pairing of a Dirac delta function 85 € (C2°(Q))’ at x and a test function ¢ € C(Q).
Then

%

(6, 0) = jﬂ 5 = @(x) Py = Op(K(x))

This, of course, goes in strict analogy with the classical Fourier Transform of functional
analysis, that is historically why S. Mukai described the functors in Definition 3.1.1 as
“Fourier functors” in his renowned article [Muk81]. By further extending this analogy, we
can see an actual pattern:

Classical Integral Transforms | Fourier-Mukai Transforms

Function over X f F  Complex of coherent sheaves on X
Embedding into X x Y f xidy my  Pullback

Product with a kernel K(x,y) (—:K) | (—®P) Tensor product with P

Integration | R7ty.  Derived pushforward along fibers of Y

As a heuristic first approximation, the reason why last row of the table above should be
sensible is given by the following isomorphism:

MU, 7y, (G) ~ @ T(Ux{x},Gx), UCY open
xeX

which actually holds for any sheaf of modules G over X x Y under the assumption of
equipping X with the discrete topology.

It is also possible to develop the theory of integral transforms for arbitrary categories, in
this framework, the analogy between the two view crystallizes as just a matter of selecting
the desired category. See [Dol09], chapter 3.

3.2 Adjoint Kernels and Composition

Definition 3.2.1. A correspondence over two objects X and Y in an arbitrary category
C is a morphism p : R — X x Y. If C admits pullbacks (or finite limits), it is possible

34



to define a composition of correspondences in the following way: let p; : Ry — X XY
p2:Ry — Y X L.

RioRy —— Y X R,y
r

idy x p2

Ry XxZ —— XxXYXxZ
p1 xidz

Y‘Z

XxZ

Where R; o R, denotes the categorical pullback of the square, then the composition is
defined as pj o py == Ry 0o Ry — X X Z given by further composing with the projection
vz

As an immediate example in the category of sets we can consider two binary relations,
Ri CXxYand R, CY x Z, then
Ry o Ry = mixz (v (R1) N7y 2 (R2)) € X x Z

Where the projections follow the diagram below:

XxYxZ
TTXY JT‘XZ Yz

| > ><]

Remark 3.2.2. Correspondences form indeed a category which can be thought as a
generalization of the category Rel of binary relations.

Let CD]>§1__’Y, CDEZ__’Z be two Fourier-Mukai transforms. Then we define 2

P10 Py = mixzs (Tixy+P ® myz:Q) € DP (X x Z).

Then,
Y—Z X=Y o pX—Z
DY Lo @F Y ~ dFE

This shows that the definition of the Fourier-Mukai transform is functorial also in the slot
located by the kernel, i.e.

DP(X xY) —— [D®(X),D®(Y)]

P OF7Y(—)

is a functor targeting the category [D®(X), D®(Y)] of functors between the derived cate-
gories of X and Y. Since Py o P, = P, o Py by the inherent symmetry of the categorical
pullback, then the transform in the other direction is again parametrized by Py o P, i.e.
(@p,) 0 (@p,)" = (Pp, 0 Dp )t = OF 5

Now we focus on another essential property of the transform: left and right adjoints
Fourier-Mukai transform are doomed to be of Fourier-Mukai type.

Definition 3.2.3. Let P € D?(X x Y), we define

PL =PV @mywyldimY], Pg=PY @niwxldimX] € D*(X xY)
2In the literature it is also denoted as P; % P, (Cf. [Orl09])
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Let ®p , Op, : D?(Y) — DP?(X) be their corresponding Fourier-Mukai transforms.

Proposition 3.2.4. ([Huy06], 5.9). The Fourier-Mukai transforms ®p , ®p, : DP(Y) = D?(X)
are left, respectively right adjoint to ®p, i.e.

Op, 4 Dp o Dp,

3.3 Equivalence Criteria and Orlov’s Theorem

In order to explain how equivalences interweave with the notion of integral functors we
need to introduce some technology first. This section closely follows the exposition found
in [Bril9] and [Huy06].

Definition 3.3.1. A collection Q of objects in a triangulated category D is a spanning class
of D (or spans D ) if for all A € D the following two conditions hold:

1. If Hom(Al[i], w) =0forall w € Qand alli € Z, then A ~ 0.
2. If Hom(w,Afi]) =0forallw € Q and alli € Z, then A ~ 0.

Lemma 3.3.2. ([Huy06], 3.17). Let X be a smooth projective variety. Then the class of skyscraper
sheaves of the form k(x) with x € X a closed point, are a spanning class for the derived category
DP?(X).

Proof: Tt is enough to prove that for any non-trivial 7* € D?(X) there exist closed points
g p y p
x1,%2 € X and integers 17,1, such that

Hom (F*,k (x1) [i1]) # 0 # Hom (k (x2), F* [i2])

However, by applying Serre duality we obtain
Hom (k(x), F* [i2]) ~ Hom (F*, k(x) [dim(X) —i2])" .

Therefore let xq be a closed point in supp (H™(F*)) where m is the maximal integer
for which ‘H' := H'(F*) # 0 for 1 € Z. Then there is a non-trivial map3 in

0 #Homp, ((H™(F*%))x;, k(x1)) =~ Homo, (H™(F*),k(x1))

Since (H™(F*))x, is a finite dimensional vector space over the residue field* k(x1),
then we have

Hom (F*, k (x1) [=m]) £ Hom (H™(F*), k (x)) # 0

where the isomorphism (%) is expounded by the following diagrams:

g o
gSm e H™(tS™MF*)

3Let ix{x} < X the natural inclusion, recall that the stalk functor and Mod(Ox x) 2 A — iy A € Mod(Ox) are
adjoint:
Homp, (Fx,A) = Homo, (F,ixA).

4A k.a. the fiber at x;
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More explicitly, 7 is the canonical projection:

Fe S o T
{ ! { i
TSMFe . coo —— Fmol s kerd™ 0
| | " |
H™(F): .- 0 H™(F) —4— 0

Since morphisms in derived category are up to quasi-isomorphisms, by how we
defined m, we can work with the truncated complex T=™F*. Thus we conclude
the proof by taking i; = —m. O

Remark 3.3.3. The argument in the last bit of the proof above is actually a de facto strategy
when working with complexes concentrated in degree zero in a derived category. So it is
useful to generalize the passage to see clearly the pattern and explore its implications.

Let A be an abelian category, A®* € DP(A) we define:
it :=max{i : H'(A®) #£0} and i~ :=min{i: H'(A®) £ 0}
Then:
1. There are morphisms in D®(.A)
A® —2 5 HU (A®)[—iT]
HE (A®)[—i7] —— A

such that H'' (@) ~ id ) and HY (¢) ~id

Hit (A® Hi™ (A®)

2. Let B € A, from the previous point, we obtain the following isomorphisms in D® (A

Hom(H'' (A®),B) ~ Hom(A®, B[-i*]) (1)
Hom(B,H' (A®)) ~ Hom(B[—i ], A*) 2)

3. Let HY(A®) = 0 for i < m, then there is a distinguished triangle in DY (A)

H™(A®)[—m] A® B® H™(A®)[-m+1]

with .
HI (B*) ~ {H)(M iy >m,

0 if j<o.

Theorem 3.3.4. ([BO95], 1.1). Let X,Y be smooth, projective varieties, and let @ : DY (X) —
DY (Y) be an integral transform. For x € X let Py = @ (k(x)). Then @ is fully faithful if, and
only if, we have

0 ifx#yori¢g(0,dimX]

Hompu (v) (Px, Py i) = {k ifx=yandi=0.

The proof of last statement is already given and well expounded in multiple sources; see,
for instance, the accounts given in [Bri19] 5.1 and [Huy06] 7.1. We will give, nevertheless,
the proof of the theorem that will follow. This is to give us a chance to introduce few more
crucial concepts and techniques that benefit our understanding of the whole theory of
Fourier-Mukai transforms.
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Definition 3.3.5. A triangulated category D is called decomposable if there exists two full
subcategories D7 and D;, each containing objects non-isomorphic to the zero object, such
that

1. any object X in D is isomorphic to the bi-product of an object A; from D7 and an
object A, from D;;

2. Homp (A1,A2[i]) = Homp (A, A 1[i]) =0 foralli € Z and all A; € Dy, Ay € D;.

Recall that the biproduct, or sum, of objects A, B in an additive category is an object which
is both the product and the coproduct of A and B.

Remarks 3.3.6.

® The decomposition is stable with respect to the shift functor: let A; € D; as in the
definition above, then A;[r] € D; for any r € Z. Indeed,

Homp (A2, Aj[r+1]) =0 = Homp(Ay, Az[r +il)

for all i € Z; then if A;[r] is the biproduct of A € D7 and B € D, with B # 0, then
there is a non-zero morphism B — Aq[r]. Thus B must be a zero-object, and hence
Aq[r] is an object of D;.

¢ One can restate the condition about the biproduct by saying that for any object X in
D there is a distinguished triangle A; — X — A, — A¢[1], where A; € D;. Since
A1[1] € Dy, the morphism A; — A;[1] is the zero morphism. One can prove that
this implies that the triangle splits, i.e. there is a section A; — B. Applying the
functors Hom(X, —) and Hom(—, X), we obtain that B is the bi-product of A; and
As.

¢ A triangulated category which is not decomposable is called, unsurprisingly enough,
indecomposable

Example 3.3.7. ([Huy06], 3.10). If X is a scheme then D(X) is indecomposable if and only
if X is connected.

Proposition 3.3.8. [Huy06] 1.54. Let F : D — D’ be a fully faithful exact functor between
triangulated categories. Suppose that D contains objects not isomorphic to 0 and that D’ is
indecomposable. Then F is an equivalence of categories if and only if F has a left adjoint G 4 F and
a right adjoint ¥ - H such that for any object B € D' one has:

H(B)~0 = G(B)~0
Theorem 3.3.9 (Bridgeland). [Bri19], 5.4, [Huy06], 7.11. Suppose @p : DY (X) — DY(Y) is
fully faithful. Then ®p is an equivalence if and only if
Dp(k(x)) @ wy =~ Op(k(x])
for all closed points x € X.

Proof: Assume first ®p(k(x)) ® wy =~ ®p(k(x)). Let us abide to the following syntactic
shortcuts for the adjoint transforms of last section

®p, 4 Op 4 Dp,
Il Il Il
G F H

Let H(F®) ~ 0, then foralli € Z

Hom (H (F*),k(x)[i]) =~ Hom (F*, F(k(x))[il])
~ Hom (F*,F(k(x)) ® wyli]) (by assumption)
~ Hom (F(k(x)), F*[dim(Y) — '])v (Serre duality)
~ Hom (k(x), G (F*) [dim(Y) —i])¥ =0
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We know by Lemma 3.3.2 the objects of the form k(x) span DY (X), this suffices to
see that H (F*) ~ 0. Thus we conclude by means of Proposition 3.3.8.

On the other hand, since F is an equivalence, H ~ G are both quasi-inverses so
k(x) = HF(k(x)) = GF(k(x))
furthermore,
GF(k(x)) ® wx[dim X] = SxGF(k(x)) ~ GSyF(k(x)) ~ G(F(k(x)) ® wyldim Y])
Then by merging the last two lines, we obtain
GF(k(x)) ~ GF(k(x)) ® wx ~ G(F(k(x)) ® wy)[dim Y — dimX]

Therefore dim X = dim Y and the desired isomorphism follows. O
Remark 3.3.10. In the last proof we used the following fact.
Let C, D k-linear categories, S¢, Sp their Serre functorsand A€ C,B €D . If F: D — C
is an equivalence, then Fo Sp = S¢ o F. Indeed,
Homg¢ (A, S¢(FB)) ~ Hom¢ (FB, A)Y
~ Homp(B,F 'A)Y
~ Homp(F'A, SpB)Y
~ Hom¢ (A, F(SpB))
Or simply, by exploitation of the universal property of Serre functors, F~'S¢F is a Serre
functor for D, and hence has to be isomorphic to Sp .

The analysis of whether or not a Fourier-Mukai transform is also an equivalence erupts in
the following questions.

1. Do they naturally arise? What are the conditions to ensure that a given functor is of
Fourier-Mukai Type? How can these conditions be sharpened?

2. If a functor is isomorphic to a Fourier-Mukai transform, is its kernel unique (up to
isomorphism)?

Orlov’s theorem, we are about to state, is an attempt to give a precise answer to all these
enquiries.

Theorem 3.3.11 (Orlov). Let X and Y be two smooth projective varieties and let
F:D°(X) — D®(Y)

be a fully faithful exact functor. If F admits right and left adjoint functors, then there exists an
object P € D (X x Y) unique up to isomorphism such that F is isomorphic to ®@p :

Fﬁq)p

Although this theorem sits almost too casually in this section, this should not make the
reader lax about the depths of its proof—which we refrain to give—and the far reaching
consequences in many fields. The proof employs the use of Postnikov systems and the
Beilinson resolution of 04 C P™ x P™ in order to craft a suitable kernel for the given
fully faithful functor.
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4 Applications and Examples

To think is to forget differences, generalize, make
abstractions. In the teeming world of Funes, there
were only details, almost immediate in their
presence.

Jorge Luis Borges — Funes the Memorious

4.1 The derived category of IP"

This paragraph draws its content mostly from [Cal05], we will adopt most of the notations
and the theory of dimension of triangulated categories (which we refrain to explore in full
extent) from [Sta23]', [Rou04] and [Orl08].

In order to elicit the architecture of the derived category of P™ we need to build up on
some basic concepts that inherently come into play when a category is endowed with a
triangulated structure.

Definition 4.1.1. Let D a triangulated category, we identify full subcategories of D with
subsets of Ob(D); then we employ the usual abuse of notation where A € D stands for
A € Ob(D). Let A, B be full subcategories of D. We define

Ala,b] will be the full subcategory of D consisting of all objects A[—i] with i € [a,b]NZ
and A € A. Therefore it closed under the shift from left to right!

smd. A be the full subcategory of D consisting of all objects which are isomorphic to
direct summands of objects of A

add A be the full subcategory of D of all objects which are isomorphic to directs sums of
objects of A

Bx A the full subcategory of D consisting of all objects X € D that fit into a distinguished
triangle of the form

A B X All]
m m
B * A

Then we define, for E € D viewed as a full subcategory

Remarks.

LChapter 05QI
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A = Ax---x A withn > 1 and * is associative

Each (E),, is a strictly full®> additive subcategory of D, closed under taking sum-
mands and shift, but does not necessarily preserve cones.

(E) is strictly full, triangulated subcategory and it is the smallest subcategory of D
containing the object E

e We can generalize (E) to multiple objects as follows

<E]/~-~/Eﬂ.> = <E] @@ETL>

Definition 4.1.2. Let D be a triangulated category and E € Dx
1. We say E is a classical generator of D if (E) = D.

2. We say E is a strong generator of D if (E)r, = D for some n > 1.

3. We say E is a weak generator or a generator of D if for any nonzero object K of D
there exists an integer n and a nonzero map E — Kmnl].

Let us untangle—only marginally so—the relationships among the definitions above
Remarks 4.1.3.

¢ If E is a classical generator, then E is a weak generator

¢ If D has a strong generator, then all its classical generators are strong.
We can now state the structure theorem for D? (IP™).

Theorem 4.1.4. The derived category of P™ is generated by

<01Pn(_n), Opn(=n+1), ..., Opn(=1), O]PH>

In order to prove it though, we need to collect the following result from [Bei78]

Proposition 4.1.5 (Beilinson). Exists a resolution made of locally free sheaves of O o, namely

0 — Opn(—M)XQOQO*n) — Opn(—n+DHROQ" T(n—1) —— ...

e S Opn (-1 RQ'(1) ———— Opn K Opn — Op — 0

Recall,

Definition 4.1.6. Let ¢ : £ — Ox be an Ox-module map on a ringed space X, where we
assume & to be locally free of rank n . The Koszul (chain) Complﬂg’ Ke () associated to ¢
is the complex of sheaves of commutative differential graded algebras defined as follows:

dn

K.((p)—{O ANE A“_1E*>---*>A]SL>OX*>O}

The differential d. : Ke (@) — Ke(¢@) is the unique derivation such that d;(e) = ¢(e) for
all local sections e of £ = K1 (). More explicitly, on a basis element of NkE
di(e1 AL . Aey) = (=) T pler)er Ao A AL Aex

i=1,...,k

Remark 4.1.7. If £ —%— Ox —— 0 is exact, then its Koszul complex is exact in Mod (Ox)
and is called Koszul resolution of Ox relative to ¢. Now if we select a section

s € (X, &) =~ Homx (Ox, £) ~ Homx (£, Ox),

2it is a full subcategory and given X € (E) any object of D which is isomorphic to X is also in (E).
3The Koszul complex is selfdual
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we can build its Koszul complex K, (s):

0— s AngY dnyan—1egV . ATEY S L0 — 0
Where the differential is

d(ti A AR = Y (DT et ALLARA L AL tiley) =6

i=1,...n

Then the image of s in Ox is a sheaf of ideals, those are in 1: 1 correspondence to closed
subschemes of X. In fact, locally around x € X, sx € & is represented by an tuple of
regular functions f1,...,fn: U — A, for some open neighborhood U C X of x. For such
functions f; , it makes sense to ask whether or not f;(x) = 0. Then we say that s(x) = 0 if
fi(x) for i =1,...,n. This does not depend on the open neighborhood U. The locus of
such x’s is closed*. We call such subscheme Z(s), the zero scheme of s.

Then we say a section is regular at a point x € X, if f; is not a zero divisor in
Ex !/ (F1, 0 Fim1)Exx;
then a section is regular if regular at every x.

The above notion of regularity is equivalent to require exactness of the augmented Koszul
complex’, i.e.

K (s) = {OH/\“fv A, ANV S ATEY 2 Oy —— Oz () — 0}

proof of Prop. 4.1.5 (Beilinson):

Let {yo,...,yn} be a basis for I'(IP, O(1)). Then consider Euler’s exact sequence on
I[)TL
0—— Q! — 5 oot — 50— 0.

Dualizing and twisting by —1, we obtain:
00— O(-1) — O™ —— T(-1) —— 0

where T denotes the tangent sheaf on IP™. Now, by applying the global section
functor

0 —— I'(P™,0(=1)) — T(P™, 0™ 2 T(P™,T(=1)) — 0
[l
0

Then we can select for I'(IP, OP™+1) the dual basis® {yg/ .. .y}{} to the chosen above,
so we can denote the image of y;/ through 7 in I'(IP™, 7 (—1)) as aiyi. Now, we
chose a global section s of O(1) X7 (—1) on P™ x P™, namely

= )
s=) x X ——

where {xi} and {yi} denote the coordinates on the first and second IP™ respectively.

4Cf. [Har77].
5Cf. [FL13], [IV, §31]
*Hom(T'(P™, 09"+1),C) ~ Hom(C™*!,C) ~ I'(IP™, O(1))
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OMRT(=1)
if
p;OM @p5T(—1)

y J m
1)

P™ x P™

N

Claim: The zeroes of s lie precisely along A C IP™ x IP™.

To this end, let us consider a coordinate patch of IP™ x IP™, say, where xo # 0 # yo.
Then in this affine patch we set Y; = y;/yo for 1 <j < n. Therefore { az:/ } is a
basis for T at each point of the patch. Then follows
Yody; —y;dyo

2

dy; =
Yo

and
0 0

3, _;dv a/ay))aY

o _19 i
ayj Yo an ! -

Now we can express s in this patch as follows

B n . n d n lgy] d
S‘go’“ e Z yoav S ME gy

=1 j=1

thus we have

‘LC‘
oSN

Forall0 <i<mand 1 <j <n. Now in the patch xo # 0 # yo we can easily
manipulate the above expression to find out when s = 0.

1
o_s@xlgf—xogy‘ —0

Yo yo
PR P - A
X0 Yo
X _ui
X0 Yo

Therefore, in the patch, the zero scheme of s is exactly the diagonal. Since this
procedure can be repeated for all affine patches of P™ x IP™, we conclude Z(s) = A.

So as to resolve the proof, let us construct the augmented Koszul complex K (s),

let £ = O RT(-1)

0— s AngY dn g an-1egVv . AlgV @0, On 0

More explicitly EY = O(-1)RTY(1) and APEY = Opn(—p) X QP(p). This
complex is exact and we call it Beilison resolution. O
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Remark 4.1.8. We can split the resolution above into short exact sequences as follows

0 — O(—m)®Q"(n) — O(—+ 1RO ' (n—1) — Ch7 —— 0

00— Chg —— O(—n+2)®Q"2(n—2) ——> Cp2 —— 0 )

0 Cq OKO Op — 0

Since short exact sequences lift to distinguished triangles (cf. Chapter 1), we see that
O can be reached by successively taking cones of the components of its resolution. In
symbols

On € (O-M)RO™n), O(-n+1) KO " (n-1),..., ORO)

n

We are now able to prove the structure theorem of the derived category of P™

Proof of Theorem 4.1.4:
Let us denote the Fourier-Mukai Transform ®g (A) = p1. (E ® pEA) from the second
IP™ to the first. We employ the following syntactic shortcut E,, = O(—p) X QF (p),
throughout.

We picture this by regrafting diagram (1) in the derived categories, since all functors
are meant to be derived, we neglect adding R’s and L’s to keep notations a bit
lighter

O(-p) ﬁﬂp(lﬂ)

) ® PzQp J@p3A

DY (P™ x PM) \ 3)

p1«(Ep ®p3A) € DO(P™) ¢ Pep -mmmo-

We know that @ (_(A) is a triangulated functor, thus, if we apply it to (2)

0 — Pg, (A) — D, (A — Chy —— 0

0 —— Cpng — @, ,(A) — Cpg ——— 0

0 Cq Doxo(A) — CDOA(.A) — 0

Are all distinguished triangles. Therefore @, (A) = A is generated by
(O, (A), Pe, (A ..., PomolA))

Claim: ¢ (A) = (Do(fi)xgi(i)(A) € (0O(1))
Let’s see:
O, (A) = p1,.(pTO(—1) ®p3QH1) @ p.A)
O(—1) @ p1,+(p3(Q' () ® A))
(p2 is open) ZO(— 1)®F(1P“ Qi )®A) ®c Opn
O(-1)®T(P", QY1) ® A)

(Projection formula)

44



The passage from first to the second line is the reason why we chose the direction
from right to left, cf. diagram (3), of the Fourier-Mukai Transform at the beginning.

To expand on (*), we know this holds in general for a sheaf of Ox-modules F and
open maps—such as projections 7x, 7y : X X Y — X, Y:

I'(U, 7tx « (MY F)) = T(U X Y, iy F) = T(Y, F) ®¢ Ox

Now, we already know from chapter 2 that the derived global sections functors
targets the derived category D (Vecti") which is of cohomological dimension < 17,
ie.
RT(F) =~ P H'RI (X, F)[—i]
i
Therefore @, (A) is isomorphic to a complex which has zeroes as differentials and
at position k

(@, (A)F = HYRT(X, A® QF) @ O(—1) =~ O(—1) N«

where we denoted hy, = dim H*RT'(X, A ® Q1) as a vector space.

Now we notice direct sums is can be generated by shifts and a cones (of zero
morphisms) so

Dg, (A) € (O(1))

Remarks 4.1.9.
¢ By choosing the integral transform in 3, but in the other direction (namely from the
first P™ to the second), the same exact argument can be adapted to prove that

<Q"(n),Q“—‘ (n—1),...,0] (1),o>

is a generating set for D® (IP™)

® Theorem 4.1.4 is sometimes (e.g. in [Dol09]) casted in the theory of semi-orthogonal
decompositions of triangulated categories. The key concept is that the generating
set in Prop. 4.1.5 form an exceptional sequence for D?(P™). By such sequence we
mean objects Ap, ..., Ap such that

Ext'(Ap,Aq) =0 forall i, if p<q,

and
. 0 ifi>0
Ext! (Ay, Ay) =
X (Ap,Ap) {k ifi=0

® Let F as a sheaf on A ~ X but viewed as a sheaf on X x X. If we tensor F with the
Beilinson resolution in Prop. 4.1.5, we obtain a resolution of F in X x X, which we
can then cunningly pushforward with Rp,. to obtain a complex quasi-isomorphic to
F. This will give rise to the following spectral sequence

F p+q=0

EV9 = HP(P™, F(r)) ® Q)9 (—q) = EPH9 =
1 (P, F(1) © 05 () 0 miqzo
and similarly, by using Rp1,

F p+q=0

EP9 = HP (P™, 03 9(—q)) ® O EPHd =
1 (P, Q5 9(~q)) ® Ox(q) = {O St q 0

which are called Beilinson spectral sequences

7Cf. Interlude: Homological Dimension
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4.2 Reconstruction theorems

In this section we discuss Bondal-Orlov’s Reconstruction Theorem, the proof presented
here closely follows the original given in [BOO01]. A the end we will discuss another way
to prove the result in terms of Fourier-Mukai Transforms and the structure of the group of
autoequivalences of a smooth projective variety with ample (anti-)canonical bundle.

Bondal-Orlov’s theorem constitute the core of this thesis, in the course of its proof we
will already be able to glimpse at the very structure of equivalences between the derived
categories of coherent sheaves of the varieties. This gives, in our view, a basis for an
epistemological justification of Orlov’s Representability Theorem 3.3.11.

Using the techniques developed insofar we will see that it is possible to pin down objects
in D®(X) that are “point-like” (though the terminology will be clear in few lines) which
will be mapped to through the equivalence to point-like objects in D®(Y). But this
correspondence of points is not enough to recover the Zariski topology of the varieties,
in fact, such feat will be delivered by the reconstruction of a correspondence between
invertible sheaves. To quote the authors of [BO01],

Invertible sheaves help us ‘glue’ points together.

First we need to pick up some of basic definitions about sheaves, i.e. the concept of
ampleness of a sheaf.

Definition 4.2.1. Let F be a sheaf over a scheme® X, we say that 7 € Mod(Ox) is
generated by global sections if exists a family of sections {si} C I'(X, F) such that the
germs {s; .} generates Fx as an Ox x-module, for every x € X. Equivalently, there is a
surjection

@iel OX — F

i.e. F is the cokernel of a free sheaf.

Definition 4.2.2. Let X be a scheme. Then we call an invertible sheaf £ on X very ample if
exists a closed immersion 1: X < IPT, for some r > 1, such that 1*(Ox(1)) ~ L.

Definition 4.2.3. (cf. [Gro60], II, 4.5.5). Let X be a scheme, and let L be an invertible sheaf
on X. We say L is ample if for every coherent sheaf F on X, there exists an integer ng
such that for every n > ng the sheaf 7 ® L®™ is generated by its global sections (as an
Ox-module).

Proposition 4.2.4. Let X as above, L an invertible sheaf on X, the following conditions are
equivalent’:

o L isample.
e For some n > 0, L™ is very ample.
if moreover X is propet, i.e. X — Speck is proper, then the above are equivalent to

¢ For every coherent sheaf F on X , there is an integer ng such that for all n > ng and i > 0,

HH (X, F @ L%™) = 0.

Proposition 4.2.5. Let X a scheme, L, M be invertible sheaves. Then:
1. If n > 0 is an integer, L is ample <> L®™ is ample.
2. If L, M are ample, then L © M is ample.
3. If L is ample, M arbitrary, then M ® L®™ is ample for large enough .

Definition 4.2.6. Let D a k-linear derived category of some abelian category. Suppose
D admits a Serre functor S : D — D. An object P € D is called point-like object of
codimension r if

8Here we consider only schemes of finite type over a algebraically closed field k = k, as customary
9Cf. [Gro60], 11, 4.4.2, 4.5.10; 11, 2.6.1
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1. S(P) ~ P[r].
2. Hom(P,P[i]) =0ifi < 0.
3. Hom(P, P) = k(P) is a field.
An object satisfying only 3 is called simple, i. e. every endomorphism of P is invertible.

Remark 4.2.7. Since we assume Hom's to be finite dimensional, for a simple object P, k(P)
will be a finite field extension of k. Thus, if k is algebraically closed, k(P) = k.

Examples 4.2.8.

* Let X be a smooth projective variety of dimension d over k. Let x € X be a closed
point. Then the skyscraper k(x) € D?(X) is a point-like object of codimension d.
Lets examine the points of the definition above:

1. Sx(k(x)) = k(x) ® wx[dim X] ~ k(x)[d] since the isomorphism holds stalkwise.

2. We have seen in Ch. 2 Rmk. 2.3.8 and Cor. 2.3.10; this actually holds for any
sheaf F € CohX.

3. There are many ways to see this, for instance we can leverage the adjunction
between the stalk functor and the skyscraper (cf. footnote 3. of last Chapter):

Hom(k(x), k(x)) ~ Hom(k(x), ix,«k(x)) =~ Hom@X’X(k(x),k(x)) ~ k(x).

e Assume wx =~ Ox, e.g. if X is an abelian variety, K3 surface or a Calbi-Yau manifold.
Then any closed resduced connected subvariety i: Y < X defines a point-like object
in DP(X). Indeed the pushforward of structure sheaf on Y, i.Oy is a point like
object of codimension dim X. The first two properties in Def. 4.2.6 are trivial, as for
simpleness

Homx (i*(,)y, i*OY) = HOIIIY (i*i*OX, Oy) = HOl’ny (Oy, Oy)

which is a field.
Definitions 4.2.9.

e The support of a complex F* € DP(X) is the union of all the supports of its coho-
mologies'’. In other words supp F* is the closed subset of X defined by

F = U supp(Hi(F°))

ieZ

Notice that for a complex concentrated in degree zero F, the support as a sheaf!!
and of its complex trivially coincide.

* The homological dimension dh (F*) of a non-zero F* is the smallest i such that F*
is quasi-isomorphic to a complex of locally free sheaves of length i+ 1. For example,
dh (F*) =0 if and only if F* is quasi-isomorphic to £[r], where £ is a locally free
sheaf.

Lemma 4.2.10. Let F* € DP(X) with supp F® = Z1 U Z; for some disjoint closed subsets
Z1,Zy C X. Then

FF~F @oF
for some non-zero objects ¥ € DY (X) such that supp(Fj) € Z; forj =1,2.

Proof: We proceed by induction on the amplitude amp(F®) := i* —1i~ of the complex F*!2.
As in Proposition 2.3.9, if amp(F®) = 0 then by Theorem 1.3.6 F* ~ F € CohX,

19Cohomology of the complex F*, not its sheaf cohomology
i e. supp F = N{U € OpX | Fl, = 0}¢
12Notations as in Remark 3.3.3 of the previous chapter
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i.e. (up to a shift) a coherent sheaf concentrated in degree zero. Then supp F* =

supp F = Z1 Ll Z, we see then easily follows that!3
F~=Fz,® Fz,.
Now let amp F* > 1, m = i™. Since we can complete the roof
TSTMEe
H™(F)[-m] > F®

to a distinguished triangle in DP(X) (cf. Remark 3.3.3)
H™ (F*)[—m] —'— F* —— G* == coneh —— H™(F*)[—m + 1]
So that, by the long exact sequence in cohomology
= ) 12+
We can apply the inductive hypothesis on both H™(F*) and G*, forallgand j =1, 2
H™(F*) =H; ®H, and G* =G| & G5
Such that supp H;, supp HI(GS) € Z;
Now since H™9(GY) and H; are coherent sheaves with disjoint support, we have
Hompy x)(HY(GY), Halp]) = Ext? (HI(GY),H2) =0, VpeZ
This is clear for Ext® since Homcgnx (H9(G*®), ). For higher Ext’s observe that the

roof H4(GY) <% K* — H; [p] must be zero since s is a quasi-isomrphism, hence
supp K* = supp H9(GY) and the morphism K*®* — H,, is stalkwise zero.

At this point if we apply Kiinneth spectral sequence
0 = Hom(H~9(G3), Hulp)) = Hom(G$, Halp + q))

To gain
Hom(G3, H2[1—m]) =0,

similarly
Hom(GS5, H1[1—ml]) =0.

Now choose Fj to complete the morphisms G — #;[1 —m] to distinguished
triangles, for j =1, 2

F —— G —— H;[1—m] — F]
Then we have the following diagram

o — GI@e Gy, —— Hil—mldHa[1—m] —— K& FS[1]

%h lz Jz %h[]]

F* G* H[O—m] —— F*[1]

13The notation F7 refers to the “cut by” procedure in standard sheaf theory, i.e. Fz := iz*izl F for any sheaf

over a topological space X and any closed subset Z <% X. Stalkwise we have:

Fx ifxeZz
(F2)x = { 0 otherwise
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where the arrow h comes from axiom TR3, moreover it is an isomorphism by the
Five Lemma. Then by the long exact sequence in cohomology we have

H™(F§) ~ H; and Hq(Fj') ~ Hq(Gj') for g >m

In particular supp F§ C Z; O

Proposition 4.2.11. Let X be a smooth projective variety over k. Suppose that F* is a simple object
of D (X) with zero-dimensional support. If Hom(F®,F*[i]) = 0 for i < 0, then

F® ~ k(x)[m]

for some closed point x € X and some integer m.

Proof: Since supp F* has dimension zero, it must be a finite, disjoint union of closed points

in X. If supp F® is not a single point, then we may apply the previous Lemma 4.2.10
and we would have a non-trivial decomposition F* ~ F{ @ F5. Then the projection
onto one of the components would yield a non invertible endomorphism.

Therefore supp F* is concentrated in a single point, thus all sheaves H9(F®) are
supported in one closed point x € X. The residue field is k(x) ~ A/m, where

U = Spec A is a neighborhood of x and since supp H' " = supp H'" = {x}, notations
as above, we have H4(F®) = H4

0# (H" )x M, and My, =~ (H )y #£0
where M, M are finitely generated A-modules.
Then we can use the following fact from commutative algebra:

For M a finitely generated module over a local Noetherian ring (A, m) and
supp M = {m} there exists the following surjection 7 and injection i

M—"% A/m —— M
Indeed, because A is Noetherian, there exists a filtration
0=MoCM;C...CMy=M

with Mi11/My >~ A/py, for p; € supp M, see for instance [Sta23], O0LB.
Since A is local, p; = m for all i. The sequence above gives rise to an injection
i as well as to a canonical projection M — M/M;, ~ A/m

Therefore we have a non trivial composition

(HY )x k(x) (HY )x

Which extends to a non-trivial morphism of sheaves H!" — #! and completed
to a distinguished triangle as above, by taking advantage of the composition of
these two natural roofs

- .
TSUTFe TSUFe

Which we shift to obtain

Felit] ALV Feli~]
Recall that from Remark 3.3.3, the maps ¢ and 1 induce the identity at the i*-th and

i~ -th cohomology, respectively. Hence since h is non-trivial it must be i* =1~ =m,
so F* has zero amplitude, i. e. a shifted coherent sheaf supported in x, say F[m].
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Now, F = H™ % %™ is a non-trivial morphism given locally by

M—"%A/m -+ M

where M+ = M~ = M. Since F is simple, h is invertible, in particular 7 and i are
isomorphisms, and locally M ~ A /m. Therefore F =~ k(x) O

Proposition 4.2.12. Let X be a smooth projective variety of dimension n with ample canonical or
anti-canonical sheaf. Then any point-like objects of D® (X) are of the form k(x)[ml, i.e. shifts of
skyscrapers supported at some closed point x € X.

Proof: We already know that the skyscraper sheaves k(x)[m] are point-like objects, see
Examples 4.2.8. Assume P € D®(X) be a point-like object of codimension T, then

P ® wx[dim X] ~ P[r]
implies'*
H (P) @ wx[n] = H(P)[r]
non-trivially for i~ <j <1i", this forces n = r. If we keep tensoring with wx we
obtain ) 4 .
HP)=H ~H ®w§t, t>0
Where wi' is very ample given wx ample. The same argument holds if the
anti-canonical sheaf w;l were ample, we would have H) ~ H) @ w{*.

Let £ = w®*! gives rise to a closed embedding i: X < IP™, for some m, such that
L ~1*Opm(1)

L(H © L) = i (B @1 Opn(1) = L H) © Opn (1) = (LH)(1)

We may then assume!® X ~ P™ ~ Projkltg,...,tm] and H} = M for some graded
module M = @4 M4 over klto, ..., tm]. Notice that, by what we worked out before,
twisting M produces no effect

M~ M(1) ~ M(2)... (4)

Where M(n)q = Mpu1q. Let Ppm(T) be the Hilbert polynomial of M, which is
defined to be Py (n) = dimy My, for large enough n. We know'® that degP(T) =
supp M. Since (4), must have

PM(TL)ZPM(TL+1):

Which is possible only if the polynomial has degree 0. Therefore supp M = supp H/
is zero dimensional, thus we may apply Proposition 4.2.11. O

Remark 4.2.13. As we have seen in the proof above, ampleness plays a fundamental role
in Proposition 4.2.12, and it fails when w*! is not ample, see for instance Example 4.2.8.

We have shown a way to reconstruct points of a variety X, now realize line bundles on X
as objects of DY (X)

Definition 4.2.14. Let D be a triangulated category together with a Serre functor Sp. An
object L € D is said to be invertible if for each point-like object P € D, there is an integer
np (which depends also on L) such that

k(P) ifi=mnp,and
0 otherwise

Homop (L, P[i]) = {

14Locally free sheaves are adapted to the tensor product, i.e. — ® wx is exact and commutes with limits and
colimits, cohomology is a cokernel

15The argument can be followed verbatim for X a closed subvariety of P™

16Cf. [Ser55], 111, §6, par. 81, 6; [Vak23] 18.6.1; [Har77] 7.5.
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Proposition 4.2.15 (Bondal, Orlov). Let X be a smooth projective variety over k. Any invertible
object L* € D®(X) is of the form L[m] with L € CohX a line bundle on X and m € Z.

Conversely if we assume wil is ample, then for any line bundle L and any m € Z, the object
L[m] € D®(X) is invertible.

Proof: Let us prove last part of the statement. Let £ be a line bundle on X, P a point-like
object in DY (X), by assumption, is of the form k(x)[l]. We want to show that
L[m] € DP(X) is invertible: for i € Z

Hompu ) (£Im], P[i]) =~ Hompp (x) (£, k(x)[i +1—m])
~ ExtiJrlfm(ﬁ, k(X))
= R Homeonx (£, k(X))
= R"™ Homeonx (Ox, £ @ k(x))
= RFLM(X, LY @ k(%))
= HUF (X, £Y @ k(x)) =0
except for i = m — L since £ ® k(x) is flasque. Then we can set n, = m — 1.

The converse is a little involved, we won’t use ampleness of wil .LetL* € D?(X)
be an invertible object and m = i™ maximal with H™ := H™(L*) # 0.

Claim 1 ny ) = —m, for x € supp H™.
Indeed, by Remark 3.3.3 we have a non-trivial morphism L* — H™(L®)[—m)],
which induces the identity a the m-th cohomology and'”

0 2 Hom(H™, k(xp)) ~ Hom(L®, k(xg)[—m])
For any closed point'® xo € supp #™. Therefore ny(x o) =—m &

Claim 2 Ext' (H™, k(xg)) =0
We employ once again Kiinneth spectral sequence

B9 = Hom(H™9(L*), k(xo)lp]) == Hom(L* k(xo)[p +q])
to obtain at page 2
By~ ™ =Hom(H™, k(xo)[1]) = Hom(L®, k(x0)[1 + My (xy)]) = O
by definition of invertible object. &

Claim 3 H™ is a locally free Ox-module.
Consider the Local-to-Global spectral sequence

EY'9 =HP (X, &xt9(H™, k(xo))) == ExtPTI(H™ k(xo))

Which allow us to relate the global vanishing of I'(X, Ext! (H™, k(x0))) =
Ext! (H™, k(xo) = 0 to the local vanishing of Ext! (H™,k(xp). This spectral
sequence makes sense because RI" o R Hom(F*®,—) ~ RHom(F*,—) and the
image under Hom(—, k(x)) has support only in one point, therefore is flasque
i.e. Macyclic®.

In particular we have
E50 = H2(X, &xt°(H™, k(x0)) = 0
As well as for negative cohomology,

Ey % = H2 (X, &t (H™ k(xo)) =0

17See the proof of Lemma 3.3.2 for the construction of the isomorphism
18For instance one can use the same argument in the proof of Prop. 4.2.11 to construct a surjection H™ — k(xo)
19i. e. higher (q > 0) R9T(X, —) = H9(X, —) vanish!
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We see that

—2,2 —1,2 0,2 1,2 2,2
0=E; E, ES E) ES
\/\\
0, 1, 2,1
0 0 E5 E, E5
dz
0 0 . . B30 =0
Since
0,1 _ 140 0,1 0,1
ST =HO( .- 0 ES 0 ) =E9

Thus enforcing the same argument in the next pages of the spectral sequence,
it yields E(z)'] = Egg]. But from claim 4.2 we know E' = Ext' (H™, k(xq)) = 0,
therefore

0=Eoo = EY" = HO(X, &t (H™, K(x0))

This means that £xt has no global sections, but we know it is globally gener-
ated??, because it is supported on {xo}. Therefore

Ext! (H™, k(x0)) = 0
Since H™ € CohX we have

X0’

Eth?x X0 (M3, k(xo)) Ext! (H™, k(x0))xo

We can now use the following Lemma from commutative algebra.?!

Lemma 4.2.16. Any finitely generated module M over a Noetherian local ring

(A, m) with Ext' (M, A/m) = 0 is free

Proof: This can be found in [Mat70] 7.18, it proves the equivalent state-
ment for Tor}* in Lemma 4 and then the equivalence to the as-
sumption on Ext} in Lemma 5. O

In view of the Lemmata above we have that H}} is a free Ox x,-module. Recall
that free is an open property,indeed to see this consider a non-empty affine
neighborhood xp € U = Spec A C supp H™, where the restrinction H ™|,
correspond to a finitely generated A-module M. Since A is Noetherian?? we
get an exact sequence of finitely genrated modules

00— N—T5 A% 93 M —— 0

This induces an exact sequence localized at xy € Spec A

0
I f 9
0 N, AL My, —— 0
2
M

Now, for a minimal set of generators ny,...,ny of N, since M, is free, n;
restricts to zero in Ny,. Therefore we can consider neighborhoods23 Un, C

2The map O}

5 xo &xty, is surjective since &xt is coherent and thus its stalk at x¢ is a finitely generated

21For a modern reference see §6.2 in [Mur06]

20r by definition of a coherent sheaf

23Back at the sheaf theoretic formalism, if the germ Ty, is zero in the stalk Ny, it must be zero also in a
neighborhood
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Spec A where n; = 0. Since x € Uy, for all 1 <1 <1 we have Nlmiun. =0,
hence H™ is free on (; Un,.

Because X is irreducible, H™ is coherent and supp H™ contains an open,
dense subset of X, we have supp H™ = X. Thus H™ is locally free. &

Claim 4 # is a line bundle on X.
In Claim 1 we proved there is a surjection H™ — k(x) for any x € supp H™.
Therefore
Hom(L®, k(x)[—m]) ~ Hom(H™, k(x)) # 0

and from Definition 4.2.14 of invertible object, holds
Ny (x) = —M, vx € X
i.e. ny(y) does not depend on x, if r is the rank of H™,
k(x) £ Hom(L*, k(x)[~m])

~ Hom(H™, k(x))
~ Hom (04", k(x)) =~ k(x)®"

Where in the first line () is justified stalkwise. Therefore r = 1. &

Claim 5 L° is a sheaf _
It is enough to show H' = 0 for i < m. Indeed, consider again the spectral
sequence of Claim 2

EJ™™ =Hom(H™, k(x)[q])
=Ext9(H™, k(x))
~ HI(X, Hom(H™, k(x))) =0, Vq >0 )

This is because Hom(H™, k(x)) is supported in a single point x, and hence is
flasque.

Suppose that i < m. Then by Definition 4.2.14, we have
E~'=Hom(L% k(x)[—i]) =0, VWxeX
Now to show that H' = 0 is enough to show
Eg’_i — Hom(H}, k(x)) =0, Vx € X
4 Since E~' = 0, we can just show that each of E% ! persist up to the limit, i. e.
ES P =Y t=E, i<m

By induction on i.
Anfang: i=m—1. We can visualize page 2 of the spectral sequence as

follows
0= EZZ/_m_'_Z 0 Eg,—m+2 E;r_m+2 Ei,—m—b—z
0 0 ng_mH E;—m+1 E%’_mH
—1,— 0,— \ 2 B
0 Ez " EZ m 0 Ez ™=0
I
0
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by (4), the row q = —m is filled with zeroes except in position (0, —m). Neg-
ative indexed columns corresponds to negative Ext’s which vanish by 2.3.8,
since both coherent sheaves.

Inductive step: HY =0, ig <i < m—1. Then if we scroll the diagram above,
up to row ig + 1, the induction hypothesis applies: *! = 0. We obtain

(1—-i0) —ip—1

>O:E;2’ d>1:_(2)'*10 d>E§, -0 y oot

Therefore we can repeat verbatim the argument in the Anfang. Hence
HY=HY1*)=0, Vi#m
So L* must be a shift of some line bundle £ € CohX.

O

Bondal-Orlov’s reconstruction theorem employs a known result of algebraic geometry,
which we present in the following form

Theorem 4.2.17. ([GW20], 13.47 and 13.48). Let X be a quasi-compact scheme. Let L be an
invertible sheaf of Ox-modules on X. Consider the graded algebra S == @ HO(X, L®Y), and its
i>0
ideal S = @ HO(X, LZY). For each homogeneous elements s € HO (X, L&) , i > 0, define
i>0

Xs = {XEX T Sy gmxcffi}.

Then the following are equivalent.
o L isample.
¢ The collection of open sets Xs with s € S, covers X, and the natural morphism

X & Proj S

is an open immersion.

® The collection of open sets Xs, for s € S homogeneous, is a basis for the Zariski topology on
X.

Corollary 4.2.18. ([GW20], 13.75). Let X be a smooth projective variety over k. Let L be a line
bundle on X. If L or LV is ample, then the natural morphism of k-schemes

X —— Proj (@ H™(X, L®™))

is an isomorphism.
proof (sketch): As in the proof of Proposition 4.2.12, up to tensor powers of £ we have at our

disposal a closed immersion X < P™ defined by the sections sg,...,sn € (X, F).
Let Ox(1) == L ~ i*Opn (1) = O(1). Let Zx the sheaf of ideals defined by X in
P™ =Projkixo,...,xn]. Then X = i(X) = Projk(xo,...,xnl/I where

[=T(Zx) = @ HO(X, Ix(1))
teZ

There is a natural morphism of graded algebras

klxo, ..., xn] —2— @ T(X, Ox(1))
tez

P(x0,...,Xn) —— P(so,...,5n)
It is easy to see that ker ¢ = I. Then consider the following exact sequence

00— Ix®0M) —— O(n) —— Ox(n) —— 0
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which we composed with Hom(Ox, —) yields the usual long exact sequence in
cohomology

oo — 5 HO(X,0(n)) —— HO(X,Ox(n)) —— H' (X, Ix @ O(n)) —— - - -

But by Grothendieck’s Vanishing Theorem 2.4.4 applies to O(n) ® Ix = Ix(n) to
obtain for large enough n
H' (X, Zx(n)) = 0

Therefore HO (X, O(n)) — HO(X, Ox(n)) is surjective and lift to ¢. O
We are finally in position to prove the main theorem of this thesis

Theorem 4.2.19 (Bondal-Orlov’s Reconstruction). Let X and Y be smooth projective varieties
over a field k, assume (anti)-canonical line bundle of X w)j?] is ample. If there exists an exact

equivalence DP(X) % DP(Y), then X ~ Y as k-varieties. In particular, also w$1 is ample.

Proof: To deconstruct its complexity, we subdivide the proof in multiple steps.
Step 1: We shall assume F(Ox) = Oy.

By definition of exact (triangulated) equivalence, point-like and invertible
object. We must have

{Point-like objects in D®(X)} —r 5 {Point-like objects in D®(Y)}

H (Prop. 4.2.12) T( *)
px ={k(x)[m] : x € X closed, m € Z} {k(y)im] : y € Yclosed, me Z} =
{Invertible objects in D®(X)} —F {Invertible objects in D®(Y)}
H (Prop. 4.2.15) j(**) (6)
{LIm] : L € PicX, me Z} {LIm] : L € PicY, m e Z}

Where, px (resp. py) denotes the set of isomorphism classes of shifts of
skyscrapers supported at closed points in X (resp. in Y), and Pic X,Pic Y their
respective Picard groups.

Since w? is ample, by last part of Prop. 4.2.15 we have that Oy is trivially an
invertible object in DY (X). Because F is an equivalence, F(Ox) is an invertible
object of D®(Y). By applying the first part of Prop. 4.2.15 in Y, we must have
F(Ox) ~ M[l] for some M € PicY and | € Z, regardless of whether w$] is
ample or not.

Now, if F(Ox) # Oy we can replace F with the following composition of

equivalences
Ve —
DP(X) —F DP(y) M@=, pory) Y pogy)
That we may still call F and it satisfies F(Ox) = Oy. &

Step 2: F induces bijections px < py and PicX < PicY

We shall prove the vertical inclusion () in (5) is indeed a bijection between
classes of isomorphisms, for the second (*x), follows immediately by Propo-
sition 4.2.15.

From the bijection in the first row of (5)
px ~ {Point-like objs. in D’ (X)} ~ {Point-like objs. in D®(Y)}.
Choose a closed point y € Y, denote x, € X the point that satisfies

Fk(xy)myl) ~k(y), dmy €Z @)
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Suppose there is a point-like object P € DP(Y) which is not in the form
k(y)[ml, because of the bijections above there is a unique closed point xp € X
such that F(k(xp)[mpl) ~ P. Then xp # xy for all closed points y € Y.
Therefore we must have for any closed y € Y and any integer m
Hom (P, k(y)[m]) ~ Hom (F(k(xp)[mp], k(y)[m])
~ Hom (k(xp)[mp], k(xy)[my + m])
~ Hom (k(xp), k(xy)[my + m—mp]) =0
k(xp) and k(xy) are skyscrapers supported at different points, so
Ext!(k(xp), k(xy)) = 0

for all i € Z. But objects of the form k(y) form a spanning class in DP(Y) (cf.
Lemma 3.3.2), therefore P ~ 0, which contradicts the assumption on P being
a point-like object; indeed by Definition 4.2.6 End(P) is a field and idp # 0.
So we can circle through diagram (5), i.e.

px {Point—like objs. in Db(X)} ~ {Point—like objs. in Db(Y)} ~ py

To achieve the same feat but for (6), notice that by following the procedure in
(7): for any closed point x € X exists a unique closed point yx € Y such that
F(k(x)) =~ k(yx)[mx]. Since F is fully faithful and F(Ox) = Oy, we have

Hom(Ox, k(x)) ~ Hom(Oy, k(yx)[mx])
= R™ Hom(Oy, k(yx))
= R™T(Y, k(yx)) = H™(Y, k(yx))

Which is non-zero only if my = 0 because k(yx) is ﬂasque24. Therefore, F
maps skyscrapers to skyscrapers with no shift

F(k(x)) >~ k{yx)

This immediately implies a bijection Pic X ~ PicY. In fact, from the bijections
in (6) we were able to find for any L € PicX a unique M € PicY and m| € Z
such that F(L) = M[m]. So

Hom(L, k(x)) ~ Hom(F(L), F(k(x)))
~ Hom(M[m], k(xy))
~ Hom(M, k(yx[-m¢])) = Ext™ "t (M, k(yx))

As above, this forces m; = 0. &
Step 3: wy is ample.

Since F is an equivalence and commute with Serre functors 3.3.10, by Step 1
F(Oy) ~ Oy in D®(Y). Since dh (Ox) =n = dh (F(Oyx)) = dim Y we obtain
that dim X = dim Y. So we have

F(wk) (S Ox )

>~ S]\?(F OX )
~ S¥(Oy)[—kn]
~ wl\?.

and
HO (X, wk) ~ Homyx (Ox, wk)
~ Homy (F(Ox), F(w))
~ Homy (Oy, w}) ~ HO(Y, w})

24Perhaps also because Oy is free and higher Ext’s vanish!
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for all i.

Let S be a quasi-compact scheme S over k. Consider line bundles £ and £;
on S and take
op € Hom(L1, £2) = HO(X, £Y ® £3)

for each p € S closed, define

o« = Hom(x, k(p)) : Hom(L;, k(p)) —— Hom(L;, k(p))
Then Uy = {p € S : o, # 0} is a Zariski open® subset of S (see for instance
[GW20], Remark 13.46). Indeed this provides an homological description
of the set of zeroes Z(s) of a section s of an invertible sheaf £, where X =
X\ Z(s).

In our setting, since F sends k(x) to k(yx) for any x € Z(s). Then it maps

(OX s L k(X))
IF
(Oy 5 F(L) — K(yy))

Therefore the bijection px LN py sends subsets of the form X C X to subsets
Yi(s) € Y. Since among sets of the form X there are affine open subsets

defining a base for the Zariski topology of X (w*! is ample and 4.2.17), f
establishes an homeomorphism between the sets of closed points of X and Y
respectively. Recall that for any k-scheme S of finite type, we denote the set
of closed points (or k-valued points) of S as

So = Homy (Speck, S),

we can reconstruct the scheme (S, Os) up to isomorphism from its set of
closed points (Sp, Os,), where Os; = t1Ox and t : Sy < S the natural
inclusion, cf. [GW20] 3.37.

Now fix a line bundle £ € PicX. Recall that it follows from Proposition
4.2.17 that the collection of such Uy for « € HO(X, £L®™), forms a basis for
the Zariski topology if and only if either £ or its dual £V is ample.

Then the natural isomorphisms
HO (X, wi®Y) o HO(Y, wi®h)
give rise to a bijection between the following families of open subsets
Bx = {Uq : a € HO(X, wx®)}

¢
By ={Uy : x € HO(Y,w$®i)}

Therefore By is a basis for the Zariski topology of X, and restricts to a basis
of the Zariski topology of Xy. The bijection f above is an homeomorphism,
hence By, is a basis for Yy which then constructs the scheme Y. In virtue of
Theorem 4.2.17 this implies that wy is ample. &

Step 4: End game: X >~ Y.

The product in the canonical ring

A(X) = é HO (X, wk)
i=0

Note that the germ fy is invertible in Ox  if and only if the residue class f(x) of f in k(x) is non-zero. See
[GW20] section 7.11
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can be expressed by the composition of s1 € HO(X, wl),s; € HO (X, wi),
s1-52 = Sk(s2)[—in]os7.

From the steps above we have that F defines an isomorphism of graded
canonical rings A(X) — A(Y). By Step 3, w$1 is ample, therefore we just
need to apply Corollary 4.2.18. Since both (anti-)canonical bundles are ample:

X = Proj @ H® (X, wk) ~ Proj P HO (Y, wh) ~ ¥

Remarks 4.2.20.
¢ It is worth mentioning the proof given here works for arbitrary fields k.

e It is possible to employ an alternative argument®® for the ampleness of wy. Assume
k = k is algebraically closed and let ¢ : Y — P} be a k-morphism, L = ¢*(O(1))
and sg,...,sn its sections, denote V C T(Y,L) the subspace spanned by all the
si = @*(yi). Then ¢ is a closed immersion if and only if:

- Elements of V separates points, i.e. for any two closed points p, q € Y, there
exists a s € V such that s;, € mpLy, and sq ¢ mqLq or viceversa, and

— Elements of V separates tangent vectors, i.e. for any closed point p € Y the set
{s €V : sp € mpLy} spans the k-vector space mp, /m?.

See [Har77] 11.7.3.

We now review few facts about the Kodaira dimension of a variety.

Definition 4.2.21. Let X be a smooth projective variety and let £ € Pic(X). The Kodaira
dimension kod(X, £) of £ on X is the integer m such that

7 ——7Z

t— hO(X, £4 = dimHO(X, £Y)

grows like a polynomial of degree m for { > 0. By definition, we set kod (X, £) = —o0 if
ho (X, £%) =0 forall ¢ > 0.

Remarks 4.2.22.
¢ If kod(X) = dim X, we say that X is of general type.

¢ The Kodaira dimension is a birational invariant, i. e. if X, Y smooth projective varieties
birationally equivalent variety, then kod X = kod Y. See [CU06]

We shall give a different proof of Bondal-Orlov Reconstruction Theorem by means of
Fourier-Mukai Transforms. From now on we make free use of Orlov’s Representability
Theorem 3.3.11, in order to prove the last results presented in this chapter.

Theorem 4.2.23 (Orlov). Suppose X and Y are smooth projective varieties with equivalent derived

categories
DP(X) —— DPb(Y).

Then there exists a ring isomorphism A(X) =~ A(Y) between the respective canonical rings and, in
particular, kod(X) = kod(Y).

To prove Theorem 4.2.23 above we need the following technical Lemma, which highlights
the categorical properties of composition of kernels

Lemma 4.2.24. [Orl03], 2.1.7. Let X1, X, and Y1,Y, be smooth projective varieties over k. For
eachi=1,2, let P; € DP°(X; x Y;), and denote Py X P, € D ((X; x Y1) x (X7 % Y7)) their
external derived tensor product.

26Tt can be found in [Huy06], 4.11
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1. Consider the induced Fourier-Mukai transforms ®p, : D®(X;) — D®(Y;), for i = 1,2, and
Op,ep, : DP(Xq x X2) — DP(Y7 x Y3). Then there is an isomorphism

Opymp, (E} KES) = Op, (E}) B O, (E3),

which is functorial in EY € Db(Xi),for alli=1,2.
2. If Op, : DP(X;) — DP(Y;) is an equivalence of categories, for i = 1,2, then

®p,p, : DP(X1 X X2) — DP(Y1 x Yy)

is also an equivalence of categories.

3. For R € DP(X; x X3), let S = @p,p, (R) € DO(Y7 X Y3). Then the following diagram

commutes.
o}
DY(X;) «—1— DP(Yy)

D®(X;) —— DP(Y3)

Proof of Theorem 4.2.23: By Orlov’s Representability Theorem 3.3.11, there is P € D?(X x
Y), unique up to isomorphism, so that F is of Fourier-Mukai type, i.e. F ~ ®p . In
particular the left and right adjoints are isomorphic to ®p

Y=X o pX—2Y ~ HY—X

Hence by uniqueness of the kernel,

P\/ ®p§}wy[n} =P @ Pgr:= Pv ®p§<wx[n]
where n = dim(X) = dim(Y). We denote Q the kernel of the quasi inverse of @p
and 0 : X x X — X x X the permutation that swaps the factors. Notice that the

compositions
OX=Y @YX

DY(X) —— DP(Y) -2 DP(X)

\_/r

(DOAX

1

(DOUAX

D?(X) —— DP(Y) —— DP(X)

X—=Y Y—X
q)Qﬁ (DP*)

are isomorphic to the identity, we know that by uniqueness of the kernel Po Q :=
P13+ (P52P ®p33Q) = Oa,, which is the kernel of idpo (x), likewise if we repeat
the same argument swapping the functors, we obtain Q o P >~ O, =~ idpb(y)-
Therefore if d)\éHX is an equivalence also its transpose

(@é—)X)t — (D)C(2—>Y (8)

is an equivalence. Denote

PRIQ =pl, ®p3Q € DY((Xx V) x (XX Y))
2
DY ((X x X) x (Y xY))

we can define a Fourier-Mukai transform

(0]
DP(X x X) — 22, DP(y x Y)
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let
R = Opq (ixw) € DP(Y x Y)) 9)

where we denote i : X — X x X the customary diagonal embedding of X. Then
from Lemma 4.2.24 we have

commutes. We know that CDzi;X = Sx[—sdim X] and since any equivalence com-
mutes with Serre functors Sx and Sy (cf. Remark 3.3.10), we have
Or >~ Opo S&[_tn} o q)Q
~ @poDg o Sy[—tn]
~ S'\‘([—tn] ~ @YY

t
)« Wy

When j: Y — Y x Y denotes the diagonal embedding of Y. Again, by uniqueness of
the kernel we have R ~ j,w?, that is, from 9

Qprg(lwy) =jwy, VteZ
We know by Lemma 4.2.24 and (8) that ®pr( is an exact equivalence. Therefore
Hompb (x x) (1w, 1 w%) ~ Hompo iy, vy G+ 0¥, jxwy), Vs, t € Z.

Since the pushforward functor of the diagonal morphisms is exact, the have an
isomorphism of vector spaces

Hompy (x) (W%, w) =~ Hompe vy (WY, wy), Vs, t e Z.
Then if we take s = 0, we obtain, for all t
HO (X, wi) ~ HO (Y, w})
As in the last proof, this shows the isomorphism between the canonical rings. [

To further study how these equivalences are realized, we see that from Bondal-Orlov’s
reconstruction Theorem that this problem immediately reduces to the study of autoe-
quivalences of the bounded derived category of a smooth projective variety, i.e. exact
(triangulated) k-linear equivalences

DP(X) —— DP?(X)
We will denote the set of all isomorphism classes of autoequivalences of D? (X)

Auteq D°(X)

Remarks 4.2.25.

e All automorphisms f € AutX induce the autoequivalences?’

s
DP(X) T DY(X)
f‘*

which are quasi-inverse of one other.

Z’These are for a plethora of reasons; first f,,f* are functors and as such they fix the identity and respect
isomorphisms and compositions. Another, perhaps excessive, is Gabriel’s Theorem
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e The Picard Group Pic X embeds? in Auteq D®(X), since any £ € Pic X gives rise to
an autoequivalence

Db(x) £25,

D®(X)
e The set of shift functors [n] for n € Z is a subgroup of Auteq D®(X) naturally
isomorphic to Z

Corollary 4.2.26 (Bondal-Orlov). Let X be a smooth projective variety with ample canonical or
anti-canonical sheaf. Then any equivalence of derived categories D® (X) — DP(X) is a composition
of fs, where f € AutX, a twist by an invertible sheaf, and the shift functor. Indeed, there is an
isomorphism of groups

AuteqD®(X) =~ AutX x (Pic(X) & Z).

Proof: 1t is clear that the composition of exact functors is exact and that the quasi-inverse
of an exact equivalence is exact. Hence Auteq D?(X) is indeed a group. Consider
the three types of autoequivalences described in the above Remark 4.2.25, namely
shifts, automorphisms of the variety and line bundle twists, they combine as follows

AutX x (Pic(X) @ Z) < Auteq D®(X)

In fact the group PixX @ Z is preserved under conjugation (hence normal) and
meets trivially with AutX, because any non trivial element of the former does not
fix Ox but elements in the latter do.

We now argue that all equivalences that map skyscrapers sheaves of closed points
to themselves are exactly the one described above. To see this we use again Orlov’s
Theorem 3.3.11 for short?. Fix the Fourier-Mukai transform ®@p, P € D? (X x X) that
represents F € Auteq D (X). First notice that from the proof of the Reconstruction
Theorem 4.2.19, we know already that after a shift and a twist by a sheaf in
Pic X (namely the pushforward of P along the projection onto X) we can assume

®p(Ox)) = Ox. By assumption there is an isomorphism X 'y X such that
Dp(k(x)) =~ Op(k(f(x)))) and supp P is the graph of f.

Then, we claim that P must be a sheaf concentrated in degree zero and of rank one.
This follows from the claims in the proof of Proposition 4.2.15, we have indeed

R Hom(Ox, k(x)) ~ R* Hom(Ox, ®p (k(f(x)))
~ Rt Hom(Ox, P¢(x))

is non zero only for i =0 and

k(x) = T'(X, Hom(Px, k(x)))
= Hom(Py, k(x))
~ Hom(H°(Py), k(x))
~ Hom((’)i‘fr,k(x))
~ k(x)®T

thusr=1. So
Op =0, p=Ffio(-®L)

where L € PicX and
X — 5 X xX

x — (x, f(x))
O

2As an injective group homomorphism
2 A much longer proof would be required otherwise, that uses one of the core arguments needed in the proof
Orlov’s theorem, see [BOO01], A.3 and [Huy06] 4.17
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4.3 Abelian Varieties

In this section we will discuss the origin of the Fourier-Mukai transform, why they where
considered in the first place and what was the result that motivated the theory behind.
This will actually furnish a concrete example of a variety A with trivial canonical bundle
such that D?(A) ~ D?(A) but A o A, thus Bondal-Orlov does not apply.

Definition 4.3.1. An abelian variety A is a projective connected algebraic group over a
field k. In other words a k-scheme endowed with morphisms

e m:XXxX— X (the group law),

¢ 1: X— X (the inverse morphism),

¢ e:Speck — X  (the unit/identity k-valued point).
Such that the following diagrams commute

(unit)

(associativity)
A A A A x Speck —9X¢ 4 A x A

/| lm

mxid m A d A

z‘ Tm
AXA m A Speck x A —94 L A x A

) AxA
(V \

A — Speck —5— A
AXA

An homomorphism ¢ : A; — A, between two abelian varieties A, A, ia a morphism
which is also a group homomorphism. If ¢ is surjective and its kernel is finite, then it is
called an isogeny, its degree is defined to be the order of the kernel K, == ¢~ 1(e;)

(inverse

The group law on abelian varieties is usually written additively, so for a,b € A we write
m(a,b)=a+b,(a) =—aand e =0 € A for the unit.

Then for any closed point a € A we define the translation morphism, given by

A— A
b——a+b

and as well the ‘multiplication by n” morphismn: A — Aasa—n-a.

We list a series of relevant known facts about abelian varieties, to further enquiry see
[MRMO8] and [Mil08]

Remarks 4.3.2.
* Any abelian variety is smooth and the underlying group is commutative.

e If k = C, then the associated complex manifold is a compact complex Lie group,
which is isomorphic to a complex torus C9/A.

¢ The cotangent bundle Q5 of an abelian variety A is trivial, and so must be its
canonical bundle wa ~ Oa
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® (see-saw principle_). Let X be an irreducible complete variety and T an integral
scheme, P € Pic(X x T). If Ly = L|x, e Then exists a line bundle M on T such that
L~mM

® Suppose L € Pic A then we have

mLmLlemlestil~Lforallac A

Definition 4.3.3. Let A be an abelian variety. Then we define

Pic® A == {L € PicA : tiL~ L forall a € A}

More generally we can define the Picard functor Pic} between the category of varieties
over k, Vary and Set, which on objects is

S—— PicOA(S){M € Pic(S x A) : M € PicA for every closed s € S}/ ~.

Where, M ~ M if exists a line bundle L on S such that M ® n§L ~ M’. This functor is
contravariant, i.e. for f: T — S,

Picd (f) = (f x ida)* : Pic§ (S) — Pic§ (T)

The dual of an abelian variety can be introduced as a solution to the problem of rep-
resenting the Picard functor. It is a general fact that when A is projective then PicQ is
representable by an algebraic group Pic A and its connected component containing the
origin will be denoted by Pic® A, with underlying as in Definition 4.3.3. Pic® A represents
line bundles whose first Chern class vanishes. From now on the algebraic group Pic® A
will be denoted A and called the dual abelian variety of A, see [MRMO08] II1.13.

Theorem 4.3.4. Let A be an abelian variety then there is a uniquely determined line bundle P on
A x A called the Poincaré bundle such that:

* Plaxioy € Pic®(A) for all o € A, and
* Plie)xA is trivial.
Remarks 4.3.5.

e For L € Pic® A and n € Z, we have

L~ 1%

* We can identify A ®, A and the Poincaré bundle P of A corresponds to the Poincaré
bundle P of A through the composition

Axﬁ\%f\xﬁ%ﬁxﬁ\

where o is the transposition that swaps the factors.
Lemma 4.3.6. Let Op # L € Pic® A. Then HY(A, L) = 0 for all i.

Proof: Suppose s € HO(A, L) # 0, then it induces t*s € HO(A,i*L) # 0. They both vanish
at their zero schemes Z(s) and Z(i*s) (cf. [Har77], I1.7.7) respectively, and so does
their tensor product. But s ® t*s € HO(A,L®1i*L) ~ HO(A, OA) shows that s ® t*s
is constant, hence a contradiction.

Now suppose { is minimal with H'(A,L) # 0. Then apply Kiinneth formula to
m* ~ ML ® 5L, to obtain

HY(AxA,mL) ~ @ HYA L) @H(A,L).
itj=t
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Since
id

A%AXA%A
(id,e)

we have an injection
HYA, L) —— HY(A x A, m*L)

But this yields a contradiction by the minimality of k and H°(A,L) = 0, we must
have
HYA X A,m*L) =0

Theorem 4.3.7. ([Muk81],2.2). Let P be the Poincaré bundle on A x A. Then the functor
®p : D°(A) — DP(A)

is a triangulated equivalence. Moreover, the composition
ay (D pay
DP(A) —2 D®(A) — DP(A)

is isomorphic to T* o [—g], where g = dim A

Proof: We employ 3.3.4 and 3.3.9. Pick o, p € A. Then Py and P are line bundles in
Pic® A. We have, for o £B

Hom(Pg, Pplil) ~ H'(A, Po @ Pp) ~ 0
for all i by Lemma 4.3.6, and
Hom(Py, Po) = HY(A,On) =
Therefore ®p is fully faithful and, because the canonical bundles of A and A are

trivial, we have

Hence, ®p is an equivalence.

Now, let us consider the following diagram

AxAxA
2 l'nh’) 23
AxA AxA AxA
the kernel of the composition (D%”A o (Dé\”A is

PoP = 7'[]3*(7'(?;27) & 7'[337))

Then as an application of the See-saw principle we have that 7}, P ® m5;P ~
(ida x™)*P (cf. [Huy06] 9.13). Since i is flat we can use the following base change

id A X1
AxAxA 2T A

A X
P
A A

AXA—>

A

Therefore, putting all pieces together

PoP =m3.(m, P @ m53P)
& 113, (id A x )P
~ fﬁ*m*P
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Claim 1: 1P ~ k(0)[—g] = k(&)[—g]

Consider the spectral sequence

Ep = Bxt? (O, R9m1.P) = Ext?9(05, mP) 10
We have
ExtP 9 (04, M, P) ~ Hom (O3, 71.Plp + ql)
~ Hom

o ( ®P(0A)[P+q])
~ Hom ),

k(e), Oalp +q)) (@p fully-faithful)

~ Hom

P

Oa,kle)[-p—ql® wA[g])v (Serre duality)

~ HI"P=9(A, k(s)) ¥
Now to pin down supp 7, P we investigate the cohomology of 7 along
fibers®® of ; : A x A — A. But from Lemma 4.3.6 we know, for « € A,

(o) = {o} x A, .
Hl(A/ P|{(x}><A) =0
N—_——

m
Pic®(A)

for all 1, and yields (by definition of the Poincaré bundle) non trivial cohomol-
ogy only when o = & = 0.

Therefore every R4, P has support concentrated in {€}, hence are flasque and
the spectral sequence (10) above must collapse at page 2 where all E5'9 are
zero except for p = 0. Hence

Ext®(O3,R9m1P) ~ Hom(O4, RImy P) ~ HI™9(A, k(e))
which is zero for all q # 0, thus 7, P ~ k(€)[—g] as expected.
Claim 2: ‘P o P ~ Or, where I% is the graph of 1.

To see this we employ the same argument as in the previous claim, let («, 3) €
A x A then
2P @ 133Plrc (o,8) = P ® P € Pic® A

thus, as for Lemma 4.3.6, we must have for ani € Z
HYA, Py @ Pp) #£0 &= Pa ® P ~ O

hence if and only if « = —f, so supp(P o P) C I;. From the previous claim
we have

PoP ~mim, P ~ mk(0)—g] ~ Or.

Finally,

30Recall Fy = (7.F)yx, and see [Har77] I11.2.10
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Appendix

Triangulated Categories
Definition 4.0.1. Let D be an additive category. The triangulated structure on D is encoded
by specifying the following data
1. An additive equivalence
T:D——D

called the shift functor. We will write X[n] to denote T™(X) and f[n] for T™(f). Now
we define triangles in D to be the following diagram

X Y z X[1]
that is,
B[1]
A[l] \ C[1]
1] B
A \ C

Morphisms among triangles are given by commutative diagrams

X Y z X[]
o s [
X/ Y’ z’ X'[1]

2. A class of distinguished triangles satisfying the axioms TR1-TR4 below

TR1 ¢ X4 X—0-—X]isa distinguished triangle for every X € D

¢ Any triangle isomorphic to a distinguished one is itself distinguished

* Any morphism X = Y can be completed to a distinguished triangle
XY —Z—X[]

TR2 (Rotation). A triangle X — Y = Z =% X[1] is distinguished if and only if the
—ull]

triangle Y Y 7 2 X[1] Y[1]
TR3 For any commutative diagram of distinguished triangle with vertical arrows f
and g
X Y VA X[1]
J Jg a lf[]]
X’ Y’ z' X'[1]
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can be completed (not necessarily uniquely) to a morphism of triangles by a
morphism h.

TR4 Leth = gof, then given the distinguished triangles (f, ', "), (g,g9’,9”), (h,h/,h")
then exists a distinguished triangle (j,j’,j”) that makes the following diagram

commutative.
g’ ,,;,_/_\
/\ 7 T
X z w ufij
\ V i S /
Y v Y]
. s
i
u X[1]
\/,
f”

Remarks 4.0.2.
¢ Triangulated categories need not to be abelian in general.
® An abelian triangulated category is semisimple, cf. [H]10].

Definition 4.0.3. A functor H: D — A from a triangulated category D into an abelian
category A is called cohomological functor if it is additive and the sequence

HO) 2 hy) 29wz,
in A, is exact for any distinguished triangle
X y 25z L X0

in D. By axiom TR2 we have that if H is a cohomological functor, then the sequence

D S v O bz BUE g+ 1)

is exact in A

Definition 4.0.4. Let C and D triangulated categories. A functor F: 4 — B is said to be
triangulated (exact) if for any distinguished triangle in C

X y 257z X
there are isomorphisms {F(A[1]) —— F(A)[H}AEA such that

@xoF(h)

FOX)[]

is a distinguished triangle in D
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Spectral Sequences

Definition 4.0.1. Let A be an abelian category. A spectral sequence of consists of the
following data:

1. A family of objects E}"9 for (p,q) € Z x Z and v > 0.
2. Differentials:
d?,q . E'TE’,q 'E;F"JFT,qu"F]
such that for consecutivedy® o d¥* = 0, for all r.
3. Isomorphisms:

£ ker dP9

_ 14O pp+er,q—er+e
r+1 — Im dp—r,q+rf1 =HO (& )-
T

4. For any (p, q) there exists an o(p, q) = 19 such that d}'9 = AP a1 — 0 for all
T > 10. In particular, E}'9 ~ E¥;9 and we will denote such object ER9.

5. A decreasing filtration
< CFPTIEM CFPEM CFPTEM C - C FOEM = E

such that
(JFPE™ =0and [ JFPE™ =E"

E ’ — l ’ ~ [ ] I l

Remarks 4.0.2.
¢ The integer r marks the “pages” of the spectral sequence.

e The directions of the differentials are visually understood as follows

of
dq
*, —> @
\
°
ds
°

* When (4) holds for all p, q , we say that the spectral sequence collapses at page 0.
o If EX9 =0, for all p, q, then EPF4 = 0. Follows from 5.

d

¢ If we are given objects on a page, say v > 1, then the next page is fully determined
by the previous, up to isomorphism. Therefore we often introduce the spectral by
writing
Ef’q — EPHd

¢ To instantiate concretely a spectral sequence—and hance have a glimpse of its
usefulness—lets assume all objects E}'9 are finite dimensional vector spaces. Let
1o = 2, then all the differentials in page 2 vanish and we must have for all p,q € Z

ED9 ~ ER9 ~ FPEPTA/FPTIEPTA



Therefore
FPEPHA — Egrq @ FPHTEPHA ~ E‘z"q ® E127+1rq—1 @FPH2EPHd — ...
So FPE™ = @y >0 EEJrk'q*k, forn=p+q,

EM = JPPEr ~ P EER
keZ

Definition 4.0.3. A double complex L** is given by the following data: (LP-9,d}"9, d¥;9)
i.e. a collection of objects LP'9 and morphisms

dPa:1P9 — P19 and aPd . LP9 — LPAT]

satisfying the relations

d? =0, d%4 =0, didy+dd; =0.

So we have the following diagram where each square commutes

p—1q 4ard
. Lp—],q Lprd % ]_P"‘]rq - ...

p—1,q P.q p+1,q
di; di dry
dp—l,q+l P.q+1
sy 1p—lag+l I patl L qptlag+l L.
p—1,q+1 P,q+1 p+1,q+1
dII dH dII

The associated total complex L* = tot L*® is defined by

"= @ 9, dar=df9+(-nrapt
p+q=n

Then we can define the standard filtration on the total complex L*® as follows, n=p+q

FPLk = PApIPTha- Tl p[Pt2d—2p ... PTd0 g ... = EB [n—a.p
q=p
and satisfies d;(FPL™) C FPL™*+1,

Assuming L is up-left bounded, we can visualize the filtration as follows

FOLZ — LO,Z D L],] e LZ,O

]

F] LZ — L],] @ LZ,O
FZLZ _ LZ,O

More generally
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Definition 4.0.4. A filtered complex is a complex L*® together with a decreasing filtration
o CFMcc P lM ce PO =1, W,

satisfying d™(F*L™) € F*K™*! for all n.
S R IR ot

J J J

. FkLnfl FkLn FkLnJr] L

J J J

. Fk+1 Ln—] Fk+1 n Fk+1 Ln—H .

Now given a double complex L**, consider its standard filtration {FKL™},, defined above,
of its total complex L* = tot(L**). We call

grk L= FkLTL /Fk+1 L™ = Lnfk,k
the associated graded objects to the filtration. Note that they form a complex gr*(L*) and
H@(grk“_c)) — H@—k(]_o,k)'

We will write H*(L*®) for the complex given by (H™(L*4)) 4cz and analogously HT} (L**®) ==
(H™(LP*))pez.

Proposition 4.0.5. ([GM03], I11.7.5). Let L** be a double complex such that L™ %¥ = 0 for
[k| > 0. Then there is a spectral sequence:

EP9 = HPH{ (L**) = HPT9(L*).

Definition 4.0.6. Let A®* € K" (A4). A Cartan-Eilenberg resolution of A® is a double
complex C** equipped with a morphisms of complexes A®* —; C*? satisfying

e CY=0forj<0.

® The sequences

AN cno 9 cnl

are injective resolutions of A™, and the induced sequences
ker(d) —— ker(d]"®) —— ker(d]"') — - --
Im(d}) — Im(d}"®) —— Im(d]') —— -
H™(A®) —— HP(C*?) —— H}(C*!) —— ---

are injective resolutions of ker(dy ),Im d’y and H™(A®) respectively.

¢ All short exact sequences

0 —— ker(d}) cii Im(d}’) —— 0
split.

Proposition 4.0.7. If A has enough injectives, then any A® € K+ (A) admits a Cartan-Eilenberg
resolution.
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Theorem 4.0.8. Let A, B and C be abelian categories and F : KT (A) — KT (B) and G :
KT (B) — K*(C) be exact functors. Suppose A and B have enough injectives, and the image
under F of a complex 1° € K™ (.A) of injectives of A is contained in an G-adapted triangulated
subcategory Zg C KT (B). Then for any complex A € DT (.A), we have the following spectral
sequerce

EP9 .= RPG(RIF(A®)) = RPTI(GoF)(A®) = EPT4.

Proof: See Proposition 1.4.10. O
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