
1 
 

 

UNIVERSITY OF PADOVA 

SCHOOL OF SCIENCE 

Department of Geosciences 

Director: Prof. Nicola Surian 

 

MASTER’S DEGREE IN 

GEOPHYSICS FOR NATURAL RISKS AND RESOURCES 

 

COUPLING OF BOREHOLE AND SURFACE ELECTRICAL RESISTIVITY TOMOGRAPHY – 
INDUCED POLARIZATION TOMOGRAPHY IN SUPPORT OF HYDRO-GEOLOGICAL 

SURVEY: THE CASE OF STUDY AT SART – TILMAN, LIEGE, BELGIUM  

 

Supervisor: Prof. Jacopo Boaga 

Co-supervisor: Dr. Eloisa Di Sipio 

 

Candidate: Alberto Cogliati 

Badge number: 2023378 

 

Session: 2023/24 

 

 

 



2 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 
 

Index: 

 

1) Abstract                4 

2) Geological settings              6 

2.1) Sart – Tilman geographical and geological framework       6 

2.2) Sart – Tilman hydrological framework          10 

2.3) Site scale geological framework           11  

3) Geophysics: application, theory, and principles         13 

3.1) A non-invasive investigation tool          13 

3.2) Geoelectric method             15 

3.3) Electrical Resistivity Tomography (ERT)         27 

3.4) Forward model and Inversion of ERT data         29 

3.5) Physical phenomena causing Induced Polarization (IP)       36 

3.6) Time and frequency domain Induced Polarization         38 

3.7) Complex resistivity in frequency domain         42 

3.8) Complex resistivity in time domain          43 

3.9) Forward model and inversion problem         46 

4) Acquisition campaign, Software used and data processing        50 

4.1) Acquisition campaign            50 

4.2) Software used and data processing          54 

5) Inversions results              62 

5.1) Results of ERT data inversion           62 

5.2) Results of complex resistivity inversion         67 

5.3) Coverage, covariance, and angle matrices         71 

6) Conclusions               78 

 

 



4 
 

1) Abstract. 
 
Negli ultimi decenni, si è largamente diffuso l'utilizzo dei metodi geoelettrici per 

la caratterizzazione e il monitoraggio dei pozzi trivellati e del loro contesto 
idrogeologico. È tuttavia importante riconoscere oltre al potenziale dei metodi 
geoelettrici, ad esempio la naturale sensibilità alla presenza d'acqua, anche alcuni 
possibili limiti dovuti ai principi fisici dei metodi stessi.  
Nell'ambito dello studio di un pozzo trivellato presso Sart - Tilman, Liegi, Belgio, 
questa tesi si propone di studiare i possibili limiti di sensibilità relativi alla profondità 
del pozzo e di interpretazione idrogeologica. 
La profondità di investigazione necessaria per lo studio del pozzo si contrappone, 
infatti, alla maggiore sensibilità dei metodi geoelettrici in prossimità degli elettrodi, 
tipicamente posti in superficie. Per l'analisi di sensibilità, la tesi confronta i risultati 
ottenuti con e senza elettrodi in pozzo. Oltre alle sezioni di resistività ottenute 
dall'inversione dei dati, il confronto parte dalla matrice Jacobiana per derivare ed 
includere anche le sezioni di sensibilità e la covarianza tra le sensibilità dei singoli 
quadrupoli. 
Laddove si abbia sufficiente sensibilità, l'interpretazione deve poi distinguere l'effetto 
della litologia da quello del variabile contenuto dell'acqua, spesso in mancanza di 
misure ripetute nel tempo. Per la corretta interpretazione della litologia e 
l'individuazione della tavola d'acqua, si è considerata la combinazione di resistività e 
polarizzabilità. I valori relativamente bassi ed omogenei di polarizzabilità ottenuti 
escludono la presenza di livelli argillosi e indicano che la bassa resistività è quindi 
attribuibile alla tavola d'acqua, in accordo con i dati idrogeologici a disposizione. 
L'analisi di sensibilità supporta queste conclusioni ed evidenzia l'importanza degli 
elettrodi in pozzo. 
 

In recent decades, the use of geoelectrical methods for the characterization 
and monitoring of boreholes and their hydrogeological context has become 
widespread. However, it is important to recognize in addition to the potential of 
geoelectric methods, for example the natural sensitivity to the presence of water, 
also some possible limitations due to the physical principles of the methods 
themselves. In the context of the study of a borehole at Sart Tilman, Liège, Belgium, 
this thesis aims to study the possible limits of sensitivity related to the depth of the 
well and of hydrogeological interpretation. The depth of investigation necessary for 
the study of the well contrasts, in fact, with the greater sensitivity of the geoelectric 
methods in the vicinity of the electrodes, typically placed on the surface. For the 
sensitivity analysis, the thesis compares the results obtained with and without well 
electrodes. In addition to the resistivity sections obtained from the inversion of the 
data, the comparison starts from the Jacobian matrix to derive and include the 
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sensitivity sections and the covariance between the sensitivities of the single 
quadrupoles. Where there is sufficient sensitivity, the interpretation must then 
distinguish the effect of the lithology from the variable water content one, often in 
the absence of repeated measurements over time. For the correct interpretation of 
the lithology and the identification of the water table, the combination of resistivity 
and polarizability has been considered. The relatively low and homogeneous 
polarizability values obtained exclude the presence of clayey layers and indicate that 
the low resistivity is therefore attributable to the water table, in agreement with the 
available hydrogeological data. Sensitivity analysis supports these conclusions and 
highlights the importance of well electrodes. 
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2) Geological settings. 

2.1) Sart – Tilman geographical and geological framework 

 

My case of study is in a locality called Sart – Tilman. It is a subregion of Liége, 
Belgium and it hosts the University campus included the department of Applied 
Sciences. More precisely, Sart – Tilman is in correspondence of the top of a slope in 
correspondence of the bifurcation of Meuse and Ourthe valleys. The University 
campus and the site where we performed the surveys are located on the top of the 
slope of at most 250 m and it is distinguished by a wooded conformation and 
characterized by a coverage of Oligocene Period sands. Facing the Ourthe valley, 
there is a flat area corresponding to the Sart – Tilman fluvial terrace, characterised 
by an alternation of gravel, sand and clayey silt in the upper part while mostly 
gravelly in the lower part, with an overall thickness of at most 20 m.  

An exact delimitation of the Sart – Tilman terrace is difficult to carry out since we 
tend to confuse its gravelly and sandy lithology with the Oligocene sands of the 
slope. Hence, the limit between the two is not sharp. Sart – Tilman location, 
elevation and its fluvial terrace are observed in Figure 2.1a, 2.1b (hydrogeological 
map from Wallonia).   

 

 

a 
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The first geological map created of the Sart – Tilman area dates to 1897. Then, 
throughout the decades, it has undergone some modifications by the hand of Prof. 
Calembert (Calembert et al., 1964; Calembert et al., 1970; Calembert et al., 1974b; 
Calembert et al., 1975; Pel, 1980). Calembert’s deepest contribution to the original 
version mostly focuses on a further diversification of geological formations of Lower 
Devonian. These new limits layout between geological formation have been 
afterwards confirmed either suggested by many drilling sessions.   

About the stratigraphy of Sart – Tilman region, from the oldest to the most 
recent formations, let’s start from Lower Devonian Period: 

▪ Upper Siegenian (Pragian), formed mainly of schists, quartzites and micaceous 

sandstones wine-coloured and variegated, casual green schists and quartzites 

and, quartzites and light grey micaceous sandstones; 

▪ Lower Emsian (E1), composed of grey or green quartzites and green schists and 

wine lees plus a few levels of puddingstones. Transition layer between the 

Lower Emsian and the Middle and Upper Emsian is marked by the persistence of 

dark sandstone horizons and the clear preponderance of green shales, with 

intercalations of sandstone and quartzites and wine - coloured shales;  

b 

Figure 2.1a and 2.1b - Looking at the first one we can appreciate the position of Sart – Tilman area 
highlighted by the yellow circle, involving the hillside and the top of the slope reaching a maximum 
altitude of 250 m. The second picture shows Sart – Tilman position too with the yellow circle but it also 
shows its fluvial terrace (number 6) facing the South – East side of the hillside.  
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▪ Middle and Upper Emsian (E2-3), they could not be stratigraphically 

differentiated in the Sart - Tilman domain. Nevertheless, two lithological levels 

are distinguished: 

I. Lower course (E2-3 inf), formed by sandstone, quartzite, and schist. Layer 

characterized by its wine colour. It is subdivided into 5 sub-classes 

according to the proportions of the different types of rocks; 

II. Upper layer (E2-3 sup), composed of large beds of quartzite and green, 

grey, and brown sandstone. At the top, we have the puddingstone of 

Burnot. Also subdivided into 5 sub-courses. 

Now we can move to the description of the Intermediate Devonian Period of 
Sart – Tilman stratigraphy:  

▪ Eifelian, formed mainly by red shales. It reaches a thickness of 17 m at Sainval 

while only a few tens of centimeters at Colonster; 

▪  Givetien, made of puddingstone with calcareous limestone, sandstone with 

calcareous cement (macigno), coarse sandstone; 

To conclude the Devonian Period, we must define the Upper Devonian of Sart 
– Tilman stratigraphy:  

▪  Frasnian, stage made up of two limestone masses separated by an intercalation 

of calcareous shale and calcschists; 

▪  Famennian, made of by Famenne shales.  

After the Devonian Period there is a discontinuity due to the complex structural 
features that govern the Sart – Tilman area that brings to the final Series of the 
Paleogene Period, the Oligocene: 

▪ Oligocene, composed of sands with a gravelly level sometimes split containing 

quartz and flint pebbles. The bed-rock surface is also sporadically covered with 

residual Upper Maastrichtian flint. 

For the same reason, we face another discontinuity that makes us move directly 
to the Quaternary Period: 

▪ Quaternary, made up by fluvial deposits (terraces of the Meuse and the Ourthe, 

see frame geomorphological) and wind silts (loess) and slope silts (colluvium). 

The main structural features we can observe in the Sart – Tilman geological map 
concern the bedrock of the Sart-Tilman region belonging to the northern side of the 
Dinant Synclinorium. The entire area of the campus is interested by a large syncline 
having the axis in East – West direction that affects the lower Emsian (Lower 
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Devonian) layers, with pronounced flooding towards the east. The Lower Devonian 
geological formations of this zone are characterised by about fifty folds whose three 
major folds can be recognise (Pel, 1980). Hence, the main structural features of the 
Sart – Tilman region from North to South are represented by: 

▪ A synclinal fold passing through the northern slope of the Blanc Gravier stream; 
▪ An anticline passing near the Parson stream and the Blanc source of gravel; 
▪ A synclinal fold, particularly well known in the Rocher du Bout du Monde site at 

Colonster. 

Furthermore, from West to East, in the Sart-Tilman – Boncelles area we can still 
count many others tectonic elements affecting mainly the Upper Emsian geological 
formations (E2-3 inf and E2-3 sup). 

Geological formations we went through that go from Lower Devonian 
(Pragian) to the Quaternary Periods and the main structural elements of Sart - 
Tilman area we briefly explained can be seen in the geological map of Sart – Tilman 
area at Figure 2.2, 2.3 (hydrogeological map from Wallonia). 

 

 

Figure 2.2 – This image represents the geological map of Sart – Tilman and the yellow circle highlights 
the position of the studied site. It shows the various geological formations going from the Lower 
Devonian (Pragian) to the Oligocene we explain throughout the chapter.  We can notice, and it will be 
confirmed by stratigraphic log and the measures results, that the site is covered by Oligocene sands. 
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2.2) Sart – Tilman hydrological framework. 

 

Sands from the Oligocene Period show a good potential as aquifer, while the 
above silts from Quaternary Period act as protective layer. It is likely that hydraulic 
conductivity was modified by the cracks and the consequent weathering within 
cohesive rocks. Indeed, the fracturing of cohesive rocks may create a further cracks 
network which encourages the water circulation. The consequence of weathering is 
a function of the lithology we are considering, and we can distinguish between three 
main behaviours:  

1) For a carbonate, weathering translates in a dissolution of the rock and an 

enlargement of the existing fracture (and pores) network increasing the 

average hydraulic conductivity; 
2) For a sandstone, weathering returns sand that is characterised by a greater 

effective porosity which lead to a general increase of the hydraulic 

conductivity; 
3) For a shale or a schist, the alteration produces a clay which tapes the network 

of fractures reducing drastically the hydraulic conductivity. 

Oligocene Period sands concerned in the Sart – Tilman area represent an aquifer 
with significant potential accordingly to their thickness which is at most of 5 m. Since 
these sands are located on the top of an elevated plateau, they are feeding the 
underlying rivers and streams. Throughout the years, porosity and hydraulic 
conductivity tests were carried out with the purpose of characterise the Oligocene 
aquifers and it turns out that the total porosity oscillates between 33% and 60% 
with an average of 47% and that the hydraulic conductivity varies between  

Figure 2.3 – This is the geological section obtain by cutting figure 2.1.2 in North – South direction. In this 
image we can find the main folding structural features we talked about in the chapter including more 
the Devonian formations.   
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7 ⋅ 10−5 (𝑚/𝑠) and 10−7 (𝑚/𝑠) (hydrogeological map from Wallonia). 
 

2.3) Site scale geological framework. 

 

The investigated site is in the North - East side of the Dinant Synclinorium 
geological structure. The geological map of Sart-Tilman (Calembert et al., 1964) 
provides the most recent published geological interpretation of the bedrock and 
Oligocene sands for the studied area. The well I ran the survey at is located few 
hundred meters away from the Department of Applied Sciences in the University 
complex in the Sart – Tilman area, in the correspondence of the Oligocene sands. 
Since during 2015 there was a drilling campaign, samples lithology was studied. 
Hence, we now have the chance to exploit the exact stratigraphy of the site, which 
is: 

▪ From 0 to 2m, dark yellow hard to not hard sand; 
▪ From 2 to 2.4m, very hard layer of flint; 
▪ From 2.4 to 5m, brown sand; 
▪ From 5 to 8m, alternation of light brown to pinkish sandstone and schists; 
▪ From 8 to 16m, alternation of light-dark brown sandstone and schists; 
▪ From 16 to 18m, dark brown sandstones; 
▪ From 18 to 20m, greyish brown sandstone; 
▪ From 20 to 28m, brown to red sandstone; 
▪ From 20 to 32m, fractures in a sandstone bed (recovery of increasingly coarse 

cuttings). 

Furthermore, we can affirm that the first two meters sand belongs to the Tertiary 
(Oligocene Period), while the thick portion of sand and alternation of sandstone and 
shales that goes from 5m down to 16m belongs to the Burnotian (Upper Emsian, 
Lower Devonian) schists - sandstone stage.  

Regarding the components of the well, it is composed by a 32 m long PVC tube, 
about 125 mm of diameter, screened only from 12 m to 24 m deep and from 28 m 
to 32 m deep. The tube is then surrounded by a square of 1,6 m per side, made of 
concrete grout until 10,6 m deep, bentonite from 10,6 m to 14 m deep and by a 
siliceous gravel filter made of grains from 4 mm to 6 mm of diameter from 14 m to 
32 m deep. Stratigraphic log and well components can be seen at Figure 2.4 
(Rapport final sur les essais de captage menés au Sart - Tilman). 
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Figure 2.4 – Stratigraphic log resulting from the 2015 drilling session. It shows in detail the sequence 
between Oligocene sands and Devonian formations, the screening intervals of the borehole and the 
materials that wrap it. 
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3) Geophysics: application, theory, and principles.  

3.1) A non-invasive investigation tool.  

 

As suggested by the title, Geophysics is a discipline that consists in non-invasive 
investigations, and it can answer to many issues by as many applications. The main 
distinction of this discipline is represented by the distinction between active and 
passive methods. The active ones need the injection of an initial signal into the 
medium, likely the soil, and the successive sampling of this signal once it has crossed 
the portion of volume involved in the investigation. We can portrait the earth like a 
filter which modifies the initial signal as function of its physical, chemical, and 
biological characteristics. While passive methods just look for some spontaneous 
signals coming directly from the portion of subsurface, we want to investigate. In 
this case, we can imagine the earth as a natural source of signal.  

Both active and passive Geophysical methods find many pragmatic applications. 
For instance, we can use non-invasive methods to characterize the lithological 
sequence of a site, since each layer of the lithology has its own physical 
characteristics each of them either modify in a different way the initial injected 
signal, or they emit a distinctive one. We can obtain information about the depth of 
the water table and about other hydrological parameters as soil porosity and 
hydraulic conductivity. And, if we match geological and hydrological information, we 
can obtain a hydro-geological characterization of a specific site. We can understand 
if a site was contaminated and at what depth the contaminant is since it has got 
different physical and chemical characteristics than the surrounding soil that make 
them react differently to the same injected signal. We can use Geophysics to 
retrieve some fundamental soil parameters for engineering purposes. We can use 
deep Geophysical investigation methods to identify oil, gas, water, and ores 
reservoirs, since these four elements have different physical and chemical 
characteristics than the surrounding geological formations. We can observe saline 
water infiltration degree in coastal environments for agricultural purposes since 
electrical conductivity of saline water is higher than fresh water one. Either we can 
detect and monitor ice presence in permafrost and glacial areas, since ice has got 
different physical properties than surrounding geological formations, and so on. 
Furthermore, depending on the budget, on the target and on the purpose of the 
work, a Geophysical survey can be made in 2D or 3D, on land, in borehole or both at 
the same time and it can be either punctual or continuous in time as time-lapse and 
monitoring measurements.  
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 Accordingly, Geophysical investigations strictly depend on and look for the 
contrast in physical, chemical, and biological characteristics between the target and 
the surrounding medium. This statement can be resumed by the following 
fundamental equation:  

 𝐺 = 𝐺(𝑃, 𝐹)  
(Eq. 3.1) 

Which says that a geophysical quantity (G), measured by the sensors of the 
instrument (electrode, geophone, antenna etc.) is function of a certain emitted or 
injected signal (F) and a physical parameter (P). So, depending on the kind of 
instrument and the physical characteristics of the sampled volume, the instrument 
initially will gather a distribution of a geophysical quantity (G) as function of a 
physical parameter (P) and a signal (F). It is important to specify that the initial 
geophysical quantity distribution (G) is not a convincing representation of the 
portion of soil we are considering. Infact, the general purpose of the geophysical 
survey is to work on the acquired raw data to obtain a spatial distribution of the 
physical parameter, P. To do so, there are two main ways: 

1) If we have some a priori information of the site, as the cores from drilling 

which describe the lithological sequence, that we can use to create a forward 

model. A forward model is a simulation of the spatial distribution of the 

physical parameter we are looking for, based on a priori knowledge of the 

site. It can be explained by the following equation: 

 𝑃 = 𝐹(𝑀) 
(Eq. 3.2) 

Where P is the distribution of the physical parameter we are looking for, M is 

the input related to the model of the subsoil (a priori information) and F is an 

operator that rules the relation between the model and the distribution of the 

parameter. So, knowing the site geological features, I can simulate which data 

I would collect in that investigated portion of subsoil without go on the field 

and gather any actual measure; 

2) If we have not any a priori information of the site, we go through the inverse 

modelling. The inverse modelling is a procedure concerning an iterative 

objective function that guides the gradual reduction of the difference 

between the data of a synthetic model and the measured data, weighted by 
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the error in the dataset. It ends up with a spatial distribution of the physical 

quantity we were looking for.  

 

My case of study focuses on a hydrogeological characterization of a site by 
coupling on land and in borehole measurements of two active Geophysical methods, 
Electrical Resistivity Tomography (ERT) and Time Domain Induced Polarization 
(TDIP). In the next paragraphs, I will explain the physical principles that govern the 
operation of the two geophysical techniques mentioned above, while, in the next 
chapters, we will talk about how the data was acquired and processed. 

 

3.2) Geoelectric method. 

 

We cannot describe the geoelectric method without mentioning and briefly 
describing Ohm’s law. To start off, Georg Ohm (Erlangen, 16th of March 1789 – 
Munich, 6th of July 1854) was a German mathematician and a physicist who started 
to publish his first important works, based mainly on experimental proves, in 1825. 
On the 1827 he published a fundamental book based on his main empirical 
observations called “Die galvanische Kette mathematisch bearbeitet” (The galvanic 
chain worked out mathematically) which explains his theory of the electricity 
passage within solid materials, among which the theory behind the renowned 
Ohm’s law was revealed.  

The empirical homonymous physical law was obtained by applying at the two 
extremities of a conductor (made of a wire) of known dimension a potential 
difference with the usage of a battery. It comes out that given a potential difference 
(ΔV), applied at the two extremities of a conductor, it is directly proportional to the 
current injected (I) and the resistance of the material itself (R).  

 𝑉 = 𝐼 ⋅ 𝑅 

(Eq. 3.3) 

If we rearrange the initial formula, we can carry the resistance of the conductor out:  

(Eq. 3.4) 𝑅 = 𝐼𝛥𝑉 
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Nevertheless, there are two aspects of Ohm’s assumptions which are not 
compatible with the application of the theory for Geophysical purposes. Infact, Ohm 
considered firstly that the resistance (R) of the material to be constant for the whole 
dimension of the conductor and so the homogeneity of the medium. Secondly that 
the resistance depends on the dimension of the conductor itself. If we assume the 
earth as actual conductor, Ohm’s first assumption cannot be relevant since the 
subsoil has not a constant resistance value due to its heterogenic and anisotropic 
behaviours, which means that as we move within different soil portions, the 
measured resistance changes too. Under the second assumption, so considering a 
cylindrical geometry of the conductor, having total length L and section S, Ohm’s law 
can be expressed in the following way: 

 𝑅 = 𝜌 ⋅ 𝐿𝑆 

(Eq. 3.5) 

Where R is the resistance of the conductor, expressed in [𝛺/𝑚]. It may be 
important to define the dimension of the body which the current is running through 
if we are in a laboratory environment. While defining conductors’ dimension is not 
straightforward, on the contrary it is limiting, if we are dealing with geophysical 
surveys and so with three dimensional heterogeneous and anisotropic conductors as 
subsoils (often insulating). For this reason, to adapt the Ohm’s law for actual 
contexts, it turns out to be convenient to remove the resistance dependency to the 
dimension of the conductor. To do so, we consider a conductor of a certain volume 
having, as before, total length L, section area S and resistance R. We can combine 
both dimensions length and section area with the original resistance of the body this 
way:  𝜌 = 𝑅 ⋅ 𝑆𝐿 = 1𝜎 

(Eq. 3.6) 

What we carried out is a new parameter called electrical resistivity (ρ), described in 
Ohm per meter [𝛺.𝑚], which is indipendent from the geometry of the conductor, 
but it still describes its resistance. The main difference between the resistance (𝑅)  
and the electrical resistivity (𝜌) is that the first one, since it depends on the 
geometry of the conductor, is not an inherent property of the material, while the 
second one, since it is conductor geometry independent, is the innate measurable 
property of a solid material to resist the flow of current through itself, even though 
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it is not a diagnostic parameter for lithology since resistivity deeply depends on 
water content and its salinity and rocks physical-chemical characteristics. With the 
letter 𝜎 (eq. 3.6) we indicate the electrical conductivity, which results as the inverse 
of the electrical resistivity 𝜌 and it is described in siemes per meter [𝑆/𝑚]. It is an 
innate measurable property of a solid material as well and it describes the capacity 
of a material to be passed through by current.  

So far, we understood that geoelectric methods in geophysics deal with the 
injection and the passage of current through a certain volume of soil and the 
measure of the capability of that soil to resist the flow of current. In the following 
lines, I will explain the physics that guides the flux of DC current in a conductor.  

We described macroscopic form of Ohm’s law by differentiating resistance, 
electrical resistivity, and electrical conductivity. But we can formulate Ohm’s law in a 
microscopic way, by introducing the density current vector, in the general case of an 
anisotropic conductor, as a soil for instance, which is the most likely scenario we can 
face: 

 𝑗𝑥 = −𝜎𝑥 𝜕𝑉𝜕𝑥  

𝑗𝑦 = −𝜎𝑦 𝜕𝑉𝜕𝑦 

𝑗𝑧 = −𝜎𝑧 𝜕𝑉𝜕𝑧  

(Eq. 3.7, 3.8, 3.9) 

Where  𝑗𝑥 , 𝑗𝑦 , 𝑗𝑧 are the three dimensions components of the Ohm’s vector 
expressed in scalar way; 𝜎𝑥 , 𝜎𝑦 , 𝜎𝑧  are the electrical conductivity in [𝑆/𝑚] of the 
medium in the three dimensions, since we are considering an anisotropic conductor; 
the partial derivatives of voltage (𝑉) with respect to space (voltage gradient) 
describe the electric field (𝐸), created by the passage of the current itself. To 
understand how current density changes in space, we just must compute the 
current density partial derivatives with respect to space, or else the current density 
divergence since it is a vectorial quantity. What we end up with is a general PDE 
(called Poisson’s equation) that describes the direct current flux at any point in 
space within a heterogeneous and anisotropic conductor:  
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𝜕𝜕𝑥 (𝜎𝑥 ⋅ 𝜕𝑉𝜕𝑥) + 𝜕𝜕𝑦 (𝜎𝑦 ⋅ 𝜕𝑉𝜕𝑦) + 𝜕𝜕𝑧 (𝜎𝑧 ⋅ 𝜕𝑉𝜕𝑧) = 0 

(Eq. 3.10) 

Where the partial derivatives with respect to space outside the parenthesis 
represent the divergence of the current density vector.  Then, to simplify the 
calculus, we may consider the conductor as homogeneous and isotropic, 𝜎𝑥 = 𝜎𝑦 = 𝜎𝑧 = 𝜎. Eq. 3.10 turns into: 

 𝜎 (𝜕2𝑉𝜕𝑥2 + 𝜕2𝑉𝜕𝑦2 + 𝜕2𝑉𝜕𝑧2) = 0 

(Eq. 3.11) 

We can use this equation to compute analytical solutions for homogeneous systems. 
Further simplifying for the electrical conductivity, the equation reduces to: 

 𝛻2𝑉 = 0 

(Eq. 3.12) 

Where  𝛻2(⋅) is the Laplacian operator, partial second derivatives with respect to 
space. Since we made unrealistic assumpions on the homogeneity and the 
anisotropy of the conductor, which led to a simplification of the PDE by omitting the 
electrical conductivity parameter, the regular nature of the resultant Laplace’s 
equation is not able to fully describe a very specific, realistic heterogenous system. It 
is just a taste compared to the more complex equations that describe heterogenous 
and anisotropic systems.  

 At this point, to inject some current in the soil, which most of the times 
represents the conductor in geophysics, we need a battery for the current 
generation and a metal electrode which acts like the punctual source of current. The 
battery produces an electric current which pass through the electrode and then 
through a certain soil volume, producing an electric field in the soil that changes in 
space. If now we consider a simplified scenario concerning a homogeneous and 
isotropic soil, current flow lines and equipotential lines (lines among which the 
electric potential (𝑉) has the same value, perpendicular to current lines) spread 
uniformly in space. Considering two equipotential lines next each other, respectively 
in position (𝑟) and (𝑟 + 𝑑𝑟) with respect to the injection point, an infinitesimal 
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portion of space of spherical shape of dimension 𝑑𝑟 is carried out and it is interested 
by a potential described as follows:  

 𝑑𝑉 = −𝜌 𝐼4𝜋𝑟2 𝑑𝑟 

(Eq. 3.13) 

As described by the latest formula, since the equipotential lines spread within the 
soil with a spherical geometry, the potential decreases as radius increases, so as we 
walk away from the electrode. To define the electric potential as function of 
distance for only one electric source electrode, having a certain position and a 
random distance (𝑟𝑖), we simply must integrate the latest equation between 𝑟𝑖  and 
infinite: 

 

𝑉(𝑟) = ∫ 𝜌𝐼4𝜋𝑟2 𝑑𝑟∞
𝑟𝑖 = 𝜌𝐼4𝜋 𝑟𝑖  

(Eq. 3.14) 

Where 𝑉 is the electric potential, 𝜌 is the resistivity of the soil, 𝐼 is the injected 
current in the soil and 𝑟𝑖  is the distance from the electrode. This formula describes 
the electric potential as we move out from the punctual source of electric current 
for a single electrode in an infinite and homogenous space. Nevertheless, if I place 
the electrode on a homogeneous soil surface, it is more intuitive and likely to 
assume it as half-space. Thus, the injected current is distributed over half of the 
portion of space of the original volume, as shown in figure 3.1. This makes double 
the magnitude of the current density, which makes doubling the electric potential as 
well: 

 𝑉(𝑟) = 𝜌𝐼2𝜋 𝑟 

(Eq. 3.15) 
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We can apply the same concept considering a pair of electrodes as punctual 
current sources in a homogeneous soil. Infact, due to the linear nature of Laplace’s 
equation, we can simply superimpose the effect of the two electrodes, to compute 
the resultant electric potential: 𝑉𝐴 = 𝜌𝐼2𝜋 𝑟𝐴 

𝑉𝐵 = 𝜌𝐼2𝜋 𝑟𝐵  

𝑉𝐴𝐵 = 𝑉𝐴 − 𝑉𝐵 = 𝜌𝐼2𝜋 [ 1𝑟𝐴 − 1𝑟𝐵] 
(Eq. 3.16, 3.17, 3.18) 

Where, respectively, A and B are the first and the second electrode; 𝑉𝐴, 𝑉𝐵, 𝑉𝐴𝐵 are 
the electric potential measured in corrispondence of electrode A, B and between 
them; 𝑟𝐴 and 𝑟𝐵  are the distances from the first and the second electrode.  

Nevertheless, what commonly happens on the field while using geoelectric 
methods is that people work with tools that need configurations made of four 
electrodes that work in pairs, called quadrupoles. Infact, out of these four 
electrodes, we must distinguish among two electrodes that act as punctual source of 
current directly injected into the soil, called current electrodes, and generally 
indicated with the letters A-B, and the other two electrodes that collect the 

Figure 3.1 – Current flow lines (red arrows) and equipotential lines (concentric semi-circle) by using a 
single electrode as source.  
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potential difference, called potential electrodes and generally indicated with the 
letters M-N, as we show in figure 3.2. 

  

 

 

As we did before, we can exploit the linear nature of Laplace’s equation to retrieve 
the electric potential between the two potential electrodes, M (or 𝑃1) and N (or 𝑃2). 
To do so, let’s define first the electric potential at both potential electrode’s 
locations, considering that injected current has, in A and B respectively, an intensity 
of +𝐼,−𝐼: 
 𝑉𝑀 = 𝑉𝑀𝐴 + 𝑉𝑀𝐵 = 𝐼𝜌2𝜋𝑟1 − 𝐼𝜌2𝜋𝑟2 = 𝐼𝜌2𝜋 [1𝑟1 − 1𝑟2] 𝑉𝑁 = 𝑉𝑁𝐴 + 𝑉𝑁𝐵 = 𝐼𝜌2𝜋𝑟3 − 𝐼𝜌2𝜋𝑟4 = 𝐼𝜌2𝜋 [1𝑟3 − 1𝑟4] 

(Eq. 3.19, 3.20) 

Where 𝑟1, 𝑟2 represent the distances between the first potential electrode (𝑃1) and 
the two current electrodes; and 𝑟3, 𝑟4 represent the distances between the second 
potential electrode (𝑃2) and the two current electrodes. We can combine the lattest 

Figure 3.2 – Current flow lines (arrows) and equipotential lines (dashed lines) as product of a 
quadrupole. Current electrodes A, B inject the current in the subsoil, while potential ones M, N collect 
the potential difference.    
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two equations to get the electric potential sampled between the two potential 
electrodes: 𝑉 = 𝑉𝑀 − 𝑉𝑁 = 𝐼𝜌2𝜋 [(1𝑟1 − 1𝑟2) − (1𝑟3 − 1𝑟4)] 

(Eq. 3.21) 

The reason why the configurations used by the instrument are composed by 
four electrodes is because the tool is composed by an amperemeter and by a 
voltmeter and by splitting the quadrupole into two current electrodes and two 
potential ones, we can create two separate circuits that work independently. More 
specifically, the first circuit is made by the two current electrodes, the amperemeter 
and the soil that acts like a resistance and its purpose is to inject the current in the 
soil. While the second circuit is composed by the two potential electrodes, the 
voltmeter and the soil and it measures the potential difference between the two 
potential electrodes. The measure of the potential difference is possible because the 
voltmeter has got a very high internal impedance, so the potential difference 
between the two potential electrodes is not affected by the contact resistances. If 
we considered just two electrodes, which at the same time are current and potential 
electrodes, we would not be able to sharply distinguish between the previous two 
circuits. And considering that we don’t know the contact resistance between the 
metal electrodes and the soil, which is generally high (tens of kΩ), the main 
consequence would be that the contact resistances (one per each electrode) and 
the soil resistance work in series, making just the soil resistance measure difficult.  

 Going back to the latest equation (eq. 3.21), we can notice a clear dependency 
between the measured electric potential between the two potential electrodes and 
the configuration of the quadrupole. Infact, if we look carefully at the formula, we 
will see that electric potential is proportional to a geometric factor having the 
following shape: 

 𝑘 = 2𝜋 [(1𝑟1 − 1𝑟2) − (1𝑟3 − 1𝑟4)]−1 

(Eq. 3.22) 

And since 𝑟1, 𝑟2, 𝑟3, 𝑟4 are distances between potential and current electrodes, this 
geometrical factor is measured in [𝑚−1]. So, the measured electric potential 
difference is function of the geometry of the quadrupole. Thus, we can define a new 
parameter called apparent resistivity by rearranging the previous formula:  
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𝜌𝑎 = 2𝜋 [(1𝑟1 − 1𝑟2) − (1𝑟3 − 1𝑟4)]−1 𝛥𝑉𝐼 = 𝑘 ⋅ 𝛥𝑉𝐼 = 𝑘 ⋅ 𝑅 

(Eq. 3.23) 

Where 𝐾 is the geometric factor which depends on the quadrupole configuration, 𝑅 
is the resistance measured by the instrument and the resultant apparent resistivity 𝜌𝑎 is a linear relation between these two parameters and it represents a correction 
of the measured resistance as function of the relative position of the electrodes.  

 To run a geoelectrical survey, the instrumentation can work with many 
quadrupole geometries. Of course, by changing the geometry of the quadrupole, we 
change the relative electrodes pairs positioning, the value of the geometrical factor 
and so the resultant apparent resistivity, but furthermore we can change the depth 
of penetration, resolution, and sensitivity distribution as well. Let’s have a look over 
the main quadrupole’s geometry configurations for the acquisition in geoelectric 
surveys: 

- Dipole-Dipole configuration (figure 3.3) expects to have a separation of 

current electrodes AB and the potential ones MN, with both pairs located at 

the extremes of the array. Between AB and MN, the same distance a run, 

while between BM a multiple of each dipole distance runs, called na. The 

estimation of the geometric factor for this configuration is calculated by the 

following equation: 

 𝑘 = 2𝜋𝑎𝑛(𝑛 + 1)(𝑛 + 2) 
(Eq. 3.24) 

Since dipole-dipole configuration cannot go very deep with the survey, it is 

not very effective in vertical resolution, while it is in lateral resolution, and it 

has got a good signal to noise ratio; 

 

Figure 3.3 – Dipole-Dipole configuration.    
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- Wenner configuration (figure 3.4) expects to have the current electrodes pair 

AB at the extremes of the array, while the potential electrodes pair is in the 

middle of the previous two. In this case, each electrode is separated to the 

next one by a fixed distance equal to a and the geometric factor can be 

calculated by using the following formula:  

 𝑘 = 2𝜋𝑎 

(Eq. 3.25) 

Since this configuration enjoys a good degree of penetration, the vertical 

resolution turns out to be good while the horizontal one is not.  

 

- Schlumberger configuration (figure 3.5) obtains, in terms of lateral-vertical 

resolution and depth of penetration, intermediate results compared to 

Wenner and dipole-dipole ones. The current electrodes AB are located at the 

extremes of the array, while the potential ones are located in between the 

previous two. Potential electrodes are separated by a distance a while current 

and potential electrodes are divided by a distance equal to na. The 

geometrical factor can be estimated by using the following formula:  

(Eq. 3.26) 𝑘 = 2𝜋𝑛(𝑛 + 1) 

Figure 3.4 – Wenner configuration.    

Figure 3.5 – Schlumberger configuration.    
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- Multi gradient configuration (figure 3.6) expects to have the current 

electrodes pair AB at the extremes of the array, while the potential electrodes 

pair is located between the current ones. Potential electrodes MN are 

separated by a quantity a, while AM distance is equal to a multiple of na, a 

multiple of a, and BN distance is equal to ma, multiple of a. For the estimation 

of the geometric factor, we need the following formula:  

(Eq. 3.27) 𝑘 = 2𝜋 [ 𝑎𝑚𝑛(𝑛 + 1)(𝑚 + 1)𝑚(𝑚 + 1) + 𝑛(𝑛 + 1)] 

 

In my case of study, we used dipole-dipole and multi gradient configurations.  

The kind of current we inject in the subsoil through the current electrodes is a 
switched square wave. The first reason we use a switched square wave is to avoid 
any sort of charges polarization on the metal surface of the electrodes, especially 
the potential ones, otherwise it might create an incorrect shift in the measured 
voltage. The second reason why we use a switched square wave is to better 
recognize the Spontaneous Potential (SP), a spontaneous measured voltage 
produced without any previous current injection, caused by electro-chemical 
processes occurring between the components of the soil.    

An important parameter we must take care of is the distance between the two 
current electrodes A-B. That is because, as we increase the distance between the 
two, the injected current goes deeper in the subsoil and vice versa.  The current 
intensity is then ruled by the following equation, for a given current electrode 
spacing 𝐿 and a given depth 𝑧: 

(Eq. 3.28) 𝐼𝑧𝐼 = 2𝜋 𝑎𝑟𝑐𝑡𝑎𝑛 [2𝑧𝐿 ] 

Figure 3.6 – Multi gradient configuration.    
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The actual resistivity of a geological formation is the result of many aspects we 
must consider if we want to be accurate in the final interpretation. Rocks electrical 
conductivity assume a wide spectrum of values and it strongly depends on the 
physical-chemical characteristics of the rock and its saturation condition as 
explained by Archie’s law: 

 𝜌𝑓 = 𝑎𝜙𝑚𝑆𝑤𝑛 ⋅ 𝜌𝑤 

(Eq. 3.29) 

Where 𝑎 (usually near to one) is an empirical constant, 𝑚 is the cementation 
exponent (usually near to two), 𝑛 is the saturation exponent (usually near to two). 
Overall geological formation electrical resistivity depends on its porosity 𝜙 that 
represents the percentage of voids present in the total volume and it is calculated as 
the ratio between total voids volume and total sample volume. Porosity is important 
because if we were in dry condition, so the rock is unsaturated, the pores would be 
filled with air, which has a very low value of electric conductivity  (~10−12 𝑆/𝑚), 
making the overall electric conductivity of the rock sink. While, on the contrary, if 
we were in partially saturated or saturated condition, so the rock is either partially 
or completely saturated by water, the overall electric conductivity would increase 
because the water is a good conductor. Hence, porosity knowledge is a meaningful 
aspect for the estimation of the formation resistivity. In the same way, water 
saturation 𝑆𝑤 (water volume over pore volume) and water formation resistivity 𝜌𝑤 
play a fundamental role in the estimation of the overall formation resistivity. Indeed, 
by increasing the water saturation, average resistivity formation should decrease as 
well as the formation water conductivity.  

 

3.3) Electrical Resistivity Tomography (ERT). 

 

Electrical Resistivity Tomography (ERT) is a near surface imaging active 
geophysical method that expects the injection of current, of switched square wave 
form, which has the purpose of showing the resistivity distribution in the subsoil 
after an inversion procedure. This multi electrode automatic acquisition system has 
been developed starting from the 1990s and it is able to show 2D and 3D resistivity 
pictures of the subsoil. An ERT survey is the result of an acquisition array made of a 
certain number of electrodes, depending on the length of the array, the spacing and 
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the needed investigation depth, which combination forms quadrupoles used for 
both injection of current and different potential gather. Then resistance is carried 
out by the application of Ohm’s law, so by making the ratio between the injected 
current value over the measured potential difference. At this stage, apparent 
resistivity is obtained by the resistance correction for the geometric factor as 
function of the relative electrodes position, so of the configuration of the 
quadrupole. Therefore, the instrument makes a continuous, automatic, and 
sequential data gathering for all the quadrupoles combinations involved in the 
survey which brings to a single value of apparent resistivity for each quadrupole. A 
first representation of the apparent resistivity (raw data) distribution can be done by 
the pseudo section and, even though it is not a true resistivity picture of the subsoil, 
it can give us an idea of the quality of the data by showing us possible anomalies and 
main features of the investigated subsoil portion. To get a consistent picture of the 
subsoil, we must perform an inverse modelling to the raw data.  

 The gathered data are affected by errors. The kind of errors we can face by 
using ERT method are mainly two: 

- Random error is a casual difference between the observed and true values of 

apparent resistivity. To fix this kind of error it is enough to inject in the subsoil 

a switched square wave to avoid any voltage shift in the measures and to 

stack multiple gathers of the same quadrupole, two in our case, for all the 

quadrupoles combinations concerned in the acquisition array. Doing so, we 

end up with a mean value of apparent resistivity affected by a reduced 

percentage of random error; 

- Systematic error is a consistent difference between the observed and true 

values of apparent resistivity. This kind of error is found in the 

instrumentation itself and it involves errors in the system gains or calibration 

of voltage and current monitors, cable leakage and coupling in multiplexers, 

electrode aging and impedance effects (Douglas La Brecque et al 2007). Given 

the diversified nature of this error, its processing and resolution are not 

straight forward as for the random error. A way to deal with systematic error 

is to exploit the reciprocal measurements. Reciprocal measurements are 

made by switching current and potential electrodes of the same quadrupole. 

Theoretically, since the linear nature of the PDE, it ensures us the same 

measured resistance for both configurations, direct and reciprocal. But these 

measurements rarely sample the same resistance value, and this difference is 

due precisely to systematic errors. So, we must compare direct and reciprocal 

measurements: 
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𝑅𝐷 = 𝛥𝑉𝐷𝐼𝐷 ,          𝑅𝑅 = 𝛥𝑉𝑅𝐼𝑅  

𝑅𝐴𝑉𝐺 = 𝑅𝐷 + 𝑅𝑅2  

𝑟𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑎𝑙 𝑒𝑟𝑟𝑜𝑟 = |𝑅𝐷 + 𝑅𝑅𝑅𝐴𝑉𝐺 | 
(Eq. 3.30, 3.31, 3.32, 3.33) 

We can calculate the reciprocal error for any reciprocal measurement, which 
normally are the same number of the direct ones, but in my case reciprocals 
were fewer. At this point, we set a threshold which represents the maximum 
value that the reciprocal error can assume, so we discard each reciprocal 
measurement having a reciprocal error bigger than the threshold. By doing so, 
we should be able to get rid of data deeply affected by systematic error. In my 
case of study, I worked on random and systematic errors by evaluating the 
reciprocal error and by applying the Decay Curve Analysis (DCA), both are 
deeply described in chapter 4.  

 The two main linked cons of ERT method are the limited maximum 
investigation depth, which is generally about one fifth of the total length of the 
acquisition array and it can be reached at the midpoint of the acquisition scheme, 
and the loss of resolution with depth. For this reason, the choice of the array 
configuration and its total length must be taken carefully as function of the target 
and the resolution we want to get at a certain depth since different array 
configurations bring to different horizontal and vertical resolution and the total 
length guides the investigation depth.  

 As in my case of study, we can exploit already existing boreholes to run ERT 
measurements coupled with on land ones. This double array arrangement 
guarantees a greater sampled volume of subsoil, a better sensitivity at depth and 
especially in the vicinity of the borehole, better describing the electrical resistivity 
distribution along the profile.    

 

3.4) Forward model and Inversion of ERT data. 

 

Before getting into details of both forward and inverse modelling, we must 
make a premise. Infact, “unfortunately there is no unique solution to this problem, 
since electrical methods bear a certain degree of inherent non-uniqueness, i.e., 
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there typically exists a variety of different models that effectively produce the same 
response. In addition, because of practical limitations, data are neither complete nor 
perfectly accurate, but mostly insufficient and inconsistent. Therefore, in principle, 
an infinite number of models fit the data within a given level of uncertainty. 
However, by systematically restricting the model search in the inversion process, for 
instance by claiming predefined model characteristics, a “unique” solution with 
practical relevance can be obtained. This is usually accomplished by formulating the 
inverse problem as a regularized optimization problem, which involves minimization 
of an objective function comprising both data misfit (measured vs. modelled) and a 
penalty term accounting for deviations from the desired model attributes” (Binley 
and Kemna, 2005).  

Inversion and forward modelling are conceptually different tools although 
they are guided by the same formulation. Infact, both the forward model and the 
direct model need, in my case, the application of the finite element method and the 
subsequent resolution of the Laplace’s equation for each element once discretized. 
The difference in the application is that, for the forward model we refer to a priori 
geological information of the site, simulating a resistivity distribution that I could 
measure in that specific acquisition site. While for the inverse modelling we created 
an initial homogeneous model called direct model which is used in the objective 
function for the minimization of the differences between the observed resistivity 
values and direct model ones to get the final resistivity distribution.  

Hence, to build a 2D or 3D forward model we must first discretize the domain, 
so dividing the studied domain in elements (cells) each one having a specific 
electrical resistivity value and then we must discretize the Laplace’s PDE by 
approximating it numerically obtaining sets of algebraic equations. To do so, we can 
exploit the concept of difference quotients, which is at the base of the derivatives 
theory, because it is able to turn a PDE into a system of linear algebraic equations of 
as many equations as unknowns. Then, by solving the system of linear algebraic 
equations, we end up with a resistivity distribution described by the changing of 
resistivity in each element. With different quotients, we can approximate in 3D the 
partial derivatives of the Laplace’s equation in this way: 

 𝜕𝜕𝑥 (𝜎 ⋅ 𝜕𝑉𝜕𝑥) + 𝜕𝜕𝑦 (𝜎 ⋅ 𝜕𝑉𝜕𝑦) + 𝜕𝜕𝑧 (𝜎 ⋅ 𝜕𝑉𝜕𝑧) = 0 

(Eq. 3.34) 
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𝜕𝑉𝜕𝑥 ~{𝑉𝑖+1 − 𝑉𝑖𝛥𝑥𝑉𝑖 − 𝑉𝑖−1𝛥𝑥  

𝜕𝑉𝜕𝑦 ~{ 
 𝑉𝑘+1 − 𝑉𝑘𝛥𝑦𝑉𝑘 − 𝑉𝑘−1𝛥𝑦  

𝜕𝑉𝜕𝑧 ~{𝑉𝑗+1 − 𝑉𝑗𝛥𝑧𝑉𝑗 − 𝑉𝑗−1𝛥𝑧  

(Eq. 3.35, 3.36, 3.37) 

Eq. 3.35, 3.36, 3.37 are the numerical approximation of the first derivative of voltage 
with respect to space. The indexes (𝑖, 𝑘, 𝑗) refer to the positions of three adjacent 
cells for each dimension which are combined in the linear equation. A step forward 
to do is including the electrical conductivity in the numerical approximation this 
way: 

 (𝜎 ⋅ 𝜕𝑉𝜕𝑥)~ (𝜎𝑖−12 ⋅ 𝑉𝑖 − 𝑉𝑖−1𝛥𝑥 ) , (𝜎𝑖+12 ⋅ 𝑉𝑖+1 − 𝑉𝑖𝛥𝑥 ) 

(𝜎 ⋅ 𝜕𝑉𝜕𝑦)~ (𝜎𝑘−12 ⋅ 𝑉𝑘 − 𝑉𝑘−1𝛥𝑦 ) , (𝜎𝑘+12 ⋅ 𝑉𝑘+1 − 𝑉𝑘𝛥𝑦 ) 

(𝜎 ⋅ 𝜕𝑉𝜕𝑧)~(𝜎𝑗−12 ⋅ 𝑉𝑗 − 𝑉𝑗−1𝛥𝑧 ) , (𝜎𝑗+12 ⋅ 𝑉𝑗+1 − 𝑉𝑗𝛥𝑧 ) 

(Eq. 3.38, 3.39, 3.40) 

Where, the voltage is in correspondence of the node and the current conductivity 
are located within the elements. Now, if we substitute in eq. 3.34 the eq. 3.38, 3.39, 
3.40, what we obtain is: 

 𝜕𝜕𝑥 (𝜎 ⋅ 𝜕𝑉𝜕𝑥)~ 1𝛥𝑥 ⋅ (𝜎𝑖+12 ⋅ 𝑉𝑖+1  −  𝑉𝑖𝛥𝑥 − 𝜎𝑖−12 ⋅ 𝑉𝑖  −  𝑉𝑖−1𝛥𝑥 ) 𝜕𝜕𝑦 (𝜎 ⋅ 𝜕𝑉𝜕𝑦)~ 1𝛥𝑦 ⋅ (𝜎𝑘+12 ⋅ 𝑉𝑘+1  −  𝑉𝑘𝛥𝑦 − 𝜎𝑘−12 ⋅ 𝑉𝑘  −  𝑉𝑘−1𝛥𝑦 ) 
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𝜕𝜕𝑧 (𝜎 ⋅ 𝜕𝑉𝜕𝑧)~ 1𝛥𝑧 ⋅ (𝜎𝑗+12 ⋅ 𝑉𝑗+1  −  𝑉𝑗𝛥𝑧 − 𝜎𝑗−12 ⋅ 𝑉𝑗  −  𝑉𝑗−1𝛥𝑧 ) 

(Eq. 3.41, 3.42, 3.43) 

Every time we do forward modelling, we already know the electrical 
conductivity (𝜎) and the spacing between the elements (𝛥𝑥, 𝛥𝑦, 𝛥𝑧). So, voltage 
values of any element (𝑉𝑖,𝑘,𝑗) are the unknowns, combined in linear equations. 
Hence, this entire equations set (eq. 3.41, 3.42, 3.43) aims at just the resolution of 
voltage in one element (𝑉𝑖,𝑘,𝑗). But since any adjacent cell in any direction has got 
the same equations set, it turns out that any element is composed of similar sets of 
algebraic equations we have to solve to obtain the voltage in each element. To 
facilitate the resolution of this linear equation system we assume boundary 
condition, for instance I can chose arbitrarily to give a null voltage value to the 
nodes touching the boundary.  

Instead, when we solve an inverse problem, we must create first of all a direct 
model, exploiting the same finite element method and parametrization process used 
for the forward model. In my case of study, I had to produce a direct model for 
inverse modelling in 2D and for this reason the initial differential equation we had to 
work on is not of the same shape of eq. 3.34. Assuming that conductivity is constant 
in the y direction, we apply the Fourier transform in the y direction: 

 

𝑣(𝑥, 𝑘, 𝑧) = ∫ 𝑣(𝑥, 𝑦, 𝑧) ⋅ 𝑐𝑜𝑠(𝑘𝑦)𝑑𝑦∞
0  

(Eq. 3.44) 

Where 𝑣(𝑥, 𝑘, 𝑧) is the Fourier transform of the voltage in the y direction. If we plug 
this equation in eq. 3.34 this one turns into: 

 𝜕𝜕𝑥 (𝜎 ⋅ 𝜕𝑣𝜕𝑥) + 𝜕𝜕𝑧 (𝜎 ⋅ 𝜕𝑣𝜕𝑧) − 𝑘2𝜎𝑣 = − 𝐼2𝛿(𝑥)𝛿(𝑧) 
(Eq. 3.45) 

This is called Poisson’s equation, where 𝑘 is the wavenumber, 𝜎 is still the electrical 
conductivity and 𝛿(𝑥)𝛿(𝑧) repreesent two kronecker’s delta. According to 
kronecker’s delta property, only if 𝑥, 𝑧 assumed the values equal to the location of 
two electrodes, the right part of the equation would be equal to half of the current 
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intensity, otherwise it turns into zero. At this stage, “finite elements (FE) method 
was used for the discretization and the analytical solution (of eq. 3.45), where the 
continuous conductivity distribution is approximated by a mesh of individual 
elements or cells, each with constant conductivity. The potential is then calculated 
at discrete points (nodes of the mesh) by solving a linear system of equations 
derived from the discretized differential equation and boundary conditions” (Binley 
and Kemna, 2005). What we end up with at this stage is a direct model showing a 
homogenous distribution of electric conductivity, which means that each element of 
the model contains the same value of electric conductivity equal to 100 Ω.𝑚, only at 
the beginning of the inversion. This inverse model involving a flat initial direct model 
is called Occam inversion.  

 As we already said, the inverse modelling aims to get a final model showing 
the electrical conductivity distribution coherent to the raw data we gathered, 
discretized by a set of homogenous elements (cells) and defined by a model vector 𝑚, which is coherent with the observed data and weighted by its errors. This model 
vector can be represented in the following way:  

 𝑚𝑖 = 𝜎𝑖    ,   𝑚𝑖 = ln(𝜎𝑖)   ,   (𝑖 = 1,… ,𝑀) 
(Eq. 3.46) 

Where 𝑚𝑖 is the vectorial representation of the electrical conductivity distribution 𝜎𝑖 
which may be expressed either in logarithmic or in natural form. Logarithmic form is 
very common and effective in the representation of the electrical conductivity 
distribution especially when its range of values is broad. By applying the same 
concept, we can create a similar vector 𝑑 made of the observed transefr resistences:  

 𝑑𝑗 = − ln(𝑅𝑗)   ,   (𝑗 = 1,… ,𝑁) 
(Eq. 3.47) 

Now the inverse problem reduces to find a model m that fits and reproduces 
the observed data according to its errors. It can be done by an iterative process 
which involves the use of an objective function of this shape: 𝜓(𝑚) = 𝜓𝑑(𝑚) + 𝛼𝜓𝑚(𝑚) 

(Eq. 3.48) 

As we can see it is the sum of two components. The first one is the expression of: 
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𝛹𝑑(𝑚) =∑(𝑅𝑗(𝑚) − 𝑑𝐽∗𝜀𝑗 )2𝑁
𝑗=0 = ‖𝑊𝑑[𝑓(𝑚) − 𝑑𝑗∗]‖2 

(Eq. 3.49) 

Where:  

- 𝛹𝑑(𝑚) is the iterative objective function and measures the data misfit at each 

iteration; 

- 𝑁 is the number of measurements we are considering; 

- 𝑅𝑗(𝑚) is the number of resistances calculated by the direct model; 

- 𝑑𝐽∗ is the number of observed resistances; 

- 𝜀𝑗 is the error affected by the measured resistances; 

- 𝑓(𝑚) is the forward operator; 

- 𝑊𝑑  is the matricial representation of the error in the data (data weighting 

matrix) which has this form,  

 𝑊𝑑 = 𝑑𝑖𝑎𝑔 ( 1𝜀1 , … , 1𝜀𝑁) 

(Eq. 3.50) 

Eq. 3.49 is the representation of a least square iterative procedure for the 
determination of the best set of resistivity value for each cell of the model, to fit the 
observed data within their error bars, so accordingly to the data uncertainties. So, at 
the end of each iteration, eq. 3.49 shows us the data misfit (the residual difference) 
between the direct model and the measured data. Nevertheless, if we just used the 
data misfit as objective function, we would end up with two main issues. Firstly, we 
would have, at the same time, underestimated and overestimated portions of the 
studied domain that may show unrealistic electric conductivity distribution since this 
solution is very sensitive to the data uncertainties. Secondly the system itself would 
be undetermined because it would involve too many unknowns, resistivity elements 
and too little equations, concerning the measurements. For this reason, we need a 
further constrain on the inversion to avoid any sort of unlikely electrical conductivity 
distribution, which includes the introduction of a penalty function in addition to the 
object function. It is represented by the second term in eq. 3.48: 

(Eq. 3.51) 𝛼𝜓𝑚(𝑚) = 𝛼‖𝑊𝑚(𝑚 −𝑚𝑟𝑒𝑓)‖2 
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Where:  

- 𝛼 is a scalar quantity that rules both the vertical and horizontal smoothing; 
- 𝑊𝑚 is the model weighting matrix and it is chosen also to evaluate the 

roughness  𝑚−𝑚𝑟𝑒𝑓;  
- 𝑚𝑟𝑒𝑓  is a reference model that might be the result of a previous inversion in 

monitoring applications, or just be assigned to a homogenous half space or 

the null vector if no additional information is available.  

Eq. 3.51 can be further splitted as sum of three components: 

(Eq. 3.52) 𝛼𝜓𝑚(𝑚) = 𝛼𝑠‖𝑊𝑠(𝑚 −𝑚𝑟𝑒𝑓)‖2 + 𝛼𝑥‖𝑊𝑥(𝑚 −𝑚𝑟𝑒𝑓)‖2 + 𝛼𝑦‖𝑊𝑦(𝑚 −𝑚𝑟𝑒𝑓)‖2 

 

So, 𝑊𝑚 (from eq. 3.51) incorporates relative contribution of each penalty terms. The 
whole object function assumes the following shape: 

 𝜓(𝑚) = 𝜓𝑑(𝑚) + 𝛼𝜓𝑚(𝑚) = ‖𝑊𝑑[𝑓(𝑚) − 𝑑𝑗∗]‖2 + 𝛼‖𝑊𝑚(𝑚 −𝑚𝑟𝑒𝑓)‖2 

(Eq. 3.53) 

Adopting an Occam’s solution in my case of study, it involves minimizing the whole 
objective function (eq. 3.53) but maintaining the largest value of 𝛼 possible, thus 
obtaining the smoothest solution possible. “Minimization of eq. 3.53 can be 
achieved through application of gradient search methods. Adopting the Gauss-
Newton approach, an iterative scheme results, where at each step, k, the linear 
system of equations” (Binley and Kemna, 2005): 

 (𝐽𝑘𝑇𝑊𝑑𝑇𝑊𝑑𝐽𝑘 + 𝛼𝑊𝑚𝑇𝑊𝑚)𝛥𝑚𝑘 = 𝐽𝑘𝑇𝑊𝑑𝑇𝑊𝑑[𝑑 − 𝐹(𝑚𝑘)] − 𝛼𝑊𝑚𝑇𝑊𝑚(𝑚𝑘 −𝑚𝑟𝑒𝑓) 
(Eq. 3.54) 

This linear equation system is solved for the 𝑚 parameter update at iteration 𝑘 (𝛥𝑚𝑘), the 𝐽𝑘, 𝐽𝑘𝑇 are the sensitivity (or Jacobian) matrix and its transpose, which is 
equal to: 

Penalty for deviation from 
specified resistivity mref 

Penalty for roughness in 
x and y direction 
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𝐽𝑖,𝑗 = 𝜕 𝑑𝑖𝜕𝑚𝑗 
(Eq. 3.55) 

It is described as the partial derivative of the measured resistivity as a function of 
the modelled one. “Starting from a model 𝑚0 (for instance, homogenous or equal to 
mref, if available), the iteration process 𝑚𝑘+1 = 𝑚𝑘 + ∆𝑚𝑘 according to eq. 3.54 is 
continued for an optimum choice of 𝛼 (see for example, deGroot-Hedlin and 
Constable, 1990) until 𝜓𝑑(𝑚𝑘) matches the desired data misfit target value” (Binley 
and Kemna, 2005). 

 Thus, the objective function is composed by two main cores, the first one 
related to the data misfit, and the second one concerning the penalty 
(regularization) function that guides the smoothing of the model. Since the inverse 
problem is solved iteratively, at the beginning the data misfit is at its most and a first 
value of the regularization weight (𝛼) is chosen. At each iteration, both the data 
misfit and the regularization weight are calculated and the whole process stops 
when the data misfit converges, so when it assumes a value equal (or very close to) 
1, or else when the model obtained is the most compatible with data uncertainties 
and the smoothest. The meaning of Occam’s inversion is to determine the best 
conductivity set, according to data and its uncertainties, and at the same time to 
have a smooth distribution of the electrical property.   

 

3.5) Physical phenomena causing Induced Polarization (IP). 

 

The earliest observation of Induced Polarization phenomenon dates to 1913. It 
was associated to sulphide mineralization, and it was attributed to Conrad 
Schlumberger. He noticed that if we inject a current within the subsurface 
containing metallic sulphides and then we interrupt the injection, the potential 
measured by the potential electrodes M-N does not go down to zero 
instantaneously, but it takes time to decay. Due to this observation, we understood 
the basis of mining exploration even though it took a while for the diffusion of the 
method since the lack of enough performing technology. Nowadays, IP method 
turns out to be a quantitative tool for the exploration. It is one of the main 
geophysical methods to discover mineral deposits, especially for porphyry coppers, 
bedded zinc, sulphides, and gold deposits. Nevertheless, throughout the years its 
application spectra got wider, including environmental, oil and gas applications. The 
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main breakthrough was made during the 90s due to the more detailed evolution of 
technology and instrumentation. It made further diversify the range of application 
of IP method by including the shallow hydrogeologic characterization of a site and 
the monitoring of pollutants in a contaminated site.  

IP involves a series of transient phenomena when the subsoil is crossed by an 
electric field created by a quadrupole with the same geometry described for the DC 
methods. What we may observe during field measurements is that after the 
energisation of the subsoil the measured potential difference by the two potential 
electrodes does not go to zero instantly when the current injection is interrupted, 
on the contrary it takes a certain amount of time to go down to zero. The subsoil 
thus acts like a capacitor that stores electrical energy by accumulating electric 
charges on its surface and the time needed for the voltage zeroing is proportional to 
the polarizability of the subsoil, governed by mineralogic composition and texture of 
the subsoil, water saturation and its chemical composition.  

 The electrochemical principles that cause the Induced Polarization 
phenomenon are mainly two: 

1) The electrolytic conductivity expects the movement of ions within a fluid 

occupying the voids of a geological formation since their pores are totally or 

partially filled with a fluid, most of the case water, and its solutes as salts. This 

phenomenon is described by Archie’s equation concerning an electrolytic 
conductivity 𝜎𝑒𝑙 , the electrical conductivity of the water solution 𝜎𝑤, the 

porosity φ and water saturation 𝑆𝑤 of that specific geological formation, 

 𝜎𝑒𝑙 = 𝜙𝑚𝑎 ⋅ 𝜎𝑤𝑆𝑤𝑛  

 (Eq. 3.56) 

Where 𝑎 is a proportionality constant and 𝑚, 𝑛 are related to the cementation 
and saturation, respectively, for that specific geological formation. It is 
intuitive that, the higher ions concentration in the fluid, the higher the water 
and electrolytical conductivity. In this condition, many ion clouds are formed 
surrounding each ion and when we apply an electrical field to these ion 
clusters, both central ions and the clouds move but with a time lag, which 
increases as we increase the frequency of the electric field. The whole ionic 
polarization process leads 𝜎𝑒𝑙  to be a real quantity, since the electrolyte 
cannot be polarized at low frequencies, and 𝜎𝑤 to be complex. 
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2) The membrane polarization (interface conductivity) expects that the charges 

can accumulate due to the presence of clay minerals and fibrous or lamellar 

silicate minerals forming the double layer of charges, each of those negatively 

charged at correspondence of grains interface or due to the presence of 

physical restrictions of pores. Under this condition, cations are attracted to 

the surface of the grains creating a diffuse double layer of charges that 

consists of the anions of the mineral interface attracting a first fixed cation 

layer (Stern layer) and a second mobile cation layer of decreasing 

concentration as we move out the layer. The maximum number of 

exchangeable cations between the double layer and the electrolyte defines 

the so-called cation exchange capacity (CEC). The main effects of the presence 

of the diffuse double layer of charges are firstly a partial obstruction of pores 

and a further resistance against the current flux and secondly it brings to a 

polarization phenomenon under the action of an electric field in low 

frequency domain and it is mathematically described by an imaginary 

component. The complex interface conductivity (so the imaginary 

component) is expressed as follows: 

 𝜎𝑖𝑛𝑡 = ℎ(𝜎𝑤)𝑆𝜌𝑜𝑟𝐹 ⋅ 𝑆𝑤𝑣 (1 + 𝑖𝑙) 
(Eq. 3.57) 

Where, ℎ(𝜎𝑤) is a real and usually non-linear function of the salinity of the 
interstitial fluid, 𝑆𝜌𝑜𝑟  accounts for the specific surface area related to the pore 
volume, 𝐹 is the formation factor, 𝑆𝑤𝑣  is water saturation whose evponent 𝑣 is 
related to electrolytic conductivity 𝜎𝑒𝑙 , 𝑙 accounts for the separation of real 
and imaginary component of the interface conductivity 𝜎𝑖𝑛𝑡  
 𝑙 = 𝐼𝑚(𝜎𝑖𝑛𝑡)𝑅𝑒(𝜎𝑖𝑛𝑡) 

(Eq. 3.58) 

Membrane polarization, or interface conductivity, case has a minor effect 

compared to grain polarization one. 
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3.6) Time and frequency domain Induced Polarization. 

 

Induced Polarization can be measured in both time and frequency domain. 
Considering IP in time domain, we must observe the shape of the voltage decay 
curve created when we interrupted the injection of current in switched square wave 
form (same DC current methods wave). The study of the voltage decay curve, called 
overvoltage decay times, is at the basis of IP in time domain (TDIP), since we can 
retrieve chargeability from it, and it is diagnostic of the nature of the subsurface. To 
calculate the overvoltage effect, we must introduce the apparent chargeability, 
which is descried as follows:  

 𝑚𝑎 = 𝑉𝑆𝑉𝑝 

(Eq. 3.59) 

Where 𝑉𝑝 and 𝑉𝑠 are, respectively, the primary voltage and the secondary voltage. 
But, since the secondary voltage is not easy to define precisely on field, if we want 
to expand the concept, it turns out that the apparent chargeability can be calculated 
with the following integral:  

(Eq. 3.60) 

𝑚𝑎 = 1𝑡2 − 𝑡1 ⋅ 1𝑉𝑝 ⋅ ∫ 𝑉(𝑡) 𝑑𝑡𝑡2
𝑡1  

Figure 3.7 – Graphic representation of the membrane polarisation.    
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Where 𝑚𝑎 is the apparent chargeability, expressed in [𝑚𝑉/𝑉], and it estimates how 
much a medium is chargeable, 𝑉𝑝 is still the primary voltage, 𝑉(𝑡) is the difference of 
potential considered within the voltage decay curve and 𝑡1, 𝑡2 represent the time 
interval over which the integral is calculated for the voltage decay curve and it goes 
from 0,1𝑠 –  10𝑠.  

 

 Induced Polarization can be measured in frequency domain as well (FDIP) by 
injecting different square wave currents at different frequencies and what is 
measured are both the amplitude and the voltage.  The measured voltage 𝑉(𝜔) is 
expressed by the following equation: 𝑉(𝜔) = 𝑅(𝜔)𝑍(𝜔)𝐼(𝜔) 

(Eq. 3.61) 

Where 𝜔 is a certain frequency, 𝐼(𝜔) is the injected current at that frequency, 𝑅(𝜔) 
is a transfer function of the receiving system and 𝑍(𝜔) is the ground transfer 
impedance as function of the quadripole configuration. 𝑍(𝜔) infact depends on: 

 𝑍(𝜔) = 𝜌𝑎(𝜔)𝐺  

(Eq. 3.62) 

Figure 3.8 – General shape of the switched square wave at a fixed frequency. We can study its voltage 
decay (overvoltage) to determine the chargeability in time domain.  

 to determine the chargeabilitydecay 
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Where, 𝜌𝑎(𝜔) represents the apparent complex resistivity and G is the actual 
geometrical factor referring to the quadrupole geometry. Thus, the measured 
voltage equation turns into: 

 𝑉(𝜔) = 𝑅(𝜔)𝜌𝑎(𝜔)𝐼(𝜔)𝐺  

(Eq. 3.63) 

We can refer to eq. 3.63 in time domain as well, showing that time and frequency 
domain formulations are linked by Fourier transforms: 

 𝑉(𝑡) = 𝑅(𝑡) ∗ 𝜌𝑎(𝑡) ∗ 𝐼(𝑡)𝐺  

(Eq. 3.64) 

Where * is the convolution. Since this relation, we might pass from time domain to 
frequency domain and vice versa.  

To run the measurement in frequency domain, a relatively high and low 
frequencies are used for the investigation. By using the higher frequency, the 
measured voltage is lower because the overvoltage effect has not enough time to be 
expressed, while by using the lower frequency we observe the contrary. Due to this 
effect, we measure different apparent resistivity values as function of the used 
square current frequency. Thus, the IP effect in frequency domain is frequently 
described by the Frequency Effect (FE) that theoretically has got the following 
shape: 

 𝐹𝐸 = 𝜌0 − 𝜌∞𝜌∞  

(Eq. 3.65) 

It is the difference between resistivity magnitudes for frequency values equal to zero 
and infinite, normalized for the resistivity magnitude value of infinite frequency. 
Nevertheless, for practical reasons, to calculate FE we must consider the apparent 
resistivity magnitudes at defined frequencies 𝜔1, 𝜔2: 
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𝐹𝐸 = 𝜌𝑎(𝜔2) − 𝜌𝑎(𝜔1)𝜌𝑎(𝜔1)  

(Eq. 3.66) 

Where, 𝜌𝑎(𝜔2) refers to the apparent resistivity obtained by using the higher 
frequency and 𝜌𝑎(𝜔1) refers to the apparent resistivity obtained by using the lower 
frequency. Frequency Effect can be expressed as Percent Frequency Effect (PFE) so 
by multiplying FE by hundred. But, if we consider a small spacing between 𝜔1, 𝜔2 
such that 𝜔1~𝜔2, having both frequencies around a certain reference frequency 𝜔0, the frequency effect can be expressed as follows: 

 𝐹𝐸(𝜔0) = −𝛥|𝜌|𝜌𝑛  

(Eq. 3.67) 

In which, 𝛥|𝜌| is the change in resistivity magnitude compared to the reference 
resistivity value 𝜌𝑛 = |𝜌(𝜔0)| obtained at the reference frequency. Another 
parameter used for the IP effect in frequency domain is the Metal Factor (MF) and 
we can retreive it by exploiting the parameters of the previous relation: 𝑀𝐹 = 2𝜋 ⋅ 10𝑠 ⋅ 𝐹𝐸𝜌𝑎(𝑓2)  

 (Eq. 3.68) 

3.7) Complex resistivity in frequency domain. 

  

When we previously described the nature of the mechanisms of polarization, it 
turns out that they can be described by using the complex component of the 
electrical conductivity (or resistivity). Thus, still remaining in the frequency domain, 
we can describe the Induced Polarization phenomenon in terms of complex 
resistivity, also called spectral IP (SIP), by involving the resistivity magnitude |𝜌(𝜔)| 
and the phase lag 𝜑(𝜔), both as function of a certain frequency, which are 
respectively the representation of the real and imaginary components of the 
measured apparent resistivity and they may provide many petrophysical parameters 
of the ground. Also in this case, the IP instrument injects repeated square waves at 
many different frequencies and then it measures the resulting voltage in time 
domain. But, to obtain real (resistivity magnitude) and imaginary (phase) 
components, which are calculated at the fundamental frequency of the square 
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wave, is not straightforward. First, we can exploit Fourier series to express the 
voltage 𝑉(𝑡) with the Eulerian formulation: 

 

𝑉(𝑡) = ∑ 𝑐𝑘∞
𝑘=−∞ ⋅ 𝑒𝑖𝑘𝜔0𝑡 

(Eq. 3.69) 

With 𝑉(𝑡) measured at time intervals 𝛥𝑡 and 𝑁𝑠  samples per unit of time. In the 
same way, we can describe the complex Fourier coefficient 𝑐𝑘: 

 

𝑐𝑘 = 1𝑁𝑠 ∑ 𝑉(𝑖𝛥𝑡)𝑁𝑠−1
𝑖=0 ⋅ 𝑒−𝑖𝑘𝜔0𝑡 
𝜔0 = 2𝜋𝑁𝑠𝛥𝑡 

(Eq. 3.70, 3.71) 

In this case, 𝜔0 is the fundamental frequency of the square wave. Thus, to describe 
the voltage in a discrete way, we must find a discrete form of the Fourier transform 
by rescaling the Fourier coefficient this way: 

 𝑉(𝑘𝜔0) = 𝛥𝑡𝑁𝑠𝑐𝑘  

(Eq. 3.72) 

With 𝑘𝜔0 a discrete frequency. Only at this point, at each discrete frequency, we 
can get the real and imaginary components of the apparent resistivity 𝜌𝑎(𝜔) by 
taking the ratio of the voltage spectrum 𝑉(𝜔) over the input spectrum 𝑅(𝜔)𝐼(𝜔) (Kemna, 2000). The phase lag can be represented graphically by the time 
lag between the injected current and the measured votage caused by the 
polarization phenomena and it can be expressed as follows: 

(Eq. 3.73) 

𝜑(𝜔0)~𝜋2 ⋅ 𝑑 ln (|𝜌|𝜌𝑛)𝑑 ln ( 𝜔𝜔0) 
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Where, the magnitude of resistivity |𝜌| is measured at a certain frequency 𝜔 and the 
reference resistivity 𝜌𝑛 is measured at the reference frequency 𝜔0. So, “at any 
frequency, the resistivity phase is directly proportional to the slope of resistivity 
magnitude as a function of frequency on double logarithmic scales” (Kemna, 2000).  

 

3.8) Complex resistivity in time domain. 

 

Nevertheless, the kind of data we gathered are apparent resistivity and 
apparent chargeability since we worked in time domain. Indeed, if we acquired IP 
data in frequency domain, we would have collected the phase angle between 
induced voltage waveforms and the applied current. Although chargeability and 
phase angle are collected in different domains, Kemna et al. 1997 described an 
effective method to convert chargeability in an equivalent phase angle depending 
on the chargeability sampling and current injection frequency. A typical linear 
relation that connects the two quantities does exist of the following shape: 

 𝜙(𝑚𝑟𝑎𝑑) ≈ −1,3𝑀(𝑚𝑉/𝑉) 
(Eq. 3.74) 

In my case the parameter is equal to -1.673328 according to the executable file 
kindly Prof. Andreas Kemna provided me with. The coupling of measured resistivity 
and IP data can be effectively expressed by introducing a complex electrical 

Figure 3.9 – Phase lag as time lag between injected current and measured voltage.  
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conductivity (𝜎∗) quantity which results in a sum of real and imaginary components 
of the conductivity: 

 𝜎∗ = 𝜎′ + 𝑖𝜎′′ 
(Eq. 3.75) 

Where the real conductivity component 𝜎′ is the representation of the energy that 
the system loses with the injection of the current flow in phase with the applied 
electric field, and the imaginary component 𝜎′′  is the quantification of the storage 
of energy in the system when the displacement current is 90° out of phase with the 
applied electric field. Hence, the following relations explain how the real and 
imaginary components of conductivity can relate the measured parameter |𝜎| and 
the deduced phase lag 𝜙  from the collected chargeability data: 

 |𝜎| = √𝜎′2 + 𝜎′′2 𝜙 = 𝑎𝑟𝑐𝑡𝑎𝑛 (𝜎′′𝜎′ ) ≈ 𝜎′′𝜎′  

(Eq. 3.76, 3.77) 

The approximation for the phase angle relation is valid only if the magnitude of the 
phase angle itself is little, so considering environments where the polarization effect 
is small like non-metallic ones, as in our case. It is significant to specify that if we just 
ran a conventional resistivity survey, the only quantity we would collect is |𝜎|, giving 
us no chance to compute the complex conductivity 𝜎∗.  In order to get a direct 
measure of the surface polarization we have to compute the normalized IP 
parameters in the following way: 

(Eq. 3.78) 𝜎′′ = |𝜎| 𝑠𝑖𝑛 𝜙 ≈ |𝜎|𝜙 

Where the approximation is still valid for low values of phase angle. This relation can 
be used despite we gathered IP data in time domain since the existing linear relation 
between chargeability and phase angle described above. Further, we can obtain the 
real component of conductivity by reversing the measured |𝜎| formula in this way: 

 𝜎′ ≈ √|𝜎|2 − (|𝜎|𝜙)2 

(Eq. 3.79) 
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Whereas we are dealing with a non-metallic environment, further confirmed 
by the resistivity sections, we face two main mechanisms of conduction, electrolytic 
one (𝜎𝑒𝑙𝑒) which describes the charge transport in the interstitial fluid and surface 
one (𝜎𝑠𝑢𝑟𝑓) that involves a ionic double layer at the interface between grain and 
fluid. These two kind of conduction are deeply different, such that electrolytic 
conduction is a pure real term detectable with the usage of a frequency lower than 
1kHz and it is guided by the water (or more generally fluid) saturation, the porosity 
of the formation and the ionic concentration in the interstitial fluid, while surface 
conduction holds a real and an imaginary component and both depends on the 
frequency adopted in the survey, the pore size distribution of the material, the 
chemical composition of the fluid and the mineralogy of the grains. It turns out that 
the overall complex conductivity can be expressed as a combination of both 
electrolytic and surface conduction with the following relation: 

 𝜎∗ = 𝜎𝑒𝑙𝑒 + 𝜎𝑠𝑢𝑟𝑓∗  

(Eq. 3.80) 

Where the * exponent describes a complex quantity. We must specify that the real 
component of the measured complex conductivity is the actual conductivity we 
collect with a conventional resistivity survey |𝜎| and it is a function of the 
electrolytic and the real component of the surface conduction. Hence the imaginary 
component of the complex conductivity depends only on the imaginary component 
of the surface conduction. It can be resumed by the following relations: 

 𝜎′ = 𝜎𝑒𝑙𝑒 + 𝜎𝑠𝑢𝑟𝑓′  𝜎′′ = 𝜎𝑠𝑢𝑟𝑓′′  

(Eq. 3.81, 3.82) 

By combining these two formulas with the phase angle one, we can calculate the 
phase response as follows: 𝜙 = 𝑎𝑟𝑐𝑡𝑎𝑛 ( 𝜎𝑠𝑢𝑟𝑓′′𝜎𝑒𝑙𝑒 + 𝜎𝑠𝑢𝑟𝑓′ ) ≈ 𝜎𝑠𝑢𝑟𝑓′′𝜎𝑒𝑙𝑒 + 𝜎𝑠𝑢𝑟𝑓′  

(Eq. 3.83) 

The approximation is still valid only for small values of phase angle. This relation 
states that the phase response of a medium is function of electrolytic conduction 
and both real and imaginary components of surface conduction (Mwakanyamale et 
al 2012).  
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3.9) Forward model and inversion problem. 

 

As we made for the DC current methods, we talk about forward model and 
the equations we must solve to obtain it. The equations at the basis of the forward 
model are the same that account for the creation of the direct model in the 
inversion procedure. In this case, the forward model creates a distribution of 
complex electric potential since the electric field may be expressed as follows: 

 𝐸 = 𝛻𝜙 

(Eq. 3.84) 

Where 𝜙 is a complex potential. Thus, the basis of modelling algorithms is based on 
the following Poisson equation: 𝛻 ⋅ (𝜎(𝜔)𝛻𝜙(𝜔)) − 𝛻 ⋅ 𝑗𝑠(𝜔) = 0 

(Eq. 3.85) 

Which is the same equation for DC current expressed in vectorial form, but with the 
dependence of the phase 𝜔 and the presence of a source current term 𝑗𝑠. This 
Poisson equation, accounts for a 3D case, while we are dealing with a 2D 
conductivity distribution 𝜎(𝑥, 𝑧), so we can reduce the Poisson equation in 2D by 
Fourier transforming the complex potential field along the y direction: 

 

�̃�(𝑥, 𝑘, 𝑧) = 2∫ 𝜙(𝑥, 𝑦, 𝑧) ⋅ 𝑐𝑜𝑠(𝑘𝑦) 𝑑𝑦∞
0  

(Eq. 3.86) 

Where �̃�(𝑥, 𝑘, 𝑧) is the transposed complex potential and 𝑘 is the real wavenumber. 
So, Poisson equation reduces to: 

 𝜕𝜕𝑥 (𝜎 𝜕�̃�𝜕𝑥) + 𝜕𝜕𝑧 (𝜎 𝜕�̃�𝜕𝑧) − 𝜎𝑘2𝜙 = −𝐼𝛿(𝑥 − 𝑥𝑠)𝛿(𝑧 − 𝑧𝑠) 
(Eq. 3.87) 
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Where 𝛿(𝑥 − 𝑥𝑠)𝛿(𝑧 − 𝑧𝑠) describe two Kronecker’s deltas which are related to the 
electrode position and 𝐼 describes the injected current. We can solve the previous 
Poisson equation with adequate boundary conditions. Thus, when �̃�(𝑥, 𝑘, 𝑧) is 
calculated for a range of wavenumber values, we perform the inverse Fourier 
transform to get the actual complex potential distribution: 

 

𝜙(𝑥, 𝑦, 𝑧)  = 1𝜋∫ �̃�(𝑥, 𝑘, 𝑧) ⋅ 𝑐𝑜𝑠(𝑘𝑦)𝑑𝑘∞
0  

(Eq. 3.88) 

 Moving to the inverse problem, it is like the case of DC currents. “Any 
inversion procedure aims to find a model of the subsurface distribution of the 
relevant physical properties explaining the given observations” (Kemna, 2000). This 
problem is described by the same formulation of DC current inversion problem, so 
involving an objective function that we must minimize iteratively: 

 𝜓(𝑚) = 𝜓𝑑(𝑚) + 𝜆𝜓𝑚(𝑚) 
(Eq. 3.89) 

The main difference with the case of DC currents inverse problem, is that we are 
dealing with complex quantities, so the inverse solution involves complex calculus. 
Let’s start off by describing the model vector 𝑚 and the data vector 𝑑: 

 𝑚𝐽̇ = 𝑙𝑛(𝜎𝑗),    (𝑗 = 1,… ,𝑀) 𝑑𝑖 = 𝑙𝑛(𝜎𝑎𝑖),    (𝑖 = 1,… ,𝑁) 
(Eq. 3.90, 3.91) 

Where 𝜎𝑗 is the complex conductivity of each element of the mesh of the final 
model and 𝜎𝑎𝑖  is the meaured apparent complex conductivity that can be expressed 
as follows: 𝜎𝑎𝑖 = 1𝐺𝑖𝑍𝑖 

(Eq. 3.92) 
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Which recalls the Ohm’s law and where 𝐺𝑖 is the geometric factor according to the 
geometry of the quadrupole and 𝑍𝑖 = 𝐼𝑖/𝑉𝑖 is the transfer impedance. At this point, 
we can define the Jacobian matrix as: 

 𝑎𝑖,𝑗 = 𝜕 𝑑𝑖𝜕𝑚𝑗 
(Eq. 3.93) 

Similarly, to DC case. Nevertheless, for inverse problems involving real quantities the 
data noise is one dimensional, while for a complex number, since it is composed by 
real and imaginary components, the errors affect both dimensions bringing the 
problem in 2D. Thus, in the objective function the real and imaginary components 
are given by: 

 

𝜓𝑑(𝑚) =∑ |𝑑𝑖 − 𝑓𝑖(𝑚)|2(𝛥 𝑙𝑛 | 𝑍𝑖|)2 + (𝛥𝜑𝑖)2
𝑁
𝑖=1  

(Eq. 3.94) 

Where: 

- 𝑑𝑖 denotes the observed data; 

- 𝑓𝑖(𝑚) is the operator of the forward solution; 

- (𝛥 𝑙𝑛 | 𝑍𝑖|)2 is the real component of the error, it is the natural log of the 

transfer impedance; 

- (𝛥𝜑𝑖)2 is the imaginary component of the error and it represents the phase. 

 

Throughout the decades, IP methods in time and frequency domain and the 
Spectral IP found many applications due its dependence with the mineralogical and 
interstitial fluid composition. Since the beginning of its discovery, IP methods have 
been used for mineral exploration by looking for polarizable minerals, defining a 
profitable geological site from ones that are not, and recently this method is giving 
solid basis for oil investigation. IP methods find a wide application also for 
hydrogeological and environmental analysis. For instance, in ground water 
prospecting, the grain size works as guide for the voltage decay curve in time 
domain and from that it is possible to retrieve the hydraulic conductivity of the 
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aquifer with the use of many empirical formulas which link the formation factor and 
the radius of the pores. While, by using SIP, the number of parameters we can 
assess become even wider, including grain texture, mineralogy, moisture content 
and electrolyte composition. Under this perspective, clay minerals as 
montmorillonite and kaolinite, due to their nature and their polarizability capacity, 
provide a great contribution to IP response. Furthermore, talking about 
environmental analysis, we can apply SIP in a contaminated site. Infact, 
contaminants modify the conduction and the polarization properties of the ground, 
especially the organic contaminants that cannot be mixed up with water since they 
represent a further separation in phase. 
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4)  Acquisition campaign, Software used and data processing. 

4.1) Acquisition campaign. 
 

 The purpose of the work is to obtain a hydrogeological characterization of the 
site exploiting the presence of a borehole. To achieve it, we thought that the best 
strategy was a coupling borehole-on land of two geophysical methods combination, 
electrical resistivity tomography and induced polarization in the time domain. It is 
intuitive to imagine, and we will touch it from a qualitative and quantitative point of 
view, that the presence of a borehole allows us to reach at depth a good value of 
sensitivity and so imaging. There is not any other geophysical study related to the 
site we worked on, so we have not an actual comparison with previous results. The 
only a priori information we had was a stratigraphic log from the drilling session. 

 The site we worked on is located at the Liége, Sart-Tilman University campus, 
a few meters away in South-West direction from the Department of Applied 
Sciences involving a borehole of 32 m depth. More precisely, the well is located next 
to a road in a wooded area. In fact, the ground was completely covered by leaves 
and vegetation which made the coupling difficult with the ground.  

 

Firstly, before going to the site with the whole instrumentation, we had to 
plan the whole survey by thinking at the adequate array geometry. Thus, we had to 
decide the total length of the acquisition array, the vertical and horizontal electrode 

Figure 4.1 – Site condition.    



51 
 

spacing and the quadrupole configuration, keeping in mind the final target and that 
we were dealing with a combination of land and borehole ERT and TDIP data 
acquisition. We came up with an acquisition array geometry concerning a total of 96 
electrodes distributed as follows, 64 land electrodes with a spacing of 1,25 m for a 
total length of 80 m and 32 borehole electrodes, with a spacing of 1m. Land 
electrodes were classic metal electrodes connected to the cables with metal take 
outs, while the cable itself worked as borehole electrodes. Even though we placed 
32 borehole electrodes, for the whole length of the borehole, we just used 16 of 
those since the well is screened in two intervals, the first from 12 m to 24 m depth 
and the second from 28 m to 32 m depth, so that the working borehole electrodes 
are located just in the correspondence of the borehole screening and consequently 
the total working electrodes reduce to 80.  

 

After the geometry of the acquisition array, we decided to use dipole-dipole 
and multi gradient configurations both with increasing skip. Then, we obtained the 
protocol by using a MATLAB code we wrote, for both the configurations. The 
instrumentation we decided to use is an ABEM Terrameter LS2 which concerns two 
main cores, the first one works for the link of the cables of the land electrodes while 
the second is a switch for the connection of the cables of the borehole electrodes. 
Overall, to provide the energy necessary to make ABEM Terrameter LS2 work for the 
total measurements time, we needed an external 12 V battery.  

 

 

 

Figure 4.2 – Electrodes disposition: 64 land electrodes and 32 borehole ones for a total of 96. This 
image also highlights the actual used borehole electrodes by the two red brackets. 
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Only at this point, we were ready to gather the whole instrumentation we 
needed for the survey and go to the site. Before the placement of the electrodes, 
we started with a mowing activity for 90m length, since the bushes were so high and 
thick that I could not place any electrode strongly in the ground. After this 
operation, with the help of a meter we started to place all the 64 land electrodes, 
divided into two cables made of 32 electrodes each, and the 32 borehole electrodes, 
with a lead at the end of the cable to make it be under constant tension. We made 
sure that the cables were carefully deployed making some loops where it was 
possible due to the vegetation to avoid any problem of data transmission and simply 
for an aesthetic reason. Once we connected the cables and the external battery for 
the energy supply to ABEM Terrameter LS2, we could start the survey. 

 The first thing we must do is plugging directly into the ABEM Terrameter LS2 
the following fundamental parameters and the protocols for the data acquisition: 

- The spacing between land and borehole electrodes, respectively of 1,25 m 
and 1 m; 

- Delay time window of 0,8 s and acquiring time (integration time) window of 
1,2 s for IP measurements, for a total of 2 s IP time window; 

- Consequently, the square current wave was injected at 0,5 Hz for IP method; 

Figure 4.3 – ABEM Terrameter LS2 representation: main core, switch, cables, take outs and connectors. 
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- Number of IP windows equal to 20, so each voltage decay curve was divided 
into 20 bins for their reconstruction; 

- A current window from a minimum of 5 mA to a maximum of 200 mA; 
- Bad electrodes coupling over 5 𝐾Ω, likely by spilling some salty water on it the 

galvanic contact should become good enough; 
- Failed electrode over 20 𝐾Ω, galvanic contact is insufficient, so we have to 

remove the electrode and deploy it again; 
- Electrode test current equal to 20 mA; 
- The stuck number, making the average of the resistivity values. We decided 2 

to not spend so much time, the number of involved quadrupoles was pretty 
high and the IP data takes a lot of time to collect; 

- The injection current time for ERT method, a square wave of 250 ms duration, 
which means a frequency of the injected current about 4 Hz; 

-  A sample rate equal to 2000 Hz; 

Second, we must check if the galvanic contact is good enough, because the 
general quality of the data depends also on the coupling between electrode and soil. 
Thus, we let ABEM Terrameter LS2 run a check for the state of the ground 
resistances, and we noticed that the resistance values were high, in fact we read 
directly from the screen of the tool that many resistances values were within the 
window we set previously (5 𝐾Ω – 20 𝐾Ω), while few of those were exceeding the 
failure value of 20 𝐾Ω. This means that the coupling between soil and electrode on 
average is bad, so the capacity of injecting current into the soil is not good enough 
to gather good quality data. From a practical point of view, the machine was 
struggling to inject the current in the deeper portion of the soil. Hence, to reduce 
the value of the ground resistances, we spilled some salty water on each electrode, 
and, from a further assessment, the resistance values are much lower, so galvanic 
contact improved.  

We ran the resistivity and IP measurements, with their respective reciprocals 
for a better assessment of the deterministic error in the processing stage. The whole 
data gathering lasted about 8 hours involving the acquisition of the resistivity data, 
plus the chargeability measurements for both configurations and respective 
reciprocals. Intuitively, the IP measurements needed more time than ERT ones, since 
the instrument must have enough time to determine the chargeability effect in the 
subsurface by sampling the voltage decay curves within the prearranged time 
windows of 2 s. We ended up with four text files, the first two files regarding 
resistivity and chargeability data in dipole-dipole configuration and its reciprocal, 
same pattern for the last two files but regarding the multi gradient configuration. 
Direct dipole-dipole file involves 1237 measures while its reciprocal only 175 due to 
time constraints, while direct multi gradient file concerns 1440 measures and its 
reciprocal only 215 for the same reason. 
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4.2) Software used and data processing. 
 

The data processing is divided in two main steps. Firstly, I worked on was a 
python script that I ran on Spyder, kindly provided by Prof. Nguyen of the Applied 
Sciences department of Liège University, that refers to the paper of Adrian Flores 
Orozco et al (2018) about the decay curve analysis. This paper focuses on the study 
of the voltage decay curves measured in time domain to quantify the error in the IP 
and transfer resistance data. Error assessment in the data is fundamental to have a 
good resolution in the final image without any artifact. Indeed, an overestimation of 
the error in the data would lead to a resolution loss while an underestimation of the 
data error would produce artifacts in the final image. Errors affecting the data can 
be recognized as systematic ones, caused mainly by a poor galvanic contact 
between the electrodes and the ground and by a residual polarization of the 
potential electrode itself, and random errors, caused by electronic noise of the 
measuring instrument, etc.  

Decay curve analysis (DCA) does not need a further data collection as 
reciprocals, despite the use of reciprocal measurements is still widespread for the 
assessment of the error in electrical measures, because collecting as many 
reciprocals as direct IP measures would double the time for data gathering, from 8 
to 16 hours in our case. DCA is especially suitable for multiple gradient 
configurations, since it enjoys a high S/N ratio, and it does not demand reciprocal 
measurements. Decay curve analysis is very sensitive to not consider as outliers and 
delete the voltage decay curves not showing a smooth pattern created by large 
quadrupoles having low S/N ratio since they are representative of the deepest part 
of the section. On the contrary, we rather quantify the error in the decay curves and 
involve it in the final inversion as part of the error model. Furthermore, we might 
find spatial incoherences between total chargeability values in the dataset that must 
be deleted before the inversion. Hence, this method relies on the quantification of 
random error through a decay curve quality check, and on the identification of 
systematic error through a spatial correlation within the dataset. The whole decay 
curve analysis is divided into four main steps.  

The first one implies a fitting procedure between an exponential model and 
the actual voltage decay curves, by following this equation: 

(Eq. 4.1) 𝑚𝑓(𝑡) = 𝛼𝑡−𝛽 + 𝜀 

Where 𝑚𝑓(𝑡) represents the fitted apparent chargeability (𝑚𝑉 ∕ 𝑉) as function of 

time after the current shutoff (𝑚𝑠), α and β are the fitting parameters and 𝜀 is a 
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constant we use for any shift from the power law. To understand the quality of the 
fitting, “we calculate the root-mean-square deviation (rmsd) between the measured 
and fitted curves” (Orozco et al. 2018) in the following way: 

 

𝑟𝑚𝑠𝑑 = √1𝑁 ⋅∑(𝑚𝑓(𝑡𝑖) − 𝑚𝑚,𝑖)2𝑁
𝑖=1  

(Eq. 4.2) 

Where 𝑁 is the number of IP windows of the curve, 𝑚𝑚,𝑖 is the measured apparent 

chargeability at times 𝑖, 𝑚𝑓(𝑡𝑖) is the apparent chargeability coming from the power 

law at time 𝑡𝑖. At this point, we perform the first elimination of those curves in 
which the voltage increases instead of decreasing in time. While curves related to a 
large value of rmsd are not deleted yet, since they can be meaningful in the 
understanding of deep behaviours because they are related to large quadrupoles.   

The second step is related to a construction of a reference curve and a second 
filter to identify any possible spatial incoherence related to chargeability data. To do 
so, we compute a reference decay curve by taking the median value of the apparent 
chargeability “of each IP window of the M fitted curves for measurements collected 
within the same current injection” (Orozco et al. 2018) and it is written as: 

 𝑚𝑟,𝑖 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑚𝑓,1(𝑡𝑖),  𝑚𝑓,2(𝑡𝑖),… ,  𝑚𝑓,𝑀(𝑡𝑖) ) 
(Eq. 4.3) 

At this point, we can identify and delete the outliers by shifting the obtained 
reference curve along the vertical axis trying to minimize the rsmd with the actual 
curve. If the vertical motion of the reference curve is larger than three times the 
standard deviation of the entire data set, it is an outlier.  

 The third step involves a standard deviation estimation and the bin analysis. 
Hence, after the application of the first and second filter, respectively for the 
estimation of random and systematic errors, we calculate the misfit between the 
measured decay curve and the modelled one in the first step. The data misfit is 
defined as: 
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𝛥𝑚𝐷𝐶𝐴,𝑖 = 𝑚𝑓(𝑡𝑖) − 𝑚𝑚,𝑖 
(Eq. 4.4) 

This relation allows us to estimate numerically the erratic behaviour (not smooth 
decay) of the voltage decay curves. Then, we can model the error in the 
chargeability data by using the following power law: 

 𝑆𝑝(𝑚) = 𝑎𝑅𝑏 

(Eq. 4.5) 

Where the exponent 𝑏 assumes a negative value since as the transfer resistance 
increases, the chargeability data error decreases. “We follow the methodology 
described in Flores Orozco et al. (2012b), based on a partitioning of the data into 
several bins with respect to the transfer resistance, in which the error model is fitted 
to the standard deviation computed for each bin. Such procedure honours the 
assumption that random error can be described by its standard deviation” (Orozco 
et al. 2018).  

 The fourth and last step concerns the formulation of the error model for 
resistance measurements. To obtain it we must fit a rational function with the 
standard deviation of the apparent total chargeability, divided into beans as in the 
previous step, described by the formula: 

 𝑠𝑟(𝑚) = 𝑐𝑅 + 𝑑 

(Eq. 4.6) 

Where 𝑐, 𝑑 are simple fitting coefficients, 𝑅 is the measured transfer resistance and 𝑠𝑟(𝑚) is related to the chargeability error model as function of the transfer 
resistance. This empirical approach remains faithfull to the assumption that erratic 
behaviour, caused by random errors, affects voltage decay curves and transfer 
resistance readings similarly. Hence, we can quantify the error in the transfer 
resistance data, plugging the same fitting parameters (𝑐, 𝑑) but in linear 
formulation:                                                                                                                  (Eq. 4.7) 𝑠(𝑅) = 𝑐 + 𝑑𝑅 
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Where 𝑠(𝑅) represents the error model for resistance measurements for the 
estimation of their error.  

 By applying DCA script we ended up with four data sets in BERT format ready 
for the inversion including the total number of both land and borehole electrodes 
and their location in x and z direction, the number of data points and all the 
quadrupoles sequence. For each quadrupole, a value of resistance and IP were 
assigned with their respective errors. For both configurations we kept about the 
same percentage of data points at the end of the second filtration, 82,23% for multi 
gradient one and 82,52% for dipole-dipole one. This first result brought us to the 
conclusion that for both configurations the systematic error is about the same 
magnitude, which is likely since we did not move any electrode between the two 
measurements and we spilled salty water before the data gather both times, and 
that the difference among the two percentages of 0,29% is due to a little variation in 
random error, which is an acceptable quantity.  

 However, we realized that DCA is not as suitable for dipole-dipole as for 
multi gradient configuration. We decided then to determine dipole-dipole data error 
by using a second method concerning the exploitation of the reciprocal 
measurements, which I remind you to be much fewer, for dipole-dipole 
configuration. To do so, we utilized the following python script, kindly provided by 
Doct. Luca Peruzzo.  
 
import numpy as np 
 

def process_rec(a: np.uint16, b: np.uint16, m: np.uint16, n: np.uint16, x: 
np.float64) -> (np.uint16, np.float64, np.float64, np.uint8): 
    """ 
    Reciprocal pairing and check with polarity. 
    1 2 3 4 
    a m n b d i 
    m a b n + j 
    m b a n - j 
    n a b m - j 
    n b a m + j 
    """ 
 

First step of the script is to import the numpy package and to declare a definition 
called “process_rec” which imports five vectors and returns four ones, where unit 
and float stand respectively for unsigned integer number stored with 16 and 8 bits 
and for floating-point number format stored with 64 bits. This function aims to 
estimate the reciprocal error between two data sets checking for quadrupoles 
pairing and the polarity of the electrodes forming the quadrupoles as briefly 
explained in the above red lines.  
 

    len_sequence = int(len(x)) 
    rec_num = np.zeros_like(x, dtype=np.uint16) 
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    rec_avg = np.zeros_like(x, dtype=np.float64) 
    rec_err = np.zeros_like(x, dtype=np.float64) 
    rec_fnd = np.zeros_like(x, dtype=np.uint8) 
    for i in range(len_sequence): 
        if rec_num[i] != 0: 
            continue 
        for j in range(i + 1, len_sequence): 
            polarity = 1 
 

“rec_num” is an initial vector formed by zeroes of the same length vector x where 
the position of the reciprocal measure will be saved; “rec_avg” is the vector that will 
acquire the value of the average between the direct and reciprocal measures; 
“rec_err” is the vector to which it will be assigned the reciprocal error between the 
two measures; “rec_fnd” is a flag that shows if a measure has already found its 
reciprocal and if the measure itself is a direct or a reciprocal one. To distinguish 
between the three cases, rec_fnd can assume the value of 0, 1, 2 which respectively 
means that there is not any reciprocal for that measure, the measure is direct, and 
the measure is reciprocal. For each measure, so from index i equal to one to the 
length of the sequence, we must check if rec_num vector has got a non-zero value. 
Indeed, if the i-th value of rec_num is non-zero, that measure has already found its 
reciprocal. Whereas, if rec_num has a value equal to zero at a certain i-th iteration, 
considering another index j starting from i+1, we find rec_num reciprocal starting 
from the i-th position on.  
 

            if a[i] == m[j] and b[i] == n[j] and m[i] == a[j] and n[i] == b[j]: 
                polarity = 1 
            elif a[i] == m[j] and b[i] == n[j] and m[i] == b[j] and n[i] == 
a[j]: 
                polarity = -1 
            elif a[i] == n[j] and b[i] == m[j] and m[i] == a[j] and n[i] == 
b[j]: 
                polarity = -1 
            elif a[i] == n[j] and b[i] == m[j] and m[i] == b[j] and n[i] == 
a[j]: 
                polarity = 1 
            else: 
                continue 
 

These are the possible electrodes combinations for the identification of the 
reciprocal measures with the respective polarity. Continue means go to the next 
iteration. 
 

            if rec_fnd[j] == 2: 
                print("a second direct measurement would match this reciprocal: 
", j + 1) 
                print("ignore and look for a yet-to-match reciprocal") 
                continue 
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The if loop checks and warns us if the j-th value of the vector rec_fnd has value two, 
so if that measure was already used as reciprocal one for two direct measures. If so 
happens, we keep iterating to look for a fourth not paired yet measure.   
 

            avg = (x[i] + (polarity * x[j])) / 2 
            err = abs(x[i] - (polarity * x[j])) / abs(avg) * 100 
 

Now we start with the calculation. First, we compute the average between the 
direct resistance at i-th position “x[i]” and the reciprocal one at j-th position “x[j]” 
corrected for the correct polarity. Then we compute the actual percentual reciprocal 
error through the ratio between the absolute value of “x[i]” minus “x[j]” corrected 
for the polarity over the absolute value of the just calculated average.  
            if polarity == -1: 
                print("fixing polarity") 
                print(a[i], b[i], m[i], n[i], x[i], avg, err) 
                print(a[j], b[j], m[j], n[j], x[j], avg * polarity, err) 
 

This if loop works as a check, advising us if the reciprocal (index j) of a certain 
quadrupole (index i) has inverse polarity. 
 

            rec_num[i] = j + 1 
            rec_num[j] = i + 1 
            rec_avg[i] = avg 
            rec_avg[j] = avg * polarity 
            rec_err[i] = err 
            rec_err[j] = err 
            rec_fnd[i] = 1  # mark meas as direct 
            rec_fnd[j] = 2  # mark meas as reciprocal (keep 0 for unpaired) 
            break 
 

Now we have to fill the vectors we created initially filled of zeroes. The first two 
“rec_num[i]” and “rec_num[j]” save the position of the direct and reciprocal 
measures (we wrote i+1 and j+1 because the vectors start from position zero); The 
next two vectors “rec_avg[i]” and “rec_avg[j]” save the average value in the 
correspondence of the direct (i index) and of the reciprocal measures (j index). The 
latest is again multiplied by polarity because we don’t want to save it assuming the 
direct measure polarity, but its original one as reciprocal; The error is percentual so 
it is the equal for vector in both positions “rec_err[i]” and “rec_err[j]”; Lastly, 
“rec_fnd[i]” and “rec_fnd[j]” stores the position of direct and reciprocal measure, 
respectively. Rec_fnd[j] assumes a zero value if during the loop no reciprocal 
measure was found. 
 

    Cnts = np.bincount(rec_fnd) 
    if len(Cnts) == 1: 
        unpairedCnt = Cnts[0] 
        assert unpairedCnt == len(rec_fnd) 
    elif len(Cnts) == 3: 
        unpairedCnt, directCnt, reciprocalCnt = Cnts 
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        assert directCnt == reciprocalCnt 
        assert directCnt + reciprocalCnt + unpairedCnt == len(rec_fnd) 
    else: 
        raise ValueError("failed reciprocity sanity check") 
 

    return rec_num, rec_avg, rec_err, rec_fnd 
 

Hence, we wrote a reciprocity sanity check loop, where “Cnts” is a variable that 
groups the values assumed by the vector rec_fnd, so it Cnts can assume at most 
three values: 0 for unpaired measures, 1 for direct ones and 2 for reciprocal ones. If 
the length of Cnts vector is equal to one, direct measures have no reciprocals, so the 
length of the vector “unpairedCnts” must be equal to the initial rec_fnd length. 
Instead, if the length of Cnts vector is equal to three, so involving unpaired, direct, 
and reciprocal measures, we split Cnts into three components and assert that the 
number of direct is equal to the number of reciprocal measures and that the sum of 
the three components is equal to the initial length of rec_fnd vector. Otherwise, the 
sanity checks failed. Finally, the script returns the four initial vectors concerning 
reciprocals information.  

At this point of the processing, we also obtained the data sets of dipole-dipole 
configuration and its reciprocal, ready to be inverted. We must specify that since the 
reciprocal measures are fewer than the direct ones, the error we found in the data 
was extrapolated and considered valid for all data points. Thus, we inverted dipole-
dipole and multi gradient data sets by using two different software, ResIPy and 
pygilmi. The results of the inversions will be shown in the next chapter.  

At the end of the inversion results, pyBERT allows you to export the resultant 
Jacobian (sensitivity) matrix. The sensitivity is mathematically described by a matrix 
made of partial derivatives of measured resistivity as function of modelled one, but 
conceptually it is an expression of the coverage of a determined portion of space 
within the investigated domain and it can be used for the resolution analysis. 
Through the study of the Jacobian matrix, we can get a good representation of the 
sensitivity distribution and farther, including the environment and the conditions of 
the survey, we can trace what caused that sensitivity distribution. In our case, in 
both configurations, we will notice that the presence of borehole electrodes is 
determinant for the final sensitivity distribution.  

So, we start off by extracting the Jacobian matrix and by calling it Coverage 
matrix 𝐴𝐶 , made up by 𝑛 columns, number of coverage model cells, and 𝑚 rows, 
number of quadrupoles used for each configuration. We must consider that the 
sensitivity value of any single element is the result of the contribution of each 
quadrupole involved in the configuration. Under this perspective, we can estimate 
to what extent a single quadrupole is contributing or not to increase the coverage of 
a specific cell and thus we might identify some cells with a little sensitivity value.  
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The second step we can do is to get the covariance matrix from the initial 
coverage matrix by using linear algebra: 

 𝐴𝐶𝐴𝐶𝑇 ÷ (𝑛 − 1) 
(Eq. 4.8) 

Where 𝐴𝐶𝑇  is the transpose coverage matrix and 𝑛 the total number of elements. We 
obtain a square matrix called Covariance matrix made by the the number of 
quadrupoles 𝑚 on both sides. This matrix is an expression of the covariance of the 
quadrupole combinations; hence it shows the degree of similarity of sensitivity 
between two quadrupoles and its variability.  

As third step, still from the initial coverage matrix, we can obtain the angle 
matrix by following this relation: 

 𝑎𝑟𝑐𝑐𝑜𝑠(𝐴𝐶𝐴𝐶𝑇 ÷ 𝑛𝑛𝑇),    𝑛𝑖 = ‖𝑎𝑖‖ 

(Eq. 4.9) 

So, taking the arccosine of 𝐴𝐴𝑇 and 𝑛𝑛𝑇 which respectively represent the coverage 
matrix and its transpose and the number of cells vector and its transpose. The 
double vertical bars denote the absolute value or magnitude of the vector, which is 
calculated as the square root of the sum of the squares of its components. This 
matrix shows through an angular quantity the difference between two quadrupoles 
in terms of sensitivity.  
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5)  Inversions results. 

 

In this chapter I am going to show you the results we obtained from the 
inversions from ERT and IP data, plus the results of the coverage, covariance, and 
angle matrixes we got after the Jacobian matrix analysis. Through these results I 
would like to estimate the depth of the water table and checking if it is coherent 
with the one we measured directly at the site, to assess the lithology of the site and 
compare it with the stratigraphic log, to verify the presence of any polarizable 
material as clays or buried body in the subsoil and to estimate how sensitivity 
distribution changes through the Jacobian matrix analysis including or not borehole 
electrodes in the acquisition scheme. To explain it I will show the resultant 
sensitivity sections for both configurations and those obtained by just three 
different quadrupoles.  

 

5.1) Results of ERT data inversion. 

 

For the resistivity sections we only show the ones from ResIPy and pygimli for 
both dipole-dipole and multi gradient configurations. In both cases we considered 
for the inversions the error threshold previously obtained from the two methods of 
data error assessment, decay curve analysis and reciprocal error, respectively for 
multi gradient and dipole-dipole configurations. Precisely, for multi gradient 
configuration data sets we chose 5% as error threshold, while for dipole-dipole data 
sets we had to increase it up to 10%. This choice kept a low number of iterations and 
a smooth convergence. The first consideration we can make is that the water table 
is well observed with the two configurations, with and without the usage of 
borehole electrodes. It is specified that to run an inversion without considering 
borehole electrodes I simply neglected those quadrupoles concerning borehole 
electrodes through the usage of a MATLAB script that I wrote.  

Starting with the dipole-dipole resistivity section (Figure 5.1) involving 
borehole electrodes, we can recognize a first superficial and thin resistive layer 
characterized by a resistivity value of 3000 Ω.m likely due to the dry wooded soil 
where electrodes were placed and a dark yellow hard to not hard sand which 
continues for further two meters depth. The following hard flint horizon of 0,4 m 
thickness is not observed since the vertical resolution is not good enough due to the 
spacing between electrodes of 1,25 m. The initial resistive layer is interrupted by a 
more conductive horizon representing the brown sand in the stratigraphic log that 
extends from 2,40 m to 5 m depth and characterized by an average resistivity of 600 



63 
 

Ω.m. Still moving down in the section, we see a second resistive layer which 
represents the alternating of light brown and pinkish sandstone and schists which 
occupies a portion of subsurface ranging from 5 m to 8 m deep, showing resistivity 
values from 3000 Ω.m to 6000 Ω.m. This second resistive horizon enjoys a constant 
horizontal continuity for the whole length of the array due to the good lateral 
resolution that dipole-dipole configuration provides, and it partially interrupts the 
above conductive layer in the correspondence of the right side of the borehole. 
From this point on, the resistivity gradually decreases even though the lithology 
remains similar. In fact, despite the following strata in the stratigraphic log is 
represented by the alternating of dark to light brown sandstone and schists that 
goes from 8 m to 16 m deep, it gradually passes from a 700 Ω.m to 100 Ω.m 
resistivity values within a few meters. This behaviour is attributed to the water table 
located at 14,6 m deep and to the capillary fringe, a saturated zone above the water 
table where water is affected by capillary forces due to a pressure gradient. The 
conductive water indeed replaces the air in the pores of the geological formation 
making it saturated and lowering its average resistivity according to Archie’s law: 

 𝜌𝑓 = 𝑎𝜙𝑚𝑆𝑤𝑛 ⋅ 𝜌𝑤 

(Eq. 5.1) 

Where 𝑎 (usually near to one) is an empirical constant, 𝑚 is the cementation 
exponent (usually near to two), 𝑛 is the saturation exponent (usually near to two), 𝜙 
is the porosity of the analyzed sample, 𝑆𝑤 is the water saturation of the sample, 𝜌𝑤 
is the resistivity of the water in the sample and 𝜌𝑓 is the overall resistivity of the 
formation. What we derive from this equation is that either by increasing the 
porosity or the water saturation, the total resistivity of the formation decreases. In 
our case, getting closer to the water table the water saturation increases making the 
geological formation gradually more conductive. Hence below the water table the 
section appears homogeneous in term of resistivity, reaching values from 70 Ω.m to 
100 Ω.m, since water saturation is at its maximum and water resistivity mainly 
guides the formation one. The section is overlayed by the sensitivity which is 
represented by the white aura that assumes a “V” shape. The portion hided by the 
sensitivity overlay should not be considered for the final interpretation since there 
sensitivity assumes low values. Low sensitivity values can be translated as a poor 
investigation of a certain region of space and so too few data points to rely on for 
the inversion. In this first case, borehole electrodes are not covered since they were 
included in the acquisition scheme of the inversion.  
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 Moving to the dipole-dipole resistivity section without involving borehole 
electrodes (Figure 5.2), we can affirm that the pattern and the respective resistivity 
values are almost the same compared to the previous section. Indeed, until 15 m 
deep the main features which we can recognize are the same ones, the first shallow 
resistive layer due to the dry wooded soil, the following relatively conductive 
horizon, the second resistive layer that interrupts the above conductive one on the 
right side of the section and the gradual decrease in resistivity as we approach the 
capillary fringe and the water table. An encouraging result is that the thickness of 
resistive and conductive layers is equal in both the sections, with and without 
considering borehole electrodes. The main difference is the shape of the sensitivity 
overlay which covers completely the borehole electrodes. In this case it starts from 
about 15 m deep downward, which is reasonable since the length of the array is 80 
m and the estimated penetration depth is about 16 m. It means that below that 
depth we have no data points we can rely on for the inversion since the deepest 
region of the subsoil was not investigated.  

 

 

 

 

 

 

 

Figure 5.1 – Dipole-Dipole resistivity section involving borehole electrodes, from ResIPy. Stratigraphic 
log is next to the section for a better interpretation.  
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 Considering now multi gradient resistivity section involving borehole 
electrodes (Figure 5.3), it can be compared to dipole-dipole resistivity section 
concerning borehole electrodes in terms of resistivity and thickness of the resistive 
and conductive layers observed. The first main difference we notice is that the 
horizontal continuity of the strata is not as well respected as in dipole-dipole 
configuration. Indeed, the first relatively conductive layer seems not to be 
continuous horizontally, on the contrary it looks like that the first and second 
resistive layers touch each other for about half of the length of the array limiting the 
lateral continuity of the conductive layer. The second resistive horizon itself shows a 
weaker lateral continuity than the one obtained with the dipole-dipole array, 
especially on the left side of the section. These lateral discontinuities may be two 
proves demonstrating the fact that multi gradient lateral resolution is not as precise 
as dipole-dipole one as consequence of the different quadrupole geometries 
assumed. The second main difference is that on average multi gradient 
configuration shows slightly lower resistivity values compared to dipole-dipole. The 
third difference regards the shape of the sensitivity overlay. In this case, the “V” 
shape is still present, but it starts at a depth between 20 m and 25 m deep, while for 
dipole-dipole configuration it starts at 15 m deep. This aspect of the interpretation 
further characterizes the difference between dipole-dipole and multi gradient 
configuration, making this latest more reliable as we move toward the lateral limit 
of the domain.  

 

Figure 5.2 – Dipole-Dipole resistivity section without involving borehole electrodes, from ResIPy. 
Stratigraphic log is next to the section for a better interpretation.  
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 Lastly, moving to the multi gradient resistivity section without involving 
borehole electrodes (Figure 5.4), main resistive and conductive layers and their 
lateral discontinuities are still shown, so the coherence with the stratigraphic log is 
still respected. Nevertheless, without considering borehole electrodes the lateral 
continuity of both, first conductive and second resistive layers look more defined 
compared to the previous inversion concerning borehole electrodes. As in dipole-
dipole case, the thickness of the layers along both multi gradient resistivity sections 
looks coherent. One more common point that links multi gradient and dipole-dipole 
configurations without borehole electrodes is the shape of the sensitivity overlay. 
Indeed, it is represented by the whitish horizon starting from 16 m – 17 m deep, 
which is reasonable since the penetration depth is still estimated to be about 16 m.  

 

 

 

 

Figure 5.3 – Multi gradient resistivity section involving borehole electrodes, from pygimli. Stratigraphic 
log is next to the section for a better interpretation.  
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5.2) Results of complex resistivity inversion. 

  

 For the complex resistivity 𝜎∗ and chargeability inversions we used only 
ResIPy, and we increased the error threshold, 7% for multi gradient and 15% for 
dipole-dipole configurations. Complex resistivity inversion is represented by a 
section of the following quantities, real conductivity component 𝜎′, imaginary 
conductivity component 𝜎′′and phase angle. We also obtain a chargeability section. 
Nevertheless, we must specify that real and imaginary components of conductivity 
and phase angle were carried out from multi gradient configuration without 
borehole electrodes since they are cause for artifacts in the final inversion as well as 
dipole-dipole configuration dataset probably due to a not good enough signal to 
noise ratio, so the interpretation stops at a depth of about 16 m. While chargeability 
section was carried out with pygimli from multi-gradient dataset involving borehole 
electrodes.  

 Starting from real conductivity component 𝜎′ (Figure 5.5), it is expressed in (𝑆/𝑚) in log scale. It precisely recognizes and follows the main layers we already 
described in the resistivity sections, starting with the shallowest less conductive 
medium involving dry wooded soil where electrodes were placed and a dark yellow 
hard to not hard sand which continues for two meters depth. Moving down we 

Figure 5.4 – Multi gradient resistivity section without involving borehole electrodes, from pygimli. 
Stratigraphic log is next to the section for a better interpretation.  
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meet a more conductive horizon representing the brown sand in the stratigraphic 
log and then we have a second less conductive layer representing the alternation of 
light brown to pinkish sandstone and schists. We are still able to observe the 
discontinuity in the conductive layer due to the contact between the first and the 
second resistive layers on the right side of the borehole. Then real conductivity 
gradually increases due to the presence of the water table at 14,6 m deep and in the 
above vadose zone. It is coherent for the real conductivity component 𝜎 ' section to 
show the same distribution as the resistivity section since these two parameters 
express the same property of the subsurface, to resist the flow of current, and they 
are not involved in any polarisation phenomena. Indeed, the measured electric field 
related to the real component of conductivity is in phase with the injected one. 

 

 

About the imaginary conductivity component 𝜎′′ (Figure 5.6), it is expressed 
in (𝑆/𝑚) in log scale as well and it shows values three orders of magnitude smaller 
than 𝜎′. The alternation of less and more conductive layers is still observed as well 
as the main horizontal discontinuity in the conductive layer. Further, since the 
relative depth at which the water table is located, we can assume that the shallow 
portion of the section involving the three alternation of resistive and conductive 
layers is dry. This means that the sharp contrasts shown in 𝜎′ and 𝜎′′ sections are 
mainly guided by lithology, so by mineralogy and granulometric distribution of the 
geological formation. The sharp contrasts hence represent a contrast in grain size 
distribution and mineralogy of the units, superficially described by the stratigraphic 
log that shows an alternation of sand (first three units) and sandstone. The 

Figure 5.5 – Real conductivity component section, 𝜎′. Stratigraphic log is next to the section for a better 
interpretation.  
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explanation for the imaginary conductivity component 𝜎 '' section to be like the real 
component one 𝜎 ' is lithological. Indeed, finer grain sizes lower the resistivity and 
increase the polarisation and vice versa. Furthermore, finer grain sizes can be 
understood both ways of actual finer grain sands, either sand including a higher clay 
fraction. 

 

 

To conclude, comparing phase angle section (Figure 5.8) in 𝑚𝑟𝑎𝑑 and 
chargeability section (Figure 5.7) in 𝑚𝑉/𝑉, they show the same main characteristics. 
The shallow portion of both sections is the only one with a relative high value of 
polarization, especially on the right side of the borehole, due to the presence of 
organic matter on the uppermost part of the soil. While the rest of the sections do 
not show any polarization by assuming a smooth behaviour of relatively small values 
of 𝑚𝑟𝑎𝑑 and 𝑚𝑉/𝑉. This smooth behaviour can be attributed to a lack of clay 
minerals in the alternation of geological units. Chargeability and phase angle 
sections look similar since they are two different representations of the same 
polarisation phenomenon. Furthermore, it is reasonable for the phase angle section 
to look mostly smooth since the imaginary and real conductivity components 
sections look very similar due to a lack of polarisation effect and whereas phase 
angle is ruled by equation 3.77 described in chapter 3. 

 

 

 

Figure 5.6 – Imaginary conductivity component section, 𝜎′′. Stratigraphic log is next to the section for a 
better interpretation.  
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Figure 5.7 – Chargeability section obtained with pygimli. Stratigraphic log is next to the section for a 
better interpretation.  

Figure 5.8 – Phase angle section obtained with ResIPy. Stratigraphic log is next to the section for a 
better interpretation.  
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5.3) Coverage, covariance, and angle matrices. 

 

Then we performed an analysis on how the sensitivity distribution changes 
with and without considering borehole electrodes for both configurations, multi 
gradient and dipole-dipole. To do so we focused our study on the sensitivity matrix 
(Jacobian matrix) obtained directly from the inversion. The following proceedings 
were possible thank to a python script kindly provided by Doct. Luca Peruzzo.  

 Starting from the coverage matrix (Figure 5.10 and 5.9), expressed in log 
scale, it is the resulting Jacobian matrix we obtain at the end of the last iteration of 
the inversion process. The columns represent the cells (elements) of the model, 
while rows are the measurement quadrupoles. A horizontal line is then the 
expression of a single sensitivity section created by that single specific quadrupole. 
Vertical red lines show that many quadrupoles cover that specific cell, while vertical 
blue lines show a cell with lack of coverage. Horizontal red lines show that the 
quadrupole does provide a good coverage to a specific range of cells, while mainly 
blue horizontal lines show those quadrupoles focus their coverage on small portions 
of the domain. Surely, the distribution of both vertical and horizontal red and blue 
lines depends on the configuration we are considering, so we will expect some 
differences between dipole-dipole and multi gradient configurations. Comparing 
Jacobian matrix from dipole-dipole and multi gradient data sets inversions, we can 
notice that multi gradient configuration involves more quadrupoles than dipole-
dipole one and that both show two main red vertical lines in correspondence of the 
2000th cell and about the 3300th cell. Given the thickness of these vertical lines, the 
cells with a high value of coverage are more than one. The reason why two different 
configurations show a high value of coverage in correspondence of the same 
elements of the model may be attributed to the fact that for both configurations 
that region of domain was well investigated perhaps due to its central and not yet 
deep position and for proximity to the electrodes. Overall, dipole-dipole 
configuration shows high coverage values, so a high red vertical lines distribution, 
between the 1500th and 3300th cell. Horizontal blue lines, each including more than 
a quadrupole, are instead clearly visible between the 1st and 500th quadrupole and 
one is located at about the 1000th quadrupole. Vertical blue lines are present 
mostly from about the 4100th element on. Still in these cases, if we zoomed the 
image, we would notice that the quadrupoles and elements involved in the coverage 
are more than one. Multi gradient configuration shows a high concentration of 
vertical and horizontal red lines between the 1500th and 4500th element of the 
model. About horizontal blue lines, they are mainly present starting from the 1000th 
quadrupole till the bottom and the two top edges of the figure, as well as vertical 
blue lines.  
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About covariance matrixes (Figure 5.11), on both axes the quadrupoles are 
represented. We decided to arrange the quadrupoles along both axis such that from 
the origin to their end the number of the borehole electrodes involved in the 
quadrupoles gradually increases, such that we should be able to compare the 
degree of similarity between quadrupoles involving borehole electrodes and 
quadrupoles not involving borehole electrodes. Covariance matrixes is shown by red 
and blue colours which, respectively, represent high similarity degree and low 
similarity degree between quadrupoles. In the case of dipole-dipole covariance 
matrix, the highest similarity degree between electrodes is found in the main red 
areas having the shape of two squares, on the top left side of the image until the 
600th quadrupole in both axes, and on the bottom right side, from the 600th 
quadrupole on in both axes. It is reasonable to think so, since these two portions of 
the image refer to quadrupoles having a similar number of borehole electrodes. The 
lowest similarity degree instead is registered in the remaining two rectangular 
portions of the image, the first one from the 600th quadrupole on for y axis until the 
600th quadrupole for x axis, and the second one until the 600th quadrupole for y 
axis and from the 600th quadrupole on for y axis. Doing so, we identified the 
quadrupoles that differ the most in term of sensitivity compared to each other. 
More precisely, as we expected, we proved visually (but still qualitatively) that the 
biggest difference in term of sensitivity is given between quadrupoles involving 

Figure 5.9 – Coverage matrix representation obtained from dipole-dipole configuration.  

Figure 5.10 – Coverage matrix representation obtained from multi gradient configuration.  
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borehole electrodes and quadrupoles not involving borehole electrodes. About the 
multi gradient covariance matrix, the patterns of high and low similarity degree 
between quadrupoles are like dipole-dipole one. Indeed, we can recognize two 
regions of high sensitivity similarity degree on the top left and on the bottom right 
corners, while two regions of low sensitivity similarity degree on the top right and 
on the bottom left corners. Still, big sensitivity differences are associated to a 
comparison between quadrupoles involving and not borehole electrodes.  

 

 Lastly, angle matrix (Figure 5.12) gives a more quantitative estimation (𝑟𝑎𝑑) 
of the sensitivity similarity degree between quadrupoles and their arrangement 
along the axis is the same of covariance matrix. What emerges for dipole-dipole 
angle matrix is a similar pattern, comparable to low sensitivity similarity degree 
rectangular regions in covariance matrix, showing the highest angular values (red 
rectangular zones), which is coherent to what we said so far. Indeed, with such 
quantification, we can notice that the quadrupoles having the biggest difference in 
sensitivity are the ones involving and not the borehole electrodes, according to 
covariance matrix. About multi gradient configuration angle matrix, the concept is 
the same. Regions showing highest angular values are superimposable to those ones 
showing lowest covariance values. In both angle matrixes it is interesting to notice 
that the top left bottom right diagonal is made of angular values equal to zero since 
it is comparing the same quadrupoles throughout its length. 

 

Figure 5.11 – Comparison between covariance matrices obtained from dipole-dipole (left image) and 
multi gradient (right image) configurations.  
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 As last point, I am going to compare the sensitivity sections obtained as sum 
of each quadrupole contribution for multi gradient and Dipole-Dipole configurations. 
Indeed, the sensitivity value in each element of the discretized domain is equal to 
the sum of the sensitivity quantity brought by each quadrupole. Those elements of 
the domain showing relative higher values of sensitivity enjoy a good coverage, 
since the sum of the quadrupoles sensitivity contribution results high. It can be 
translated as a good reliability for the final inversion. Sensitivity may show both 
positive and negative values since it is mathematically described as a derivative, 
hence if the gradient is negative, the final sensitivity results negative and vice versa 
for a positive gradient.  

The sensitivity section for multi gradient configuration (Figure 5.13) from 
resultant Jacobian matrix shows in the shallow portion a specular pattern of high 
coverage on the left and right side of the borehole, while it doesn't seem to be there 
a great sensitivity continuity between the shallower and borehole portions of the 
section. Instead, looking at the sensitivity section for Dipole-Dipole configuration 
(Figure 5.14) we can notice a little inequality in terms of its distribution. Indeed, 
sensitivity to the left of the borehole reaches a deeper portion in the section than to 
the right side. But, on the other hand, shallower and borehole sensitivity chunks 
seem to be well connected each other showing good continuity. These two main 
distinctions between multi gradient and Dipole-Dipole configurations sensitivity 
sections are due to the different specific geometry of the quadrupoles. Furthermore, 
the distinction in sensitivity distribution between the two configurations can be 

Figure 5.12 – Comparison between angle matrices obtained from dipole-dipole (right image) and multi 
gradient (left image) configuration.  
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observed by looking at the covariance and angle matrices whereas they show 
different patterns.  

Figure 5.13 – Sensitivity section obtained from multi-gradient configuration.  

Figure 5.14 – Sensitivity section obtained from dipole-dipole configuration.  
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To better understand how sensitivity section is created, let’s analyse the 
following three figures showing the sensitivity sections produced by three single 
quadrupoles involving and not borehole electrodes. These sections were included in 
the overall sum of all quadrupole’s contribution to the final sensitivity section for 
multi gradient configuration and, as a matter of fact, their scale is much lower than 
the final sensitivity section. The first two quadrupoles (Figure 5.15 and 5.16) involve 
just land electrodes and as we can see the highest sensitivity values are included in 
the most superficial portion of the figure, while the third quadrupole (Figure 5.17) 
includes three land electrodes and a borehole one, thereby causing the sensitivity to 
reach deeper portions in the section. First and second quadrupoles result to be quite 
similar in terms of sensitivity patterns, while the difference between the first (or 
second) and the third one becomes marked. Hence, by analysing the similarity 
degree of those quadrupoles from a sensitivity point of view through Covariance 
matrix, in the first case we would notice an element of the matrix with low 
covariance value and another element with a bigger one in the second case.  

 

  

 

 

 

Figure 5.15 – Sensitivity section obtained from a single quadrupole involving land electrodes.  
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Figure 5.16 – Sensitivity section obtained from a single quadrupole involving land electrodes.  

Figure 5.17 – Sensitivity section obtained from a single quadrupole involving three land electrodes and 
a borehole one.  
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 To conclude, since we explained how a sensitivity section is made, we can 
compare and explain why in this case of study sensitivity sections do differ 
considering and not borehole electrodes in both configurations. What we can clearly 
notice is that sensitivity sections carried out without including borehole electrodes 
in the acquisition array (Figure 5.18 and Figure 5.19) show in both cases a high 
coverage degree only in the first 10m, the shallowest portion of the domain. This is 
explained why all the quadrupoles involve only on land electrodes, and so every 
single sensitivity section obtained by single quadrupoles do not involve the deep 
portion of the domain. Therefore, their final sum must produce a final sensitivity 
section that shows a good coverage value in its shallowest portion. In this regard, 
the application and the study of the covariance and angle matrices is another way to 
look at the same phenomenon. Indeed, both matrices representation show, in a 
qualitative and a more quantitative way respectively, how sensitivity distribution 
changes across the domain by increasing the number of borehole electrodes in the 
quadrupoles.  

 

 

 

Figure 5.18 – Sensitivity section obtained from Dipole-Dipole configuration without involving borehole 
electrodes, ResIPy.  
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6)  Conclusions. 

 

 From the resistivity analysis we carried out, we can recognize a shallower 
alternation of resistive and conductive layers which can be coherently traced back to 
the geological units present in the stratigraphic log up to the beginning of the water 
table. Speaking of the water table itself, we can claim to be able to see it with the 
resistivity section in both cases, involving and not the borehole electrodes in the 
data sets for the two configurations, dipole-dipole and multi gradient, at the same 
depth of the measure we performed in situ. Hence, the chosen configurations with 
increasing skip, despite we neglected borehole electrodes, provided enough signal 
to noise ratio at sufficient depth to detect the water table.  

Real and imaginary components of complex conductivity faithfully trace 
resistivity sections, further distinguishing the presence of different geological units 
for physical and mineralogical properties. At the same time, they look similar for 
lithological/petrophysical reason since the lack of polarisable materials does not 
produce any significant polarisation effect. It would be interesting to perform some 
specific geotechnical studies on the log samples to define the distribution of some 
physical and chemical properties as granulometry, porosity and mineralogy to better 

Figure 5.19 – Sensitivity section obtained from multi-gradient configuration without involving borehole 
electrodes, ResIPy.  
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interpret and to assign a clearer physical meaning to the real and imaginary 
components of complex conductivity.  

Phase angle and chargeability sections equally further confirm the absence of 
clays in the section by keeping a smooth and low value of chargeability (𝑚𝑉/𝑉) and 
phase angle (𝑚𝑟𝑎𝑑), except for the surface horizon which shows relative high phase 
and chargeability values due to the electrode’s polarisation itself and the organic 
soil. Further, we can affirm that the investigated domain is characterized by the 
absence of buried polarisable objects and contaminants, despite it was not the 
purpose of the investigation.  

The study of the Jacobian (sensitivity) matrix through the usage of statistical 
and linear algebra tools which translate in coverage matrix, covariance matrix and 
angle matrix, provided us with a qualitative and a more quantitative readings about 
the difference in sensitivity distribution obtained with and without considering 
boreholes electrodes in the data sets. As expected, from this study we can state that 
borehole electrodes guide the sensitivity distribution by increasing the coverage in 
the deepest portion of the domain, also remarked by comparing the sensitivity 
sections. Nevertheless, we can notice some heterogeneities. Indeed, borehole 
electrodes are not the only factor that rules the sensitivity distribution: electrodes 
spacing, and superficial electrodes positioning are two examples.  

Overall, we can conclude that electrical resistivity tomography and time 
domain induced polarisation geophysical methods provided complementary results 
that can be matched for an accurate hydrogeological characterisation of the 
investigated site. Furthermore, covariance and angle matrices turned out to be two 
reliable techniques for the study of the sensitivity distribution as function of the 
acquisition array geometry.  
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