
UNIVERSITÀ DEGLI STUDI DI PADOVA

Dipartimento di Fisica e Astronomia “Galileo Galilei”

Master Degree in Physics of Data

Final Dissertation

Quantum algorithms for the solution of partial differential

equations with applications in the aerospace sector

Thesis supervisor Candidate

Dr. Ilaria Siloi Alessandro Grilli

Thesis co-supervisors

Prof. Simone Montangero

Mattia Verducci

Academic Year 2023/2024

Abstract

Partial Differential Equations (PDEs) are transversal to all scientific fields

such as aero- and fluido-dynamics, plasma physics and finance. A technique

for efficiently finding numerical approximations to the PDEs’ solutions is

based on the introduction of a finite mesh to discretize the space of the pa-

rameters, the so-called Finite Element Method (FEM). With this approach

the solution of the PDEs ultimately reduces to the solution of a large system

of linear equations. This thesis explores the potential of quantum algorithms,

with a specific focus on the Harrow-Hassidim-Lloyd (HHL) algorithm, in ac-

celerating the solution of PDEs relevant in the context of electromagnetic

simulations for Earth Observation (EO). We present a comprehensive imple-

mentation of the HHL algorithm, that allows full control over input parame-

ters and associated subroutines. By classically emulating HHL, we critically

examine its limitations, and highlight the regimes where a speedup over clas-

sical methods is expected. This work represents the output of a six month

internship with the research division of Thales Alenia Space Italia (TASI),

aimed at exploring potential applications of quantum computing in the EO

scenario.

i

Contents

Abstract i

Introduction 1

1 Computational Electromagnetism for EO problems 5

1.1 Maxwell’s Equations . 6

1.2 Overview of Classical Solvers and Methods 7

1.3 Antenna Design for Radar EO 11

1.3.1 Slotted Antennas . 12

1.3.2 Criteria for the use case selection 14

1.3.3 Quantum Computing approach 15

1.4 The Finite Element Method 15

1.4.1 The Boundary-Value Problem 16

1.4.2 One-Dimensional FEM 16

2 Quantum Computing 23

2.1 Classical computation . 23

2.2 Qubit . 25

2.2.1 Multiple qubits and entanglement 25

2.3 Quantum Circuits . 27

2.3.1 Single-qubit gates . 29

2.3.2 Multiple qubit gates 32

iii

iv CONTENTS

3 Quantum Algorithms 35

3.1 Quantum Parallelism . 35

3.2 Quantum Fourier Transform 38

3.3 Quantum Phase Estimation 42

3.4 Hamiltonian Simulation . 45

3.4.1 Product Formulas . 46

3.4.2 State of the art algorithms 49

3.4.3 Hamiltonian Simulation Implementation 49

4 Harrow-Hassidim-Lloyd algorithm 51

4.1 The HHL Algorithm: Step-by-Step 51

4.2 Computing Observables . 58

5 HHL implementation 61

5.1 Implementation . 61

5.1.1 Qiskit framework . 61

5.1.2 Input parameters . 62

5.1.3 Examples with a 2 × 2 matrix 63

5.1.4 Challenges in Simulating the HHL Algorithm 66

5.2 Results: fine-tuning of input parameters for arbitrary size . . . 68

5.2.1 Selection of Input Matrices for Simulations 69

5.2.2 The number of clock-qubits nc 72

5.2.3 The evolution time parameter t 77

5.2.4 Scaling of the Error with the System size 85

6 Conclusions and Future Development 87

Introduction

Partial Differential Equations (PDEs) are fundamental across many sci-

entific fields, including aerodynamics, fluid dynamics, plasma physics, and

finance. While solving differential equations analytically is ideal, such so-

lutions are rare. Examples of analytically solvable cases include the elec-

trostatic potential between infinite parallel plates or wave propagation in

rectangular, circular, and elliptic waveguides [1]. Most real-world engineer-

ing problems do not have analytical solutions, leading to the development of

various approximate methods.

The Finite Element Method (FEM) is a widely used numerical approach for

solving PDEs [1, 2]. It involves discretizing a continuous domain into smaller

geometric elements and approximating the behavior of the solution within

each element using simple mathematical functions. This method transforms

the PDE into a system of algebraic equations by enforcing the governing

equations and boundary conditions at discrete points. Solving this linear

system yields an approximate solution to the original PDE. FEM has been

extensively used for analyzing electromagnetic fields in antennas, radar scat-

tering, Radio frequency (RF), and microwave engineering. However, tradi-

tional methods for EM simulation like FEM, while robust, face significant

challenges in scaling to large, complex systems due to their computational

intensity [3]. Thus, any speedup for FEM would represent a significant ad-

vancement in these fields.

This limitation led us to consider quantum computing as a potential solu-

tion, indeed, quantum computing approaches to PDEs have been attracting

1

2 INTRODUCTION

considerable attention in recent years and represent an active research field.

This work focuses on the Harrow-Hassidim-Lloyd (HHL) quantum algorithm

[4], which can solve linear system problems and demonstrates exponential

speed-up over classical algorithms under certain conditions. This speed-up is

achieved if we are interested in some expectation values of the solution and

the input matrix is sparse. FEM poses an attractive prospect for enhance-

ment using the HHL algorithm for several reasons [5]. In particular, FEM

naturally generates sparse systems of linear equations whose corresponding

matrix usually has a well-defined structure. However, the current stage of

quantum hardware development is still in its infancy, limiting the immediate

feasibility of solving large-scale EM problems via quantum computation [6].

Given these considerations, this work presents a comprehensive implemen-

tation of the HHL algorithm, that allows full control over input parameters

and associated subroutines, to emulate it classically using Qiskit [7]. This

implementation includes the development of a complete Python library from

scratch. The goals of this work include gaining a deeper understanding of the

algorithm’s functionality, its intrinsic limitations, and its potential applica-

tions in the Earth Observation (EO) domain. Specifically, we are interested

in the the solution of linear equation systems coming from FEM techniques

for EM simulation problems. For the simulations we focused on Toeplitz

tridiagonal matrices [8], since similar matrices result from the FEM applied

to the 1-D Poisson equation [1]. This choice also enables a full control over

the condition number of the matrix and its eigenvalues, such that we can

easily test the implemented algorithm in different regimes. We analyze how

to fine tune the input parameters, such as the number of qubits and the evo-

lution time parameter t of the Hamiltonian simulation subroutine, discussing

how to set them in a generic scenario.

This thesis represents the final output of a six-month internship within the

research division of Thales Alenia Space Italia (TASI), aimed at exploring

potential applications of quantum computing in the EO scenario. This thesis

is structured as follows:

INTRODUCTION 3

• Chapter 1 introduces the numerical methods used in Computational

Electromagnetism, focusing on relevant use cases for TASI, such as

Antenna Design and Optimization. An overview of FEM is provided,

discussing its implementation in the 1-D boundary-value problem.

• Chapter 2 reviews fundamental concepts of quantum computation,

such as quantum entanglement and the implementation of one- and

two-qubit gates.

• Chapter 3 describes the main concepts of quantum algorithms, such as

quantum parallelism, and discusses the implementation of the primary

subroutines of the HHL algorithm.

• Chapter 4 details the step-by-step implementation of the HHL algo-

rithm, from state preparation to measurement. It also covers how to

compute the solution norm and the absolute average of the full solution.

• Chapter 5 introduces the Qiskit framework and the software imple-

mentation of the algorithm, discussing the challenges of simulating

quantum algorithms on classical hardware. It presents the results from

the numerical simulations and provides an overview of potential future

developments to extend this work.

Chapter 1

Computational Electromagnetism

for EO problems

Computational Electromagnetism (CEM) plays a crucial role at Thales

Alenia Space Italy (TASI). From the mission definition to the validation and

verification campaign, numerous design steps of space assets involve electro-

magnetic (EM) simulation. These applications include antenna design and

optimization, antenna calibration, and EM compatibility testing, among oth-

ers. These problems vary in terms of wavelengths, physical sizes, and the ac-

curacies required, necessitating a wide array of potential solvers. Each solver

possesses its own set of advantages and limitations for particular problems,

but all converge on the common task of solving a large system of equations.

With the rapid growth in the scale and complexity of EM structures, CEM

can result in extremely large matrices, which could challenge the capabilities

of classical computation. Recently, quantum algorithms have been developed

that efficiently solve linear systems, claiming exponential speedups over cor-

responding classical algorithms. Therefore, the potential for a quantum ad-

vantage opens up many new opportunities for the simulation and design of

EM structures. This chapter introduces the domain of CEM and presents a

use case involving the EM simulation of a slotted antenna for radar Earth

Observation (EO) as a relevant industrial problem where quantum speedup

5

6 1. Computational Electromagnetism for EO problems

could be beneficial. Although this specific problem is efficiently addressed by

classical algorithms, it represents a simplified version of a broader use case

(phased array antenna). This broader use case involves the design and opti-

mization of antennas for radar EO using the Finite Element Method (FEM)

at a fixed frequency, which is currently impractical with classical methods due

to its scale. Assessing the real benefits that quantum algorithms can provide

to CEM problems is challenging because large-size problems are currently be-

yond the reach of Noisy Intermediate-Scale Quantum (NISQ) [6] hardware,

while small-size problems are outperformed by classical algorithms and are not

industrially relevant. The use case proposed in this thesis represents a good

trade-off between industrial relevance and availability of quantum resources.

The structure of this chapter is as follows: Sec. 1.1 gives an overview on

Maxwell’s Equations, Sec. 1.2 introduces the CEM domain and reviews the

main solvers, highlighting their strengths and weaknesses, Sec. 1.3 defines the

industrial use case and its parameters for solution using the Finite Element

Method (FEM).Finally, Sec. 1.4 briefly describes how FEM operates in the

case of the 1-dimensional boundary-value problem.

1.1 Maxwell’s Equations

Classical electromagnetism is based on Maxwell’s equations which de-

scribe how electric and magnetic fields propagate and interact with matter.

These equations are essential for understanding and simulating electromag-

netic (EM) phenomena in various applications [1, 9]. The general differential

form of Maxwell’s equations, derived using Gauss’s and Stokes’s theorems, is

given by:

1.2 Overview of Classical Solvers and Methods 7

∇× E = −∂B
∂t

(Faraday’s law) (1.1.1)

∇×H =
∂D

∂t
+ J (Maxwell-Ampere law) (1.1.2)

∇ ·D = Ä (Gauss’s law) (1.1.3)

∇ ·B = 0 (Gauss’s law—magnetic) (1.1.4)

∇ · J = −∂Ä
∂t

(equation of continuity) (1.1.5)

where E is the electric field, B is the magnetic field, H is the magnetic

field intensity, D is the electric displacement field, Ä is the electric charge

density, and J is the current density.

In the static case, where the fields are time-independent, Equations (1.1.1),

(1.1.2), and (1.1.5) can be written as:

∇× E = 0 (1.1.6)

∇×H = J (1.1.7)

∇ · J = 0 (1.1.8)

1.2 Overview of Classical Solvers and Methods

Computational Electromagnetism (CEM) involves using numerical meth-

ods to compute approximate solutions to Maxwell’s equations for various ap-

plications, including antenna design and optimization, electromagnetic com-

patibility, radar cross-section, and electromagnetic wave propagation. CEM

typically addresses the problem of computing the electric (E) and magnetic

(H) fields across the problem domain; from E andH, various other quantities

can be derived, such as power flow direction (Poynting vector), scattering,

waveguide’s normal modes, and currents. CEM includes a wide range of

methods, each with its advantages and disadvantages depending on the spe-

8 1. Computational Electromagnetism for EO problems

cific problem. A key parameter in selecting the most appropriate method is

the Electrical Size (ES) of the object to be simulated. For conductors, ES

is defined as the length of the object measured in wavelengths (relative to

the specific frequency f or narrow band of frequencies at which the object

operates):

ES =
l

¼
, (1.2.1)

where l is the physical length of the object and ¼ = vp
f

. Here, vp is the

phase velocity of electrical signals along the object. In free space, vp = c.

Based on the ES of the object, CEM methods can be classified as follows:

Low-frequency Methods

For ES < 20, the object is considered "electrically short," meaning volt-

age and current are approximately constant along the conductor. These

methods can be further divided into:

• Differential Methods: these methods discretize ("mesh") the prob-

lem space into regular shapes ("cells") and solve Maxwell’s equations

simultaneously across all cells. Examples include the Finite Element

Method (FEM), suitable for both time and frequency domain simula-

tions, and the Finite Difference Time Domain (FDTD), which is suit-

able for time domain simulations. Both methods produce sparse ma-

trices, reducing memory requirements, though frequency domain simu-

lations (FEM) require repeated calculations for each frequency within

the desired bandwidth, increasing computational cost.

• Integral Methods: starting from the Green’s function solution G of

Maxwell’s equations, these methods express the electromagnetic field

as an integral of G-weighted equivalent currents on the object’s bound-

aries. The primary integral method is the Method of Moments (MoM),

which focuses on the surface current distribution J . By expanding J

1.2 Overview of Classical Solvers and Methods 9

into a series of basis functions with unknown coefficients and project-

ing this current expansion onto a set of weighting functions, a matrix

equation is formed and solved.

High-frequency Methods (Asymptotic Methods)

For ES g 20, traditional full-wave methods result in impractically large

matrices. Here, electromagnetic fields are modeled as rays interacting with

media boundaries, undergoing reflection, refraction, and transmission. Geo-

metrical Optics (GO) forms the core of this approach. Other methods include

the Geometrical Theory of Diffraction (GTD) and Physical Optics (PO).

Hybrid Methods

For complex large-scale problems, hybrid methods combine high-frequency

and low-frequency methods by dividing the problem domain into several

sub-domains. The main hybrid method is Domain Decomposition Methods

(DDM), which divides the computational domain into smaller subdomains,

each solved independently. The final solution is obtained by combining these

individual solutions through carefully chosen boundary conditions.

All numerical methods reported above require dividing the structure of inter-

est into many cells or elements, using approximations to convert the problem

into a solvable form, such as a linear system of equation of the form Ax = b.

A common issue is the high demand for computer memory and computation

time for solving the resulting linear system problem. For a detailed technical

description of the main CEM methods we refer the reader to Ref. [3]. In

Table 1.1 we report possible applications for each method.

10 1. Computational Electromagnetism for EO problems

Method Applications

Finite Difference Time Domain
(FDTD)

• Inhomogeneous materials (different materials or dielectric substrates)

• Complex geometries (microstrip patch antennas with multi-layer and
other small complex planar designs)

• Different boundary conditions for various regions

• Microscopic details

Finite Element Method (FEM)

• Inhomogeneous materials (different materials or dielectric substrates)

• Complex geometries (microstrip patch antennas with multi-layer and
other small complex planar designs)

• Different boundary conditions for various regions

• Microscopic details

Method of Moments (MoM)

• Unbounded problems

• Microwave and antenna engineering

• Complex geometries

• Free space (satellite antennas, like horn and apertures)

• Ground planes (accurate simulations of antennas mounted on vehi-
cles)

• Stratified and periodic materials

• Modeling wire antennas and metallic structures with high conductiv-
ity

Geometrical Optics (GO)

• Scattering and diffraction

• Radar cross-section (RCS)

• Effects of a finite antenna ground plane

• Interactions between several antennas and structures

Domain Decomposition Method
(DDM)

• Complex structures (e.g., a 3D feed horn near a large metallic object)

• Large antenna arrays

• Metamaterials

• Radar cross-section

Table 1.1: Methods of Computational Electromagnetism and their applica-
tions.

1.3 Antenna Design for Radar EO 11

1.3 Antenna Design for Radar EO

Antennas are vital components in numerous real-world applications, in-

cluding spacecraft. They serve as critical elements for a variety of applica-

tions, both as primary and secondary payloads, such as telemetry, tracking,

and control (TT&C), radar observation, telecommunications, and space sit-

uational awareness (SSA). Therefore, antenna design is an essential step in

spacecraft development, ranging from simple designs like horns, patches, and

dipoles to complex antenna arrays used in Synthetic Aperture Radar (SAR).

The design of an antenna is crucial to ensure it fulfills specifications such as

center frequency, bandwidth, efficiency, and directivity/gain. Equally critical

is its placement; the platform on which it is mounted can significantly affect

its installed performance. In complex real-world environments, propagation

issues can lead to coverage gaps or co-site interference between radio systems.

Essential to this design phase are electromagnetic (EM) simulations, often

conducted using commercial software, such as CST. Simulations for antenna

arrays and radio frequency (RF) waveguides typically involve up to several

hundred thousand finite elements and may require several hours to complete

on hardware equipped with GPU acceleration. Thales Alenia Space Italia is

universally recognized as one of the leading companies in designing and im-

plementing satellite radar Earth Observation (EO) systems. These systems

comprise one or more antennas operating at specific frequencies, generally

between 1 and 40 GHz, tailored to particular applications, along with a ded-

icated digital processing backend. For the purposes of this thesis, the focus

will be on arrays of slotted waveguides for EO. An illustrative example is the

Sentinel-1’s C-SAR antenna, depicted in Fig. 1.3.1, a large 12.03m× 0.84m

active phased array antenna. This antenna consists of 14 tiles, each com-

prising 20 dual-polarized resonant waveguide sub-arrays. These sub-arrays

include 40 H/V polarized slotted antennas. Given the small ES, the required

frequency domain simulation, and the presence of several different bound-

ary conditions, the Finite Element Method (FEM) is employed for accurate

modeling and analysis of this use case. The simulation of the full system is

12 1. Computational Electromagnetism for EO problems

unfeasible for classical algorithms; therefore, the slot antenna has been iden-

tified as the building block that enables the entire design and optimization of

larger antennas made of active arrays of slotted waveguides for radar Earth

Observation (EO).

Figure 1.3.1: Image representing the Sentinel-1’s C-SAR antenna along with
its components.

1.3.1 Slotted Antennas

A slotted antenna is typically constructed from a waveguide or a flat

surface with one or more slots. These slots, when excited by a signal prop-

agating through the waveguide, emit electromagnetic waves that contribute

to the antenna’s radiation pattern. According to Babinet’s principle, the

1.3 Antenna Design for Radar EO 13

radiation pattern of a slot antenna can be approximated using the same the-

oretical frameworks applicable to rod element antennas, such as dipoles. Slot

antennas are predominantly utilized in frequency ranges from 300 MHz to

24 GHz, which encompasses most radar applications. The simplicity of slot

antennas allows them to be arranged effectively in large linear arrays. The

specific radiation pattern characteristics are determined by the number, ori-

entation, and placement of the slots along the waveguide. Key advantages of

employing slotted antenna arrays include:

• Highly directional beams,

• Cost-effectiveness,

• Manufacturing simplicity,

• Low-profile design suitable for integration into complex surfaces and

structures,

• Structural robustness.

In this use case, the waveguide is a metallic rectangular structure where

the electromagnetic wave propagates and induces current distributions along

its perfectly conducting (PEC) walls. These currents can become sources of

alternating potential at the edges of a narrow slot cut into the wall. Ad-

justing the slot’s position relative to the waveguide’s edge can modify the

power radiated by the slot. Typically, the waveguide feeds the slots in the

Transverse Electric Mode 01 (TE01), supporting efficient energy transfer and

pattern consistency. This scenario was selected due to its significance in an-

tenna theory and its feasibility for analytical solution, making it suitable for

benchmarking. Detailed mathematical formulations of the field calculations

are documented in [10]. In Fig. 1.3.2 we show the structure and specifica-

tions of the slotted antenna. The following parameters will be used for the

simulation:

• a = 22.86mm

14 1. Computational Electromagnetism for EO problems

• b = 10.16mm

• f = 10GHz

• L = 50mm

• S = 20mm (width of the slot)

Figure 1.3.2: Slotted antenna structure and specifications.

1.3.2 Criteria for the use case selection

Identifying a single representative use case for the entire computational

complexity of EM simulations in space applications is challenging. Addition-

ally, most computations currently use specialized non-open- source software,

introducing complications such as:

• Accessibility and licenses: Frequently, it is not possible to obtain in-

termediate outputs crucial for scientific analysis but deemed irrelevant

for everyday industrial use, such as the global system matrix (output of

the numerical method) or the parameters selected for the computation.

1.4 The Finite Element Method 15

• High level of optimization on classical Hardware: This can

hidden the quantum benefits when applied on very small scale prob-

lems like those that can be currently addressed by quantum computers

and/or emulators.

The strategy followed by TASI is to start from a problem currently tackled

by commercial software with dedicated computer resources and simplify it

reaching a building block of the simulation whose size and solution is still

relevant but it could be also feasible to be tackled with next future quantum

hardware. Thus, the selected scenario is a simplified version of a larger use

case related to the design and optimization of antennas for radar EO using

FEM at a fixed frequency.

1.3.3 Quantum Computing approach

Since PDE solvers ultimately solve systems of equations, evaluating the

matrices generated by classical solvers and identifying where quantum meth-

ods could offer advantages is crucial. A common problem of FEM is the huge

demand on computer memory (mesh size) and computation time (system’s

solution and mesh refinement). The quantum approach will be used to tackle

the solution of the linear system arising from FEM discretization.

1.4 The Finite Element Method

The Finite Element Method (FEM) [1, 2] is a numerical approach for solv-

ing partial differential equations (PDEs). It involves discretizing a continu-

ous domain into smaller geometric elements and approximating the behav-

ior within each element using simple mathematical functions. The method

transforms the PDE into a system of algebraic equations by enforcing the

governing equations and boundary conditions at discrete points. Solving

this linear system yields an approximate solution to the original PDE, allow-

ing for accurate simulations of electromagnetic fields in heterogeneous media

[9].

16 1. Computational Electromagnetism for EO problems

1.4.1 The Boundary-Value Problem

For this analysis, we follow the work presented in Ref. [1]. A typical

boundary-value problem can be defined through a differential equation within

a certain domain Ω:

Lϕ = f (1.4.1)

together with the boundary conditions on the boundary of the domain Γ. In

Eq. (1.4.1), L is a differential operator, f is the forcing function, and ϕ is the

unknown quantity we seek to find by solving the differential equation.

In electromagnetism, the form of Eq. (1.4.1) ranges from simple Pois-

son equations to more complicated wave equations. Similarly, the boundary

conditions vary from simple Neumann and Dirichlet conditions to more com-

plex higher-order ones. When possible, it is always preferable to solve the

differential equation analytically. However, such problems are the exception

rather than the rule. Some examples of analytically solvable problems include

the static potential between infinite parallel plates or wave propagation in

rectangular, circular, and elliptic waveguides.

Many real-life engineering problems do not have an analytical solution,

prompting the development of various approximate methods, such as the

Ritz and Galerkin methods.

1.4.2 One-Dimensional FEM

A generic boundary-value problem can be described by the differential

equation

− d

dx

(

³
dϕ

dx

)

+ ´ϕ = f, x ∈ (0, L) (1.4.2)

where ϕ is the unknown function, ³ and ´ are known parameters or functions

associated with the physical properties of the solution domain, and f is a

known source. The standard one-dimensional Poisson equation is a special

form of Eq. (1.4.2) with ´ = 0. The solution of Eq. (1.4.2) can be obtained

1.4 The Finite Element Method 17

by solving the equivalent variational problem defined by

¶F (ϕ) = 0, ϕ|x=0 = p, (1.4.3)

where

F (ϕ) =
1

2

∫ L

0

[

³

(

dϕ

dx

)2

+ ´ϕ2

]

dx−
∫ L

0

fϕ dx+
[µ

2
ϕ2 − qϕ

]

x=L
. (1.4.4)

Eq. (1.4.3) indicates that we seek the stationary point of F (ϕ) under the

given Dirichlet boundary condition. In this context, ϕ represents the trial

function rather than the exact solution. For simplicity, we will use linear

functions as basis functions for the interpolation.

Discretization and Interpolation

The first step of the Finite Element Method consists of discretizing the

domain (0, L) into small subdomains, corresponding to short line segments in

this case. Let le(e = 1, 2, . . . ,M) denote the length of the e-th element and

M the total number of elements. Let xi(i = 1, 2, . . . , N) denote the position

of the i-th node, with x0 = 0 and xN = L.

The second step of the Finite Element Method is to select the interpo-

lation functions. For simplicity, we use linear functions. Thus, for the e-th

element, ϕ(x) can be approximated by

ϕe = ae + bex, (1.4.5)

where ae and be are constants to be determined. For one-dimensional systems,

there are two nodes associated with each element:

ϕe
1 = ae + bex1,

ϕe
2 = ae + bex2,

(1.4.6)

18 1. Computational Electromagnetism for EO problems

leading to

ϕe(x) =
2
∑

i=1

N e
i (x)ϕ

e
i , (1.4.7)

where N e
1 and N e

2 denote the interpolation or basis functions given by

N e
1 =

xe2 − x

le
,

N e
2 =

x− xe1
le

,
(1.4.8)

with le = xe2 − xe1.

Derivation of Elemental Equations via Ritz Method

During this analysis we keep the same notation as in Ref. [1], where {·}
describes a column vector, while [·] represents a matrix. For simplicity, let

us consider the case of homogeneous Neumann conditions µ = q = 0. The

functional can be rewritten as

F (ϕ) =
M
∑

e=1

F e(ϕe), (1.4.9)

where

F e(ϕe) =
1

2

∫ xe
2

xe
1

[

³

(

dϕe

dx

)2

+ ´(ϕe)2

]

dx−
∫ xe

2

xe
1

fϕe dx. (1.4.10)

Taking the derivative of F e with respect to ϕe and rewriting in matrix form,

we obtain
{

∂F e

∂ϕe

}

= [Ke] {ϕe} − {be} , (1.4.11)

where

Ke
ij =

∫ xe
2

xe
1

(

³
dN e

i

dx

dN e
j

dx
+ ´N e

iN
e
j

)

dx,

bei =

∫ xe
2

xe
1

N e
i f dx.

(1.4.12)

1.4 The Finite Element Method 19

If we consider ³, ´, and f to be constant within each finite element, we can

evaluate the elements of the matrices analytically with the final result

Ke
11 = Ke

22 =
³e

le
+ ´e l

e

3
,

Ke
12 = Ke

21 = −³
e

le
+ ´e l

e

6
.

(1.4.13)

Similarly, for bei : b
e
1 = be2 = f e le

2
.

Assembly: Retrieving the System of Equations

The global system of equations can be obtained by summing over all the

elements and imposing the stationary requirement:

{

∂F

∂ϕ

}

=
M
∑

e=1

{

∂F

∂ϕe

}

=
M
∑

e=1

([

Ke
] {

ϕe
}

−
{

be
})

= {0} , (1.4.14)

where the matrices and vectors behind the summation signs are expanded or

augmented to matrix M ×M and column vectors M × 1 by zero filling. This

leads to the following final results for [K]:

K11 = K1
11 =

³1

l1
+ ´1 l

1

3
,

KNN = KM
22 =

³M

lM
+ ´M lM

3
,

Kii = Ki−1
22 +Ki

11 =
³i−1

li−1
+ ´i−1 l

i−1

3
+
³i

li
+ ´i l

i

3
,

Ki+1,i = Ki,i+1 = Ki
12 = −³

i

li
+ ´i l

i

6
.

(1.4.15)

and for b:

b1 = b11 = f 1 l
1

2
,

bN = bM2 = fM lM

2
,

bi = bi−1
2 + bi1 = f i−1 l

i−1

2
+ f i l

i

2
.

(1.4.16)

20 1. Computational Electromagnetism for EO problems

Finally, we can impose the Dirichlet boundary condition ϕ|x=0 = p by setting

K11 = 1, b1 = p, K1,j = 0 for j = 2, 3, . . . ,M (1.4.17)

resulting in a linear system of the type

[K]ϕ = {b}. (1.4.18)

This analysis can be extended to higher dimensions [1] and more complex

boundary conditions. As seen from Eq. (1.4.15), the matrix resulting from

FEM analysis to solve a 1-D boundary value problem is a tridiagonal matrix.

An important characteristic of the linear systems of equations resulting from

FEM is that the corresponding matrices are sparse and have a well-defined

structure. This property is crucial for achieving exponential speed-up with

the HHL algorithm, as will be discussed throughout this work.

Example: 1-D Poisson Equation

We now review a simple example. Considering Eq. (1.4.2) with ´ = 0 and

³ = −1, we retrieve the 1-D Poisson equation. Let’s consider the case where

f = sin (x+ Ã) with boundary conditions ϕ(0) = 0 and ϕ(Ã) = 1. Using the

previously mentioned procedure, we can set the number of finite elements M

for the discretization. In this simple 1-D case, the number of nodes nnodes

corresponds to nnodes = M + 1. For example, we can choose M = 7. The

comparison between the analytical solution and the numerical one using the

FEM method is shown in Fig. 1.4.1.

1.4 The Finite Element Method 21

Figure 1.4.1: Comparison between the analytical solution and the numerical
solution obtained using FEM to solve a 1-D Poisson equation.

22 1. Computational Electromagnetism for EO problems

Chapter 2

Quantum Computing

In this chapter we introduce the fundamental concepts of Quantum Comput-

ing, starting from the classical computation to understand how it can be ex-

tended within the quantum framework. In Sec.2.2 we introduce the Quantum

Bit (Qubit) as well as some of its important properties, such as Superpo-

sition and Entanglement. Then, in Sec.2.3 we describe the main Quantum

operators used in Quantum Computing, and describe the notation we will use

throughout this work to draw quantum circuits.

2.1 Classical computation

The bit is the fundamental unit of classical information, it is a binary vari-

able which can assume values {0, 1}. In classical computation each operation

translates in computing functions from n-bit to m-bit:

f : {0, 1}n ↪→ {0, 1}m (2.1.1)

where 0 and 1 are represented as distinguishable states of an appropriate clas-

sical system. These operations are called gates. It can be demonstrated that

every computation can be performed using only a restricted set of elementary

logic gates, called universal gates, which we will now specify. Starting from

the 1-bit logic gates, we have only two possibilities:

23

24 2. Quantum Computing

• COPY, which returns the input bit state;

• NOT, which negates the input bit state.

Conversely, examples of 2-bit gates are:

• AND, which outputs 1 if and only if both inputs are 1;

• OR, which outputs 1 if either of the inputs is 1.

The corresponding truth tables are reported in Table 2.1

Input COPY NOT
0 0 1
1 1 0

(a) One-Bit Logical Gates

A B AND OR
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 1

(b) Two-Bit Logical Gates

Table 2.1: Truth Tables of elementary operations in classical computation.

A set of universal classical gates is given by AND, OR, NOT, COPY,

while it can be demonstrated that a minimal set is composed of COPY and

a chosen gate between NAND and NOR. We can notice that some of these

operations are irreversible or non-invertible, i.e they do not have a one-to-

one mapping between inputs and outputs. In other words, given the output

of the gate, it is not possible to uniquely determine the input values that

produced that output.

The last observation leads to the fact that these operations cannot be under-

stood as unitary gates, which is instead a fundamental property in quantum

mechanics, as we will see in Sec. 2.3.

Now, having defined the elementary states and operations of classical com-

putation, we can understand how they can be extended in the quantum

framework, starting by introducing the quantum bit.

2.2 Qubit 25

2.2 Qubit

Qubits, as their classical counterpart, are physical systems, in particular

two-level quantum mechanical systems. However, one can build the general

framework of quantum computation and quantum information by treating

qubits as abstract mathematical objects, each representing a two-dimensional

Hilbert space. The main difference between bits and qubits is that the lat-

ter exploit the principles of quantum mechanics, allowing them to exist in

superposition states, representing both 0 and 1 simultaneously:

|Èð = ³|0ð+ ´|1ð where ³, ´ ∈ C, |³|2 + |´|2 = 1 (2.2.1)

|0ð and |1ð are known as computational basis states of the qubit, ³ and ´ are

complex coefficients and |³|2, |´|2 correspond to the probability of measuring

the qubit in the state |0ð and |1ð respectively.

Equivalently, we can rewrite ³ and ´ as phases, obtaining the relation:

|Èð = cos
¹

2
|0ð+ eiφ sin

¹

2
|1ð where ¹ ∈ [0, Ã], φ ∈ [0, 2Ã] (2.2.2)

This expression has a geometric representation, ¹ and φ are real numbers and

define a unit vector on the Bloch Sphere (reported in Figure 2.2.1), which

can be used to visualize the state of a single qubit. When measuring a qubit,

the output it gives will still end up being either 0 or 1, but which one we get

depends on a probability which is set by the direction of the unit vector. If

it is exactly on the equator of the Bloch sphere, we get either state with a

50% probability.

2.2.1 Multiple qubits and entanglement

Having understood the main concepts about a single qubit, we can ad-

dress systems with two qubits where the beautiful and, at the same time,

weird properties of quantum mechanics can be properly appreciated.

When we deal with a multiple qubits system, the states representing the com-

26 2. Quantum Computing

Figure 2.2.1: Qubit state visualization on the Bloch sphere. The basis state
|0ð corresponds to the unit vector ẑ, while the basis state |1ð corresponds to
−ẑ. Any point on the surface of the sphere represents a qubit state defined
by |Èð = cos ¹

2
|0ð+ eiφ sin ¹

2
|1ð.

putational basis of the ensemble can be written as the tensor product ¹ of

the single qubit states. For example, if we have a system of two qubits, both

in the state |0ð, the state of the system can be written as |0ð ¹ |0ð = |00ð.
In general, a system of two qubits has four computational basis states |00ð,
|01ð, |10ð, |11ð.
Similarly to the single qubit case, a pair of qubits can also exists in a super-

position of the the four states listed above, each associated with a complex

coefficient, and the state vector of the system can be expressed as:

|Èð = c00|00ð+ c01|01ð+ c10|10ð+ c11|11ð. (2.2.3)

When we perform the measurement, we find the system in the state |ið with

probability |ci|2, where i = 00, 01, 10, 11 and the normalization condition
∑

i∈{0,1}2 |ci|2 = 1 must be satisfied.

An important two qubit state is the Bell state

|00ð+ |11ð√
2

. (2.2.4)

2.3 Quantum Circuits 27

This state shows an interesting property: a measurement on one qubit

affects the other, meaning that the measurement outcomes are correlated.

When we measure the first qubit, there are two possible outcomes: |0ð and

|1ð, each with a probability of 1
2
. Upon measuring the second qubit, we are

guaranteed (with probability 1) to find |0ð if we had found |0ð in the first

measurement, and we are guaranteed to find |1ð if we had found |1ð. This

means that the measurement outcome of the first qubit always corresponds

to the outcome of the measurement on the second one.

Such states, which cannot be factored into product states, are called entangled

states. The only way to turn a separable state of the form |0ð|0ð, to into an

entangled state of the type in Eq. (2.2.4), is to apply a collective unitary

transformation to the state, as we will discuss in Sec. 2.3. These correlations

have been well-studied in the last century [11, 12]. Specifically, John Bell

showed that the measurement correlations in the Bell States are stronger than

those that could ever exist between classical systems [13]. In the following

sections, we will explore how these states can be created through quantum

gates and how they can be useful in practical scenarios such as quantum

algorithms.

More generally, if we consider a system of n qubits, the computational basis

states have the form |x1x2...xnð, where xi ∈ {0, 1} and the quantum system

can be described by 2n complex numbers. To understand the entity of such

number, just think that with n = 500 we exceed the number of atoms in the

Universe [13] and for a classical computer it would not be feasible to store

all these complex numbers, thus one aim of quantum computation is to take

advantage of this computational resource that quantum mechanics offers to

us.

2.3 Quantum Circuits

As we have seen in Sec. 2.1, classical computers can be represented as

wires, to carry the information, and logical gates to perform operations on

28 2. Quantum Computing

bits , which are the elementary unit of classical computation.

In a similar way, quantum computers are built upon quantum circuits, com-

posed by wires and quantum gates to carry out operations on qubits and

control their quantum state’s evolution. In this work we use the quantikz

library on LateX [14] to draw quantum circuits.

Usually we use circuit diagrams to visualize quantum circuits. We build and

read these diagrams from left to right, in particular we represent the circuit

wire as a line

A wire with no gate on it means that the qubit stays in the same state as it

was originally prepared.

We denote the initial state of the qubit with a ket on the left of the wire,

which is usually chosen to be |0ð

|0ð

We denote n number of qubits prepared in the state |0ð with a n symbol

across the wire.

n|0ð

With the notation established, the next step is to describe the commonly

used quantum operators or quantum gates.

A single-qubit gate is represented as a box containing the corresponding

operator’s letter, positioned over the qubit line. In contrast, a two-qubit

gate is depicted as a box spanning two quantum wires. This notation extends

similarly to ternary operators and beyond.

As a general example, here we report the representations for generic one- and

two-qubit gates

U

U

2.3 Quantum Circuits 29

2.3.1 Single-qubit gates

We start by defining the set of one-qubit operators. Generally, quantum

gates acting on a single qubit can be described by two by two matrices. How-

ever, because quantum computers adhere to the laws of quantum mechan-

ics, there are constraints on the matrices that can be adopted as quantum

gates. Firstly, we have to recall that the normalization condition requires

|³|2 + |´|2 = 1 for a quantum state |Èð = ³|0ð + ´|1ð. This must be true

also for the state |È′ð = ³′|0ð + ´′|1ð we retrieve after the application of

the quantum gate. Consequently, the matrix representing the single-qubit

gate must be unitary, meaning U U = I, where U is the adjoint of U . This

Unitary constraint is the only requirement for quantum gates [13]. For this

reason, quantum gates must be reversible, which is a key distinction between

classical and quantum computation. Indeed, not all classical gates are re-

versible (as mentioned Sec.2.1) and, therefore, cannot be used in Quantum

Computing. An example of non-invertible gates includes the AND and OR

operators, whereas the NOT gate acts linearly and can thus be extended to

Quantum Computation, as we will see later.

The first operators we examine are Pauli operators. These three matrices,

together with the Identity matrix and their products with the factors ±i and

±1, form the so called Pauli group.

X operator

The X operator is the quantum version of the NOT operator in classical

computation, indeed it is also known as NOT or bit flip operator. Its matrix

representation is given by

X ≡
[

0 1

1 0

]

(2.3.1)

30 2. Quantum Computing

If we apply X to a state ³|0ð+ ´|1ð we have

X

[

³

´

]

=

[

´

³

]

(2.3.2)

which corresponds to X ≡ |0ðï1| + |1ðï0| in ket notation. We can also

represent the X operator in circuit diagrams

X

If we start with the qubit in the state |0ð, after applying the NOT operator

we get the state |1ð

|0ð X |1ð

Y operator

Y operator, when applied to an input state, performs a rotation along

the y axis of the Bloch sphere

Y ≡
[

0 −i
i 0

]

(2.3.3)

and when applied to |0ð we obtain

|0ð Y i |1ð

Z operator

The Z operator rotates the state vector along the z axis of the Bloch

Sphere, it is also called phase flip operator since the rotation angle is 180

degrees

Z ≡
[

1 0

0 −1

]

. (2.3.4)

The Z gate essentially leaves the state |0ð unchanged while flipping the sign

of |1ð, as shown by the following circuit representation:

³ |0ð+ ´ |1ð Z ³ |0ð − ´ |1ð

2.3 Quantum Circuits 31

Rϕ operator

In fact, the Z operator is just a peculiar case of the more general Rϕ gate

where ϕ = Ã:

Rϕ ≡
[

1 0

0 eiϕ

]

. (2.3.5)

By recalling the Euler’s Identity eiÃ = −1, we retrieve the Z matrix. When

we apply Rϕ to a quantum state, it leaves the state |0ð unchanged while

performing a rotation of phase ϕ to the state |1ð

³ |0ð+ ´ |1ð Rϕ ³ |0ð+ eiϕ´ |1ð

RY operator

Another useful gate we will use throughout this work is the RY gate, a

rotational gate that performs a rotation around the y-axis by an angle ¹. Its

matrix representation is:

RY ≡
[

cos(¹
2
) −sin(¹

2
)

sin(¹
2
) cos(¹

2
)

]

. (2.3.6)

For example, if we chose the rotation angle ¹ = Ã, applying RY to |0ð yields

|1ð, while applying it to |1ð results in −|0ð. In a later chapter, we will see

how to use this gate during the implementation of the HHL algorithm.

Hadamard gate

Finally, we introduce the so called Hadamard gate

H ≡ 1√
2

[

1 1

1 −1

]

. (2.3.7)

This operator is one of the most useful gates in quantum computing, as it

allows a qubit to transition from a computational basis state into a superpo-

sition of two states. Considering again the Bloch sphere, Hadamard gate is

32 2. Quantum Computing

composed by a rotation of 90 degrees along the y-axis and a rotation about

the x-axis by 180 degrees. We can see how this gate acts on a generic state

by the following circuit representation

³ |0ð+ ´ |1ð H ³ |0ð+|1ð√
2

+ ´ |0ð−|1ð√
2

2.3.2 Multiple qubit gates

Let us now consider multiple qubit gates. As discussed in Chapter 2.2.1,

in a two-qubit system we have four computational basis states. Therefore,

to act on such a Hilbert space, we need operators with a 4x4 matrix repre-

sentation.

Firstly, we introduce the SWAP operator, which simply swap the two

qubits, and if applied to the four computational basis states acts as follow

SWAP|00ð = |00ð
SWAP|01ð = |10ð
SWAP|10ð = |01ð
SWAP|11ð = |11ð

(2.3.8)

We can represent this operator with the following matrix

SWAP ≡

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

(2.3.9)

This gate is incapable of generating entanglement because, if the qubits start

in a product state, swapping their components will still yield a product state.

We can represent its circuit diagram as follow

2.3 Quantum Circuits 33

The most important operator in quantum computing is the controlled-NOT

or CNOT gate. This operator takes two qubits as input, where the first

qubit is identified as the control qubit and the second as the target qubit. If

the control qubit is in the state |0ð, then the target qubit is left unchanged.

However, if the control qubit is in the state |1ð, then we apply the NOT

operator 2.3.1 to the target qubit. We can represent the CNOT operator

with the following matrix

CNOT ≡

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

(2.3.10)

The CNOT gate is not only invertible but also possesses the property of being

its own inverse. This means that if two CNOT gates are applied in series,

where the output of the first gate serves as the input to the second gate, the

final output will match the initial state. When the quantum CNOT gate is

applied to qubits in the state |0ð or |1ð, without involving any superpositions,

the computation is identical to that of a classical XOR gate using binary

values 0 and 1. Thus, this gate is a generalization of the classical XOR gate,

in fact it acts on the computational basis as follows

CNOT|00ð = |00ð
CNOT|01ð = |01ð
CNOT|10ð = |11ð
CNOT|11ð = |10ð

(2.3.11)

To draw the quantum circuit representation of this gate we use the following

notation:

This gate is so important in Quantum Computing since we use it to entangle

34 2. Quantum Computing

two qubits. For example, we can create entangled states of the form 2.2.4

just with a combination of Hadamard and CNOT gates

CNOT(H|0ð ¹ |0ð) = CNOT
1√
2
(|00ð+ |10ð) = 1√

2
(|00ð+ |11ð).

Quantum circuits are designed by placing and linking quantum gates in a

specific order. The arrangement and connections of these gates determine

how information flows and the resulting computations. Crafting quantum

circuits involves the careful selection of gates, considering how qubits are in-

terconnected, and optimizing the circuit to achieve the desired computational

outcomes. Furthermore, it is important to exploit the unique properties of

quantum mechanics, such as Quantum Superposition and Entanglement to

build efficient Quantum algorithms, which can solve problems that are be-

yond the capabilities of classical computers.

Chapter 3

Quantum Algorithms

In this chapter, we introduce the three principal subroutines utilized in the

Harrow-Hassidim-Lloyd (HHL) algorithm. We begin with a brief overview of

quantum parallelism. Then, in Sec. 3.2, we discuss the Quantum Fourier

Transform (QFT), a critical building block for several quantum algorithms,

including the Quantum Phase Estimation (QPE). The QPE is further ex-

plored in Sec. 3.3, where we detail its theoretical frameworks and practical

implementations. Finally, Sec. 3.4 reviews Hamiltonian simulation algo-

rithms, essential for the efficient time evolution of a quantum state. This

section also provides an overview of state-of-the-art algorithms and discusses

their integration within the HHL algorithm, highlighting both practical appli-

cations and theoretical advancements.

3.1 Quantum Parallelism

Quantum parallelism is a fundamental feature of quantum computers [15],

enabling them to perform parallel computations by leveraging the superposi-

tion of quantum states. This concept, foundational in quantum computing,

involves several critical aspects that distinguish it from classical parallelism.

Reference [16] examines the core aspects of quantum parallelism; it contrasts

classical parallelism with its quantum equivalent, providing insights into their

35

36 3. Quantum Algorithms

distinct applications, and introducing methods for evaluating quantum par-

allelism’s role in practical settings. We give an overview of these concepts,

resuming the work done in [16].

Interference in Quantum Parallelism

Quantum parallelism is governed by the principles of quantum interfer-

ence, which can be either constructive or destructive. When a qubit is in

a superposition state (where both ³ ̸= 0 and ´ ̸= 0 in Eq. (2.2.1)), multi-

ple quantum threads run simultaneously. The interaction of these threads,

influenced by complex numbers, leads to interference patterns. Unlike clas-

sical probability, where probabilities are additive, quantum probabilities can

cancel each other out through destructive interference. Thus, quantum paral-

lelism creates an interference pattern from the interaction of quantum states,

similar to how signals combine in antenna arrays. Optimizing this interfer-

ence is crucial, as constructive interference amplifies correct solutions while

destructive interference suppresses incorrect ones, guiding the system toward

the right outcomes.

Probabilistic Composition and Quantum States

Quantum parallelism exploits the composition of elementary probabilistic

system. In quantum computing, composing single quantum states results in

an exponential increase in the number of possible quantum states. This ex-

ponential growth differentiates quantum systems from classical probabilistic

systems, where events are mutually exclusive. Quantum computing systems

simultaneously explore and process multiple computational paths through

superposition. Moreover, quantum gates are described by unitary transfor-

mations, which ensure the total probability remains conserved.

Entanglement and Quantum Parallelism

Entanglement is essential for quantum parallelism, enabling the explo-

ration of states and threads that single-qubit operations alone cannot achieve.

3.1 Quantum Parallelism 37

Entangled states, created through controlled operations, are not representable

by simple tensor products of single-qubit states. This complexity poses chal-

lenges for classical computer systems, particularly in simulating quantum

computers. While non-entangled states can be efficiently encoded, highly

entangled states require exponentially more resources, demonstrating the

unique capabilities and demands of quantum systems.

Quantum algorithms structure

In developing quantum algorithms, it is crucial to rethink the applica-

tion of quantum parallelism. Unlike classical parallelism, which distributes

work across threads to solve parts of a problem, quantum algorithms exploit

maximum parallelism to explore all potential solutions. Quantum algorithms

typically follow three phases:

• Initialization: All available quantum parallelism is initiated from a

classical input, often using Hadamard gates to create superpositions.

This operation is also known as Hadamard transform and an example

is reported in Fig. 3.1.1 The input is encoded, or an oracle is queried,

leveraging quantum parallelism.

• Exploration and Interference: Quantum parallelism explores all pos-

sible solutions, with correct solutions amplified through constructive

interference and incorrect ones suppressed via destructive interference.

Entanglement expands the range of solutions explored beyond single-

qubit operations.

• Measurement : The superposition is collapsed to a classical state through

measurement. Efficient quantum applications utilize small quantum

parallelism before measurement, reducing the number of possible out-

comes.

In summary, quantum parallelism and interference optimization are piv-

otal in quantum computing. Leveraging these principles these principles,

38 3. Quantum Algorithms

quantum systems can (theoretically) solve complex problems more efficiently

than classical systems by exploring a vast solution space and selectively am-

plifying correct solutions.

|Èið=|00ð
H

(

|0ð+|1ð√
2

)(

|0ð+|1ð√
2

)

= |00ð+|01ð+|10ð+|11ð
2

= |Èfð
H

Figure 3.1.1: Circuit representation of Hadamard transform. This operation
involves n Hadamard gates acting in parallel on n qubits. To simplify the
calculations, we consider a system of two qubits initially prepared in the state
|0ð.

3.2 Quantum Fourier Transform

The quantum Fourier transform (QFT) [17] is the quantum analogue of

the inverse discrete Fourier transform (DFT). QFT and its inverse , iQFT,

are building blocks for many quantum algorithms, such as the well-known

Shor algorithm [18] used for the prime factorization of n-bit integers, as well

as the Quantum Phase Estimation (QPE) and the HHL algorithm, that we

will implement throughout this work.

The inverse discrete Fourier transform, given a sequence of N complex

numbers {fk}k=0,...,N−1, maps them to a sequence of N complex numbers

{f̃k}k=0,...,N−1 defined by:

f̃k ≡
1√
N

N−1
∑

j=0

e
2πijk

N fj. (3.2.1)

Analogously, the QFT is a linear transformation that, when performed on n

qubits, acts on the computational basis states {|jð}j=0,...,2n−1 according to:

QFT|jð ≡ 1√
N

N−1
∑

k=0

e
2πijk

N |kð (3.2.2)

3.2 Quantum Fourier Transform 39

and equivalently for an arbitrary state:

QFT
N−1
∑

j=0

xj|jð ≡
1√
N

2n−1
∑

k=0

f̃k|kð (3.2.3)

The classical discrete Fourier transform (DFT) [19] involves multiplication

by an N × N matrix, where N = 2n. Essentially, this transform would re-

quire O(N2) elementary operations. However, there is a well-known classical

method, the fast Fourier transform (FFT) [19], which reduces the scaling to

O(N logN). With quantum parallelism, we can achieve an even more effi-

cient result. Following similar passages as done in [20], we can express j and

k in their binary representation:

j = jn−12
n−1 + ...+ j02

0 =
n−1
∑

i=0

ji2
i

k = kn−12
n−1 + ...+ k02

0 =
n−1
∑

i=0

ki2
i.

(3.2.4)

We define ki as the ith digit, where k0 represents the least significant bit

(LSB), which will corresponds to the topmost qubit in the circuit diagram

(this is the same convention used in Qiskit [7]), and the most significant

bit (MSB) is kn−1. This notation allows us to represent the elements of the

computational basis as the tensor product of the local bases of single qubits:

|kð =
n
⊗

i=1

|kn−lð ≡ |kn−1 · · · k0ð. (3.2.5)

Using this notation, the expression in (3.2.2) becomes:

QFT|jð = 1

2
n
2

1
∑

kn−1=0

· · ·
1
∑

k0=0

exp

(

2Ãij

2n

n−1
∑

m=0

2mkm

)

|kn−1 · · · k0ð. (3.2.6)

40 3. Quantum Algorithms

Now, if we define l = n−m, we can see that:

n−1
∑

m=0

2mkm
2n

=
n
∑

l=1

kn−l

2l

In addition to this, we can also decompose the main exponential in a product

of exponential acting on the local bases states, thus the expression (3.2.6)

becomes:

QFT|jð = 1

2
n
2

1
∑

kn−1=0

· · ·
1
∑

k0=0

[

n
∏

l=1

exp

(

2Ãij

2n
kn−l

)

]

|kn−1 · · · k0ð. (3.2.7)

Finally, using the Equation (3.2.5), we get:

QFT|jð = 1

2
n
2

1
∑

kn−1=0

· · ·
1
∑

k0=0

n
⊗

l=1

exp

(

2Ãij

2n
kn−l

)

|kn−lð

=
1

2
n
2

n
⊗

l=1

1
∑

kn−l=0

exp

(

2Ãij

2l
kn−l

)

|kn−lð

=
1

2
n
2

n
⊗

l=1

[

|0ð+ exp
(

2Ãij2−l
)

|1ð
]

=

(

|0ð+ e2Ãi0.j0 |1ð
)(

|0ð+ e2Ãi0.j1j0 |1ð
)

· · ·
(

|0ð+ e2Ãi0.jn−1···j1j0 |1ð
)

2
n
2

(3.2.8)

where in the last step we used the binary expansion of j (3.2.4) and we have

also adopted the notation

0.jljl+1 · · · jm =
1

2
jl +

1

4
jl+1 + · · ·+ 1

2m−l+1
jm

so that we can rewrite j2−l as:

j2−l = jn−1jn−2 · · · jl+1jl · · · j0.

3.2 Quantum Fourier Transform 41

From the last expression in (3.2.8) we can see that QFT transforms each

computational basis state into an unentangled state of n qubits. This repre-

sentation allows us to implement the QFT using an efficient quantum circuit

composed of elementary gates.

As an example, we can consider the case for n = 4, the resulting QFT circuit

diagram is reported below.

|j0ð H

|j1ð H R1

|j2ð H R1 R2

|j3ð H R1 R2 R3

Each Hadamard gate acts on the generic state |jkð as:

H|jkð =
1√
2

(

|0ð+ e2Ãi0.jk |1ð
)

. (3.2.9)

The other contributions to the relative phase of |0ð and |1ð in the kth qubit

is given by conditional Rd gates of the type (2.3.1):

Rd ≡
[

1 0

0 eiÃ/2
d

]

(3.2.10)

where d = |k−k′| is the distance between the two qubits. It is also important

to note that a SWAP operation of order O(n) is required, as the QFT changes

the original qubits order. In the example above, for n = 4 we have four H

gates and six controlled-R gates. In general, if we are dealing with a QFT

with n qubits, the corresponding circuit requires n H gates and 1
2
n(n − 1)

controlled-R, plus the gates involved in the SWAP operation. This results

42 3. Quantum Algorithms

in a scaling of order O(n2), which is exponentially more efficient if compared

with the classical FFT.

3.3 Quantum Phase Estimation

The QFT introduced in Sec.3.2 is a key subroutine of a more complex

algorithm known as Quantum Phase Estimation (QPE) [13, 21]. If we con-

sider a unitary matrix U with eigenvector |uð and eigenvalue e2Ãiφ, the goal

of the QPE algorithm is to estimate the corresponding phase φ. As we will

see, this algorithm is the main subroutine of the HHL algorithm. Therefore,

we begin by understanding how QPE works.

The QPE is built upon two quantum registers. The first one, identified as

the clock-register or c-register, contains nc qubits, where nc depends on the

number of digits of accuracy desired in the solution. The second quantum

register, referred to as the b-register, contains nb qubits, which must be suffi-

cient to represent the eigenvector |uð. Specifically, if we have a vector of size

N , we need nb = log2(N) qubits to encode it in the b-register. We main-

tain the same convention as in the last section , where the topmost qubit

in the circuit diagram corresponds to the most significant bit (MSB). The

two quantum registers are represented in the circuit below. Note that the

c-register starts with nc qubits in the state |0ð, while the b-register encodes

the eigenvector |uð of the unitary matrix U.

nc

nb

|0ð c-register

|uð b-register

The QPE algorithm has three main steps:

• Superposition of the clock qubits through an Hadamard transform (as

defined in Eq. (3.1.1)) on the c-register;

• nc controlled U2j -operations on the b-register, where U is raised to

successive powers of two and each operation is controlled on the jth

qubit in the c-register;

3.3 Quantum Phase Estimation 43

• Inverse Quantum Fourier Transform (iQFT), where iQFT ≡ QFT .

Hadamard transform

The initial state of the system is

|Èinitialð = |uðb|0ðc. (3.3.1)

The Hadamard transform is applied only to the c-register, transforming its

initial state into a superposition of |0ð and |1ð. Thus the state after this first

step is

|È1ð =
1

2
nc
2

|uðb
2nc−1

∑

k=0

|kð (3.3.2)

where the sum in the last expression represents the state of the c-register as

a superposition of all possible binary states.

Controlled-U2j

The controlled-U2j operation applies U2j to the b-register, conditioned on

the jth qubit of the c-register being in state |1ð. Thus, the number of unitary

operations applied are equal to the number of qubits nc in the c-register.

Since |uð is an eigenvector of U with eigenvalue e2Ãiφ, we have that U |uð =
e2Ãiφ|uð, thus:

U2j |uð = e2Ãiφ2
j |uð. (3.3.3)

Since this operation is applied conditionally to the value of the jth qubit in

the c-register, we have that

U2j |È1ð =
1

2
nc
2

e2Ãiφ2
jkj |uðb

2nc−1

∑

k=0

|kð (3.3.4)

Where kj = 0, 1. We can extract the phase factor so that it effectively

multiplies the computational basis states |kð in the c-register. Therefore,

each qubit in the c-register accumulates a phase factor e2Ãiφ2
j

depending on

44 3. Quantum Algorithms

its position j in the c-register.

Inverse Quantum Fourier Transform (iQFT)

After these first two steps, the c-register is in the state:

1

2nc

(

|0ð+ e2Ãi2
0φ|1ð

)(

|0ð+ e2Ãi2
1φ|1ð

)

· · ·
(

|0ð+ e2Ãi2
nc−1φ|1ð

)

(3.3.5)

which can be rewritten as

1

2nc

(

|0ð+e2Ãi0.φ0 |1ð
)(

|0ð+e2Ãi0.φ1φ0 |1ð
)

···
(

|0ð+e2Ãi0.φnc−1···φ1φ0 |1ð
)

. (3.3.6)

The last expression represents the state we obtain after applying a QFT to

the state |φ1φ2 · · · φnc
ð, as one can see from Equation (3.2.8). Therefore,

if we apply an inverse QFT (iQFT), we recover the aforementioned product

state. Finally, a measure of the c-register in the computational basis gives

us the solution φ that we were looking for.

However, the previous considerations apply only to the ideal scenario where

φ can be precisely represented with nc bits. It can be shown [13] that this

method yields a close approximation of φ with high probability. To approx-

imate φ to an accuracy of 2−n (i.e., to n bits) with a probability of at least

ϵ, we must choose

nc = n+
⌈

log2

(

2 +
1

2ϵ

)⌉

. (3.3.7)

Moreover, we are assuming that the eigenvector |uð of the matrix U is known

beforehand. If we instead prepare a different state |Èð =
∑

u cu|uð, the result

will be a state close to
∑

u cu|φ̃ið|uð, where φ̃i is a good approximation of

the state φi. The state φ̃u has a probability |cu|2, thus allowing us to avoid

preparing the state |uð by introducing some randomness into the process.

We will better understand this analysis in the next chapter, where we will

study and implement the HHL algorithm. The resulting circuit of QPE in

Fig. 3.3.1.

3.4 Hamiltonian Simulation 45

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

|0ð H

iQFT |Nφð
|0ð H

|0ð H

|0ð H

|uð U20 U21 U22 U2nc−1 |uð

Figure 3.3.1: Quantum circuit diagram of the QPE

3.4 Hamiltonian Simulation

Hamiltonian Simulation (HS) involves the development of efficient meth-

ods for performing the temporal evolution of a quantum state according to

a specified Hamiltonian, denoted as H. Namely,

|È(t)ð = e−iHt|È(0)ð. (3.4.1)

This process is a fundamental component of the HHL algorithm, this

will be further explored in the next chapter. Depending on the input state,

operator H and resources available, there are many quantum algorithms

that can perform this task. We provide a brief overview of this extensive and

actively evolving field of research.

Necessity for efficient simulation

In Eq. (3.4.1), we observe the necessity to exponentiate the matrix H,

a process that is generally computationally demanding. In quantum sys-

tems, Hilbert space’s dimensionality grows exponentially with the number

46 3. Quantum Algorithms

of qubits n, namely N = 2n. This results in exponentially large operators.

Naive approaches need a runtime of O(N3) for an N × N matrix, which is

limiting, even for small matrices. For this reason the classical simulation

of a quantum system described by a generic Hamiltonian H is a hard task.

Therefore, there has been significant focus on developing new efficient meth-

ods. Quantum computers, in particular, are capable of simulating efficiently

Hamiltonian operators [22], this task is known as Hamiltonian simulation.

Since H is a Hermitian operator, e−iHt is a unitary operator. This allows it

to be implemented using quantum gates. An efficient quantum simulation

can be defined as follows:

Definition 3.4.1. We say that a Hamiltonian H that acts on n qubits can

be efficiently simulated if for any t > 0, and a simulation error ϵ > 0,

there exists a quantum circuits U consisting of poly(n, t, 1/ϵ) gates such that
∥

∥U − e−iHt
∥

∥ f ϵ, where e−iHt represents the ideal evolution.

The dependence on t is critical since simulating H for time t requires at

least Ω(t) time, as stated by the no-fast-forwarding theorem [23]. On the

other hand, it is possible to achieve running time logarithmic in 1/ϵ.

However, we cannot efficiently simulate any arbitrarily Hamiltonians, effi-

cient simulation is possible for specific classes of Hamiltonians, such as those

acting nontrivially on a constant number of qubits. Indeed, according to

Solovay-Kitaev’s theorem, any unitary evolution involving a constant number

of qubits can be approximated with an error of at most ϵ using poly(log(1/ϵ))

one- and two-qubit gates [24].

3.4.1 Product Formulas

Consider an Hamiltonian of the form

H = H1 +H2 (3.4.2)

This involves a sum of terms, which we assume acting on only a constant

number of qubits, thus easy to simulate. Generally, if H1 and H2 can be effi-

3.4 Hamiltonian Simulation 47

ciently simulated individually, then H1+H2 can also be efficiently simulated.

If H1 and H2 commute we have that e−iH1te−iH1t = e−i(H1+H1)t. Otherwise

we can still simulate them using Lie product formula:

e−i(H1+H1)t = lim
m→∞

(

e−iH1t/me−iH2t/m
)m

. (3.4.3)

For practical implementations, the product formula can be truncated to a

finite number of steps, this introduces a certain error ϵ which we want to

keep small as possible. If we want to achieve

∥

∥

∥
e−i(H1+H2)t −

(

e−iH1t/me−iH2t/m
)m
∥

∥

∥ f ϵ, (3.4.4)

the number of steps required is m = O
(

t2 max(∥H1∥,∥H2∥)2
ϵ

)

, ensuring the error

remains within ϵ. With the constraint that c = max(∥H1∥, ∥H2∥) must be

at most poly(n) for H1 and H2 to be efficiently simulable [24].

We can achieve better scaling with respect to t by using higher-order expan-

sions. Considering approximations to the 2nd order, we derive the Trotter-

Suzuki formula, expressed as:

∥

∥

∥e−i(H1+H2)t −
(

e−iH1t/2me−iH2t/me−iH1t/2m
)m
∥

∥

∥
f ϵ, (3.4.5)

where a smaller value of m is required for the same accuracy.

This approach is pertinent because any Hermitian matrix can be expressed as

a linear combination of Pauli operators, which form a complete basis for the

Hilbert space of 2n × 2n matrices, where n represents the number of qubits.

This enables the decomposition of an arbitrary Hermitian matrix as follows:

H =
N
∑

j=1

ajPj, (3.4.6)

48 3. Quantum Algorithms

where each Pj is a tensor product of 2 × 2 matrices from the Pauli group,

discussed in Sec. 2.3.1. The coefficients aj can be calculated using the relation

aj =
1

2n
Tr (HPj) . (3.4.7)

However, an arbitrary matrix can require decomposition into O(22n) Pauli

operators. This implies that simulating the unitary operator e−iHt/m with

Lie Trotter formula 3.4.4 and using Pauli decomposition would necessitate

O(2
6nt2

ϵ
) Trotter steps, a computation that scales worse than classical meth-

ods due to its exponential dependence on n. Ideally, we seek a polynomial

scaling with n, but achieving this is only feasible for specific models [22].

This means the Pauli decomposition is not efficient for arbitrary matrices.

Simulating Sparse Hamiltonians

In the HHL original paper [4], the exponential speedup wrt classical meth-

ods is achieved under an important constraint: the matrix A has to be d-

sparse and efficiently row-computable, thus we review this definitions.

Definition 3.4.2. (Sparsity) A N ×N matrix is said to be d-sparse if it has

at most d nonzero entries per row.

Definition 3.4.3. (Sparse matrix) A N ×N matrix is said to be sparse (in

a fixed basis) if it has at most poly(logN) nonzero entries per row [25].

Definition 3.4.4. (Row computability) The entries of a matrix A are effi-

ciently row computable if, given the indices i, j, we can obtain the entries Aij

efficiently, i.e. in O(d) time, where d is the sparsity as defined above [26].

In particular, the simulation methods described previously allow us to

efficiently simulate sparse and efficiently row-computable matrices. This is

achieved by finding an efficient decomposition of a d-sparse matrix H into

1-sparse matrices [23, 27].

3.4 Hamiltonian Simulation 49

3.4.2 State of the art algorithms

In the literature there are several quantum algorithms proposed for sim-

ulating sparse Hamiltonian. However, these algorithms make use of the so-

called quantum oracles. The power of quantum computers is often studied

in the query model [28]. In this model, we have to compute a function

f(x1, ..., xN) of an input x1, ..., xN , with xi accessible via queries to a black

box (or quantum oracle) that, given i, outputs xi. Thus, the complexity of

quantum algorithms using oracles is measured by the number of queries that

an algorithm makes [28]. The query and gate complexities of these prominent

methods for efficient Hamiltonian simulation are summarized in Table 3.1.

In this table, d represents the sparsity of the Hamiltonian, and n indicates

the number of qubits involved [29].

3.4.3 Hamiltonian Simulation Implementation

The Hamiltonian Simulation is the most important part of HHL algo-

rithm, as it is performed several times within the QPE module. In this

thesis, we implemented HS in two different ways:

• Building the circuit which simulates e−iHt exactly, to test the correct-

ness of the HHL algorithm using small matrices. This means that we

first compute classically the exponential matrix e−iHt and then use the

Qiskit function UnitaryGate [35] to build the corresponding quantum

circuit.

• Approximating e−iHt, particularly utilizing the Suzuki-Trotter product

formula and the decomposition in Pauli Operators. For this purpose

we used the function TrotterQRTE [36] available with Qiskit. However,

for an arbitrary matrix, we have O(22n) Pauli Operators, resulting in

a simulation that scales exponentially with the number of qubits used.

A further development of this work is to implement an HS based on the state-

of-the-art algorithms available in this field, such as those shown in Table 3.1.

50 3. Quantum Algorithms

Algorithm Query complexity
Gate complexity

(t, ϵ)
Gate complexity

(n)

PF 1st order [22] O (d4t2 / ϵ) O (d4t2 / ϵ) O (n5)

PF 2kth order [23] O
(

52kd3t(dt / ϵ)1/2k
)

O
(

52kd3t(dt / ϵ)1/2k
)

O
(

52kn3+1/k
)

Quantum walk [30] O (dt /
√
ϵ) O (dt /

√
ϵ) O (n4 log n)

Fractional-query
simulation [31] O

(

d2t log(dt/ϵ)
log log(dt/ϵ)

)

O
(

d2t log2(dt/ϵ)
log log(dt/ϵ)

)

O
(

n4 log2 n
log logn

)

Taylor
Series (TS) [32] O

(

d2t log(dt/ϵ)
log log(dt/ϵ)

)

O
(

d2t log2(dt/ϵ)
log log(dt/ϵ)

)

O
(

n3 log2 n
log logn

)

Linear
Combination of
q.walk steps [33]

O
(

dt log(dt/ϵ)
log log(dt/ϵ)

)

O
(

dt log
3.5(dt/ϵ)

log log(dt/ϵ)

)

O
(

n4 log2 n
log logn

)

Quantum Signal
Processing
(QSP) [34]

O
(

dt+ log(1/ϵ)
log log(1/ϵ)

)

O
(

dt+ log(1/ϵ)
log log(1/ϵ)

)

O (n3)

Table 3.1: Comparison of various quantum algorithms for efficient Hamilto-
nian Simulation [29].

Chapter 4

Harrow-Hassidim-Lloyd algorithm

Now that we have established the necessary components, we can examine

the central focus of this work: the Harrow-Hassidim-Lloyd (HHL) quantum

algorithm. The HHL quantum algorithm [4] can be employed to solve linear

system problems and has been shown to achieve exponential speedup over

classical methods, such as the classical conjugate gradient method, in specific

instances. In Sec.4.1 we will systematically explore each step of the HHL

algorithm, clarifying its theoretical foundations, operational mechanics, and

the conditions under which it offers computational advantages. This detailed

exposition aims to provide readers with a comprehensive understanding of the

algorithm’s implementation, following the analysis made in [37]. In Sec. 4.2,

we discuss how to compute the solution norm and the absolute average of the

final solution.

4.1 The HHL Algorithm: Step-by-Step

Let’s begin by introducing the problem more rigorously. A linear system

of equations can be expressed as

Ax = b (4.1.1)

51

52 4. Harrow-Hassidim-Lloyd algorithm

where A is an N ×N matrix, and x and b are N -dimensional vectors. The

HHL algorithm utilizes two quantum registers and an additional ancilla qubit.

We will refer to these quantum registers as the c-register and b-register,

maintaining the same notation used in the previous sections. As in the QPE

framework, we need at least nb = log2N qubits in the b-register, where we

want to store the solution x of the linear system. Conversely, the number of

qubits nc used inside the c-register depends on the bit-precision we want to

achieve, and will be discussed later on. A representation of the two quantum

register and the ancilla qubit is reported below

nc

nb

|0ð Ancilla

|0ð c-register

|0ð b-register

During this analysis, we will keep the same notation of the previous sec-

tions, thus the rightmost (ending) qubit represents the least significant bit

(LSB) which is classified as the topmost qubit in the circuit representation.

The matrix A is assumed to be Hermitian, i.e a complex square matrix that

is equal to its own conjugate transpose: A = A . This is a fundamental

constraint that has to be respected during the Hamiltonian Simulation (3.4),

otherwise it can be converted to

Ã ≡
[

0 A

A 0

]

(4.1.2)

which is Hermitian by construction. Then, we can solve the equation

Ãy =

[

b

0

]

(4.1.3)

and obtain y =

[

0

x

]

.

The HHL quantum algorithm has five main steps:

• State preparation

4.1 The HHL Algorithm: Step-by-Step 53

• Quantum Phase Estimation (QPE)

• Ancilla rotation

• Uncomputation (iQPE)

• Measurement

Each step will now be detailed, aiming to understand the overall evolution of

the quantum state. A circuit representation of the full algorithm is depicted

in Fig. 4.1.1.

State Preparation

As previously mentioned, we have a total of nb + nc + na qubits, with

na = 1 representing the ancilla qubit. Similar to most quantum algorithms,

all qubits are initially set to |0ð. Thus the initial state will be

|Èinitialð = |0ðb|0ðc|0ða.

During this step, the objective is to rotate the b-register to encode the val-

ues of the vector b into the amplitudes of the computational basis states.

Specifically,

´0|0ð+ ´1|1ð+ · · ·+ ´N−1|N − 1ð = |bð

In practice, the vector encoded in the b-register will be b

∥b∥ , as the normaliza-

tion constraint must be maintained. To achieve this, we require an efficient

procedure for preparing the state |bð, otherwise, the exponential speedup

could be compromised. There is a significant body of work on state prepara-

tion, crucial for many quantum algorithms. Generally, methods to prepare

an arbitrary state often have exponential complexity in terms of the number

of qubits, nb, which would undermine any quantum advantage offered by

the HHL algorithm. Sub-exponential resource algorithms have been devised

for certain quantum states or through approximation techniques [8]. For

54 4. Harrow-Hassidim-Lloyd algorithm

example, quantum states characterized by efficiently integrable probability

distributions can be prepared with polynomial complexity in nb [38]. An-

other approach could be approximating the state preparation using matrix

product state [8, 39]. However, for the purpose of studying and understand-

ing the algorithm in a general context, we will assume the existence of an

oracle capable of efficiently performing this operation. In particular, we call

the StatePreparation class available in Qiskit [7], based on Ref. [40].

After the state preparation, we obtain the state

|È1ð = |bðb|0ðc|0ða. (4.1.4)

Quantum Phase Estimation

The Quantum Phase Estimation (QPE) is the primary subroutine of the

HHL algorithm. It is also the most complex part, as it comprises three com-

ponents, as discussed in Sec. 3.3. The analysis follows the same principles

as the previous section; however, in this case, we aim to encode the eigen-

values of the matrix A into the c-register. Thus, we require an additional

step to build the unitary operator U = eiAt for use during the controlled

rotation step. This is possible through Hamiltonian Simulation algorithms

we discussed in Sec. 3.4. By following this procedure, the phase associated

with the eigenvalues of the unitary operator U will be proportional to the

eigenvalues of A. This will become clearer in the subsequent analysis.

Following the same procedure in Sec. 3.3, we start by applying an Hadamard

transform in the c-register, to create a superposition of clock qubits, namely:

|È2ð =
1

2
nc
2

|bðb
2nc−1

∑

k=0

|kð|0ða. (4.1.5)

At this point, controlled U2j are applied to |bðb using the jth clock qubit as

control. We start by the ideal scenario, where |bð is an eigenvector of U with

eigenvalues e2Ãiφ

U |bð = e2Ãiφ|bð. (4.1.6)

4.1 The HHL Algorithm: Step-by-Step 55

Therefore, after these operations, we obtain the state

|È3ð = |bðb
1

2nc

(

|0ð+ e2Ãi2
0φ|1ð

)(

|0ð+ e2Ãi2
1φ|1ð

)

· · ·
(

|0ð+ e2Ãi2
nc−1φ|1ð

)

|0ða

= |bðb
1

2nc

2nc−1

∑

k=0

e2Ãiφk|kð|0ða

(4.1.7)

Now, applying the iQFT, we menage to encode the phases φ in the c-register

|È4ð = |bðb|2ncφðc|0ða. (4.1.8)

As explained in Sec. (3.3), each clock qubit j corresponds to a U2j controlled

operation, adding bit precision to the representation of the phase φ.

In this context, the unitary operator U and the matrix A are related by the

equation U = eiAt, where t is the evolution time parameter of the Hamiltonian

simulation, which will be discussed later. Assuming that |bð is an eigenvector

of U , i.e.,

|bð = |uið
U |bð = ei¼it|uið

(4.1.9)

we have φ = ¼it/2Ã. Thus, equation (4.1.8) becomes:

|È4ð = |bðb|2nc¼t/2Ãðc|0ða. (4.1.10)

However, in a general case, |bð is not an eigenvector of U . As outlined in Sec.

(3.3), the preparation of the eigenvector |uð can be avoided by integrating

randomness into the procedure [13]. |bð can be rewritten in the eigenvector

basis as

|bð =
2nb−1

∑

i=0

bi|uið.

56 4. Harrow-Hassidim-Lloyd algorithm

Thus, we have

|È4ð =
2nb−1

∑

i=0

bi|uið|2nc¼it/2Ãðc|0ða. (4.1.11)

We have now successfully encoded the eigenvalues of the matrix A within the

c-register. Note that we did not store the exact eigenvalues ¼i, but rather a

scaled version ¼̃i given by

¼̃i = 2nc¼it/2Ã. (4.1.12)

The time evolution constant t serves as a normalization parameter that must

be set appropriately for the QPE to function correctly. Specifically, the

phases φ must satisfy the constraint

φ f 1. (4.1.13)

In our case, this constraint translates to

¼it f 2Ã. (4.1.14)

A detailed analysis of this parameter’s fine-tuning will be discussed in a later

section.

Ancilla rotation

Now we rotate the ancilla qubit |0ða based on the encoded eigenvalues ¼̃i

in the c-register, such that:

|È5ð =
2nb−1

∑

i=0

bi|uið|¼̃iðc|0ða
(

√

1− C2

¼̃i
2 |0ða +

C

¼̃i
|1ða
)

. (4.1.15)

This step is also known as eigenvalue inversion, as after the rotation, we

successfully store the inverted eigenvalues in the amplitude of the ancilla

qubit. We are specifically interested in the case where the ancilla collapses

to the state |1ð, corresponding to the amplitude C
¼̃i

we are aiming for. The

rotation of the ancilla qubit from |0ða to
√

1− C2

¼̃i
2 |0ða+ C

¼̃i
|1ða can be achieved

4.1 The HHL Algorithm: Step-by-Step 57

through an RY rotation of the type (2.3.1), where the rotation angle is

¹ = 2arcsin
(C

¼̃i

)

. (4.1.16)

The variable C in Eq. (4.1.15) is an input parameter of the algorithm, which

should be set as large as possible to maximize the probability of measuring

|1ða. However, we must adhere to the constraint C f ¼̃i imposed by the

rotation angle in Eq. (4.1.16). Since we do not know the exact ¼̃i beforehand

to perform the rotation, we apply 2nc multi-controlled RY operations, one

for each possible value of ¼̃i. We use the entire c-register as control qubits

and the binary string corresponding to the current ¼̃i as the control state.

This way, the RY rotation is applied only if the corresponding state has a

non-zero probability. Since the c-register contains a basis encoding of our

eigenvalues, the rotation will succeed only in the cases corresponding to the

true ¼̃i. The corresponding circuit representation is shown below, where

¹i = 2arcsin
(

C
i

)

:

. . .

. . .

. . .

. . .

. . .

RY (¹1) RY (¹2) RY (¹2nc)

Note that this approach requires O(2nc) multi-control gates, resulting in a

linear scaling with the problem size N . The literature offers efficient imple-

mentations of this step for specific cases using approximations, such as the

one used in [8] based on Chebyshev interpolation. However, as previously

mentioned, the aim of this work is to investigate the implementation and

limitations of the algorithm in a more general context.

58 4. Harrow-Hassidim-Lloyd algorithm

Uncomputation and Measurement

At this point, our state |Èð closely resembles the classical solution we seek.

However, during the process, we applied many multi-qubit gates, resulting

in entanglement between the two quantum registers. We need to uncompute

the state to obtain the correct results by measuring in the computational

basis where the b-register and c-register are unentangled. This is achieved

using an inverse Quantum Phase Estimation (iQPE). After this step, the

qubits in the c-register revert to the state |0ð, and the final state is

|È6ð =
2nb−1

∑

i=0

bi|uið|0ðc
(

√

1− C2

¼̃i
2 |0ða +

C

¼̃i
|1ða
)

(4.1.17)

Now, we can measure the ancilla qubit and discard the cases where it collapses

to the state |0ða. Finally, at the end of this process, we obtain the desired

solution |xð, successfully stored in the b-register:

|Èð = 1
√

∑2nb−1

i=0 | bi
¼i
|2
|xðb|0ðc|1ða. (4.1.18)

In Fig. 4.1.1 we report the circuit representation of the full algorithm.

4.2 Computing Observables

As explained in [4], the algorithm produces a quantum-mechanical rep-

resentation |xð of the desired vector x. To fully decode all components of

x would typically require repeating the procedure at least N times. How-

ever, the primary interest often lies in computing some expectation value

ïx|M |xð, where M represents a linear operator. By translating M into

a quantum-mechanical operator and executing the corresponding quantum

measurement, we can derive an estimate of the expectation value. This al-

lows the extraction of various characteristics of the vector x, including its

normalization, distribution of weights across different state spaces and more.

4.2 Computing Observables 59

Figure 4.1.1: This circuit depicts the whole HHL algorithm. We can distin-
guish all the main steps discussed in the previous section.

Solution norm ∥x∥

The norm of the solution vector can be employed to determine the actual

values of other observables, as our access is limited to the normalized solution

vector x/ ∥x∥. Another important aspect to emphasize is that, typically,

since the normalized vector b/ ∥b∥ is loaded during the state preparation

step, we have access to the properties of the state x’ = x/ ∥b∥
As proven in [4], the normalization ∥x∥ can be estimated using the prob-

ability of seeing |1ða when measuring the ancilla qubit. More rigorously, let

M1 = Inb
¹ |1ðaï1|a. Where |1ðaï1|a is the projector of the ancilla qubit into

the state |1ð. We recall the final state of the system after the application of

HHL circuit:

|Èð =
2nb−1

∑

i=0

bi|uið|0ðc
(

√

1− C2

¼̃i
2 |0ða +

C

¼̃i
|1ða
)

(4.2.1)

Then the probability of seeing the ancilla qubit in |1ða after the measurement

60 4. Harrow-Hassidim-Lloyd algorithm

is

P1 ≡ ïÈ|M
1M1|Èð

=
C2

∥b∥2
2nb−1

∑

i=0

(

bi

¼̃i

)2

=
(C2nct/2Ã)2 ∥x∥2

∥b∥2
(4.2.2)

and we finally find

∥x∥ =
2nct

√
P1 ∥b∥

2ÃC
. (4.2.3)

Absolute average

Similarly, following the work presented in [8], if we defineM0,1 = |0ðbï0|b¹
|1ðaï1|a and |È′ð = (H¹nb ¹ I)|Èð, where È is the state in (4.2.1), then

P0,1 ≡ ïÈ′|M
0,1M0,1|È′ð =

∣

∣

∣

∣

∣

2ÃC

2nct
√
N ∥b∥

N−1
∑

i=0

xi

∣

∣

∣

∣

∣

2

(4.2.4)

which leads to

x ≡
∑N−1

i=0 xi
N

=

√

P0,12
nct ∥b∥

2ÃC
√
N

. (4.2.5)

Thus, the absolute average of the solution can be computed by performing

an additional Hadamard transform on the b-register. Then, we can measure

each qubit in the b-register in the computational basis, along with measur-

ing the ancilla qubit. The desired solution will be stored in the amplitude

corresponding to the state |0ðb|1ða, up to a constant shown in (4.2.5).

Chapter 5

HHL implementation

The main aim of this project is the implementation of the HHL algo-

rithm within the Qiskit framework. In the previous chapter, we described

all the subroutines of the algorithm. Now, in Sec. 5.1, we introduce Qiskit

and briefly describe the main function implemented along with all its input

parameters. Then, we discuss the challenges encountered during the simu-

lations, highlighting the limitations of exactly simulating HHL algorithm on

a classical hardware. In Sec. 5.2, we test the algorithm in various scenar-

ios, fine-tuning the algorithm’s input parameters for arbitrary-sized problems.

Finally, we discuss different aspects and limitations of the HHL algorithm,

considering the possible future developments of this work, with applications

in the aerospace sector.

5.1 Implementation

5.1.1 Qiskit framework

IBM Quantum Experience is a cloud-based platform that allows researchers

and the general scientific community to access and run experiments on real

quantum computers. The Quantum Information Science Kit, or Qiskit [7], is

an open-source software developed by IBM. Qiskit provides a comprehensive

and flexible framework for building quantum algorithms, simulating them on

61

62 5. HHL implementation

classical computers, and executing them on actual quantum hardware. It

supports a wide range of quantum programming tasks, from low-level quan-

tum circuit construction to high-level algorithm implementation, making it

an invaluable tool for quantum computing research and application. The

primary objective of this study is to implement the Harrow-Hassidh-Lloyd

(HHL) quantum algorithm within the Qiskit framework. The majority of

existing literature on the HHL algorithm primarily focuses on theoretical

analyses, which include discussions on predicted scaling and potential appli-

cations of the algorithm. However, the available implementation of the HHL

algorithm are often restricted to small matrices (e.g 2 × 2) [37]. Although

some full implementations of the HHL algorithm are available online [41],

our work entails a comprehensive implementation that allows for full con-

trol over input parameters and all associated subroutines of the algorithm,

regardless the size of the targeted matrix. This approach follows and ex-

pands upon the work presented in [37], permitting simulations for arbitrary

problem sizes. This approach enables the simulation of the algorithm across

various contexts and facilitates a detailed examination of several aspects of

the algorithm that are not thoroughly covered in theoretical publications, as

referenced in [4].

5.1.2 Input parameters

We show now the main function of the interface, my_HHL. This func-

tion builds the HHL quantum circuit to solve the linear system Ax⃗ = b⃗ and

takes as inputs the following parameters:

• A : the matrix A of the linear system;

• b: the vector b of the linear system;

• n_b : the number of qubits in the b-register used to encode b;

• n_c : the number of qubits in the c-register used to represent the

eigenvalues of A;

5.1 Implementation 63

• n_shots : the number of times the measurement is repeated for each

qubit;

• t : the time evolution parameter of the Hamiltonian simulation;

• C : the normalization constant in Eq. (4.1.15), used to maximize the

probability of obtain |1ða in the measurement of the ancilla qubit;

• Suzuki_Trotter : a boolean parameter, if set to True, eiAt is simu-

lated using Suzuki-Trotter decomposition, otherwise the Hamiltonian

simulation is performed exactly, as discussed in Sec. 3.4.3;

• Absolute_Average: a boolean parameter, if set to True, an additional

Hadamard operation is performed on the b-register, which is measured

along with the ancilla qubit. Otherwise, only the ancilla qubit is mea-

sured.

As an output, the function returns the corresponding quantum circuit and

the results of the measurements on the final state. Then, it is possible to

compute the norm or the absolute average of the solution, as discussed in

Sec. 4.2.

5.1.3 Examples with a 2 × 2 matrix

Let us examine a simple 2 × 2 matrix example, following the framework

introduced in the previous section. This example will be useful for familiar-

izing ourselves with the various steps of the algorithm. In this scenario, the

linear system of equations is defined by the matrix A and the vector b, which

determine the problem’s dimensions. Consider:

A =

[

2/5 0

0 4/5

]

b = [1, 1]

In this instance, the matrix A is already Hermitian; otherwise, it would be

necessary to apply the transformation outlined in Eq. (4.1.2), which would

64 5. HHL implementation

double the size of the problem. Additionally, the vector b is already nor-

malized, eliminating the need for further adjustments. Given that N = 2,

we require nb = 1 qubits in the b-register to store the vector b during the

state preparation step. As this is a small-scale toy example and the matrix

is diagonal, it is straightforward to determine the eigenvalues of A:

¼0 = 2/5,

¼1 = 4/5.

Consequently, we can precisely adjust our input parameters for optimal en-

coding, this means choosing nc, t such that ¼̃i = 2nc¼t/2Ã (i.e the scaled

eigenvalues stored in the c-register) are integer numbers. This results in a

perfect QPE. For this implementation, we choose nc = 2 qubits for the c-

register and set t = 5
4
Ã, C = 1. The resulting quantum circuit implementing

the HHL algorithm is shown in Fig. (5.1.1). The circuit is now simulated

Figure 5.1.1: HHL quantum circuit which solves a 2×2 linear system problem
using nb = 1 and nc = 2 qubits. In this case we are interested in computing
the solution norm ∥x∥, therefore we only need to measure the ancilla qubit.

in the IBM-Q system. However, if we are interested in the solution norm,

only the ancilla needs to be measured, as discussed in Sec. 4.2. We then

use the probability P1 of observing the ancilla in the state |1ða combined

5.1 Implementation 65

with substituting all the input parameters into Eq. (4.2.3) to determine the

solution norm. The resulting statistics of the simulation can bee seen in Fig.

5.1.2. In this instance, executing the circuit nshots = 1000 times, we obtain

∥x∥HHL = 2.7225 to compare with the classical solution ∥x∥classical = 2.7951.

Figure 5.1.2: Results of the measurements on the Ancilla qubit, since we
are interested in computing the solution norm, we only have to consider the
probability associated to the state |1ð.

Conversely, to compute the average solution, an additional Hadamard

transform to the b-register is incorporated, and the final circuit configura-

tion is depicted in Fig. 5.1.3. Subsequently, as illustrated in the circuit,

both the ancilla and the b-register are measured, specifically targeting the

probability P0,1 corresponding to the state |0ðb|1ða, which can be extracted

from the counts in Fig. 5.1.4 . Given that the b-register contains only nb = 1

qubit, our focus is solely on the state |01ð. Finally, we apply Eq. (4.2.5)

to obtain the desired result. In this case, given the values of the counts

in Fig. 5.1.4, we obtain xHHL = 1.896 to compare with the classical solu-

tion xclassical = 1.875. Clearly, our algorithm implemented using Qiskit can

66 5. HHL implementation

Figure 5.1.3: HHL quantum circuit which solves a 2×2 linear system problem
using nb = 1 and nc = 2 qubits. Here we are interested in computing the
absolute average x of the solution. Thus, an additional Hadamard operation
on the b-register is required. Finally, we need to measure the ancilla qubit
and the qubits inside the b-register.

handle matrices of arbitrary size, providing direct control over all the input

parameters discussed in Sec. 5.1.2. We present these simple examples to help

the reader familiarize themselves with the main steps of the algorithm and

to visualize the corresponding quantum circuits, which become too large to

depict as N increases. Examples with larger N will be further explored in

the next sections.

5.1.4 Challenges in Simulating the HHL Algorithm

One of the main challenges we encountered during these analyses was

the limitation imposed by the computational time required for simulations.

This issue arises because we utilized the Qiskit framework as an emulator

for quantum circuits. Unlike actual quantum computers, which can execute

quantum operations in parallel and inherently exploit quantum parallelism,

emulators simulate these operations classically. Firstly, to perform a simula-

tion, we need to construct the quantum circuit. This involves defining and

5.1 Implementation 67

Figure 5.1.4: Results of the measurements on the Ancilla and the b-register,
since we are interested in computing the Absolute Average, we only have to
consider the probability associated to the state |01ð, as discussed in Sec.4.2.

implementing all the necessary quantum gates and operations. In a classical

emulator, these gate operations are simulated through matrix multiplica-

tions. Each gate operation corresponds to a matrix that must be multiplied

with the state vector representing the quantum system. As the problem size

increases, the number of gates grows exponentially, leading to a significant

increase in the computational resources required. This is because we imple-

mented the ancilla rotation and the Hamiltonian simulation exactly. Thus,

even for relatively small quantum systems, the depth of the quantum circuit,

which is defined as the length of the longest path from the input to the out-

put (or a measurement gate), moving forward in time along each qubit wire

[20], becomes a critical factor in determining the simulation time. In Fig.

5.1.5 we report the Circuit Depth of the circuit as N increases, in logarithmic

scale. The primary bottleneck in this process is the exponential growth in

the size of the matrices involved. For an n-qubit system, the state vector has

2n entries, and each gate operation is represented by a 2n × 2n matrix. As

68 5. HHL implementation

a result, both memory usage and computational time increase exponentially

with the number of qubits. This exponential scaling restricts the feasible size

of the simulations. In our experiments, we found that practical simulations

were limited to systems with nb f 6 qubits. Thus, if we choose nc = nb + 1,

we have a total of n = 1+nb+nc = 14 corresponding to state vectors of size

214 = 16384. Furthermore, the cumulative effect of simulating a sequence of

gates exacerbates the problem. Each additional gate requires another matrix

multiplication, further increasing computational load. In conclusion, while

the Qiskit framework provides a powerful tool for simulating quantum algo-

rithms, the classical emulation of quantum operations inherently suffers from

scalability issues. These issues manifest as increased simulation times, sig-

nificantly limiting the size and complexity of problems that can be efficiently

simulated. Overcoming these limitations requires either the development of

more efficient classical algorithms for emulation or the use of actual quan-

tum hardware as it becomes more accessible and capable. Another approach

could be using a Tensor Network emulator for quantum circuits, which can

allow the access to instances of significant size. A prominent work in this

field is Quantum Matcha Tea [20] [42], a Tensor Network emulator developed

by the quantum research group at the University of Padua.

5.2 Results: fine-tuning of input parameters

for arbitrary size

As we have seen in Sec. 1.4, if we use the FEM to solve 1-D Poison equa-

tion, we have to solve a linear system Ax = b where A is a tridiagonal matrix.

The FEM poses an attractive prospect for enhancement using the HHL al-

gorithm for various reasons [5]. Firstly, the vast systems of linear equations

inherent in the FEM are generated algorithmically, as opposed to being di-

rectly supplied as input. This eliminates efficiency issues associated with the

necessity to access data via a quantum RAM. Secondly, the FEM naturally

gives rise to sparse systems of linear equations, a condition often essential for

5.2 Results: fine-tuning of input parameters for arbitrary size 69

Figure 5.1.5: Circuit Depth of the HHL circuit implemented as N increases.
Both N and the Circuit Depth are represented on a logarithmic scale, demon-
strating exponential scaling. This scaling comes from the ancilla rotation
step, which has been implemented "exactly", requiring 2nc multi-control
gates. To achieve the logarithmic scaling with N shown in the original paper
[4], also an efficient Hamiltonian simulation in required.

achieving quantum speed-up through the Hamiltonian Simulation algorithm,

which is a key module in HHL. Furthermore, these matrices often have a

well-defined structure, making them efficiently row-computable, which is a

constrained in many Hamiltonian simulation algorithms, as we have seen in

Sec. 3.4. In this section, we conduct an analysis on the fine-tuning of input

parameters of HHL algorithm, focusing on the number nc of qubit inside the

c-register and the evolution time parameter t of the Hamiltonian Simulation

subroutine.

5.2.1 Selection of Input Matrices for Simulations

As outlined in Sec 1.4, the application of the Finite Element Method

(FEM) often leads to the formation of sparse linear equation systems. A

70 5. HHL implementation

common scenario occurs when FEM is used to solve the one-dimensional

Poisson equation, resulting in tridiagonal matrices. In this study, we partic-

ularly examine Toeplitz tridiagonal matrices defined as:

A ≡

a c 0 0

c a c 0

0 c a c

0 0 c a

, (5.2.1)

where a, c ∈ R. The eigenvalues of such matrices can be exactly described

as [8]:

¼j = a− 2c cos

(

jÃ

N + 1

)

, j = 1, 2, ..., N (5.2.2)

allowing for the pre-estimation of the matrix condition number and the dis-

tribution range of the eigenvalues. This predictive capability is particularly

useful for adjusting the input parameters as we discuss in Sec. 5.2.3. In

particular, the condition number k of the matrix has a defined upper bound

kconv when a and c are fixed, which is defined by

kconv =
a+ 2c

a− 2c
. (5.2.3)

This implies that a and c can be set such that k falls within a specific range.

This flexibility allows us to study the behavior of the algorithm under differ-

ent conditions, especially when k is small compared to the size of the matrix,

namely k = O(log2N), which is the regime where HHL achieves an exponen-

tial speedup over its classical counterpart [4], and also when k is higher. We

consider two distinct cases:

• For a = 5 and c = 1, the condition number reaches its plateau kconv for

N = 32 and its relatively small with respect to N , as shown in 5.2.1a.

• For a = 7 and c = 3.4, the condition number increases with N and

does not converges for N f 64, as illustrated in Fig. 5.2.1b.

For both the cases considered, we used b = [1, 1].

5.2 Results: fine-tuning of input parameters for arbitrary size 71

(a) Condition number for a = 5, c = 1

(b) Condition number for a = 7, c = 3.4

Figure 5.2.1: Relationship between the matrix size N and the condition
number k of a Toeplitz tridiagonal matrix, for fixed a and c as N increases.
The red dotted line represents the upper bound of k defined in Eq. 5.2.3.

72 5. HHL implementation

5.2.2 The number of clock-qubits nc

Selecting the appropriate number of qubits to represent the eigenvalues

in the HHL algorithm is crucial, as it significantly influences the precision

and accuracy of the obtained solution. Indeed, we have to consider different

factors to properly set nc:

• The problem size N : a matrix of dimension N results in N (generally)

different eigenvalues, which necessitate at least nc = nb = log2 (N)

qubits to be represented.

• The condition number k = ¼max

¼min

(ratio of the largest to the smallest

eigenvalue) influences the required precision. Higher condition numbers

generally require more qubits to accurately represent the eigenvalues

and achieve a precise solution. Thus, for large k, we need at least

nc = +log2 (k),.

• Precision Requirement n: The number of qubit nc used to represent

the eigenvalues directly affects the precision of the quantum phase esti-

mation. Utilizing more qubits enhances bit precision but also elevates

resource demands, as shown in Eq. (3.3.7) and demonstrated in [13],

where n refers to a 2−n accuracy.

A general way to set the parameter nc and consider all the previous factors

is given by

nc = max
(

nb + 1,
⌈

log2 (k) + 1
⌉

, n+
⌈

log2

(

2 +
1

2ϵ

)⌉)

. (5.2.4)

However, as outlined in [4], it is crucial that the number nc is logarithmic

with respect to the problem size N to achieve an exponential speedup over

classical methods.

Simulations results

To determine the optimal setting for the parameter nc, we focus on small

matrices due to the computational limitations outlined in Sec. 5.1.4. The

5.2 Results: fine-tuning of input parameters for arbitrary size 73

number of qubits in the clock-register significantly influences both the depth

of the quantum circuit and the dimension of the full state vector, rendering

the analysis of larger matrices prohibitively expensive. Another important

aspect concerns the probabilistic nature of our analysis. We recall that the

final state of our algorithm is expressed as:

|Èð =
2nb−1

∑

i=0

bi|uið|0ðc
(√

1− C2

¼̃2i
|0ða +

C

¼̃i
|1ða
)

, (5.2.5)

where ¼̃i = 2nc¼it/2Ã represents a scaled version of the true eigenvalues of

the input matrix A. Higher values of nc lead to a lower probability of mea-

suring the ancilla qubit in the state |1ða. Consequently, although increasing

the number of qubits in the clock-register enhances the bit-precision of the

eigenvalue representation, setting nc too high may actually reduce the preci-

sion of the solution if the number of algorithm executions, or "shots", is not

correspondingly increased to ensure robust statistical outcomes. We tested

the algorithms for different nc, considering the two different cases presented

in Sec. 5.2.1. We utilized the percent error in the Absolute Average of the

HHL solution, xHHL, with respect to the classical solution xcl as a parameter

for assessing precision, namely:

ϵ =
(xHHL − xcl)

xcl

, (5.2.6)

where xHHL is computed through Eq. 4.2.5. In Fig. 5.2.2 and Fig. 5.2.3, we

can clearly see that if nc f nb, the percent error ϵ is higher because we do

not have enough qubits to represent all the eigenvalues. However, as shown

in the plots, if we carefully choose a "good encoding" through the parameter

t (we will see how in the next section) and if the condition number of the

matrix is of the order of the matrix size N , we achieve good accuracy just by

setting nc = nb + 1. As we can see in Fig. 5.2.1, if we consider the case for

a = 7 and c = 3.4, the condition number is higher (but of the same order)

of N . However, we get worse results increasing the number of qubits. This

74 5. HHL implementation

is because we kept the same number of shots (number of times the circuit is

executed) for all the simulations, and, as explained before, for higher nc the

probabilty of measuring the ancilla in |1ða decreases, affecting the statistics.

Further simulations with higher problem sizes N and higher condition

number (and thus a larger number of qubits nc in the c-register from Eq. (5.2.4)

should be performed, knowing that performing these simulations classically

requires a huge amount of time. Indeed, we expect that for large N and k, it

becomes very difficult to find a good encoding of the eigenvalues. Thus, the

number of qubits inside the c-register, nc, plays a crucial role to get precise

solutions. For the subsequent analyses, we will always set nc = nb + 1.

5.2 Results: fine-tuning of input parameters for arbitrary size 75

(a) Fine-tuning nc for a 32×32 matrix defined in Eq. (5.2.1), where a = 5,
c = 1

(b) Fine-tuning nc for a 32×32 matrix defined in Eq. (5.2.1), where a = 7,
c = 3.4

Figure 5.2.2

76 5. HHL implementation

(a) Fine-tuning nc for a 64×64 matrix defined in Eq. (5.2.1), where a = 5,
c = 1

(b) Fine-tuning nc for a 64×64 matrix defined in Eq. (5.2.1), where a = 7,
c = 3.4

Figure 5.2.3

5.2 Results: fine-tuning of input parameters for arbitrary size 77

5.2.3 The evolution time parameter t

In the framework of Quantum Phase Estimation (QPE), the phase values

φ are constrained within the interval [0, 1]. This constraint arises from the

periodic nature of phase angles in quantum mechanics and the definition of

the eigenvalues of unitary operators.

As shown in the previous chapter, in HHL algorithm this translates to

¼t f 2Ã. (5.2.7)

Thus, the parameter t in the Hamiltonian simulation is typically set based

on the largest eigenvalue of the matrix A. A common choice is

t =
2Ã

¼max

. (5.2.8)

In this manner, all eigenvalues of the matrix are confined to the range [0, 2Ã],

balancing the demand for accuracy against the practical constraints of the

quantum register utilized in the QPE.

We can consider the effects of the parameter t on the precision and complexity

of the final solution. A smaller t reduces the phase shift ¼t, making it more

challenging to accurately resolve different eigenvalues. Consequently, a too

small t results in lower precision in the Quantum Phase Estimation (QPE)

step. On the other hand, a larger t decreases the probability of finding the

ancilla in the |1ða. This necessitates additional executions of the algorithm

to gather reliable statistics, which could potentially increase the algorithm’s

complexity. In addition, we get a perfect encoding of our eigenvalues inside

the c-register if ¼̃i = 2nc¼it/2Ã are integer numbers. Thus, the best encoding

we can achieve corresponds to the one representing exactly the minimum

eigenvalue ¼min, since it contributes the most to the solution of the linear

system, as one can see from Eq. (5.2.5). Therefore, one could just set t =
2Ã

¼min2nc
. However, this choice has a main problem: in most cases we do not

know ¼min in advance. Despite lots of upper bounds about the maximum

78 5. HHL implementation

eigenvalue are known, there are only few about the smallest eigenvalue [43].

Furthermore, we also have to ensure that t f 2Ã
¼max

, as discussed previously.

Simulations results

Here we report the plots of simulations for different values of t. Specifi-

cally, we have simulated our algorithm over the range t ∈
[

2Ã
10¼maxN

, 10 2Ã
¼maxN

]

for different problem sizes N . We also considered the two different scenarios

presented in Sec. 5.2.1. We utilized the percent error in the Absolute Average

of the HHL solution in Eq. (5.2.6) as a parameter for assessing precision, as

done in the previous section. In addition, we have repeated each simulation

50 times, plotting the mean value and the standard deviation of the results.

As we can see in the Figures below, we found a good trade-off for setting t

in the following equation:

t =
2Ã

¼maxN
. (5.2.9)

In particular, we can prove and discuss some theoretical considerations we

made above. We start by considering small matrices, particularly for N = 4

and N = 8. In Fig. 5.2.4a and Fig. 5.2.4b, we can see how the accuracy of

the algorithm increases dramatically when t g 2Ã
¼max

, because the eigenvalues

are not all confined in the range [0, 2Ã], which is a fundamental constraint

that must be respected for the QPE to be accurate. Additionally, we can see

that in the first case, setting t = 2Ã
¼min2nc

yields good results. However, in the

second case, this is not true, since ¼min is too small, resulting in a t that is

greater than 2Ã
¼max

, proving the considerations made above. Similar results are

obtained simulating the algorithm for N = 8. Finally, we can see that both

in Fig. 5.2.4 and 5.2.5, t = 2Ã
¼maxN

yields good accuracies despite the two cases

considered having different eigenvalues and condition numbers k. Here we can

also note that, for very small t, the error increases until ϵ = 1. This is due to

the fact that, if t is too small, the eigenvalues are constrained in a very small

interval and the QPE cannot distinguish from one eigenvalue to another. A

crucial aspect to consider is the fluctuations observed in the results. This

study focuses on small matrices, thereby involving a limited number of qubits,

5.2 Results: fine-tuning of input parameters for arbitrary size 79

nc, in the c-register. Consequently, there is a higher probability of measuring

the ancilla in the state |0ða, as detailed in Sec. 5.2.2. Additionally, it is

important to note that as t increases, the standard deviation also rises, which

aligns with the theoretical discussion previously outlined. Now, if we consider

the simulations done for N = 32, we get very similar results, t = 2Ã
¼maxN

is

again a good fit for both the cases in Fig. 5.2.6a and 5.2.6b. However, in this

instance the fluctuations increase significantly, this is because nc rises with

the problem size N , leading to a smaller probability of having the ancilla

collapsing in |1ð. For larger matrices this can be solved in different ways:

• Setting t = 2Ã/2nc , so that the term 2nc cancels out in the Eq: 5.2.5.

Always checking that t f 2Ã/¼max;

• Increasing the number of shots, i.e the number of times the HHL circuit

is executed, so that we can achieve a reliable statistics to compute

the solution norm or the absolute average with Eq. (4.2.3) and (4.2.5)

respectively.

• Just set t f 2Ã/¼max and use some Amplitude Amplification technique

[44] to increase the probability of measuring tha ancilla in |1ð.

In conclusion, this means that we have to extract information about the

system in advance, such as the maximum eigenvalue of the matrix ¼max. For

some systems this can be done precisely, such as the Toeplitz tridiagonal

matrices we have seen in Sec. 5.2.1. Otherwise we shall use an upper bound

for ¼max.

80 5. HHL implementation

(a) Fine-tuning t for a 4 × 4 matrix defined in Eq. (5.2.1), where a = 5,
c = 1

(b) Fine-tuning t for a 4 × 4 matrix defined in Eq. (5.2.1), where a = 7,
c = 3.4

Figure 5.2.4: Percent error in the Absolute Average of x as a function of the
parameter t . The figure illustrates the effect of fine-tuning t on the precision
of the HHL algorithm.

5.2 Results: fine-tuning of input parameters for arbitrary size 81

(a) Fine-tuning t for a 8 × 8 matrix defined in Eq. (5.2.1), where a = 5,
c = 1

(b) Fine-tuning t for a 8 × 8 matrix defined in Eq. (5.2.1), where a = 7,
c = 3.4

Figure 5.2.5: Percent error in the Absolute Average of x as a function of the
parameter t . The figure illustrates the effect of fine-tuning t on the precision
of the HHL algorithm.

82 5. HHL implementation

(a) Fine-tuning t for a 32× 32 matrix defined in Eq. (5.2.1), where a = 5,
c = 1

(b) Fine-tuning t for a 32× 32 matrix defined in Eq. (5.2.1), where a = 7,
c = 3.4

Figure 5.2.6: Percent error in the Absolute Average of x as a function of the
parameter t . The figure illustrates the effect of fine-tuning t on the precision
of the HHL algorithm.

5.2 Results: fine-tuning of input parameters for arbitrary size 83

To avoid to determine the maximum Eigenvalue in advance, we revolve

to the definition of upper bounds. Several upper bounds for |¼max| exist [43],

and some are detailed below:

• ¼max f
√

Tr(AA†).

• ¼max f ∥A∥1 = maxj
∑

i |aij|.

• ¼max f ∥A∥2 =
√

∑

i,j |aij|2.

• ¼max fM∥A∥max =M maxi,j |aij|.

The chosen upper bounds will influence the overall complexity of the algo-

rithm, as the matrix computations described are challenging on both classical

and quantum computers.

For instance, let’s choose ¼max =
√

Tr(AA†) and compare the results ob-

tained using the real ¼max. We consider again the case for a = 5, c = 1 and

using nshots = 1000. The results are reported in Fig. 5.2.7.

84 5. HHL implementation

Figure 5.2.7: Percent error in the Absolute Average of the solution as N
increases. We set t = 2Ã

¼maxN
, using the exact ¼max and one of its upper

bound, ¼max =
√

Tr(AA†). As we can see in the plot, the upper bound is a
good approximation of the real ¼max, leading to a small percent error. This
plot concerns the result of a single simulation.

5.2 Results: fine-tuning of input parameters for arbitrary size 85

5.2.4 Scaling of the Error with the System size

Now that we know how to set the input parameters of HHL algorithm,

we want to test out how it performs in terms of precision when the size of

the system increases. Specifically we choose:

• t = 2Ã
¼maxN

,

• nc = nb + 1.

We consider again the case for a = 5, c = 1, using nshots = 1000. The

algorithm is simulated 50 times and we report the mean and the standard

deviation of the results for different N . As we can see in Fig. 5.2.8, if we

set our input parameters as previously mentioned, the precision does not

increase with the size of the system. However, we stressed our algorithm

with small problem sizes since we are limited by the simulations on classical

hardware, as discussed in Sec. 5.1.4. Further cases should be analyzed, in

particular for larger matrices and different structures.

Figure 5.2.8: Percent error in the Absolute Average of the solution as N
increases.

86 5. HHL implementation

Chapter 6

Conclusions and Future

Development

In this thesis, we explored the potential of quantum computing, specifi-

cally the Harrow-Hassidim-Lloyd (HHL) algorithm, for addressing computa-

tional electromagnetism (CEM) problems relevant to Earth observation. We

began by highlighting the importance of CEM at Thales Alenia Space Italy

(TASI), emphasizing the role of electromagnetic (EM) simulations, in various

stages of space mission design and verification. We also identified a relevant

use case in the Radio Frequency propagation in a rectangular waveguide for

feeding a slotted antenna. This example is a simplified version of a larger use

case related to the design and optimization of antennas for radar EO. Tradi-

tional methods for EM simulation, while robust, face significant challenges in

scaling to large, complex systems due to their computational intensity. This

limitation led us to consider quantum computing as a potential solution.

Quantum computing, grounded in the principles of quantum mechanics,

offers a fundamentally different approach to computation compared to clas-

sical methods. We introduced key quantum concepts such as superposition

and entanglement, along with quantum operators and circuit notations, to

provide the necessary background. These foundational elements are critical

for understanding the complexities and advantages of quantum algorithms.

87

88 6. Conclusions and Future Development

We then discuss the principal subroutines utilized in the HHL algorithm,

including the Quantum Fourier Transform (QFT) and the Quantum Phase

Estimation (QPE). These components are essential for the effective imple-

mentation of the HHL algorithm, which promises exponential speedup over

classical methods under certain conditions. Additionally, we briefly review

Hamiltonian simulation algorithms, which represents one of the main steps

of the HHL algorithm.

A detailed analysis of the HHL algorithm was conducted, explaining all

its steps, from the state preparation to the final measurement of the quantum

registers. We examined the algorithm’s ability to compute key quantities such

as the norm and the absolute average of the final solution. This thorough

analysis was crucial for the practical implementation of the HHL algorithm.

This work entails a comprehensive Qiskit implementation of the HHL

quantum algorithm from scratch, that allows for full control over input pa-

rameters and all associated subroutines of the algorithm. We detailed the

main function and input parameters and discussed the challenges encoun-

tered during simulations. Various scenarios were tested to fine-tune the al-

gorithm’s input parameters for different problem sizes. In particular, we

focused on the number of qubits nc needed to encode the eigenvalues of the

input matrix inside the quantum register, and on the evolution time param-

eter t of the Hamiltonian Simulation step. We highlighted the limitations of

simulating the HHL algorithm on classical hardware and discussed potential

future developments, such as simulating the algorithm with a Tensor Network

emulator.

Our findings underscore the potential of quantum algorithms to address

complex CEM problems more efficiently than classical methods. By provid-

ing a comprehensive implementation of the HHL algorithm and testing it

under various conditions, we contribute to the growing body of research ex-

ploring quantum advantages in practical applications. However, the current

capabilities of Noisy Intermediate-Scale Quantum (NISQ) hardware limit

the size of problems that can be effectively tackled. While small problems

89

are outperformed by classical algorithms and lack industrial relevance, larger

problems remain beyond the reach of existing quantum hardware. Therefore,

besides advancing quantum hardware, future research should explore hybrid

quantum-classical approaches that leverage the strength of both paradigms.

A future development of this work is to implement, within the HHL algo-

rithm, an Hamiltonian Simulation subroutine based on the state-of-the-art

algorithms available in this field. Additionally, we plan to simulate the use

case presented in Chapter 1, related to RF propagation in a slotted antenna,

with the ultimate goal of extending it to the real-world scenario involving the

design and optimization of antennas for radar EO applications. Another ob-

jective is to execute the algorithm on a real quantum hardware, conducting

the same analysis performed in this study.

In conclusion, we have discussed why quantum computing holds signifi-

cant promise in addressing PDEs, particularly in the context of Earth obser-

vation and aerospace applications. While there are challenges to overcome,

the potential for improved efficiency justifies continued research and devel-

opment in this exciting and rapidly evolving field.

90 6. Conclusions and Future Development

Bibliography

[1] Jian-Ming Jin. The finite element method in electromagnetics. John

Wiley & Sons, 2015.

[2] Owe Axelsson, Va Barker, and Dj Benson. “Finite Element Solution

of Boundary Value Problems: Theory and Computation. Classics in

Applied Math, Vol. 35”. In: Applied Mechanics Reviews - APPL MECH

REV 55 (May 2002). doi: 10.1115/1.1470667.

[3] David B. Davidson. Computational Electromagnetics for RF and Mi-

crowave Engineering. 2nd ed. Cambridge University Press, 2010.

[4] A. Hassidim A. Harrow and S. Lloyd. “Quantum Algorithm for Linear

Systems of Equations”. In: Phys. Rev. Lett. 103 150502 (2009).

[5] Ashley Montanaro and Sam Pallister. “Quantum algorithms and the

finite element method”. In: Physical Review A 93 (2015), p. 032324.

url: https://api.semanticscholar.org/CorpusID:44004935.

[6] John Preskill. “Quantum Computing in the NISQ era and beyond”.

In: Quantum (2018). url: https :/ / api .semanticscholar .org /

CorpusID:44098998.

[7] Ali Javadi-Abhari et al. Quantum computing with Qiskit. 2024. doi:

10.48550/arXiv.2405.08810. arXiv: 2405.08810 [quant-ph].

[8] Almudena Carrera Vazquez, Ralf Hiptmair, and Stefan Woerner. “En-

hancing the Quantum Linear Systems Algorithm Using Richardson Ex-

trapolation”. In: ACM Transactions on Quantum Computing 3 (Mar.

2022), pp. 1–37. doi: 10.1145/3490631.

91

92 BIBLIOGRAPHY

[9] John Leonidas Volakis et al. Finite element method for electromagnet-

ics. Universities Press, 1998.

[10] Overview of Sentinel-1 Mission. url: https://sentiwiki.copernicus.

eu/web/s1-mission.

[11] A. Einstein, B. Podolsky, and N. Rosen. “Can Quantum-Mechanical

Description of Physical Reality Be Considered Complete?” In: Phys.

Rev. 47 (10 May 1935), pp. 777–780. doi: 10.1103/PhysRev.47.777.

url: https://link.aps.org/doi/10.1103/PhysRev.47.777.

[12] J. S. Bell. “On the Einstein Podolsky Rosen paradox”. In: Physics

Physique Fizika 1 (3 Nov. 1964), pp. 195–200. doi: 10.1103/PhysicsPhysiqueFizika.

1.195. url: https://link.aps.org/doi/10.1103/PhysicsPhysiqueFizika.

1.195.

[13] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and

Quantum Information: 10th Anniversary Edition. 10th. USA: Cam-

bridge University Press, 2011. isbn: 1107002176.

[14] Alastair Kay. “Tutorial on the Quantikz Package”. In: (Sept. 2018).

doi: 10.17637/rh.7000520.

[15] David Deutsch and Richard Jozsa. “Rapid solution of problems by

quantum computation”. In: Proceedings of the Royal Society of London.

Series A: Mathematical and Physical Sciences 439 (1992), pp. 553–558.

url: https://api.semanticscholar.org/CorpusID:121702767.

[16] Stefano Markidis. “What is Quantum Parallelism, Anyhow?” In: ISC

High Performance 2024 Research Paper Proceedings (39th Interna-

tional Conference) (2024). url: https : // api . semanticscholar .

org/CorpusID:269736904.

[17] Don Coppersmith. “An approximate Fourier transform useful in quan-

tum factoring”. In: arXiv: Quantum Physics (2002). url: https://

api.semanticscholar.org/CorpusID:17450629.

BIBLIOGRAPHY 93

[18] Peter W. Shor. “Algorithms for quantum computation: discrete log-

arithms and factoring”. In: Proceedings 35th Annual Symposium on

Foundations of Computer Science (1994), pp. 124–134. url: https:

//api.semanticscholar.org/CorpusID:15291489.

[19] James W. Cooley, Peter A. W. Lewis, and Peter D. Welch. “The Fast

Fourier Transform and Its Applications”. In: IEEE Transactions on Ed-

ucation 12 (1969), pp. 27–34. url: https://api.semanticscholar.

org/CorpusID:10563630.

[20] Marco Ballarin. “Quantum computer simulation via tensor networks”.

In: (). url: https://thesis.unipd.it/retrieve/117b8335-eed3-

4881-b654-66352af4d5e4/BALLARIN_Marco_Thesis_final.pdf.

[21] Alexei Y. Kitaev. “Quantum measurements and the Abelian Stabilizer

Problem”. In: Electron. Colloquium Comput. Complex. TR96 (1995).

url: https://api.semanticscholar.org/CorpusID:17023060.

[22] Seth Lloyd. “Universal Quantum Simulators”. In: Science 273 (1996),

pp. 1073–1078. url: https://api.semanticscholar.org/CorpusID:

43496899.

[23] Dominic W. Berry et al. “Efficient Quantum Algorithms for Simulating

Sparse Hamiltonians”. In: Communications in Mathematical Physics

270 (2005), pp. 359–371. url: https://api.semanticscholar.org/

CorpusID:37923044.

[24] Andrew M Childs. “Lecture notes on quantum algorithms”. In: (). url:

https://www.cs.umd.edu/~amchilds/qa/qa.pdf.

[25] Dorit Aharonov and Amnon Ta-Shma. Adiabatic Quantum State Gen-

eration and Statistical Zero Knowledge. 2003. arXiv: quant-ph/0301023

[quant-ph]. url: https://arxiv.org/abs/quant-ph/0301023.

[26] Danial Dervovic et al. Quantum linear systems algorithms: a primer.

2018. arXiv: 1802.08227 [quant-ph]. url: https://arxiv.org/

abs/1802.08227.

94 BIBLIOGRAPHY

[27] Andrew M. Childs and Robin Kothari. “Simulating Sparse Hamiltoni-

ans with Star Decompositions”. In: Lecture Notes in Computer Science.

Springer Berlin Heidelberg, 2011, pp. 94–103. isbn: 9783642180736.

doi: 10.1007/978-3-642-18073-6_8. url: http://dx.doi.org/10.

1007/978-3-642-18073-6_8.

[28] Andris Ambainis. Understanding Quantum Algorithms via Query Com-

plexity. 2017. arXiv: 1712.06349 [quant-ph]. url: https://arxiv.

org/abs/1712.06349.

[29] Bo-jia Duan et al. “A survey on HHL algorithm: From theory to appli-

cation in quantum machine learning”. In: Physics Letters A 384 (2020),

p. 126595. url: https://api.semanticscholar.org/CorpusID:

219930336.

[30] In: Quantum Information and Computation 12.1 2 (Jan. 2012). issn:

1533-7146. doi: 10.26421/qic12.1-2. url: http://dx.doi.org/10.

26421/QIC12.1-2.

[31] Dominic W. Berry et al. “Exponential improvement in precision for

simulating sparse Hamiltonians”. In: Proceedings of the forty-sixth an-

nual ACM symposium on Theory of computing. STOC ’14. ACM, May

2014. doi: 10.1145/2591796.2591854. url: http://dx.doi.org/

10.1145/2591796.2591854.

[32] Dominic W. Berry et al. “Simulating Hamiltonian Dynamics with a

Truncated Taylor Series”. In: Phys. Rev. Lett. 114 (9 Mar. 2015), p. 090502.

doi: 10.1103/PhysRevLett.114.090502. url: https://link.aps.

org/doi/10.1103/PhysRevLett.114.090502.

[33] Dominic W. Berry, Andrew M. Childs, and Robin Kothari. “Hamilto-

nian Simulation with Nearly Optimal Dependence on all Parameters”.

In: 2015 IEEE 56th Annual Symposium on Foundations of Computer

Science. IEEE, Oct. 2015. doi: 10.1109/focs.2015.54. url: http:

//dx.doi.org/10.1109/FOCS.2015.54.

BIBLIOGRAPHY 95

[34] Guang Hao Low and Isaac L. Chuang. “Hamiltonian Simulation by

Qubitization”. In: Quantum 3 (2019), p. 163. doi: 10.22331/q-2019-

07-12-163. arXiv: 1610.06546 [quant-ph].

[35] UnitaryGate function available in Qiskit library. url: https://docs.

quantum.ibm.com/api/qiskit/qiskit.circuit.library.UnitaryGate.

[36] TrotterQRTE function available in Qiskit library. url: https://docs.

quantum.ibm.com/api/qiskit/0.37/qiskit.algorithms.TrotterQRTE.

[37] Anika Zaman, Hector Morrell, and Hiu Wong. “A Step-by-Step HHL

Algorithm Walkthrough to Enhance Understanding of Critical Quan-

tum Computing Concepts”. In: IEEE Access PP (Jan. 2023), pp. 1–1.

doi: 10.1109/ACCESS.2023.3297658.

[38] Lov K. Grover and Terry Rudolph. “Creating superpositions that cor-

respond to efficiently integrable probability distributions”. In: arXiv:

Quantum Physics (2002). url: https://api.semanticscholar.org/

CorpusID:118380132.

[39] Adam Holmes and Anne Y. Matsuura. “Efficient Quantum Circuits for

Accurate State Preparation of Smooth, Differentiable Functions”. In:

2020 IEEE International Conference on Quantum Computing and En-

gineering (QCE) (2020), pp. 169–179. url: https://api.semanticscholar.

org/CorpusID:218581252.

[40] Vivek V. Shende, Stephen S. Bullock, and Igor L. Markov. “Synthesis

of quantum-logic circuits”. In: IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems 25 (2004), pp. 1000–1010.

url: https://api.semanticscholar.org/CorpusID:265038781.

[41] HHL function available in Qiskit library. url: https://docs.quantum.

ibm.com/api/qiskit/0.35/qiskit.algorithms.linear_solvers.

HHL.

[42] Quantum Matcha Tea. url: https://pypi.org/project/qmatchatea/.

96 BIBLIOGRAPHY

[43] Changpeng Shao. “Reconsider HHL algorithm and its related quantum

machine learning algorithms”. In: arXiv: Quantum Physics (2018). url:

https://api.semanticscholar.org/CorpusID:119367568.

[44] Gilles Brassard et al. “Quantum Amplitude Amplification and Esti-

mation”. In: arXiv: Quantum Physics (2000). url: https://api.

semanticscholar.org/CorpusID:54753.

