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Protein-ligand binding is essential to almost all biological processes, and the underlying physical and
chemical interactions determine the specific biological recognition at the molecular level. In drug dis-
covery, one tries to find a molecular ligand that either inhibits or activates a specific protein target
through ligand binding. However, finding a ligand that binds a targeted protein with high affinity
is a major challenge in early-stage drug discovery. Therefore, improving the accuracy of free energy
calculation for estimating protein-ligand binding affinity is of significant interest as well as practical
utility in drug discovery. As a matter of fact, it has been estimated that a preliminary computational
screening that can reach precision of the order of 1 kcal/mol can speed up by several times the process
of drug discovery (Mobley et al., 2012), as we can see from fig. 1.

Figure 1: Preliminary computational screening help to drastically reduce the number of molecule that have to
be carried on in the experimental phase, thus importantly reducing the time necessary to develop a new drug.

Computation can help speed up the drug discovery process through simulations and could be effectively
used for the design of small molecule drugs for the treatment of diseases. Even though the problem can
be considered theoretically solved, computation of the binding free energy still remains a challenging,
as the binding process can involve complex structural rearrangement of the protein which are not easy
to simulate with current computational power (this is the case of the HIV-1 protease, see Ghosh et
al., 2011).
In this thesis we will discuss the most effective methods for the in vitro and in silico virtual screening,
the basics of molecular dynamics and finally an example of scoring for some ligands used to inhibit
the Bromodomain-4 (a common domain targeted by anti-tumoral drugs).

Figure 2: Bromodomain-4 binding site



Chapter 1

Introduction to Drug Discovery

One of the most successful ways to find promising drug candidates is to investigate how the target
protein interacts with randomly chosen compounds, which are usually a part of compound libraries.
This testing is often done in so called high-throughput screening (HTS) facilities. Compound libraries
are available in sizes of up to several millions of compounds. The most promising compounds obtained
by screening such libraries, i.e. the compounds that show binding activity towards the target, are called
hits. Some of these hits are then promoted to lead compounds which are further refined and modified in
order to achieve more favorable interactions and less side-effects. Beside being able to screen molecules
using experimental methods it is also possible to use virtual screening methodologies based on the
computationally inferred or simulated real screening; the main advantages of these methods compared
to laboratory experiments are:

• low costs, indeed no compounds have to be purchased externally or synthesized by a chemist;

• it is possible to investigate compounds that have not been synthesized yet;

• conducting HTS experiments is expensive and VS can be used to reduce the initial number of
compounds before using HTS methods;

• huge amount of chemicals to search from. The number of possible virtual molecules available
for VS is exceedingly higher than the number of compounds presently available for HTS;

1.1 Binding Affinity

The strength of the interaction between these two molecules is defined by either binding and disso-
ciation constants (Kb and Kd ) or Gibbs energy of binding (∆Gb ) and is commonly referred to as
affinity. In a simple, reversible one protein – one ligand interaction case, equilibrium exists between
the free molecules (P, protein, and L, ligand) and their complex (PL) that associate and dissociate at
certain rates (described by rate constants kon and koff , respectively):

P + L←kon
koff
→ PL

we can define the binding affinity using equilibrium dissociation (Kd) or (Kb) constants:

Kb =
[PL]

[P ][L]
=

1

Kd
=

Kon

Koff

At equilibrium under standard conditions, the Gibbs energy of binding describes the energy difference
between the two states:

∆Gb = RT ln([P ][L])−RT ln[PL] = −RT ln
[PL]

[P ][L]
= −RT lnKb = RT lnKd

∆Gb = ∆Hb − T∆Sb

3
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1.1.1 Experimental approaches to evaluate affinity

The number of viable methods for the determination of the binding affinity of two molecules is quite
big, so in this section we will introduce some of the most popular (Kairys et al., 2019).

Figure 1.1: Same protein-ligand pair was studied using three different approaches: (a) isothermal titration
calorimetry, (b) fluorescence thermal shift assay, and (c) microscale thermophoresis

Isothermal titration calorimetry (ITC) can measure thermodynamic energetics of binding di-
rectly, without any need of labelling, immobilization, or any other modification of the interactors.
During the measurement, one of the binding partners is titrated with aliquots of the other under con-
stant temperature, and the released or absorbed heat is measured. Construction of a binding isotherm
of interaction heat as a function of titrated (Figure 1.1(a)) ligand yields ∆Hb , Kb (and therefore ∆Gb
) with ∆Sb calculated as before.

Fluorescence thermal shift assay This technique is based on the hypothesis that drug lead sta-
bilize the target protein, so the aim is to track the stability shift when the protein is heated, however,
complex multi-domain proteins and their assemblies are a challenge for any stability shift assay, as
unfolding of different domains and other substructures often happens independently and thus yields
multiple denaturation signals that can be hard to interpret.
The protein samples with varying ligand concentrations are being subjected to a constantly increasing
temperature. Protein denaturation is tracked indirectly, by measuring the fluorescence of a solva-
tochromic dye molecule, which reports on unfolded protein regions (Figure 1.1(b)). Thus instead of
the full thermodynamic denaturation profile, it yields only Kb and Tm but is significantly less time
and reagent consuming.

Microscale thermophoresis To determine the binding affinity this kind of assays physically sepa-
rate the ligand or protein from the protein-ligand complex and quantify these fractions (Figure 1.1(c)).
To this end, they exploit the differences in size, charge, hydrodynamic or other properties between
these molecules and their assemblies. The ligand (or protein) is usually detected using UV, fluorescence
signal, or MS. Determined bound fractions are plotted against target concentrations to calculate the
Kd. During the Microscale thermophoresis experiment, molecules move through infrared laser-induced
temperature gradients depending on their size, charge, and hydration shell. Fluorescent methods can
be used to track the protein.

Nuclear magnetic resonance NMR is the only technique capable of obtaining atomic resolution
structures in solution. During an NMR experiment, a magnetic field is applied to the sample, which
affects the spins of the nuclei. The energy released by these nuclear spins coming back to their original
states is detected and analyzed. The energy differs for the same atom nuclei placed in different
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chemical environments between different compounds or between the bound and unbound states. Kd

determination usually requires a competitor and is limited by binding kinetics. Overall, the usage
of structural biology techniques in drug design has been on the rise over the last decade due to
significant technological advances and gaining popularity of computational approaches that rely on
initial structural data.

1.2 High-Throughput Screening (HTS) process

Advanced methods of combinatory chemistry have made it possible to quickly synthesize vast quanti-
ties of compounds for testing. These compounds are then tested in a rapid method of evaluation called
high-throughput screening. High-throughput screening (HTS) allows researchers to quickly and cost-
effectively process thousands and even hundreds of thousands (ultra-high-throughput screening, or
uHTS) of compounds, which enables them to increase the probability of finding an ’hits’ (compounds
that display the desired characteristic) that will advance into the next stages of drug discovery and
development. It has been estimated that the construction of a conventional library, containing 106

individual molecules in sufficient quantity and quality for pharmaceutical screening campaigns, may
cost between $400 million and $2 billion, so this is a very expensive technique (Cronk et al., 2013).

1.2.1 Steps in a usual HTS experiment

There are multiple steps in any HTS experiment, which can take weeks to complete. However, these
steps can be generalized into three categories:

1. Sample preparation.

2. Sample handling: dedicated liquid handling robots can precisely add and mix liquid reagents to
multiple wells, which allows scientists to simultaneously screen for thousands of drugs, toxins,
chemicals or bioactive compounds.

3. Readouts and data acquisition: many HTS are interpreted through optical measurements – color
changes in cells and in liquid reactions, the turbidity of liquid culture, or fluorescence signals.

1.3 DNA encode library

DNA-encoded chemical libraries (DECLs) are collections of compounds, individually coupled to DNA
tags serving as amplifiable identification barcodes. Since individual compounds can be identified by
the associated DNA tag, they can be stored as a mixture, allowing the synthesis and screening of
combinatorial libraries of unprecedented size (around 1015 members against the 103− 106 compounds
of screening-based method), in addition a DNA-encoded library of 800 million compounds, costs about
$150,000 for materials to create and screen (Favalli et al., 2018).

Figure 1.2: Schematic representation of
DECLs process

We normally distinguish between two main types of DNA-
encoded chemical libraries: (A) “single-pharmacophore li-
braries”, in which individual compounds (no matter how com-
plex) are attached to one DNA fragment; and (B) “dual-
pharmacophore libraries”, in which pairs of compounds are
coupled to the extremity of the complementary strands of
the DNA heteroduplex (Fig. 2.4). In this second ex-
ample, binding fragments are identified, which need to be
chemically linked at a later stage, in order to yield or-
ganic molecules which can be used in the absence of
DNA.
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The standard procedure for applying this method is to connect
the target proteins on a solid support and subsequently incu-
bated with a DNA-encoded chemical library, allowing the physical separation of preferential binders
from the other library members, which can be washed away. After affinity capture, the barcodes of
preferential binders are PCR amplified (a polymerase chain reaction in order to create millions of
clonal copies of each DNA bead) and submitted to a high-throughput sequencing procedure.

This technique has been theorized in 1992 by Sidney Brenner and Richard Lerner (Brenner et al., 1992),
but only the recent progresses in the DNA sequencing technologies have cut the cost and allowed to
use this in real drug discovery process. High throughput methods use very different approaches in
order to sequence the DNA breads, and the performance of those methods differs widely from each
other. For example, one of the most popular HTS methods is the Sequencing by synthesis where
the DNA molecules attached on a slide of flow cell and amplified via PCR, so that DNA clusters are
created, later four type of terminator bases are added and a camera takes images of the fluorescently
labeled nucleotides. This technique can solve 2.5 billion of sequence in 1 to 11 days at the cost of 5 -
150 $ / billion bases, while isolating the compound is more expensive.

The potential of DECLs can be understood by looking at some of the recent drugs discovered, such
as novel Bruton tyrosine kinase inhibitors, isolated from a library of over 110 million of compounds.
This protein is a target for the treatments of certain forms of lymphoma and autoimmune conditions,
being key regulator in B-cell development. The drug developed compete with the ATP and inhibit
the BTK (Neri et al., 2017).



Chapter 2

Computational Methods

In this section we will introduce some of the most common and efficient method for the in silico drug
discovery.
Virtual screening methods can be subdivided in two main class: Structure-Based and Molecular
Dynamics methods. The members of the first class identify the target’s binding pocket and dock the
ligand into it. The quality of the docking configuration is measured by a scoring function and this
value is used to determine the goodness of the ligand. Usually this procedure take few minutes on a
standard workstation.
Molecular Dynamics methods are more expensive in terms of computational power but they can
reproduce experimental results with a precision around 1.0 kcal/mol. Methods such as the Alchemical
Transformation or the Free Energy Perturbation are based on the interaction energy ligand-target
during multiple and very short simulations (∼ 1− 10 ns each).

2.1 Autodock Vina

The number of scoring function and docking software is increasing rapidly so here we will focus on
one of the most precise and fast: Autodock Vina (Trott & Olson, 2010). This software uses a semi-
empirical free energy force field to evaluate conformations during docking simulations. The force field
was parameterized using a large number of protein-inhibitor complexes for which both structure and
inhibition constants, or Ki , are known.

Figure 2.1: Binding procedure

2.1.1 Scoring Function

The scoring function includes six pair-wise evaluations (V ) and an estimate of the conformational
entropy lost upon binding (∆Sconf ):

∆G = (V L−L
bound − V

L−L
unbound) + (V P−P

bound − V
P−P
unbound) + (V P−L

bound − V
P−L
unbound + ∆S)

where L refers to the “ligand” and P refers to the “protein” in a ligand-protein docking calculation.
Each of the pair-wise energetic terms includes evaluations for dispersion/repulsion, hydrogen bonding,

7
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electrostatics, and desolvation:

V = Wvdw

∑
i,j

(
Aij
r12ij
− Bij
r6ij

) +Whbond

∑
i,j

E(θ)(
Cij
r12ij
− Dij

r10ij
)+

+Welec

∑
i,j

qiqj
e(rij)rij

+Wsol

∑
i,j

(SiVj + SjVi)e
(−r2ij/2σ2)

The weighting constants W have been optimized to calibrate the empirical free energy based on a
set of experimentally determined binding constants. The function E(θ) provides directionality based
on the angle θ from ideal H-bonding geometry. The third term is a screened Coulomb potential
for electrostatics. The final term is a desolvation potential based on the volume of atoms (V) that
surround a given atom and shelter it from solvent, weighted by a solvation parameter (S) and an
exponential term with distance-weighting factor σ = 0.35 nm .

2.2 Molecular Dynamics

2.2.1 Introduction

Molecular dynamics simulations solve Newton’s equations of motion for a system of N interacting
atoms:

mi
∂2ri
∂t2

= Fi, i = 1...N

The system is treated classically and the forces are obtained from the negative derivative of a potential
function (force field) V (r1, r2, ..., rN ):.

Fi = −∂V
∂ri

The set of 6N differential equations for positions and velocities is integrated using small timesteps (on
the order of the fs) and the dynamics is followed for several nanoseconds (up to millisecond in very
long simulations) in order to compute thermodynamic properties of the system from averages along
the trajectories. Due to accumulation of errors from numerical integration of the equations of Newton,
coupling with thermostats and barostats are necessary to keep temperature and pressure constant.
This is usually done by rescaling the velocities at regular interval during the simulation.
When we perform a molecular dynamics simulation we should always mind the different simplifications
we take :

1. The simulations are classical;

2. Electrons are in the ground state;

3. Force fields are approximate;

4. The force field is pair-additive;

5. Long-range interactions are cut off;

6. Boundary conditions are unnatural;

2.2.2 Force Field

2.2.3 Non-bonded interactions

Non-bonded interactions are assumed pair-additive and centro-symmetric:

V (r1, ..., rN ) =
∑
i<j

Vij(rij)

Fi = −
∑
j

dVij(rij)

drij

rij
rij

= −Fj
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The non-bonded interactions contain a repulsion term, a dispersion term, and a Coulomb term. The
repulsion and dispersion term are combined in either the Lennard-Jones. In addition, (partially)
charged atoms act through the Coulomb term.

The Lennard-Jones interaction
The interaction between two atoms is the sum of the Lennard-Jones interaction:

VLJ(rij) = 4εij((
σij
rij

)12 − (
σij
rij

)6)

The σij and εij parameters could be constructed following two different combination rules:

σij =
1

2
(σii + σjj)

εij = (εiiεjj)
1
2

or an geometric average for both parameters can be used:

σij = (σiiσjj)
1
2

εij = (εiiεjj)
1
2

Coulomb interaction
The Coulomb interaction between two charge particles is given by:

Vc(rij) = f
qjqi
εrrij

where f = 1
4πε0

= 138.935485

2.2.4 Bonded interactions

Bonded interactions are based on a fixed list of atoms. They are not exclusively pair interactions, but
include 3- and 4-body interactions as well. There are bond stretching (2-body), bond angle (3-body),
and dihedral angle (4-body) interactions. A special type of dihedral interaction (called improper
dihedral) is used to force atoms to remain in a plane or to prevent transition to a configuration of
opposite chirality (a mirror image).

Harmonic bonded potential
The bond stretching between two covalently bonded atoms i and j is represented by a harmonic

potential:

Vb(ij) =
1

2
kbij(rij − bij)2

Harmonic angle potential
The bond-angle vibration between a triplet of atoms i − j − k is also represented by a harmonic

potential on the angle θijk

Va(θijk) =
1

2
kθijk(θijk − θ0ijk)2

The numbering i, j, k is in sequence of covalently bonded atoms.

Proper dihedrals: periodic type
φ is the angle between the ijk and the jkl planes,

Vd(φijkl) = kφ(1 + cos(nφ− φs))
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Improper dihedrals: harmonic type
The simplest improper dihedral potential is a harmonic potential:

Vid(ξijk) =
1

2
kξ(ξijkl − ξ0)2

2.2.5 Restraints

Special potentials are used for imposing restraints on the motion of the system, either to avoid dis-
astrous deviations, or to include knowledge from experimental data. In either case they are not
really part of the force field and the reliability of the parameters is not important. Usually they are
implemented as an harmonic potential.

2.2.6 Integrators

The leap-frog integrator
For the integration of the equations of motion the most used algorithm is the so-called leap-frog.

The leap-frog algorithm uses positions r at time t and velocities v at time t − 1
2∆t and updates the

positions and velocities using the forces F(t) determined by the positions at the time t using:

v(t+
1

2
∆t) = v(t− 1

2
∆t) +

∆t

m
F(t)

r(t+ ∆t) = r(t) + ∆tv(t+
1

2
∆t)

The algorithm is of third order in r and is time-reversible.
The equations of motion are modified for temperature coupling and pressure coupling, and extended
to include the conservation of constraints, all of which are described below.

The Langevin integrator
Stochastic or velocity Langevin dynamics adds a friction and a noise term to Newton’s equations of

motion, as

mi
d2ri
dt2

= −miγi
dri
dt

+ Fi(r) + r̄i

where γi is the friction constant [1/ps] and ri(t) is a noise process with< r̄i(t)r̄j(t+s) >= 2miγikBTδ(s)δij .
This algorithm is not used often because require an implicit water models.

2.2.7 Water models

The choice of the water model is one of the most critical point of simulations preparation. The most
used and reliable model is the TIP3P, where a water molecule is parametrized by 3 atoms, 2 harmonic
bonds and 1 harmonic angle. The force field parameters are determined from quantum mechanics,
molecular mechanics, experimental results, and these combinations. For simulations with a small
number of atoms (100-1000) or very short time scale (some ps) can be considered more complex and
precise water models, such as the TIP4P, where dummy charged atoms gives at the molecule dipole
moment and a more realistic charge distribution. Some times, in order to speed up the computation,
the 2 bonds are considered rigid and this can generate artifact that give poor thermodynamic results.
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2.2.8 Parrinello-Rahman pressure coupling

In cases where the fluctuations in pressure or volume are important per se (e.g. to calculate ther-
modynamic properties), especially for small systems, it may be a problem that the exact ensemble is
not well defined and that it does not simulate the true NPT ensemble. With the Parrinello-Rahman
barostat, the box vectors as represented by the matrix b obey the matrix equation of motion:

db2

dt
= VW−1b′

−1
(P−Pref )

The volume of the box is denoted V , and W is a matrix parameter that determines the strength
of the coupling. The matrices P and Pref are the current and reference pressures, respectively. The
equations of motion for the particles also change in the following way:

d2ri
dt2

=
Fi
mi
−M

dri
dt

M = b−1[b
db′

dt
+
db

dt
b′]b′−1

The (inverse) mass parameter matrix W−1 determines the coupling strength. Since W−1 depends
on the box size we only choose the approximate isothermal compressibilities β and the pressure time
constant τp; those parameters are linked at the coupling strength by:

(W−1)ij =
4π2βij
3τ2pL

2.2.9 Berendsen temperature coupling

The Berendsen algorithm mimics weak coupling to an external heat bath with given temperature T0.
The effect of this algorithm is that a deviation of the system temperature from T0 is slowly corrected
according to:

dT

dt
=
T0 − T
τ

2.3 Alchemical Transformation

As previously mentioned there are different technique to compute the free binding energy in a more
precise way. In this work we chosen the Alchemical Transformation because it seems to be a stable
and precise method, indeed it allows to compute absolute free energy, while other methods calculate
relative free energy and their precision is limited by the similarity of the ligands that you want to
test; furthermore absolute energies are easier to confront with experimental values. The idea behind
Alchemical Transformations is that we can create an artificial thermodynamic cycle of equilibrium
states that decouple the interaction between the ligand and the environment, so instead of computing
directly ∆G0

binding (that is in practice impossible) we compute ∆Gsolv, ∆Gprot and get ∆G0
binding =

∆Gprot −∆Gsolv

2.3.1 Theory of Alchemical transformation

As introduced yet, in an alchemical transformation we want to compute the free energy difference
between a state where the ligand and the protein interact with each other, and a decoupled state
where the interactions are turned off. To achieve this aim we introduce a parameter λ that is 0 in
the decoupled state (that later we will call state A) and 1 in the coupled one (called state B), so our
hamiltonian will be function of this parameter H = H(p, q, λ) (Trott & Olson, 2010).
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Figure 2.2: Alchemical Path

The Helmholtz free energy A is related to the partition function Q of an NVT ensemble, which
is assumed to be the equilibrium ensemble generated by a MD simulation at constant volume and
temperature:

A(λ) = −kBT lnQ

Q = c

∫ ∫
exp(−βH(p; q;λ))dpdq

We will use the Gibbs free energy G, related to the partition function ∆ of an NPT ensemble (the
equilibrium ensemble generated by a MD simulation at constant pressure and temperature) which
better represent the environmental conditions during an experiment than NVT ensemble:

G(λ) = −kBT ln∆

∆ = c

∫ ∫ ∫
exp(−βH(p; q;λ)− βpV )dpdqdV

G = A+ pV

where β = 1/(kBT ) and c = (N !h3N )−1. These integrals over phase space cannot be evaluated from
a simulation, but it is possible to evaluate the derivative with respect to λ as an ensemble average:

dA

dλ
=

∫ ∫ ∫
(∂H/∂λ)exp(−βH(p; q;λ))dpdq∫ ∫

exp(−βH(p; q;λ))dpdq
= 〈∂H

∂λ
〉
NV T ;λ

with a similar relation for dG/dλ in the NPT ensemble. The difference in free energy between λ = 0
and λ = 1 can be found by integrating the derivative over λ:

GB(p, T )−GA(p, T ) =

∫ 1

0
〈∂H
∂λ
〉
NpT ;λ

dλ

In Cartesian coordinates, the kinetic energy term in the Hamiltonian depends only on the momenta,
and can be separately integrated and, in fact, removed from the equations. When masses do not
change, there is no contribution from the kinetic energy at all; otherwise the integrated contribution
to the free energy is −2

3kBT ln(mB/mA).



CHAPTER 2. COMPUTATIONAL METHODS 13

2.3.2 Force Field

In this section we will describe the λ-dependence of the potentials used for free energy calculations.
All common types of potentials and constraints can be interpolated smoothly from state A(λ = 0),
that represent the non bonded state, to B(λ = 1), which is the bonded state, and vice versa. All
bonded interactions are interpolated by linear interpolation of the interaction parameters. Non-bonded
interactions can be interpolated linearly or via soft-core interactions.

Harmonic potentials The example given here is for the bond potential, however, these equations
apply to the angle potential and the improper dihedral potential as well.

Vb =
1

2
[(1− λ)kAb + λkBb ][b− (1− λ)bA0 − λbB0 ]2

Proper dihedrals For the proper dihedrals the equations are:

Vd = [(1− λ)kAd + λkBd ](1 + cos[nφφ− (1− λ)φAs − λφBs ])

Coulomb interaction The Coulomb interaction, between two particles of which the charge varies
with λ is:

Vc =
f

rij
[(1− λ)qAi q

A
j + λqBi q

B
j ]

Kinetic Energy When the mass of a particle changes, there is also a contribution of the kinetic
energy to the free energy:

Ek =
1

2

p2

(1− λ)mA + λmB

Lennard-Jones interaction For the Lennard-Jones interaction between two particles of which the
atom type varies with λ we can write:

VLJ =
(1− λ)CA12 + λCB12

r12ij
− (1− λ)CA6 + λCB6

r6ij

Soft-core interactions In a free-energy calculation where particles grow out of nothing, or particles
disappear, using the simple linear interpolation of the Lennard-Jones and Coulomb potentials may
lead to poor convergence. When the particles have nearly disappeared, or are close to appearing (at
λ close to 0 or 1), the interaction energy will be weak enough for particles to get very close to each
other, leading to large fluctuations in the measured values of ∂V

∂λ .
Soft-core potentials Vsc are shifted versions of the regular potentials, so that the singularity in the
potential and its derivatives at r = 0 is never reached:

Vsc(r) = (1− λ)V A(rA) + λV B(rB)

rA = (ασ6Aλ
p + r6)

1
6

rB = (ασ6B(1− λ)p + r6)
1
6

where VA and VB are the normal “hard core” Van der Waals or electrostatic potentials in state A(λ = 0)
and state B(λ = 1) respectively, α is the soft-core parameter, p is the soft-core λ power, σ is the radius
of the interaction, which is (C12/C6)

1/6. For intermediate λ, rA and rB alter the interactions very
little for r > α1/6σ and quickly switch the soft-core interaction to an almost constant value for smaller
r. Usually p = 2, and 0.001 < α < 0.003.
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2.3.3 Multistate Bennett Acceptance Ratio

In practice, in order to compute the integral
∫
〈∂H/∂λ〉dλ, we compute the free energy difference

between contiguous λ states and we sum them all. This is done with a technique called BAR (Bennett,
1976), or his extension MBAR. MBAR is derived from a set of K×K weighting functions, αi,j(~q), that
minimized the variance during the reweighting across the board. Starting from our core free energy
equation, we have:

∆Aij = −β−1 ln
Qj
Qi

and for any α(~q) > 0 the following relation is true:

Qi〈αijexp(−βUj)〉i = Qj〈αijexp(−βUi)〉j

now we can write:

K∑
i=1

Q̂i
Ni

Ni∑
n=1

αij exp(−βUj(~qi,n)) =

K∑
j=1

Q̂j
Nj

Nj∑
n=1

αij exp(−βUi(~qj,n))

assuming we use the empirical estimator for the expectation values of 〈g〉i = N−1i
∑Ni

n=1 g(~qi,n) Choos-
ing the optimal αij can be done by looking through the literature at extended bridge sampling. We
then get an αij of:

αij =
Nj ĉ

−1
j∑K

k=1Nk ĉ
−1
k exp(−βUk)

Finally we can get an expression for an estimated free energy of:

Âi = −β−1 ln
K∑
j=1

Nj∑
n=1

exp[−βUi]∑K
k=1Nk exp[βÂk − βUk]

Here we have a single free energy, not a difference, because the free energies for a given set of states
is only uniquely determined up to an additive constant.

2.3.4 Constraints

During the decoupling we annihilate the interaction between the ligand and the protein so if we don’t
use a set of constraint to keep the molecule in place it will move away, far from the binding site,
leading to an incorrect result. The set of constraint used is a bond, two angles and three dihedrals. In
total we will need three atoms from the protein and other three from the ligand. Choosing this set of
atom is not trivial and a selection that include atoms with high mobility can generate artifacts in the
energy distribution and lead to a wrong result. A wise choice is to select the protein atoms nearest
to the ligand that are part of an alpha helix or a beta sheet. Compute the contribution of those
constraints at the free energy in the system protein-ligand must be done numerically and require at
least 10 λ-windows, while it can be performed analytically for the solvation system using the following
formula:

∆Gsolvrestron = RT ln[
8π2V 0

r20 sin θA,0 sin θB,0

(KrKθAKθBKφAKφBKφC )
1
2

(2πkT )3
]

where: R is the ideal gas constant; T is the temperature in Kelvin; V 0 is the volume corresponding to
the one molar standard state (1660 angstrong) r0 is the reference distance for the restraints; θA, θB
are the reference angles for the restraints; Kx is the force constant for the distance (r0), two angles
(θB, θB) and three dihedrals (φA, φB, φC) restraints we applied
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Methods Benchmark

In this chapter we will test the precision of the Alchemical transformation, and after we will compare
those result with an other function score, Autodock Vina. Here we will use as test set a small group
of ligands (showed in fig. 3.1 and 3.2) for the Bromodomain-4, proteins with versatile functions
in the regulation of protein-protein interactions mediating gene transcription, DNA recombination,
replication and repair and targeted in therapies for cancer and inflammatory disorders.

3.1 Test via Alchemical Transformation

3.1.1 Implementation

The pipeline followed to perform the Alchemical Transformation on a protein-ligand with GROMACS
5.0.7 (Abraham et al., 2015) system is this:

1. System preparation: starting from a crystal structure of the protein-ligand we generate the
topology and coordinate files of the complex system and the only ligand in solution. The ligand’s
charges assignation is done with a software that perform quantum calculation using a semi-
empirical hessians in order to compute the electron distribution. We choose three stable atoms
from the protein and other from the ligand to set the constraints.

2. Set the λ-path and for each λ-window perform 10 ns of MD:

• Decouple the electromagnetic interaction using 10 λ-windows;

• Decouple the Van der Waals interaction using 20 λ-windows;

• Turn off the constraints using 10 λ-windows (only for the protein-ligand system);

3. Analyze the energy distribution with the MBAR technique and compute the ∆G

Overall the whole procedure requires 700ns simulation, which is done in 2 days on 5 nodes of a cluster
(each node made off 4 GPU Nvidia Tesla P100 and one processor Intel Xeon with 44 cores).

Single-Precision Double-Precision PCIe x16 Interconnect Bandwidth Compute Capability

9.3 teraFLOPS 4.7 teraFLOPS 32 GB/s 6.0

Table 3.1: Some data about the GPU used

15
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3.1.2 Results

Figure 3.1: Chemical structure of the ligands

1 2 3 4 5
4OGI 3MXF 4MR3 4OGJ 4J0R

6 7 8 9 10
3U5L 4MR4 3U5J 3SVG 4HBV

Table 3.2: Ligands indexes and the pdb name of Bromodomain binded with them

Figure 3.2: Bromodomain with different ligands. from the top left: 3SVG, 3U5J, 3U5L, 4HBV, 4J0R, 4MR4.
Here we can observe how the different ligands interact with the protein
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We report the results of our calculation in table 3.2 (for comparison we report also the results of same
calculation obtained in Aldeghi et al. (2016)).

Figure 3.3: Alchemical Transformation results (r = 0.8 for the reference data and r = 0.6 for the recomputed
data)

∆Gcalc [kcal/mol] ∆Gexp [kcal/mol] ∆Greference [kcal/mol] PDB name

−9.8± 0.1 −10.4± 0.6 4OGI

−9.6± 0.1 −9.5± 0.4 3MXF

−9.0± 0.1 −9.2± 0.5 4MR3

−8.9± 0.1 −9.4± 0.8 4OGJ

−7.8± 0.3 −8.8± 0.1 −8.6± 0.3 4J0R

−9.1± 0.3 −8.2± 0.1 −9.9± 0.8 3U5L

−8.4± 0.3 −7.8± 0.1 −5.9± 0.5 4MR4

−7.8± 0.3 −7.4± 0.1 −7.8± 0.3 3U5J

−6.2± 0.3 −7.3± 0.1 −7.7± 0.4 3SVG

−6.7± 0.3 −6.3± 0.1 −5.9± 0.2 4HBV

Table 3.3: Comparison of values computed (∆Gcalc), values from Aldeghi et al. (2016) (∆Greference) and
experimental values (∆Gexp)

As a comparison, we report the predicted binding energy calculated using Autodock Vina. The
free energy calculation start from the crystal structure of the target protein and the SMILE of the
ligand that we want to test, so a software find the flexible substructures of the ligand and a Montecarlo
supported by a Genetic Algorithm try to dock it in position. A score is computed for each configuration
with the formula previously introduced and the best score will be the free energy estimation.

Figure 3.4: Autodock Vina results for the comparison with the Alchemical Transformation (r = 0.2)
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As we can see the precision of this function score is worse than Alchemical transformation. However it
can be used for a fast screening of hundred of compounds. To show this we will compare the docking
score and the measured affinity of couples ligand-targets previously chosen. The KD experimental
values were obtained from the ’The Binding Database’ (https://www.bindingdb.org). Since the num-
ber of experimental results of binding energy on the bromodomain is limited, in order to improve the
statistical meaning of this test, we decided to include several other known targets, even though this
will create non-homogenous testing set. The data set is composed by the following proteins:

1. Matrix metalloproteinase 12 (MMP12)

2. Bovine trypsin-inhibitor

3. Humanised monomeric RadA

4. HIV-1 Protease (with mutations outside the Active Site )

5. HIV-1 Protease NL4-3 L90M Mutant

6. HIV-1 Protease NL4-3 V82F Mutant

7. Human carbonic anhydrase isozyme II

8. KDM5A Jmj Domain

9. Human Galectin-3 CRD

10. First bromodomain of human BRD4

Those are relevant biological targets studied for their role in cancer or inflammatory processes. For
example HIV-1 protease is an enzyme that cleaves proteins to their component peptides, that is
essential for the life-cycle of HIV-1 virus. Galectins are a particular kind of proteins that can bind
very long chains of sugar but not the shortest one; this peculiarity is very useful to diagnostic cancer,
indeed tumor cells generate long sugar chains so a blood test can reveal the presence of cancers even
in the earliest stages.

Figure 3.5: Autodock Vina results for the chosen test set (r = 0.60)

As we can clearly see from the data correlation this method is useful for a very fast screening but
inadequate to discern between ligands whose Kd differs by less than 103. One of the most problematic
aspect of Structure-based methods is their inability to take in account conformational changes of the
protein after the ligand is docked. Other issues derive from the omission of hydrogen bonds with water
molecules that can mediate the interaction between two near atoms.

3.2 Conclusions

The purpose of this thesis work was to test alchemical transformation method for computing binding
free energy in currently available high performance computing clusters, and in particular to test
whether such method can be used for high throughput screening. We set up the pipeline for performing
the required molecular dynamics simulations and reproduced published results within the errors. Our
benchmarks show that, in order to reach the desired convergence of simulations, it is necessary to
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follow the dynamics of the complex formed by the protein and the ligand for 700 ns overall. For
a system like the bromodomain, which contains 56 000 atoms (if we consider the water molecules),
this translate in 48 hours in the SIAIS cluster with specifics reported in table 3.1. Therefore, it is
foreseeable to test up to several tens of molecules for a given project. Despite being remarkable higher
than what was feasible only few years ago, this number is still much smaller than the hundred of
thousands or millions tests required to have a proper preliminary screening. A workaround strategy
we propose is to use a less precise, but faster screening method, such as Autodock Vina, to obtain a
first screening, and then use alchemical transformations to be able to predict experimental results and
produce a preliminary list of promising candidates that can be further analysed experimentally.
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