UNIVERSITA' DEGLI STUDI

DI PADOVA

Dipartimento di Tecnica e Gestione dei sistemi industriali

Corso di laurea in Ingegneria Meccanica

EVOLUZIONE DEL DANNEGGIAMENTO PER FATICA IN COMPOSITI VETRO/EPOSSIDICA

Laureando: Andrea Furlan *Relatore*: Prof. Marino Quaresimin *Correlatore*: Ing. Paolo A. Carraro

ANNO ACCADEMICO 2011/2012

PREFAZIONE

L'analisi consentirà di ricavare la diminuzione di rigidezza che un laminato composito subisce quando è sottoposto a un carico di fatica. In particolare si osserverà come il danneggiamento creato dalla nascita e propagazione delle cricche influirà sulle prestazioni del materiale.

Lo studio si è svolto presso il DTG di Vicenza durante il periodo di tirocinio durato circa 3 mesi.

Un ringraziamento sincero al Professore Marino Quaresimin per l'opportunità concessami e all'Ing. Paolo Andrea Carraro per il suo importante contributo e per la disponibilità dimostratami.

Vicenza, Febbraio 2012

Andrea Furlan

INDICE

1 Do	1 Documentazione Fotografica				
1.1	Introduzione	5			
2 Cr	ack Density	7			
2.1	Calcolo crack density sul piano orientato a +60°	7			
2.2	2 Calcolo crack density sul piano orientato a -60°	13			
2.3	B Risultati crack density provini serie 1	18			
2.4	Risultati crack density provini serie 2	25			
2.5	5 Confronto tra crack density serie 1	28			
2.6	5 Confronto tra crack density serie 2	34			
2.7	Confronto tra i provini delle due serie	40			
3 Ar	nalisi agli Elementi Finiti	47			
3.1	Introduzione	47			
3.2	2 Creazione del modello	48			
3.3	8 Vincoli per il modello integro	52			
3.4	Risultati per il modello integro	54			
3.5	5 Vincoli per il modello criccato	55			
3.6	6 Risultati per il modello criccato	60			
3.7	7 Parametrizzazione	62			
4 Co	onfronto tra Dati Sperimentali e Calcolati	65			
4.]	Calcolo della diminuzione di rigidezza	65			
5 Ar	nalisi della Propagazione	99			
5.1	Propagazione del danneggiamento	99			
5.2	2 Velocità di propagazione	113			
5.3	3 Sintesi sulla velocità di propagazione	119			
5.4	Confronto tra i diversi livelli di carico	123			
6 Ca	onclusioni	125			

CAPITOLO 1

Documentazione Fotografica

1.1 INTRODUZIONE

Lo studio effettuato riguarda un laminato di materiale composito di dimensioni 220*24 mm sul quale viene applicato un carico ciclico. Le prove sono state eseguite presso il laboratorio dell'Università di Riso, in Danimarca, utilizzando una macchina idraulica monoassiale sulla quale era posizionata una macchina fotografica che permetteva di fotografare ad intervalli regolari di cicli, la nascita e la propagazione delle cricche all'interno del materiale. Sono state così scattate centinaia di foto per ogni singolo provino.

La macchina a fatica era settata su 5 Hz con rapporto di ciclo 0.1; appena si raggiungevano i 2000000 di cicli essa si fermava automaticamente.

Figura 1. 1 Macchina utilizzata per le prove a fatica

La prova si è svolta su 8 provini, denominati F-01, F-02, F-03... F-08, sui quali si è variato il livello di deformazione, come riassunto in tabella 1.1:

Codice provino	E _{max} %
F-01	0,8
F-02	1
F-03	0,9
F-04	0,5
F-05	0,6
F-06	0,7
F-07	1,1
F-08	0,4

Tabella 1. 1 Denominazione provini con i relativi livelli di carico

Per la produzione dei laminati è stato utilizzato un pre-impregnato UE 400 REM, costituito da una matrice epossidica con fibre di vetro. Si osserva in figura la particolare disposizione delle fibre:

Figura 1. 2 Ingrandimento del provino F-01(0.8%) mediante microscopio ottico

La sequenza di sovrapposizione utilizzata è stata $[0/60_2/0/-60_2]_s$, quindi le cricche che nasceranno si disporranno sugli strati inclinati a ±60° rispetto alla direzione X.

CAPITOLO 2

Crack Density

2.1 CALCOLO CRACK DENSITY SUL PIANO ORIENTATO A +60°

Inizialmente si è preso il provino F-01(0.8%) e si sono considerate tutte le sue immagini scattate. Si sono scelte di analizzare per prime le cricche disposte nel piano a $+60^{\circ}$, in quanto erano le più visibili a occhio nudo.

Come prima cosa si è ricavata un'area all'interno di una singola foto in modo da avere una visione più ristretta del problema. Si è scelto di costruire un parallelogramma con lati inclinati di 60° in maniera da seguire linearmente il naturale progredire delle cricche.

La dimensione del lato maggiore che sarà denominata \overline{AB} , risulta essere di 39mm.

Figura 2. 1 Si nota la cotruzione del parallelogramma

Successivamente per ogni immagine si è effettuato il conteggio delle cricche presenti all'interno del parallelogramma e si è provveduto a classificarle in gruppi in base alla lunghezza: 25%, 50%, 75% e 100% della lunghezza totale.

Figura 2. 2 Tipo di classificazione delle cricche orientate a +60° rispetto un'asse X di riferimento

Il tutto è stato inserito all'interno di un foglio excel evidenziando numero della foto di riferimento e numero di cricche con la relativa lunghezza %. Ciò è rappresentato nella tabella 2.1:

			Cricche	$+60^{\circ}$
FOTO	25%	50%	75%	100%
30	4	5	2	0
31	4	5	2	0
32	4	5	2	0
33	4	4	1	1
34	4	4	1	1
36	4	4	1	1
37	8	3	2	1
38	11	3	2	1
39	11	2	3	1
40	11	2	3	1
41	10	4	3	1
42	8	7	3	1
43	9	7	3	1
44	9	7	3	1
45	9	7	3	1
46	10	7	3	2
47	12	7	3	2
48	13	7	3	2
49	13	7	3	2
50	13	7	3	2

Tabella 2. 1 Esempio di rappresentazione della lunghezza % delle cricche orientate a +60° rispetto un'asse X di riferimento relativa ad ogni immagine

Si può proseguire con il calcolo di un parametro fondamentale, detta crack density che esprime il rapporto tra il numero di cricche presenti all'interno del quadrilatero e una lunghezza \overline{AC} di riferimento. Dato che il numero di cricche è noto, ci si ricava ora il segmento \overline{AC} incognito.

Esso si trova per costruzione grafica, considerando il segmento che parte dallo spigolo superore del parallelogramma(punto A) fino a che non incontra ortogonalmente il lato più corto(punto C). Risulterà così un triangolo rettangolo ABC tramite il quale si ricaverà la lunghezza \overline{AC} .

Nota la lunghezza iniziale \overline{AB} , servendosi di formule trigonometriche si ricava la lunghezza del segmento \overline{AC} cercato:

 $\overline{AB} = 39mm$ $\overline{AC} = \overline{AB} * sen60^\circ = 39 * sen60^\circ = 33.8mm$

Figura 2. 3 Costruzione del triangolo ABC necessario a ricavare la crack density

Noti tutti i parametri, si procede a calcolare la crack density dividendo il numero di cricche presenti per la lunghezza \overline{AC} . Si sono calcolate 3 diversi tipi di crack density: inizialmente si sono considerate le cricche intere al 100%, poi si è fatta la somma di tutte le cricche presenti e infine si è calcolata una media pesata in base alla lunghezza delle cricche, sempre considerando tutte quelle che comparivano nel provino.

Cricche + 60°								
FOTO	CICLI	25%	50%	75%	100%	CD 100%	CD totale	CD pesata
30	4400	4	5	2	0	0	0,325444	0,14792899
31	4550	4	5	2	0	0	0,325444	0,14792899
32	4700	4	5	2	0	0	0,325444	0,14792899
33	4850	4	4	1	1	0,029586	0,295858	0,14053254
34	5000	4	4	1	1	0,029586	0,295858	0,14053254
36	5200	4	4	1	1	0,029586	0,295858	0,14053254
37	5500	8	3	2	1	0,029586	0,414201	0,17751479
38	5800	11	3	2	1	0,029586	0,502959	0,19970414
39	6100	11	2	3	1	0,029586	0,502959	0,20710059
40	6400	11	2	3	1	0,029586	0,502959	0,20710059
41	6700	10	4	3	1	0,029586	0,532544	0,22928994
42	7000	8	7	3	1	0,029586	0,56213	0,25887574
43	7300	9	7	3	1	0,029586	0,591716	0,26627219
44	7600	9	7	3	1	0,029586	0,591716	0,26627219
45	7900	9	7	3	1	0,029586	0,591716	0,26627219
46	8200	10	7	3	2	0,059172	0,650888	0,30325444
47	8500	12	7	3	2	0,059172	0,710059	0,31804734
48	8800	13	7	3	2	0,059172	0,739645	0,32544379
49	9100	13	7	3	2	0,059172	0,739645	0,32544379
50	9400	13	7	3	2	0,059172	0,739645	0,32544379

Tabella 2. 2 Calcolo dei vari tipi di crack density

Esempio di calcolo, riferimento foto 46:

• Crack density 100%:

 $CD100\% = \frac{N^{\circ}cricche100\%}{\overline{AC}} = \frac{2}{33.8} = 0.0592 \text{ crack/mm}$

• Crack density totale:

 $CDtotale = \frac{N^{\circ}totale\ cricche}{\overline{AC}} = \frac{10+7+3+2}{33.8} = 0.6509\ crack/mm$

• Crack density pesata:

$$CDpesata = \frac{\sum cricche*lunghezza\%}{\overline{AC}} = \frac{0.25*10+0.50*7+0.75*3+1*2}{33.8} = 0.3033 \text{ crack/mm}$$

Come ultima cosa si è passati alla costruzione dei grafici, riportando in ascissa il numero di cicli e in ordinata le varie crack density.

Figura 2. 4 Andamento della crack density

Si può notare come, dopo un certo numero di cicli le curve diventino piuttosto piatte, si può così ipotizzare che si sia raggiunto uno stato di saturazione, presumibilmente dovuto al raggiungimento del limite di fatica tra le cricche presenti.

2.2 CALCOLO CRACK DENSITY SUL PIANO ORIENTATO A -60°

La costruzione del parallelogramma avviene in modo analogo al caso precedente con la sola differenza dell'orientazione:

Figura 2. 5 Si nota la cotruzione del parallelogramma e la disposizione delle cricche orientate a -60° rispetto un'asse X si riferimento

Anche in questo caso per ogni immagine si è effettuato il conteggio delle cricche presenti all'interno del parallelogramma e si è provveduto a classificarle in gruppi in base alla lunghezza: 25%, 50%, 75% e 100% della lunghezza totale.

Si può notare come le cricche, rispetto al caso precedente, siano meno evidenti e sia quindi necessario modificare il contrasto della foto e la luminosità, al fine di ottenere un' immagine accettabile.

In tabella 2.3 si è riassunto ciò che è stato appena spiegato, è riportato numero della foto di riferimento e numero di cricche con la relativa lunghezza %:

				Cricche -60°		
FOTO	25% 50%		75%	100%		
30	0	0	0	7		
31	0	0	0	7		
32	0	0	0	7		
33	0	0	0	7		
34	0	0	0	7		
36	0	0	0	7		
37	0	0	0	7		
38	0	0	0	7		
39	0	0	0	7		
40	0	0	0	7		
41	0	2	0	7		
42	0	0	0	9		
43	0	0	0	9		
44	0	0	0	9		
45	0	0	0	9		
46	0	0	0	9		
47	0	0	0	9		
48	0	0	0	9		
49	0	0	0	9		
50	0	0	0	9		

Tabella 2. 3 Esempio di rappresentazione della lunghezza % delle cricche orientate a -60° rispetto un'asse X di riferimento relativa ad ogni immagine

In modo analogo al caso precedente, si costruisce il triangolo A'B'C' e dato che:

 $\overline{A'B'} = \overline{AB} = 39mm$ $\overline{A'C'} = \overline{AC} = \overline{AB} * sen60^{\circ} = \overline{A'B'} * sen60^{\circ} = 39 * sen60^{\circ} = 33.8mm$

Figura 2. 6 Costruzione del triangolo A'B'C' necessario a ricavare la crack density

Noti tutti i parametri, si procede a calcolare la crack density dividendo il numero di cricche presenti per la lunghezza $\overline{A'C'}$. Si sono calcolate 3 diversi tipi di crack density: inizialmente si sono considerate le cricche intere al 100%, poi si è fatta la somma di tutte le cricche presenti e infine si è calcolata una media pesata in base alla lunghezza delle cricche, sempre considerando tutte quelle che comparivano nel provino. (rif. tabella 2.4)

C			Cricche	-60°				
FOTO	CICLI	25%	50%	75%	100%	CD 100%	CD totale	CD pesata
30	4400	0	0	0	7	0.207101	0.207101	0.20710059
31	4550	0	0	0	7	0.207101	0,207101	0,20710059
32	4700	0	0	0	7	0,207101	0,207101	0,20710059
33	4850	0	0	0	7	0,207101	0,207101	0,20710059
34	5000	0	0	0	7	0,207101	0,207101	0,20710059
36	5200	0	0	0	7	0,207101	0,207101	0,20710059
37	5500	0	0	0	7	0,207101	0,207101	0,20710059
38	5800	0	0	0	7	0,207101	0,207101	0,20710059
39	6100	0	0	0	7	0,207101	0,207101	0,20710059
40	6400	0	0	0	7	0,207101	0,207101	0,20710059
41	6700	0	2	0	7	0,207101	0,266272	0,23668639
42	7000	0	0	0	9	0,266272	0,266272	0,26627219
43	7300	0	0	0	9	0,266272	0,266272	0,26627219
44	7600	0	0	0	9	0,266272	0,266272	0,26627219
45	7900	0	0	0	9	0,266272	0,266272	0,26627219
46	8200	0	0	0	9	0,266272	0,266272	0,26627219
47	8500	0	0	0	9	0,266272	0,266272	0,26627219
48	8800	0	0	0	9	0,266272	0,266272	0,26627219
49	9100	0	0	0	9	0,266272	0,266272	0,26627219
50	9400	0	0	0	9	0,266272	0,266272	0,26627219

Tabella 2. 4 Calcolo dei vari tipi di crack density

Esempio di calcolo, riferimento foto 41:

• Crack density 100%:

 $CD100\% = \frac{N^{\circ}cricche100\%}{\overline{A'C'}} = \frac{7}{33.8} = 0.2071 \text{ crack/mm}$

• Crack density totale:

 $CDtotale = \frac{N^{\circ}totale\ cricche}{\overline{A'C'}} = \frac{0+2+0+7}{33.8} = 0.2663\ crack/mm$

• Crack density pesata:

$$CDpesata = \frac{\sum cricche*lunghezza\%}{\overline{A'C'}} = \frac{0.25*0+0.50*2+0.75*0+1*7}{33.8} = 0.2367 \text{ crack/mm}$$

Infine si è costruito il grafico, riportando in ascissa il numero di cicli e in ordinata le varie crack density:

Figura 2. 7 Andamento della crack density

Si può osservare come le variazioni tra le varie crack density siano minime; inoltre si può notare il tratto orizzontale che dovrebbe rappresentare la condizione di saturazione.

La vicinanza delle tre crack density è dovuto al fatto che negli strati a -60° le cricche nucleate propagano molto velocemente lungo tutta la larghezza del provino e ciò è dovuto al maggior spessore degli strati a -60° rispetto a quelli a $+60^{\circ}$.

Le procedure utilizzate per il provino F-01 (0.8%) sono state ripetute per tutti gli altri campioni, quindi in seguito si riporteranno solo i dati significativi e i relativi grafici.

2.3 RISULTATI CRACK DENSITY PROVINI SERIE 1

•Provino F-02 (1%)

Figura 2. 7 Plottaggio della crack density in relazione al numero di cicli N (layers +60°)

Figura 2. 8 Plottaggio della crack density in relazione al numero di cicli N (layers -60°)

Figura 2. 9 Plottaggio della crack density in relazione al numero di cicli N (layers +60°)

Figura 2. 10 Plottaggio della crack density in relazione al numero di cicli N (layers -60°)

Figura 2. 11 Plottaggio della crack density in relazione al numero di cicli N (layers +60°)

Figura 2. 12 Plottaggio della crack density in relazione al numero di cicli N (layers -60°)

• <u>Provino F-05 (0.6%)</u>

Figura 2. 13 Plottaggio della crack density in relazione al numero di cicli N (layers +60°)

Figura 2. 14 Plottaggio della crack density in relazione al numero di cicli N (layers -60°)

Figura 2. 15 Plottaggio della crack density in relazione al numero di cicli N (layers +60°)

Figura 2. 16 Plottaggio della crack density in relazione al numero di cicli N (layers -60°)

• Provino F-07 (1.1%)

 $\overline{A'B'} = \overline{AB} = 35mm$ $\overline{A'C'} = \overline{AC} = \overline{AB} * sen60^\circ = \overline{A'B'} * sen60^\circ = 35 * sen60^\circ = 30.3mm$

Figura 2. 17 Plottaggio della crack density in relazione al numero di cicli N (layers +60°)

Figura 2. 18 Plottaggio della crack density in relazione al numero di cicli N (layers -60°)

Figura 2. 19 Plottaggio della crack density in relazione al numero di cicli N (layers +60°)

Figura 2. 20 Plottaggio della crack density in relazione al numero di cicli N (layers -60°)

24

2.4 RISULTATI CRACK DENSITY PROVINI SERIE 2

Per trovare un riscontro positivo su ciò che è stato fatto fin ora, si è provveduto ad analizzare anche una seconda serie di campioni in modo da confermare i risultati trovati. In particolare l'analisi si sofferma su 3 livelli di carico rappresentativi, ovvero 0.5%, 0.8% e 1%. Si è cercato di riprodurre una situazione a basso, medio e alto carico.

• Provino F-14 (0.5%) Serie 2

Figura 2. 21 Plottaggio della crack density in relazione al numero di cicli N (layers +60°) Serie 2

Figura 2. 22 Plottaggio della crack density in relazione al numero di cicli N (layers -60°) Serie 2

Figura 2. 23 Plottaggio della crack density in relazione al numero di cicli N (layers +60°) Serie 2

Figura 2. 24 Plottaggio della crack density in relazione al numero di cicli N (layers -60°) Serie 2

• Provino F-16 (1%) Serie2

Figura 2. 25 Plottaggio della crack density in relazione al numero di cicli N (layers +60°) Serie 2

Figura 2. 26 Plottaggio della crack density in relazione al numero di cicli N (layers -60°) Serie 2

2.5 CONFRONTO CRACK DENSITY SERIE 1

Si sono voluti costruire dei nuovi grafici per mettere a confronto le varie crack density per vari livelli di deformazione. Pertanto si evidenziano i diversi livelli di carico in relazione alla crack density considerata(100%,totale o pesata) e numero di cicli N. Inizialmente si è proceduto considerando il piano delle cricche orientate a +60° rispetto un'asse X di riferimento e successivamente si è passati a quello orientato a -60° sempre rispetto un'asse X di riferimento.

Figura 2. 28 Zoom andamento crack density 100% al variare del numero di cicli N (layers +60°)

Figura 2. 29 Andamento crack density totale al variare del numero di cicli N (layers +60°)

Figura 2. 30 Zoom andamento crack density totale al variare del numero di cicli N (layers +60°)

Figura 2. 31 Andamento crack density pesata al variare del numero di cicli N (layers +60°)

Figura 2. 32 Zoom andamento crack density pesata al variare del numero di cicli N (layers +60°)

Figura 2. 33 Andamento crack density 100% al variare del numero di cicli N (layers -60°)

Figura 2. 34 Zoom andamento crack density 100% al variare del numero di cicli N (layers -60°)

Figura 2. 35 Andamento crack density totale al variare del numero di cicli N (layers -60°)

Figura 2. 36 Zoom andamento crack density totale al variare del numero di cicli N (layers -60°)

Figura 2. 37 Andamento crack density pesata al variare del numero di cicli N (layers -60°)

Figura 2. 38 Zoom andamento crack density pesata al variare del numero di cicli N (layers -60°)

Figura 2. 39 Andamento crack density 100% al variare del numero di cicli N (layers +60°) Serie 2

Figura 2. 40 Zoom andamento crack density 100% al variare del numero di cicli N (layers +60°) Serie 2

Figura 2. 41 Andamento crack density totale al variare del numero di cicli N (layers +60°) Serie 2

Figura 2. 42 Zoom andamento crack density totale al variare del numero di cicli N (layers +60°) Serie 2

Figura 2. 43 Andamento crack density pesata al variare del numero di cicli N (layers +60°) Serie 2

Figura 2. 44 Zoom andamento crack density pesata al variare del numero di cicli N (layers +60°) Serie 2

Figura 2. 45 Andamento crack density 100% al variare del numero di cicli N (layers -60°) Serie 2

Figura 2. 46 Zoom andamento crack density 100% al variare del numero di cicli N (layers -60°) Serie 2

Figura 2. 47 Andamento crack density totale al variare del numero di cicli N (layers -60°) Serie 2

Figura 2. 48 Zoom andamento crack density totale al variare del numero di cicli N (layers -60°) Serie 2

Figura 2. 49 Andamento crack density pesata al variare del numero di cicli N (layers -60°) Serie 2

Figura 2. 50 Zoom andamento crack density pesata al variare del numero di cicli N (layers -60°) Serie 2

2.7 CONFRONTO TRA I PROVINI DELLE DUE SERIE

Fin d'ora si sono evidenziati i comportamenti delle varie crack density in relazione ai diversi livelli di carico per la prima e la seconda serie di dati.

Si provvede quindi a confrontare le due serie con gli stessi livelli di carico per osservare se i risultati trovati siano compatibili.

Figura 2. 51 Confronto tra le due serie di campioni a livello di crack density 100% (layers +60°)

Figura 2. 52 Zoom confronto tra le due serie di campioni a livello di crack density 100% (layers +60°)

Figura 2. 53 Confronto tra le due serie di campioni a livello di crack density totale (layers +60°)

Figura 2. 54 Zoom confronto tra le due serie di campioni a livello di crack density totale (layers +60°)

Figura 2. 55 Confronto tra le due serie di campioni a livello di crack density pesata (layers +60°)

Figura 2. 56 Zoom confronto tra le due serie di campioni a livello di crack density pesata (layers +60°)

Figura 2. 57 Confronto tra le due serie di campioni a livello di crack density 100% (layers -60°)

Figura 2. 58 Zoom confronto tra le due serie di campioni a livello di crack density 100% (layers -60°)

Figura 2. 59 Confronto tra le due serie di campioni a livello di crack density totale (layers -60°)

Figura 2. 60 Zoom confronto tra le due serie di campioni a livello di crack density totale (layers -60°)

Figura 2. 61 Confronto tra le due serie di campioni a livello di crack density pesata (layers -60°)

Figura 2. 62 Zoom confronto tra le due serie di campioni a livello di crack density pesata (layers -60°)

CAPITOLO 3

Analisi con gli Elementi Finiti

3.1 INTRODUZIONE

L'analisi riguarda lo studio di una cella periodica mediante il codice di calcolo agli elementi finiti Ansys. L'obiettivo è di ricavare la tensione e la deformazione agenti nella cella in modo tale da calcolare in via analitica il modulo elastico.

I provini considerati fin d'ora, come già visto presentavano delle cricche orientate secondo due diversi piani, questo perchè si sviluppavano lungo le direzioni delle fibre del laminato.

Si consideri un'immagine criccata in entrambi i piani, ovvero con le cricche disposte $a + 60^{\circ}$ e -60° rispetto un'asse di riferimento X:

Figura 3. 1 Definizione della cella periodica

Si nota come l'intersezione di diverse cricche con orientazione diversa, porti alla nascita di vari quadrilateri, che si definiranno celle. Con una buona approssimazione si può affermare che le celle si comportano tutte allo stesso modo e che quindi siano periodiche; basterà così analizzarne il comportamento di una singola per conoscere il comportamento del materiale.

3.2 CREAZIONE DEL MODELLO

La cella è stata costruita in forma parametrica per permettere in un secondo momento di variare alcuni dei parametri principali e consentire un'elaborazione più fluida e veloce.

Si definiscono i parametri fondamentali:

Figura 3. 2 Parametri fondamentali necessari per modellare la cella

Si può osservare la cella vista nella sua totalità:

Nella costruzione del modello si è sfruttata la simmetria della struttura in maniera da semplificare la modellazione. Come prima cosa si sono assegnati i keypoints 1,2,3,4 con le relative coordinate in forma parametrica e poi si è provveduto a estrudere quattro aree in modo da ottenere un risultato come in figura.

Figura 3. 3 Costruzione del modello mediante estrusione di quattro aree

Successivamente si sono assegnati due nuovi sistemi di riferimento per i piani orientati a $+60^{\circ}$ e -60° rispetto un'asse X di riferimento:

Figura 3. 4 Nuovi sistemi di riferimento, uno per lo strato a + 60° e l'altro per il -60°, costruiti entrambi rispetto un sistema di riferimento XYZ

Alla cella appena modellata è attribuito un element type di tipo Solid 45 Brick 8 nodi, il quale presenta 3 gradi di libertà per ogni nodo(traslazione in x,y,z).

Attraverso il material properties si è definito il tipo di materiale utilizzato e si sono immessi i valori tipici:

Materia	Materiale		ortotropo
Ex	=	34860	[MPa]
Ey	=	9419	[MPa]
Ez	=	9419	[MPa]
G _{xy}	=	3193	[MPa]
G _{yz}	=	3193	[MPa]
G _{xz}	=	3193	[MPa]
PR _{xy}	=	0,326	
PR _{yz}	=	0,28	
PR _{xz}	=	0,28	

Tabella 3. 1 Valori tipici utilizzati per la costruzione del modello

Si passa quindi a creare la mesh:

Figura 3. 5 Mesh sul modello

3.3 VINCOLI PER IL MODELLO INTEGRO

Come inizialmente già accennato, si è sfruttata la simmetria della cella e quindi si è deciso di applicare il vincolo di simmetria in corrispondenza del piano di simmetria, in modo da garantire gli spostamenti in Z nulli. Per questo modello si è deciso di analizzare la cella nella sua integrità, ciò significa che non ci saranno cricche nei due strati. Tale scelta si è fatta per poter calcolare la rigidezza iniziale Ex_i .

L'applicazione dei vincoli è la parte che ha richiesto più tempo rispetto tutte le altre operazioni, in quanto per ogni nodo si è applicata una ben precisa equazione, come è visibile in figura 3.6 e 3.7.

Figura 3. 6 Equazioni applicate sulle facce del modello integro senza cricche

Equazione 5:
$$-u|_{B}+u|_{A}-l_{1}(\varepsilon_{x}^{0}*\cos\vartheta_{1})=0$$
 FACCIA B, A

Equazione 7:
$$-u|_{D}+u|_{C}-l_{2}(\mathcal{E}_{x}^{0}*\cos\vartheta_{2})=0$$
 FACCIA D,C

Figura 3. 7 Equazioni applicate sugli spigoli del modello integro senza cricche

Equazione 8:	$-u_2 + u_1 - l_1 (\mathcal{E}_x^0 * \cos \vartheta_1) = 0$	SPIGOLO	2,1
Equazione 9:	$-u_4 + u_1 - l_2 (\mathcal{E}_x^0 * \cos \vartheta_2) = 0$	SPIGOLO	4,1
Equazione 10:	$-u_3 + u_1 - (l_1 * \cos \vartheta_1 + l_2 * \cos \vartheta_2) \mathcal{E}_x^0 = 0$	SPIGOLO	3,1

 ε_x^0 rappresenta la deformazione globale in direzione X a cui si sottopone il laminato. Essa è stata scelta pari a 0.1.

3.4 RISULTATI PER IL MODELLO INTEGRO

A questo punto si è lanciata la soluzione e si è provveduto a creare un element table dove si rappresentava la tensione per ogni singola divisione Sx, la deformazione totale Epto x e il volume di ogni singolo elemento Volu.

La tensione media lungo l'asse X risulta:

$$\langle \sigma_x \rangle = \frac{1}{V} \int_V \sigma_x * dV = \frac{1}{V} * \sum_{i=1}^{N^\circ elementi} \sigma_{xi} * V_i = 1733.15 MPa$$

La deformazione media lungo l'asse X risulta:

$$\langle \varepsilon_x \rangle = \frac{1}{V} \int_{v} \varepsilon_x * dV = \frac{1}{V} * \sum_{i=1}^{N^\circ elementi} \varepsilon_{xi} * V_i = 0.1$$

Tale valore conferma che i vincoli sono stati applicati correttamente. Si può così ricavare il modulo elastico E_{xi} del modello integro senza cricche:

$$E_{xi} = \frac{\langle \sigma_x \rangle}{\langle \varepsilon_x \rangle} = 17331 \ MPa$$

Plottando l'andamento delle tensioni σ_x risulta:

Figura 3. 8 Andamento delle tensioni σ_x sul modello integro senza cricche

3.5 VINCOLI PER IL MODELLO CRICCATO

Figura 3. 9 Modello criccato

L'analisi del modello criccato si è svolta in due momenti differenti, prima si è considerato il modello criccato solo nello strato a $+60^{\circ}$ e successivamente si è preso in considerazione il modello criccato solo nello strato a -60° .

Per entrambi i casi si è ricavata la diminuzione di rigidezza del modello criccato rispetto al modello integro.

• Equazioni per le facce esclusi gli strati +60° e -60°

Figura 3. 10 Equazioni applicate sulle facce del modello criccato ad eccezione degli strati +60° e -60°

Equazione 5:
$$-u|_B + u|_A - l_1(\mathcal{E}_x^0 * \cos \vartheta_1) = 0$$
 FACCIA B, A
*escluso lo strato a +60° (per creare la cricca sul +60°)

<u>Equazione 7:</u> $-u|_{D}+u|_{C}-l_{2}(\mathcal{E}_{x}^{0}*\cos\vartheta_{2})=0$ FACCIA D, C *escluso lo strato a -60°° (per creare la cricca sul -60°) • Equazioni per gli spigoli escluso lo strato +60°

Figura 3. 11 Equazioni applicate sugli spigoli del modello criccato ad eccezione dello strato +60°

<u>Equazione 8:</u> $-u_2 + u_1 - l_1(\varepsilon_x^0 * \cos \vartheta_1) = 0$ SPIGOLO 2,1 *escluso lo strato a +60° (per creare la cricca sul +60°)

Equazione 10: $-u_3 + u_1 - (l_1 * \cos \vartheta_1 + l_2 * \cos \vartheta_2) \varepsilon_x^0 = 0$ SPIGOLO 3,1 *escluso lo strato a +60° (per creare la cricca sul +60°) •Equazioni per gli spigoli escluso lo strato -60°

Figura 3. 12 Equazioni applicate sugli spigoli del modello criccato ad eccezione dello strato -60°

<u>Equazione 9:</u> $-u_4 + u_1 - l_2(\varepsilon_x^0 * \cos \vartheta_2) = 0$ SPIGOLO 4,1 *escluso lo strato a -60° (per creare la cricca sul -60°)

Equazione 10: $-u_3 + u_1 - (l_1 * \cos \vartheta_1 + l_2 * \cos \vartheta_2) \varepsilon_x^0 = 0$ SPIGOLO 3,1 *escluso lo strato a -60° (per creare la cricca sul -60°)

•Equazioni per gli spigoli sugli strati +60° e -60°

Figura 3. 13 Equazioni applicate sugli spigoli del modello criccato per gli strati $+60^{\circ}$ e -60°

Equazione 12:	$-u_3 + u_4 - l_1(\mathcal{E}_x^{\circ} * \cos \vartheta_1) = 0$	$SPIGOLO(-60^{\circ})$	3,4
*necessaria pe	r creare la cricca sul -60°		

<u>Equazione 14:</u> $-u_3 + u_2 - l_2(\varepsilon_x^0 * \cos \vartheta_2) = 0$ SPIGOLO(+60°) 3,2 *necessaria per creare la cricca sul +60°

3.6 RISULTATI PER IL MODELLO CRICCATO

Una volta applicati tutti i vincoli, si è lanciata la nuova soluzione e si è provveduto anche in questo caso a creare un element table dove si rappresentava la tensione per ogni singola divisione Sx, la deformazione totale Epto x e il volume di ogni singolo elemento Volu.

I risultati sono stati ottenuti mantenendo i parametri costanti, in particolare $l_1=l_2=4$.

• Cricca sullo strato +60°

$$\langle \sigma_{x} \rangle = \frac{1}{V} \int_{v} \sigma_{x} * dV = \frac{1}{V} * \sum_{i=1}^{N^{\circ}elementi} \sigma_{xi} * V_{i} = \frac{49072}{29.0985} = 1686.4 \ MPa$$
$$E_{x} = \frac{\langle \sigma_{x} \rangle}{\langle \varepsilon_{x} \rangle} = \frac{1686.4}{0.1} = 16864 \ MPa$$
$$\frac{E_{x}}{E_{xi}} = 0.97$$

Plottando l'andamento delle tensioni σ_x risulta:

Figura 3. 14 Andamento delle tensioni σ_x sul modello criccato sullo strato +60°

$$\langle \sigma_x \rangle = \frac{1}{V} \int_v \sigma_x * dV = \frac{1}{V} * \sum_{i=1}^{N^\circ elementi} \sigma_{xi} * V_i = \frac{47432.1}{29.0985} = 1630 \text{ MPa}$$
$$E_x = \frac{\langle \sigma_x \rangle}{\langle \varepsilon_x \rangle} = \frac{1630}{0.1} = 16300 \text{ MPa}$$
$$\frac{E_x}{E_{xi}} = 0.94$$

Plottando l'andamento delle tensioni $\sigma_x\,$ risulta:

Figura 3. 15 Andamento delle tensioni σ_x sul modello criccato sullo strato -60°

3.7 PARAMETRIZZAZIONE

Il modello come già accennato è stato costruito in forma parametrica per consentire una modifica rapida dei parametri fondamentali l_1 e l_2 al fine di avere un'analisi più completa.

Per prima cosa ci si è focalizzati sul piano orientato a $+60^{\circ}$ rispetto un'asse X di riferimento e si è provveduto a variare l₁, mantenendo l₂=4 costante..

In un secondo momento si è passati ad analizzare il piano orientato a -60° rispetto un'asse X di riferimento e in questo caso si è variato il parametro l_2 , mantenendo $l_1=4$ costante.

Il calcolo della crack density, come già visto nella parte iniziale dove si era creato il parallelogramma, avviene considerando una lunghezza ortogonale alla cricca, sia essa orientata a $+60^{\circ}$ o -60° rispetto un'asse X di riferimento. Per la cella in questione si opera allo stessa maniera:

Figura 3. 16 Esempio di laminato criccato dove si considera la proiezione dei parametri l₁ e l₂ necessari a calcolare la crack density

$$cd_{+60^{\circ}} = \frac{1}{l} = \frac{1}{l_1 * \sin 60^{\circ}}$$

$$cd_{-60^{\circ}} = \frac{1}{l} = \frac{1}{l_2 * \sin 60^{\circ}}$$

						Cricca	$+60^{\circ}$
L ₁ [mm]	SX [MPa]	VOLU [mm ³]	e ⁰ _x	<sx>[MPa]</sx>	Ex [MPa]	cd [1/mm]	Ex/Exi
0,8	0.119414*10^7	5,8197	0,1	1554,872244	15548,72244	1,443375673	0,897162451
1	0.120855*10^7	7,27462	0,1	1573,635461	15736,35461	1,154700538	0,907988842
2	0.125824*10^7	14,5492	0,1	1638,344376	16383,44376	0,577350269	0,945325934
3	0.128229*10^7	21,8239	0,1	1669,64658	16696,4658	0,384900179	0,963387329
4	0.129516*10^7	29,0985	0,1	1686,409952	16864,09952	0,288675135	0,973059808
				Exi=17331 MPa	l		

Si riportano i dati relativi allo strato $+60^{\circ}$ nella tabella 3.2:

Tabella 3. 2 Risultati ottenuti per lo strato $+60^{\circ}$ mantenendo costante il parametro $l_2=4$

In figura 3.17 si può osservare l'andamento di Ex/Exi al variare della crack density: il rapporto Ex/Exi esprime la diminuzione di rigidezza del modello criccato rispetto al modello integro.

Figura 3. 17 Diminuzione di rigidezza del modello criccato solo sullo strato +60° rispetto al modello integro

Si ottiene così una funzione che lega la crack density al rapporto Ex/Exi:

$$\left(\frac{Ex}{Exi}\right)_{+60^{\circ}} = f_{+60^{\circ}} \left(cd\right)_{+60^{\circ}} = 0.0102cd^{3} + 0.005cd^{2} - 0.0997cd + 1.0003$$

Si riportano i dati relativi allo strato -60° nella tabella 3.3:

						Cricca	-60°
L ₂ [mm]	SX [MPa]	VOLU [mm ³]	e ⁰ _x	<σx>[MPa]	Ex [MPa]	cd [1/mm]	Ex/Exi
2	0.120018*10^7	14,5492	0,1	1562,745718	15627,45718	0,577350269	0,901705451
3	0.123056*10^7	21,8239	0,1	1602,284651	16022,84651	0,384900179	0,924519446
4	0.125188*10^7	29,0985	0,1	1630,053096	16300,53096	0,288675135	0,940541859
6	0.127734*10^7	43,6477	0,1	1663,205621	16632,05621	0,19245009	0,959670891
8	0.129126*10^7	58,197	0,1	1681,332371	16813,32371	0,144337567	0,970130039
-	-	-	-	-	17331	0	1
				Exi=17331 MPa	l		

Tabella 3. 3 Risultati ottenuti per lo strato -60° mantenendo costante il parametro $l_1=4$

In figura 3.18 si può osservare l'andamento di Ex/Exi al variare della crack density: il rapporto Ex/Exi esprime la diminuzione di rigidezza del modello criccato rispetto al modello integro.

Figura 3. 18 Diminuzione di rigidezza del modello criccato solo sullo strato -60° rispetto al modello integro

Si ottiene così una funzione che lega la crack density al rapporto Ex/Exi:

$$\left(\frac{Ex}{Exi}\right)_{-60^{\circ}} = f_{-60^{\circ}} \left(cd\right)_{-60^{\circ}} = 0.1978cd^{3} - 0.0515cd^{2} - 0.2065cd + 1.00016cd^{2} - 0.2065cd^{2} - 0.2$$

CAPITOLO 4

Confronto tra Dati Sperimentali e Calcolati

4.1 CALCOLO DELLA DIMINUZIONE DI RIGIDEZZA

Le funzioni appena ricavate vengono ora utilizzate sulle crack density pesata, totale e 100% per mettere in relazione la diminuzione di rigidezza provocato dalla presenza di cricche e il numero di cicli N. Dato che nel laminato le cricche si generano e propagano contemporaneamente negli strati $+60^{\circ}$ e -60° , bisogna considerare una funzione che tenga conto di entrambi i fattori.

Inoltre si è effettuato un confronto con i dati sperimentali per evidenziare il tipo di crack density che realizza una migliore corrispondenza con le misure rilevate in laboratorio.

Come riferimento si è preso il provino F-01 con livello di carico 0.8%, tuttavia si opera allo stesso modo anche per gli altri campioni.

CICLI	STRAIN AVG SLOPE	Ex/Exi sperimentale	Ν	CD pesata +60	CD pesata -60	f_{+60}	f ₋₆₀	Ex/Exi calcolato
1	17,549898	1	1	0	0	1	1	1
2	17,496187	0,996939526	50	0	0,014792899	1	0,99703464	0,997034637
3	17,433437	0,993364007	200	0,00739645	0,118343195	0,999563	0,9752687	0,974842365
4	17,43399	0,993395517	350	0,014792899	0,118343195	0,998826	0,9752687	0,974124005
5	17,425254	0,992897736	500	0,014792899	0,118343195	0,998826	0,9752687	0,974124005
6	17,419638	0,992577735	650	0,022189349	0,118343195	0,99809	0,9752687	0,973406227
7	17,412456	0,992168501	800	0,022189349	0,118343195	0,99809	0,9752687	0,973406227
8	17,419097	0,992546908	950	0,022189349	0,118343195	0,99809	0,9752687	0,973406227
9	17,421771	0,992699274	1100	0,022189349	0,118343195	0,99809	0,9752687	0,973406227
10	17,41203	0,992144228	1250	0,022189349	0,118343195	0,99809	0,9752687	0,973406227

Tabella 4. 1 Confronto tra dati sperimentali e calcolati, rif. <u>provino F-01(0.8%)</u>. Per quest'ultimi si è utilizzata la crack density pesata

Si è considerata una nuova funzione che descrive l'andamento del modulo elastico in presenza di cricche su entrambi gli strati:

$$\left(\frac{Ex}{Exi}\right)_{+60^{\circ},-60^{\circ}} = f_{+60^{\circ}} (cd)_{+60^{\circ}} * f_{-60^{\circ}} (cd)_{-60^{\circ}}$$

L'espressione è da considerarsi attendibile se l'interazione tra cricche nei diversi strati è trascurabile. Tale condizione in questo caso, può essere ritenuta valida.

Per ogni provino e per ogni tipo di crack density si presenta l'evoluzione totale durante tutta la prova di fatica. Inoltre si è fatto uno zoom nella zona iniziale.

Figura 4. 1 Confronto tra dati sperimentali e calcolati, rif. crack density pesata del provino F-01 (0.8%)

Figura 4. 2 Zoom confronto tra dati sperimentali e calcolati, rif. crack density pesata del provino F-01 (0.8%)

CICLI	STRAIN AVG SLOPE	Ex/Exi sperimentale	Ν	CD totale +60	CD totale -60	f_{+60}	f ₋₆₀	Ex/Exi calcolato
1	17,549898	1	1	0	0	1	1	1
2	17,496187	0,996939526	50	0	0,059171598	1	0,98774173	0,987741729
3	17,433437	0,993364007	200	0,029585799	0,118343195	0,997355	0,9752687	0,972689055
4	17,43399	0,993395517	350	0,059171598	0,118343195	0,99442	0,9752687	0,969826909
5	17,425254	0,992897736	500	0,059171598	0,118343195	0,99442	0,9752687	0,969826909
6	17,419638	0,992577735	650	0,059171598	0,118343195	0,99442	0,9752687	0,969826909
7	17,412456	0,992168501	800	0,059171598	0,118343195	0,99442	0,9752687	0,969826909
8	17,419097	0,992546908	950	0,059171598	0,118343195	0,99442	0,9752687	0,969826909
9	17,421771	0,992699274	1100	0,059171598	0,118343195	0,99442	0,9752687	0,969826909
10	17,41203	0,992144228	1250	0,059171598	0,118343195	0,99442	0,9752687	0,969826909

Tabella 4. 2 Confronto tra dati sperimentali e calcolati, rif. provino F-01(0.8%). Per quest'ultimi si è utilizzata la crack density totale

Figura 4. 3 Confronto tra dati sperimentali e calcolati, rif. crack density totale del provino F-01 (0.8%)

Figura 4. 4 Zoom confronto tra dati sperimentali e calcolati, rif. crack density totale del provino F-01 (0.8%)

CICLI	STRAIN AVG SLOPE	Ex/Exi sperimentale	Ν	CD 100% +60	CD 100% -60	f_{+60}	f ₋₆₀	Ex/Exi calcolato
1	17,549898	1	1	0	0	1	1	1
2	17,496187	0,996939526	50	0	0	1	1	1
3	17,433437	0,993364007	200	0	0,118343195	1	0,9752687	0,975268703
4	17,43399	0,993395517	350	0	0,118343195	1	0,9752687	0,975268703
5	17,425254	0,992897736	500	0	0,118343195	1	0,9752687	0,975268703
6	17,419638	0,992577735	650	0	0,118343195	1	0,9752687	0,975268703
7	17,412456	0,992168501	800	0	0,118343195	1	0,9752687	0,975268703
8	17,419097	0,992546908	950	0	0,118343195	1	0,9752687	0,975268703
9	17,421771	0,992699274	1100	0	0,118343195	1	0,9752687	0,975268703
10	17,41203	0,992144228	1250	0	0,118343195	1	0,9752687	0,975268703

Tabella 4. 3 Confronto tra dati sperimentali e calcolati, rif. <u>provino F-01(0.8%)</u>. Per quest'ultimi si è utilizzata la crack density 100%

Figura 4. 5 Confronto tra dati sperimentali e calcolati, rif. crack density 100% del provino F-01 (0.8%)

• Provino F-02 (1%)

CRACK DENSITY PESATA

Figura 4. 6 Confronto tra dati sperimentali e calcolati, rif. crack density pesata del provino F-02 (1%)

Figura 4. 7 Zoom confronto tra dati sperimentali e calcolati, rif. crack density pesata del provino F-02 (1%)

CRACK DENSITY TOTALE

Figura 4. 8 Confronto tra dati sperimentali e calcolati, rif. crack density totale del provino F-02 (1%)

Figura 4. 9 Zoom confronto tra dati sperimentali e calcolati, rif. crack density totale del provino F-02 (1%)

CRACK DENSITY 100%

Figura 4. 10 Confronto tra dati sperimentali e calcolati, rif. crack density 100% del provino F-02 (1%)

• Provino F-03 (0.9%)

CRACK DENSITY PESATA

Figura 4. 11 Confronto tra dati sperimentali e calcolati, rif. crack density pesata del provino F-03 (0.9%)

Figura 4. 12 Zoom confronto tra dati sperimentali e calcolati, rif. crack density pesata del provino F-03 (0.9%)

Figura 4. 13 Confronto tra dati sperimentali e calcolati, rif. crack density totale del provino F-03 (0.9%)

Figura 4. 14 Zoom confronto tra dati sperimentali e calcolati, rif. crack density totale del provino F-03 (0.9%)

Figura 4. 15 Confronto tra dati sperimentali e calcolati, rif. crack density 100% del provino F-03 (0.9%)

• Provino F-04 (0.5%)

Figura 4. 16 Confronto tra dati sperimentali e calcolati, rif. crack density pesata del provino F-04 (0.5%)

Figura 4. 17 Zoom confronto tra dati sperimentali e calcolati, rif. crack density pesata del provino F-04 (0.5%)

Figura 4. 18 Confronto tra dati sperimentali e calcolati, rif. crack density totale del provino F-04 (0.5%)

Figura 4. 19 Zoom confronto tra dati sperimentali e calcolati, rif. crack density totale del provino F-04 (0.5%)

Figura 4. 20 Confronto tra dati sperimentali e calcolati, rif. crack density 100% del provino F-04 (0.5%)

Figura 4. 21 Zoom confronto tra dati sperimentali e calcolati, rif. crack density 100% del provino F-04 (0.5%)

• Provino F-05 (0.6%)

Figura 4. 22 Confronto tra dati sperimentali e calcolati, rif. crack density pesata del provino F-05 (0.6%)

Figura 4. 23 Zoom confronto tra dati sperimentali e calcolati, rif. crack density pesata del provino F-05 (0.6%)

Figura 4. 24 Confronto tra dati sperimentali e calcolati, rif. crack density totale del provino F-05 (0.6%)

Figura 4. 25 Confronto tra dati sperimentali e calcolati, rif. crack density totale del provino F-05 (0.6%)

Figura 4. 26 Confronto tra dati sperimentali e calcolati, rif. crack density 100% del provino F-05 (0.6%)

Figura 4. 27 Zoom confronto tra dati sperimentali e calcolati, rif. crack density 100% del provino F-05 (0.6%)

• Provino F-06 (0.7%)

Figura 4. 28 Confronto tra dati sperimentali e calcolati, rif. crack density pesata del provino F-06 (0.7%)

Figura 4. 29 Confronto tra dati sperimentali e calcolati, rif. crack density pesata del provino F-06 (0.7%)

Figura 4. 30 Confronto tra dati sperimentali e calcolati, rif. crack density totale del provino F-06 (0.7%)

Figura 4. 31 Confronto tra dati sperimentali e calcolati, rif. crack density totale del provino F-06 (0.7%)

Figura 4. 32 Confronto tra dati sperimentali e calcolati, rif. crack density 100% del provino F-06 (0.7%)

• Provino F-07 (1.1%)

Figura 4. 33 Confronto tra dati sperimentali e calcolati, rif. crack density pesata del provino F-07 (1.1%)

Figura 4. 34 Zoom confronto tra dati sperimentali e calcolati, rif. crack density pesata del provino F-07 (1.1%)

Figura 4. 35 Confronto tra dati sperimentali e calcolati, rif. crack density totale del provino F-07 (1.1%)

Figura 4. 36 Confronto tra dati sperimentali e calcolati, rif. crack density totale del provino F-07 (1.1%)

Figura 4. 37 Confronto tra dati sperimentali e calcolati, rif. crack density 100% del provino F-07 (1.1%)

• Provino F-08 (0.4%)

Figura 4. 38 Confronto tra dati sperimentali e calcolati, rif. crack density pesata del provino F-08 (0.4%)

Figura 4. 39 Confronto tra dati sperimentali e calcolati, rif. crack density totale del provino F-08 (0.4%)

Figura 4. 40 Confronto tra dati sperimentali e calcolati, rif. crack density totale del provino F-08 (0.4%)

Figura 4. 41 Confronto tra dati sperimentali e calcolati, rif. crack density 100% del provino F-08 (0.4%)

Figura 4. 42 Confronto tra dati sperimentali e calcolati, rif. crack density pesata del provino F-14 (0.5%)

Figura 4. 43 Zoom confronto tra dati sperimentali e calcolati, rif. crack density pesata del provino F-14 (0.5%)

Figura 4. 44 Confronto tra dati sperimentali e calcolati, rif. crack density totale del provino F-14 (0.5%)

Figura 4. 45 Confronto tra dati sperimentali e calcolati, rif. crack density 100% del provino F-14 (0.5%)

Figura 4. 46 Zoom confronto tra dati sperimentali e calcolati, rif. crack density 100% del provino F-14 (0.5%)

Figura 4. 47 Confronto tra dati sperimentali e calcolati, rif. crack density pesata del provino F-11 (0.8%)

Figura 4. 48 Zoom confronto tra dati sperimentali e calcolati, rif. crack density pesata del provino F-11 (0.8%)

Figura 4. 49 Confronto tra dati sperimentali e calcolati, rif. crack density totale del provino F-11 (0.8%)

Figura 4. 50 Zoom confronto tra dati sperimentali e calcolati, rif. crack density totale del provino F-11 (0.8%)

Figura 4. 51 Confronto tra dati sperimentali e calcolati, rif. crack density 100% del provino F-11 (0.8%)

Figura 4. 52 Confronto tra dati sperimentali e calcolati, rif. crack density 100% del provino F-11 (0.8%)

• Provino F-16 (1%)

Figura 4. 53 Confronto tra dati sperimentali e calcolati, rif. crack density pesata del provino F-16 (1 %)

Figura 4. 54 Confronto tra dati sperimentali e calcolati, rif. crack density pesata del provino F-16 (1%)

Figura 4. 55 Confronto tra dati sperimentali e calcolati, rif. crack density totale del provino F-16 (1%)

Figura 4. 56 Confronto tra dati sperimentali e calcolati, rif. crack density 100% del provino F-16 (1%)

Osservazione: confrontando i dati sperimentali con quelli calcolati, si può notare come, nella fase iniziale, per maggior parte dei casi, vada meglio la crack density pesata. Infatti, osservando i dati dove si è effettuato lo zoom, si nota una sovrapposizione delle due serie di dati.

Inoltre, si può vedere come, a elevato numero di cicli, per tutte le crack density, i dati sperimentali si discostino da quelli calcolati. Tale risultato è dovuto all'insorgenza di altri fattori che provocano la diminuzione di rigidezza.

CAPITOLO 5

Analisi della Propagazione

5.1 PROPAGAZIONE DEL DANNEGGIAMENTO

Questo studio consente di analizzare la propagazione di una singola cricca all'interno di un campione. In particolare si è voluto mettere in evidenza la lunghezza di propagazione L in relazione al numero di cicli N.

Si è provveduto a osservare le immagini di ogni singolo provino, fino a che non si è riusciti a evidenziare una cricca la cui nuclezione partiva dal bordo superiore o inferiore del laminato, in modo da avere una sola direzione di propagazione.

In alcuni casi si è riusciti ad evidenziare la cricca completa, in altri ci si è dovuti fermare prima del raggiungimento del 100% in quanto la cricca considerata si univa con delle altre che nel frattempo si erano create.

Come fatto fin d'ora si prenderà come riferimento a titolo esemplificativo il provino F-01 con livello di carico 0.8%, tuttavia con il resto dei campioni si è proceduto in modo analogo.

In primo luogo si è preferito analizzare le cricche orientate a $+60^{\circ}$ rispetto un'asse X di riferimento e successivamente si è passati a quelle a -60° sempre rispetto un'asse X di riferimento.

Figura 5. 1 In primo piano si nota la cricca considerata nell'analisi

Figura 5. 2 Inizio della propagazione

Figura 5. 3 Estensione della propagazione, giunta al 50%

Figura 5. 4 Estensione della propagazione, giunta al 75%

Figura 5. 5 Completamento della propagazione

F-01 (0,8%)		
N° FOTO	CICLI N	LUNGHEZZA CRICCA +60° [mm]
30	4400	1 924
34	5000	2.968
42	7000	4.168
46	8200	5,936
50	9400	7,932
54	10200	8,820
55	13200	11,455
56	16200	13,979
57	19200	16,780
58	22200	17,974
59	25200	18,810
62	34200	20,915
68	52200	23,799
74	70200	25,545
78	82200	28,043
	-	*Rif. Cricca completa bordo inferiore

Tabella 5. 6 Propagazione del danneggiamento, rif. provino F-01 (0.8%) sullo strato $+60^{\circ}$

Figura 5. 7 Andamento della lunghezza di propagazione L in funzione del numero di cicli N, rif. F-01 (0.8%) sullo strato $+60^{\circ}$

F-02 (1%)		
N° FOTO	CICLI N	LUNGHEZZA CRICCA +60° [mm]
13	1400	2 802
1.4	1700	2,002
14	1700	4,549
15	2000	6,161
16	2300	8,460
17	2600	10,918
18	2900	12,426
20	3500	14,440
21	3800	14,463
22	4100	15,383
25	5000	17,031
30	6500	18,248
40	9500	18,593
65	17000	18,766
85	23000	19,242
150	91700	19,517
230	211700	20,925
340	376700	21,712
450	541700	21,901
570	721700	22,432
-	•	*Rif. Cricca non completa bordo superiore

Tabella 5. 8 Propagazione del danneggiamento, rif. provino F-02 (1%) sullo strato +60°

Figura 5. 9 Andamento della lunghezza di propagazione L in funzione del numero di cicli N, rif. F-02 (1%) sullo strato $+60^{\circ}$

F-03 (0,9%)		
N° FOTO	CICLI N	LUNGHEZZA CRICCA +60° [mm]
4	500	1,838
5	650	5,636
7	950	8,026
9	1250	9,675
10	1400	10,841
11	1550	11,353
12	1700	11,424
13	1850	12,149
14	2000	12,349
17	2450	13,274
20	2900	14,406
22	3200	15,232
25	3650	16,123
30	4400	16,643
36	5500	17,835
38	6100	18,139
40	6700	19,664
	_	*Rif. Cricca non completa bordo inferiore

Tabella 5. 10 Propagazione del danneggiamento, rif. provino F-03 (0.9%) sullo strato $+60^{\circ}$

Figura 5. 11 Andamento della lunghezza di propagazione L in funzione del numero di cicli N, rif. F-03 (0.9%) sullo strato +60°

F-04 (0,5%)		
N° FOTO	CICLI N	LUNGHEZZA CRICCA +60° [mm]
402	321600	1,749
410	328800	2,746
420	337800	3,883
440	355800	4,883
470	382800	7,440
500	409800	8,860
530	436800	10,021
545	450300	13,183
560	463800	15,763
600	499800	16,182
640	535800	17,403
700	589800	18,484
750	634800	18,822
800	679800	19,601
900	769800	22,961
903	772500	23,181
		*Rif. Cricca non completa bordo superiore

Tabella 5. 12 Propagazione del danneggiamento, rif. provino F-04 (0.5%) sullo strato $+60^{\circ}$

Figura 5. 13 Andamento della lunghezza di propagazione L in funzione del numero di cicli N, rif. F-04 (0.5%) sullo strato $+60^{\circ}$

F-05 (0,6%)		
N° FOTO	CICLI N	LUNGHEZZA CRICCA +60° [mm]
54	5300	1 780
54	5500	1,700
/0	10100	2,702
80	16400	3,780
90	25400	7,201
100	34400	8,762
110	43400	10,341
120	52400	14,640
130	61400	19,780
140	70400	21,080
150	79400	21,682
160	88400	23,122
170	97400	23,564
190	115400	24,889
203	127100	25,807
205	128900	27,748
	-	*Rif. Cricca completa bordo inferiore

Tabella 5. 14 Propagazione del danneggiamento, rif. provino F-05 (0.6%) sullo strato +60°

Figura 5. 15 Andamento della lunghezza di propagazione L in funzione del numero di cicli N, rif. F-05 (0.6%) sullo strato +60°

F-06 (0,7%)		
N° FOTO	CICLI N	LUNGHEZZA CRICCA +60° [mm]
55	11700	1,887
56	13200	4,522
57	14700	6,381
58	16200	9,319
59	17700	10,012
60	19200	12,592
61	20700	16,476
62	22200	17,647
63	23700	18,892
64	25200	19,506
65	26700	20,809
66	28200	21,194
67	29700	23,111
68	31200	24,331
69	32700	25,307
70	34200	26,109
71	35700	26,330
72	37200	28,190
		*Rif. Cricca completa bordo superiore

Tabella 5. 16 Propagazione del danneggiamento, rif. provino F-06 (0.7%) sullo strato $+60^{\circ}$

Figura 5. 17 Andamento della lunghezza di propagazione L in funzione del numero di cicli N, rif. F-06 (0.7%) sullo strato $+60^{\circ}$

F-07 (1,1%)		
N° FOTO	CICLI N	LUNGHEZZA CRICCA +60° [mm]
3	0	2,860
4	10	23,529
5	50	26,946
6	100	27,563
8	200	28,784
<u> </u>	<u> </u>	*Rif. Cricca completa bordo superiore

Tabella 5. 18 Propagazione del danneggiamento, rif. provino F-07 (1.1%) sullo strato +60°

Figura 5. 19 Andamento della lunghezza di propagazione L in funzione del numero di cicli N, rif. F-07 (1.1%) sullo strato $+60^{\circ}$
F-04 (0,5%)		
N° FOTO	CICLI N	LUNGHEZZA CRICCA -60° [mm]
63	16500	5,547
65	18300	8,609
68	21000	11,873
70	22800	14,648
75	27300	16,142
77	29100	19,859
80	31800	22,077
85	36300	24,577
88	39000	27,292
	•	*Rif. Cricca completa bordo inferiore

Tabella 5. 20 Propagazione del danneggiamento, rif. provino F-04 (0.5%) sullo strato -60°

Figura 5. 21 Andamento della lunghezza di propagazione L in funzione del numero di cicli N, rif. F-04 (0.5%) sullo strato -60°

F-05 (0,6%)		
N° FOTO	CICLI N	LUNGHEZZA CRICCA -60° [mm]
37	3400	5.661
40	3700	9,902
45	4200	16,308
50	4700	17,507
55	5600	20,138
60	7100	24,186
62	7700	27,822
L	1	*Rif. Cricca completa bordo superiore

Tabella 5. 22 Propagazione del danneggiamento, rif. provino F-05 (0.6%) sullo strato -60°

Figura 5. 23 Andamento della lunghezza di propagazione L in funzione del numero di cicli N, rif. F-05 (0.6%) sullo strato -60°

F-06 (0,7%)		
N° FOTO	CICLI N	LUNGHEZZA CRICCA -60° [mm]
10	1400	8,376
11	1550	12,287
12	1700	16,008
13	1850	18,444
14	2000	22,381
16	2300	23,343
17	2450	28,296
		*Rif. Cricca completa bordo superiore

Tabella 5. 24 Propagazione del danneggiamento, rif. provino F-06 (0.7%) sullo strato -60°

Figura 5. 25 Andamento della lunghezza di propagazione L in funzione del numero di cicli N, rif. F-05 (0.6%) sullo strato -60°

F-08 (0,4%)		
N° FOTO	CICLI N	LUNGHEZZA CRICCA -60° [mm]
65	76200	3,536
67	88200	9,348
70	106200	14,403
71	112200	18,305
73	124200	19,026
<u> </u>	<u>I</u>	*Rif. Cricca non completa bordo inferiore

Tabella 5. 26 Propagazione del danneggiamento, rif. provino F-08 (0.4%) sullo strato -60°

Figura 5. 27 Andamento della lunghezza di propagazione L in funzione del numero di cicli N, rif. F-08 (0.4%) sullo strato -60°

5.2 VELOCITA' DI PROPAGAZIONE

Fino a questo momento si è evidenziato l'andamento della lunghezza di propagazione L al variare del numero di cicli N.

Adesso si vuole analizzare la relazione che lega la velocità di propagazione v e il livello di carico $\varepsilon_{\%}$.

Per procedere si sfruttano i grafici appena creati e si cerca di approssimare tramite una retta l'andamento della lunghezza di propagazione al variare del numero di cicli.

Come variabile di riferimento si è presa la crack density pesata e si è considerato un valore limite pari a 0.5 [crack/mm], valore entro il quale si sono osservate le variazioni più significative, in quanto le cricche cominciavano ad interagire.

In questa maniera si osserveranno dei grafici in cui la linea di tendenza creata, riguarderà solo alcuni punti e altri in cui saranno presi tutti in considerazione in quanto il valore della crack density risultava nettamente inferire al valore limite.

La retta, descritta dalla propria equazione, consente successivamente di determinarne la velocità di propagazione.

Figura 5. 28 Equazione descritta dalla lunghezza di propagazione al variare del numero di cicli, rif. F-01 (0.8%) sullo strato $+60^{\circ}$

La retta in questione è descritta da un'equazione di primi grado e rappresenta dimensionalmente una lunghezza, quindi eseguendo l'operazione di derivazione rispetto al numero di cicli N, si ottiene la velocità *v* cercata:

$$y = 0.0009x - 1.5585$$
$$L = 0.0009N - 1.5585$$
$$\frac{dL}{dN} = v = 0.0009 \ [mm/ciclo]$$

A titolo esemplificativo come riferimento si è considerato il provino F-01 con livello di carico 0.8%, tuttavia con il resto dei campioni si è proceduto in modo analogo.

Alla fine si sono create delle tabelle riassuntive per evidenziare ogni singola velocità al variare del livello di carico $\epsilon_{\%}$.

Di seguito si riportano i grafici considerando in primo luogo le cricche orientate a $+60^{\circ}$ rispetto un'asse X di riferimento e successivamente si è passati a quelle a -60° sempre rispetto un'asse X di riferimento.

Figura 5. 29 Equazione descritta dalla lunghezza di propagazione al variare del numero di cicli, rif. F-02 (1%) sullo strato $+60^{\circ}$

Figura 5. 30 Equazione descritta dalla lunghezza di propagazione al variare del numero di cicli, rif. F-03 (0.9%) sullo strato +60°

Figura 5. 31 Equazione descritta dalla lunghezza di propagazione al variare del numero di cicli, rif. F-04 (0.5%) sullo strato $+60^{\circ}$

Figura 5. 32 Equazione descritta dalla lunghezza di propagazione al variare del numero di cicli, rif. F-05 (0.6%) sullo strato $+60^{\circ}$

Figura 5. 33 Equazione descritta dalla lunghezza di propagazione al variare del numero di cicli, rif. F-06 (0.7%) sullo strato $+60^{\circ}$

Figura 5. 34 Equazione descritta dalla lunghezza di propagazione al variare del numero di cicli, rif. F-07 (1.1%) sullo strato $+60^{\circ}$

Figura 5. 35 Equazione descritta dalla lunghezza di propagazione al variare del numero di cicli, rif. F-04 (0.5%) sullo strato -60°

Figura 5. 36 Equazione descritta dalla lunghezza di propagazione al variare del numero di cicli, rif. F-05 (0.6%) sullo strato -60°

Figura 5. 37 Equazione descritta dalla lunghezza di propagazione al variare del numero di cicli, rif. F-06 (0.7%) sullo strato -60°

Figura 5. 38 Equazione descritta dalla lunghezza di propagazione al variare del numero di cicli, rif. F-08 (0.4%) sullo strato -60°

5.3 SINTESI SULLA VELOCITÁ DI PROPAGAZIONE

		Strato +60°
Codice provino	8 %	v= dL/dN [mm/ciclo]
F-04	0,5	5*10 ⁻⁵
F-05	0,6	$2,131*10^{-4}$
F-06	0,7	$1,2*10^{-3}$
F-01	0,8	9*10 ⁻⁴
F-03	0,9	$2,4*10^{-3}$
F-02	1	$4,1*10^{-3}$
F-07	1,1	$8,24*10^{-2}$
I designed and the second s		

Tabella 5. 39 Velocità di propagazione sullo strato $+60^\circ$

Figura 5. 40 Andamento della velocità di propagazione in funzione del livello di carico $\epsilon_{\%}$, rif. strato +60° (*Grafico in scala logaritmica)

		Strato -60°
Codice provino E %		v= dL/dN [mm/ciclo]
F-08	0,4	3,323*10 ⁻⁴
F-04	0,5	$9*10^{-4}$
F-05	0,6	$4,4*10^{-3}$
F-06	0,7	$1,741*10^{-2}$

Tabella 5. 41 Velocità di propagazione sullo strato -60°

Figura 5. 42 Andamento della velocità di propagazione in funzione del livello di carico $\epsilon_{\%}$, rif. strato +60° (*Grafico in scala logaritmica)

Figura 5. 43 Confronto tra le velocità di propagazione (*Grafico in scala logaritmica)

Osservazione: osservando l'andamento delle velocità di propagazione si può notare come lo strato con le fibre orientate a -60° sia in una condizione più gravosa rispetto allo strato a $+60^{\circ}$. Si può notare, come la curva per lo strato a -60° sia spostata verso valori minori della deformazione, rispetto a quella relativa al $+60^{\circ}$.

La maggiore velocità di propagazione negli strati a -60° è dovuta al maggior spessore degli stessi strati rispetto a quelli a $+60^{\circ}$.

Facendo un cambio di coordinate e considerando al posto della deformazione $\varepsilon_{\%}$ un parametro energetico, si osserva come il grafico evidenzi la sovrapposizione delle due curve relative ai due strati, visibile in figura 5.44:

Figura 5. 44 Confronto tra le velocità di propagazione (*Grafico in scala logaritmica)

<u>Osservazione</u>: si può notare come, utilizzando il parametro energetico G, le due curve risultino sovrapposte, anziché traslate come nel caso precedente. Ciò sta a significare che l'utilizzo di questo nuovo parametro al posto della deformazione $\varepsilon_{\%}$, risulti più adatto a problemi della meccanica della frattura, in particolare su strati con la stessa inclinazione ma con spessore diverso.

5.4 CONFRONTO TRA I DIVERSI LIVELLI DI CARICO

In questo paragrafo, per tutti i livelli di carico, si sono voluti costruire dei grafici per evidenziare l'andamento della lunghezza di propagazione L-L₀ al variare del numero di cicli N-N₀. In primo luogo, si è preferito analizzare lo strato a $+60^{\circ}$ e successivamente si è passati a quello a -60° , entrambi orientati rispetto un'asse X di riferimento. Inoltre per avere una visione migliore si è fatto uno zoom nella parte iniziale.

Figura 5. 45 Confronto della lunghezza di propagazione L-L₀ al variare del numero di cicli N-N₀, rif. strato +60°

Figura 5. 46 Zoom confronto della lunghezza di propagazione L-L₀ al variare del numero di cicli N-N₀, rif. strato +60°

Figura 5. 47 Confronto della lunghezza di propagazione L-L₀ al variare del numero di cicli N-N₀, rif. strato -60°

Figura 5. 48 Zoom confronto della lunghezza di propagazione L-L $_0$ al variare del numero di cicli N-N $_0$, rif. strato -60°

Nota: L_0 e N_0 rappresentano rispettivamente la lunghezza di riferimento iniziale e il numero di cicli iniziale, entrambi considerati nel momento della prima misurazione della cricca considerata in ogni provino.

CAPITOLO 6

Conclusioni

L'analisi ha consentito di studiare l'evoluzione del danneggiamento che un laminato composito subisce quando è sottoposto a un carico di fatica.

In particolare per tutti i provini a disposizione, per entrambi gli strati del laminato, si sono calcolate tre diversi tipi di crack density e si sono costruiti diversi grafici per poter valutare la soluzione che consentiva di fornire un risultato più vicino alla realtà. Inoltre servendosi di un modello FEM, si sono potuti confrontare i risultati sperimentali con quelli analitici. Si è cosí ricavata la diminuzione di rigidezza del modello criccato rispetto al modello integro.

Il confronto dei dati è stato eseguito per tutte le crack density ed è risultato che, con un numero di cicli basso, la soluzione migliore si ottiene mediante la crack density pesata.

Si è anche provveduto ad analizzare la fase di propagazione del danneggiamento mettendo in evidenza la lunghezza di propagazione al variare del numero di cicli.

Interessante è stato anche osservare la velocità di propagazione nei due strati, dai quali si è potuto evidenziare che nel caso a -60° si raggiungeva una velocità maggiore rispetto all'altro strato, ciò è dovuto al maggior spessore degli strati a -60° rispetto a quelli a $+60^{\circ}$. Si è potuto cosí capire che lo strato con le cricche orientate a -60° risultava essere nelle condizioni di maggior gravosità.