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Abstract

The Big Bang Nucleosynthesis (BBN) began as the universe cooled below 0.1 MeV, about 3 sec-
onds after the Big Bang, creating the first light elements in the universe. The primordial deu-
terium formed in this process is highly sensitive to the baryon density of the early universe and is
therefore an excellent indicator of the same. Direct observations of the Cosmic Microwave Back-
ground (CMB) by PLANCK have constrained the baryon density at high precision (< 1%). The
observations of primordial clouds provide an independent approach to constrain the cosmological
parameters, but this requires accurate knowledge about the reaction rates affecting the primordial
deuterium abundance.

In this thesis, the focus is on the 2H(p,γ)3He reaction which is the dominant reaction that destroys
the primordial deuterium. Previous studies of the reaction by the LUNA collaboration at LNGS in
the BBN energy range (30 to 260 keV) found the S factor at high precision (≈ 1%). A follow-up
experiment at HZDR in the higher energy range (265 to 1094 keV) found a 10% discrepancy with
the LUNA S factor fit. The new 2H(p,γ)3He campaign described in this thesis aims to confirm the
findings of LUNA as well as the constrain the existing tension in the S factor between these two
previous measurements using an independent setup.

The experiment is performed in the energy range 300 to 800 keV (lab energy) using a proton beam,
solid deuterated targets and a High Purity Germanium (HPGe) detector setup. The photons pro-
duced in the reaction (Q = 5.493 MeV) are measured by the HPGe detectors, which are placed at
different angles around the target chamber to facilitate a study of the angular distribution of the
cross-section as well.

In this thesis, all the steps performed for the measurement of the preliminary S factor for the
2H(p,γ)3He reaction are described, starting from the detector characterization, target analysis and
finally the analysis of the 2H(p,γ)3He spectra to arrive at the S factor of the reaction. The prelim-
inary results are shown, in comparison with the LUNA and HZDR measurements and the angular
distribution is also discussed.

Keywords: BBN, CMB, S factor, Felsenkeller
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Introduction

The Big Bang Theory is one of the pillars of the standard model of cosmology, explaining the origin
and evolution of the universe. The Big Bang theory proposes that approximately 13.8 billion years
ago, the universe began as an extremely hot, dense and infinitely small singularity where all matter
and energy were concentrated. In the fraction of a second that followed, the universe expanded
rapidly from a point thereby creating the forces and particles that govern the cosmos. This rapid
expansion is called cosmic inflation, which set the stage for forming the cosmic structures observed
today.
All the structures observable today and made up of protons and neutrons in different nuclear con-
figurations. The origin of these elements has been a question of many theoretical and experimental
studies. One of the great successes of the standard model of cosmology, or the ΛCDM model is
in its ability to explain the creation of the light elements through primordial nucleosynthesis. This
process, which occurred in the first few minutes of the Big Bang, created all the Hydrogen and
Helium in the universe.
This thesis focuses on the study of the 2H(p, γ)3He reaction, which plays a pivotal role in Big Bang
Nucleosynthesis (BBN) as it is one of the main processes through which deuterium is destroyed in
the early universe, thereby altering its primordial abundance. Deuterium is the first nuclei formed
in the universe which marked the beginning of the BBN reaction network. The primordial abun-
dance of deuterium is an important parameter as it is highly sensitive to the baryon density of the
universe Ωbh2, as well as the number of neutrino species Nν ,e f f . Therefore, an accurate measure-
ment of the primordial deuterium content will enable these cosmological parameters to be strongly
constrained.
In this study, the 2H(p, γ)3He reaction is studied in the energy range of 300 to 800 keV (in lab
frame). This thesis is divided into five chapters: The first chapter will introduce the basic concepts
of thermonuclear reactions in stars and focus specifically on charged particle-induced reactions.
In the second chapter, a summary of the evolution of the early universe leading up to the BBN, in
the framework of the standard model will be discussed. The astrophysical relevance of the 2H(p,
γ)3He reaction will be detailed as well as the existing state of the art of the reaction.
The third chapter is focused on the experimental setup for the 2H(p, γ)3He reaction at the Felsenkeller
accelerator. In the fourth chapter, the data analysis is described in detail including the detector and
target characterization as well as the steps followed in the analysis of the γ spectra of the 2H(p,
γ)3He reaction to obtain the S factor of the reaction.
The fifth and final chapter discusses the relevant results obtained and the comparison with the lit-
erature data.

vii



Chapter 1

Nuclear Astrophysics

Nuclear astrophysics is a branch of astrophysics devoted to understanding the behaviour of atomic
nuclei and their interactions inside stars and other celestial objects. It aims to provide an explanation
for the mechanisms underlying nuclear reactions, element synthesis, and energy production in a
variety of astrophysical settings, from the star’s core to the explosions of supernovae.
In this chapter, an overview of the basic concepts of nuclear reactions with particular emphasis on
thermonuclear reactions in stars, is shown.

1.1 Thermonuclear Reaction Rate
Thermonuclear reactions are the sources of energy production in stars as well as the nucleosynthesis
of elements. The most important parameters determining the elements’ abundance and energy
production are the Q value and the reaction rates [1].
Most of the reactions happening in stars are two body problems which can be described as A +
x → B + y, where A is the target nucleus, x the projectile and B and y the products. The energy
conservation for these types of reactions is given by 1.1:

mAc2 +mxc2 +Ex +EA = mBc2 +myc2 +EB +Ey (1.1)

where m is the rest mass and E is the kinetic energy for each particle. We can now define the Q -
value as

Q = mAc2 +mxc2−mBc2−myc2 = Ex +EA−EB−Ey (1.2)

If Q > 0, the reaction is exothermic and Q represents the net energy production. Conversely, if
Q < 0, the reaction is endothermic and Q represents the addition of energy needed for the reaction
to occur.

While the Q value can be easily measured for all reactions, calculating the probability for a nuclear
reaction to occur is not as straightforward.
For each target nucleus, we can associate a geometrical area that relates to the probability that the
projectile interacts with the nucleus. This area is the cross-section σ of the nuclear reaction. In
classical physics, this area can be written as the total geometrical area of the target nucleus and

1



1.1. THERMONUCLEAR REACTION RATE CHAPTER 1. NUCLEAR ASTROPHYSICS

the projectile, σ = π(Rt +Rp)
2, where Rt and Rp are the radii [2] of the target and the projectile

respectively. This dependence on energy leads to a velocity dependence of the cross-section, σ =
σ(v). If we have 2 species A and B, of number density NA and NB and relative velocity v, the
reaction rate is given by:

r = vσ(v)NANB (1.3)

The nuclei can have a wide range of velocities with a probability distribution φ(v). From equation
1.3,

r = NANB

∫
∞

0
vσ(v)φ(v)dv = NANB < σv > (1.4)

In a non-degenerate and non-relativistic stellar plasma, the probability distribution of velocity is
given by Maxwell-Boltzmann distribution (1.5)

φ(v) = 4πv2
(

m
2πkBT

) 3
2

e
−mv2
2kBT (1.5)

where T is the temperature of the plasma, m is the mass of the nucleus and kB is the Boltzmann
constant.
For the two nuclei A and B, the velocity distribution is given by equations 1.6 and 1.7 as

φ(v) = 4πvA
2
(

mA

2πkBT

) 3
2

e
−mAvA

2

2kBT (1.6)

φ(v) = 4πvB
2
(

mB

2πkBT

) 3
2

e
−mBvB

2

2kBT (1.7)

Considering the kinetic energy, E = mv2

2 , the velocity distribution can be written as:

φ(E) ∝ Ee
−E
kBT (1.8)

At very low energies, E << kBT the φ(E) increases with energy reaching a maximum at E = kBT
and decreases exponentially with energy at high energies (E >> kBT ), as shown in figure 1.1.
Using the equations derived above, for the pair of nuclei A and B, the reaction rate per particle pair
is:

< σv >=
∫

∞

0

∫
∞

0
φ(vA)φ(vB)σ(v)vdvAdvB (1.9)

where vA and vB are the relative velocities, v and the velocity of the centre of mass, V.

φ(v) = 4πv2
(

µ

2πkBT

) 3
2

e
−µv2
2kBT (1.10)

2
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Figure 1.1: Maxwell Boltzmann Distribution of nuclei in stellar plasma.

φ(V ) = 4πV 2
(

M
2πkBT

) 3
2

e
−MV 2
2kBT (1.11)

where µ = mAmB
mA+mB

is the reduced mass and M = mA +mB is the total mass of the system. The
reaction rate in terms of v and V as:

< σv >=
∫

∞

0
φ(V )dV

∫
∞

0
φ(v)σ(v)vdv (1.12)

The nuclear cross section σ(v) depends only on the relative velocity v. Therefore, we can first
integrate equation 1.12 over V to get

< σv >=
∫

∞

0
φ(v)σ(v)vdv (1.13)

Inserting equation 1.10 in 1.13,

< σv >= 4π

(
µ

2πkBT

) 3
2 ∫ ∞

0
v3

σ(v)e
−µv2
2kBT (1.14)

3



1.1. THERMONUCLEAR REACTION RATE CHAPTER 1. NUCLEAR ASTROPHYSICS

Finally, introducing the centre of mass energy, E = 1
2 µv2, equation 1.14 becomes

< σv >=

(
8

πµ

) 1
2
(

1
kBT

) 3
2 ∫ ∞

0
σ(E)Ee

−E
kBT dE (1.15)

1.1.1 Non-resonant reactions induced by charged particles
If we consider the interaction between two nuclei, there are two forces in play: the electromag-
netic force and the strong nuclear force. The strong nuclear force is an attractive, short-range force
dominating at distances in the order of the size of atomic nuclei. For the two interacting nuclei
A and B with atomic radius RA and RB, the strong nuclear force dominates in the distance range
lower than R=RA+RB. At distances greater than R, the Coulomb force dominates and is repulsive.

Fusion occurs when the energy of the projectile crosses the Coulomb barrier, Ec =
1

4πε0

ZAZBe2

r . The
energy of the stellar plasma is given by E = kBT . This energy is much lower than the Coulomb
barrier. The additional factor in play is the quantum mechanical effect called tunnelling (see figure
1.2).

Figure 1.2: Schematic of the tunnelling of Coulomb barrier[3].

It states that even though the projectile has incident energy lower than the Coulomb barrier Ec,

4



1.1. THERMONUCLEAR REACTION RATE CHAPTER 1. NUCLEAR ASTROPHYSICS

there exists a finite probability that the nuclear reaction can take place by crossing the barrier. At
very low energies, E << Ec, the tunnelling probability can be approximated by the Gamow factor

P = e−2πη (1.16)

where η is the Sommerfield parameter given by

η =
ZAZBe2

h̄ν
(1.17)

As a result of the tunnelling effect, the cross-section falls rapidly at very low energies (Figure 1.3)

σ(E) ∝ e−2πη (1.18)

The cross-section is also proportional to the de-Broglie wavelength

Figure 1.3: Tunnelling Probability v Energy.

σ(E) ∝ πλ
2

∝
1
E

(1.19)

Combining equations 1.18 and 1.19, the cross-section can be written as

σ(E) =
1
E

e−2πηS(E) (1.20)

5



1.1. THERMONUCLEAR REACTION RATE CHAPTER 1. NUCLEAR ASTROPHYSICS

where S(E) is the astrophysical S-factor, which takes into account the nuclear properties of the
involved reaction. For non-resonant reactions, S(E) is a slowly varying function of energy and is
therefore very useful for extrapolation at low energies as shown in figure 1.4. Using equation 1.20
in 1.15, we get

< σv >=

(
8

πµ

) 1
2
(

1
kBT

) 3
2 ∫ ∞

0
S(E)e

−E
kBT−

b√
E dE (1.21)

Figure 1.4: Cross-section for charged particle induced reactions. Top panel: Cross-section reduces
rapidly at low energy, making extrapolation difficult. Bottom panel: The astrophysical S-factor on
the other hand varies smoothly with energy and hence an extrapolation to lower energies is possible
[1].

where the term b arises from the barrier penetrability.

b =

√
2µe2ZAZBπ

h̄
(1.22)

The term b2 = EG is called the Gamow energy, which is the energy at which the fusion takes place
inside stars.
As S(E) has a weak dependence on energy, the energy dependence in the integrand in equation 1.21
is governed by the two exponential terms,
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• e−
b√
E which arises from the penetration through the Coulomb barrier via tunnelling, that

vanishes at low energies

• e
− E√

kBT which is a measure of the number of particles with energy E given by Maxwell-
Boltzmann distribution, that vanishes at high energy.

The effect of the above two opposing terms leads to a peak at E0 =
(√

EGkBT
2

) 2
3 known as the

Gamow peak, which is illustrated in figure 1.5.

Figure 1.5: The Gamow peak: A convolution between Maxwell Boltzmann distribution of energies
and tunnelling probability through the Coulomb barrier[4].

For a given temperature T, nuclear reactions take place in stars in an energy range ∆E, which is the
Gamow window, with a maximum at the Gamow peak, E0. Substituting the value of E0 in equation
1.21, we get the maximum value of the integral

Imax = e−
3E0
kBT (1.23)

For non-resonant reactions, Gamow peak can be defined by a Gaussian function.

e−
E

kBT−
b√
E = Imaxe

[
−
(

E−E0
∆E/2

)2
]

(1.24)

where ∆E is the effective width of the peak

∆E =
4√
3

√
E0kBT (1.25)
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Nuclear fusion takes place in the energy range E0±∆E/2. E0 is lower than the Coulomb barrier
and as a result, direct measurements of the cross-section are very difficult.
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Chapter 2

Big Bang Nucleosynthesis

The Big Bang Nucleosynthesis is the source for the first light elements that were formed in the
universe. The first half of this chapter will provide a brief theoretical background of cosmology,
leading up to the BBN. In the second half, the significance of 2H(p, γ)3H including a summary of
the state of the art will be discussed.

2.1 Standard Model
The Standard Model of Cosmology, also known as the ΛCDM model, is the prevailing scientific
framework that describes the structure and evolution of the universe on large scales. It combines
the concepts of the Big Bang theory and general relativity to explain the origin, composition, and
dynamics of the universe.
The Standard Model of Cosmology is based on the following key components [5]:

• Big Bang Theory: The model starts with the concept of the Big Bang, which suggests that
the universe originated from an extremely hot and dense state about 13.8 billion years ago.
It explains the expansion of the universe from a highly compact initial state to its current
large-scale structure.

• Primordial Nucleosynthesis: The model predicts a period in the early universe where the
conditions of temperature and density were suitable for the production of light elements such
as the isotopes of H, He and Li (Section 2.2). This has been confirmed by observations of
primordial clouds.

• Expanding universe: According to the model, the universe is continuously expanding. This
expansion is supported by observational evidence, such as the redshift of distant galaxies,
which indicates that they are moving away from us.

• Cosmic Microwave Background (CMB): The CMB is the faint radiation that permeates
the entire universe. It is considered to be the afterglow of the Big Bang and provides cru-
cial evidence for the early stages of the universe. The CMB is nearly uniform but has tiny
temperature fluctuations that encode information about the structure of the early universe.

9
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• Dark Matter: The Standard Model of Cosmology incorporates the existence of dark matter,
which is an invisible and elusive form of matter that does not interact with light or other
electromagnetic radiation. Dark matter is inferred from its gravitational effects on visible
matter and its influence on the large-scale structure of the universe.

• Dark Energy: In addition to dark matter, the model posits the existence of dark energy, a
mysterious form of energy that permeates space and is responsible for the accelerated expan-
sion of the universe. Dark energy is thought to be associated with the cosmological constant
or vacuum energy.

• Large-Scale Structure: The model explains the formation and evolution of the large-scale
structure of the universe, including the distribution of galaxies, galaxy clusters, and cosmic
filaments. Gravity plays a crucial role in driving the growth of structure from small initial
density fluctuations.

While the Standard Model of Cosmology has been successful in explaining many observed phe-
nomena and is supported by substantial observational evidence, there are still open questions and
areas of ongoing research, such as the nature of dark matter and dark energy, the inflationary period
of the early universe, and the ultimate fate of the cosmos.
The above features, along with the cosmological principle, that states the homogeneous and isotropic
nature of the universe, form the cornerstones for the standard model. The principle implies that the
metric itself is homogeneous and isotropic and is given by the Friedman Lemaitre Robertson Walker
(FLRW) metric as follows [6]

dS2 = gµνdxµdxν = dt2−a2(t)
[

dr2

1− kr2 + r2 (dθ
2 + sin2

θdΦ
2)] (2.1)

where gµν is the metric tensor of four-dimensional spacetime, a(t) is the scale factor that describes
the expansion and k describes the curvature of spaceime. k can take values -1, 0 and 1 that corre-
spond to hyperbolic (open), Euclidean (flat) or elliptic (closed) geometries respectively.
The metric tensor gµν is related to the Energy-Momentum Tensor Tµν through the Einstein equa-
tions

Rµν −
R
2

gµν −Λgµν = 8πGTµν (2.2)

where Rµν is the Ricci tensor describing the tensor curvature, R is the Ricci scalar that describes
the scalar curvature and Λ is the cosmological constant, originally introduced by Einstein to obtain
a static cosmological model as the solution of the equation 2.2. Using equations 2.1 and 2.2, we
obtain the First Friedmann equation

H2 =

(
ȧ
a

)2

=
8πG

3
ρ− k

a2 +
Λ

3
(2.3)

From the first law of thermodynamics,

dE +PdV = 0 (2.4)
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Assuming the universe is a perfect fluid, E = 4π

3 ρa3 and V = 4π

3 a3 (c = 1). The conservation of
energy for the fluid is written as

4π

3

(
d
dt
(ρa3)+P

d
dt
(a3)

)
= 0 (2.5)

0 = 3(ρ +P)
da
a

+dρ (2.6)

This is the Third Friedmann equation. Using 2.3 and 2.6, the Second Friedmann equation describ-
ing the evolution equation for the scale factor can be obtained:

ä
a
=−4πG

3
(ρ +3P)+

Λ

3
(2.7)

Now we have to make an assumption: we will assume that the fluid is a barotropic perfect fluid.
This means that the pressure is only dependent on the energy density, P = P(ρ). Very often, this
dependence is linear and the equation of state is given by

P = wρ (2.8)

where w is a dimensionless constant. Substituting equation 2.8 in 2.6, we can obtain

0 = 3(ρ +wρ)
da
a

+dρ (2.9)

0 = 3ρ(1+w)
da
a

+dρ (2.10)

dρ

ρ
=−3(1+w)

da
a

(2.11)

logρ =−3(1+w)loga+ constant (2.12)

logρa3(1+w) = constant (2.13)

ρa3(1+w) = constant (2.14)

From 2.14, the dependence of the energy density on the scale factor can be obtained for matter,
radiation and cosmological constant. For matter, radiation and the cosmological constant, pressure
P is given by PM = 0, PR = ρR/3 and PΛ = −ρΛ respectively, which corresponds to w values of
wM = 0, wR = 1/3 and wΛ =−1. Substituting these values of w in the equation 2.14, we get

ρM ∝ a−3 (2.15)

ρR ∝ a−4 (2.16)

ρΛ ∝ constant (2.17)

The present values of the energy densities for baryonic matter, dark matter, radiation and cosmo-
logical constant are expressed in terms of Ωi = ρ0

i /ρcr where ρ0
i represents the energy density for
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matter, radiation and cosmological constant, ρcr =
3H2

0
8πG is the present value of the critical energy

density and H0 = 100h km s−1 MPc−1 with h = 0.73+0.04
−0.03 [7]. Finally, the baryon density param-

eter, ωb = Ωbh2 and the baryon to photon ratio, η = nB/nγ . The ratio of present energy density to
the critical density for matter, radiation and cosmological constant can be written as

ΩM =
8πGρM

3H2
0

(2.18)

ΩR =
8πGρR

3H2
0

(2.19)

ΩΛ =
8πGρΛ

3H2
0

=
Λ

3H2
0

(2.20)

Matter and radiation can be described in terms of a bath of particles and quantum fields. In par-
ticular, at high temperatures rapid interactions among them ensure thermodynamical equilibrium
and each particle species is described by an equilibrium (homogeneous and isotropic) phase space
distribution function

fi(|p|,T ) =
[

e
(

Ei(|p|)−µi
T ±1

)]−1

(2.21)

where Ei(|p|) =
√
|p|2 +m2

i is the energy, the ± corresponds to Fermi-Dirac/Bose-Einstein statis-
tics and µi is the chemical potential. In a comoving frame, the number density, energy density and
pressure of the particles can be written as [8]

ni(T ) = gi

∫ d3 p
(2π)3 fi(|p|,T ) (2.22)

ρi(T ) = gi

∫ d3 p
(2π)3 Ei(|p|,T ) fi(|p|,T ) (2.23)

Pi(T ) = gi

∫ d3 p
(2π)3

|p|2

3Ei(|p|,T )
fi(|p|,T ) (2.24)

where gi is the number of internal degrees of freedom. The BBN occurred in the radiation-
dominated phase and therefore the contribution to the energy density by the non-relativistic par-
ticles is negligible. The photon energy density is given by

ργ =
π2T 4

15
(2.25)

The total energy density can be written in terms of equation 2.25 as

ρ ∼ ρR = g∗
ργ

2
= g∗

π2

30
(2.26)

where g∗ is defined as the number of relativistic degrees of freedom given by the equation

g∗ = ∑
Bi

gi

(
Ti

T

)4

+
7
8 ∑

Fi

gi

(
Ti

T

)4

(2.27)

where the first and second terms are due to all the boson and fermion species respectively.
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2.2 Primordial Nucleosynthesis
The universe is theorized to have originated in a quantum gravity fluctuation in the Planck epoch
(13.8 billion years ago [9] at 1019 GeV). This was followed by a period of accelerated expansion
of the universe called inflation. At the end of the inflationary period, the large energy density of
the inflation was transformed into a plasma of short-lived and exotic particles and antiparticles at
very high density, temperature and pressure. The collision rates were very high and the particles
were in a state of thermal equilibrium [10]. This is when the universe became radiation-dominated.
With the expansion, the universe cooled down and various particles diverged from the thermal
equilibrium at different epochs, depending on the strength of their interactions. If we consider the
universe at t = 0.1 s [11], the temperature was in the order of ∼ 3 x 1010 K corresponding to an
energy per photon of 10 MeV. Since this energy is much greater than the rest energy of electrons
and positrons, there were positrons and electrons produced via pair production at t = 0.1 s. During
this phase, the protons and neutrons were in equilibrium via the reactions

n+νe←→ p+ e− (2.28)

n+ e+←→ p+νe (2.29)

While the protons and neutrons are in equilibrium, the number density of both species is provided
by the Maxwell-Boltzmann equation as

np = gp

(
mpkBT
2π h̄2

)3/2

e

(
−mpc2

kBT

)
(2.30)

nn = gn

(
mnkBT
2π h̄2

)3/2

e
(
−mnc2

kBT

)
(2.31)

The degrees of freedom for protons and neutrons are the same (gp = gn = 2). So taking the ratio of
the number densities in 2.31 and 2.30, we get

nn

np
=

(
mn

mp

)3/2

e

(
− (mn−mp)c2

kBT

)
(2.32)

The ratio mn
mp

can be approximated to one, and the difference in rest mass energies for a neutron and

a proton, (mn−mp)c2 = ∆m = 1.29 MeV. Using these two results in equation 2.32

nn

np
= e−

∆m
kBT (2.33)

For kBT ≫ ∆m, corresponding to T ≫ 1.5x1010 K and t ≪ 1 s, the number of neutrons and pro-
tons is nearly the same. But as the temperature reduces due to the expansion of the universe, this
equilibrium is broken and protons are strongly favoured. Thus the neutron-to-proton ratio drops
exponentially.
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In the early universe, the balance between the neutrons and protons is maintained through the inter-
action of the baryon with a neutrino or an anti-neutrino via the weak nuclear force. The interaction
rate, Γ defined as

Γ = nσ |v| (2.34)

where σ is the cross-section of the weak force which scales to T 2 and n is the number density of
massless particles that is proportional to T 3 [12]. The interaction rate, Γ is proportional to T 5.
On the other hand, the Hubble parameter is proportional to T 2. Therefore, the interaction rate
drops faster than the Hubble parameter as the universe expands and cools. The inverse of the
Hubble parameter 1/H, gives the age of the universe, while the inverse of the interaction rate 1/Γ

is the time taken for one interaction to happen. The high density and temperature conditions of
the early universe mean that the average time for one interaction is much lower than the age of the
universe (1/Γ > 1/H). This is the condition that prevails at temperatures above 1 MeV and the
neutrinos are in thermal equilibrium with the plasma through the reactions 2.28 and 2.29.
As the temperature drops below 1 MeV, the interaction rate becomes lower than the expansion rate
and thus the neutrino interactions become too weak to keep them in thermal equilibrium. Therefore
at Γ∼H, the neutrinos decouple from the plasma and stop interacting with the baryons via reactions
described in 2.28 and 2.29. This decoupling is not abrupt, and indeed the two-body reactions among
neutrons, protons, e± and νe (νe) continue to influence the n/p ratio, albeit not rapidly enough to
allow the n/p ratio to track its equilibrium value (as shown in figure 2.1) of n/p = e−

∆m
T . Therefore,

the n/p reduces from 1/6 at the time of decoupling, to a freeze-out value of 1/7[13] at the beginning
of the BBN (∼ 200 s).
The lack of neutrons for every proton explains why the BBN is so incomplete, as nearly 75 %
of baryons remained as unfused protons at the end of the BBN. Despite the higher abundance, a
proton fuses more readily with a neutron as interaction occurs via the strong force and also there
is no Coulomb barrier for a proton and a neutron. This reaction produces a Deuterium atom and
a photon. The fusion of two protons requires the Coulomb barrier to be overcome as well as the
conversion of a proton into a neutron via the weak nuclear interaction whose cross-section is really
low (∼ 10−43 cm2). The probability for the fusion of two neutrons is extremely low due to their
low abundance and the low cross-section of weak interaction.
Therefore, it can be assumed that the BBN proceeds till all the free neutrons are bounded into an
atomic nucleus while the remaining protons remain as such. In this scenario, the mass fraction
of 4He is found to be Yp = 0.33[8]. In reality, this value is lower. From the freeze-out ratio of
n/p = 1/7, the Helium mass fraction Yp can be calculated as[13]:

Yp = 4Y4He| f o =
2nn

np +nn
=

2n/p
1+n/p

= 0.25 (2.35)

When the neutrinos decoupled from the plasma, the temperatures of photons, electrons and neu-
trinos are in equilibrium, Tγ = Te = Tν . Shortly after decoupling, the temperature drops below the
mass of an electron and thus the photons are unable to produce electron-positron pairs. However
the electron-positron annihilation continues, adding energy density to the photons. This transfer
of energy does not affect the neutrino temperature as they have already decoupled and a relation
between the photon temperature after e± annihilation and the neutrino temperature can be written
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Figure 2.1: The time-temperature evolution of the neutron-to-proton (n/p) ratio. The solid red curve
indicates the true variation. The steep decline at a few hundred seconds is the result of the onset of
BBN. The dashed blue curve indicates the equilibrium n/p ratio e−

∆m
T , and the dotted grey curve

indicates free-neutron decay e−
t

τn [14].

as
Tγ

Tν

=

(
11
4

)1/3

(2.36)

This is illustrated in figure 2.2 where the photon and neutrino temperatures coincide till T ∼ 1010

K. Afterwards, due to the addition of energy from the e± annihilation, the photon temperature is
greater than the neutrino temperature by a factor of 1.4. In the next stage of the BBN, at t ∼ 2 s,
the neutrinos are already decoupled while the photons are still coupled to the baryons. The Big
Bang nucleosynthesis takes place through a series of two-body fusion reactions, building heavier
nuclei progressively at each step. The first step, as discussed earlier, is the fusion of a proton and a
neutron to form a Deuterium atom

p + n 2H + γ

with a Q-value of 2.22 MeV. This Q-value is also the binding energy of the Deuterium atom and
therefore, any photon with energy higher than 2.22 MeV can dissociate into a proton and a neutron.
This essentially makes the first step of the BBN a bottleneck, i.e., heavier nuclei than deuterium
cannot form. This persists till the temperature drops below 2.22 MeV when there will be too few
photons with enough energy to cause the dissociation and the production of Deuterium is favoured
[16]. This transition occurs after the e± annihilation at t ∼ 3 s when the temperature has dropped
below 0.1 MeV.
Once a significant amount of Deuterium is formed, the BBN proceeds via the network of fusion
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Figure 2.2: Photon and neutrino temperatures during the e± annihilation[17].

reactions as shown in figure 2.3 and the heavier nuclei are formed. For example, the Deuterium
formed can capture a proton to form 3He or capture a neutron to form tritium, 3H. Tritium is
unstable and undergoes spontaneous β− decay with a decay time of 18 years. But for the duration
of the BBN (∼ 10 mins[13]), tritium is quite stable and can undergo further reactions to form
heavier nuclei.
Deuterium can also fuse to form tritium by emitting a proton or form 3He releasing a neutron.
Although there are multiple channels for the creation of 3He and 3H, their respective concentrations
during the BBN are always low as they are readily converted to 4He through the reaction channels

3H + p 4He + γ

3He + n 4He + γ

3H + 2H 4He + n
3He + 2H 4He + p

All these reactions proceed via the strong nuclear force and therefore have a high cross-section and
a fast reaction rate. This aids the process of efficient conversion of 2H, 3H and 3He to 4He.
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Figure 2.3: Big Bang Nucleosynthesis nuclear reaction chain.

After 4He, the formation of heavier nuclei is restricted by the fact that 4He is very tightly bound
and stable. Moreover, there are no stable nuclei with mass number, A = 5. Due to this, a proton
capture of 4He to form 5Li or a neutron capture to form 5He cannot work as neither 5Li nor 5He are
stable. A small fraction of 6Li, 7Li and 7Be are formed by the reactions

4He + 2H 6Li + γ

4He + 3H 7Li + γ

4He + 3He 7Be + γ

The absence of stable nuclei with A = 8 halts the progression of BBN long enough that the tem-
perature drops due to the expansion and the BBN stops by approximately 10 minutes[13] after the
Big Bang. In figure 2.4, the chemical evolution of the nuclear species formed during the BBN is
illustrated as a function of time and temperature.
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Figure 2.4: Mass fraction of nuclei as a function of time and temperature during the BBN.

2.3 Baryon-to-photon ratio, η

The yields of 2H, 3H, 3He, 4He, 6Li, 7Li and 7Be depend on various parameters of which the most
important is the baryon-to-photon ratio η . A higher η implies a larger baryon abundance, causing
the BBN to commence at higher temperatures and hence an earlier start. As discussed earlier, the
BBN is a race against time due to the expansion and cooling of the universe and thus, an earlier
start to the BBN would imply a greater efficiency in converting all the neutrons into 4He nuclei,
leaving a very low abundance of 2H and 3He behind. In figure 2.5, the variation of the mass fraction
of different species produced in the BBN is plotted as a function of the baryon-to-photon ratio, η

and the baryon density, Ωbh2.
From the plot, it is clear that for larger values of η , the mass fraction of 4He, Yp increases and
the deuterium abundance decreases, as explained above. For 7Li, the situation becomes a bit more
complex. The production of 7Li through the fusion of 3H and 4He is a decreasing function of η ,
while the production of 7Li via electron capture of 7Be is an increasing function of η . This creates
a minimum for the predicted primordial 7Li abundance at η ∼ 3 x 10−10[18].
In general, if the baryon-to-photon ratio is as small as η ∼ 10−12, then the BBN would be extremely
inefficient in producing 4He (Yp ∼ 0.01). On the other side of the spectrum, if η is as large as
10−7[19], then the BBN would start early and the universe would essentially be deuterium and 3He
free. In this scenario, the 4He mass fraction will be equal to its highest value of Yp = 0.33.
Thus determining the value of η is very useful to calculate the primordial abundance of deuterium
because the abundance is strongly dependent on the baryon-to-photon ratio in the range of interest
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of 30 to 300 keV (during BBN). This means that finding the primordial abundance will allow us to
estimate the value of the baryon-to-photon ratio η .
For a fixed η , the light element abundances relate to the Hubble expansion rate by

H2 = 8πGρ ∼ g∗
T 4

mpl
(2.37)

where mpl is the Planck mass and g∗ is the number of relativistic degrees of freedom. Thus by
measuring the primordial abundance, it is possible to determine the number of relativistic species
present during the BBN epoch, denoted by the number of neutrino species, Nν ,e f f [14]. Fixing
the number of neutrino species to three, the primordial abundances depend only on the baryon-to-
photon ratio, η . Relaxing this constraint, the primordial abundance calculation becomes a two-
parameter theory: a function of η and Nν ,e f f .

2.4 Primordial D/H
As discussed above, the primordial deuterium abundance ratio (D/H) is a decreasing function of the
baryon-to-photon ratio, η . The baryon-to-photon ratio can be related to the baryon density, Ωbh2

at present temperature of the Cosmic Microwave Background, TCMB = 2.73 K, as follows

η =
nb

nγ

= 5.4x10−10
(

Ωbh2

0.02

)
(2.38)

From 2.38, it is clear that D/H is a decreasing function of the baryon density Ωbh2. Considering
a slightly more general cosmological model with extra radiation, it grows as Nν ,e f f increases.
Finally, it also depends on the cross-sections of the nuclear processes involved in the production
of deuterium and subsequent synthesis to 3H and 3He. Specifically, the abundance depends on
the reaction rate of the above-mentioned processes, obtained by the convolution of the energy-
dependent cross-section of the reaction σ(E) and the thermal energy distribution of the incoming
nuclei during the BBN. The main reactions involved in the altering of the primordial D/H ratio are

1H + n 2H + γ

2H + p 3He + γ

2H + 2H 3He + γ

2H + 2H 3H + p

Among these reactions, the 2H(p, γ)3He reaction, with Q = 5.493 MeV is the most important
channel for the destruction of Deuterium and therefore it affects the final deuterium abundance.
The destruction of deuterium via 2H(p, γ)3He depends on various physical parameters of which,
the baryon-to-photon ratio η or equivalently (See Equation 2.38) the baryon density Ωbh2, is the
most important one.
The primordial deuterium abundance can be calculated using two independent approaches. The first
method is through the direct observations of CMB anisotropies. The value of the baryon density
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Figure 2.5: 4He, 2H, 3He and 7Li abundances plotted against the baryon-to-photon ratio. The yel-
low regions represent the observed abundances. Primordial deuterium abundance observed closely
agrees with BBN theory, while primordial 3He has not been observed [20]. 7Li on the other hand
is observed at a much lower abundance, which is the famous cosmological lithium problem[21].

has been calculated by the PLANCK Collaboration [9] by studying the acoustic oscillations of the
baryon-photon plasma in the CMB as

Ωbh2 = 0.02242±0.00014 (2.39)

at 0.7% precision. Using the public BBN codes [22], this value can be converted to a deuterium
abundance ratio of

D/H = (2.51±0.07)105 (2.40)

Alternatively, the deuterium abundance can be obtained through BBN theory assuming the cosmo-
logical constants (Ωbh2 and Nν ,e f f ). The deuterium formed during the BBN is destroyed only
through stellar evolution during the deuterium burning phase that precedes the main sequence
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phase. Pristine clouds that have not undergone any stellar evolution will have the same deuterium
abundance as the primordial abundance. Spectroscopic analysis of these clouds backlighted by
quasars can provide an accurate insight into the deuterium abundance. New data from very metal-
poor Lyman-alpha systems at redshift z = 2.52564, visible in the spectrum of the quasar Q1243 +
307 [23] found the value at

D/H = (2.547±0.033)105 (2.41)

with a 1.2 % precision.
This value obtained from BBN theory is less precise than the (indirect, model-dependent) cosmo-
logical determination from CMB data, with a smaller uncertainty. The structure of the absorp-
tion lines and the unfortunate level of unrelated contamination limit the accuracy with which the
deuterium abundance has been measured in this system. These two deuterium abundance deter-
minations, while broadly consistent, are off by 0.5 %. This small tension might be the result of
experimental systematics due to the poor knowledge of the reactions cross-section of 2H(p, γ)3He,
as stated above.

2.5 2H(p, γ)3He - State of the art

The 2H(p, γ)3He reaction has been studied in different energy ranges in the past using different
setups. Measurements at energies higher than 1 MeV (centre of mass energies) were measured by
Berman et al. [24], Stewart et al. [25] and Fetisov et al. [26]. An overview of measurements below
1 MeV is provided below:

• Griffiths 1962: The capture of protons by deuterons[27].
The cross-section angular distributions have been measured at 275 keV to 1750 keV using
ice targets produced by condensing D2O vapour into a liquid air-cooled copper backing (gold
backing to reduce the background) and a sodium iodide scintillation counter. The uncertainty
has been given as a combination of statistical and systematical errors.

• Griffiths 1963: The reaction 2H(p, γ)3He below 50 keV[28].
The reaction has been studied in the energy range from 24 keV to 48 keV, using heavy-ice
targets on the liquid-air-cooled target and a Sodium iodine scintillation counter detector. The
cross-section (equivalent S-factor) and differential cross-section have been measured. The
main errors taken into account are statistical errors plus an error estimate for the extrapolation
to the initial yield.

• Bailey 1970: γ-ray yields from the reaction 2H(p, γ)3He at low energies[29].
Absolute cross-section and angular distribution in the energy range 57 to 1100 keV have
been reported using a sodium iodide scintillation counter detector. The measurement was
performed using the proton beam on a thin deuterated polyethene target deposited on a thin
gold-plated, rotating copper disc. Furthermore, a gas target system was used for the normal-
ization of the absolute cross-section.
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• Schmid 1997: The 2H(p, γ)3He and 1H(d, γ)3He reactions below 80 keV[30].
Schmid et al. measured 2H(p, γ)3He and 1H(d, γ)3He at the centre of mass energies in the
range 10 to 50 keV. In this work, both polarized and unpolarized incident beams have been
used for measurements of cross-section and the astrophysical S-factor. Moreover, the γ-ray
linear polarization P was measured for an unpolarized incident beam. For the 2H(p, γ)3He
reaction, the experiment was performed using a proton beam on a solid target of D2O (99%
pure) condensed on a cooled (80 K) Cu disc on an Al target chamber and an HPGe detec-
tor of 130% efficiency. The final uncertainties were calculated considering statistical and
systematical components. The latter depends on beam current integration (1%), efficiency
measurements at 5.5 MeV (6%), and stopping cross section (6%).

• Ma 1997: Measurements of 1H(d, γ)3He and 2H(p, γ)3He at very low energies[31].
Ma et al. measured the absolute differential cross sections, total cross section and the angular
distribution of 2H(p, γ)3H reaction in the energy range 70 to 210 keV. A thick layer of vapour-
condensed heavy ice (high purity D2O) was used. The targets were periodically melted to
reduce the neutron-induced background. The detection system consisted of two large HPGe
detectors. For the final analysis, the systematic component of the uncertainty was estimated
to be 9%. This systematic component was significantly less than the statistical uncertainty
and was not included in the final uncertainty estimation.

• LUNA 2002: First measurement of the 2H(p, γ)3H cross-section down to the solar
Gamow peak [32].
The low energy range of the 2H(p, γ)3H reaction is dominated by the measurements of the
LUNA collaboration. The cross-section has been measured in the Solar Gamow peak (2.5 to
22 keV centre of mass energies) using a differentially pumped gas-target system and a BGO
detector. The two primary sources of uncertainty were statistical uncertainties of 3.6-5.3%,
very low compared to the systematical uncertainty (≈ 40%) due to the description of the
reaction geometry in MC simulation, pressure profile, gas temperature, and the number of
projectiles impinging on the calorimeter.

• NACRE: A compilation of charged-particle induced thermonuclear reaction rates[33].
It is not always possible to have experimental measurements for nuclear reactions at astro-
physical energies. To overcome such a problem, different fitting procedures for the low-
energy extrapolation have been performed. One of the fits done for the 2H(p, γ)3He reaction
has been performed by Angulo et al [33]. Because of the lack of experimental data down
to very low energies and a discrepancy of 50% between [28] and [30] data, a unique extrap-
olation to zero energy was not possible. The astrophysical S-factor has been fitted with a
polynomial function of degree 3, using [28] for lower limits and [30] for upper ones.

• NACRE II: A compilation of charged-particle-induced thermonuclear reaction rates[34].
Xu et al.[34] have performed a fit in which post-NACRE data [32] and [35] have been added,
extending the energy range down to 2 keV.

• SolarFusion II: Cross sections II: the pp chain and CNO cycles[36]
Adelberger et al.[36] present one of the most important S-factor fit for the 2H(p, γ)3He reac-
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tion. It has been performed fitting the experimental data from [27],[30], [31] and [32] with a
polynomial function of degree 3.

• R-matrix: Compilation and R-matrix analysis of Big Bang nuclear reaction rates[37].
In Descouvemont et al., S-factor extrapolation at lower energies, where no experimental
data is available, has been obtained by using the R-matrix technique in which the cross-
section has been calculated using Coulomb functions. In other words, this technique can
parametrize some experimentally known quantities such as the cross-sections or phase shifts,
with a small number of parameters, which are then used to extrapolate the cross-section down
to astrophysical energies.

• Marcucci 2016: Implication of the Proton-Deuteron Radiative Capture for Big Bang
Nucleosynthesis[38].
2H(p, γ)3He reaction is of high interest also for theoretical nuclear physics. The astrophysical
S-factor in the BBN energy range is calculated using an ab initio approach. It consists of a
quasi-exact solution of the Schrodinger equation determined by experimental measurements.
This method has been improved over the years and its latest implementation is discussed
by Marcucci et al. [38] In this last work particular attention is paid to the determination
of the S-factor with an uncertainty of 1% or even less and its implication on the deuterium
primordial abundance. Using the most recent determination of the baryon density of the
Planck experiment, and with a standard number of relativistic degrees of freedom Nν ,e f f =
3.046 during primordial nucleosynthesis, an excellent agreement between the predicted value
and the experimental determination of the deuterium abundance is reached.

• LUNA 2020: The baryon density of the universe from an improved rate of deuterium
burning[39].
In Mossa et al.,[39] the cross-section of 2H(p, γ)3He is measured in the BBN energy range
of 32 - 263 keV at the LUNA 400 kV accelerator at LNGS. A high-purity windowless Deu-
terium gas target, maintained at 0.3 mbar, was bombarded using an intense proton beam and
the γ-rays produced were detected using a High Purity Germanium (HPGe) detector. The
results obtained are shown in figure 2.6 along with previous measurements. The LUNA
fit provided an improvement on the earlier estimates for the cross-section for 2H(p, γ)3He
and the corresponding baryon density calculated from the BBN codes[22] were found to be
precise to a 1.6% level, and in excellent agreement with the measurement of Ωbh2 by the
PLANCK Collaboration [9].

• Turkat 2021: Measurement of the 2H(p, γ)3He S-factor at 265–1094 keV[40].
Turkat et al.[40] studied the cross-section of 2H(p, γ)3He in the energy range 265 to 1094 keV,
corresponding to an earlier phase of BBN at higher temperatures. The experiment was per-
formed at the Ion Beam Center of Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dres-
den, Germany. The accelerator provided an intense proton beam of energy 265 to 1094 keV
(in the centre-of-mass frame) at an intensity of 3 - 4 µA intensity on a solid target. The
solid Titanium Deuteride (TiD) was prepared using low-energy ion implantation at HZDR.
The S factor obtained is shown in figure 2.7 along with previous measurements. The HZDR

23



2.6. PHYSICAL MOTIVATION FOR THIS WORKCHAPTER 2. BIG BANG NUCLEOSYNTHESIS

Figure 2.6: LUNA result (red points and red line)[39] for S-Factor for 2H(p, γ)3He in comparison
with previous measurements.

measurement, when compared to the extrapolation of LUNA measurement [39], is higher by
∼ 10%. The new data support a higher S factor at Big Bang temperatures than previously
assumed, reducing the predicted deuterium abundance.

2.6 Physical Motivation for this Work
Given the discrepancy between the high-energy Turkat et al.[40] data and the LUNA high-energy
extrapolation[39], a new measurement for the cross-section of 2H(p, γ)3He is proposed. This mea-
surement will be done in the energy range of 300 to 800 keV, overlapping with the LUNA mea-
surement as well as the high-energy HZDR measurement, to contain the existing tension between
the two. Since the LUNA measurement is the most precise measurement made to date in the BBN
energy range, this new measurement will allow confirmation of the results of LUNA through a
completely independent experiment (different accelerator, target and detector setup). Therefore,
this thesis work will provide a new cross-section over a wide energy range. The combination of
the present results with the previous LUNA data allows us to improve the existing theoretical mod-
els for primordial nucleosynthesis. The new proposed experiment will also explore the angular
distribution measurement for the 2H(p, γ)3He reaction.
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Figure 2.7: S-factor fit of 2H(p, γ)3He reported in Turkat et al[40] in comparison with previous
studies.
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Chapter 3

2H(p, γ)3He at Felsenkeller

Proton captures induced by charged particles are studied through γ-ray spectroscopy. The 2H(p,
γ)3He reaction has been measured directly at the BBN energy range (30 to 300 keV) by the LUNA
Collaboration[39] and at higher energies by Turkat et al.[40] in HZDR. In this chapter, a new
experimental campaign of the 2H(p, γ)3He reaction overlapping with both LUNA and HZDR data
is reported.
This chapter will start with the description of the underground Felsenkeller laboratory followed by
the experimental setup for the study of the 2H(p, γ)3He reaction.

3.1 Felsenkeller Laboratory
Felsenkeller facility[41] has a 5 MV Pelletron accelerator installed in a shallow underground lab-
oratory in Dresden, Germany. The accelerator is run in collaboration with the Helmholtz-Zentrum
Dresden Rossendorf (HZDR) and the Technical University of Dresden (TUD). The facility is under
40 m of rock overburden, equivalent to 140 m of water, which reduces the muon background by
a factor of 40 and the neutron background by a factor of 180. Overall, the cosmic ray effects are
attenuated by 99% providing a high level of background suppression.
In figure 3.1, the γ-background at Felsenkeller compared with other laboratories is given. Felsenkeller,
as described above, has a 99% reduction of the γ background which includes the natural radioac-
tivity, which dominates below 3 MeV and cosmic ray and neutron-induced events which dominate
above 3 MeV[42]. Such a background reduction is sufficient to study the 2H(p, γ)3He reaction
which has a relatively high cross-section in the order of micro barns (≈ 10−30cm2) and the gammas
of interest are above 3 MeV.
The laboratory consists of two connected tunnels dug into a cliff face (Figure 3.2). The 5 MV
Pelletron tandem accelerator has been installed at the far end of the tunnels. The accelerator works
in two modes: tandem and single-ended. In tandem mode, which is the original mode of opera-
tion, negatively charged ions are accelerated towards a positive terminal voltage, where an electron
stripping system rids the ions of two or more electrons, thus converting them to positively charged
ions. These positive ions are then once more accelerated to ground potential, to the high-energy
side of the accelerator. On the other hand, in the single-ended mode, the positive ions are directly
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Figure 3.1: γ-background on the Earth’s surface, at Felsenkeller and LUNA in Gran Sasso.

produced at the voltage terminal and then accelerated. An internal ion source is installed and the
ions are directly produced at the voltage and then accelerated. The internal ion source provides 4H
and 2H beams.
Once accelerated, the ion beam is transported via evacuated beamlines to the high-energy electro-
magnet, and then to the target chamber for the proposed experiment. The magnet also acts as a
filter, filtering out all unwanted particles in the beam with the wrong mass and charge.
The scientific experiments are carried out in two concrete bunkers, which are surrounded by a 40
cm layer of reinforced concrete. The cement, sand, and gravel had been analyzed before each load
of concrete was mixed, to ensure a specific radioactivity of less than 20 Bq/kg both for the uranium
and for the thorium chain of naturally occurring radioactive materials.

3.2 Experimental Setup

For the 2H(p, γ)3He experiment, the accelerator provides a proton beam of 300 - 800 keV lab
energy, at 5 µA intensity. The beam energy is calibrated using the magnet scan approach and reso-
nance scan of the well-known resonances of 27Al(p, γ)28Si, 14N(p, γ)15O and 13C(p, γ)14N.
The target is mounted at the end of the beamline in bunker 111. The target closes the beamline
and works as a beamstopper. The beam current is acquired on the target by using the Faraday cup
approach. In close vicinity around the target, 4 high purity germanium (HPGe) detector clusters
and two single crystal HPGe detectors have been set up at various angles and distances to the tar-
get as displayed in figures 3.3 and 3.4. The euroball (EB) septuple cluster EB18 is set up looking
vertically down onto the target, while euroball septuple cluster EB17 along with the miniball triple
clusters MB1 and MB2 as well as the single cluster Ronald 100 (Ron100) and the single crystal
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Figure 3.2: Overview of the Felsenkeller laboratory in Dresden, Germany.

detector Canberra60 (Can60) are all in the same horizontal plane as the target. To further reduce the
effects of natural background in the γ spectra, a lead castle has been built around the entire detector
setup providing further shielding. The cluster MB1 and the detector Can60 additionally each have
a Bismuth-Germanate-Oxide-Detector (BGO) surrounding the HPGe detectors which function as
a muon and Compton veto detector. If an event is detected in coincidence in the BGO and the
germanium detector, then it is either unwanted radiation from outside of the detector set-up, such
as a muon that has made it through the rock and lead or it is an escaping photon from Compton
scattering. Either way, discarding this event reduces unwanted background or the Compton con-
tinuum, improving the peak-to-Compton and background ratios. It was not possible to equip every
cluster with a BGO, as the space required for the BGOs would mean, that the clusters would have
to be positioned at a further distance, which is detrimental to the detection efficiency.
Each detector cluster is divided into single crystals; in total the 6 HPGe detectors are partitioned
into 22 crystals, each of which can be read out and analyzed separately. It is important to know the
angles at which the detectors are positioned, to measure the angular distribution of the 2H(p, γ)3He
reaction. Furthermore, a detector that is not under 90◦ to the target can potentially see Doppler
shifts in the spectrum (see section 4.1.9).
A summary of the detector positions is provided in table 3.1. These are preliminary measurements
done with a protractor and a measuring tape in a complicated setup. To measure the angles, the
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Figure 3.3: Detector Setup (View from Top).

target was taken as the centre point and then a laser was aligned through this point with the centre
of the end cap of each detector. The angle was measured from the extension of the beamline to
the centre of the end cap of each detector. Thus, detectors downstream of the target, such as MB2
are at small angles, whereas detectors upstream of the target such as MB1 are at large angles. The
distances were measured with a measuring tape to the front of the end cap of the detectors. These
preliminary measurements will be used for further analysis in this thesis.
The entire beamline and the target are enclosed within a steel pipe, which is constantly evacuated
with multiple pumps. The target itself is held in place in the centre of the beamline by a copper
target holder. This target holder extends from the back of the beamline to the position of the target.
This means, that every detector in a position of less than θ = 90◦ is additionally shielded from the
target by part of the target holder.
For the experiment, two types of solid targets were prepared: TiD and ZrD2. TiD was prepared
at HZDR, Dresden through low energy ion implantation on Tantalum backings while ZrD2 was
prepared at INFN, Legnaro through reactive sputtering on Tantalum backings. The target chamber
is cooled using LN2 connected via the dewars as shown in figure 3.4.
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Figure 3.4: Part of the experimental setup can be seen.

Table 3.1: Detector positions at Felsenkeller.

Detector Angle (wrt beamline) in ◦ Distance from target (in cm)
EB18 90 5.0
EB17 39 20.1
MB1 118 18.5
MB2 36 18.4
Can60 89 19.0
Ron100 143.5 15.5
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Chapter 4

Data Analysis

In this section, a detailed description of the data analysis carried out, starting with the calibration of
the detectors, the calculation of the cross-section for 2H(p, γ)3He and finally the angular distribution
of the cross-section. In this thesis, the data analysis is performed on the ZrD2 solid target prepared
at Legnaro (LNL 125 1)

4.1 Efficiency Calibration
For the first step in our analysis, we calibrate the efficiency of all the detectors. The efficiency of
the detector is defined as the ratio of the number of γ-rays that are counted in the detector to the
number of γ-rays produced from the target chamber.
This is done by using calibrated radioactive sources. In this campaign, we use 60Co, 137Cs, 88Y and
22Na. The activities of the samples are listed in table 4.1.

Table 4.1: Radioactive Sources for Calibration.

Sample Calibration Date Activity (kBq)
60Co 1 Jan 2005 260.7 ± 1.9
137Cs 1 Jan 2005 11.2 ± 0.12
22Na 1 Jul 2020 49.3 ± 0.5
88Y 12 Jan 2022 103.2 ± 0.7

4.1.1 137Cs
137Cs is a radioactive nucleus which has a half-life of 30.08 years. It undergoes β− decay to reach
the metastable state of 137Bam, before decaying to the ground state 137Ba by emitting a photon of
662 keV. The decay level scheme is shown in figure 4.1.
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Figure 4.1: Decay level scheme of 137Cs.

4.1.2 60Co

The radioactive isotope 60Co has a half-life of 1925.28 days. The nucleus undergoes a β− decay
to form 60Ni by emitting two photons of energies 1173.23 keV and 1332.49 keV respectively, as
shown in the decay level scheme is figure 4.2.

Figure 4.2: Decay level scheme of 60Co.

32



4.1. EFFICIENCY CALIBRATION CHAPTER 4. DATA ANALYSIS

4.1.3 22Na

The radioactive nuclei 22Na has a half-life of 2.6018 years. It undergoes a β+ decay to form 22Ne
in the excited state before decaying to its ground state by emitting a photon of energy 1274.5 keV.
The decay level scheme is shown below in figure 4.3.

Figure 4.3: Decay level scheme of 22Na.

4.1.4 88Y
88Y is a radioactive isotope of Y that has a half-life of 106.626 days. It undergoes a β+ decay
to form 88Sr in the excited state before decaying to its ground state by emitting two photons of
energies 898.04 keV and 1836.07 keV respectively. The decay level scheme is shown below in
figure 4.4.

Figure 4.4: Decay level scheme of 88Y.

The radioactive sources above cover an energy range from 662 keV to 1836 keV. Since the Q-value
of 2H(p, γ)3He is at 5493 keV, it is necessary to extend the detection efficiency to higher energies.
This is done by using the known resonance of 27Al(p, γ)28Si at 992 keV. The efficiency for each
detector is determined using a multi-parametric approach described in section 4.1.7.

33



4.1. EFFICIENCY CALIBRATION CHAPTER 4. DATA ANALYSIS

4.1.5 27Al(p, γ)28Si
27Al captures a proton at the resonance energy, ER = 992 keV to form 28Si in the excited state with
energy 12541.8 keV. The decay scheme from this level follows a very complicated process, with
the dominant path being a decay into 1778.7 keV energy level releasing a γ-ray of energy 10762.9
keV followed by another photon of 1778.7 keV as 28Si falls to its ground state. These are the two
prominent peaks of 27Al(p, γ)28Si. But decays to other metastable states from the resonance states
are possible, depending on the branching ratio and thus will result in a large number of γ-peaks
along the energy range from 1778.9 keV to 10762.9 keV. A summary of some of the prominent
peaks is shown in table 4.2, where r is the resonance energy state of 28Si. The γ spectra obtained

Table 4.2: Major γ-peaks of 27Al(p, γ)28Si[43].

Eγ (keV) Ei (keV) E f (keV) Branching Ratio
10762.9 r 1778.9 76.6 ± 1.5
7933.4 7933.4 0 3.7 ± 0.4
7924.0 r 4617.8 4.3 ± 0.4
6019.9 7798.8 1778.9 6.0 ± 0.5
4743 r 7798.8 8.8 ± 0.5
4608.4 r 7933.4 4.5 ± 0.4
4497.6 6276.5 1778.9 4.8 ± 0.3
2838.9 4617.8 1778.9 5.5 ± 0.4
1778.7 1778.9 0 94.8 ± 1.5

for 27Al(p, γ)28Si reaction at the resonance energy of 992 keV is shown in figure 4.7.

4.1.6 Net Counts from γ spectra
As the activities of the radioactive sources are well-known, we can analyze the detector response to
the emitted radiation over time to determine how efficient our detectors are. The recorded γ spectra
are analyzed to get the net area counts of the γ peaks. This is done by taking the peak area and
subtracting the background using the equation[44]:

A =
U

∑
i=L

Ci−n

(
L−1

∑
i=L−m

Ci +
U+m

∑
i=U+1

Ci

)
/2m (4.1)

where L and U are the lower and upper channels of the peak and Ci the counts for the ith channel.
The first term represents the peak counts, while the second term represents the subtraction of the
background, which is done by averaging the background counts on either side of the peak for ’m’
channels. The γ-peaks of all the radioactive sources are summarized below in figures 4.5 and 4.6.
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(a) 137Cs peak.
(b) 60Co peaks.

Figure 4.5: γ-peaks for 137Cs and 60Co in EB18G (90◦) detector.

(a) 22Na peak. (b) 88Y peaks.

Figure 4.6: γ-peaks for 22Na and 88Y in EB18G (90◦) detector.

4.1.7 Multi-Parametric Approach

The full-energy peak efficiency for a source like 137Cs, which emits only one γ-ray is given by

ηph(Ei) =
N(Ei)

biAt
(4.2)

where N(Ei) is the number of counts of the γ-ray at energy Ei, bi is the branching ratio for the
γ-ray, A is the activity of the radioactive source at the measurement time, and t is the acquisition
time. Not all the sources decay emitting a mono-energetic γ-peak; very often the decay takes place
through multiple excited states which introduces effects such as summing that should be taken into
account.
For example, in the case of 60Co (Fig 4.5), we can see the effect of summing when the 1173.2 keV
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Figure 4.7: 27Al(p, γ)28Si peaks obtained in the EB18G (90◦) detector.

and 1332.5 keV arrive at the detector simultaneously. This causes a summing out of the γ-peaks at
1173.2 keV and 1332.5 keV and a summing in peak at 2505.77 keV.
To deal with the above effects, we need to parameterize the γ-rays adequately. The summing out
and summing in effects reduce the number of counts at 1173.2 keV and 1332.5 keV respectively.
Assuming the γ-peaks at 1173.2 keV and 1332.5 keV as Eγ1 and Eγ2 respectively, we can write the
equations for the number of counts as

N(Eγ1) = Ndb1ηph(Eγ1)
(
1−b2ηph(Eγ2)

)
(4.3)

N(Eγ2) = Ndb1b2ηph(Eγ2)
(
1−ηph(Eγ1)

)
(4.4)

where N(Eγ1) and N(Eγ1) are the number of decays observed by the detector at Eγ1 and Eγ2 re-
spectively, Nd is the number of decays given by Nd = At, where A is the activity and t is the time,
b1 and b2 are the branching ratios for Eγ1 and Eγ2, ηph is the photopeak efficiency and ηtot is the
total efficiency.
To address these issues, we follow a multi-parametric approach to determine the detector efficiency,
using the following system of equations that relate the photopeak energy, Eγ to the efficiency η .

ηph(Eγ) = exp
[
a+bln(Eγ)+ cln2(Eγ)

]
(4.5)

ln
(

ηph

ηtot

)
= k1 + k2ln(Eγ)+ k3ln2(Eγ) (4.6)
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where a,b,c,k1,k2 and k3 are free parameters, ηph is the photopeak efficiency, which we need
to find, Eγ is the photopeak energy and ηtot is the total efficiency. The total efficiency refers to
the ratio of total counts recorded in the spectrum above a threshold and the number of radiation
quanta emitted by the source. Some incident quanta deposit their entire energy in the spectrum,
corresponding to the observed sharp peak, while others deposit only a fraction of their energy
giving rise to a continuum below the full-energy peak. The photopeak efficiency on the other hand
is the ratio of counts recorded only in the full-energy peak and the number of quanta emitted by the
source.
The steps followed in the multi-parametric approach are:

• Calculate the observed yield using the number of counts extracted from the γ spectra of the
calibration sources.

• Make initial guesses for the free parameters and calculate the model yield using the equations
4.3, 4.4, 4.5 and 4.6.

• Fit the free parameters to minimize the χ2 value.

• Using the final parameters, calculate the yield after summing corrections.

An important point to note is that for 27Al(p, γ)28Si, instead of the number of decays Nd , we
use resonance strength, R. This value is also assumed as a free parameter and fit through the χ2

minimization. The results for the efficiency calibration for all the detectors are shown in section
4.1.8.

4.1.8 Efficiency Calibration Results

We have used the γ-peaks of the radioactive sources and 4 of the peaks of 27Al(p, γ)28Si (1778.9,
4743, 6019.9 and 10762.9) for the calibration. In addition, we also use the summing peak of 60Co
at 2505.77 as well as the annihilation peak at 511 keV for the 22Na spectra. The 88Y peaks were
not used for the calibration due to the γ-peaks being unstable as a result of the Al O-ring used in
the target mount for 88Y. The efficiency curve obtained is shown in figures 4.9 to 4.14 as well as
the free parameter values set after the χ2 minimization. In figure 4.8, we plot the yield, which
is the number of counts normalized to the accumulated charge and activity ( Nc

q∗A ) in the case of
the radioactive sources and the number of counts normalized to the accumulated charge in case of
27Al(p, γ)28Si. Figure 4.8 shows the observed yield, the model yield with the best-fit parameters
and finally the yield after applying the summing corrections. A summary of the percentage change
in efficiency due to summing effects is listed in table 4.3. The efficiency curves for all the detectors
are shown in figures 4.9 to 4.14. From 4.3, the summing corrections applied can be seen. For 60Co,
the summing out effect is highest for EB18G detector crystal at 90◦ as this detector is the closest to
the target chamber (see table 3.1). On the other hand, EB17G shows the least summing corrections.
The summing out effect for 22Na is caused by the coincidence of the 1274.55 keV photopeak with
the 511 keV annihilation peak. The summing out effect seen for 22Na mirrors that seen for 60Co.
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In figures 4.9 to 4.14, along with the efficiency curves, the efficiencies are also calculated without
the summing corrections using

η =
Nc

A∗ t ∗b
(4.7)

Nc is the total peak counts, A is the activity of the source at the measurement time, t is the time
of the data taking and b is the branching ratio. The plot shows the efficiencies before and after
summing corrections.

Figure 4.8: Experimental yield and residuals for EB18G (90◦) detector. See details in the text
(section 4.1.8).

Table 4.3: Summing corrections for all detectors for 60Co and 22Na.

E (in MeV) EB18G (%) Can60 (%) Ron100 (%) MB13 (%) MB23 (%) EB17G (%)
1.17323 11.2278 8.9542 7.9800 8.6708 12.1369 1.3977
1.27457 7.9641 3.4879 7.7436 8.7547 7.9330 0.0138
1.33249 9.3752 7.1968 9.0196 7.7732 10.6269 0.9977
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Figure 4.9: Efficiency curve for EB18G (90◦) detector.

Figure 4.10: Efficiency curve for Can60 (89◦) detector.

39



4.1. EFFICIENCY CALIBRATION CHAPTER 4. DATA ANALYSIS

Figure 4.11: Efficiency curve for MB13 (118◦) detector.

Figure 4.12: Efficiency curve for MB23 (36◦) detector.
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Figure 4.13: Efficiency curve for Ron100 (143.5◦) detector.

Figure 4.14: Efficiency curve for EB17G (39◦) detector.

41



4.2. TARGET ANALYSIS CHAPTER 4. DATA ANALYSIS

4.1.9 Doppler and Recoil Correction

The energy of the γ-ray released from the 2H(p, γ)3He is given by

Eγ = Q+
mD

mHe
E +∆Edoppler−∆Erecoil (4.8)

where Q = 5.493 MeV, mD and mHe are the masses of Deuterium and 3He respectively, E is the
energy of the proton beam in the centre of mass frame, ∆Edoppler is the change in energy due to the
Doppler effect and ∆Erecoil is the correction factor due to the recoil of the nucleus. The relativistic
expression for the energy of the γ is given by

Eγ =
Q
(
mHc2 +mDc2 +mHec2)/2+mDc2E

mHc2 +mDc2−E− cosθ
√

E(2mHc2 +E)
(4.9)

where θ is the angle between the direction of the beam and the detector. For our arrangement of
detectors, the expected energy, Eγ is reported below in table 4.4.

Table 4.4: Expected γ-peaks for the different detectors in units of keV.

Elab (keV) Eγ at 90◦ Eγ at 89◦ Eγ at 118◦ Eγ at 36◦ Eγ at 143.5◦ Eγ at 39◦

300 5687.0 5687.8 5664.6 5726.1 5648.7 5724.5
350 5720.2 5721.1 5695.9 5762.7 5678.6 5760.0
400 5753.4 5754.4 5727.3 5799.1 5708.8 5797.3
500 5819.9 5821.0 5790.3 5871.6 5769.4 5869.5
608 5891.6 5892.9 5858.6 5949.4 5835.3 5947.1
700 5952.8 5954.1 5917.0 6015.4 5891.8 6012.9
800 6019.2 6020.6 5980.5 6087.0 5953.3 6084.3

4.2 Target Analysis
In the calculations performed to obtain the astrophysical S Factor (see section 4.3), the target thick-
ness is an important parameter. The loss of energy within the target ∆E (see section 4.3.3) is de-
pendent on the target thickness. Therefore, an accurate estimation of the thickness is of paramount
importance.
In this study, the target analysis of LNL 125 1 is performed using Elastic Recoil Detection Analy-
sis (ERDA). The principle of ERDA is based on the elastic scattering of incident ions on a sample
surface and detecting the recoiling sample atoms[45], typically in reflection geometry, as shown in
figure 4.15. The stopper foil acts as a forward scatter veto, allowing only the recoiling light nuclei
through which are then detected.
In the ERDA of LNL 125 1, a 35 MeV beam of Cl7+ ions is used to analyse the solid deuterium
target. The angle between the sample normal and the incoming beam is 70◦, and the scattering
angle is 30◦. The analysed area is about 1.5 x 2 mm2. The recoil atoms and scattered ions have
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Figure 4.15: Schematic diagram of the ERDA geometry.

(a) Depth profile in the beam spot of LNL 125 1.
(b) Depth profile outside the beam spot of
LNL 125 1.

Figure 4.16: Depth profiles extracted from the measurements.

been detected with a Bragg Ionisation Chamber, which enables energy measurement and Z identi-
fication of the particles. 1H and 2H recoils have been detected with a separate solid-state detector
at a scattering angle of 40◦. This detector is preceded by a 25 µm Kapton foil to stop scattered ions
and heavy recoil ions.
The depth profiles of the target are shown in figure 4.16. LNL 125 1a in refers to the beam spot,
while LNL 125 1a out is 2 mm away from the beam spot. Table 4.5 displays the results of the
ERDA of LNL 125 1. The thickness of deuterium is obtained by integrating the depth profiles.
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Table 4.5: Depth Profile of and Deuterium thickness of LNL 125 1a.

Sample Zr (%) O (%) D (%) H (%) D (in 1015 at/cm2) H (in 1015 at/cm2)
LNL 125 1a in 33.2 4.26 51.2 11.3 1810 484
LNL 125 1a out 35.2 2.46 52.3 10.1 1850 384

4.3 S Factor

In the next step of the analysis, the astrophysical S-factor of the 2H(p, γ)3He reaction is calculated.

4.3.1 Calculation of Net Area
Similar to the calculations of the net peak area of the γ peaks in section 4.1.6, the areas for the γ

peak for 2H(p, γ)3He is calculated. For the experiment, the proton beam energy was varied from
300 to 800 keV, while 608 keV was chosen as the reference energy run. This reference run was
performed before and after each of the energy runs to understand the possible degradation of the
targets by comparing the acquired yield.
An example for the γ spectra of 2H(p, γ)3He for EB18G detector (90◦) and proton beam energy
of 800 keV is shown in figure 4.17. While the Q value of the reaction is at Q = 5.493 MeV, the
photopeak in this spectra is shifted to higher energy due to the energy of the proton beam and
Doppler and Recoil corrections mentioned in equation 4.9.
Additionally, the main sources of background besides the radioactive and muon background, are
the beam-induced background produced by 19F(p, αγ)16O reaction and other contaminants in the
target or in the beamline path. 19F is present in the Tantalum backings used to prepare the deuterated
targets and the 19F(p, αγ)16O reaction has a resonance at 340 keV, producing the γ peak at 6.130
MeV along with the single and double escape peak. The escape peaks are also clearly visible in the
spectrum.
Figure 4.17a also shows the peak of the 2H(p, γ)3He reaction aı̀in the EB18G (90◦) detector. The
peak area is calculated using the equation 4.1, considering the peak region as shown in figure 4.17b
and the average background on either side of the peaks for ’m’ channels.
This process is repeated for all the detectors, and each of the proton beam energies, ranging from
300 to 800 keV. Once all the net areas are obtained, we proceed to the next step which is the
calculation of the yield.

4.3.2 Yield of 2H(p, γ)3He
Thermonuclear reaction cross-sections are not usually directly measured in the laboratory. Instead,
we measure the reaction yield, defined as the ratio of the total number of reactions that occurred to
the total number of incident beam particles.

Y =
NR

Nb
(4.10)

44



4.3. S FACTOR CHAPTER 4. DATA ANALYSIS

(a) 2H(p, γ)3He peaks along with 19F(p, αγ)16O
peaks.

(b) 2H(p, γ)3He photopeak.

Figure 4.17: Two zoom in the region of interest for the gamma spectrum acquired at 800 keV with
the EB18G (90◦) detector. The region of interest is shown delimited in panel (b) and the fluorine
peaks are underlined in panel (a).

Experimentally, we obtain the number of counts as explained in section 4.3.1.
Thus, the experimental yield is given by:

Y =
Nγ

ηq
.qe (4.11)

where qe = 1.6x10−19 C is the elementary charge, Nγ is the number of counts in the peak, η is the
efficiency of the EB18G detector and q is the accumulated charge expressed in coulombs (C).
Using 4.11 for all the detectors and the energy range of the proton beam, the reaction yield is
calculated and they are shown for each of the detectors in figures 4.18 to 4.23. For a detailed
discussion of the results, see chapter 5.
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Figure 4.18: Yield for EB18G detector at 90◦.

Figure 4.19: Yield for Can60 detector at 89◦.
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Figure 4.20: Yield for Ron100 detector at 143.5◦.

Figure 4.21: Yield for MB13 detector at 118◦.
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Figure 4.22: Yield for MB23 detector at 36◦.

Figure 4.23: Yield for EB17G detector at 39◦.
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4.3.3 Angular Correction of Yield
Although the detectors are placed at different angles, they still cover only a part of the total solid
angle. Therefore, the yield needs to be corrected for the angular distribution. The angular correction
term, W (θ) is a function of the sum of Legendre Polynomials[46] and is given by

W (θ) = 1+
1
a0

∑
l

alPl(cosθCM) (4.12)

where Pl is the lth Legendre polynomial. In this work we assumed values from the theory and the
ai are the best-fit coefficients obtained from theoretical calculations of the 2H(p, γ)3He reaction by
Marcucci et al[38].
θCM is defined as follows

cosθCM =
cosθlab−β

1−βcosθlab
(4.13)

where β = v/c and θlab is the position of the detectors in the laboratory frame. The velocity of the
beam is obtained from the energy of the proton beam used. To compute W (θ), the first 5 Legendre
polynomials are used here and are defined as follows

Pl(cosθCM) =



1 l = 0
cosθCM l = 1
1
2

(
3cos2θCM−1

)
l = 2

1
2

(
5cos3θCM−3cosθCM

)
l = 3

1
8

(
35cos4θCM−30cos2θCM +3

)
l = 4

(4.14)

The coefficients ai in equation 4.16 obtained from [38] are listed below in table 4.6.

Table 4.6: Coefficients for Legendre Polynomials ai.

E (keV) a0 a1 a2 a3 a4

300 116.235 6.402 -109.619 -5.949 -0.075
350 132.923 7.934 -126.335 -7.465 -0.119
400 149.147 9.472 -142.462 -8.983 -0.141
500 176.949 12.576 -170.363 -12.121 -0.213
608 204.877 16.22 -198.501 -15.704 -0.285
700 227.357 21.187 -220.936 -20.644 -0.51
800 249.451 25.142 -243.009 -24.614 -0.666

Using equation 4.14, the angular correction W (θ) is computed and summarised in table 4.7. Finally,
the yield obtained in section 4.3.2 is corrected for the angular distribution by

Ycorr(E,θ) =
Y (E,θ)
W (θ)

(4.15)
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Table 4.7: Angular Correction factor W (θ) for all energies for each detector.

Energy (keV) W(90◦) W(89◦) W(143.5◦) W(118◦) W(36◦) W(39◦)
300 1.4685 1.4713 0.5062 1.0934 0.5992 0.6756
350 1.4716 1.4747 0.4984 1.0886 0.6003 0.6778
400 1.4735 1.4769 0.4925 1.0842 0.6020 0.6802
500 1.4762 1.4801 0.4819 1.0753 0.6060 0.6857
608 1.4781 1.4825 0.4716 1.0661 0.6112 0.6920
700 1.4777 1.4829 0.4593 1.0515 0.6218 0.7041
800 1.4776 1.4832 0.4516 1.0427 0.6280 0.7112

4.3.4 Calculation of S Factor
The Yield of the reaction and the cross-section are related by the equation,

Ycorr =
∫ E0

E0−∆E

σ(E)
εe f f (E)

dE (4.16)

where εe f f (E) is the effective stopping power of the target material. Stopping power is used to
describe the slowing down of the projectile through the target as a result of collisions. Since this is
quite small, it is described as an average energy loss in the target. For this study, the target used is
LNL 125 1 (ZrD2). The effective stopping power is defined as

εe f f = εH +
1
2

εZr (4.17)

where 2H is the active nuclei while Zr is the inactive nuclei that do not participate in the reaction.
The term ∆E is the loss of energy through the target and is a function of the target thickness and
the total stopping power

∆E = t ∗ εtot(E) (4.18)

where t is the thickness and the total stopping power εtot(E), is defined as

εtot(E) =
2εH + εZr

3
(4.19)

It is important to note that the yield in equation 4.16 is the angular corrected yield defined in
equation 4.15 and for the remainder of this work, the angular corrected yield will be denoted by
Ycorr. Recalling 1.20, equation 4.16 can be rewritten in terms of S Factor as

Ycorr =
∫ E0

E0−∆E

1
E

S(E)e−2πη

εe f f (E)
dE (4.20)

Since the loss of energy within the target is small (∼ few keV), and the astrophysical S Factor for a
non-resonant process is a weak function of energy, the S Factor can be approximated as a constant
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in the energy range E0−∆E to E0. It can be taken out of the integral. Now, rearranging equation
4.20 for the S Factor,

S(E) =
Ycorr∫ E0

E0−∆E
1
E

e−2πη

εe f f (E)
dE

(4.21)

But, there is a loss of energy of the proton beam amounting to ∆E. The energy E0 corresponds to
the energy of the beam at the surface of the target while E0 - ∆E is the energy at the full depth of
the target. Therefore, for an accurate estimation, the effective energy Ee f f is defined [47]. Figure
4.24, shows the variation of the cross-section σ(E) with the energy. The shaded part represents
the target at various depths, with Ep corresponding to the surface and Ep - ∆Ep corresponding to
the maximum depth, which is also the thickness of the target. Defining the corresponding cross-
sections, we have σ(Ep) and σ(Ep−∆Ep) at both the respective energies. Effective energy, Ee f f
is defined as the energy at which the cross-section becomes

σe f f =

(
σ(Ep)+σ(Ep−∆Ep)

2

)
(4.22)

The expression of Ee f f is defined as

Figure 4.24: Variation of σ(E) w.r.t. the energy.

Ee f f =

∫ Ep
Ep−∆Ep

σ(E)EdE∫ Ep
Ep−∆Ep

σ(E)dE
(4.23)

Substituting 1.20, we get

Ee f f =

∫ Ep
Ep−∆Ep

e−2πηdE∫ Ep
Ep−∆Ep

e−2πη

E dE
(4.24)
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The S Factor terms cancel out based on the assumption that it is a constant over the small energy
range Ep - ∆Ep to Ep. The results obtained for the S Factor for the different detectors are shown in
figures 4.25 to 4.30 and summarised in table 4.8.

Table 4.8: Astrophysical S Factor all energies for each detector. Uncertainties are also shown
(systematic + statistical).

E (keV)S(90◦)(eV b) S(89◦)(eV b) S(143.5◦)(eV b) S(118◦)(eV b) S(36◦)(eV b) S(39◦)(eV b)
191.5 3.10 (4) 2.94 (8) 3.11 (9) 2.86 (10) 4.26 (18) 3.16 (23)
225.6 3.52 (10) 3.27 (10) 3.52 (12) 3.27 (12) 5.00 (22) 4.40 (27)
259.5 4.19 (10) 3.87 (9) 4.29 (11) 3.99 (12) 6.21 (21) 6.01 (22)
327.0 5.46 (14) 4.86 (12) 5.34 (15) 5.36 (17) 8.10 (28) 7.37 (34)
399.7 6.66 (21) 6.48 (20) 6.72 (24) 6.37 (24) 9.22 (48) 8.98 (54)
461.4 7.92 (28) 7.57 (27) 8.76 (36) 7.70 (37) 11.37 (56) 9.64 (70)
528.4 8.86 (24) 8.79 (23) 9.71 (31) 9.11 (33) 12.69 (49) 10.89 (61)

Figure 4.25: S Factor for EB18G detector at 90◦. Uncertainty of 1 to 3.5% for the energy range.
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Figure 4.26: S Factor for Can60 detector at 89◦. Uncertainty of 2 to 3.5% for the energy range.

Figure 4.27: S Factor for Ron100 detector at 143.5◦. Uncertainty of 3 to 4% for the energy range.
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Figure 4.28: S Factor for MB13 detector at 118◦. Uncertainty of 3 to 5% for the energy range.

Figure 4.29: S Factor for MB23 detector at 36◦. Uncertainty of 3 to 5% for the energy range.
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Figure 4.30: S Factor for EB17G detector at 39◦. Uncertainty of 3 to 7.5% for the energy range.
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Chapter 5

Results and Discussion

In this chapter the results of the 2H(p, γ)3He campaign at Felsenkeller will be summarized. First,
the detector characterization will be discussed, followed by the S Factor calculation with the target
LNL 125 1. The results will also be compared with LUNA data[39] in the BBN range and the
high-energy extrapolation, as well as with the high-energy measurement at HZDR[40].

5.1 Efficiency
A combined plot of the efficiencies for all the detectors is shown in figure 5.1. EB18G at 90◦ shows
the highest efficiency as expected since the detector is also the closest to the target chamber.

Figure 5.1: Summary of efficiency plots for all detectors.

The contribution to the systematic error during the detector characterization step is ≈ 2−5%.

56



5.2. ANGULAR DISTRIBUTION OF YIELD CHAPTER 5. RESULTS AND DISCUSSION

5.2 Angular Distribution of Yield
Here, the angular distribution of the yield for the reference energy of 608 keV is shown in figure
5.2 using all the detectors.

Figure 5.2: Angular distribution of yield at 608 keV.

The results obtained for the angular distribution for the Felsenkeller 2H(p, γ)3He campaign is con-
current with results from literature[48]. As expected, the highest yield is obtained at 90◦ while the
values decrease rapidly at lower angles.

5.3 S Factor

The S factor obtained for the 2H(p, γ)3He reaction is shown in figure 5.3 for all the detectors.
The values for the S Factor are summarized in table 4.8 along with the uncertainties. EB17G
(39◦) has the highest uncertainty (max error ≈ 7−8%), which is predominantly statistical (error in
counts). With the exception of EB18G at 300 keV lab energy (uncertainty ≈ 1.2%), EB18G (90◦),
Can60 (89◦) and Ron100 (143.5◦) have similar uncertainties in the range 2 to 4% over the energy
range. MB13 (118◦) and MB23 (36◦) show a slightly higher uncertainty in the range of 3 to 5%.
The main contributors to the uncertainty are

• Counts (statistical)

• Efficiency of detectors (systematic)
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Figure 5.3: Summary of S Factors for all detectors.

• Beam current (systematic)

The uncertainty in the target density is not considered for the preliminary data analysis presented
in this thesis. In addition, there are minor contributions to the statistical uncertainty from the
calculation of the angular correction coefficients (W) and numerical integration for the S Factor,
but these are too small and therefore ignored in this analysis.
In summary, the S Factor values obtained for EB18G (90◦), Can60 (89◦), Ron100 (143.5◦) and
MB13 (118◦) are in good agreement with each other. MB23 (36◦) has an S Factor value higher
by a factor of ≈ 1.5, which could be a result of the mispositioning of the detector which could
cause an error in the detector characterization. The experimental setup is implemented in Geant4
and checks with simulations are ongoing which is beyond the scope of this thesis. EB17G shows
an erratic trend due to the high statistical uncertainty (7%) caused by the counting error. Further
analysis considering all 6 crystals of the EB17 is ongoing and this will surely decrease the statistical
uncertainty.

5.3.1 Comparison with LUNA and HZDR
For the comparison, the S Factor of EB18G (90◦), Can60 (89◦), Ron100 (143.5◦) and MB13 (118◦)
are considered. The S Factors for each of the 4 detectors are compared with LUNA and HZDR
results in figures 5.4 to 5.7. The discrepancies for the detectors are summarised in tables 5.1 to 5.3.
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Figure 5.4: S Factor obtained for EB18G (90◦) detector in comparison to LUNA and HZDR data
and fit.

Table 5.1: EB18G detector (90◦): S factor and discrepancy with LUNA and HZDR S factor fits.

Ee f f (keV) S (90◦)(b) ∆S
SLUNA

∆S
SHZDR

191.5 3.10 (4) 1.01 1.00
225.6 3.52 (10) 0.94 0.91
259.5 4.19 (10) 1.00 0.94
327.0 5.46 (14) 1.03 0.92
399.7 6.66 (21) 0.98 0.81
461.4 7.93 (28) 1.00 0.79
528.4 8.86 (24) 0.91 0.66
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Figure 5.5: S Factor obtained for Can60 (89◦) detector in comparison to LUNA and HZDR data
and fit.

Table 5.2: Can60 detector (89◦): S factor and discrepancy with LUNA and HZDR S factor fits.

Ee f f (keV) S (89◦)(b) ∆S
SLUNA

∆S
SHZDR

191.5 2.94 (8) 0.90 0.89
225.6 3.27 (10) 0.80 0.77
259.5 3.87 (9) 0.84 0.79
327.0 4.86 (12) 0.80 0.70
399.7 6.48 (20) 0.92 0.76
461.4 7.57 (27) 0.91 0.71
528.4 8.79 (23) 0.89 0.65
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Figure 5.6: S Factor obtained for Ron100 (143.5◦) detector in comparison to LUNA and HZDR
data and fit.

Table 5.3: Ron100 detector (143.5◦): S factor and discrepancy with LUNA and HZDR S factor
fits.

Ee f f (keV) S (143.5◦)(b) ∆S
SLUNA

∆S
SHZDR

191.5 3.11 (9) 1.02 1.01
225.6 3.52 (12) 0.93 0.90
259.5 4.29 (11) 1.04 0.98
327.0 5.34 (15) 0.99 0.88
399.7 6.72 (24) 1.00 0.83
461.4 8.76 (36) 1.21 0.98
528.4 9.71 (31) 1.09 0.82
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Figure 5.7: S Factor obtained for MB13 (118◦) detector in comparison to LUNA and HZDR data
and fit.

Table 5.4: MB13 detector (118◦): S factor and discrepancy with LUNA and HZDR S factor fits.

Ee f f (keV) S (118◦)(b) ∆S
SLUNA

∆S
SHZDR

191.5 2.86 (10) 0.85 0.84
225.6 3.27 (12) 0.80 0.77
259.5 3.99 (12) 0.90 0.84
327.0 5.36 (17) 0.99 0.88
399.7 6.37 (24) 0.89 0.74
461.4 7.70 (37) 0.94 0.74
528.4 9.11 (33) 0.96 0.71

Except for a few outlier points, the discrepancies with the LUNA fit data are constant in the range
of 0.8 to 1, for each of the 4 detectors in the energy range of interest. This could result from
the miscalibration of the targets which would affect the target thickness obtained from ERDA.
Compared to the HZDR data points, the results obtained at Felsenkeller are less scattered and the
trend of the preliminary S factor obtained is quite uniform, in spite of the normalisation factor. The
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errors obtained are also quite low when compared to the HZDR measurement. This suggests a
possible systematic discrepancy with the target. Additional analysis on target comparing different
ERDA and other techniques is ongoing and this should clarify the discrepancies on the S Factor
presented in this preliminary analysis.
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Conclusions

The 2H(p,γ)3He reaction plays an important role in the BBN. For several years this reaction has
been studied in different energy ranges. Very recently the reaction has been studied directly in the
BBN energy range at LUNA and later at higher energies at HZDR.
The S factor fits from these two data sets are in agreement at lower energies while a 10% discrep-
ancy at higher energies is shown. Therefore, new experimental data on the 2H(p,γ)3He reaction in
a wide energy range able to overlap with both data sets would be crucial.
Here the 2H(p,γ)3He reaction was studied at Felsenkeller laboratory, Dresden in the energy range
from 300 to 800 keV using a solid target setup. The product of the reaction was measured with 22
crystals mounted at different positions around the target.
The efficiency calibration of the setup was done using standard sources and the well-known reso-
nance of the 27Al(p,γ)28Si reaction was used to extend the calibration to higher energies.
The preliminary astrophysical S factor with a statistical uncertainty of 2-8% depending on the de-
tector was presented.
A preliminary comparison with the literature data shows a higher S factor data. This is mostly due
to the target density which is still under analysis and here only preliminary data are used.
Furthermore, the use of different detectors at different angles allows for the first time to measure
the angular distribution of this reaction which can affect the microphysics of the reaction.
The updated values of the S factor for the 2H(p,γ)3He reaction will help to improve the determi-
nation of the primordial deuterium abundance. Further studies can be conducted to constrain the
baryon density at higher precision using BBN theory, independent of CMB calculations.
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