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Abstract

In this thesis we study how to measure the anisotropies of the Stochastic Gravitational Wave
Background (SGWB) with a network of ground-based detectors. In particular, we investigate
how to correlate measurements at planned third-generation gravitational wave detectors, such
as Einstein Telescope, Cosmic Explorer, and a third generation of the LIGO detectors, to measure
the coefficients of an expansion in spherical harmonics of the SGWB arriving from divergent
directions of our sky. We also study the possibility of measuring different polarisations of the
SGWB.
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Introduction

Scientific interest in Gravitational Wave Background

On 14 September 2015, the Laser Interferometer Gravitational-wave Observatory (LIGO) and
the Virgo collaboration made the first direct detection of a gravitational wave (GW) signal
sourced by a binary black hole merger, named GW150914 [1]. This event came after a huge
experimental effort of more than 50 years and about one hundred years after Einstein’s first
theoretical prediction. From that day, further observations and technological improvements led
to an enrichment of the sample of GW detections. Soon the Japanese interferometer KAGRA
joined the network, giving an important contribution to this newborn field of physics and other
instruments are planned to be built in the next years. Gravitational wave astronomy has proved
firstly to be an effective tool to investigate the astrophysics of compact objects evolutions,
providing information on mass and spin parameters. Once we will own a set of measurements
rich enough, we will we able also to have a better understanding of compact objects formation
and to constrain several models of star evolution, since, as we know, astrophysical compact
objects are the results of the last stages of a stellar life.

However, we expect GWs not to bring precious information just from the astrophysical
perspective. In fact, the expected signals coming from compact objects mergers are excellent
tests of General relativity, since the merging waveforms (i.e. the shape of the GW amplitude
in time) are well known from Einstein theory. As a second important cosmological aspect of
interest in this field of research, gravitational waves can also give an independent estimate
of the Hubble rate H0 value, strongly constraining several theoretical models. Furthermore,
GWs are coupled with matter only via gravitational interaction, therefore being very weekly
coupled with all the content of the universe (gravitation is the weakest among fundamental
interactions). On one hand, this makes their detection very hard (so hard that it took a century
to see them for the first time), but on the other hand for this reason all the GWs basically
free stream from the source, without experiencing substantial alterations during their travel
towards us. This means that GWs originated by early universe events (which we expect to exist
from cosmology) may bring a faithful snapshot of the first stages of the universe history. These
events are expected to be undetectable as single events like GW150914 since they happened at
extremely high redshift and therefore very weak in amplitude: we can only study the statistical
properties of signal resulting from the superposition of all the primordial GW sources as a
whole. This signal is what we call the Stochastic Gravitational Wave Background (SGWB).

We expect the SGWB background to be constituted by a cosmological and an astrophysical
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primordial component. Among the cosmological sources, the amplification of quantum vac-
uum fluctuations during inflation is expected to be at an undetectable level for 3G detectors.
However, several other mechanisms related to inflation could produce a detectable signal. [2,
3]. Other cosmological sources of the SGWB include pre-big-bang models, phase transitions,
and topological defects (see [4] for a review). The astrophysical component originates instead
from the superposition of a large number of unresolved sources that are too weak to be de-
tected individually. In the frequency range probed by ground-based detectors, the strongest
astrophysical SGWB is expected to be one due to the coalescence of black holes and neutron
star binaries.

The most immediate step to disentangle the cosmological and astrophysical components of
the SGWB is through the spectral dependence of its average (monopole) amplitude. Beside this,
crucial information will be contained in its directionality dependence. The angular anisotropies
(namely, the difference between the SGWB from any given direction, and the average monopole
value) provide information about the angular distribution of the astrophysical sources [5] and
might also become a tool to trace astrophysical or cosmological structures [6]. Anisotropies
in the astrophysical background correlate with the Large Scale Structure distribution, due to
both how the GW originate and on how they propagate to arrive to Earth [7]. Anisotropies
in the cosmological component can also be inherent in their production mechanism [8, 9] or
originate from the GW propagation in the perturbed cosmological background [10, 11]. This
might also imprint a non-Gaussian statistics to the cosmological SGWB angular anisotropies, so
that the SGWB might also be a new probe of primordial non-Gaussianity [11]. To characterize
the anisotropies, one typically decomposes the SGWB in spherical harmonics Yℓm (in one given
chosen fixed cosmological frame), and then study the correlation between different multipoles
of this decomposition.

Ground based detectors for gravitational waves detection

So far, the current network of GW experiments proved the existence of a SGWB. However, its
observation has been the object of several studies concerning its possible detection by GW
ground-based [12, 13], space-based [14] interferometry and PTA [15]. This thesis work is
aimed to provide a general methodology to study an anisotropic SGWB with a network of
ground-based detectors, taking into account the possibility to observe a polarized background,
i.e. where the production of gravitational waves is not chiral symmetric.

A ground based detector is made of an Michelson-like interferometer, whose interference
pattern can be affected by the presence of a gravitational wave signal. When a gravitational
wave comes to the detector, its arm length shows a variation in time, accordingly to the
frequency of the incoming gravitational wave. Therefore the resulting interference pattern
varies periodically: the characterization of this interference pattern variation brings information
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about the original gravitational signal. A possible design for a gravitational wave detector is the
L-shaped, schematized in figure 1. In this case we have the two perpendicular arms travelled
by two different light beams, which interfere in proximity of the photodetector. The two LIGOs,
Virgo and KAGRA interferometers are L-shaped instruments.

Figure 1: Scheme of an L-shaped gravitational wave interferometer. Image taken from the LIGO
webpage: https://www.ligo.caltech.edu/page/what-is-interferometer

Another possibility to build a GW detector is the triangular-shaped configuration, obtained
by superimposing three different Michelson-like interferometers, with an angle of 60◦ between
their arms, in such a way that each couple of interferometers shares one of their two arm
lengths. The configuration is schematized in figure 2 for Einstein Telescope (ET), which will be
built as a triangular-shaped instrument.

Ref. [12] developed a formalism for the response to the anisotropic and unpolarized SGWB
of two L-shaped detectors that are bound to the surface of the Earth, and that therefore have a
regular scan pattern related to the daily rotation of our planet. The authors choose to expand
the anisotropies in spherical harmonics and study the response of the two LIGO interferometers
to the multipolar contributions of the SGWB, computing the SNR of this network. On the other
hand, in [17] a useful formalism for the study of a polarized anisotropic background with two
L-shaped detectors has been introduced.

The aim of this thesis work is to make advantage of the formalism introduced in [17] and
extend the treatment of [12] to a more general level. The first improvement made by this work
is to go beyond the hypothesis of an unpolarized background and to consider an asymmetry
in polarizations of the SGWB, understanding how it can affect the detectability of the SGWB.

https://www.ligo.caltech.edu/page/what-is-interferometer
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Figure 2: Scheme of an triangular-shaped gravitational wave interferometer, such as Einstein Tele-
scope. The instrument is made of three Michelson-like interferometers (in figure, schema-
tized in red, green and blue), which share an arm couple by couple. Image taken from
[16]

As a second step, we generalize the results of [12] to a generic network of L-shaped and
triangular-shaped detectors, while the authors considered just the two LIGO interferometers.
Furthermore, we are able to provide explicit calculations for the response to the monopole, the
dipole and the quadrupole of the spherical harmonics expansion for a network made of the
two Advanced LIGOs, Advanced Virgo, KAGRA and Einstein Telescope (ET). In doing this
we make advantage of the formalism introduced in [17] which provide analytic expressions
useful for the computation to the response of two interferometers to the monopolar and the
dipolar component of the SGWB. As a last improvement, we provide the analogous expressions
aforementioned also for the quadrupolar component. As a last step, we study the response
of the hypothetical network of two identical ET-like instruments to this SGWB. This network
has been studied in [18], where an unpolarized SGWB has been considered and, thanks to the
short distance between the instruments considered, further assumptions has been introduced:
we show that our results agree with the ones of that paper.
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Plan of the work

The plan of the thesis work is the following. In section 1 we introduce the fundamental
quantities involved in the study of the SGWB, making assumptions on its power spectrum. In
section 2 we study the data stream on a network of ground based detectors, which is influenced
by both the action of gravitational waves and their noise. In section 3 we define what our signal
is and we explain which are the conditions necessary to a SGWB to be detected by a generic
network of ground based interferometers. In section 4 we apply the results of the previous
section to a network made of the two Advanced LIGOs, Advanced Virgo, KAGRA and Einstein
Telescope (ET). In section 5 we study an hypothetical network of two identical ETs located in
the two sites currently under consideration for the building of the instrument. This section
summarizes the publication [18]. In section 6 we present our conclusions. In appendix A we
derive some useful properties of the GW polarization operators. Appendix B shows all the
steps necessary to prove the results of section 3. In Appendix C we show that all odd terms in
Φ do not contribute to the correlators that we have computed in section 5, so that the results of
this section are corrected only to O

(
|Φ|2

)
. Appendix D provides the explicit analytical writing

of the response functions introduced in section 3. Finally, In Appendix F we present the details
of the analytic computation of the overlap functions in the small frequency regime.





Chapter 1
The stochastic gravitational wave

background

We consider gravitational waves at the location of the detectors as small perturbations of the
metric tensor on a Minkowski background, in such a way that

gµν(xα) = ηµν + hµν(xα) (1.1)

where ηµν is the (mostly positive signature) metric tensor for Minkowski spacetime and hµν the
gravitational wave. Under our assumptions of weak perturbations of the metric

h ≪ η (1.2)

We move to traceless transverse gauge (∂µhµν = hµ
µ = 0) and solve the Einstein equations in the

vacuum for this metric tensor, obtaining the plane wave solutions

hab(t, x) =
∫ ∞

−∞
d f
∫

d2n̂ e2πi f (t−n̂·x) ∑
s=+,×

hs( f , n̂) es
ab (n̂) =

≡ ∑
s

hab,s(t, x) (1.3)

where n̂ is the unit vector in R3, and e+ab(n̂), e×ab(n̂) the two polarization tensors, defined by

e+ab(n̂) = pa pb − qaqb (1.4)

e×ab(n̂) = paqb + qa pb (1.5)

where

n̂ = cos φ sin θx̂ + sin φ sin θŷ + cos θẑ (1.6)

is the direction of propagation of the plane wave (θ, φ are polar angular coordinates, while x̂, ŷ, ẑ
are unit vectors along the three Cartesian axes), while p̂ and q̂ are two directions perpendicular
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2 Chapter 1. The stochastic gravitational wave background

to n̂ and to each other, that are conventionally chosen as in [12]

p̂ = sin φx̂ − cos φŷ (1.7)

q̂ = cos φ cos θx̂ + sin φ cos θŷ − sin θẑ (1.8)

One can also consider left-handed and right-handed polarizations starting with + and ×
polarization tensors (see Appendix A for more details) and rewrite (1.3) as

hab(t, x) =
∫ ∞

−∞
d f
∫

d2n̂ e2πi f (t−n̂·x) ∑
λ=R,L

hλ( f , n̂) eλ
ab (n̂) (1.9)

The plane wave solution of equation (1.9) is defined in a reference system fixed with respect to
the cosmological fluid and in which the spatial pattern of the perturbations of the stochastic
background is assumed to be statistically time-independent. The ẑ vector of this system is
chosen to point along the direction of the earth rotation axis. To describe a stochastic source,
we treat the complex amplitude hλ( f , n̂) as a random Gaussian variable with zero mean and
with statistics therefore completely specified by its variance. The dependence of the stochastic
background on frequency and direction may be stated therefore in terms of the expectation
value of the two point correlator for the random variable hλ( f , n̂) as

〈
h∗λ ( f , n̂) hλ′

(
f ′n̂′)〉 = δλλ′δ

(2)
D
(
n̂ − n̂′) δD

(
f − f ′

)
Hλ (| f | , n̂) (1.10)

where δ
(2)
D (n̂ − n̂′) is a covariant two-dimensional Dirac delta-function on the unit two-sphere

and δD ( f − f ′) the Dirac delta function on the frequency space.
In principle, such a source has spectral properties which depends upon amplitude and

frequency in an arbitrary way. For simplicity in this work we consider a factorized dependence

Hλ (| f | , n̂) = Hλ (| f |) Pλ (n̂) (1.11)

which amounts in assuming that sources of the SGWB situated along different line of sights
emit with the same "average" spectrum in frequency.

1.1 – Energy density and spectrum

We know that gravitational waves have an average energy density (see [19])

ρGW,λ =
c2

32πG
⟨ḣ∗ab,λ ḣab,λ⟩ (1.12)
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To compute it, we start from (1.9) taking its time derivative:

ḣab,λ(t, x) = 2πi
∫ ∞

−∞
d f
∫

S2
dΩ̂ f e2πi f (t−Ω̂·x/c)hλ( f , Ω̂)eλ

ab(Ω̂) (1.13)

and using (1.10), combined with the fact that the trace of each polarization matrix defined in
(1.4) is equal to 2, we obtain

⟨ḣ∗ab,λ(t, x)ḣab,λ(t, x)⟩ =4π2
∫ ∞

−∞
d f
∫

S2
dΩ̂ f e−2πi f (t−Ω̂·x/c)e∗λ

ab (Ω̂)

∫ ∞

−∞
d f ′

∫

S2,′
dΩ̂′ f ′e2πi f ′(t−Ω̂′ ·x/c)eλ,ab(Ω̂′)⟨hλ( f , Ω̂)hλ( f ′, Ω̂′)⟩

= 16π2
∫

S2
dΩ̂Pλ(Ω̂)

∫ ∞

0
d f f 2Hλ(| f |) (1.14)

From Friedmann equations we know that the critical density assumes the following expression:

ρcrit =
3c2H2

0
8πG

(1.15)

where H0 is the Hubble rate. We define the fractional energy density in GW per logarithmic
frequency interval and per polarisation as

Ωλ
GW( f ) ≡ f

ρcrit

dρGW,λ

d f
(1.16)

and using (1.14) with (1.12) we obtain

Ωλ
GW( f ) =

4π2

3H2
0

f 3Hλ(| f |)
∫

dΩ̂Pλ(Ω̂) (1.17)

Next, we decompose the angular power spectrum in terms of spherical harmonics, writing it
as:

Pλ(Ω̂) =
+∞

∑
ℓ=0

ℓ

∑
m=−ℓ

plm,λYlm(Ω̂) , p00,λ =
√

4 π (1.18)

where the value of p00.λ is set considering the convention for the monopole Y00 = 1√
4π

. The
monopole only contributes to the energy density budget, and therefore

Ωλ
GW( f ) =

16π3

3H2
0

f 3Hλ(| f |) ⇒ Hλ(| f |) = 3 H2
0 Ωλ

GW (| f |)
16 π3 f 3 (1.19)
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The total SGWB energy density is obtained by summing (1.13) over the two polarisations. From
it, one defines the fractional energy density in GW per logarithmic frequency interval

ρGW =
c2

32πG
⟨ḣab ḣab⟩ ΩGW( f ) ≡ f

ρcrit

dρGW
d f

= ∑
λ

f
ρcrit

dρGW,λ

d f
(1.20)

Therefore

ρGW = ∑
λ

ρGW,λ ΩGW( f ) = ∑
λ

ΩGW,λ (1.21)

using (1.10) and (1.19) we can then write

ΩGW( f ) =
16π3

3H2
0

f 3 ∑
λ

Hλ(| f |) (1.22)

Assuming a symmetric background, i.e. HR(| f |) = HL(| f |) ≡ H(| f |), the last expression
becomes

ΩGW( f ) =
32π3

3H2
0

f 3H(| f |) (1.23)



Chapter 2
Data stream on ground based

interferometers and their noise model

For the aim of this thesis, we consider a network of N L-shaped ground based detectors
(as for instance LIGO, Virgo and KAGRA) and M ground based detectors with triangular
configuration (as for instance Einstein Telescope). For each L-shaped interferometer of the
network, we measure the difference ∆T of the time required by light to complete a return light
across one interferometer arm and that to complete a return flight across the other arm. The
measurement is affected by the instrument noise and possibly by a signal,

mi (t) =
∆Ti
T0

= ni (t) + si (t) , i = 1, . . . , N (2.1)

where T0 is the time needed for a return flight in absence of signal and noise (namely, twice
the unperturbed arm length).

In a similar fashion we can define the set of measurements made by each triangular-shaped
interferometer of the network. In this case, each triangular detector has an equilateral triangular
configuration with three Michelson interferometers at its vertices α = X, Y, Z, therefore

miα (t) =
∆Tiα
T0

= niα (t) + siα (t) , i = 1, . . . , M , α = X, Y, Z (2.2)

We then make the crucial assumption that the noise of each instrument of the network is not
correlated with the one present in the others. We then assume that the noise of each detector is
Gaussian with zero mean.

These assumptions imply a vanishing correlation between L-shaped and triangular-shaped
detectors 〈

ñ∗
iα ( f ) ñj

(
f ′
)〉

≡ 0 (2.3)

where i = 1, . . . , M and j = 1, . . . , N. For the L-shape detectors, we can then write

〈
ñ∗

i ( f ) ñj
(

f ′
)〉

≡ δij

2
δD
(

f − f ′
)

Pi (| f |) (2.4)

where i = 1, . . . , N and j = 1, . . . , N and we assume that our noise is Gaussian with zero mean.
For what instead concerns the variance of the noise of the triangular-shaped detectors, due

5



6 Chapter 2. Data stream on ground based interferometers and their noise model

to the fact that every interferometer shares one arm with each of the other two interferometers
(of the same detector), we write

〈
ñ∗

iα ( f ) ñjβ
(

f ′
)〉

≡ δij

2
δD
(

f − f ′
)

Nαβ,i (| f |) (2.5)

where i = 1, . . . , M, j = 1, . . . , M. In the limit in which the i-th detector has an exact equilateral
configuration, with identical instruments at the three vertices, the noise correlation matrix at
each site is formally of the type

Nαβ,i =




Nd,i No,i No,i

No,i Nd,i No,i

No,i No,i Nd,i


 (2.6)

This matrix can be diagnalized by the three channels

miA ≡ 2
3
√

3
(2miX − miY − miZ)

miE ≡ 2
3
(miZ − miY)

miT ≡
(

2
3

)3/2

(miX + miY + miZ) (2.7)

These linear combinations were introduced in [20] for the LISA experiment, that has also an
equilateral configuration (the explicit frequency dependence of Nd,i and No,i for LISA can be
found for example in ref. [21]). More precisely, we change the normalization of each channel
with respect to [20], so that the A− and E−channels behave as 90◦ degrees interferometers at
small frequency, with arm factors dab

iA,E having a standard normalization, see eq. (E.5). The
redefinition (2.7) can be written

miO = cOα miα , c ≡




4
3
√

3
− 2

3
√

3
− 2

3
√

3
0 − 2

3
2
3( 2

3
)3/2 ( 2

3
)3/2 ( 2

3
)3/2


 (2.8)

where the index O scans the three channels A, E, T, and where we stress that the same
combinations cOα are taken in each detector. Combining eqs. (2.5) and (2.7) one obtains

〈
ñ∗

iO ( f ) ñjO′
(

f ′
)〉

=
1
2

δD
(

f − f ′
)

δij δOO′ NO,i (| f |) (2.9)

with

NA,i ( f ) = NE,i ( f ) =
8
9
[Nd,i ( f )− No,i ( f )] NT,i ( f ) =

8
9
[Nd,i ( f ) + 2No,i ( f )] (2.10)
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We use these channels in this work, as they diagonalize the noise matrix, and this simplifies the
computation of the SNR that we perform below. As already remarked, and as we explicitly
verify in Section 5.2, the A− and E−channels behave as 90◦ interferometers in the small
frequency regime (which, as we show below, is the relevant one for the correlators that we are
computing). Moreover, in the small frequency regime the T−channel vanishes, so we disregard
it in our computations.

The discussion so far in this chapter assumed generic L-shaped and triangularly shaped
detectors, with noise specified by eqs. (2.4), (2.3) and (2.5). Here we specify the noise model for
the instruments that we consider in our analysis.

For what concerns the triangularly shaped detectors, we consider a noise model according to
that of the proposed Einstein Telescope (ET). From the literature, we are aware of a computation
of the ET sensitivity under the assumption that ET is a single 90◦ interferometer [22](that, as
we remarked, is appropriate for the A and E channels in the small frequency limit). We show
the sensitivity curve of [22] in Figure 3.

1 10 100 1000 104

5.×10-25
1.×10-24

5.×10-24
1.×10-23

5.×10-23
1.×10-22

f [Hz]

N
A
E
1
2
[H
z-
1
2
]

Figure 3: Predicted Power Spectral Density (PSD) of ET with data stored in [22]. On y axis we plot
the square root of the PSD accordingly to (2.10), while on x axis we plot the frequency
scale.

For what concerns instead the L-shaped detectors, we consider the noise functions of
Advanced LIGO, Advanced Virgo and of KAGRA as in [23]. We show these functions in Figure
4
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1 10 100 1000 104

10-22

10-20

10-18

10-16
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P
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1
2
[H
z-
1
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]

Figure 4: Predicted Power Spectral Density (PSD) of Advanced LIGO (red curve), Advanced Virgo
(blue curve) and KAGRA (green curve), based on data stored in [23]. On y axis we plot the
square root of the PSD, accordingly to (2.6), while on x axis we plot the frequency scale.



Chapter 3
Measurement in a network of

interferometers

We proceed as in ref. [12], that studied the sensitivity of an Earth-based detector to a direction-
ality dependent SGWB, introducing the time-dependent Fourier transform of (2.1) for L-shaped
interferometers

m̃i ( f , t) =
∫ t+τ/2

t−τ/2
dt′e−2πi f t′ mi

(
t′
)

(3.1)

Analogously, for triangular-shaped interferometers from the linear combinations (2.7) of the
measurements (2.2) at the three vertices, we can define

m̃iO ( f , t) =
∫ t+τ/2

t−τ/2
dt′e−2πi f t′ miO

(
t′
)

(3.2)

where the integration is done on a timescale τ much greater than the inverse of the smallest
frequency that we want to study, but sufficiently small that we can disregard the rotation of the
Earth in this time. We introduce the Fourier transforms of the signals s̃iO, s̃j, and of the noises
ñiO, ñj in an analogous manner.

We can then define the estimator

C (t) ≡
∫ +∞

−∞
d f

M

∑
i=1

M

∑
j=i+1

∑
O,O′

m̃∗
i,O ( f , t) m̃j,O′ ( f , t) Q̃ij,OO′ ( f ) +

+
M

∑
i=1

N

∑
j=1

∑
O

m̃∗
i,O ( f , t) m̃j ( f , t) Q̃ij,O ( f ) +

+
N

∑
i=1

N

∑
j=i+1

∑
O,O′

m̃∗
i ( f , t) m̃j ( f , t) Q̃ij ( f ) (3.3)

where the functions Q̃ij,OO′ ( f ), Q̃ij,O ( f ) and Q̃ij ( f ) are weights (in the sum over channels,
interferometers of the network, and frequencies) that will be chosen later to maximize the
signal-to-noise-ratio (SNR). We have that

∫ +∞

−∞
m̃i,O ( f , t) m̃∗

j,O′ ( f , t) =
∫ +∞

−∞
m̃∗

i,O ( f , t) m̃j,O′ ( f , t) (3.4)

and identically for the other two terms, as immediately follows from the substitution f → − f

9



10 Chapter 3. Measurement in a network of interferometers

in equations (3.1) and (3.2). Furthermore, (see appendix B for details) we find that

Qij,OO′( f ) = Q∗
ij,OO′(− f )

Qij,O( f ) = Q∗
ij,O(− f )

Qij( f ) = Q∗
ij(− f ) (3.5)

which implies that the estimator in (3.3) is a real number. Note that in the definition of the
estimator (3.3) we do not consider the correlations between instruments located at the same
site. This is done because it is difficult to properly characterize all the noise contributions when
the distance between the couple of the instruments is very little.

We assume that the statistical properties of the signal and the noise do not change with time.
Then for an anisotropic SGWB, the statistics of the measurement is periodic, with periodicity
given by the rotation period Te =

2π
ωe

of the Earth

C (t) =
∞

∑
m=−∞

Cm eimωet , Cm ≡ 1
T

∫ T

0
dt e−imωet C (t) (3.6)

where we take the observation time T to be an integer multiple of one day Te.
For each coefficient Cm, we compute the signal-to-noise ratio

SNRm ≡ ⟨Cm⟩√
⟨C2

m⟩
(3.7)

3.1 – Expectation value of the signal

In appendix B we show that the expectation value of (3.6) is

⟨Cm⟩ = ∑
λ

8π τ

5

∫ +∞

−∞
d f Hλ (| f |)

∞

∑
ℓ=|m|

pℓm,λ

[
M

∑
i=1

M

∑
j=i+1

∑
O,O′

γℓm,ij,OO′ ,λ ( f ) Qij,OO′ ( f ) +

+
M

∑
i=1

N

∑
j=i+1

∑
O

γℓm,ij,O,λ ( f ) Qij,O ( f ) +
N

∑
i=1

N

∑
j=1

γℓm,ij,λ ( f ) Qij ( f )

]
≡

≡ ∑
λ

⟨Cm,λ⟩ (3.8)
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where we defined, in a similar way to what has been done in [12], the overlap functions 1

γℓm,ij,OO′ ,λ( f ) ≡ 5
8π

∫
d2n̂e2πi f n̂·∆xij Yℓm (n̂) e∗λ

ab (n̂) eλ
cd (n̂) dab

iO dcd
jO′

γℓm,ij,O,λ( f ) ≡ 5
8π

∫
d2n̂e2πi f n̂·∆xij Yℓm (n̂) e∗λ

ab (n̂) eλ
cd (n̂) dab

iO dcd
j

γℓm,ij,λ( f ) ≡ 5
8π

∫
d2n̂e2πi f n̂·∆xij Yℓm (n̂) e∗λ

ab (n̂) eλ
cd (n̂) dab

i dcd
j (3.9)

It is useful to rewrite the γ coefficients of equation (3.9) as

γℓm,ij,OO′ ,λ( f ) ≡ γℓm,λ,abcd(κij, ŝij)× dab
iO dcd

jO′

γℓm,ij,O,λ( f ) ≡ γℓm,λ,abcd(κij, ŝij)× dab
iO dcd

j

γℓm,ij,λ( f ) ≡ γℓm,λ,abcd(κij, ŝij)× dab
i dcd

j (3.10)

where we define the tensor

dab
iα ≡ ûa

iαûb
iα − v̂a

iαv̂b
iα

2

dab
j ≡

ûa
j ûb

j − v̂a
j v̂b

j

2
(3.11)

with ûiα, v̂iα the arm directions of the triangular-shaped interferometers and ûi, v̂i the arm
directions of the L-shaped interferometers (defined in appendix B). We also defined

κij = 2π f
∣∣∆xij

∣∣ , ŝij =
∆xij∣∣∆xij

∣∣ (3.12)

with
∆xij = xi − xj (3.13)

and where

γℓm,λ,abcd(κ, ŝ) ≡ 5
8π

∫
d2n̂eiκn̂·ŝ Yℓm (n̂) e∗λ

ab (n̂) eλ
cd (n̂) (3.14)

This decomposition is motivated by the fact that the coefficients (3.14) can be evaluated once
for all, independently of the pair of detectors under consideration. In Appendix D we provide
the explicit analytic expressions for the monopole, dipole, and quadrupole contributions2, and
we explain how this computation can be extended to higher multipoles.

1The factor 5
8π is conventional, and it has the purpose of eliminating the overall factor in the last of (A.1) in the

monopole term.
2The expressions for the monopole and dipole can be found in [17], while the expression for the quadrupole is an

original result of this thesis.
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3.2 – Variance of the noise and SNR

We evaluate the denominator of eq. (3.7) under the assumption of a weak signal, namely
assuming that the variance of the signal is negligible with respect to that of the noise. This
assumption is valid if one is interested in obtaining the minimum signal that produces an SNR
of order 1. After some algebraic steps shown in appendix B we find

〈
|Cm|2

〉
=

τ2

4T

∫ +∞

−∞
d f

[
M

∑
i=1

M

∑
j=i+1

∑
OO′

Ni,O (| f |) Nj,O′ (| f |)
∣∣∣Qij,OO′ ( f )

∣∣∣
2
+

+
M

∑
i=1

N

∑
j=1

∑
O

Ni,O (| f |) Pj (| f |)
∣∣Qij,O ( f )

∣∣2 +

+
N

∑
i=1

N

∑
j=i+1

Pi (| f |) Pj (| f |)
∣∣Qij ( f )

∣∣2
]

(3.15)

Eventually, we insert eqs. (3.8) and (3.15) into the ratio (3.7), to obtain (see appendix B for
further details)

SNRm =

[ ∫ ∞

0
d f
( M

∑
i=1

M

∑
j=i+1

∑
OO′

γ̃ij,OO′ ( f ) Q̃ij,OO′ ( f ) +
M

∑
i=1

N

∑
j=1

∑
O

γ̃ij,O ( f ) Q̃ij,O ( f ) +

+
N

∑
i=1

N

∑
j=i+1

γ̃ij ( f ) Q̃ij ( f )
)] 1

2

≡ 16π
√

2T
5

√∫ ∞

0
d f R( f ) (3.16)

where, after choosing the weight function in such a way as to maximize this expression (see
Appendix B.3)

R ( f ) =
M

∑
i=1

M

∑
j=i+1

∑
OO′

∣∣∣∑λ Hλ ( f )∑∞
ℓ=|m| pℓm,λ γℓm,ij,OO′ ,λ ( f )

∣∣∣
2

Ni,O ( f ) Nj,O′ ( f )
+

+
M

∑
i=1

N

∑
j=1

∑
O

∣∣∣∑λ Hλ ( f )∑∞
ℓ=|m| pℓm,λ γℓm,ij,O,λ ( f )

∣∣∣
2

Ni,O ( f ) Pj ( f )
+

+
N

∑
i=1

N

∑
j=i+1

∣∣∣∑λ Hλ ( f )∑∞
ℓ=|m| pℓm,λ γℓm,ij,λ ( f )

∣∣∣
2

Pi ( f ) Pj ( f )
(3.17)

In the next chapter, we apply this result to the network of detectors introduced in the previous
chapter.



Chapter 4
LIGO+Virgo+KAGRA+ET

In the following we consider a network constituted of the two Advanced LIGO interferometers
in the two sites of Hanford and Livingston in USA, the Advanced Virgo interferometer near
Cascina (Italy), KAGRA in Japan and ET, which we suppose to be located in the Sardinia site
(coordinates 40.4◦N; 9.45◦E). This network is made of 4 L-shaped interferometers and one
triangular-shaped. Therefore, we set N=4 and M=11.

For this network we have the following writing for the SNR from equation (3.16)

SNRm =

[ ∫ ∞

0
d f

(
4

∑
j=1

∑
O

γ̃1j,O ( f ) Q̃1j,O ( f ) +
4

∑
i=1

4

∑
j=i+1

γ̃ij ( f ) Q̃ij ( f )

)] 1
2

=

=
16π

√
2T

5

[ ∫ ∞

0
d f
( 4

∑
j=1

∑
O

∣∣∣∑λ Hλ ( f )∑∞
ℓ=|m| pℓm,λ γℓm,1j,O,λ ( f )

∣∣∣
2

N1,O ( f ) Pj ( f )
+

+
4

∑
i=1

4

∑
j=i+1

∣∣∣∑λ Hλ ( f )∑∞
ℓ=|m| pℓm,λ γℓm,ij,λ ( f )

∣∣∣
2

Pi ( f ) Pj ( f )

)] 1
2

(4.1)

and after using (1.19)

SNRm =
3H2

0

√
2T

5π2

[ ∫ ∞

0
d f
( 4

∑
j=1

∑
O

∣∣∣∑λ ΩGW,λ ( f )∑∞
ℓ=|m| pℓm,λ γℓm,1j,O,λ ( f )

∣∣∣
2

f 6 N1,O ( f ) Pj ( f )
+

+
4

∑
i=1

4

∑
j=i+1

∣∣∣∑λ ΩGW,λ ( f )∑∞
ℓ=|m| pℓm,λ γℓm,ij,λ ( f )

∣∣∣
2

f 6 Pi ( f ) Pj ( f )

)] 1
2

(4.2)

For definiteness, we identify Advanced LIGO-Hanford site as i=1, Advanced LIGO-Livingston
as i=2 (which we assume to have the same PSD P1( f ) = P2( f )), Virgo as i=3 (with PSD defined
as P3( f )) and KAGRA with i=4 (with PSD P4( f )). We further assume that all multipoles of the
SGWB anisotropies have the same degree of polarization. We implement this in eqs. (1.17) and

1In this chapter we will make also a comparison between the response of the present network to the SGWB and the
same network without considering ET: in that case our equations must be restricted to the case M=0

13
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(1.18) by taking the coefficient plm’s be polarization-independent, namely

pℓm,1 = pℓm,−1 ≡ pℓm (4.3)

and by encoding the degree of polarization in the common factor

H1 ( f ) ≡ H ( f ) (1 + p)

H−1 ( f ) ≡ H ( f ) (1 − p) (4.4)

which implies

ΩGW,1 ( f ) ≡ 1
2

ΩGW ( f ) (1 + p)

ΩGW,−1 ( f ) ≡ 1
2

ΩGW ( f ) (1 − p) (4.5)

We also note that in writing eq. (4.4) we have also assumed that the degree of polarization is
frequency-independent. The parameter p controlling the polarization is a real number that
ranges from -1 to 1. The two extremes correspond to a fully chiral background, while p = 0
corresponds to an unpolarised SGWB. Under these assumptions eq. (4.2) becomes

SNRm =
3H2

0

√
2T

10π2

[ ∫ ∞

0
d f Ω2

GW ( f )×

×
(

4

∑
j=1

∑
O

∣∣∣∑∞
ℓ=|m| pℓm

[
(1 + p) γℓm,1j,O,1 ( f ) + (1 − p) γℓm,1j,O,−1 ( f )

]∣∣∣
2

f 6 N1,O ( f ) Pj ( f )
+

+
4

∑
i=1

4

∑
j=i+1

∣∣∣∑∞
ℓ=|m| pℓm

[
(1 + p) γℓm,ij,1 ( f ) + (1 − p) γℓm,ij,−1 ( f )

]∣∣∣
2

f 6 Pi ( f ) Pj ( f )

)] 1
2

(4.6)

To evaluate this quantity, we assume a power-law frequency dependence for the energy density:

ΩGW ( f ) = Ω̄GW

(
f

100 Hz

)α

(4.7)

where Ω̄GW is the fractional energy density at the pivot scale of 100 Hz. Typical values consid-
ered for the spectral index are α = 0, as for a cosmological inflationary signal (characterized by
nearly scale-invariance) and α = 2/3, as expected for the stochastic background due to black
hole-black hole and black hole-neutron star binary system inspirals [24]. For our treatment
we consider α ∈ [−2, 2], since the models we know from literature do not present values of α

which lay outside this interval. We can then rewrite eq. (4.6) as
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SNRm = Ω̄GW

√
T

(1 Hz)3
9H4

0
2π4

[
4

∑
i=1

4

∑
j=i+1

∫ fmax,ij

fmin,ij

d f
1 Hz

10−4α
(

f
1 Hz

)2α−6

Pi ( f ) Pj ( f ) Hz2 ×

×

∣∣∣∣∣∣

∞

∑
ℓ=|m|

pℓm

[
(1 + p) γℓm,ij,1 ( f ) + (1 − p) γℓm,ij,−1 ( f )

]
∣∣∣∣∣∣

2

+

+
4

∑
j=1

∑
O=A,E

∫ fmax,j1

fmin,j1

d f
1 Hz

10−4α
(

f
1 Hz

)2α−6

Pj ( f ) N1,O ( f ) Hz2 ×

×

∣∣∣∣∣∣

∞

∑
ℓ=|m|

pℓm

[
(1 + p) γℓm,1j,O,1 ( f ) + (1 − p) γℓm,1j,O,−1 ( f )

]
∣∣∣∣∣∣

2 ] 1
2

(4.8)

where we define the set of minimum and maximum frequencies over which the PSDs Pi( f ) are
defined: { fmin,i}, { fmax,i} with i = 1, ..., 4 and

fmin,ij = max{ fmin,i, fmin,j}
fmax,ij = min{ fmax,i, fmax,j} (4.9)

since we want to integrate only the frequency range which is common to each of the two
detectors, taken pair by pair.

This equation can be numerically approximated as

SNRm ≃ Ω̄GW

√
T

1 year

[
4

∑
i=1

4

∑
j=i+1

∫ fmax,ij

fmin,ij

d f
1 Hz

1.28 × 10−66−4α
(

f
1 Hz

)2α−6

Pi ( f ) Pj ( f ) Hz2 ×

×

∣∣∣∣∣∣

∞

∑
ℓ=|m|

pℓm

[
(1 + p) γℓm,ij,1 ( f ) + (1 − p) γℓm,ij,−1 ( f )

]
∣∣∣∣∣∣

2

+

+
4

∑
j=1

∑
O=A,E

∫ fmax,j1

fmin,j1

d f
1 Hz

1.28 × 10−66−4α
(

f
1 Hz

)2α−6

Pj ( f ) N1,O ( f ) Hz2 ×

×

∣∣∣∣∣∣

∞

∑
ℓ=|m|

pℓm

[
(1 + p) γℓm,1j,O,1 ( f ) + (1 − p) γℓm,1j,O,−1 ( f )

]
∣∣∣∣∣∣

2 ] 1
2

(4.10)

Finally, we assume that the SGWB is dominated by a single multipole (ℓ, m), giving an estimate
of the threshold value of Ω̄GW pℓ,m necessary to obtain an SNRm = 1 during T = 1 year of
observation. Inverting equation (4.10) under our hypotheses, we have
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Ω̄GW pℓm

∣∣∣∣∣
thr,1y

=

[
4

∑
i=1

4

∑
j=i+1

∫ fmax,ij

fmin,ij

d f
1 Hz

1.28 × 10−66−4α
(

f
1 Hz

)2α−6

Pi ( f ) Pj ( f ) Hz2 ×

×
∣∣∣
[
(1 + p) γℓm,ij,1 ( f ) + (1 − p) γℓm,ij,−1 ( f )

] ∣∣∣
2
+

+
4

∑
i=1

∑
O=A,E

∫ fmax,i1

fmin,i1

d f
1 Hz

1.28 × 10−66−4α
(

f
1 Hz

)2α−6

Pi ( f ) N1,O ( f ) Hz2 ×

×
∣∣∣ [(1 + p) γℓm,i1,O,1 ( f ) + (1 − p) γℓm,i1,O,−1 ( f )]

∣∣∣
2
]− 1

2

(4.11)

In appendix D we provide an explicit analytic writing for the response functions γℓm,ij,λ for the
monopole (ℓ = 0), dipole (ℓ = 1) and quadrupole (ℓ = 2).

We specify in appendix E our procedure for determining the detector-dependent elements
dab

1A, dab
1E and dab

i , which encode the orientation of the arms of our interferometers.

In figures 5-15 we plot the threshold values of Ω̄GW pℓm

∣∣∣∣∣
thr,1y

of equation (4.11) for different

values of p and α. In particular figure 5 considers the monopole (ℓ = 0), figures 7-9 the dipoles
(ℓ = 1) and figures 11-15 the quadrupoles (ℓ = 2). The thick lines correspond to the full
network (which we recall is made of the two Advanced LIGO, Advanced Virgo, KAGRA and
ET), while the dashed ones correspond to the values obtained by the same network without ET.
The comparison of the two results quantifies the impact that ET can have for the study of the
SGWB.

In figure 17 we combine the threshold values for all the coefficients, in the case of a scale
invariant (α = 0) and unpolarised (p = 0) SGWB.

As it is displayed in tables 6-16, the contribution of ET leads to a significant improvement

on the value of the Ω̄GW pℓ,m|thr,1y. Tables show the values of the ratio
Ω̄GW pℓ,m |thr,1y,ET

Ω̄GW pℓ,m |thr,1y,no ET
between

the threshold value of Ω̄GW pℓ,m obtained considering a network of the two Advanced LIGO,
Advanced Virgo and KAGRA and ET over the same value considering the previous network
without ET. The tables 6-16 refer to the values shown in each relative plot of figures 5-15.

In all the plots shown in this paragraph we consider only multipoles (ℓ, m) with m > 0,
since in equation (4.11) we see that the functions γlm,ij,O,λ( f ) and γlm,ij,λ( f ) appear only with
the square modulus of a linear combination of them. Therefore, looking at their explicit writing
in (D.1) we can see that

Ω̄GW pℓ,m

∣∣∣∣∣
thr,1y

= Ω̄GW pℓ,−m

∣∣∣∣∣
thr,1y

(4.12)
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For all these accounts, we set the angle of the orientation of ET (as introduced in figure 23)
β = 0. This assumption is arbitrary, since the instrument is not built yet and its direction arms

still not defined, but we found by an explicit evaluation that all the values of Ω̄GW pℓ,m

∣∣∣∣∣
thr,1y

do

not depend on the value of β (see E for further details on the ET geometry definition)
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Figure 5: Sensitivity to a monopole of the SGWVB. The lines show the amplitude that the multipoles
must have to produce SNR = 1 in one year of observation, whose scale is set on y-axis. On
x-axis we show how the amplitude depends on the parameter p introduced in equation
(4.4). The blue lines are drawn under the assumption of a red tilted power spectrum
(α = −2), the orange lines represent are plotted for a scale invariant one (α = 0) while the
green ones are made for a blue tilted one (α = 2). A pivot frequency scale of 100 Hz is
assumed. The thick lines correspond to the threshold values for the network of the two
Advanced LIGO, Advanced Virgo and KAGRA interferometers. The dashed lines are the
expected values for the same network + Einstein Telescope.

(ℓ = 0, m = 0) p = −1 p = −0.5 p = 0 p = 0.5 p = 1
α = −2 0.0561 0.0497 0.0391 0.0308 0.025
α = 0 0.082 0.0817 0.078 0.0724 0.0661
α = 2 0.0252 0.023 0.0224 0.0242 0.0269

Figure 6: The values of the ratio Ω̄GW pℓ,m |thr,1y,ET

Ω̄GW pℓ,m |thr,1y,no ET
for the monopole (ℓ = 0, m = 0) at different values

of α and p
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Figure 7: Sensitivity to a dipole ((ℓ, m) = 1, 0) of the SGWVB. The lines show the amplitude that the
multipoles must have to produce SNR = 1 in one year of observation, whose scale is set on
y-axis. On x-axis we show how the amplitude depends on the parameter p introduced
in equation (4.4). The blue lines are drawn under the assumption of a red tilted power
spectrum (α = −2), the orange lines represent are plotted for a scale invariant one (α = 0)
while the green ones are made for a blue tilted one (α = 2). A pivot frequency scale of 100
Hz is assumed. The thick lines correspond to the threshold values for the network of the
two Advanced LIGO, Advanced Virgo and KAGRA interferometers. The dashed lines are
the expected values for the same network + Einstein Telescope.

(ℓ = 1, m = 0) p = −1 p = −0.5 p = 0 p = 0.5 p = 1
α = −2 0.0133 0.0175 0.0263 0.0114 0.0041
α = 0 0.05 0.0732 0.1169 0.0538 0.0234
α = 2 0.019 0.0258 0.0304 0.0207 0.0128

Figure 8: The values of the ratio Ω̄GW pℓ,m |thr,1y,ET

Ω̄GW pℓ,m |thr,1y,no ET
for the dipole (ℓ = 1, m = 0) at different values of α

and p
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Figure 9: Sensitivity to a dipole ((ℓ, m) = 1, 1) of the SGWVB. The lines show the amplitude that the
multipoles must have to produce SNR = 1 in one year of observation, whose scale is set on
y-axis. On x-axis we show how the amplitude depends on the parameter p introduced
in equation (4.4). The blue lines are drawn under the assumption of a red tilted power
spectrum (α = −2), the orange lines represent are plotted for a scale invariant one (α = 0)
while the green ones are made for a blue tilted one (α = 2). A pivot frequency scale of 100
Hz is assumed. The thick lines correspond to the threshold values for the network of the
two Advanced LIGO, Advanced Virgo and KAGRA interferometers. The dashed lines are
the expected values for the same network + Einstein Telescope.

(ℓ = 1, m = 1) p = −1 p = −0.5 p = 0 p = 0.5 p = 1
α = −2 0.0079 0.0095 0.012 0.0136 0.0133
α = 0 0.0407 0.0531 0.0657 0.064 0.0549
α = 2 0.0328 0.0457 0.0627 0.0514 0.039

Figure 10: The values of the ratio Ω̄GW pℓ,m |thr,1y,ET

Ω̄GW pℓ,m |thr,1y,no ET
for the dipole (ℓ = 1, m = 1) at different values of

α and p



20 Chapter 4. LIGO+Virgo+KAGRA+ET

-1.0 -0.5 0.0 0.5 1.0

10-11

10-10

10-9

10-8

p

Ω
_α

*
p2
0

Figure 11: Sensitivity to a quadrupole ((ℓ, m) = 2, 0) of the SGWVB. The lines show the amplitude
that the multipoles must have to produce SNR = 1 in one year of observation, whose
scale is set on y-axis. On x-axis we show how the amplitude depends on the parameter
p introduced in equation (4.4). The blue lines are drawn under the assumption of a
red tilted power spectrum (α = −2), the orange lines represent are plotted for a scale
invariant one (α = 0) while the green ones are made for a blue tilted one (α = 2). A pivot
frequency scale of 100 Hz is assumed. The thick lines correspond to the threshold values
for the network of the two Advanced LIGO, Advanced Virgo and KAGRA interferometers.
The dashed lines are the expected values for the same network + Einstein Telescope.

(ℓ = 2, m = 0) p = −1 p = −0.5 p = 0 p = 0.5 p = 1
α = −2 0.004 0.0042 0.005 0.0062 0.0078
α = 0 0.02 0.0183 0.0232 0.0325 0.0414
α = 2 0.0194 0.0255 0.0565 0.0439 0.0287

Figure 12: The values of the ratio Ω̄GW pℓ,m |thr,1y,ET

Ω̄GW pℓ,m |thr,1y,no ET
for the quadrupole (ℓ = 2, m = 0) at different

values of α and p
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Figure 13: Sensitivity to a quadrupole ((ℓ, m) = 2, 1) of the SGWVB. The lines show the amplitude
that the multipoles must have to produce SNR = 1 in one year of observation, whose
scale is set on y-axis. On x-axis we show how the amplitude depends on the parameter
p introduced in equation (4.4). The blue lines are drawn under the assumption of a
red tilted power spectrum (α = −2), the orange lines represent are plotted for a scale
invariant one (α = 0) while the green ones are made for a blue tilted one (α = 2). A pivot
frequency scale of 100 Hz is assumed. The thick lines correspond to the threshold values
for the network of the two Advanced LIGO, Advanced Virgo and KAGRA interferometers.
The dashed lines are the expected values for the same network + Einstein Telescope.

(ℓ = 2, m = 1) p = −1 p = −0.5 p = 0 p = 0.5 p = 1
α = −2 0.0207 0.0192 0.0171 0.0149 0.0129
α = 0 0.094 0.0891 0.0787 0.0655 0.0531
α = 2 0.0434 0.0399 0.0363 0.0329 0.0294

Figure 14: The values of the ratio Ω̄GW pℓ,m |thr,1y,ET

Ω̄GW pℓ,m |thr,1y,no ET
for the quadrupole (ℓ = 2, m = 1) at different

values of α and p
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Figure 15: Sensitivity to a quadrupole ((ℓ, m) = 2, 2) of the SGWVB. The lines show the amplitude
that the multipoles must have to produce SNR = 1 in one year of observation, whose
scale is set on y-axis. On x-axis we show how the amplitude depends on the parameter
p introduced in equation (4.4). The blue lines are drawn under the assumption of a
red tilted power spectrum (α = −2), the orange lines represent are plotted for a scale
invariant one (α = 0) while the green ones are made for a blue tilted one (α = 2). A pivot
frequency scale of 100 Hz is assumed. The thick lines correspond to the threshold values
for the network of the two Advanced LIGO, Advanced Virgo and KAGRA interferometers.
The dashed lines are the expected values for the same network + Einstein Telescope.

(ℓ = 2, m = 2) p = −1 p = −0.5 p = 0 p = 0.5 p = 1
α = −2 0.0095 0.0143 0.0204 0.017 0.0125
α = 0 0.033 0.0444 0.0611 0.0622 0.0516
α = 2 0.0531 0.0626 0.072 0.0726 0.0645

Figure 16: The values of the ratio Ω̄GW pℓ,m |thr,1y,ET

Ω̄GW pℓ,m |thr,1y,no ET
for the quadrupole (ℓ = 2, m = 2) at different

values of α and p
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Figure 17: Sensitivity to a statistically invariant (p = 0 of equation (4.4)) monopole, dipole, and
quadrupole of the SGWB. The lines show the amplitude that the multipoles must have
to produce SNR = 1 in one year of observation. The thick lines correspond to the
threshold values for the network of the two Advanced LIGO, Advanced Virgo and
KAGRA interferometers. The dashed lines are the expected values for the same network
+ Einstein Telescope. A scale invariant ΩGW is assumed (α = 0 of equation (4.7)). A pivot
frequency scale of 100 Hz is assumed.
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4.1 – Statistically isotropic pℓ,m

We can also consider the case of a statistically isotropically signal, in which the coefficients
pell,m satisfy

⟨pℓm p∗ℓ′m′⟩ = Cℓ δℓℓ′ δmm′ (4.13)

with a single Cℓ dominating over the other ones. We obtain the following expectation from the
m = 0, 1, 2 measurements from eq. (4.10)

〈
∑
m

SNRm

〉
≃ Ω̄GWC1/2

ℓ

√
T

1 year

[
4

∑
i=1

4

∑
j=i+1

∫ fmax,ij

fmin,ij

d f
1 Hz

1.28 × 10−66−4α
(

f
1 Hz

)2α−6

Pi ( f ) Pj ( f ) Hz2 ×

× ∑
m

∣∣∣(1 + p) γℓm,ij,1 ( f ) + (1 − p) γℓm,ij,−1 ( f )
∣∣∣
2
+

+
4

∑
j=1

∑
O=A,E

∫ fmax,j1

fmin,j1

d f
1 Hz

1.28 × 10−66−4α
(

f
1 Hz

)2α−6

Pj ( f ) N1,O ( f ) Hz2 ×

× ∑
m

∣∣∣(1 + p) γℓm,1j,O,1 ( f ) + (1 − p) γℓm,1j,O,−1 ( f )
∣∣∣
2
] 1

2

(4.14)

and the sensitivity to Cℓ is then obtained from the sum over all m’s

Ω̄GWC1/2
ℓ

∣∣∣∣∣
thr,1y

=

[
4

∑
i=1

4

∑
j=i+1

∫ fmax,ij

fmin,ij

d f
1 Hz

1.28 × 10−66−4α
(

f
1 Hz

)2α−6

Pi ( f ) Pj ( f ) Hz2 ×

× ∑
m

∣∣∣
[
(1 + p) γℓm,ij,1 ( f ) + (1 − p) γℓm,ij,−1 ( f )

] ∣∣∣
2
+

+
4

∑
i=1

∑
O=A,E

∫ fmax,i1

fmin,i1

d f
1 Hz

1.28 × 10−66−4α
(

f
1 Hz

)2α−6

Pi ( f ) N1,O ( f ) Hz2 ×

× ∑
m

∣∣∣ [(1 + p) γℓm,i1,O,1 ( f ) + (1 − p) γℓm,i1,O,−1 ( f )]
∣∣∣
2
]− 1

2

(4.15)

In figure 18 we plot the threshold values of Ω̄GW C1/2
ℓ necessary to be detected to our network,

with and without considering Einstein Telescope, under the assumption of isotropic statistics
of the multipoles pℓ,m.
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Figure 18: Sensitivity to a statistically invariant (p = 0 of equation (4.4)) monopole, dipole, and
quadrupole of the SGWB under the hypothesis of statistically isotropic distribution of
multipoles (ℓ, m) at fixed ℓ value. The lines show the amplitude that the multipoles
must have to produce SNR = 1 in one year of observation. The thick lines correspond to
the threshold values for the network of the two Advanced LIGO, Advanced Virgo and
KAGRA interferometers. The dashed lines are the expected values for the same network
+ Einstein Telescope. A scale invariant ΩGW is assumed (α = 0 of equation (4.7)). A pivot
frequency scale of 100 Hz is assumed.





Chapter 5
Two ETs in the short distance limit

Let us consider now a network made of two hypothetical Einstein Telescopes, located at the
two sites under consideration for the actual ET detector. The first site is the Sos Enattos mine in
Sardinia, at coordinates 40.4◦N; 9.45◦E. The second site is at the Belgium-Netherlands border.
For definiteness, we choose the city of Maastricht, at coordinates 50.9◦N; 5.69◦E. Assuming the
Earth to be a perfect sphere of radius RE = 6; 371 km, the length of the segment connecting
these two locations is dET ≃ 1.200 km. For this choice, the argument in the phase of eq. (B.11)
satisfies

Φ ≡
∣∣2π f n̂ ·

(
x1α − x2β

)∣∣ ≤ 2π f |x1 − x2| ≃ 0.025
f

Hz
|x1 − x2|
1, 200 km

(5.1)

As we discuss below (see Figure 19) this quantity is smaller than one at the frequency to which
ET is most sensitive to. As an example, for a scale invariant GW signal (ΩGW independent of
frequency), the sensitivity is strongly peaked at f ≃ 7 Hz. For this value, the product in eq. (5.1)
evaluates to about 0.18. It is therefore meaningful to evaluate eq. (B.10) as an expansion series
in Φ. As we show below, the response functions to the various multipoles pℓm are suppressed
by positive powers of Φ, with exception to those to the multipoles ℓ = 0, 2, 4 and |m| ≤ ℓ [12].
For this reason, in this chapter we evaluate only these unsuppressed contributions. As we
show in Appendix C, correlators between even (odd) multipoles ℓ receive contributions only
from even (odd) powers of Φ. Therefore, evaluating these coefficients at Φ = 0 results in a
O
(
Φ2) ≃ 3% inaccuracy at the most sensitive frequencies. Taking Φ = 0 allows for a greater

simplification of eq. (B.10). This is a major departure from the study of [12], where the much
longer distance between the two LIGO interferometers did not allow for this simplification. As
we show in this chapter, in this limit the detector response functions (to be defined shortly)
acquire vey simple analytical expressions, which can be employed to determine the SNR, and
hence the sensitivity to the anisotropy, almost fully analytically, only up to one numerical
integration over frequency.

Proceeding in this way, we can readily go from the correlation of the signal at the three
vertices to the correlator of the signal in the thee channels, and write the response functions in
equations (3.9) as

γℓm,12,OO′ ,λ ≡ 5
8π

∫
d2n̂ Yℓm (n̂) e∗λ

ab (n̂) eλ
cd (n̂) dab

1O dcd
2O′ (5.2)

We note that under this approximation the γℓm,ij,OO′ ,λ are now just simple numbers, frequency-

27
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independent. We can therefore define the frequency-independent coefficients

γℓm,λ,abcd ≡ 5
8π

∫
d2n̂ Yℓm (n̂) e∗λ

ab (n̂) eλ
cd (n̂) (5.3)

in terms of which

γℓm,12,OO′ ,λ ≡ γℓm,λ,abcd × dab
1O dcd

2O′ (5.4)

For the present section (which recalls the main steps done in [18]) we assume an unpolarized
background, i.e. p = 0. Therefore it turns out to be useful to introduce the new coefficients

γℓm,OO′ ≡ γℓm,abcd × dab
1O dcd

2O′

γℓm,abcd ≡ ∑
λ

γℓm,λ,abcd (5.5)

The coefficients γℓm,abcd are computed in Appendix F, where, integrating over the two angles,
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we obtain simple expressions for the γ0m,ab,cd, γ2m,ab,cd, γ4m,ab,cd terms:

γ00,ab,cd
∼= 1

2
√

π
(δac δbd + δad δbc)

γ20,ab,cd
∼= 1

14

√
5
π
(δac Abd + δad Abc + δ ↔ A)

γ2±1,ab,cd
∼= 3

14

√
5

6π
(δac Bbd± + δad Bbc± + δ ↔ B±)

γ2±2,ab,cd
∼= − 3

14

√
5

6π
(δac Cbd± + δad Cbc± + δ ↔ C±)

γ40,ab,cd
∼= 1

756
√

π

[
− δac δbd − δad δbc − 5 (δac Abd + δad Abc + δ ↔ A)

+20
(

Aac Abd + Aad Abc −
1
4

Aab Acd

)]

γ4±1,ab,cd
∼= 1

1512

√
5
π

[
2 (δac Bbd± + δab Bcd± + δ ↔ B±)

+7 (Aac Bbd± + Aad Bbc± + Aab Bcd± + A ↔ B±)

]

γ4±2,ab,cd
∼= − 1

504

√
5

2π

[
2 (δac Cbd± + δad Cbc± + δ ↔ C±)

+7 (Aac Cbd± + Aad Cbc± + A ↔ C±)

]

γ4±3,ab,cd = − 1
24

√
5

7π
(Bab± Ccd± + B± ↔ C±)

γ4±4,ab,cd =
1

12

√
5

14π
Cab± Ccd± (5.6)

while all the other coefficients vanish. The symbol ∼= denotes the fact that we have disregarded
terms proportional to δab and to δcd, as they vanish when contracted with, respectively, the
detector coefficients d1ab

O and dcd
2O′ . Finally, in eq. (5.6) we have introduced the matrices

Acd =




1 0 0
0 1 0
0 0 −2


 , Bcd± =




0 0 ±1
0 0 i
±1 i 0


 , Ccd± =




1 ±i 0
±i −1 0
0 0 0


 (5.7)

The simple analytical expressions (5.6) are an original result of [18], and they can be used for
any pair of detectors (since the geometry of the detectors is encoded in the dab

iO dcd
jO′ terms), in

the small frequency regime.
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5.1 – SNR computation

In terms of the original quantities, one can obtain also in this case the final expression for the
signal-to-noise ratio

SNRm =
3H2

0

√
2T

10 π2

√∫ ∞

0
d f

Ω2
GW ( f )

f 6 N2 ( f )

×




∣∣∣∣∣∣

∞

∑
ℓ=|m|

pℓm γℓm,AA

∣∣∣∣∣∣

2

+

∣∣∣∣∣∣

∞

∑
ℓ=|m|

pℓm γℓm,EE

∣∣∣∣∣∣

2

+

∣∣∣∣∣∣

∞

∑
ℓ=|m|

pℓm γℓm,AE

∣∣∣∣∣∣

2

+

∣∣∣∣∣∣

∞

∑
ℓ=|m|

pℓm γℓm,EA

∣∣∣∣∣∣

2



1/2

(5.8)

where we identify N ≡ NA,i = NE,i. We note that, assuming an unpolarized background
(p = 0) we have pℓ,m,λ ≡ pℓ,m

To evaluate eq. (5.8) we assume a power-law signal in the ET observational window

ΩGW ( f ) = Ω̄GW

(
f

10 Hz

)α

(5.9)

where Ω̄GW is the fractional energy density at the pivot scale equal to 10 Hz. We can then
rewrite eq. (5.8) as

SNRm =

√
T

1 year
Fα ×

[ ∣∣∣∣∣∣

∞

∑
ℓ=|m|

Ω̄GW pℓm γℓm,AA

∣∣∣∣∣∣

2

+

∣∣∣∣∣∣

∞

∑
ℓ=|m|

Ω̄GW pℓm γℓm,EE

∣∣∣∣∣∣

2

+

∣∣∣∣∣∣

∞

∑
ℓ=|m|

Ω̄GW pℓm γℓm,AE

∣∣∣∣∣∣

2

+

∣∣∣∣∣∣

∞

∑
ℓ=|m|

Ω̄GW pℓm γℓm,EA

∣∣∣∣∣∣

2 ]1/2

(5.10)

where we have normalized the total observation time to one year, and where we have defined
the dimensionless factor

Fα ≡

√√√√√ 1 year

(1 Hz)3
9H4

0
50π4

∫ fmax

fmin

d f
1 Hz

10−2α
(

f
1 Hz

)2α−6

N2 ( f ) Hz2 ≃

≃

√√√√√
∫ 104 Hz

Hz

d f
1 Hz

1.28 × 10−66−2α
(

f
1 Hz

)2α−6

N2 ( f ) Hz2 (5.11)

In the evaluation we have taken a year of 365.25 days, the value of the current Hubble
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rate H0 ≃ 67 km s−1 Mpc−1 indicated by Planck [25], and the minimum and maximum ET
frequencies given in [26].
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Figure 19: Left panel: integrand of the quantity Fα introduced in eqs. (5.10) and (5.11), for a scale-
invariant ΩGW. The vertical dashed line is the threshold (5.12) for the low frequency
/ short separation condition, in the hypothesis in which two ET-like instruments are
placed at the sites currently under consideration for ET. We see that the ET sensitivity is
completely dominated by frequencies that satisfy this condition. Right panel: Value of
Fα for α ranging between −2 and 2.

In the left panel of Figure 19 we show the integrand of eq. (5.11) for the choice of α = 0. As
discussed after eq. (5.1), our results are valid for frequencies

f ≪ 1
2π dET

≃ 40 Hz
1, 200 km

dET
(5.12)

where dET = 1, 200 Km is the distance of the segment connecting the two sites under con-
sideration for ET. We see that the sensitivity is completely dominated by frequencies that
satisfy the condition (5.12). As already remarked, disregarding the phase in eq. (B.10) amounts

in a O
(

f
40 Hz

)2
mistake, that, evaluated at the peak frequency visible in the figure, is about

0.03. In the right panel of Figure 19 we plot the value of Fα for α ranging between −2 and 2.
The two cases α = 0, 2/3 mentioned above correspond, respectively, to F0 ≃ 6.8 × 1011 and
F2/3 ≃ 6 × 1011.

5.2 – Sensitivity of the ET pair to multipoles of the SGWB

Also for this subsection we first assume that only one multiple pℓm dominates the SGWB, so
that

SNRm = Fα

√
T

1 year
Ω̄GW |pℓm|

[∣∣γℓm,AA
∣∣2 +

∣∣γℓm,EE
∣∣2 +

∣∣γℓm,AE
∣∣2 +

∣∣γℓm,EA
∣∣2
]1/2

.(5.13)
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The threshold amplitude to give SNR = 1 is therefore

Ω̄GW |pℓm|
∣∣∣∣∣
threshold

=

√
1 year

T
1

Fα γℓm,combined
(5.14)

where 1

γℓm,combined ≡
[∣∣γℓm,AA

∣∣2 +
∣∣γℓm,EE

∣∣2 +
∣∣γℓm,AE

∣∣2 +
∣∣γℓm,EA

∣∣2
]1/2

(5.15)

As expected, the threshold value decreases as the inverse of the square root of the observation
time. For definiteness, we fix T to one year in the following computations.

To evaluate the threshold value, we need to compute the overlap function elements according
to eq. (5.3). In eq. (5.6) we provided simple analytic results for the detector-independent γℓm,ab,cd

coefficients. We now need to determine the detector-dependent elements dab
iA and dab

iE, which
encode the orientation of the arms of the ET pair.

From the definition (3.9), and from the property (A.4), we see that γℓm,OO′ transforms as
Yℓm under a rotation. Namely,

γℓm,RORO′ =
5

8π

∫
d2n̂ Yℓm (n̂)∑

P
eP

ab (n̂) eP
cd (n̂) Ra

a′R
b
b′d

a′b′
1O Rc

c′R
d
d′d

c′d′
2O′

=
5

8π

∫
d2n̂ Yℓm (Rn̂)∑

P
eP

ab (n̂) eP
cd (n̂) dab

1Odcd
2O′ (5.16)

Therefore, for a rotation of angle φ about the z−axis, γℓm,OO′ → eimφ γℓm,OO′ . It follows
that

∣∣γℓm,OO′
∣∣2 is invariant under such rotation. With our choice of frame, a rotation about the

z−axis connects two locations on Earth that have the same latitude, and different longitude.
It follows that the sensitivity to the various multipoles does not depend on the individual
longitudes of the two sites, but only on their difference.

We specify the position and orientation of the two ET-like detectors accordingly to what
has been done in appendix E, denoting the latitude and longitude of each site with θi and φi,
respectively and βi the angles of rotation of the two instruments accordingly with figure 23 (we
recall that i = 1, 2 denote the first or the second detector). We find that (see [18] for further
details) the combination (5.15) depends only on the latitude of the detectors, θ1 and θ2, and on
the difference of their longitudes, φ2 − φ1. Furthermore, (5.15) does not depend on the angles
of rotation βi of the two ETs. Evaluating the coefficients between the two sites currently under
consideration for ET produces the sensitivities shown in Figure 20.

Finally, to give a measure of the sensitivity to a given multipole number ℓ, we consider
the case of a statistically isotropically signal, as in equation (4.13), obtaining the following

1We note that γℓ,−m,OO′ = (−1)m γ∗
ℓ,−m,OO′ , due to the property of the spherical harmonics in eq. (3.9). Therefore

the value of γℓm,combined does not depend on the sign of m.
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Figure 20: Sensitivity to the monopole and to the various quadrupole and hexadecapole moments.
The solid lines shows the amplitude that the multipoles must have to produce SNR = 1 in
one year of observation ot two ET-like detectors placed at the two sites currently under
consideration for ET. A scale invariant ΩGW is assumed (α = 0).

expectation from the m = 0, 2, 4 measurements

〈
∑
m

SNRm

〉
=

√
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1 year
F 2

α Ω̄2
GW ∑

m

〈
pℓm p∗ℓm

〉
∑
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∑

O′=A,E
γℓm,OO′ γ∗

ℓm,OO′

=

√
T
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Fα C1/2

ℓ Ω̄GW

[
∑
m

(∣∣γℓm,AA
∣∣2 +

∣∣γℓm,AE
∣∣2 +

∣∣γℓm,EA
∣∣2 +

∣∣γℓm,EE
∣∣2
)]1/2

=

√
T

1 year
Fα C1/2

ℓ Ω̄GW

[
∑
m

γ2
ℓm,combined

]1/2

≡
√

T
1 year

Fα C1/2
ℓ Ω̄GW γℓ,tot (5.17)

and the sensitivity to Cℓ is then obtained from the sum over all m’s

Ω̄GW C1/2
ℓ

∣∣∣∣∣
threshold,1year

=
1

Fα

[
∑ℓ

m=−ℓ γ2
ℓm,combined

]1/2 (5.18)

Given what we proved in eq. (5.16), summing over m results in a quantity that is invariant under
rotations [27]. Therefore, the sensitivity (5.18) only depends on the opening angle ψ formed by
the two radial vectors that, starting from the centre of the Earth, point in the directions of the
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two sites. Or, equivalently, on the distance RE ψ between the two sites. 2 An explicit evaluation
gives

γ2
0,tot =

1 + 6 cos2 ψ + cos4 ψ

16π

γ2
2,tot =

5
[
13 − 6 cos2 ψ + cos4 ψ

]

196π

γ2
4,tot =

321 + 246 cos2 ψ + cos4 ψ

28224π
(5.19)

We show the corresponding threshold values in Figure 21.
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Figure 21: Sensitivity to a statistically invariant monopole, quadruple, and hexadecapole multipole
of the SGWB. The lines show the amplitude that the multipoles must have to produce
SNR = 1 in one year of observation. The horizontal axis is the distance between the two
sites. The vertical dashed line corresponds to the distance between the two sites under
consideration for ET. A scale invariant ΩGW is assumed (α = 0).

2This distance is the length of the arc on the Earth surface between the two sites. The angle between the two sites
under considerations for ET is ψ ≃ 0.19. For this angle, the length of the arc is only about 0.15 % greater than the
length of the segment joining the two sites, that is the distance that should be used in the condition (5.12).



Chapter 6
Conclusions

In this work we studied the sensitivity of a network of L-shaped and triangular-shaped ground
based detectors to a Stochastic Gravitational Wave background. We followed the computation
of ref. [12], that provided the formalism to study the response functions to the anisotropic
SGWB from ground-based detectors, that have a well defined scanning pattern related to the
daily rotation of the Earth. We also followed [17], that provided a simple procedure to write
the overlap functions for a pair of detectors at any frequency. We extended their results in
several ways.

Firstly, we extended the procedure of [12] to a generic network of detectors, not restricting
our treatment to just a pair of instruments. Furthermore, we went beyond the assumption of a
non polarized background, taking into account the possibility that the SGWB can bring a net
amount of polarization. Thirdly, we considered the presence in the network of triangular-shape
detectors, where multiple measurements can be performed at the same location, that we
diagonalised using the formalism developed for the LISA constellation [20].

We applied this formalism to a network made of the two Advanced LIGOs, Advanced Virgo,
KAGRA and ET, which is assumed to be built in the site under current consideration in Sardinia
(Italy). In this case we provided the threshold values of ΩGW necessary to the SGWB to be
detected by this network of instruments. We paid particular attention to the impact provided
by ET, by comparing the threshold levels of this network with and without the inclusion of this
instrument. Our analysis has been done under the assumption that the SGWB is dominated
by a single multipole, in an expansion of the signal in spherical harmonics. We provided
explicit results for the first three multipoles, namely the monopole, dipole, and the quadrupole).
For these multipoles, we provided analytic expressions for the (frequency-dependent) overlap
functions of any detector pairs 1.

Averaging over the possible values of m within each ℓ, we obtained that the threshold
values of ΩGW pℓ for the monopole, dipole and quadrupole to be detected over 1 year of
observation are presented in table 22 (in the first line we show the values for the network of
the two Advanced LIGOs, Advanced Virgo and KAGRA interferometers; in the second line
we consider the same network with Einstein Telescope). We found that the contribution of ET
for the measurement of a SGWB amounts to an improvement of a factor ∼10 to the sensitivity
with respect to the existing network of instruments in their Advanced configuration.

1The analytic expression for the quadrupole case is an original result of this thesis.
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We were also interested in quantifying the SGWB that ET can reach on its own, without
correlating it with LIGO, Virgo, and KAGRA. Multiple measurements can be performed at
ET instrument (combining the measurements by the detectors placed in the three vertices).
However, measurements performed at the same site have correlated noise, which substantially
impacts our ability to detect a SGWB signal. We therefore considered the (speculative) possibil-
ity that two ET-detectors are constructed in the two sites currently under consideration for ET
(one in Sardinia and one at the Belgium-Netherlands border). The distance between these two
sites is such that the overlap functions can be evaluated by simply setting the GW frequency to
zero, where they acquire particularly simple expressions [18].

Therefore, in table 22 we compared also the threshold values of Ω̄GWC1/2
ℓ for the monopole,

dipole and quadrupole necessary to be detected over 1 year of observation by the full network
of section 4 with the ones for the network made of the two ETs, as in section 5. The result are
shown on the second and third line respectively. In this case, we see that the introduction of
a second instrument ET-like can improve the detectability of a SGWB of a factor ∼100 with
respect to the network with only one Einstein Telescope and the other existing instruments.

Ω̄GWC1/2
ℓ ℓ = 0 ℓ = 1 ℓ = 2

LIGOs+Virgo+KAGRA 2.3 × 10−9 2.5 × 10−9 1.9 × 10−9

LIGOs+Virgo+KAGRA+ET 1.8 × 10−10 1.8 × 10−10 1.2 × 10−10

ET (Sardinia)+ET (Netherlands) 7.6 × 10−13 8.4 × 10−12 1.1 × 10−12

Figure 22: Averaged threshold values of Ω̄GWC1/2
ℓ for monopole, dipole and quadrupole necessary

to produce SNR=1 in the network of instruments considered. The computation are done
assuming scale invariant power spectrum, unpolarized background and one year of
observation.

As a last remark, we know from theory [28] that the predicted energy density for the
monopole of an unpolarized astrophysical background (the models predict α = 2

3 as remarked
before) is Ω̄th

GW,mon ≃ 3 × 10−9, while an explicit evaluation for the network made of Advanced
LIGOs + Advanced Virgo + KAGRA leads to a threshold value necessary to produce SNR=1
(over 1 year of observation) of Ω̄LVK

GW,mon ≃ 1.5 × 10−9. The same computation taking into
account also the Einstein Telescope contribution leads to Ω̄LVK+ET

GW,mon ≃ 9.5 × 10−11, from which it
becomes evident the benefit of Einstein Telescope to study the SGWB.

The present thesis can be extended in several directions. For example, one can go beyond
the assumption of having the angular and the frequency dependence factorized for the power
spectrum of the SGWB. Another possibility is to consider simultaneously more than a single
multipole (ℓ, m) for the anisotropies of the SGWB, understanding how to disentangle their
independent contributions. It can be also interesting to understand how to prove, in the case of
a non chiral symmetric background, the presence of a net amount of polarized gravitational
waves with the present network of interferometers.



Appendix A
Polarization operators

We consider the two polarization tensors defined in (1.4). It can be proven that

er
ab (n̂) es

ab (n̂) = 2 δrs

∑
s=+,×

es
ab (n̂) es

cd (n̂) = Q̄ac Q̄bd + Q̄ad Q̄bc − Q̄ab Q̄cd , Q̄ab ≡ δab − n̂a n̂b

∑
s=+,×

∫
d2n̂ es

ab (n̂) es
cd (n̂) =

8π

5

(
δacδbd + δadδbc −

2
3

δabδcd

)
(A.1)

Moreover, we can introduce the helicity operators

ẽab,R ≡ e+ab + i e×ab√
2

≡ ẽab,1 , ẽab,L ≡ e+ab − i e×ab√
2

≡ ẽab,−1 (A.2)

As shown in Appendix A of [29], under a rotation n̂ → Rn̂, the helicity operators transform as

ẽab,λ (Rn̂) = e−2iλ γ[n̂, R] RacRbd ẽcd,λ (n̂) (A.3)

where γ is a real quantity whose precise expression is not relevant for the present discussion
(see [29] for the precise expression). By combining the last two expressions one finds that

∑
s=+,×

es
ab (Rn̂) es

cd (Rn̂) = Raa′Rbb′Rcc′Rdd′ ∑
s=+,×

es
ab (n̂) es

cd (n̂) (A.4)

namely the quantity ∑s=+,× es
ab (Rn̂) es

cd (Rn̂) is a tensor under rotations, while the individual
polarization operator is not. Therefore, using equation (A.2) we find that

e∗λ
ab (n̂) eλ

cd (n̂) = ∑
s=+,×

es
ab (n̂) es

cd (n̂) (A.5)

and from equation (A.4) it follows immediately that also the quantity e∗λ
ab (Rn̂) eλ

cd (Rn̂) is a
tensor under rotations.
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Appendix B
Evaluation of signal expectation value

and variance in chapter 3

B.1 – Signal expectation value

As we discussed in section 3, the different measurements are noise-uncorrelated. Therefore, the
expectation value of the estimator Cm in (3.6) contains only the contribution from the signal

⟨Cm⟩ =
1
T

∫ T

0
dt e−imωet

∫ +∞

−∞
d f

M

∑
i=1

M

∑
j=i+1

∑
O,O′

〈
s̃∗iO ( f , t) s̃jO′ ( f , t)

〉
Q̃ij,OO′ ( f ) +

+
M

∑
i=1

N

∑
j=1

∑
O

〈
s̃∗iO ( f , t) s̃j ( f , t)

〉
Q̃ij,O+

+
N

∑
i=1

N

∑
j=i+1

∑
O

〈
s̃∗i ( f , t) s̃j ( f , t)

〉
Q̃ij (B.1)

To compute the signal we recall that, to first order in the GW, light starting from x at the
unperturbed time t − 2L, arriving at x + L l̂, and returning back to x at the unperturbed time
time t completes this flight in the time

Treturn = 2L +
l̂a l̂b

2

∫ L

0
ds hab

(
t − 2L + s, x + s l̂

)
+

l̂a l̂b

2

∫ L

0
ds hab

(
t − L + s, x + L l̂ − s l̂

)

(B.2)
where we note that T0 = 2L is the unperturbed time for a return travel. We work in the
regime of short arm, namely 2π f L ≪ 1. This applies to existing ground-based interferometers,
and to the ones which are planned to be built in the next decades (we explicitly verify that
this condition applies to our study in Chapter 5). In this case, we can approximate the GW
appearing in (B.2) as hab (t, x), which is constant along the line integral, and therefore

Tret = 2L +
l̂a l̂b

2
× 2 L hab (t, x) (B.3)

We denote by xiα (t) the location of the vertex α of the i−th triangular-shaped detector, and
by xj (t) the location of the j−th L-shaped detector of the network. We denote by ûiα (t)
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and v̂iα (t) the unit vectors in the directions of the two arms that start from this vertex of
each triangular-shaped detector, as indicated in Figure 23. We note that these quantities are
time-dependent due to the rotation of the Earth about its axis. With this conventions, the signal
at the time t at the vertex α of the i-th triangular-shaped detector, located at xiα (t), is

siα(t) = dab
iα (t)hab(t, xi(t)) , dab

iα (t) ≡
ûa

iα(t)û
b
iα(t)− v̂a

iα(t)v̂
b
iα(t)

2
(B.4)

Analogously, being ûjα (t) and v̂jα (t) the unit vectors in the directions of the two arms that start
from the j−th L-shaped interferometer, the signal at the time t at the j-th L-shaped detector,
located at xj (t), is

sj(t) = dab
j (t)hab(t, xi(t)) , dab

j (t) ≡
ûa

j (t)û
b
j (t)− v̂a

j (t)v̂
b
j (t)

2
(B.5)

By using (B.4), (B.5) and (1.9) one finds

s̃iα ( f , t) = ∑
λ=R,L

∫
d2n̂

∫ +∞

−∞
d f ′e−2πi( f− f ′)tδτ

(
f − f ′

)
e−2πi f ′ n̂·xiα(t)hλ

(
f ′, n̂

)
eλ

ab (n̂) dab
iα (t)

(B.6)

s̃j ( f , t) = ∑
λ=R,L

∫
d2n̂

∫ +∞

−∞
d f ′e−2πi( f− f ′)tδτ

(
f − f ′

)
e−2πi f ′ n̂·xj(t)hλ

(
f ′, n̂

)
eλ

ab (n̂) dab
iα (t)

(B.7)

where, as we mentioned after (3.2), the interferometer location and arms directions can be
treated as constant in the time integration of length τ. In analogy to [12] we have introduced
the notation

δτ ( f ) ≡ sin (πτ f )
π f

, lim
τ→∞

δτ ( f ) = δD ( f ) (B.8)
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We then compute the correlators

〈
s̃∗iα ( f , t) s̃jβ

(
f ′, t

)〉
= ∑

λ=R,L

∫ +∞

−∞
d f ′ δ2

τ

(
f − f ′

)
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ab (n̂) eλ
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j (t)

〈
s̃∗i ( f , t) s̃j

(
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)〉
= ∑
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−∞
d f ′ δ2

τ

(
f − f ′

)
Hλ

(∣∣ f ′
∣∣)
∫
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ℓm

pℓm,λYℓm (n̂) e∗λ
ab (n̂) eλ

cd (n̂) dab
i (t) dcd

j (t) (B.9)

As the integration time τ is chosen to be much greater than the inverse of the typical measured
frequencies, one of the two δτ in this expression can be substituted with a Dirac δ−function,
while the other one evaluates to the integration time, obtaining

〈
s̃∗iα ( f , t) s̃jβ ( f , t)

〉
=τ ∑

λ=R,L
Hλ (| f |)

∫
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〈
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cd (n̂) dab
i (t) dcd

j (t) (B.10)

Proceeding in this way, we can readily go from the correlation of the signal at the three vertices
to the correlator of the signal in the thee channels, and rewrite the first equation of (B.10) as

〈
s̃∗iO ( f , t) s̃jO′ ( f , t)

〉
=τ ∑

λ=R,L
Hλ (| f |)

∫
d2n̂e2πi f n̂·(xi(t)−xj(t))
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pℓm,λYℓm (n̂) e∗λ
ab (n̂) eλ

cd (n̂) dab
iO (t) dcd

jO′ (t) (B.11)

where dab
iO ≡ cOαdab

iα . Evaluating these linear combinations we find

dab
iA =

2√
3

dab
iX , dab

iE = −2
3

(
dab

iX + 2dab
iY

)
, dab

iT = 0 (B.12)
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namely only the two channels A and E are non vanishing in the short arm approximation.
Inserting all this in (B.1), we obtain

⟨Cm⟩ =
τ

T

∫ T
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dt e−imωet ∑
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d f Hλ (| f |)

∫
d2n̂ e∗λ

ab (n̂) eλ
cd (n̂) ∑

ℓm′
pℓm′ ,λ Yℓm′ (n̂)

×
[

M

∑
i=1

M

∑
j=i+1

∑
O=A,E

∑
O′=A,E

dab
iO (t) dcd

jO′ (t) Qij,OO′ ( f ) e2πi f n̂·(xi(t)−xj(t))+

+
M

∑
i=1

N

∑
j=1

∑
O=A,E

dab
iO (t) dcd

j (t) Qij,O ( f ) e2πi f n̂·(xi(t)−xj(t))+

+
N

∑
i=1

N

∑
j=i+1

dab
i (t) dcd
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]
(B.13)

As we mentioned, the quantities dab
i,A/E (t) and dab

i (t) are time dependent because of the rotation
of the Earth in the frame of the fixed stars. Denoting by dab

i,A/E and dab
i the same quantities in a

frame that is fixed with respect to the Earth,

dab
i,A/E (t) = Raa′ (t) Rbb′ (t) da′b′

i,A/E

dab
i (t) = Raa′ (t) Rbb′ (t) da′b′

i (B.14)

where R (t) is a rotation matrix of period Te around the z−axis. We can reabsorb this rotation by
changing integration variable n̂ → Rn̂ in eq. (B.13). Using then eq. (A.5) we see that the rotation
matrix disappears from everywhere apart from the argument of the spherical harmonic, where
it produces Yℓm′ (Rn̂) = eim′ωetYℓm′ (n̂). Then we define the position of the i-th interferometer
in this reference frame as xi, in such a way that we can set, as in (3.13)

∆xij = xi − xj (B.15)

It is then immediate to see that the integration in time then forces m′ = m, and
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]
(B.16)

which leads to (3.8) in the main text.
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B.2 – Variance of the noise

For what concerns the variance of the noise, we start from the denominator of (3.7), evaluating

〈
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ñl
(

f ′, t′
)
]〉

(B.17)

Some useful intermediate quantities for this computation are

〈
ñ∗

iO ( f , t) ñjO′
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f ′, t′
)〉

=
δij δOO′

2
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(B.18)
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(B.19)

which follows from combining eq. (3.2) and (3.1) for the noise with eq. (2.9) and (2.4). It is
also useful to recall that reality of ni,O (t) and ni (t) imposes that ñi,O ( f ) = ñ∗

i,O (− f ) and
ñi ( f ) = ñ∗

i (− f ). Inserting this into eq. (B.17), evaluating the expectation values under the
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assumption that the noise is Gaussian, and integrating over the times, results in
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(B.20)

The integration time T is much greater than the inverse of the argument of δT , so we can treat
that term as a Dirac δ−function times T. Moreover, we can disregard m ωe

2π in the argument, as
it is much smaller than the frequencies in the ET window. This results in
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(B.21)

We treat the δτ quantities analogously, and we obtain equation (3.15) in the main text.
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B.3 – The SNR

Starting from (3.7) with (3.8) and (3.15) we obtain the following expression
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N

∑
i=1

N

∑
j=i+1

γℓm,ij,λ ( f ) Qij ( f )

)]
×

×
[ ∫ +∞

0
d f

(
M

∑
i=1

M

∑
j=i+1

∑
OO′

Ni,O (| f |) Nj,O′ (| f |)
∣∣∣Qij,OO′ ( f )

∣∣∣
2
+

+
M

∑
i=1

N

∑
j=1

∑
O

Ni,O (| f |) Pj (| f |)
∣∣Qij,O ( f )

∣∣2 +
N

∑
i=1

N

∑
j=i+1

Pi (| f |) Pj (| f |)
∣∣Qij ( f )

∣∣2
)]− 1

2

(B.22)

where we have restricted the domain of integration to positive frequencies only. By relabelling

16π
√

2T
5 ∑

λ

Hλ ( f )√
Ni,O ( f ) Nj,O′ ( f )

∞

∑
ℓ=|m|

pℓm,λ γℓm,ij,OO′ ,λ ( f ) ≡ γ̃ij,OO′ ( f )

16π
√

2T
5 ∑

λ

Hλ ( f )√
Ni,O ( f ) Pj ( f )

∞

∑
ℓ=|m|

pℓm,λ γℓm,ij,O,λ ( f ) ≡ γ̃ij,O ( f )

16π
√

2T
5 ∑

λ

Hλ ( f )√
Pi ( f ) Pj ( f )

∞

∑
ℓ=|m|

pℓm,λ γℓm,ij,λ ( f ) ≡ γ̃ij ( f ) (B.23)

and

√
Ni,O ( f ) Nj,O′ ( f )Qij,OO′ ( f ) ≡ Q̃ij,OO′ ( f )

√
Ni,O ( f ) Pj ( f )Qij,O ( f ) ≡ Q̃ij,O ( f )

√
Pi ( f ) Pj ( f )Qij ( f ) ≡ Q̃ij ( f ) (B.24)
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we can rewrite

SNRm =

[ ∫ ∞

0
d f
( M

∑
i=1

M

∑
j=i+1

∑
OO′

γ̃ij,OO′ ( f ) Q̃ij,OO′ ( f ) +
M

∑
i=1

N

∑
j=1

∑
O

γ̃ij,O ( f ) Q̃ij,O ( f ) +

+
N

∑
i=1

N

∑
j=i+1

γ̃ij ( f ) Q̃ij ( f )
)]

×
[ ∫ ∞

0
d f
( M

∑
i=1

M

∑
j=i+1

∑
OO′

|Q̃ij,OO′ ( f ) |2+

+
M

∑
i=1

N

∑
j=1

∑
O

|Q̃ij,O ( f ) |2 +
N

∑
i=1

N

∑
j=i+1

|Q̃ij ( f ) |2
)]− 1

2

(B.25)

which is maximized by Q̃ij,OO′ ( f ) = c γ̃∗
ij,OO′ ( f ), Q̃ij,O ( f ) = c γ̃∗

ij,O ( f ) and Q̃ij ( f ) = c γ̃∗
ij ( f )

where c is an arbitrary real constant that can be set to one. In terms of the original quantities,
this gives (3.16) in the main text



Appendix C
Impact of a non vanishing phase Φ

In this appendix we estimate the impact of neglecting the phase Φ in eq. (B.10). Specifically we
show that, once reintroduced in (B.13), this phase changes the result only to second order. To
see this, we Taylor expand to first order eq. (B.13) with the phase inserted into it

⟨Cm⟩ ≃
τ

T

∫ T

0
dt e−imωet ∑

λ=R,L

∫ +∞

−∞
d f Hλ (| f |)

∫
d2n̂ e∗λ

ab (n̂) eλ
cd (n̂) ∑

ℓm′
pℓm′ ,λ Yℓm′ (n̂)

×
[

M

∑
i=1

M

∑
j=i+1

∑
O=A,E

∑
O′=A,E

dab
iO (t) dcd

jO′ (t) Qij,OO′ ( f )
(
1 + 2πi f n̂ · ∆xij(t)

)
+

+
M

∑
i=1

N

∑
j=1

∑
O=A,E

dab
iO (t) dcd

j (t) Qij,O ( f )
(
1 + 2πi f n̂ · ∆xij(t)

)
+

+
N

∑
i=1

N

∑
j=i+1

dab
i (t) dcd

j (t) Qij ( f )
(
1 + 2πi f n̂ · ∆xij(t)

)
]

≡
〈

C(0)
m

〉
+
〈

C(1)
m

〉
(C.1)

where C(i)
m denotes the order Φi term in the Taylor expansion, and where we have defined

∆xij(t) = xi(t)− xj(t). In the following, we denote by L the length of this vector.
We denote the first order correction of the coefficients (3.14) analogously,

γ
(1)
ℓm,abcd,λ(∆xij, f , t) ≡ 5

8π

∫
d2n̂ 2πi f n̂ · ∆xij(t)Yℓm (n̂) eλ

ab (n̂) eλ
cd (n̂) (C.2)

Differently from the zeroth-order expressions evaluated in the man text, the quantities
γ
(1)
ℓm,abcd,λ(∆xij, f , t) depend on time. For this reason, we first define a new variable α ≡ ωe t

and we compute γ
(1)
ℓm,abcd,λ(∆xij, f , t) in a set of new reference systems with coordinates (θ′,φ′),

co-rotating with the Earth, and defined in such a way that each vector ∆x′ij is oriented along
the z′−axis [12]

n̂′ · ∆x′ij(α) = L cos θ′ (C.3)

We choose the fixed frame such that ∆xij has no y−component at the initial time. The change of
coordinate (θ, φ) → (θ′, φ′) is then obtained from two consecutive rotations. The first rotation
is by an angle α about the z−axis, so that, after this rotation, ∆xij has vanishing y−component

47
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at all times. The second rotation is along the new y−axis (the one emerging from the first
rotation), so to eliminate the x−component of ∆xij. We denote by β the angle of this second
rotation, and by R the matrix that encodes the product of these two rotations. Accounting for
the change of the polarization operator given by combining eq. (A.4) and (A.5) and for the
change of the spherical harmonics under a rotation, we see that the change of variable results
in 




Yℓm(θ, φ) = ∑l
k=−ℓ Dℓ∗

mk(α, β, 0)Yℓk(θ
′, φ′) = ∑ℓ

k=−ℓ eimαdℓmk(β)Yℓk(θ
′, φ′)

n̂ · ∆xij(α) = L cos θ′

e∗λ
ab (n̂) eλ

cd (n̂) = Raa′ Rbb′ Rcc′ Rdd′ e∗λ
a′b′ (n̂

′) eλ
c′d′ (n̂

′)

d2n̂ = d2n̂′

(C.4)

where the explicit form for the coefficients dl
mk(β), which is however irrelevant for our purposes,

can be found in [12]. With these substitution, and setting u ≡ cos θ′, one finds

γ
(1)
ℓm,abcd,λ(α, f ) = 2πi f

5
8π

Raa′ Rbb′ Rcc′ Rdd′
ℓ

∑
k=−ℓ

eimαdℓmk(β)Nk
ℓ

∫ 1

−1
du Pk

ℓ (u) L u Ik,λ
a′b′c′d′ (u)

(C.5)

where we have used Yℓk(θ
′, φ′) =

√
2ℓ+1

4π
(ℓ−k)!
(ℓ+k)! Pk

ℓ (cos θ′)eikφ′ ≡ Nk
ℓ Pk

ℓ (cos θ′)eikφ′
, and where

we have introduced
Ik,λ
a′b′c′d′ (u) ≡

∫ 2π

0
dφ′eikφ′

e∗λ
a′b′
(
n̂′) eλ

c′d′
(
n̂′) (C.6)

One can verify that Ik,λ
a′b′c′d′ (u) has parity (−1)k as u → −u. The associated Legendre polyno-

mials Pk
ℓ (u) have instead parity (−1)k+ℓ. Therefore, the integrand of the

∫ +1
−1 du integration in

(C.5) has parity (−1)ℓ+1. As the integration is on an even domain, it vanishes for even ℓ, and,
as a consequence,

γ
(1)
lm,abcd,λ(α, f ) = 0 for even ℓ (C.7)

This concludes the proof that the terms γ
(0)
0m,abcd, γ

(0)
2m,abcd, γ

(0)
4m,abcd evaluated in chapter 5, do

not receive corrections to linear order in Φ. Therefore, our results for these coefficients are
accurate up to O

(
Φ2) corrections. To conclude this appendix is worth noting that the same

steps outlined here allow to see that only even (odd) powers of Φ contribute to even (odd) ℓ
correlators.



Appendix D
Evaluation of the functions ΓM,D,Q

abcd,λ (κ, ŝ)

In this appendix, we show that the explicit writing of (3.14) for the monopole, dipole and
quadrupole is

γ00,abcd,λ(κ, ŝ) =
5

2
√

π
ΓM

abcd,λ(κ, ŝ)

γ10,abcd,λ(κ, ŝ) = −5i
2

√
3
π

ΓD
abcd,λ(κ, ŝ, ẑ)

γ1±1,abcd,λ(κ, ŝ) =
5i
2

√
3

2π

[
±ΓD

abcd,λ(κ, ŝ, x̂) + iΓD
abcd,λ(κ, ŝ, ŷ)

]

γ20,abcd,λ(κ, ŝ) =
5
4

√
5
π

[
−3ΓQ

abcd,λ(κ, ŝ, ẑ, ẑ)− ΓM
abcd,λ(κ, ŝ)

]

γ2±1,abcd,λ(κ, ŝ) =
5
2

√
15
2π

[
±ΓQ

abcd,λ(κ, ŝ, x̂, ẑ) + iΓQ
abcd,λ(κ, ŝ, ŷ, ẑ)

]

γ2±2,abcd,λ(κ, ŝ) =
5
4

√
15
2π

[
−ΓQ

abcd,λ(κ, ŝ, x̂, x̂)∓ 2iΓQ
abcd,λ(κ, ŝ, x̂, ŷ) + ΓQ

abcd,λ(κ, ŝ, ŷ, ŷ)
]

(D.1)

where we introduced the following functions:

ΓM
abcd,λ(κ, ŝ) =

1
8π

∫
d2n̂ eiκn̂·ŝ e∗λ

ab (n̂) eλ
cd (n̂)

ΓD
abcd,λ(κ, ŝ, v̂) =

1
8π

∫
d2n̂ eiκn̂·ŝ e∗λ

ab (n̂) eλ
cd (n̂) (iv̂ · n̂)

ΓQ
ab,cd,λ(κ, ŝ, v̂, ŵ) =

1
8π

∫
d2n̂ eiκn̂·ŝ e∗λ

ab (n̂) eλ
cd (n̂) (iv̂ · n̂) (iŵ · n̂) (D.2)

In [17] it has been proven that the last expressions can be rewritten in the form of

ΓM
abcd,λ(κ, ŝ) = Γabcd,λ(κ, s)|s=1

ΓD
abcd,λ(κ, ŝ, v̂) =

[
1
κ

v̂i
∂

∂si
Γabcd,λ(κ, s)

]

|s=1

ΓQ
ab,cd,λ(κ, ŝ, v̂, ŵ) =

[
1
κ2 v̂iŵj

∂2

∂si∂sj
Γabcd,λ(κ, s)

]

|s=1

(D.3)
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with

Γabcd,λ(κ, s) = fA(κs)
δacδbd + δadδbc

2
+

fB(κs)
s2

δacsbsd + δbdsasc + δadsbsc + δbcsasd
4

+

+
fC(κs)

s4 sasbscsd + λ
fD(κs)

s
δacseεbde + δbdseεace + δadseεbce + δbcseεade

4
+

+ λ
fE(κs)

s3
sascseεbde + sbsdseεace + sasdseεbce + sbscseεade

4
(D.4)

and

fA(y) =
j1(y)

2y
+

1 − y2

2y2 j2(y)

fB(y) =
j1(y)

y
+

5 − y2

y2 j2(y)

fC(y) = −7
j1(y)

4y
+

35 − y2

y2 j2(y)

fD(y) =
j1(y)

2
− j2(y)

2y

fE(y) = − j1(y)
2

+
5j2(y)

2y
(D.5)

where j1(y) and j2(y) are the Bessel Functions, respectively of the first and the second type.
The authors of [17] provided for a couple of L-shaped interferometers the explicit form of the
quantities

Mλ
ij(k, ŝ) = ΓM

abcd,λ(κ, ŝ)dab
i dcd

j

Dλ
ij(k, ŝ, v̂) = ΓD

abcd,λ(κ, ŝ, v̂)dab
i dcd

j (D.6)

which we recall to be:

Mλ
ij(k) = fA(κ) tr

[
didj

]
+ fB(κ)

(
di ŝij

)a (dj ŝij
)a

+ fC(κ)
(
di ŝij ŝij

) (
dj ŝij ŝij

)

+ λ fD(κ)
[
didj

]ab
εabc ŝc

ij + λ fE(κ)
(
di ŝij

)a (dj ŝij
)b

εabc ŝc
ij (D.7)
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and

Dij,λ(κ, ŝ, v̂) = f ′A(κ)(v̂ŝ)
(
didj

)aa

+

[
f ′B(κ)−

2 fB(κ)

κ

]
(v̂ŝ) (di ŝ)

a (dj ŝ
)a

+
fB(κ)

κ

[
(di v̂)

a (dj ŝ
)a

+ (di ŝ)
a (djv̂

)a
]

+

[
f ′C(κ)−

4 fC(κ)

κ

]
(v̂ŝ) (di ŝŝ)

(
dj ŝŝ

)
+

2 fC(κ)

κ

[
(di v̂ŝ)

(
dj ŝŝ

)
+ (di ŝŝ)

(
djv̂ŝ

)]

+ λ(v̂ŝ)
[

f ′D(κ)−
fD(κ)

κ

] (
didj × ŝ

)
+ λ

fD(κ)

κ

(
didj × v̂

)

+ λ

[
f ′E(κ)−

3 fE(κ)

κ

]
(v̂ŝ)

[
(di ŝ)

(
dj ŝ
)
× ŝ
]

+ λ
fE(κ)

κ

{[
(di v̂)

(
dj ŝ
)
× ŝ
]
+
[
(di ŝ)

(
djv̂
)
× ŝ
]
+
[
(di ŝ)

(
dj ŝ
)
× v̂
]}

(D.8)

with

(didj)
ab ≡ dac

i dcb
j

(di ŝ)a ≡ dab
i ŝb

(di ŝŝ) ≡ dab
i ŝa ŝb

(
didj × ŝ

)
≡ dae

i deb
j εabc ŝc

[
(di ŝ)

(
dj ŝ
)
× ŝ
]
≡ (di ŝ)

a (dj ŝ
)b

εabc ŝc

(v̂ŝ) ≡ v̂i ŝi

(di v̂)a ≡ dab
i v̂b

(di v̂ŝ) ≡ dab
i v̂a ŝb

(
didj × v̂

)
≡ dae

i deb
j εabcv̂c

[
(di v̂)

(
dj ŝ
)
× ŝ
]
≡ (di v̂)

a (dj ŝ
)b

εabc ŝc
[
(di ŝ)

(
djv̂
)
× ŝ
]
≡ (di ŝ)

a (djv̂
)b

εabc ŝc
[
(di ŝ)

(
dj ŝ
)
× v̂
]
≡ (di ŝ)

a (dj ŝ
)b

εabcv̂c (D.9)

We went on following the procedure proved in equation (D.3) and we found the explicit analytic
writing of the functions ΓQ

abcd,λ(κ, ŝ, v̂, ŵ)
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ΓQ
abcd,λ(κ, ŝ, v̂, ŵ) =

[
f ′′A(κ)v̂e ŝe ŵ f ŝ f +

f ′A(κ)
κ

v̂eŵe −
f ′A(κ)

κ
v̂e ŝe w f ŝ f

]
1
2
(δacδbd + δadδbc) +

+

[
f ′′B (κ)−

2 f ′B(κ)
κ

+
2 fB(κ)

κ2

]
v̂e ŝeŵ f ŝ f

1
4
(δac ŝb ŝd + perm.) +

+

[
f ′B(κ)−

2 fB(κ)

κ

]
1
κ
(v̂eŵe − v̂e ŝeŵ f ŝ f )

1
4
(δac ŝb ŝd + perm.) +

+

[
f ′B(κ)−

2 fB(κ)

κ

]
v̂e ŝe

1
κ

1
4
{δac(ŵb ŝd + ŵd ŝb − 2ŵ f ŝ f ŝb ŝd) + perm.}+

+

[
f ′B(κ)

κ
− fB(κ)

κ2

]
ŵe ŝe

1
4
{δad(v̂b ŝc + v̂c ŝb) + perm.}+

+
fB(κ)

κ2
1
4
{δad(v̂bŵc + v̂cŵb − ŵe ŝev̂b ŝc − ŵe ŝev̂c ŝb) + perm.}+

+

[
f ′′C (κ)−

4 f ′C(κ)
κ

+
4 fC(κ)

κ2

]
v̂e ŝeŵ f ŝ f ŝa ŝb ŝc ŝd+

+

[
f ′C(κ)−

4 fC(κ)

κ

]
1
κ

v̂e{ŵa ŝb ŝc ŝd ŝe + perm. − 5ŝa ŝb ŝc ŝd ŝeŵ f ŝ f }+

+ 2
[

f ′C(κ)
κ

− fC(κ)

κ2

]
ŵe ŝe

1
2
{v̂a ŝb ŝc ŝd + perm.}+

+
2 fC(κ)

κ2
1
2
{v̂d(ŵa ŝb ŝc + perm. − 3ŵe ŝe ŝa ŝb ŝc) + perm.}+

+ λ

[
f ′′D(κ)−

f ′D(κ)
κ

+
fD(κ)

κ2

]
v̂e ŝeŵ f ŝ f

1
4
(δacεbdg + perm.)ŝg+

+ λ

[
f ′D(κ)−

fD(κ)

κ

]
1
κ

v̂e
1
4
(δacεbdg + perm.)(ŵe ŝg + ŵg ŝe − 2ŵ f ŝ f ŝe ŝg)+

+ λ

[
f ′D(κ)

κ
− fD(κ)

κ2

]
ŵ f ŝ f

1
4
(δacεbdg + perm.)v̂g+

+ λ

[
f ′′E (κ)−

3 f ′E(κ)
κ

+
3 fE(κ)

κ2

]
ŵ f ŝ f v̂e ŝe ŝg

1
4
[
ŝb ŝdεacg + perm.

]
+

+ λ

[
f ′E(κ)−

3 fE(κ)

κ

]
1
κ

v̂e
1
4
{εacg(ŵe ŝb ŝd ŝg + perm. − 4ŝe ŝb ŝd ŝgŵ f ŝ f ) + perm.}+

+ λ

[
f ′E(κ)

κ
− fE(κ)

κ2

]
ŵ f ŝ f

1
4
{
[
(v̂b ŝd + ŝbv̂d)ŝg + ŝb ŝdv̂g

]
εacg + perm.}+

+ λ
fE(κ)

κ2
1
4

{[(
ŵbv̂d + v̂bŵd − 2ŵ f ŝ f (v̂b ŝd + v̂d ŝb)

)
ŝg + (ŝbv̂d + ŝdv̂b)ŵg+

+ (ŵb ŝd + ŝbŵd − 2ŝb ŝdŵ f ŝ f )v̂g

]
εacg + perm.

}
(D.10)

and after being projected on the geometry of the couple of the detectors we define

Qλ
ij(κ, ŝ, v̂, ŵ) = ΓQ

abcd,λ(κ, ŝ, v̂, ŵ)dab
i dcd

j (D.11)
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where we identify the two contributes:

Qij,λ(κ, ŝ, v̂, ŵ) = Qij,λ(κ, ŝ, v̂, ŵ)
∣∣
Parity invariant + Qij,λ(κ, ŝ, v̂, ŵ)

∣∣
Parity violating (D.12)

with

Qij,λ(κ, ŝ, v̂, ŵ)
∣∣
Parity invariant =

{
f ′A(κ)

κ
(v̂ŵ) +

[
f ′′A(κ)−

f ′A(κ)
κ

]
(v̂ŝ)(ŵŝ)

} (
didj

)aa

+

{[
f ′B(κ)

κ
− 2 fB(κ)

κ2

]
(v̂ŵ) +

[
f ′′B (κ)−

5 f ′B(κ)
κ

+
8 fB(κ)

κ2

]
(v̂ŝ)(ŵŝ)

}
(di ŝ)

a (dj ŝ
)a

+

[
f ′B(κ)

κ
− 2 fB(κ)

κ2

]
(v̂ŝ)

[
(diŵ)a (dj ŝ

)a
+ (di ŝ)

a (djŵ
)a
]

+

[
f ′B(κ)

κ
− 2 fB(κ)

κ2

]
(ŵŝ)

[
(di v̂)

a (dj ŝ
)a

+ (di ŝ)
a (djv̂

)a
]

+
fB(κ)

κ2

[
(di v̂)

a (djŵ
)a

+ (diŵ)a (djv̂
)a
]

+

{[
f ′C(κ)

κ
− 4 fC(κ)

κ2

]
(v̂ŵ) +

[
f ′′C (κ)−

9 f ′C(κ)
κ

+
24 fC(κ)

κ2

]
(v̂ŝ)(ŵŝ)

}
(di ŝŝ)

(
dj ŝŝ

)

+ 2
[

f ′C(κ)
κ

− 4 fC(κ)

κ2

]
(v̂ŝ)

[
(diŵŝ)

(
dj ŝŝ

)
+ (di ŝŝ)

(
djŵŝ

)]

+ 2
[

f ′C(κ)
κ

− 4 fC(κ)

κ2

]
(ŵŝ)

[
(di v̂ŝ)

(
dj ŝŝ

)
+ (di ŝŝ)

(
djv̂ŝ

)]

+
2 fC(κ)

κ2

[
(di v̂ŵ)

(
dj ŝŝ

)
+ (di ŝŝ)

(
djv̂ŵ

)
+ 2 (di v̂ŝ)

(
djŵŝ

)
+ 2 (diŵŝ)

(
djv̂ŝ

)]
(D.13)

and

Qij,λ(κ, ŝ, v̂, ŵ)
∣∣
Parity violating =

λ

{[
f ′D(κ)

κ
− fD(κ)

κ2

]
(v̂ŵ) +

[
f ′′D(κ)−

3 f ′D(κ)
κ

+
3 fD(κ)

κ2

]
(v̂ŝ)(ŵŝ)

} (
didj × ŝ

)

+ λ

[
f ′D(κ)

κ
− fD(κ)

κ2

]
(v̂ŝ)

(
didj × ŵ

)
+ λ

[
f ′D(κ)

κ
− fD(κ)

κ2

]
(ŵŝ)

(
didj × v̂

)

+ λ

{[
f ′E(κ)

κ
− 3 fE(κ)

κ2

]
(v̂ŵ) +

[
f ′′E (κ)−

7 f ′E(κ)
κ

+
15 fE(κ)

κ2

]
(v̂ŝ)(ŵŝ)

} [
(di ŝ)

(
dj ŝ
)
× ŝ
]

+ λ

[
f ′E(κ)

κ
− 3 fE(κ)

κ2

]
(v̂ŝ)

{[
(diŵ)

(
dj ŝ
)
× ŝ
]
+
[
(di ŝ)

(
djŵ
)
× ŝ
]
+
[
(di ŝ)

(
dj ŝ
)
× ŵ

]}
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abcd,λ (κ , ŝ)

+ λ

[
f ′E(κ)

κ
− 3 fE(κ)

κ2

]
(ŵŝ)

{[
(di v̂)

(
dj ŝ
)
× ŝ
]
+
[
(di ŝ)

(
djv̂
)
× ŝ
]
+
[
(di ŝ)

(
dj ŝ
)
× v̂
]}

+ λ
f ′E(κ)

κ2

{
[
(di v̂)

(
dj ŝ
)
× ŵ

]
+
[
(di ŝ)

(
djv̂
)
× ŵ

]
+
[
(diŵ)

(
dj ŝ
)
× v̂
]
+
[
(di ŝ)

(
djŵ
)
× v̂
]

+
[
(di v̂)

(
djŵ
)
× ŝ
]
+
[
(diŵ)

(
djv̂
)
× ŝ
]
}

(D.14)

in doing this we also had to define

(v̂ŵ) ≡ v̂iŵi

(di v̂ŵ) ≡ dab
i v̂aŵb

[
(di v̂)

(
dj ŝ
)
× ŵ

]
≡ (di v̂)

a (dj ŝ
)b

εabcŵc
[
(di ŝ)

(
djv̂
)
× ŵ

]
≡ (di ŝ)

a (djv̂
)b

εabcŵc
[
(di v̂)

(
djŵ
)
× ŝ
]
≡ (di v̂)

a (djŵ
)b

εabc ŝc (D.15)

For completeness, one may introduce in an analogous way of (D.6) and (D.11) some useful
quantities for studying a network made of both L-shaped and triangular-shaped interferometers:

Mλ
ij,O(k, ŝ) = ΓM

abcd,λ(κ, ŝ)dab
i,Odcd

j

Dλ
ij,O(k, ŝ, v̂) = ΓD

abcd,λ(κ, ŝ, v̂)dab
i,Odcd

j

Qλ
ij,O(κ, ŝ, v̂, ŵ) = ΓQ

abcd,λ(κ, ŝ, v̂, ŵ)dab
i,Odcd

j

Mλ
ij,OO′(k, ŝ) = ΓM

abcd,λ(κ, ŝ)dab
i,Odcd

j,O′

Dλ
ij,OO′(k, ŝ, v̂) = ΓD

abcd,λ(κ, ŝ, v̂)dab
i,Odcd

j,O′

Qλ
ij,OO′(κ, ŝ, v̂, ŵ) = ΓQ

abcd,λ(κ, ŝ, v̂, ŵ)dab
i,Odcd

j,O′ (D.16)



Appendix E
Geometry of the detectors

We specify the position and orientation of each detector as follows. We denote the latitude
and longitude of the site with θ and φ, respectively. Following standard convention, the north
pole is at latitude θ = 0, while the equator is at latitude θ = π/2. Let us consider a Cartesian
system centred at the center of the Earth (assumed to be a perfect sphere), with the x− axis
pointing toward the location of 0 longitude on the equator, with the y− axis pointing toward
the location of π/2 longitude on the equator, and with the z−axis pointing toward the north
pole. In this coordinate system, at the {θ, φ} location, the north direction is given by

v̂north = {− sin θ cos φ, − sin θ sin φ, cos θ} (E.1)

while the east direction is given by

v̂east = {− sin φ, cos φ, 0} (E.2)

we note that these vectors are a basis for the tangent space to the Earth surface at the {θ, φ}
location, and they can therefore be employed to specify the directions of the arms of the
detector. In our computations we specify the orientation by the angle β that the arm direction
ûX forms with the north direction,

ûX = cos (β) v̂north + sin (β) v̂east (E.3)

for what concerns the L-shaped detectors, we have

ûY = − sin (β) v̂north + cos (β) v̂east (E.4)

while for ûY and ûZ in triangular-shaped interferometers we follow the conventions indicated
in Figure 23.

E.1 – Geometry of ET adopted in Sections 4-5

For the case of a single ET (like the one considered in section 4 and section 5), an explicit
evaluation of the dab

1A and dab
1E coefficients show that the A− and the E− channels can be
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4.1 SNR at the ET and the low frequency / short separation condition

N E β

ET has an equilateral triangular configuration with three Michelson interferometers
at its vertices. Therefore, every interferometer shares one arm with each of the other two
interferometers. For this reason the noise in the three interferometers are correlated. In
the limit of exact equilateral configuration, and of identical detectors, the noise correlation
matrix can be diagonalized by the three channels

sA ≡ 2s1 − s2 − s3

3
, sE ≡ s3 − s2√

2
, sT ≡ s1 + s2 + s3

3
, (4.1)

where s1,2,3 are the measurements (2.7) at the three interferometers. These linear combina-
tions were introduced in [4] for the LISA experiment, that has also an equilateral configura-
tion. We write this relation in matrix form as

sO ≡ cOi si , c ≡

⎛
⎝

2
3 −1

3 −1
3

0 − 1√
3

1√
3

1
3

1
3

1
3

⎞
⎠ , (4.2)

whee the index O scans the three channels A, E, T .

In this subsection we show that the low frequency / short reparation condition (3.1)
is well satisfied by ET. We first use it as a working assumption, and we then verify that it
is indeed a consistent approximation. In this approximation, the relation (3.6) is valid, and
therefore wee can write the overlap function elements between the three channels as

γℓm,OO′ = cOicOi′ γℓm,ii′ =
(
cOi d

ab
i

) (
cO′j dab

j

)
γℓm,ab,cd

≡ dab
O dab

O′ γℓm,ab,cd , (4.3)

where we have introduced

dab
A ≡ 2dab

1 − dab
2 − dab

3

3
= dab

1 ,

dab
E ≡ dab

3 − dab
2√

3
,

dab
T ≡ dab

1 + dab
2 + dab

3

3
= 0 , (4.4)

namely we can treat each channel as an interferometer with its own charactistic function dO.
We note that in this limit the T channel is a nulla channel, as it is commonly referred to in
the LISA literature.

To evaluate the SNR (2.21) we need the power spectrum of the noise P (f). The noise ni

in eq. (2.7) is dimensionless, and, therefore both ñi and Pi (|f |) in eq. (2.17) have dimensions
of a time. For ET, we take for the noise power Pi (|f |) the square of the strain “ET-D” shown
in Figure 7 of [2] (we note that the strain shown there has indeed the dimensions of the square
root of a time). The strain presented in [2] (and publicly available from [3]) is computed for
a single interferometer with ET specifics and two arms at right angle. It is argued there that,
in the actual ET design, the presence of three interferometers compensates for the fact that
they have a smaller angle between the ams, which reduces the sensitivity of each of them.

– 7 –
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our study in Subsection 3.3). In this case, we can approximate the GW appearing in (3.6)
as hab (t, x⃗), which is constant along the line integral, and therefore

Tret = 2L +
l̂a l̂b

2
× 2Lhab (t, x⃗) . (3.7)

We denote by x⃗iα (t) the location of the vertex α of the i−th detector. We denote by
ûiα (t) and v̂iα (t) the unit vectors in the directions of the two ams that start from this vertex.
Specifically, we choose

x⃗X

Therefore, the signal at the time t at the vertex α of the i-th detector, located at x⃗iα, is

siα(t) = dab
iα(t)hab(t, x⃗i(t)) , dab

iα(t) ≡ ûa
iα(t)ûb

iα(t) − v̂a
iα(t)v̂b

iα(t)

2
, (3.8)

where X̂i (t) and Ŷi (t) are the unit vectors in the directions of the two arms of the i-th
interferometer, that are time-dependent due to the rotation of the Earth about its axis.

We decompose the GW as

hab(t, x⃗) =

∫ ∞

−∞
df

∫
d2n̂ e2πif(t−n̂·x⃗)

∑

s=+,×
hs(f, n̂) es

ab (n̂) , (3.9)

where reality is ensured by h∗
s (f, n̂) = hs (−f, n̂), and where the polarization operators es

ab (n̂)
are discussed in Appendix B.

We follow [12] in assuming an unpolarized anisotropic SGWB, characterized by

〈
h∗

s (f, n̂)hr

(
f ′n̂′)〉 = δsrδ

(2)
D

(
n̂ − n̂′) δD

(
f − f ′)H (|f |)P (n̂) , (3.10)

with

P (n̂) =
∑

ℓm

pℓm Yℓm (n̂) , (3.11)

where in the standard isotropic studies only the monopole is present, with P (Ω̂) = 1. This
angular dependence is formulated in the rest frame of the fixed stars, with the z−axis chosen
to coincide with the Earth rotation axis.

We note that the choice made in (3.10) is not the most general one, since it assumes that
the frequency and angular dependences are factorized. We also note that only the monopole
contributes to the GW energy density, leading to [12]

ΩGW (f) ≡ 1

ρcritical

dρGW

d ln f
=

32π3

3H2
0

f3 H (f) . (3.12)

By using (3.8) and (3.9) one finds

s̃i (f, t) =
∑

s=+,×

∫
d2n̂

∫ +∞

−∞
df ′e−2πi(f−f ′)tδτ

(
f − f ′) e−2πif ′n̂·x⃗i(t)hs

(
f ′, n̂

)
es
ab (n̂) dab

i (t) ,

(3.13)
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ûiα (t) and v̂iα (t) the unit vectors in the directions of the two ams that start from this vertex.
Specifically, we choose

x⃗Z

Therefore, the signal at the time t at the vertex α of the i-th detector, located at x⃗iα, is

siα(t) = dab
iα(t)hab(t, x⃗i(t)) , dab

iα(t) ≡ ûa
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ñ

i
an

d
P

i
(|f

|)
in

eq
.
(2

.1
7)

h
av

e
d
im

en
si
on

s

of
a

ti
m

e.
F
or

E
T

,
w
e

ta
ke

fo
r
th

e
n
oi

se
p
ow

er
P

i
(|f

|)
th

e
sq

u
ar

e
of

th
e

st
ra

in
“E

T
-D

”
sh

ow
n

in
F
ig

u
re

7
of

[2
]
(w

e
n
ot

e
th

at
th

e
st

ra
in

sh
ow

n
th

er
e
h
as

in
d
ee

d
th

e
d
im

en
si
on

s
of

th
e
sq

u
ar

e

ro
ot

of
a

ti
m

e)
.

T
h
e

st
ra

in
p
re

se
nt

ed
in

[2
]
(a

n
d

p
u
b
li
cl

y
av

ai
la

b
le

fr
om

[3
])

is
co

m
p
u
te

d
fo

r

a
si
n
gl

e
in

te
rf
er

om
et

er
w

it
h

E
T

sp
ec

ifi
cs

an
d

tw
o

ar
m

s
at

ri
gh

t
an

gl
e.

It
is

ar
gu

ed
th

er
e

th
at

,

in
th

e
ac

tu
al

E
T

d
es

ig
n
,
th

e
p
re

se
n
ce

of
th

re
e

in
te

rf
er

om
et

er
s

co
m

p
en

sa
te

s
fo

r
th

e
fa

ct
th

at

th
ey

h
av

e
a

sm
al

le
r

an
gl

e
b
et

w
ee

n
th

e
am

s,
w

h
ic
h

re
d
u
ce

s
th

e
se

n
si
ti
vi

ty
of

ea
ch

of
th

em
.

–
7

–

ou
r

st
u
d
y

in
S
u
b
se

ct
io

n
3.

3)
.

In
th

is
ca

se
,
w
e

ca
n

ap
p
ro

xi
m

at
e

th
e

G
W

ap
p
ea

ri
n
g

in
(3

.6
)

as
h a

b
(t
,
x⃗
),

w
h
ic
h

is
co

n
st

an
t

al
on

g
th

e
li
n
e

in
te

gr
al

,
an

d
th

er
ef

or
e

T r
et

=
2L

+
l̂a
l̂b

2
×

2
L
h a

b
(t
,
x⃗
)
.

(3
.7

)

W
e

d
en

ot
e

by
x⃗ i

α
(t

)
th

e
lo

ca
ti
on

of
th

e
ve

rt
ex

α
of

th
e
i−

th
d
et

ec
to

r.
W

e
d
en

ot
e

by

û i
α

(t
)
an

d
v̂ i

α
(t

)
th

e
u
n
it

ve
ct

or
s
in

th
e

d
ir
ec

ti
on

s
of

th
e

tw
o

am
s
th

at
st

ar
t
fr
om

th
is

ve
rt

ex
.

S
p
ec

ifi
ca

ll
y,

w
e

ch
oo

se

x⃗ X

T
h
er

ef
or

e,
th

e
si
gn

al
at

th
e

ti
m

e
t
at

th
e

ve
rt

ex
α

of
th

e
i-
th

d
et

ec
to

r,
lo

ca
te

d
at

x⃗ i
α
,
is

s i
α
(t

)
=
d

a
b

iα
(t

)h
a
b
(t
, x⃗

i(
t)

)
,
d

a
b

iα
(t

)
≡

û
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)û
b iα
(t

)
−
v̂

a iα
(t

)v̂
b iα
(t

)
2

,

(3
.8

)

w
h
er

e
X̂

i
(t

)
an

d
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û Z

T
h
er

ef
or

e,
th

e
si
gn

al
at

th
e

ti
m

e
t
at

th
e

ve
rt

ex
α

of
th

e
i-
th

d
et

ec
to

r,
lo

ca
te

d
at

x⃗ i
α
,
is

s i
α
(t

)
=
d

a
b

iα
(t

)h
a
b
(t
, x⃗

i(
t)

)
,
d

a
b

iα
(t

)
≡

û
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4.1
SN

R
at

the
E
T

and
the

low
frequency

/
short

separation
condition

N

E

β

E
T

has
an

equilateral
triangular

configuration
w
ith

three
M

ichelson
interferom

eters

at
its

vertices.
T
herefore,

every
interferom

eter
shares

one
arm

w
ith

each
of

the
other

tw
o

interferom
eters.

For
this

reason
the

noise
in

the
three

interferom
eters

are
correlated.

In

the
lim

it
of

exact
equilateral configuration,

and
of

identical detectors,
the

noise
correlation

m
atrix

can
be

diagonalized
by

the
three

channels

s
A ≡ 2s

1 −
s
2 −

s
3

3

,
s
E ≡ s

3 −
s
2

√
2

,
s
T ≡ s

1 +
s
2 +

s
3

3

,

(4.1)

w
here

s
1,2,3 are

the
m
easurem

ents
(2.7)

at
the

three
interferom

eters.
T
hese

linear
com

bina-

tions
w
ere

introduced
in

[4] for
the

LISA
experim

ent, that
has

also
an

equilateral configura-

tion.
W

e
w
rite

this
relation

in
m
atrix

form
as

s
O ≡

c
O
i s

i
,

c ≡ ⎛
⎝ 2
3 −

1
3 −

1
3

0 −
1√

3

1√
3

1
3

1
3

1
3

⎞
⎠

,

(4.2)

w
hee

the
index

O
scans

the
three

channels
A
,E

, T
.

In
this

subsection
w
e
show

that
the

low
frequency

/
short

reparation
condition

(3.1)

is
w
ell satisfied

by
E
T
. W

e
first

use
it

as
a

w
orking

assum
ption,

and
w
e
then

verify
that

it

is
indeed

a
consistent

approxim
ation.

In
this

approxim
ation, the

relation
(3.6)

is
valid, and

therefore
w
ee

can
w
rite

the
overlap

function
elem

ents
betw

een
the

three
channels

as

γ
ℓm

,O
O ′

=
c
O
i c

O
i ′ γ

ℓm
,ii ′ = (

c
O
i d abi ) (

c
O ′j d abj )

γ
ℓm

,ab,cd

≡
d abO

d abO ′ γ
ℓm

,ab,cd ,

(4.3)

w
here

w
e
have

introduced
d abA ≡

2d ab1 −
d ab2 −

d ab3

3

=
d ab1

,

d abE ≡
d ab3 −

d ab2

√
3

,

d abT ≡
d ab1

+
d ab2

+
d ab3

3

=
0
,

(4.4)

nam
ely

w
e
can

treat
each

channel as
an

interferom
eter

w
ith

its
ow

n
charactistic

function
d

O .

W
e
note

that
in

this
lim

it
the

T
channel is

a
nulla

channel, as
it

is
com

m
only

referred
to

in

the
LISA

literature.

To
evaluate

the
SN

R
(2.21) w

e
need

the
pow

er spectrum
of the

noise
P

(f).
T
he

noise
n

i

in
eq.

(2.7)
is

dim
ensionless, and, therefore

both
ñ

i and
P

i (|f |)
in

eq.
(2.17)

have
dim

ensions

of a
tim

e.
For

E
T
, w

e
take

for
the

noise
pow

er
P

i (|f |)
the

square
of the

strain
“E

T
-D

”
show

n

in
F
igure

7
of [2] (w

e
note

that the
strain

show
n
there

has indeed
the

dim
ensions of the

square

root
of a

tim
e).

T
he

strain
presented

in
[2] (and

publicly
available

from
[3])

is
com

puted
for

a
single

interferom
eter

w
ith

E
T

specifics
and

tw
o
arm

s
at

right
angle.

It
is

argued
there

that,

in
the

actual E
T

design, the
presence

of three
interferom

eters
com

pensates
for

the
fact

that

they
have

a
sm

aller
angle

betw
een

the
am

s,
w
hich

reduces
the

sensitivity
of

each
of

them
.
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our
study

in
Subsection

3.3).
In

this
case,

w
e
can

approxim
ate

the
G
W

appearing
in

(3.6)

as
h

ab (t, x⃗), w
hich

is
constant

along
the

line
integral, and

therefore

T
ret =

2L
+ l̂ a

l̂ b

2 ×
2
L
h

ab (t, x⃗)
.

(3.7)

W
e
denote

by
x⃗

iα (t)
the

location
of

the
vertex

α
of

the
i−

th
detector.

W
e
denote

by

û
iα (t)

and
v̂
iα (t)

the
unit

vectors
in

the
directions

of the
tw

o
am

s
that

start
from

this
vertex.

Specifically, w
e
choose

x⃗
X

T
herefore, the

signal at
the

tim
e
t
at

the
vertex

α
of the

i-th
detector, located

at
x⃗

iα , is

s
iα (t)

=
d abiα (t)h

ab (t, x⃗
i (t))

,
d abiα (t) ≡ û a

iα (t)û b
iα (t)−

v̂ a
iα (t)v̂ b

iα (t)

2

,

(3.8)

w
here

X̂
i (t)

and
Ŷ

i (t)
are

the
unit

vectors
in

the
directions

of
the

tw
o

arm
s
of

the
i-th

interferom
eter, that

are
tim

e-dependent
due

to
the

rotation
of the

E
arth

about
its
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that

the
frequency

and
angular

dependences
are

factorized.
W

e
also

note
that

only
the

m
onopole

contributes
to

the
G
W

energy
density, leading

to
[12]

Ω
G
W

(f) ≡

1ρ
critical

dρ
G
W

d
ln
f = 32π 33H

20 f 3
H

(f)
.

(3.12)

B
y
using

(3.8)
and

(3.9)
one

finds

s̃
i (f, t)

= ∑
s=

+
,×

∫
d 2
n̂ ∫

+∞−∞

df ′e −
2πi(f−

f ′)t
δ
τ (
f −

f ′ )
e −

2πif ′n̂·x⃗
i (t)

h
s (
f ′, n̂ )

e s
ab (n̂) d abi

(t)
,(3.13)

–
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F
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1.
O
ur

convention
for

the
orientation

of
the

three
E
T
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s, w

ith
β

being
the

angle
form

ed

by
the

“first”
arm

w
ith

the
north

direction.

our
study

in
Subsection

3.3).
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this
case,

w
e
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the
G
W

appearing
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(3.6)
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h

ab (t, x⃗), w
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is
constant

along
the

line
integral, and

therefore

T
ret =

2L
+ l̂ a

l̂ b

2 ×
2
L
h

ab (t, x⃗)
.

(3.7)

W
e
denote

by
x⃗

iα (t)
the

location
of

the
vertex

α
of

the
i−

th
detector.

W
e
denote

by

û
iα (t)

and
v̂
iα (t)

the
unit

vectors
in

the
directions

of the
tw

o
am

s
that

start
from

this
vertex,

as
indicated

in
F
igure

1
(in

the
figure, the

index
i
is

suppressed, since
an

identical notation

is
used

for
the

tw
o
detectors.

û
Y
=

−
v̂
Z

T
herefore, the

signal at
the

tim
e
t
at

the
vertex

α
of the

i-th
detector, located

at
x⃗

iα , is

s
iα (t)

=
d abiα (t)h

ab (t, x⃗
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d abiα (t) ≡ û a

iα (t)û b
iα (t)−
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iα (t)v̂ b
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2

,

(3.8)

w
here

X̂
i (t)

and
Ŷ

i (t)
are

the
unit

vectors
in

the
directions

of
the

tw
o

arm
s
of

the
i-th

interferom
eter, that

are
tim

e-dependent
due

to
the

rotation
of the

E
arth

about
its

axis.

W
e
decom

pose
the

G
W

as

h
ab (t, x⃗)

= ∫
∞

−∞ df ∫
d 2
n̂
e 2πif(t−

n̂·x⃗) ∑
s=

+
,× h

s (f, n̂) e s
ab (n̂)

,

(3.9)

w
here

reality
is ensured

by
h ∗

s (f, n̂)
=
h

s (−
f, n̂), and

w
here

the
polarization

operators e s
ab (n̂)

are
discussed

in
A
ppendix

B
.

W
e
follow

[12] in
assum

ing
an

unpolarized
anisotropic

SG
W

B
, characterized

by

〈
h ∗

s (f, n̂)h
r (
f ′n̂ ′ )〉

=
δ
sr δ (2)D (

n̂−
n̂ ′ )

δ
D (
f −

f ′ )
H

(|f |)P
(n̂)

,

(3.10)
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4.1 SNR at the ET and the low frequency / short separatio
n condition

N E β

ET has an equilateral
triangular configuration

with three Michelson interferom
eters

at its vertice
s. Therefore

, every interferom
eter shares one arm with each of the other two

interferom
eters.

For this reason
the noise in the three interferom

eters are correla
ted. In

the limit of exact equilateral
configuration, and of identical detector

s, the noise correla
tion

matrix can be diagonalized by the three channels

sA ≡
2s1 − s2 − s3

3

, sE ≡
s3 − s2

√
2

, sT ≡
s1 + s2 + s3

3
,

(4.1)

where s1,2,3 are the measurements (2.7) at the three interferom
eters. These linear combina-

tions were introduced in [4] for the LISA experiment, that has also an equilateral
configura-

tion. We write this relation
in matrix form as

sO ≡ cOi si , c ≡

⎛
⎝

2
3

−1
3

−1
3

0 − 1√
3

1√
3

1
3

1
3

1
3

⎞
⎠ ,

(4.2)

whee the index O scans the three channels A,E, T .

In this subsection
we show that the low frequency / short reparation

condition (3.1)

is well satisfied by ET. We first use it as a working assumption, and we then verify that it

is indeed a consistent approximation. In this approximation, the relation
(3.6) is valid, and

therefore
wee can write the overlap

function elements between the three channels as

γℓm,OO′ = cOicOi′ γℓm,ii′ =

(
cOi d

ab
i

) (
cO′j dab

j

)
γℓm,ab,cd

≡ dab
O

dab
O′ γℓm,ab,cd

,

(4.3)

where we have introduced

dab
A

≡
2d

ab
1

− dab
2

− dab
3

3

= dab
1

,

dab
E

≡
dab

3
− dab

2√
3

,

dab
T

≡
dab

1
+ dab

2
+ dab

3

3

= 0 ,

(4.4)

namely we can treat each channel as an interferom
eter with its own charactis

tic function dO.

We note that in this limit the T channel is a nulla channel, as it is commonly referred
to in

the LISA literatu
re.

To evaluate the SNR (2.21) we need the power spectrum of the noise P (f). The noise ni

in eq. (2.7) is dimensionless, and, therefore
both ñi and Pi (|f |) in eq. (2.17) have dimensions

of a time. For ET, we take for the noise power Pi (|f |) the square of the strain “ET-D” shown

in Figure 7 of [2] (we note that the strain shown there has indeed the dimensions of the square

root of a time). The strain presented in [2] (and publicly availab
le from [3]) is computed for

a single interferom
eter with ET specifics and two arms at right angle. It is argued there that,

in the actual ET design, the presence of three interferom
eters compensates for the fact that

they have a smaller angle between the ams, which reduces the sensitivity of each of them.
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our study in Subsection
3.3). In this case, we can approximate the GW appearing in (3.6)

as hab (t, x⃗), which is constant along the line integral,
and therefore

Tret
= 2L +

l̂a l̂
b

2
× 2Lhab (t, x⃗) .

(3.7)

We denote by x⃗iα (t) the location
of the vertex

α of the i−th detector
. We denote by

ûiα (t) and v̂iα (t) the unit vectors
in the direction

s of the two ams that start from this vertex.

Specifically, we choose
x⃗X

Therefore
, the signal at the time t at the vertex

α of the i-th detector
, located at x⃗iα, is

siα(t) = dab
iα

(t)hab(t, x⃗i(t))
, dab

iα
(t) ≡

ûa
iα

(t)û
b
iα

(t) − v̂a
iα

(t)v̂
b
iα

(t)

2

,
(3.8)

where X̂i (t)
and Ŷi (t)

are the unit vectors
in the direction

s of the two arms of the i-th

interferom
eter, that are time-dependent due to the rotatio

n of the Earth about its axis.

We decompose the GW as

hab(t, x⃗
) =

∫ ∞

−∞
df

∫
d2 n̂ e2

πif(t−n̂·x⃗)
∑

s=+,×
hs(f, n̂

) e
s
ab (n̂) ,

(3.9)

where reality
is ensured by h∗

s (f, n̂) = hs (−f, n̂), and where the polariza
tion operators

esab
(n̂)

are discussed in Appendix B.

We follow
[12] in assuming an unpolarized

anisotrop
ic SGWB, character

ized by

〈
h

∗
s (f, n̂)hr

(
f

′ n̂′)〉 = δsrδ
(2)

D

(
n̂ − n̂

′) δD

(
f − f

′) H (|f |)P (n̂) ,
(3.10)

with
P (n̂) =

∑

ℓm

pℓm
Yℓm

(n̂) ,

(3.11)

where in the standard isotrop
ic studies only the monopole is present, with P (Ω̂) = 1. This

angular dependence is formulated in the rest frame of the fixed stars, with the z−axis chosen

to coincide with the Earth rotatio
n axis.

We note that the choice made in (3.10) is not the most general one, since it assumes that

the frequency and angular dependences are factoriz
ed. We also note that only the monopole

contributes to the GW energy density, leading to [12]

ΩGW (f) ≡
1

ρcritica
l

dρGW

d ln f
=

32π
3

3H
2
0

f
3 H (f) .

(3.12)

By using (3.8) and (3.9) one finds

s̃i (f, t
) =

∑

s=+,×

∫
d2 n̂

∫ +∞

−∞
df

′e−
2πi(f−f′ )tδτ

(
f − f

′) e−
2πif

′ n̂·x⃗i(t)hs

(
f

′ , n̂
)
esab (n̂) d

ab
i

(t) ,

(3.13)
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ûa
iα

(t)û
b
iα

(t) − v̂a
iα

(t)v̂
b
iα

(t)

2

,
(3.8)

where X̂i (t)
and Ŷi (t)
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and Ŷi (t)

are the unit vectors
in the direction

s of the two arms of the i-th

interferom
eter, that are time-dependent due to the rotatio

n of the Earth about its axis.

We decompose the GW as

hab(t, x⃗
) =

∫ ∞

−∞
df

∫
d2 n̂ e2

πif(t−n̂·x⃗)
∑

s=+,×
hs(f, n̂

) e
s
ab (n̂) ,

(3.9)

where reality
is ensured by h∗

s (f, n̂) = hs (−f, n̂), and where the polariza
tion operators

esab
(n̂)

are discussed in Appendix B.

We follow
[12] in assuming an unpolarized

anisotrop
ic SGWB, character

ized by

〈
h

∗
s (f, n̂)hr

(
f

′ n̂′)〉 = δsrδ
(2)

D

(
n̂ − n̂

′) δD

(
f − f

′) H (|f |)P (n̂) ,
(3.10)

with
P (n̂) =

∑

ℓm

pℓm
Yℓm

(n̂) ,

(3.11)

where in the standard isotrop
ic studies only the monopole is present, with P (Ω̂) = 1. This

angular dependence is formulated in the rest frame of the fixed stars, with the z−axis chosen

to coincide with the Earth rotatio
n axis.

We note that the choice made in (3.10) is not the most general one, since it assumes that

the frequency and angular dependences are factoriz
ed. We also note that only the monopole

contributes to the GW energy density, leading to [12]

ΩGW (f) ≡
1

ρcritica
l

dρGW

d ln f
=

32π
3

3H
2
0

f
3 H (f) .

(3.12)

By using (3.8) and (3.9) one finds

s̃i (f, t
) =

∑

s=+,×

∫
d2 n̂

∫ +∞

−∞
df

′e−
2πi(f−f′ )tδτ

(
f − f

′) e−
2πif

′ n̂·x⃗i(t)hs

(
f

′ , n̂
)
esab (n̂) d

ab
i

(t) ,

(3.13)

– 6 –

our study in Subsection
3.3). In this case, we can approximate the GW appearing in (3.6)

as hab (t, x⃗), which is constant along the line integral,
and therefore

Tret
= 2L +

l̂a l̂
b

2
× 2Lhab (t, x⃗) .

(3.7)

We denote by x⃗iα (t) the location
of the vertex

α of the i−th detector
. We denote by
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to coincide with the Earth rotatio
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the frequency and angular dependences are factoriz
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Figure 1. Our convention for the orientation
of the three ET arms, with β being the angle formed

by the “first” arm with the north direction
.

our study in Subsection
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and therefore
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α of the i−th detector
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ûiα (t) and v̂iα (t) the unit vectors
in the direction

s of the two ams that start from this vertex,

as indicated
in Figure 1 (in the figure, the index i is suppressed, since an identical notation

is used for the two detector
s.
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Figure 23: Our convention for the orientation of the three ET arms, with the labels “N” and “E”
indicating, respectively, the north and east direction at the location of the interferometer,
and with β being the angle formed by the direction ûX of the “first” arm and the north
direction.

understood as two 90◦ interferometers that are shifted by 45◦ with respect to each other. To see
this, we can imagine placing one interferometer to the north pole (θ = 0), arriving to it from
the meridian that joins the equator along the negative y−axis (φ = −π

2 ). In this way the v̂east

and the v̂north directions are unit vectors oriented, respectively, along the x− and y− axis (as a
conventional 2d Cartesian system in Figure 23) . One then finds that

dab
1,A (β) = dab

90◦

(
7π

12
− β

)
, dab

1,E (β) = dab
1,A

(
β +

π

4

)
(E.5)

where dab
90◦ (α) is the element in eq. (B.4) resulting from a 90◦ interferometer with the û arm

(resp., v̂ arm) oriented at a counter-clockwise angle α (resp., α + 90◦) with respect to the x−axis.
As a consequence of the first of (E.5), dab

1,A
(

β + π
2
)
= −dab

1,A (β). Combining this with the
second of (E.5) results in dab

1,A (β) = −dab
1,E
(

β + π
4
)
. Therefore, the quantity (4.11) in section 4

and (5.15) in section 5 are at least invariant under the variation β → β + π
4 . One also expects

that any physical result, such as the optimal SNR, should be invariant under a different labelling
of the three arms. Therefore (4.11) and (5.15) should also be invariant under the variation
β → β + 2π

3 . Combining these two periodicities, we see that (4.11) and (5.15) should at least be
invariant for β → β + π

12 . In fact, an explicit evaluation of these coefficients shows that (4.11)
and (5.15) are independent of β.
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E.2 – Positions and arms of existing and planned interfer-

ometers

To summarize, the table 24 displays the actual locations of the existing interferometers LIGO,
Virgo and KAGRA, with the proposed ones for ET in the two sites (the one in Sardinia and the
one in the Netherlands). In the table we consider β = 0, with β defined in (E.3) for both the
ETs.

Central location {−0.338,−0.600, 0.725}
LIGO Hanford First Arm {−0.224, 0.799, 0.557}

Second Arm {−0.914, 0.0261,−0.405}
Central location {−0.0116,−0.861, 0.508}

LIGO Livingston First Arm {−0.953,−0.144,−0.266}
Second Arm {0.302,−0.488,−0.819}

Central location {0.712, 0.132, 0.690}
Virgo First Arm {−0.701, 0.201, 0.684}

Second Arm {−0.0485,−0.971, 0.236}
Central location {−0.591, 0.546, 0.594}

KAGRA First Arm {−0.390,−0.838, 0.382}
Second Arm {0.706,−0.00580, 0.709}

Central location {0.750734, 0.124943, 0.648682}
ET - Sardinia First Arm {−0.639881,−0.106494, 0.76106}

Second Arm {0.177765, 0.907522,−0.38053}
Third Arm {0.462115,−0.801028,−0.38053}

Central location {0.627568, 0.062529, 0.776046}
ET - Netherlands First Arm {−0.772223,−0.076942, 0.630676}

Second Arm {0.300248, 0.900229,−0.315338}
Third Arm {0.471974,−0.823287,−0.315338}

Figure 24: Cartesian coordinates of the unit-vectors specifying the positions of the interferometers
and the direction of their arms, in the coordinate system described in this Appendix. For
ET, we consider the configuration with β = 0, with β defined in (E.3).





Appendix F
Evaluation of the coefficients γℓm,ab,cd

In this Appendix we evaluate the coefficients γℓm,ab,cd. We start from eq. (5.3), where we insert
the expression for the spherical harmonics,

Yℓm (θ, φ) =

√
2l + 1

4π

(l − m)!
(l + m)!

Pm
ℓ (cos θ) eimφ ≡ Nm

ℓ Pm
ℓ (cos θ) eimφ (F.1)

(θ and φ are the polar angles that specify the direction n̂, and Pm
ℓ are the associated Legendre

polynomials) and where we use the second of (A.1), to write

γℓm,ab,cd =
5

8π

∫ π

0
dθ sin θ Nm

ℓ Pm
ℓ (cos θ)

∫ 2π

0
dφ eimφ

×
{

δacδbd + δadδbc − δabδcd

+ δab n̂c n̂d + δcd n̂a n̂b − [δac n̂b n̂d + δbd n̂a n̂c + δad n̂b n̂c + δbc n̂a n̂d]

+ n̂a n̂b n̂c n̂d

}
. (F.2)

Let us first discuss the integration over the angle φ. We notice the presence of three
structures, characterized by, respectively, zero, two, and four elements n̂.

The terms with no n̂ give

∫ 2π

0
dφ eimφ δabδcd =





2πδabδcd if m = 0 ,

0 if |m| > 0 ,
(F.3)

(and identically for the other two structures in the second line of eq. (F.2)). An explicit evaluation
of the terms with two n̂ results in

∫ 2π

0
dφ′eimφ′

δabn̂cn̂d = πδab





Ãcd(θ) if m = 0 ,

B̃cd±(θ) if m = ±1 ,

C̃cd±(θ) if m = ±2 ,

0 if |m| > 2 ,

(F.4)
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where we have introduced the matrices

Ãcd(θ) ≡




sin2 θ 0 0
0 sin2 θ 0
0 0 2 cos2 θ


 (F.5)

B̃cd±(θ) ≡




0 0 sin θ cos θ

0 0 ±i sin θ cos θ

sin θ cos θ ±i sin θ cos θ 0


 (F.6)

C̃cd±(θ) ≡
1
2




sin2 θ ±i sin2 θ 0
±i sin2 θ − sin2 θ 0

0 0 0


 (F.7)

Finally, an explicit evaluation of the terms with four n̂ results in

∫ 2π

0
dφeimφn̂an̂bn̂cn̂d = π





D̃abcd + cos2 θẼabcd + cos4 θF̃abcd if m = 0

sin θ cos θ
[
G̃abcd± + cos2 θ H̃abcd±

]
if m = ±1

(
1 − cos4 θ

)
Ĩabcd± + cos2 θ sin2 θ J̃abcd± if m = ±2

cos θ sin3 θ K̃abcd± if m = ±3

sin4 θ L̃abcd± if m = ±4

0 if |m| > 4

(F.8)

where the matrices D, . . . M± are constant (and where the + and − matrices are conjugate of
each other). Their explicit form is not illuminating, and we do not report it here. We use the
results (F.3), (F.4), and (F.8) in eq. (F.2) and we perform the remaining integration. Considering
only the θ dependences, we have the following integrals (where x = cos θ)

N0
ℓ

∫ 1

−1
dx Pℓ (x) =

1√
π

δℓ0

N0
ℓ

∫ 1

−1
dx Pℓ (x) x2 =

1
3
√

π
δℓ0 +

2
3
√

5π
δℓ2

N0
ℓ

∫ 1

−1
dx Pℓ (x) x4 =

1
5
√

π
δℓ0 +

4
7
√

5π
δℓ2 +

8
105

√
π

δℓ4 (F.9)

for the coefficient m = 0,

N±1
ℓ

∫ 1

−1
dx P±1

ℓ (x) x
√

1 − x2 = ∓
√

2
15 π

δℓ2

N±1
ℓ

∫ 1

−1
dx P±1

ℓ (x) x3
√

1 − x2 = ∓1
7

√
6

5π
δℓ2 ∓

4
21

√
5 π

δℓ4 (F.10)
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for the coefficient m = ±1,

N±2
ℓ

∫ 1

−1
dx P±2

ℓ (x)
(

1 − x2
)

= 2

√
2

15 π
δℓ2

N±2
ℓ

∫ 1

−1
dx P±2

ℓ (x)
(

1 − x4
)

=
16
7

√
2

15 π
δℓ2 +

4
21

√
2

5 π
δℓ4

N±2
ℓ

∫ 1

−1
dx P±2

ℓ (x) x2
(

1 − x2
)

=
2
7

√
2

15 π
δℓ2 +

4
21

√
2

5 π
δℓ4 (F.11)

for the coefficient m = ±2,

N±3
ℓ

∫ 1

−1
dx P±3

ℓ (x) x
(

1 − x2
)3/2

= ∓ 4
3
√

35 π
δℓ4 (F.12)

for the coefficient m = ±2, and, finally

N±4
ℓ

∫ 1

−1
dx P±4

ℓ (x)
(

1 − x2
)2

=
8
3

√
2

35 π
δℓ4 (F.13)

for the coefficient m = ±3.
Inserting these results, together with eqs. (F.3), (F.4), and (F.8), in eq. (F.2), we obtain the

expressions given in eq. (5.6) of the main text.

F.1 – The coefficients γℓm,ab,cd as a low-frequency limit of

(3.14)

In this appendix we derived the values of the coefficients γℓm,ab,cd by neglecting the value of
the phase (5.1) as a first step of the treatment, and secondly computing the angular integrations
in eq. (5.2), eventually obtaining (5.6). We can achieve the same results of (5.6) by considering
the values of (3.14), summing over λ = −1, 1 and eventually taking the limit κ → 0, namely

γℓm,ab,cd = lim
κ→0

∑
λ=−1,1

γℓm,abcd(κ, ŝ) (F.14)

The proof of this equation is straightforward. First we consider the limit of (D.7), (D.8) and
(D.12) for κ → 0, obtaining
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Mij,λ(0, ŝ) =
δacδbd + δadδbc

10
× dab

i dcd
j

Di J,λ(0, ŝ, v̂) =
λ

30
(δacεbde + δadεbce + δbcεade + δbdεace) v̂e × dab

i dcd
j

Qij,λ(0, ŝ, v̂, ŵ) =
1

70

[
− 11

3
v̂eŵe (δacδbd + δadδbc) +

+ δac (v̂bŵd + ŵbv̂d) + δad (v̂bŵc + ŵbv̂c) +

+ δbc (v̂aŵd + ŵav̂d) + δbd (v̂aŵc + ŵav̂c)

]
× dab

i dcd
j (F.15)

Therefore

ΓM
ab,cd(0) = ∑

λ

ΓM
ab,cd,λ =

δacδbd + δadδbc
5

ΓD
ab,cd(0, v̂) = ∑

λ

ΓD
ab,cd,λ = 0

ΓQ
ab,cd(0, v̂, ŵ) = ∑

λ

ΓQ
ab,cd,λ =

1
35

[
− 11

3
v̂eŵe (δacδbd + δadδbc)

+ δac (v̂bŵd + ŵbv̂d) + δad (v̂bŵc + ŵbv̂c)

+ δbc (v̂aŵd + ŵav̂d) + δbd (v̂aŵc + ŵav̂c)

]
(F.16)

and implementing those results into (D.1) we find back the same expressions of (5.6).
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