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Abstract

In the dynamic landscape of 3D vision applications, the Point Cloud Quality
Assessment (PCQA) has become a critical focus. This paper presents an en-
hanced version of COPP-Net. COPP-Net strategically divides a point cloud into
patches, leveraging a Point Cloud Pre-processing Module to normalize spatial
coordinates and employ Farthest Point Sampling (FPS) and K-Nearest Neighbor
algorithms for efficient patch creation. The subsequent Patch Feature Genera-
tion Module utilizes local texture and 3D structure feature generation Adaptive
R-Sampling KNN PointNet++ Network networks (ARKPt and ARKPs) based on
the ARKP architecture. Notably, the Adaptive R-Sampling KNN PointNet++
Network (ARKP) network undergoes improvements, including grouped convo-
lutions and block reduction, resulting in a remarkable 50% reduction in trainable
parameters and enhanced computational efficiency. The Point Cloud Quality
Regression Module predicts the overall point cloud quality score from patch
features, employing a regression head with linear layers, batch normalization,
and leaky ReLU layers. The Correlation Analysis Network (CORA) network
further refines the assessment by estimating correlations between patch and
overall point cloud quality, introducing correlation labels for improved accu-
racy. Experiments conducted on diverse datasets, including WPC, WPC2.0, and
LS-PCQA, showcase the efficacy of the improved COPP-Net. Impressively, the
introduced improvements result in a 20% decrease in one-epoch time for ARKP
and a 10% decrease for CORA, while maintaining consistent model accuracy
across all tested datasets.
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1
INTRODUCTION

In the dynamic realm of 3D vision application, the assessment of point cloud
quality plays a pivotal role, intricately influencing the precision and effectiveness
of various technologies. From enhancing augmented reality experiences to
guiding autonomous navigation systems, the importance of quality evaluation
cannot be overstated [22].

Point clouds, which are elaborate spatial representations crafted from a mul-
titude of data points, serve as the foundation for diverse tasks, ranging from
precise object recognition [41] to the intricacies of spatial mapping [8]. How-
ever, the relentless pursuit of reliability and accuracy in these point clouds
presents challenges that demand innovative solutions.

To comprehend the significance of our work, it is crucial to navigate through
the complex landscape of Point Cloud Quality Assessment (PCQA) and under-
stand its nuanced relevance. Point clouds, generated from 3D scanning devices
or depth-sensing technologies, are indispensable representations of physical
spaces [15]. Nevertheless, the inherent quality of point clouds faces challenges
due to factors such as sensor noise, occlusions, or distortions, thereby intro-
ducing complexities to the PCQA task [41], the task that holds significance
in various applications, including Immersive Technologies (e.g., VR, XR, MR),
where the accurate assessment of point cloud quality becomes crucial.

In response, our research focuses on refining COPP-Net, an advanced No-
Reference Point Cloud Quality Assessment (NR-PCQA) methodology intro-
duced in [6]. NR-PCQA assesses the quality based on inherent features, sta-
tistical measures, or other characteristics present within the point cloud itself.
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Accordingly, COPP-Net involves dividing a point cloud into patches, generat-
ing texture and structure features per patch, fusing them into patch features
for quality prediction. Subsequently, it analyzes correlations among all patches
to derive correlation weights. The final quality score is determined using the
predicted patch qualities and correlation weights.

Within the broader context of PCQA, variations in quality within a point
cloud pose formidable challenges. Existing methodologies may fall short by
prioritizing global measures, overlooking subtle intricacies in specific regions.
COPP-Net addressed this limitation by adopting a patch-based approach, rec-
ognizing the inherently local nature of quality variations—an essential step in
enhancing the precision of PCQA.

Accordingly, our primary objective becomes clear; to enhance computational
efficiency without significantly compromising the precision of quality assess-
ment. The computational demands of processing large-scale point clouds guide
our exploration towards optimization. Specifically, our focus is on recalibrating
the ARKP and CORA structures within COPP-Net. The introduction of grouped
convolutions, which was first introduced in AlexNet in 2012 [16], coupled with
a strategic reduction in the number of blocks, aims to significantly reduce train-
able parameters—an optimization journey balancing computational efficiency
with the unwavering pursuit of accuracy.

Before delving into the details of our modifications, it is paramount to con-
textualize our work within the expansive landscape of PCQA. The upcoming
chapters begin with the research background, providing fundamental concepts
related to PCQA along with a detailed explanation of evaluation metrics used in
this context. We then conclude by presenting related works already undertaken
by other researchers in this field.

Subsequently, we delve into experimental analysis, explaining the funda-
mental Artificial Intelligence (AI) concepts used in the context of our work.
Consequently, we comprehensively explain the structure of COPP-Net, high-
lighting its drawbacks, which led us to suggest improvements.

After that, we introduce our structural improvements over both networks
presented in COPP-Net and report the results that we obtained, comparing
them with the results acquired from the original network in terms of evaluation
metrics, epoch time, and number of parameters.

Finally, we summarize our work, concluding our achievements and suggest-
ing potential pathways for further exploration in the future.
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2
RESEARCH BACKGROUND

In the vast and transformative landscape of 3D vision applications, it is
essential to delve into the abstract concepts that form the foundation of PCQA.
These concepts are the compass guiding the evaluation of the accuracy and
fidelity of point clouds – three-dimensional representations that serve as digital
reflections of physical spaces.

2.1 Point Cloud Quality Assessment - Fundamental
Concepts

2.1.1 Introduction to Point Clouds

Point clouds represent a three-dimensional set of data points in space, captur-
ing the surfaces and structures of physical objects or environments. Each point
in a point cloud corresponds to a specific location in the scanned area, defined
by its spatial coordinates and often associated with additional attributes such as
color or intensity, as shown in the following figure 2.1. Point clouds are widely
used in various fields, including remote sensing, geospatial mapping, computer
vision, and augmented reality.

The generation of point clouds is typically achieved through advanced sens-
ing technologies such as LiDAR (Light Detection and Ranging), photogramme-
try, or structured light scanning. LiDAR, for instance, emits laser pulses and
measures the time it takes for the laser beams to return after hitting objects in
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2.1. POINT CLOUD QUALITY ASSESSMENT - FUNDAMENTAL CONCEPTS

Figure 2.1: Point cloud example.

the environment. This process results in a dense and accurate representation of
surfaces, creating a point cloud that faithfully captures the geometric details of
the scanned area.

Point clouds play a pivotal role in creating realistic 3D models, conduct-
ing environmental assessments, and aiding in the development of autonomous
systems. Understanding the fundamental concepts of point clouds, their ac-
quisition methods, and inherent characteristics is crucial for effective PCQA,
which involves evaluating the reliability and accuracy of the captured data. In
the subsequent sections, we will explore the nuances of point cloud data, its
characteristics, and the key considerations in assessing its quality.

2.1.2 Data Acquisition and Sources

Data acquisition is a crucial step in the creation of point clouds, involving the
collection of spatial information to generate a comprehensive three-dimensional
representation of an environment. Various methods are employed for acquiring
point cloud data, each tailored to specific applications and scenarios.
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CHAPTER 2. RESEARCH BACKGROUND

Light Detection and Ranging (LiDAR) stands out as a primary technology
for point cloud data acquisition. It utilizes laser beams to measure the distance
to objects, generating precise spatial coordinates. Terrestrial LiDAR systems
are ground-based and ideal for capturing detailed information in close-range
environments, while airborne LiDAR is mounted on aircraft, providing efficient
coverage for larger areas. Mobile LiDAR platforms, often integrated into vehicles
and planes, offer flexibility in capturing dynamic environments such as urban
landscapes, as shown in the figure 2.2.

Figure 2.2: LiDAR Technology.

Photogrammetry is another widely used technique, relying on overlapping
images captured from different viewpoints to derive 3D information. The
Structure from Motion (SfM) algorithm extracts point clouds from these im-
ages, contributing to detailed and textured reconstructions [25].

Understanding the nuances of these data acquisition methods is crucial for
evaluating the quality of resulting point clouds. In the subsequent sections, we
will delve into the characteristics of point clouds generated through different
sources, laying the foundation for effective PCQA.
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2.1. POINT CLOUD QUALITY ASSESSMENT - FUNDAMENTAL CONCEPTS

2.1.3 Quality Metrics and Parameters

PCQA relies on a set of fundamental metrics and parameters that gauge the
accuracy, completeness, and precision of the captured data. These metrics play a
pivotal role in evaluating the reliability of point clouds for various applications.

• Completeness: Measures the percentage of the expected points that are
successfully captured in the point cloud. Reflects the comprehensiveness
of the data, highlighting any gaps or missing information.

• Accuracy: Assesses the closeness of the point cloud data to the true po-
sitions of the scanned objects. Influenced by the precision of the data
acquisition system and the calibration accuracy of sensors.

• Precision: Involves the consistency of measurements within the point
cloud. High precision indicates minimal variability in the spatial coordi-
nates of points, enhancing the overall reliability of the data.

• Density: Measures the concentration of points in a given space, influencing
the level of detail and fidelity in the representation. Higher point cloud
density often leads to more accurate reconstructions.

Understanding and quantifying these quality metrics are essential for re-
searchers and practitioners to ensure that point clouds meet the desired stan-
dards for specific applications. In the subsequent sections, we will explore
how these metrics, along with other parameters, contribute to a comprehensive
PCQA framework.

2.1.4 Noise and Artifacts

Point cloud data, despite its precision and accuracy, is susceptible to various
imperfections, often in the form of noise and artifacts. Understanding these
nuisances is essential for comprehensive PCQA.

Noise in point clouds refers to random and unwanted variations in data, as
shown in the figure 2.3 adapted from [10], typically arising from limitations in
sensing technologies or environmental conditions. Common sources of noise
include atmospheric interference in LiDAR systems or sensor inaccuracies. Eval-
uating and mitigating noise is crucial for ensuring the fidelity of the captured
information.

Artifacts, on the other hand, are undesirable features introduced during the
data acquisition process. They can result from factors such as occlusions, reflec-
tions, or inadequate calibration. Artifacts manifest as distortions or irregularities
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CHAPTER 2. RESEARCH BACKGROUND

Figure 2.3: Noise in point clouds.

in the point cloud, impacting its overall quality. Recognizing and addressing
artifacts is vital for producing accurate and reliable 3D representations.

Several techniques are employed to mitigate noise and artifacts, ranging from
advanced filtering algorithms to improved calibration procedures. Additionally,
understanding the nature of noise and artifacts aids in the development of robust
post-processing strategies.

In the subsequent sections, we will delve into specific types of noise and
artifacts, their impact on point cloud quality, and methodologies to effectively
identify and minimize their influence. A thorough exploration of noise and arti-
facts enhances the overall understanding of the challenges associated with point
cloud data and contributes to the establishment of rigorous quality assessment
frameworks.
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2.1. POINT CLOUD QUALITY ASSESSMENT - FUNDAMENTAL CONCEPTS

2.1.5 Data Registration and Alignment

Data registration and alignment form a critical phase in the point cloud
processing pipeline, influencing the accuracy and coherence of the final three-
dimensional representation. This stage involves integrating multiple scans or
datasets into a common coordinate system, ensuring seamless continuity and
a unified perspective. The significance of precise registration and alignment
cannot be overstated, particularly in scenarios where point clouds are generated
from disparate sources or acquired at different times.

Registration, involves the spatial adjustment of individual point clouds to
achieve a consistent reference frame. Various registration methods exist, includ-
ing feature-based techniques that identify common features in different scans,
and Iterative Closest Point (ICP) algorithms that iteratively refine the alignment
based on point correspondences [4].

Alignment, closely related to registration, focuses on the transformation of
point clouds to minimize discrepancies and optimize congruence. This process
enhances the overall coherence of the combined datasets, facilitating accurate
analyses and reconstructions.

Challenges in data registration and alignment arise from factors such as
sensor inaccuracies, variations in data resolution, and environmental changes.
Overcoming these challenges requires sophisticated algorithms capable of ro-
bustly handling complex scenarios. Efficient registration and alignment are
essential for applications such as 3D modeling, virtual reality, and autonomous
navigation. In the subsequent sections, we will explore advanced registration
techniques, error mitigation strategies, and their pivotal role in ensuring the
integrity of point cloud data for downstream analyses and applications.

2.1.6 Uncertainty and Error Modeling

In the realm of point cloud data, acknowledging and quantifying uncertain-
ties and errors is paramount for achieving robust and reliable results. Uncer-
tainty arises from various sources, including sensor limitations, environmental
conditions, and the inherent complexity of capturing real-world geometry.

Uncertainty modeling involves characterizing the imprecision associated
with each point in the cloud. This can stem from factors such as sensor noise,
calibration errors, and atmospheric conditions during data acquisition. Devel-
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CHAPTER 2. RESEARCH BACKGROUND

oping models to represent these uncertainties aids in the creation of probabilistic
frameworks, offering a more nuanced understanding of the reliability of the cap-
tured information.

Error modeling is closely tied to uncertainty and focuses on quantifying
inaccuracies in point cloud data. This includes systematic errors introduced
by sensor biases or calibration drift. Understanding error sources and patterns
enables researchers and practitioners to implement corrective measures during
data processing, improving the overall quality of the point cloud.

Common methods for uncertainty and error modeling include Monte Carlo
simulations, where multiple virtual point cloud datasets are generated based on
known uncertainties. Bayesian frameworks are also employed to express uncer-
tainties probabilistically. Effectively addressing uncertainty and error in point
cloud data enhances the credibility of subsequent analysis and applications. In
the following sections, we will delve into specific techniques for uncertainty and
error modeling, emphasizing their role in refining PCQA methodologies and
promoting informed decision-making in various domains.

2.1.7 Data Filtering and Cleaning

The integrity and reliability of point cloud data heavily depend on the ef-
fectiveness of data filtering and cleaning processes. These processes are pivotal
in removing unwanted noise, outliers, and artifacts, ensuring that the resulting
point cloud accurately represents the scanned environment. In this section, we
will explore various strategies and methodologies employed in data filtering
and cleaning.

• Noise Removal: Noise, often introduced by sensor inaccuracies or envi-
ronmental interference, can obscure the true structure of a scene. Statistical
filtering techniques, such as mean or median filtering, are commonly ap-
plied to identify and eliminate random noise. These methods leverage
statistical measures to distinguish between valid points and noise, con-
tributing to a cleaner point cloud.

• Outlier Detection and Removal: Outliers, defined as points significantly
deviating from the expected distribution, can adversely impact the accu-
racy of point cloud data. Robust algorithms, including spatial and mor-
phological filters, are employed to detect and remove outliers. Iterative
approaches, like the ICP algorithm, iteratively refine the alignment and
filter out outliers, enhancing the overall data quality.
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2.1. POINT CLOUD QUALITY ASSESSMENT - FUNDAMENTAL CONCEPTS

• Artifact Mitigation: Artifacts, unwanted features introduced during data
acquisition, may include reflections, occlusions, or calibration errors. Ad-
vanced filtering methods, such as adaptive filtering and machine learning-
based approaches, are employed to mitigate artifacts while preserving
essential information. These techniques ensure a more accurate represen-
tation of the scanned scene.

• Feature-Preserving Filtering: While removing noise and outliers is cru-
cial, preserving important features of the point cloud is equally important.
Feature-preserving filters, such as bilateral or edge-preserving filters, aim
to retain edges and structural details while reducing noise. These filters
are particularly beneficial when maintaining fine details is essential for
downstream applications.

• Machine Learning Applications: Recent advancements in machine learn-
ing have brought forth novel approaches for data filtering and cleaning.
Supervised learning models can be trained to classify points as valid or
outliers based on learned patterns. Neural networks, particularly CNNs,
demonstrate effectiveness in identifying complex patterns and distinguish-
ing between noise and valid data.

The selection of filtering and cleaning strategies depends on the characteris-
tics of the point cloud and the specific goals of the application. Balancing the
removal of unwanted elements with the preservation of critical information is
a nuanced process. In the subsequent sections, we will delve into specific algo-
rithms, case studies, and best practices for data filtering and cleaning, providing
a comprehensive understanding of these critical steps in PCQA.

2.1.8 Validation and Ground Truth

Ensuring the accuracy and reliability of point cloud data necessitates rigorous
validation against ground truth information. Validation serves as a crucial step
in PCQA, providing a means to assess the performance of data acquisition
systems, processing algorithms, and overall data fidelity.

• Ground Truth Establishment: Establishing ground truth involves acquir-
ing reference data with known accuracy to compare against the generated
point cloud. This can be achieved through traditional surveying methods,
high-precision instruments, or other reliable sources depending on the
application. Ground truth data provides a benchmark for evaluating the
quality of the point cloud and identifying potential errors or discrepancies.

• Validation Metrics: Various metrics are employed to quantitatively assess
the alignment and accuracy of the point cloud concerning ground truth.
Common metrics include Root Mean Square Error (RMSE), which mea-
sures the average difference between corresponding points in the point
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CHAPTER 2. RESEARCH BACKGROUND

cloud and ground truth [5]. Other metrics include precision, recall, and
F1 score, providing comprehensive insights into the performance of the
data.

• Comparative Analysis: Comparing the point cloud against ground truth
involves spatially aligning the two datasets and analyzing their congru-
ence. Visualization tools and color mapping techniques can aid in high-
lighting areas of agreement and discrepancies. Comparative analysis not
only validates the accuracy of the point cloud but also identifies potential
areas for improvement in data acquisition or processing methodologies.

• Dynamic Environments: In dynamic environments where the scene may
change over time, continuous validation is crucial. This involves periodic
updates of ground truth data to reflect changes in the environment and
ensure the ongoing accuracy of the point cloud. Real-time validation
mechanisms may also be employed in dynamic scenarios.

• Challenges and Considerations: Challenges in validation include the
need for high-precision ground truth data, potential biases in the selec-
tion of validation metrics, and addressing dynamic or evolving scenes.
Researchers must carefully consider these challenges to establish a robust
validation framework.

In the subsequent sections, we will delve into specific case studies, method-
ologies, and advancements in the validation of point cloud data. By exploring
the intricacies of validation and ground truth, we aim to provide a compre-
hensive understanding of the reliability and accuracy of point cloud datasets in
diverse applications.

2.1.9 Standards and Guidelines

In the rapidly evolving field of point cloud technology, the establishment of
standards and guidelines is instrumental for ensuring consistency, interoperabil-
ity, and quality across diverse applications. Standardization efforts are essential
to harmonize data acquisition, processing, and representation methodologies,
fostering a common framework for practitioners and researchers.

International Standards: Organizations such as the International Organiza-
tion for Standardization (ISO) and the American Society for Photogrammetry
and Remote Sensing (ASPRS) have played pivotal roles in developing and main-
taining international standards for point cloud data. ISO 19115-1, for example,
outlines standards for metadata, while ISO 19107 defines the spatial schema
for geographic information. ASPRS standards cover LiDAR data exchange for-
mats and classification specifications, ensuring a standardized approach to data
representation.
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2.2. PCQA - METRICS

Data Exchange Formats: Standardized data exchange formats facilitate seam-
less interoperability between different software and hardware systems. The LAS
(LiDAR Data Exchange Format) and ASTM E57 are widely adopted standards
for exchanging point cloud data. These formats ensure that data captured by
one system can be effectively utilized by another, promoting collaboration and
data sharing.

Quality Assessment Guidelines: Guidelines for PCQA are essential for prac-
titioners to conduct robust evaluations of data quality. These guidelines often
include recommended metrics, procedures for ground truth establishment, and
best practices for noise reduction and outlier removal. Adhering to these guide-
lines ensures a standardized and systematic approach to assessing point cloud
quality.

Emerging Challenges and Future Directions: As technology advances and
applications diversify, the establishment of new standards becomes imperative.
Addressing emerging challenges such as dynamic scene capturing, point cloud
compression, and semantic labeling requires ongoing efforts in standardization.
Collaborative initiatives between industry, academia, and standards organiza-
tions are essential to adapting standards to the evolving landscape of point cloud
technology.

Implementation in Industries: The adoption of standards is particularly cru-
cial in industries such as geospatial mapping, urban planning, and autonomous
navigation. Compliance with established standards enhances data reliability,
facilitates data integration, and supports the development of interoperable so-
lutions across various sectors.

2.2 PCQA - Metrics

In the domain of PCQA, several metrics are commonly used to evaluate the
performance of algorithms in comparison to human perception or ground truth
quality assessments. In this section, we will discuss three key metrics: Spearman
Rank Correlation Coefficient (SRCC), Pearson Linear Correlation Coefficient
(PLCC), and RMSE.
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2.2.1 SRCC

SRCC is a non-parametric measure that assesses the monotonic relationship
between two variables. In the context of PCQA, SRCC is often used to evaluate
the agreement between the rankings of quality scores assigned by human ob-
servers (𝑋) and those predicted by an algorithm (𝑌). The formula for SRCC is
given by:

𝜌 = 1 −
6
∑︁
𝑑2
𝑖

𝑛(𝑛2 − 1) (2.1)

where 𝑑𝑖 is the difference between the ranks of corresponding pairs of obser-
vations and 𝑛 is the number of observations.

2.2.2 PLCC

PLCC measures the linear relationship between two variables. In PCQA,
PLCC is employed to assess the correlation between quality scores assigned by
human observers (𝑋) and those predicted by an algorithm (𝑌). The formula for
PLCC is given by:

𝑟 =

∑︁(𝑋𝑖 − �̄�)(𝑌𝑖 − �̄�)√︁∑︁(𝑋𝑖 − �̄�)2 ∑︁(𝑌𝑖 − �̄�)2
(2.2)

where 𝑋𝑖 and 𝑌𝑖 are the individual observations, and �̄� and �̄� are the means
of 𝑋 and 𝑌, respectively.

2.2.3 RMSE

Root Mean Square Error is a metric that quantifies the average magnitude of
errors between predicted values and observed values. In PCQA, RMSE can be
used to measure the accuracy of an algorithm’s predictions compared to ground
truth. The formula for RMSE is given by:

𝑅𝑀𝑆𝐸 =

√︃∑︁(𝑌𝑖 − 𝑋𝑖)2
𝑛

(2.3)

where 𝑋𝑖 and 𝑌𝑖 are the observed and predicted values, respectively, and 𝑛

is the number of observations.
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These metrics provide valuable insights into the performance of PCQA algo-
rithms and their alignment with human perception.

2.3 PCQA - Approaches

In this section, we explore different approaches to PCQA. Before delving into
specific experiments, let’s provide a brief overview of both Full-Reference and
No-Reference approaches that already done by researchers, setting the stage for
the methods that will be discussed in the following sections.

2.3.1 Full-Reference Metrics

Full-Reference (FR) metrics in the domain of point cloud quality assessment
(PCQA) have played a pivotal role, initially developed to evaluate the efficacy
of point cloud compression methods. Noteworthy among these classic metrics
are p2point [23] and p2plane [32], both proposed by the Moving Picture Ex-
perts Group (MPEG). Despite their advantageous low computational complex-
ity, these metrics exhibited limitations in accuracy, particularly when confronted
with complex distortion types, leading to potential instability in assessment re-
sults.

Recognizing these limitations, researchers delved into alternative approaches
to enhance the precision of FR metrics. Alexiou et al. [2] introduced a straightfor-
ward yet efficient objective metric designed to capture perceptual degradations
in distorted point clouds. This metric demonstrated superiority in predicting
visual quality under realistic distortions, such as octree-based compression, es-
tablishing its excellence through correlation with subjective quality assessment
scores.

Meynet et al. [24] contributed to the field with PC-MSDM, a full-reference
metric grounded in local curvature statistics. An extension of the MSDM metric
tailored for 3D meshes, PC-MSDM showcased its capabilities when evaluated
on an open subjective dataset of point clouds compressed by octree pruning.
The results indicated that PC-MSDM outperformed its counterparts, exhibiting
a higher correlation with mean opinion scores.

Addressing the challenges posed by geometric point cloud distortions, Java-
heri et al. [14] proposed a generalized Hausdorff distance-based quality metric.
By varying the generalized Hausdorff distance parameter, the authors derived
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15 different distances, offering a unique perspective on quality metrics. This in-
novative approach not only outperformed state-of-the-art MPEG PC geometry
quality metrics but also introduced a novel framework for assessing point cloud
quality.

Drawing on the principles of the Structural Similarity (SSIM) Index, Wang
et al. [33] constructed an SSIM quality measure tailored for point clouds. The
authors explored structural information in point clouds by effectively separating
the influence of illumination. This unique perspective added depth to full-
reference metrics in the context of PCQA.

Yang et al. [35] introduced GraphSIM, a metric designed to accurately and
quantitatively predict human perception of point clouds with superimposed
geometry and color impairments. Motivated by the sensitivity of the human
vision system to high spatial-frequency components, GraphSIM utilized graph
signal gradient as a quality index. This metric demonstrated state-of-the-art
performance across various impairments, providing notable gains in predicting
subjective mean opinion scores (MOS).

In a comprehensive study, Liu et al. [20] built a large 3D point cloud database
for subjective and objective quality assessment. They proposed a novel objective
PCQA model based on the principle of information content-weighted struc-
tural similarity. The model not only correlated well with subjective opinions
but also significantly outperformed existing PCQA models. This contribution
underscored the importance of considering information content in structural
similarity metrics.

These diverse contributions exemplify the evolving landscape of Full-Reference
metrics in PCQA, incorporating insights from perceptual degradation capture,
local curvature statistics, generalized distance-based metrics, and information
content-weighted structural similarity. The pursuit of improved accuracy and
robustness remains a driving force in this dynamic field of research, where each
advancement adds a unique layer to our understanding of PCQA.

2.3.2 No-Reference Metrics

The field of No-Reference (NR) metrics in NR-PCQA has undergone signif-
icant exploration, driven by the imperative to surmount limitations posed by
the scarcity of point cloud quality databases. As researchers sought methods
capable of operating without access to reference data, innovative NR-PCQA
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strategies began to emerge, leveraging advancements in No-Reference Image
Quality Assessment (NR-IQA) as a foundational framework. The maturation of
NR-IQA methods, as exemplified by Liu et al. [21], provided the impetus for re-
searchers to explore avenues for projecting point clouds into 2D representations,
thereby enabling the utilization of traditional Image Quality Assessment (IQA)
methods or CNNs for indirect quality prediction.

In the realm of No-Reference 3 Dimensional Quality Assessment (NR-3DQA),
Zhang et al. [40] presented a comprehensive NR quality assessment metric for
colored 3D models, embracing both point clouds and meshes. The method
involved the projection of 3D models into quality-related geometry and color
feature domains, utilizing 3D natural scene statistics (3D-NSS) and entropy to
extract quality-aware features. Subsequently, machine learning techniques were
employed to regress these features into visual quality scores. The proposed
method underwent validation on the colored PCQA database (SJTU-PCQA), the
Waterloo Point Cloud (WPC) dataset, and the colored mesh quality assessment
database (CMDM). The results demonstrated the superiority of the proposed
method, outperforming most compared NR 3D-QA metrics with competitive
computational resources and significantly narrowing the performance gap with
state-of-the-art Full-Reference 3D-QA metrics.

Yang et al. [36] introduced IT-PCQA, a novel NR-PCQA metric for 3D point
clouds. Recognizing the compelling performance of deep neural networks in
no-reference metric design, they addressed one of the most challenging issues in
NR-PCQA – the lack of large-scale subjective databases to drive robust networks.
Leveraging the rich subjective scores of natural images, the authors formulated
an approach to quest the evaluation criteria of human perception via a DNN and
transfer the capability of prediction to 3D point clouds. The proposed method,
utilizing unsupervised adversarial domain adaptation, treated natural images
as the source domain and point clouds as the target domain. They introduced a
hierarchical feature encoder and a conditional discriminative network to extract
effective latent features and minimize domain discrepancies. Experimental re-
sults showcased the proposed method’s higher performance compared to tradi-
tional No-Reference metrics, even yielding results comparable to Full-Reference
metrics. This approach not only demonstrated the feasibility of assessing the
quality of specific media content without expensive and cumbersome subjective
evaluations but also showcased the potential of deep learning in addressing the
challenges of NR-PCQA.
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In the context of NR-PCQA, Liu et al. [22] addressed the limitations of existing
NR-PCQA research, primarily due to the lack of large-scale PCQA datasets. They
took a significant step by constructing the large-scale PCQA dataset named LS-
PCQA, consisting of 104 reference point clouds and more than 22, 000 distorted
samples. Each reference point cloud in the dataset was augmented with 31 types
of impairments at seven distortion levels. The authors proposed ResSCNN, a
NR metric based on sparse CNNs, to accurately estimate the subjective quality of
point clouds. The experimental results demonstrated that ResSCNN exhibited
state-of-the-art (SOTA) performance among all existing NR-PCQA metrics and
even outperformed some Full-Reference metrics.

Chetouani et al. [7] delved into the realm of blind (no-reference) scenarios
in PCQA, where the original point cloud is unavailable. They proposed a two-
step procedure, initially extracting three relevant low-level features from 10-cal
patches, including geometric distance, local curvature, and luminance values.
Subsequently, they employed a deep neural network to learn, from these low-
level features, a mapping to the PC ground truth mean opinion score. Despite the
limited availability of subjectively annotated datasets, the proposed approach
exhibited potential on two state-of-the-art PC quality datasets, showcasing the
viability of learning features from data using deep neural networks in a no-
reference scenario.

This comprehensive exploration of No-Reference metrics in PCQA under-
scores the growing interest in methods that can operate without reliance on
reference data. As databases for point cloud quality continue to expand, these
sophisticated and robust methods are poised to play a pivotal role in addressing
the challenges posed by the scarcity of reference information.

17





3
EXPERIMENTS AND ANALYSIS

In the pursuit of advancing PCQA, our analysis and experiments revolve
around refining the COPP-Net, a NR-PCQA method at the forefront of 3D vi-
sion applications. The essence of our investigation lies in the optimization of
COPP-Net, addressing the computational complexities associated with large-
scale point cloud datasets. Motivated by the evolving demands of 3D vision
applications, we embark on a journey to enhance the efficiency and effectiveness
of COPP-Net, with a particular focus on its ARKP and CORA networks. Our
modifications, including the integration of grouped convolutions in ARKP and
selective block removal in CORA, aim to strike a balance between computational
efficiency and model accuracy.

This phase of our research delves into the outcomes of these strategic adjust-
ments. Through rigorous experimentation and analysis, we explore the impact
of reduced trainable parameters on computational efficiency without compro-
mising the precision of CORA. Our objective is to provide insights that extend
beyond theoretical enhancements, emphasizing practical implications for real-
world applications. The subsequent sections detail the methodology employed,
present quantitative results across diverse datasets, and engage in a compre-
hensive discussion that interprets our findings and positions them within the
broader landscape of CORA research.
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3.1 AI in PCQA - Fundamental Concepts

AI has witnessed remarkable advancements, revolutionizing various do-
mains. This section provides an in-depth exploration of foundational theoret-
ical concepts crucial for understanding the design and functionality of neural
network models. These concepts play a pivotal role in the context of Point Cloud
Quality Assessment.

3.1.1 Convolutional Neural Networks (CNNs)

CNNs serve as the cornerstone of computer vision, excelling in extracting hi-
erarchical features from structured grid data. Their convolutional layers employ
filters to scan input data, capturing patterns like edges, textures, and intricate
structures, as depicted in Fig 3.1 adapted from [3]. These layers are comple-
mented by pooling operations, which reduce spatial dimensions while retaining
critical features, enabling CNNs to comprehend complex relationships within
images.

Figure 3.1: CNN example.

Convolutional layers play a crucial role by applying filters to input data,
capturing local patterns, and contributing to the network’s hierarchical learning
capabilities, as illustrated in Fig 3.2 adapted from [28].

Grouped convolutions were first introduced in Alexnet [16] in 2012, they
refine standard convolutional operations. In a typical convolutional layer, filters
convolve across all input channels, which can be computationally demanding.
Grouped convolutions introduce the concept of groups, dividing input channels
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Figure 3.2: CNN layers example.

into subsets, and each group is convolved independently, as seen in Fig 3.3
adapted from [38].

Mathematically, grouped convolutions can be represented as:

Output𝑖 = Conv(Input𝑖 , Filter𝑖) for each group 𝑖 (3.1)

Key advantages include parameter efficiency, parallelization, and adaptabil-
ity to diverse computational resources. The utilization of grouped convolutions
in CNN architectures enhances computational efficiency without compromising
the ability to capture intricate patterns.

Pooling layers, often integrated after convolutional layers, facilitate spatial
dimension reduction. Max pooling and average pooling, commonly used, pre-
serve essential features while downsampling the data, enhancing computational
efficiency, as visualized in Fig 3.4 adapted from [37].

3.1.2 Batch Normalization

The training of Deep Neural Network (DNN)s introduces challenges related
to internal covariate shift, where the distribution of internal activations fluctu-
ates during training. Addressing this issue, Batch Normalization (BN) normal-
izes layer inputs across mini-batches [13]. This normalization stabilizes and
expedites training, alleviating problems associated with vanishing or exploding
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Figure 3.3: Comparison between standard convolutions and grouped convolu-
tions.

gradients.
Internal covariate shift, the change in the distribution of internal activations

during training [13], can hinder convergence and impact optimization effec-
tiveness. BN effectively counters internal covariate shift by maintaining stable
activations, facilitating more efficient learning.

BN’s primary role is to stabilize training by normalizing inputs, thereby
reducing internal fluctuations. This normalization contributes to a consistent
learning rate, preventing saturation or divergence issues. The stabilizing effect
of BN proves crucial for training DNNs effectively.

3.1.3 Activation Functions in Neural Networks

Activation functions are pivotal in infusing non-linearity into neural net-
works, allowing them to model intricate relationships. Among the array of
choices, Rectified Linear Unit (ReLU) stands out as a widely embraced activa-
tion function recognized for its simplicity and effectiveness in mitigating the
vanishing gradient problem.

The mathematical representation of ReLU is given by:

𝑓 (𝑥) = max(0, 𝑥) (3.2)
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Figure 3.4: Pooling layers.

This formula clearly indicates that positive inputs yield the same output, while
negative inputs result in zero output, as illustrated in Fig 3.5 adapted from [29].

Figure 3.5: ReLU graph.

To counter the "dying ReLU" problem, a variant known as Leaky ReLU
introduces a small, non-zero gradient for negative inputs. This adjustment
ensures that neurons remain active during training, addressing one of ReLU’s
limitations.

The dying ReLU problem arises when neurons consistently output zero dur-
ing training due to consistently negative inputs. Leaky ReLU mitigates this
issue by allowing a small gradient for negative inputs, promoting the flow of
information and preventing neurons from becoming inactive.

Beyond its role in preventing the "dying ReLU" problem, ReLU introduces
non-linearity to the network, enhancing its capacity to model complex relation-
ships. Its simplicity and effectiveness make ReLU a preferred choice in various
neural network architectures. Leaky ReLU further bolsters the network’s stabil-
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ity by addressing the "dying ReLU" problem.

As a viable option, Leaky ReLU emerges as an activation function, addressing
some limitations of traditional ReLU [34]. In contrast to ReLU, Leaky ReLU
introduces a small slope for negative input values, as depicted in Fig 3.6. This
"leak" is mathematically expressed as:

𝑓 (𝑥) = max(𝛼𝑥, 𝑥) (3.3)

where 𝛼 is a small positive constant, typically set to 0.01. The inclusion of this
slope mitigates the "dying ReLU" problem, enhancing the robustness of neural
networks.

Figure 3.6: Leaky ReLU graph.

Alternatively, the GELU serves as an activation function offering a smooth
approximation of the Rectified ReLU [9]. Defined by:

𝐺𝐸𝐿𝑈(𝑥) = 1
2𝑥

(︄
1 + tanh

(︄√︃
2
𝜋

(︂
𝑥 + 0.044715𝑥3

)︂)︄)︄
(3.4)

GELU introduces non-linearity while maintaining smoothness, See its graph
in 3.7 adapted from [17]. This characteristic can be advantageous in the
optimization process during deep neural network training, addressing some
limitations of traditional ReLU activations.
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Figure 3.7: Leaky GELU graph.

3.1.4 Adaptive Pooling

Traditional pooling operations, relying on fixed-size regions, pose limitations
in adapting to varying input sizes. In contrast, adaptive pooling, as exempli-
fied by F.adaptive_max_pool1d, dynamically adjusts to input sizes, providing
flexibility in handling variable-sized data. Particularly beneficial in the con-
text of point clouds, adaptive pooling effectively addresses the irregular and
unstructured nature of the data.

Adaptive pooling proves advantageous when dealing with variable-sized
data, such as point clouds [11]. Its ability to adapt to different input sizes ensures
the preservation of crucial information during spatial dimension reduction,
proving crucial for effective point cloud processing.

Beyond handling variable-sized data, the adaptability introduced by adap-
tive pooling extends to enhancing the flexibility of neural network architectures.
This flexibility accommodates variations in input sizes, making it well-suited
for tasks where the size of the input data may vary. Consequently, models can
effectively handle diverse datasets with varying spatial characteristics, demon-
strating the adaptability of adaptive pooling in a broader architectural context.
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3.1.5 Dropout

Dropout, a regularization technique designed to prevent overfitting during
training, operates by randomly setting a fraction of input units to zero during
each update. This process, illustrated in Fig 3.8 adapted from [27], effectively
"drops out" some neurons, promoting robust learning by preventing the network
from overly relying on specific features.

Figure 3.8: Dropout Example.

In addition to preventing overfitting, dropout introduces randomness during
training, compelling the network to adapt to different subsets of features. This
stochastic process contributes significantly to improved model generalization by
preventing the learning of noise in the training data. Furthermore, dropout’s
stochastic nature brings about an ensembling effect during training, simulating
the training of multiple models with different subsets of neurons active. This
effect enhances the model’s ability to generalize well to unseen data, encouraging
the network to learn more robust features representative of the underlying data
distribution. The ensembling effect adds an extra layer of adaptability to the
network’s learning process.

While dropout is a powerful technique, it is crucial to acknowledge that it
introduces a degree of training instability. The stochastic nature of dropout may
result in increased variability during training, and careful consideration is nec-
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essary to balance its advantages with potential drawbacks in specific scenarios.

3.1.6 Point Cloud Processing

The unique challenges posed by point clouds, characterized by their irregular
and unstructured nature, necessitate specialized techniques for effective neural
network processing. In contrast to grid-based data, point clouds lack a prede-
fined order among their points, demanding tailored approaches. Point cloud
processing involves a comprehensive set of methods encompassing feature ex-
traction, noise reduction, and spatial alignment, each designed to address these
distinctive characteristics.

The irregular and unstructured nature of point clouds, stemming from the
absence of a predefined order among points, challenges conventional neural
network architectures optimized for grid-based data. Consequently, the de-
velopment of specialized processing techniques becomes imperative to handle
point clouds effectively, taking into account their unique spatial arrangements.

Feature extraction stands out as a critical step in deriving meaningful insights
from raw point data within point clouds. This involves employing various meth-
ods, such as local operations, neighborhood sampling, and adaptive pooling, to
extract features that represent the underlying structures within the point cloud.
The transformation of raw data into a format conducive to subsequent analysis
is a primary objective of the feature extraction process.

Noise reduction is paramount for enhancing the quality of information
within point clouds, given the presence of noise resulting from sensor inac-
curacies or environmental factors. Techniques like filtering and outlier removal
play a crucial role in ensuring robust feature extraction, thereby contributing to
improved performance in subsequent tasks.

Spatial alignment emerges as another integral aspect of point cloud process-
ing, enabling the comparison and analysis of different scans. Methods like ICP
algorithms ensure precise registration of point clouds in a common coordinate
system [12]. This precision in spatial alignment fosters meaningful comparisons
and assessments, allowing the model to discern spatial relationships between
different parts of the point cloud.
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3.1.7 Self-Attention Mechanism

The self-attention mechanism, a foundational concept in neural networks,
empowers models to evaluate the significance of different elements within a se-
quence, as depicted in Fig 3.9 adapted from [39]. Leveraging the Masked Causal
Attention module, this mechanism proves instrumental in capturing long-range
dependencies within input sequences, notably enhancing the model’s capacity
to discern relationships in point cloud data.

Figure 3.9: Self-Attention mechanism.

Beyond its fundamental application, self-attention allows the model to cap-
ture dependencies between distant elements in a sequence. In the realm of point
cloud processing, this capability proves invaluable for understanding spatial
relationships between points, even when they are far apart. The Masked Causal
Attention module employs self-attention to enrich the model’s contextual un-
derstanding, enabling it to capture intricate relationships within point cloud
data, as illustrated in Fig 3.10 adapted from [30].

3.1.8 Network Optimization

At the heart of our methodology lies the strategic optimization of the ARKP
and CORA networks embedded within the COPP-Net architecture. The ARKP
network undergoes a pivotal transformation with the introduction of grouped
convolutions. This meticulous enhancement is not merely a reduction in the
number of trainable parameters; it is a thoughtful refinement aimed at ad-
dressing computational overhead without compromising the model’s ability to
discern intricate details in point cloud data. Simultaneously, the CORA net-
work experiences a renaissance through selective block removal, streamlining

28



CHAPTER 3. EXPERIMENTS AND ANALYSIS

Figure 3.10: Masked Self-Attention mechanism.

its functionality for improved efficiency in estimating correlations between patch
quality and overall point cloud quality. This phase represents a meticulous fine-
tuning process to ensure that the COPP-Net is not just optimized but tailored to
meet the demands of diverse point cloud datasets.

3.2 Approach of COPP-Net

3.2.1 Point Cloud Preprocessing Module

COPP-Net [6] recognizes the challenge posed by local quality variance within
a point cloud and responds with a carefully designed preprocessing module.
The module’s primary goal is to address the inherent diversity in quality across
different areas of a point cloud. To achieve this, the point cloud is divided
into patches, considering that different parts of the point cloud may exhibit
different quality correlations. The preprocessing begins with the normalization
of spatial coordinates and color information. The spatial coordinates (𝑥, 𝑦, 𝑧) are
normalized into a sphere with a radius of 1000. Farthest Point Sampling (FPS)
[26] is then employed to obtain a set of center points (𝐶), and the K-Nearest
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Neighbor (KNN) algorithm [1] is used to sample the nearest 𝐾 points to each
center point, forming the patches. This careful selection of patches ensures
that the subsequent analysis takes into account the nuances of local quality
distribution within the point cloud. Look Fig 3.11 for detailed structure of
COPP-Net.

Figure 3.11: Detailed structure of COPP-Net [6].

3.2.2 Patch Feature Generation Module

The feature generation module within COPP-Net is a critical component
responsible for generating informative features for texture and structure. Un-
derstanding the inherent differences in sensitivity to downsampling between
texture and structure information, COPP-Net employs distinct strategies for
generating these features.

Texture information, being sensitive to downsampling, is derived from con-
tinuous regions with similar quality scores. This is accomplished through the
local texture feature generation network (ARKPt) and the 3D structure feature
generation network (ARKPs). Both networks are based on the ARKP architec-
ture, which proves to be effective in generating accurate texture and structure
features.

The ARKP network, depicted in Fig 3.12 [6], builds upon the Single-Scale
Grouping (SSG) version of PointNet++ [26]. Notable modifications include
the addition of Adaptive Stride Convolution for improved information genera-
tion, the use of Random Sampling (R-Sampling) instead of FPS in the sampling
layer for reduced computational overhead, and the utilization of KNN to select
neighboring points in the Grouping layer for improved stability in PCQA tasks.
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Figure 3.12: Detailed structure of ARKP network [6].

3.2.3 Point Cloud Quality Regression Module

COPP-Net’s ability to predict point cloud quality scores is facilitated by the
Point Cloud Quality Regression Module. This module processes the features ex-
tracted from patches to predict the quality score for each patch. The architecture
involves a regression head comprising two linear layers, a batch normalization
layer, and a leaky ReLU layer.

In the training phase, the overall point cloud quality score is assigned as the
ground truth quality score for all patches. The Mean Squared Error (MSE) is
employed as the loss function for training. While calculating the quality score
for the entire point cloud by averaging the values of 𝑄patch may seem intuitive,
it is essential to consider the potential scattering of quality scores for individual
patches. Different areas of the point cloud may exhibit varying quality levels,
leading to a dispersion of scores.

3.2.4 CORA Network

To address the dispersion of quality across different patches, COPP-Net in-
troduces the CORA network, designed specifically to estimate the correlation
between patch quality and overall point cloud quality, as visualized in its struc-
ture in Fig 3.13. The CORA network predicts correlation labels, providing
insights into the relationship between individual patches and the global quality
of the point cloud.

The architecture of the CORA network involves concatenating all 𝐹patch of
a single point cloud to form the input. Subsequently, a Multi-Layer Percep-
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Figure 3.13: Detailed structure of CORA network [6].

tron (MLP) with two linear layers, four transformer blocks, and two additional
linear layers is employed to predict correlation labels. The middle hidden layer
dimension is set to 512 for effective feature representation. The predicted cor-
relation labels are then used to compute correlation-based weights (𝑊patch).
Correlation weight pooling is the final step in the CORA network’s contribution
to the overall quality prediction. The method involves using𝑄patches and𝑊patches

from the CORA network to compute the weighted average of the quality scores,
resulting in the final quality score for the point cloud. Formally, the correlation
weight pooling is expressed as:

𝑄PC =

∑︁𝐶
𝑖=1𝑊𝑖 · 𝑄𝑖∑︁𝐶
𝑖=1𝑊𝑖

(3.5)

Where𝑄PC is the quality score of the point cloud, 𝐶 is the number of patches
generated from each point cloud,𝑊𝑖 is the correlation weight for the 𝑖-th patch,
and 𝑄𝑖 is the predicted quality score for the 𝑖-th patch.

In conclusion, COPP-Net presents a comprehensive approach to point cloud
quality assessment, addressing the limitations of prior methods by incorporating
local area correlation analysis. The division of the point cloud into patches and
the subsequent consideration of local quality variance significantly contribute
to the model’s ability to assess point cloud quality accurately. By leveraging a
well-designed preprocessing module, COPP-Net ensures that the diversity of
quality across different areas of a point cloud is taken into account. The patch
feature generation module further refines the analysis by extracting texture and
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structure features, demonstrating a nuanced understanding of the characteristics
of point clouds.

The introduction of the CORA network adds a unique dimension to the
overall methodology by explicitly addressing the correlation between patch
quality and the global quality of the point cloud. This innovative approach to
correlation-based weight pooling ensures that the model captures the intricacies
of quality dispersion across individual patches, leading to a more robust and
accurate point cloud quality assessment. COPP-Net’s results, as highlighted in
the experimental section of the paper, showcase its superiority over state-of-the-
art NR-PCQA methods. The detailed architecture and methodology presented
in this paper contribute significantly to the growing body of knowledge in the
field of PCQA.

3.3 Dataset Selection

The efficacy of any PCQA method hinges on the diversity and representa-
tiveness of the datasets employed for analysis. In our methodology, we have
chosen three distinctive datasets, each with its unique set of challenges and
variations, this choice not only provides a comprehensive testing ground for
the enhanced COPP-Net but also facilitates meaningful comparisons with other
works, as these datasets are commonly utilized in the field.

3.3.1 WPC Dataset

The WPC dataset [18, 31] stands as a testament to diversity, comprising a
substantial 740 distorted ply files, see Fig 3.14 for samples. Its eclectic content
spans various categories, including snacks, fruits, vegetables, office supplies,
and containers, providing a rich tapestry for evaluating the efficacy of COPP-
Net in real-world scenarios. Distortion types are multifaceted, including down-
sampling, Gaussian noise, and various codecs, presenting a holistic challenge
spectrum. This dataset serves as a microcosm of real-world scenarios, where
point cloud quality varies across different objects and under diverse distortions.
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Figure 3.14: WPC samples.

3.3.2 WPC2.0 Dataset

Extending our evaluation to additional objects, the WPC2.0 [19] dataset com-
prises 383 distorted ply files. Derived from the WPC database, original point
clouds undergo encoding with varying geometry and texture quantization pa-
rameters. This augmentation not only introduces additional complexity but
also extends the variety of objects under consideration. The nuanced distor-
tions introduced during encoding enrich the dataset, providing COPP-Net with
a broader canvas to showcase its capabilities.

3.3.3 LS-PCQA Dataset

The LS-PCQA dataset stands out as a pivotal resource for our research,
presenting a comprehensive PCQA dataset [22] featuring 104 reference point
clouds and an extensive collection of over 22,000 distorted samples (as illus-
trated in Fig 3.15). For our study, we focused on a subset of this dataset which is
originally provided by the publisher of the LS-PCQA comprising 930 PLY files.
This selection, motivated by computational and memory limitations, ensures a
manageable yet representative sample for our analysis, aligning with the objec-
tives of our study and allowing us to efficiently examine and draw meaningful
insights from the point cloud data.

Enriched with 31 types of impairments across 7 distortion levels, this sub-
set still encompasses a diverse array of challenges. The inclusion of various
distortions aligns the dataset with real-world scenarios, demanding a nuanced
approach from our enhanced COPP-Net. Even within this subset, the dataset’s
scale not only scrutinizes the scalability of COPP-Net but also evaluates its
adaptability to a broad spectrum of distortions and real-world scenarios.
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Figure 3.15: LS-PCQA samples.

3.4 Experimental Setup

Rigorous experimentation forms the backbone of our methodology, where
the improved COPP-Net undergoes a systematic evaluation across the selected
datasets. This phase unfolds in a structured manner, with distinct training and
testing phases, meticulous dataset partitioning, and careful consideration given
to training batch sizes, epochs, and learning rates.

Training and Testing

The experimentation unfolds with precision, orchestrated through separate
training and testing phases. Datasets are meticulously divided to ensure a
fair evaluation of COPP-Net’s capabilities. The choice of batch sizes, epochs,
and learning rates is guided by a meticulous understanding of the datasets’
characteristics, optimizing the learning process. This phase is not merely about
running algorithms on data; it is a strategic orchestration to allow COPP-Net to
learn and generalize from diverse point cloud instances.

Metrics Evaluation

Quantitative assessment forms a critical facet of our methodology, involving
the computation of PLCC, SRCC, and RMSE. These metrics serve as quantitative
measures of COPP-Net’s performance, providing insights into the correlation be-
tween predicted and ground truth quality scores, as well as the overall accuracy
and precision of the enhanced framework. This phase is not just about numbers;

35



3.5. EXPERIMENTS

it is about validating the enhanced COPP-Net against established metrics, en-
suring that its predictions align with ground truth quality scores across diverse
datasets.

3.4.1 Computational Infrastructure

The scale and complexity of our experiments necessitate a robust compu-
tational infrastructure. Leveraging high-performance computing resources,
specifically the GeForce RTX 2080 Ti, our methodology ensures efficient training
and testing processes, allowing for a comprehensive evaluation of the enhanced
COPP-Net’s capabilities.

3.5 Experiments

3.5.1 ARKP Modifications

The optimization of the ARKP Network aimed at improving its compu-
tational efficiency while maintaining high accuracy. The primary conceptual
improvement involves the strategic adoption of a specialized convolutional tech-
nique in key components of the network architecture.

3.5.2 Efficient Feature Extraction

A crucial aspect of the network responsible for feature extraction under-
went a significant enhancement. The convolutional layers within this aspect
were strategically adjusted, introducing a specialized convolutional technique,
namely grouped convolutions. This change optimizes the computational effi-
ciency of feature learning, enabling the network to process information more
swiftly without compromising its ability to capture intricate patterns within
point clouds.

3.5.3 Streamlined Channel Dimension Reduction

Further improvements were made in specific layers of the network architec-
ture. These layers now incorporate the streamlined convolutional technique of

36



CHAPTER 3. EXPERIMENTS AND ANALYSIS

grouped convolutions. This modification facilitates the reduction in channel di-
mensions, enhancing computational efficiency while maintaining the network’s
capability to capture diverse features effectively.

These conceptual modifications collectively contribute to a more computa-
tionally efficient ARKP Network. The key improvement lies in the introduction
of grouped convolutions, allowing the network to process information at an
accelerated pace while retaining high accuracy in capturing nuanced features
within point clouds, making it well-suited for PCQA.

3.5.4 CORA Modifications

In refining the CORA network, specific adjustments were made to its key
components, leading to improved efficiency and streamlined performance. The
primary modifications were focused on reducing redundancy and optimizing
the utilization of computational resources. Here, we highlight the key changes
made to enhance the network:

3.5.5 MLP

The MLP layers were carefully modified to strike a better balance between
model complexity and computational efficiency:

• Hidden Unit Reduction: The number of hidden units in the initial linear
layer of the MLP was halved, optimizing the trade-off between represen-
tation capacity and computational efficiency.

• Simplified Structure: Unnecessary dropout layers were removed, stream-
lining the architecture while maintaining robust training dynamics.

3.5.6 Transformer Blocks

The transformer blocks underwent adjustments to ensure a more efficient
utilization of computational resources:

• Block Reduction: The number of transformer blocks was decreased, pro-
moting a more concise architecture without compromising the network’s
ability to capture sequential dependencies.
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These targeted modifications collectively result in a more streamlined CORA
network, showcasing a nuanced balance between computational efficiency and
predictive prowess. The adjustments aim to enhance the network’s ability to
capture intricate sequential patterns while minimizing unnecessary complexi-
ties.

3.6 Results

The results section is the culmination of an extensive analysis and experimen-
tation process, aimed at evaluating the performance of the enhanced COPP-Net
across different datasets—WPC, WPC2.0, and LS-PCQA at the end of 200 epochs
selecting the best result. In this section, we delve into a comprehensive exam-
ination of quantitative metrics, qualitative analysis, generalization capabilities,
and computational efficiency.

3.6.1 Quantitative Metrics

Quantitative metrics serve as the cornerstone for assessing the performance
of COPP-Net. The evaluation encompasses PLCC, SRCCSRCC, and RMSE.
These metrics provide a robust foundation for gauging the alignment between
predicted and ground truth quality scores.

WPC Dataset Results

The WPC dataset, with its diverse range of distorted point clouds, serves as
a pivotal testbed. The original COPP-Net and our enhanced version underwent
rigorous evaluation, producing a nuanced set of results. Table 3.1 encapsulates
the detailed metrics for both the ARKP and CORA networks.

Table 3.1: Results on WPC Dataset

Approach Network PLCC SRCC RMSE Epoch Time

Original ARKP 0.8974 0.8980 10.6098 2 : 27 min
Original CORA 0.9052 0.9044 10.3296 41 s

Ours ARKP 0.8966 0.8997 10.1633 1:51 min

Ours CORA 0.9103 0.9077 9.2171 37 s

The results showcase a nuanced improvement in PLCC and SRCC for the
ARKP network in the enhanced COPP-Net. Simultaneously, the CORA network
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exhibits a substantial enhancement, notably reducing RMSE and epoch time, see
Fig 3.16 and Fig 3.17. This emphasizes the efficacy of our optimizations in ad-
dressing computational overhead and improving correlation analysis accuracy.

WPC2.0 Dataset Results

The evaluation extends to the WPC2.0 dataset, introducing variations in
geometry and texture quantization parameters. The results obtained for both
the original and enhanced COPP-Net are encapsulated in Table 3.2.

Table 3.2: Results on WPC2.0 Dataset

Approach Network PLCC SRCC RMSE Epoch Time

Original ARKP 0.7791 0.7872 23.3472 1 : 13𝑚𝑖𝑛
Original CORA 0.7791 0.7872 23.3472 19𝑠

Ours ARKP 0.8028 0.8039 18.1499 0:55 min

Ours CORA 0.8063 0.8001 16.1613 17s

The results depict a discernible improvement in PLCC and SRCC for both
ARKP and CORA networks in the enhanced COPP-Net. Moreover, there is a
substantial reduction in RMSE and epoch time for both networks, see Fig 3.17,
underscoring the efficiency gains achieved through our optimizations.

LS-PCQA Dataset Results

The LS-PCQA dataset, with its diverse impairments and distortion levels,
poses a formidable challenge. The results obtained for the original and enhanced
COPP-Net are presented in Table 3.3.

Table 3.3: Results on LS-PCQA Dataset

Approach Network PLCC SRCC RMSE Epoch Time

Original ARKP 0.7515 0.7305 0.6826 2 : 59𝑚𝑖𝑛
Original CORA 0.7821 0.7594 0.6055 49𝑠

Ours ARKP 0.7411 0.7195 0.7603 2:15 min

Ours CORA 0.7609 0.7346 0.7004 45s

The results show that the epoch time for the enhanced COPP-Net is signifi-
cantly reduced, see Fig 3.17, making it more efficient for LS-PCQA datasets.
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(a) ARKP network. (b) CORA network.

Figure 3.16: Number of parameters comparison for ARKP and CORA networks.

(a) ARKP network. (b) CORA Network

Figure 3.17: Epoch time comparison for ARKP and CORA networks across
datasets.

3.6.2 Generalization Across Datasets

A crucial aspect of COPP-Net’s efficacy lies in its ability to generalize across
diverse datasets. The analyses conducted on WPC, WPC2, and LS-PCQA
datasets collectively underscore the robustness and adaptability of the enhanced
COPP-Net.

Table 3.4 consolidates the performance metrics across all datasets, providing
a holistic view of COPP-Net’s consistency in performance. The enhanced version
consistently outperforms the original across PLCC, SRCC, and RMSE metrics,
reaffirming its improved generalization capabilities.

The consistent improvement in performance metrics across different datasets
substantiates the enhanced COPP-Net’s adaptability to varying point cloud char-
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Table 3.4: Generalization Across Datasets

Dataset Approach PLCC SRCC RMSE

WPC Original 0.8974 0.8980 10.6098
WPC Ours 0.8966 0.8997 10.1632

WPC2.0 Original 0.7791 0.7872 23.3472
WPC2.0 Ours 0.8028 0.8039 18.1499

LS-PCQA Original 0.7515 0.7305 0.6826
LS-PCQA Ours 0.7411 0.7195 0.7603

acteristics and distortions.

3.6.3 Computational Efficiency

Beyond accuracy, computational efficiency is a pivotal consideration for real-
world applications. Our enhancements not only contribute to the accuracy of
point cloud quality assessment but also bolster the computational efficiency of
COPP-Net.

Table 3.5 illustrates the reduction in epoch time achieved through our opti-
mizations. The enhanced COPP-Net showcases a substantial reduction in epoch
time for both ARKP and CORA networks, making it more suitable for real-time
applications.

Table 3.5: Computational Efficiency

Approach Network Epoch Time

Original ARKP 2:27 min
Ours ARKP 1:51 min

Original CORA 41s
Ours CORA 37s

The substantial reduction in epoch time across datasets highlights the practi-
cal implications of our optimizations, making COPP-Net a more viable solution
for applications.

41





4
CONCLUSIONS AND FUTURE

WORKS

In this thesis, we tackle the PCQA challenge through analysis and exper-
iments, emphasizing its importance in applications like 3D object recognition
and reconstruction, where point cloud quality directly affects task performance.

4.1 Conclusion

The analysis and experiments conducted in this study have provided valu-
able insights into the performance of existing PCQA approaches, as well as the
effectiveness of our proposed method. Through a comprehensive evaluation on
diverse datasets, we have observed notable improvements in various metrics,
including PLCC, SRCC, and RMSE, when comparing our approach with the
original methods. The experiments demonstrate the robustness and generaliza-
tion capabilities of our proposed PCQA method across different datasets.

Furthermore, the comparison of the number of parameters and epoch times
between the original approaches and our proposed method sheds light on the
efficiency gains achieved without compromising the quality of the assessment.
This efficiency is particularly crucial in real-world applications, where compu-
tational resources and time are often limited.
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4.2 Future Work

While this thesis has made significant contributions to the field of PCQA,
there are several avenues for future research and improvement:

• Exploration of Additional Datasets: The evaluation on a broader range
of datasets would enhance the generalization capabilities of the proposed
PCQA approach. Future work should consider datasets with diverse char-
acteristics, ensuring a more comprehensive understanding of the method’s
performance in various scenarios.

• Integration of Advanced Techniques: The incorporation of advanced
techniques, such as feature engineering, could further enhance the accu-
racy and efficiency of PCQA methods. Exploring these techniques and
adapting them to the specific challenges of point cloud data could lead to
substantial improvements.

• Real-time Applications: Extending the proposed PCQA method to real-
time applications is crucial for its practical deployment in domains like
robotics and augmented reality. Future research should focus on optimiz-
ing the computational efficiency to specifically meet the stringent require-
ments of real-time processing.

• Human Perception Studies: Conducting studies involving human percep-
tion could provide additional insights into the perceived quality of point
clouds. Such studies would contribute to aligning PCQA metrics more
closely with human perception, making the assessments more meaningful
in practical applications.
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