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Introduction

One of the most distinctive traits of our species is curiosity, and the will to keep asking

questions. Since the dawn of human History, this characteristic of us has surely provided many

advantages in the context of survival: asking questions leads to gathering knowledge about our

surroundings, and knowledge allows to evaluate multiple courses of action and choose for the

best and most convenient one. But apart from the context of a practical earthly life, outlined

by the necessity to fulfill our most basic needs, our curiosity has often condensed into more pro-

found, deep and yet thrilling questions. For thousands of years, we human beings have pursued

the larger-than-life goal of understanding the nature of the Universe in which we happen to

live: its origins, its structure and internal organization, and its eventual death. Over time, such

visceral questions have become more refined, in concomitance with the advancements made

in the field of physics and astronomy, and pushed by the emergence of the scientific method.

All of this has eventually led to the development of cosmology: this is the science aimed at

understanding the origin, overall structure and evolution of the Universe. As all sciences, cos-

mology has undergone a constant evolution through the years, propelled by the affirmation of

Einstein’s Theory of General Relativity, and then fed by the ever-increasing amount of data

coming from galaxy surveys. These surveys have witnessed a constant improvement throughout

the last century, and the next generation of surveys coming in the next years will delight us with

strikingly precise performances. Among such surveys, we can cite the Euclid Telescope1, which

was launched in July 2023, the Dark Energy Spectroscopic Instrument2 (DESI), the Large Syn-

optic Survey Telescope3 (LSST), the Wide Field Infrared Survey Telescope4 (WFIRST), the

Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer5

(SPHEREX), the Astrophysics Telescope for Large Area Spectroscopy Probe (ATLAS)6, the

1http://www.euclid-ec.org/ (Amendola et al., 2018)
2http://desi.lbl.gov (Desi et al., 2016)
3https://www.lsst.org (Ivezić et al., 2019)
4https://wfirst.gsfc.nasa.gov (Spergel et al., 2015)
5https://www.jpl.nasa.gov/missions/spherex (Doré et al., 2014)
6(Wang et al., 2019).
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Nancy Grace Roman Telescope7. We have finally entered the so-called age of ”precision cosmol-

ogy”, characterised by new and more sophisticated instruments for our exploration of the Large

Scale Structure of the Universe. Such increasing instrumental precision should be mirrored by

equally powerful methods of statistical analyses, aiming at extracting as much information as

possible.

One of the newest methods is ShapeFit, and it was introduced as a blending of pre-existing

approaches, namely the Classical and Full Modelling ones. The idea is to take the best fea-

tures from both predecessors (model-independence, tight constraints), while overcoming their

respective limitations (e.g. computational cost).

The present work aims to introduce the motivations behind this new technique, outline the

novelties of its pipeline, and finally demonstrate its advantages with respect to previous tech-

niques, by direct application to simulated mocks and real BOSS data. In particular, when both

ShapeFit and Full Modelling are applied to mock data, the former is able to better recover

the expected parameter values, while featuring the same precision as the latter, and while also

requiring a considerably lower computational effort. Furthermore, the application of both tech-

niques to BOSS data shows that ShapeFit benefits from a greater robustness against systematic

errors.

The work is structured as follows. In chapter 1, we will define and then model the galaxy

observed power spectrum in a step-by-step fashion. Chapter 2 shows a way to employ the power

spectrum as a predictive tool to perform cosmological inference. In chapter 3, we introduce

and justify the ShapeFit methodology, highlighting its novelty in comparison with the older

Classic and Full Modelling approaches. In chapter 4 we present the result of applying different

techniques to some mock data: on the one hand, this will further highlight how such approaches

perform differently; on the other hand, such analysis will show the emergence of some systematic

shifts for ShapeFit. Finally, in chapter 5 we will briefly have a look at how ShapeFit fares when

applied to actual BOSS data.

7https://roman.gsfc.nasa.gov (Wang et al., 2022)
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Premise: cosmological context

In this early section of the work, we outline the basic cosmological framework which will be

employed from now on in the present discussion. In what follows, all quantities are expressed

in natural units, i.e. c = 1.

Following the Cosmological Principle assumption, stating that every point in space is equiva-

lent to any other point, regardless of direction, the Universe on large scales will be treated as ho-

mogeneous and isotropic. This assumption is justified by observational evidence: when explor-

ing the distribution of matter in the Universe, prominent fluctuations from the mean are present,

but they are confined to scales smaller than a few tens of megaparsec; whereas, the average over

such fluctuations reveals a Universe which actually looks isotropic and homogeneous(P. J. E. Pee-

bles, 1993). Therefore, the distribution of matter in the Universe appears to follow that of a

statistically homogeneous and isotropic random density field.

This corresponds to the Friedmann-Robertson-Walker (FRW) line element (Robertson, 1935,

1936):

ds = dt2 − a2(t)

[
dr2

1−Kr2
+ r2dθ2 + r2 sin2 θdϕ2

]
(1)

where (t, r, θ, ϕ) are comoving coordinates, while a(t) is the cosmic scale factor and the spatial

curvature parameterK can be chosen to be +1 (positive spatial curvature), −1 (negative spatial

curvature) or 0 (zero spatial curvature)8. The scale factor is the only dynamical variable upon

which the FRW line element depends, attesting the high degree of symmetry of such metric

(Kolb, 2018). The meaning of the scale factor can be further visualized in Figure 1: we can

picture space as a grid which uniformly expands as time evolves. Points on the grid maintain

8Throughout the present work, the K = 0 case, corresponding to a flat Universe will be employed.
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their coordinates, so the comoving distance between two points (i.e. simply the difference

between the two coordinates) doesn’t change. Meanwhile, the physical distance is proportional

to the scale factor, so it evolves with time (Dodelson & Schmidt, 2020).

Formally, the comoving and physical distance between and object and an observer are de-

fined as

rcomoving =

∫ to

te

dt

a(t)
(2)

rphysical = a(t)

∫ to

te

dt

a(t)
(3)

where te indicates the time at which a photon is emitted by the object, and to is the time

at which the same photon is received by the observer.

Figure 1: Expansion of the universe. The comoving distance between points on a hypothetical grid remains
constant as the universe expands. The physical distance is proportional to the comoving distance times the
scale factor, so it gets larger as time evolves. The picture is taken from chapter 1.1 of (Dodelson & Schmidt,

2020)

As we know, the Universe is not empty: the spacetime described by the FRW metric is

inhabited by a variety of energy sources, both massive (like baryons or galaxies) and massless

(like photons). These two actors on stage, spacetime and energy sources, play a game of mutual

interaction, constantly shaping and modifying each other. On the one hand, the form of the

metric determines how energy sources will move inside such metric; on the other hand, the mere

presence of energy sources will bend, shrink and stretch the metric itself. The relation between
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metric curvature and energy sources is described by the Einstein Field Equations (Einstein,

1915; Einstein et al., 1916):

Gµν = 8πGTµν (4)

The metric curvature is represented, on the left hand side, by the Einstein Tensor

Gµν ≡ Rµν −
R

2
gµν (5)

where:

- Rµν is the Ricci tensor, depending on the metric and its derivatives9;

- gµν is the metric tensor;

- the contraction R ≡ gµνRµν is the Ricci scalar.

On the right hand side on the Einstein Field Equations, sources of energy density are rep-

resented by the energy-momentum tensor Tµν , describing the energy and momentum of the

spacetime matter content, while G represents Newton’s gravitational constant. The content of

the Universe is usually described in terms of perfect fluids, meaning that heat conduction, vis-

cosity or other transport or dissipative processes are negligible. The perfect fluid is completely

specified by two quantities: the rest-frame energy density ρ and an isotropic rest-frame pressure

p (Hartle, 2003). Hence the energy-momentum tensor takes the following form in terms of the

fluid four-velocity uµ:

Tµν = (ρ+ p)uµuν + puµν (6)

9In terms of Christoffel symbols, Rµν = Γα
µν,α − Γα

µα,ν +Γα
βνΓ

β
µν − Γα

βνΓ
β
µα. Here, Γα

βγ ≡ 1

2
gαλ(gλβ,γ + gλγ,β − gβγ,λ),

and the ”,” stands for a partial derivative, gαβ , γ ≡ ∂γgαβ .
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Applying Einstein’s field equations of general relativity to the FRW line element, one obtains

the Friedmann equations (Friedman, 1922), describing the time evolution of the scale factor

a(t) as a function of the curvature parameter K and the energy content of the Universe, made

up by the total energy density ρ and pressure p:

H2(t) ≡
[
ȧ(t)

a(t)

]
=

8πG

3
ρ(t)− K

a2(t)
(7)

ä(t)

a(t)
= −4πG

3
[ρ(t) + 3p(t)] (8)

In these equations, G is the gravitational constant, and the derivation is made with respect

to the cosmic time t. The Hubble parameter H(t) has been defined as the expansion rate of

the Universe at a given time.

The redshift can be linked to the scale factor as

z =
a

a0
− 1 (9)

where a0 is the present-day scale factor, and it is normalized to a0 = 1.

In terms of redshift, the Hubble expansion rate can be defined as

H(z) = H0E(z) (10)

where H0 ≡ H(z = 0) is the Hubble parameter today: its value is still uncertain, so it is

customary to absorb our ignorance about it into the dimensionless Hubble parameter h, by

defining it as
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H0 = 100 h
km

s Mpc
(11)

The function E(z) depends on the employed cosmological model.

As evident from (7), there exists a specific value of the density, known as the critical density

ρc which flattens the geometry of the Universe, i.e. such that K = 0:

ρc(z) =
3H2(z)

8πG
(12)

From this definition, one can define, for each generic component i, the density parameter

Ωi(z) ≡ ρ(z)/ρc(z). Additionally, from (8) one can define the curvature density parameter

ΩK(z) = −K/ [a2(z)H2(z)]. Starting from these definitions, the following equation for the en-

ergy budget of the Universe must be fulfilled at all times:

N∑
i=1

Ωi(z) + ΩK(z) = 1 (13)

where N is the number of species involved in the chosen model.

Equations (7) and (8) can be combined into an energy conservation equation, linking the

pressure to the energy density:

ρ̇ = −3H(ρ+ p) (14)

For each energy component of the Universe there exists a specific relation between ρ and

p, namely an equation of state ρ = ρ(p). It is customary to adopt a very simple form of such

equation of state:
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p = wρ (15)

where w is a constant equation of state parameter.

This choice allows one to describe a variety of contributions to the right-hand side of the

Einstein equations — matter, radiation, vacuum energy, coherent scalar fields, cosmic strings,

domain walls, and so on (Kolb, 2018).

This parametrization allows one to solve (14), thus finding, for the ith component:

ρ(a) ∝ a−3(1+wi) (16)

Non relativistic components, i.e. baryons, cold dark matter and massive neutrinos, are con-

sidered as a pressureless gas: wb = wcdm = wν,massive = 0. Meanwhile, relativistic components

such as photons and massless neutrinos behave as blackbody radiation: wγ = wν,massless = 1/3

(Hartle, 2003; Blanchard et al., 2020).

Flat ΛCDM

In the cosmological framework of general relativity, it is necessary to modify (4) in order to

account for the observed accelerated expansion of the Universe (Hubble, 1929). The simplest

way to do this is by adding a constant (hereafter, cosmological constant, Λ), which is able to

mathematically solve the issue. The cosmological constant was originally placed by Einstein

in the left hand side of (4), as an attempt to mathematically recover the situation of a static

Universe. Only lately, Λ was moved to the right hand side, and new interpretations of it arose.

As suggested (Zel’Dovich, 1968), this new form of energy, commonly known as dark energy,

could be interpreted as vacuum energy:

Gµν = 8πGTµν + 8πGT vac
µν = 8πGTµν − Λgµν (17)
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The addition of the cosmological constant is one of the ingredients of the flat ΛCDM model:

this is the standard model for today’s cosmology, i.e. that which describes at best our current

observations.

Following from the previous addition, Friedmann equations are accordingly modified:

H2(t) =
8πG

3
ρ(t)− K

a2(t)
+

Λ

3
(18)

ä(t)

a(t)
= −4πG

3
[ρ(t) + 3p(t)] +

Λ

3
(19)

The cosmological constant contributes negatively to the pressure term, thus producing a re-

pulsive effect, able to explain the accelerated expansion of the Universe. This negative pressure

effect is also manifest from the equation of state parameter wΛ = −1.

Moreover, within the context of the flat ΛCDM model, ΩK = 0, and the energy budget

equation can be written as

Ωm = Ωb + Ωcdm + Ων,massive (20)

Ωrad = Ωγ + Ων,massless (21)

Ωm + Ωrad + ΩΛ = 1 (22)

where:

- the matter energy density Ωm is the sum of the energy densities of baryons (b), cold dark

matter (cdm) and massive neutrinos (ν,massive);

- the radiation energy density Ωrad is the sum of the energy densities of photons (γ) and

massless neutrinos (ν,massless);
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- ΩΛ is the energy density of the dark energy component Λ, which accounts for the accel-

erated expansion of the Universe (see (P. Peebles & Ratra, 1988) (Weinberg, 1989) for more

information about the cosmological constant).

Finally, within the flat ΛCDM model, the function E(z) introduced in (10) takes the form:

E(z) =
√
Ωm,0(1 + z)3 + ΩΛ,0 + Ωrad,0(1 + z)4 (23)

where the index 0 indicates the present-day value of the given quantity.
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Chapter 1

Constructing the observed power
spectrum

The present work revolves around different methods to extract information (and put con-

straints) on cosmological parameters, from the data collected by redshift-space galaxy surveys.

In particular, such surveys allow us to measure the power spectrum of galaxies. Since the

observed galaxy power spectrum is of utmost importance for the present discussion, the first

chapter of this work is entirely dedicated to introducing and ”building” such quantity. This is

not a straightforward task, since the observed galaxy power spectrum differs from the ”true”

linear matter power spectrum in many ways. First of all, since we work under the terms of

galaxy surveys, we can only deal with galaxies, while the ”true” underlying matter distribution

remains unreachable to us. Furthermore, our surveys map quantities in redshift space, thus

distorting the ”true” quantities. Moreover, other contributions such as the Alcock-Paczyński

effect and instrumental shot noise must be added to the mix.

Therefore, the present section will start by outlining the main definitions and features of

the ”true” linear matter power spectrum, and only after we will add the contributions and

alterations which stem from a practical observation of such quantity.

Finally, some words will be spent on the power spectrum multipole expansion.

13



1.1 True linear matter power spectrum

1.1.1 Perturbation theory

Today’s large scale structure is the result of a process which started in the primordial

Universe, when a random process generated minute density fluctuations. Such fluctuations

subsequently evolved, ultimately giving rise to the Universe as it is known today.

In general, density fluctuations for a component i are characterised by the density contrast

δi(x, z) ≡
ρi(x, z)− ρ̄i(z)

ρ̄i(z)
(1.1)

which quantifies the deviations of the density field ρi(x, z) around the mean spatial density

ρ̄i(z): x is a 3D comoving coordinate and z is the redshift.

To describe these fluctuations statistically, it is convenient to work in Fourier space by de-

composing δ into plane waves:

δi(x, z) =

∫
d3k

(2π)3
δ̃i(k, z)e

−ik·x (1.2)

The advantage of this choice lies in the fact that fluctuations corresponding to different

Fourier modes are uncorrelated, while each given mode has a nonzero variance. This crucial

feature allows to easily separate different scales.

For non-relativistic matter and sub-horizon scales, the evolution of density fluctuations can

be described by ideal fluid equations (P. J. E. Peebles, 2020). In particular, their growth obeys

a second order differential equation. At early enough times, when those fluctuations are still

small, the fluid equations can be linearised.

During matter domination, treating matter as a pressureless ideal fluid, the equation for the

evolution of the density contrast becomes:

δ̈m(k, z) + 2Hδ̇m(k, z)−
3H2

0Ωm,0

2a3
δm(k, z) = 0 (1.3)

14



where a is the scale factor and Ωm,0 = Ωcdm,0 +Ωb,0 +Ων,0
1 is the total matter contribution

today, accounting for cold dark matter, baryons and massive neutrinos.

In a ΛCDM scenario with no massive neutrinos, and neglecting dark energy perturbations,

the previous equation can be written as

δ′′m(k, z) +

[
H ′(z)

H(z)
− 1

1 + z

]
δ′m(k, z)−

3

2

Ωm(z)

(1 + z)2
δm(k, z) = 0 (1.4)

The prime indicates derivatives with respect to the redshift, while Ωm(z) is given by

Ωm(z) =
Ωm,0(1 + z)3

E2(z)
(1.5)

E2(z) = Ωm,0(1 + z)3 + ΩΛ,0(z) + ΩK,0(1 + z)2 (1.6)

in which ΩΛ and ΩK stand for the density contributions of dark energy and spatial curvature

respectively.

The solutions δm(k, z) of equation (1.4) are scale-independent at late times: this suggests

the introduction of a growth factor D(z):

δm(k, z) = δm(k, zi)
D(z)

D(zi)
(1.7)

where zi is an arbitrary reference redshift in the matter dominated era.

In the present analysis, we will employ the following fitting form for D(z) (Lahav, Lilje,

Primack, & Rees, 1991; Carroll, Press, & Turner, 1992):

1As customary, we employ the definition Ωi ≡ ρi/ρcrit, where ρcrit is the critical density associated to a flat Universe.
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D(z) =
1

1 + z

5

2
Ωm(z)

{
Ω4/7

m (z)− ΩΛ(z) +

[
1 +

Ωm(z)

2

] [
1 +

ΩΛ(z)

70

]}−1

(1.8)

where Ωm(z) is given by(1.5), while

ΩΛ(z) =
ΩΛ,0

E2(z)
(1.9)

From the growth factor, we can define the growth rate parameter f as

f(a) =
d lnD(a)

d lna
(1.10)

or, in terms of redshift,

f(z) = − d lnD(z)

d ln(1 + z)
= −(1 + z)

D(z)

dD(z)

dz
(1.11)

This quantity is deeply related to redshift space distortions (hereafter, RSD), and it is

usually involved in LSS analysis though galaxy redshift surveys. A further exploration of the

meaning of parameter f will be carried out in the section 1.2.4.

For now, it may be sufficient to add that, within ΛCDM, the growth rate is well approxi-

mated by (Lahav et al., 1991)

f(z) = [Ωm(z)]
0.6 +

ΩΛ(z)

70

[
1 +

Ωm(z)

2

]
(1.12)
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1.1.2 The power spectrum

The power spectrum Pi for the component i is defined as the variance of the distribution

(Blanchard et al., 2020):

⟨δ̃i(k, z)δ̃i(k′, z)⟩ = (2π)3δD(k + k′)Pi(k, z) (1.13)

where δD is a Dirac delta function, stating the independence of different modes, while the

angular brackets indicate an average over the whole distribution. Accordingly to definition

(1.13), the power spectrum will be small for a smoother distribution, while it will be large for

a distribution which features many overdensities and underdensities.

Under the assumptions of homogeneity and isotropy, the power spectrum can only depend

on k = |k| and z.

On top of these definitions, it is useful to define a dimensionless power spectrum as:

∆2
i (k, z) ≡

k3

2π2
Pi(k, z) (1.14)

which accounts for the fact that the power spectrum has dimensions of k−3 or length3.

1.1.3 Primordial power spectrum, transfer function and normalisation

According to the standard inflationary model, the primordial dimensionless power spectrum

∆2
R of curvature perturbations is given by a power law:

∆2
R(k) = As

(
k

k0

)ns−1

(1.15)

where As is the amplitude of the primordial scalar perturbation, k0 is a pivot scale, while

the scalar spectral index ns measures the deviation from scale invariance (corresponding to
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ns = 1).

Therefore, the primordial power spectrum is given by:

PR(k) =
2π2

k3
As

(
k

k0

)ns−1

(1.16)

The primordial power spectrum in (1.16) does not match the one we observe today. In fact,

the presence of many cosmological components, along with their evolution and mutual inter-

actions, alters the predictions of perturbation theory. This, in turn, affects the shape2 of the

original power spectrum, modifying its overall look. However, it must be noted that causality

precludes such effect at arbitrarily large scales. All of these shape-changing effects are modelled

by the transfer function T (k, z), which compares the amplitude of the resulting perturbations

to the amplitude they would have had if causal physics had been neglected (Eisenstein & Hu,

1998). These shape-changing processes, which get encoded into the transfer function, will be

better explored in section 1.1.4: now we outline its main effect, which is linked to the epoch of

matter-radiation equality.

During radiation domination, curvature perturbations with comoving scales smaller than

the horizon are suppressed, while super-horizon scales stay unaffected until they enter the hori-

zon. Instead, during the matter dominated era, curvature perturbations remain constant on all

scales. As a consequence, a characteristic scale corresponding to the epoch of matter-radiation

equality gets imprinted on the transfer function, thus determining the main shape of the power

spectrum.

Therefore, the power spectrum at any z and k is expressed as

Pi(k, z) = PR(k)T 2
i (k, z) =

2π2

k3
As

(
k

k0

)ns−1

T 2
i (k, z) (1.17)

Within the ΛCDMmodel (no massive neutrinos are included), the late-time growth of matter

2In subsequent sections, the term shape will indicate the no-wiggle component of the power spectrum. For now, we
just employ the term shape with its usual meaning.
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perturbations is scale-independent, so that the matter transfer function can be split into:

· a scale-dependent part, Tm(k), normalised so that Tm → 1 for k → 0;

· the scale-independent growth factor D(z).

With that in mind, we can come up with a convenient way to express the linear matter

power spectrum (Blanchard et al., 2020):

Pm,lin(k, z) =

(
σ8

σN

)2 [
D(z)

D(0)

]2
T 2
m(k)k

ns (1.18)

where

σ2
8 =

1

2π2

∫
dkk2Pm(k, 0)|WTH(kR8)|2 (1.19)

σ2
N =

1

2π2

∫
dkk2 knsT 2

m(k)|WTH(kR8)|2 (1.20)

WTH(x) = 3
sinx− xcosx

x3
(1.21)

WTH is the Fourier transform of the top-hat filter, and R8 = 8h−1Mpc; σ8 is the rms

of present-day linearly evolved density fluctuations in spheres of radius R8, while σN is a

normalization constant.

From these definitions, it is evident that the generic power spectrum (1.17) relates to the

linear matter power spectrum (1.18) when the transfer function of the component i is

T 2
m(k, z) =

(
σ8

σN

)2 [
D(z)

D(0)

]2
k4kns−1

0

2π2As

T 2
m(k) (1.22)
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1.1.4 Power spectrum shape

Physical situation

As previously stated, the shape of the (”true”) power spectrum we would observe today is

determined by the matter transfer function, which accounts for all the modifications that have

occurred to the primordial power spectrum (1.16). In turn, the form of the transfer function is

defined both by the evolution of the various cosmological components through different epochs

and the early-time expansion history of the Universe. In this section, we will explore this pro-

cess in a simple and schematic way, following the work of (Eisenstein & Hu, 1999).

Consider linear adiabatic perturbations around a Friedmann-Robertson-Walker metric, for

a cosmology involving photons, baryons, cold dark matter, massive and massless neutrinos.

The crucial quantity in this whole discussion is for sure the Jeans scale, which we indicate

here with λJ . Perturbations on a scale λ < λJ are not subject to gravitational instability,

due to pressure support or, in case of collisionless particles, sufficient rms velocity. Instead,

perturbations on scales λ > λJ grow at the same rate, regardless of the scale. In general, the

Jeans scale of a gravitating species marks a change in the species’ behaviour, thus affecting the

power spectrum shape evolution by getting imprinted in it.

In order to see how this process actually plays out, one can take it step by step, starting

from the simplest scenario and then progressively increasing its complexity.

In a Universe only inhabited by cold dark matter and radiation, the λJ of the whole system

grows up to the size of the particle horizon at matter-radiation equality λeq (corresponding

to a wavevector keq), then it shrinks to zero as the Universe becomes matter dominated. As

a consequence, the matter transfer function (which in this case only accounts for cold dark

matter) is bent in correspondence of λeq, and the original power spectrum (1.17) turns around

at the same scale. Importantly, well after equality, the Jeans scale has dropped below all scales

of interest (i.e. the regime of LSS measurements), thus perturbations grow at the same rate.

This allows one to split the transfer function into a scale-independent growth factor D(z) and

a scale-dependent part Tm(k) which we already introduced (in particular, the shape of Tm(k)

will depend only on k/keq).

Now we add baryons (i.e. nucleons and electrons) to the mix. Initially, baryons are dy-

namically coupled to photons through Compton (between photons and electrons) and Coulomb

(between nucleons and electrons) interactions, thus originating a photon-baryon fluid with

sound speed cs(z). As the Universe approaches recombination, the rate of Compton scattering
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progressively decreases, up to the point at which baryon-photon decoupling takes place. This is

known as the end of Compton drag epoch, and it corresponds to a redshift zd ≈ zrec. For z > zd,

the baryonic Jeans scale tracks the sound horizon, while it drops rapidly after recombination.

Therefore, the sound horizon at the end of Compton drag epoch, indicated by rd and defined

as

rd =

∫ ∞

zd

dz′
cs(z

′)

H(z′)
, (1.23)

is the scale that gets imprinted in the transfer function and power spectrum (its scale

corresponds to the mode kd). If we considered the shape of the galaxy 2-point correlation

function, i.e. the real space counterpart of the power spectrum, then the presence of baryons

would manifest as a little spike in correspondence of a scale λ = rd. Since the power spectrum

is non other than the Fourier transform of the 2-point correlation function, when visualizing

its shape, the aforementioned spike promptly turns into a series of troughs and valleys. These

wiggles correspond to the baryon acoustic oscillations, hereafter, BAO. A deeper discussion

about the BAO is postponed to 1.1.4.

It must be added that, also in this case, the Jeans scale drops quickly after recombination:

once again, we can split scale and redshift dependences inside the transfer functions, and now

Tm(k) will depend on k/kd as well. We stress this in order to highlight the contrast with the

last case we are going to examine.

Now, we add massive neutrinos to the mix. At sufficiently high temperatures, massive neu-

trinos behave as radiation and, accordingly, the neutrino Jeans scale (known as free-streaming

scale) grows with the particle horizon. As the Universe expands and temperature drops, neu-

trinos become non-relativistic, and their free-streaming scale starts to shrink.

A neutrino perturbation with scale λ < λJ lies in the free-streaming regime, and it colli-

sionlessly damps out (while cold dark matter and baryon perturbations grow more slowly due

to the loss of a gravitational source). Instead, a neutrino perturbation with scale λ > λJ is out

of the free-streaming regime: here free-streaming is halted, and neutrino perturbations track

those of the other species, neutrinos falling into their potential wells.

This last scenario is much more complicated, since for eV mass neutrinos, the free-streaming

scale today lies in the regime of LSS measurements (Bond & Szalay, 1983). This means that

some scales today still lie in the free-streaming regime (despite the free-streaming scale decreas-
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ing with time). Consequently, at low-z, the growth function D will depend both on redshift

and scale.

Eisenstein-Hu fit

All of these behaviours and interactions must be taken into account if one wants to re-

construct the shape of the power spectrum. Numerically, this corresponds to integrating the

coupled Boltzmann equations for each mode as a function of time. But some analytical fits

have been provided as well: in (Eisenstein & Hu, 1998), Eisenstein and Hu provide a fitting

formula for the transfer function shape, in absence of massive neutrinos, and for the two cases

in which BAO wiggles are and are not included.

We could model these two fitting formulae through the following notation, where dependen-

cies on cosmological parameters are also shown:

Twiggle
EH98 (k,Ωb,Ωcdm, h) (1.24)

T no wiggle
EH98 (k,Ωb,Ωcdm, h) (1.25)

We mention them here since the ShapeFit analysis will make use of these fitting formulae,

especially the one corresponding to a BAO-less spectrum: it leads to a fit of the linear matter

power spectrum which does not feature any wiggles, while baryon damping is present, so that

the broadband shape closely tracks that of the ”true” power spectrum. However unrealistic

this fit may appear compared to the one including BAO wiggles3, it becomes quite useful in

the context of ShapeFit, whose aim is to maximize the information that can be extracted from

the data, while minimizing computational effort. As we will see in the next chapters, the most

relevant part of the information lies in the broadband shape, while BAO wiggles do not help

us that much more.

3According to (Eisenstein & Hu, 1998), the BAO-less fitting form agrees with numerical simulations to 1% through
CMB and large-scale structure regimes (Hu, Scott, Sugiyama, & White, 1995). This fitting formula’s performance is
also highlighted in Figure 6 of (Eisenstein & Hu, 1998), where various zero-bayon transfer functions, including those
presented in (P. Peebles, 1982), (Shandarin & Zeldovich, 1989), (Bardeen, Bond, Kaiser, & Szalay, 1986), are compared
to the numerical simulations of CMBfast (Seljak & Zaldarriaga, 1996).
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BAO as a standard ruler

The BAO provide a characteristic scale, rd, that is ”frozen” in the galaxy distribution.

Such scale is determined by the matter and baryon densities, which can be precisely measured

with CMB anisotropy data, effectively providing a standard ruler that can be exploited to get

valuable information.

In particular, the BAO standard ruler effectively provides a measurement of the angular

diameter distance DA(z) and of the Hubble parameter H(z) as a function of redshift. The

knowledge of these two quantities enables one to reconstruct the expansion history of the Uni-

verse, thus gaining new information about the nature of dark energy (Seo & Eisenstein, 2003).

The angle subtended by a structure (a galaxy, a cluster or - as in this case - a matter den-

sity oscillation) of intrinsic length r⊥ in the direction perpendicular to the line of sight is given by

∆θ(z) =
r⊥

DA(z)(1 + z)
(1.26)

where the angular diameter distance and the comoving distance are respectively defined as

DA(z) =
r(z)

1 + z
(1.27)

r(z) =

∫ z

0

dz′

H(z′)
(1.28)

If the BAO scale rd is known, then measuring the angle ∆θ(z) as a function of redshift

allows one to reconstruct the redshift evolution of the angular diameter distance DA(z).

Analogously, the redshift interval subtended by a structure with intrinsic length r∥ along

the line of sight is
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∆z = r∥ H(z) (1.29)

Once again, if rd is known, a measure of the subtended redshift ∆z allows one to reconstruct

the redshift evolution of the Hubble parameter H(z).

It must be noted that the BAO standard ruler is still model-dependent, since rd actually

depends on matter and baryon abundances, and on the number of massive neutrino species.

1.2 Observed linear galaxy power spectrum

Up to now, we have just taken into account the ”true” form of the linear matter power

spectrum, neglecting all the distortion effects that stem from our nature of earthling observers,

from the fact that we are actually looking at galaxies, and from the practical limitations of our

instrumentation. Now, we will explore such effects.

1.2.1 Alcock-Paczyński effect

The first distortion we take into account is that coming from the Alcock-Paczyński (hereafter,

AP) effect (Alcock & Paczyński, 1979). This effect essentially originates from the way our galaxy

surveys work.

The data collected by a galaxy survey (either photometric or spectroscopic) essentially

correspond to measurements of the redshift and angular positions of the galaxies which inhabit

the surveyed volume: what we don’t have is a direct measurement of their distances from us,

nor of their intrinsic scales. Given this limitation as earthling observers, we are then forced to

define cosmic distances in terms of these two observable quantities.

The trick lies in the fact that such definitions of cosmic distances also depend on cosmolog-

ical parameters, and we do not know the true cosmology of our Universe. We are then forced

to adopt a so-called ”reference cosmology”: this will most likely differ from the true cosmol-

ogy of the Universe4, but at least it will enable us to obtain the distance values we crave for.

Inevitably, the obtained distances will be distorted compared to the true ones, leading to an

4Even though one could adopt any cosmology as their reference, it is customary to choose the one resulting from
latest and most precise observations.

24



overall geometric distortion of the LSS. To be more specific, the assumption of an incorrect

cosmology would lead to an effective squashing of space along the line of sight, thus producing

an anisotropy in the inferred density field which affects the galaxy clustering statistics or, in

other words, the power spectrum.

In order to see how the AP distortion affects the wavevector k, it might be wise to define

the quantity µ = ẑ · k̂, where ẑ is the unit vector along the line of sight. Therefore, µ represents

the cosine of the angle between the wavevector and the line of sight.

We now split k into the two components k∥ and k⊥, respectively parallel and perpendicular

to the line of sight.

The AP distortion modifies these components via two scaling factors, which account for the

difference between true and reference cosmology, along and across the line of sight. Such dis-

tortion produces a new wavevector k′, whose components are (Ballinger, Peacock, & Heavens,

1996)

k′
∥ = q∥k∥ k′

⊥ = q⊥k⊥ (1.30)

Following (Blanchard et al., 2020), we define the two scaling factors as the ratios between

angular diameter distance and Hubble parameter in the true and reference cosmology:

q∥(z) =
Href (z)

H(z)
q⊥(z) =

DM(z)

Dref
M (z)

(1.31)

So, using (1.30), the definition of µ and the fact that k∥ = µk, we find that

k(k′, µ′) =
k′

q⊥

[
1 + µ′ 2

(
q2⊥
q2∥

− 1

)]1/2
(1.32)

µ(µ′) = µ′ q⊥
q∥

[
1 + µ′ 2

(
q2⊥
q2∥

− 1

)]−1/2

(1.33)
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As a result, the power spectrum is being measured at wrong wavevectors k′. Since we are

interested in modelling the observed power spectrum, we should write it as a function of such

distorted quantities:

Pm(k
′, µ′, z) =

1

q2⊥q∥
P (k(k′, µ′), µ(µ′), z) (1.34)

where the overall scaling
1

q2⊥q∥
follows from a dilation in the volume element.

1.2.2 Galaxy bias

It is now time to address the fact that, through surveys, we only have access to galaxies’

angular positions and redshifts, while the actual underlying distribution of matter remains out

of our reach.

As a consequence, the only power spectrum we can obtain from our data is an observed

galaxy power spectrum, not the ”true” matter one we have been discussing so far. The link

between the two can be expressed by a bias parameter, which quantifies how well the galaxy

distribution is able to trace the underlying matter one.

The existence of a bias is certified by the fact that galaxies selected in different ways (e.g.

optical galaxies versus IRAS galaxies) feature correlation functions with different amplitudes

(while shapes are basically the same), meaning that they cannot all be unbiased tracers of the

matter distribution (Peacock & Dodds, 1994; Oliver et al., 1996; Peacock, 1997).

We define δg and δm as the galaxy and matter overdensity fluctuations5 respectively. The

simplest bias model postulates that these two quantities are connected by a spatially-constant

linear bias factor b,

δg(r) = b(z) δm(r) (1.35)

5I.e. fluctuations with respect to mean spatial density, see (1.1).
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while galaxy velocities are assumed to faithfully follow the velocity of matter at all redshifts:

vg = vm (1.36)

Of course, b = 1 corresponds to unbiased tracers.

From (1.35), it is easy to infer the corresponding relation between power spectra:

Pg,lin(k, z) = b2(z)Pm,lin(k, z) (1.37)

1.2.3 Poisson shot noise

To further complicate the picture, one should consider that galaxies actually come as dis-

crete units: the common assumption is that the observed galaxies are drawn randomly from a

hypothetical continuous underlying distribution of galaxies. The observed galaxies then form a

Poisson process of the underlying population6.

In order to see how the discreteness of a survey affects the observed galaxy power spectrum,

we need to introduce the selection function n̄(r). This quantity, characteristic of a survey, rep-

resents the mean number of galaxies found at position r by the survey, given its own selection

criteria (e.g. flux limit). But it can also be interpreted as the probability of including a galaxy

at position r into the survey.

Let n(r) denote the observed number density of galaxies at position r in a survey. Due to

the discrete nature of the galaxies, n(r) will be a sum of delta functions.

The observed galaxy overdensity is then defined as

δobsg (r) ≡ n(r)− n̄(r)

n̄(r)
(1.38)

6Therefore, (1.37) should be understood in a probabilistic sense: galaxies are unbiased if the probability of finding a
galaxy in a volume element dV at position r is proportional to the amount of matter ρm(r)dV in that volume element
(Hamilton, 1998).
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In the Poisson process model, the observed galaxy overdensity provides a discretized but

unbiased estimate of the true overdensity (corresponding to what we defined in (1.1)).

As a result, the expectation value of the covariance of observed overdensities is a sum of

the true 2-point correlation function ξ(r12) with a Poisson sampling noise, also known as shot

noise, term:

⟨δobsg (r1)δ
obs
g (r2)⟩ = ξ(r12) +

δD(r1 − r2)

n̄(r1)
(1.39)

and an analogous relation applies to the power spectrum (Kaiser, 1987).

The shot noise term involves the Dirac delta δD, and reflects the fact that the probability of

finding yourself as a neighbour at zero separation is unity. This suggests that, in principle, the

shot noise contribution can be eliminated by excluding from the computation all the self-pairs

of galaxies.

However, when defining the complete form of the power spectrum to be employed in the

analysis, a shot noise term will be included, accounting for an imperfect removal of the effect

due to this Poisson process (Blanchard et al., 2020).

1.2.4 Redshift-space distortions

Up to this point, we have discussed about the power spectrum as a quantity that lives in

real-space. The truth is that we gain access to power spectrum measurements only through

redshift-space galaxy surveys. But the observed redshift is not entirely cosmological: it also

contains a contribution due to the line of sight component of galaxies’ peculiar velocities.

Following the wrong assumption that the observed redshifts are entirely cosmological, when

estimating distances to each galaxy, leads to a distortion of the density field, in a way that

imprints a specific pattern of anisotropies onto the observed power spectrum. This is known as

the redshift space distortion.

The topic of redshift-space distortions (RSD) has been extensively explored in (Kaiser, 1987;

Hamilton, 1998; Bertacca, Maartens, Raccanelli, & Clarkson, 2012). Here we outline the basic

understanding of linear RSD, which are essential to construct the observed power spectrum

employed in the present analysis.
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To a given object, e.g. a galaxy, we can associate two ”distances”: the redshift distance

s ≡ cz and the true distance r ≡ H0d. We used quotation marks since these two definitions of

distance are not expressed in usual units of distance (e.g. Mpc), but rather in velocity units.

These two distances are connected by the following relation:

s = r + r̂ · v ≡ r + v (1.40)

where r̂ is the unit vector along the line of sight, while v is the peculiar velocity of the

galaxy.

Equation (1.40) thus indicates that the distortion which arises when remapping redshift-

space into real-space originates from the peculiar velocities of galaxies along the line of sight.

As an aside, it is easy to see from (1.40) that, in absence of such peculiar velocities, the classic

Hubble’s law cz = H0d would be valid.

But positions are not the only victims of RSD. For galaxy density fluctuations in the linear

regime, the remapping is embodied by the linear redshift distortion operator S:

δsg(s) = Sδg(r) (1.41)

Here, δsg(s) represents a galaxy density fluctuation in redshift-space, located at redshift

position s, while δg(r) represents a galaxy density fluctuation in real-space, located at true

position r7.

The full form of S is8:

7In this case, we are considering an ideal case in which both fluctuations are perfectly known, as if they had been
measured by a perfect and noiseless instrument. Therefore, they do not coincide with the δobsg that we employed in 1.2.3.
In a more realistic scenario, a shot noise contribution must be added

8Actually, this expression is valid only in the frame of a randomly located observer, at rest with respect to the CMB,
and for a specific definition of δg. It is evident that this is not our case, but we keep this form, since other simplifications
will be made.
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S = 1+ β

(
∂2

∂r2
+

α(r)

r

∂

∂r

)
∇−2 (1.42)

α(r) ≡ ∂ln(r2n̄(r))

∂ln r
(1.43)

The β appearing in (1.42) is defined as the ratio between the linear growth rate and the bias:

β(z) ≡ f(z)

b(z)
(1.44)

while the n̄ in (1.43) represents the selection function of the survey.

This expression of S is quite complicated, but things simplify a lot if one adopts the plane-

parallel limit. In this limit, the observer is considered very distant from the surveyed volume,

such that all peculiar velocities along the line of sight are plane parallel. In this limit, α → 0,

so that S becomes

SP = 1+ β
∂2

∂z2
∇−2 (1.45)

where z marks the distance along the line of sight, and the superscript P indicates that we

are assuming the plane-parallel approximation.

Switching to Fourier space, we have that

∂2

∂z2
∇−2 → k2

z

k2
≡ µ2 (1.46)

with µ ≡ ẑ · k̂ being the cosine of the angle between the wavevector and the line of sight.

Therefore, if we now consider Fourier modes for density fluctuations (marked by a hat), we
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can rewrite (1.41) as

δ̂sg(k, µ) = (1 + βµ2) δ̂g(k) (1.47)

Equation (1.47) tells us that, within the plane-parallel approximation, unredshifted density

fluctuations appear amplified by a factor 1 + βµ2 in redshift space. Therefore, for the corre-

sponding power spectra, the relation becomes

P s
g,lin(k, µ, z) = (1 + β(z)µ2)2 Pg,lin(k, z) (1.48)

meaning that we should expect to measure discrepancies in the clustering strength at dif-

ferent angles with respect to the line of sight.

This distortion is still a consequence of galaxies’ peculiar velocities, as it appears clear if one

considers the linearised continuity equation for galaxies (assuming linear bias): βδg+∇ ·vg = 0.

Peculiar velocity displacements are sourced by the true underlying density field, so the RSD

pattern provides us with an additional source of cosmological information on the relation be-

tween density and velocity fields. The latter depends on the growth rate parameter f in the

linear regime, and this explains the importance of such parameter in standard LSS analysis.

1.2.5 Redshift uncertainty

In practice, the power spectrum is measured in redshift bins: whenever we refer to observed

quantities we should write, e.g., P obs
g (k, µ, zeff ) instead of P obs

g (k, µ, z), where zeff represents

the effective redshift of the bin (which can be simply taken as the central redshift of the bin).

Anyway, we decide to stick to our original notation for a matter of simplicity, but the meaning

of z from now on is obvious.

Such uncertainty over the assumed redshift position results in a modification of the power

spectrum, which can be modelled as (Wang, Chuang, & Hirata, 2013)

P obs
g (k, µ, z) → Fz(k, µ, z)P

obs
g (k, µ, z) (1.49)
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with

Fz(k, µ, z) ≡ e−k2µ2σ2
r(z) (1.50)

Here, the factor Fz accounts for the smearing of the observed galaxy density field along the

line of sight direction k∥ = kµ due to possible redshift errors9. Such errors propagate into a

comoving distance error modelled as

σr(z) =
∂r

∂z
σz(z) =

c

H(z)
(1 + z)σz,0 (1.51)

where σz(z) = (1 + z)σz,0 is a linear scaling of the redshift error.

1.3 Full linear model of the observed galaxy power spectrum

We can finally write down the form of the model for the observed linear galaxy power spec-

trum that we have constructed so far:

P obs
g,lin(k

′, µ′, z) =
1

q2⊥(z)q∥(z)
b2(z)(1 + β(z)µ2)2Pm,lin(k, z)Fz(k, µ, z) + Pshot(z) (1.52)

where:

· 1

q2⊥(z)q∥(z)
is the volume rescaling due to the AP effect;

9These errors could come, e.g., from the uncertainty resulting from fitting the centroid of an emission line in a
spectroscopic survey.
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· b(z) is the linear bias factor;

· (1 + β(z)µ2)2 is the power amplification due to RSD;

· Pm,lin(k, z) =

(
σ8

σN

)2 [
D(z)

D(0)

]2
T 2
m(k)k

ns is the true linear matter power spectrum;

· Fz(k, µ, z) is the smearing factor accounting for redshift uncertainties;

· Pshot is a shot noise term due to the Poisson process of the survey;

· k = k(k′, µ′) and µ = µ(µ′) are the true variables expressed in terms of those distorted

by the AP effect.

1.4 Non-linear model of the observed galaxy power spectrum

In this section, the previous results are generalized to the non-linear case: this is crucial

if one aims at correctly modelling the power spectrum on small scales. In recent years, many

different approaches to model the non-linear power spectrum of galaxy clustering, particularly

in terms of non-linear RSD (Scoccimarro, 2004; Matsubara, 2008b, 2008a; Carlson, White, &

Padmanabhan, 2009; Reid & White, 2011; Taruya, Nishimichi, & Saito, 2010). The present

analysis follows the perturbation theory (PT) approach outlined in (Beutler et al., 2014).

In order to recover the non-linear counterpart of (1.52), we need to take a few steps back, and

express the density (δ) and velocity (θ) real-space10 auto and cross power spectra, Pm,δδ, Pm,θθ

and Pm,δθ). If we are simply dealing with dark matter, then the density power spectrum is

expected to increase in the non-linear regime, while velocities are randomised, thus damping

the velocity power spectrum on small scales (Scoccimarro, 2004). Moreover, dark matter power

spectra have to be related to those of galaxies, which are biased tracers. Here, following (Beutler

et al., 2014), no velocity bias is assumed (θg = θm), while every possible galaxy bias term is

included (McDonald & Roy, 2009). Therefore, at 1-loop standard perturbation theory, the

galaxy auto and cross power spectra can be written as:

10In this case the ”real space” corresponds to an unredshifted space.
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Pg,δδ(k) = b21Pm,δδ(k) + 2b2b1Pm,b2δ(k) + 2bs2b1Pbs2,δ(k) + b22Pm,b22(k)+

+ 2b2bs2(k)Pm,b2s2 + b2s2Pbs22(k) + 2b1b3nlσ
2
3(k)Pm,lin(k)

Pg,δθ(k) = b1Pm,δθ(k) + b2Pm,b2θ(k) + bs2Pm,bs2θ(k) + b3nlσ
2
3(k)Pm,lin(k)

Pg,θθ(k) = Pm,θθ

(1.53)

Here, Pm,lin(k) represents the linear matter power spectrum (1.18), while Pb2,x and Pbs2,x

(with x = δ or θ) represent 1-loop corrections to the linear bias expansion11. Biasing is

parametrized by four bias parameters, the first and second order biases b1, b2 (Fry & Gaztanaga,

1993), and the second and third order non-local12 biases bs2 and b3nl(McDonald & Roy, 2009)13.

The real-space non-linear galaxy power spectra in (1.53) can be used to build the redshift-

space counterpart of the same quantity (Scoccimarro, 2004; Taruya et al., 2010):

Pg,RSD(k, µ) =

[
1 +

(kµσP )
2

2

]−2

[Pg,δδ(k) + 2fµ2Pg,δθ(k) + f 2µ4Pg,θθ(k) +

+ b31A
TNS(k, µ, f/b1) + b41B

TNS(k, µ, f/b1)]

(1.54)

Here, the prefactor is a Lorentzian damping term accounting for the non-linear RSD effect.

The effect, also known as ”Fingers of God” effect, is due to the velocity dispersion of satellite

galaxies inside the host dark matter halos, which damps the power spectrum at small scales.

The quantity σP represents a phenomenological incoherent velocity dispersion parameter. (1.54)

is based on the TSN model, and the definitions of ATNS and BTNS can be found in (Taruya et

al., 2010).

Therefore, the full non-linear model of the observed galaxy power spectrum is given by:

11The exact expression of these terms and σ3 can be found in Appendix A.
12Here, the subscript nl stands for ”non local”, while the same subscripts means ”non-linear” when it is associated to

a power spectrum quantity.
13Further discussion about these biases can be found in (Baldauf, Seljak, Desjacques, & McDonald, 2012; Saito et al.,

2014; Chan, Scoccimarro, & Sheth, 2012; Barreira, Lazeyras, & Schmidt, 2021)
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P obs
g,nl(k

′, µ′, z) =
1

q2⊥(z)q∥(z)
Pg,RSD(k, µ)Fz(k, µ, z) + Pshot(z) (1.55)

with k = k(k′, µ′) and µ = µ(µ′).

On a final note, it would be wise to specify that while the true power spectrum defined

in (1.13) has dimensions of [Mpc]3, in the context of LSS analysis the same quantity is usu-

ally expressed in [Mpc/h]3. This choice makes it explicit that distances are defined in units

of a reference cosmology, and thus the observed power spectrum is a model-dependent quantity.

1.5 Multipole expansion

Once the forms (1.52) or (1.55) are reached, one could expand the µ-dependence in the

Legendre-polynomials orthonormal base, thus allowing to describe the line of sight dependence

through a series of multipoles (Brieden, Gil-Maŕın, & Verde, 2021b):

P (ℓ)(k′) = (2ℓ+ 1)

∫ 1

−1

P obs
g (k, µ)Lℓ(µ)dµ (1.56)

In principle, an infinite series of multipoles would be required, but in standard practice only

the first few non-null ones are used. In fact, although the non-linear terms ATNS and BTNS

include µ6 and µ8 contributions, the amount of information of these in the scales of interest, and

thus the information contained in higher-order multipoles, is very small. This is why standard

cosmological analyses up-to-date stop at the hexadecapole (ℓ = 4), while odd multipoles contain

no information under the flat-sky approximation and in absence of selection effects (Brieden et

al., 2021b)14.

Combining the monopole (ℓ = 0) and quadrupole (ℓ = 2) signals allows to break the large-

scale degeneracy between linear bias and growth rate.

The hexadecapole (ℓ = 4) helps breaking the degeneracy between AP effect and RSD.

14However, such approximation could be updated with the introduction of wide-angle effects, modelling indow functions
at very large scales, see for example (Beutler, Castorina, & Zhang, 2019; Bertacca et al., 2012)

35



Chapter 2

Power spectrum as a forecasting tool

The quantity defined and modelled in the previous chapter, i.e. the power spectrum, can

be employed to extract valuable cosmological information. Different kinds of analyses provide

information of different nature and purpose.

For example, power spectrum values can be measured from galaxy surveys, and used to build

a dataset. A theoretical model, depending on some parameters, is then fit to the collected data:

thus, from this fitting procedure, constraints on the model parameters are extracted. In this

case, the analysis can be thought as being ”projected backwards”: the data we collect today is

the starting point, and from that we can extract information on the physical and cosmological

variables which have led to that specific data realization. Some examples of this kind of analysis

are the Classic RSD and FM approaches, which will be presented in subsequent chapters.

Alternatively, one can decide to employ the power spectrum as a predictive tool, thus opting

for a ”forward projected” analysis. In particular, the theoretical model of the power spectrum

can be used to predict the entity of the constraints which could be obtained, when a specific

experimental setup is employed. This is achieved thanks to a powerful statistical tool, the

Fisher information matrix, whose application to cosmology was pioneered in mid ’90s.

The purpose of this chapter is to better illustrate this kind of predictive analysis. Therefore,

we will lay down the basics, aims and advantages of the Fisher forecast technique: in doing

so, we will closely follow some works of Max Tegmark (Tegmark, Taylor, & Heavens, 1997;

Tegmark, 1997).

We will start by describing its most general form and expression, and then specify how it

adapts to the case of redshift surveys.
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2.1 Fisher matrix formalism: general description

Once data are collected for an experiment of any sort, they can be stored in a vector x1.

Assuming that the result of each measurement is random, the data vector x constitutes a

random variable: within the context of a theoretical model, its likelihood distribution will also

depend on some model parameters θ = {θ1, θ2, ..., θn}. Consequently, the likelihood can be

written as L(x;θ)2.

In principle, for each of these parameters there exists a true value, but it remains unknown

to the observer. One can only build an estimator for each of the model parameters, and try to

make the most of the information contained in the collected data.

So, for example, we could denote the true parameters with θ0 = {θ0,1, θ0,2, ..., θ0,n}, while
θ stands for their estimate vector. Of course, we want this to be a good estimate of the true

value. In the best case scenario, we will be able to define the Best Unbiased Estimator (BUE)

for θ0. In order to be the BUE, our estimator should:

- be unbiased, meaning that the ensemble average of such estimator gives the true value,

i.e. ⟨θ⟩ = θ0;

- give the smallest possible error bars, i.e. minimize standard deviations, defined as σθi ≡√
⟨θ2i ⟩ − ⟨θi⟩2.

The theoretical lower bound for the standard deviation of an estimator is known as the

Cramér-Rao bound. We will later stress the importance of knowing this quantity in the context

of setting up a future experiment. Additionally, we can define θML as the maximum likelihood

estimator, i.e. that parameter vector which maximizes the likelihood function.

The relationship between our estimate θ for the model parameters and the shape of the

likelihood function L is encoded in the Fisher information matrix, which can be defined as:

Fij ≡
〈

∂2L
∂θi∂θj

〉
, where L ≡ − lnL (2.1)

and the angled brackets represent an ensemble average, and θi is the ith parameter belong-

1These data could be, for example, the temperature values of each of the pixels in a CMB sky map, or the counts-in-
cells of a galaxy redshift survey.

2Notice that this is customarily called the ”likelihood function”: in fact, assuming that x is a fixed dataset, the
likelihood will only depend on the parameters θ (Tegmark et al., 1997)
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ing to the parameter vector θ.

The quantities defined so far have been proven to satisfy the following theorems (Kenney &

Keeping, 1951; Kendall & Stuart, 1969):

1) for any unbiased estimator, σθi ≥ 1/
√
Fii;

2) if there exists a BUE θ, then it is θML or a function thereof;

3) θML is the BUE asymptotically (i.e., for a large set of data).

The first theorem is known as the Cramér-Rao inequality, and it holds only if all the other

parameters (i.e. parameters θj ∈ θ, with j ̸= i) is known. Whereas, if all the other parameters

are estimated from the data as well, then the minimum standard deviation rises to σθi ≥
√

F−1
ii .

This latter case is the most realistic, since we rarely have an almost complete knowledge on the

systems we try to investigate.

Nevertheless, the Cramér-Rao inequality expresses the power of the Fisher matrix as a

statistical tool. In fact, knowing the Fisher information matrix allows us to compute the

Cramér-Rao bound, corresponding to the minimum theoretical uncertainty we can associate

to a parameter. The word ”theoretical” means that this lower bound corresponds to an ideal

scenario in which the experiment (whatever it is) is being conducted in perfect conditions, so

that all kinds of instrumental noise can be neglected (more in general, every effect arising from

practical applications which may worsen the precision of the measure can be neglected).

The relevance of this result lies in the fact that before actually setting up the real experi-

ment, one can already get an idea of what precision to expect, given their forecast on how the

experiment will play out: in this way, one becomes able to tune the design of their experiment

in order to achieve the maximum precision.

The Fisher information matrix is tightly linked to the Covariance matrix, defined as (Tegmark

et al., 1997):

C ≡ ⟨θθT ⟩ − ⟨θ⟩⟨θ⟩T (2.2)

Diagonal elements represent the variances of the parameters, while off-diagonal terms rep-

resent the cross-covariance of the parameters, and tell to which extent the parameters are

correlated.
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By Taylor-expanding L around θML (where the function L has a maximum by definition),

one can express the Covariance matrix as the inverse of the Hessian matrix:

(C−1)ij =
∂2L

∂θi∂θj
(2.3)

From such definition, it is rather easy to grasp the tight link between the Fisher matrix and

the Covariance matrix. In fact, the Fisher matrix can be seen as the expectation value of such

quantity at the point θ = θ0 (which coincides with the θML on average if this estimator is

unbiased), namely:

Fij = ⟨(C−1)ij⟩ (2.4)

If one is looking for a more intuitive definition, then the Fisher matrix can be also viewed as

a measure of how fast, on average, the likelihood L falls off around its peak, i.e. the maximum-

likelihood point. The larger the value of Fij, the steeper the slope of the L around its maximum,

the greater the information we draw from our analysis, and the lower the Cramér-Rao bound.

One more useful feature of the Fisher information matrix is the way it simplifies its own

form in the case of a multivariate normal distribution (hereafter, MVN): this case is not so rare,

since experimental noise can be often modelled as gaussian.

For example, consider a MVN likelihood. By definition, if a N -dimensional vector of ran-

dom variables x = {x1, ..., xN} is MVN distributed, with average µ and Covariance C, then its

likelihood takes the form:

L(x|θ) = 1

(2π)N/2(det C)1/2
e
−
1

2
(x−µ)TC−1(x−µ)

(2.5)

In the most general case, both mean and Covariance depend on the parameters: µ = µ(θ)

and C = C(θ).
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The log-likelihood is

2L = −2lnL = N ln(2π) + log det C + (x− µ)TC−1(x− µ) (2.6)

Since C is a symmetric square array, it satisfies the following property:

ln(det C) = Tr [ln C] (2.7)

We now define the data matrix as Dij = Dij(x,θ) = (xi − µi)(xj − µj). With that, we can

rewrite:

(x− µ)TC−1(x− µ) =
∑
i,j

(C−1)ij(xi − µi)(xj − µj) = Tr
[
C−1D

]
(2.8)

so that the log-likelihood becomes:

−2lnL = const + Tr
[
ln C + C−1D

]
(2.9)

In order to compute the Fisher matrix, we need to compute the derivatives of the log-

likelihood with respect to parameter, and then take the ensemble average of both sides of (2.9).

All steps for this derivation can be found in Appendix B. Here, we directly present the main

result, i.e. the form of the Fisher matrix for a MVN likelihood:

Fαβ =
1

2
Tr
[
C−1C,αC

−1C,β + C−1(µT
,αµ,β + µT

,βµ,α)
]

(2.10)
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This result is extremely powerful. If the data x are MVN distributed, and we know how the

means µ and the covariance matrix C depend on the parameters, we can calculate the Fisher

matrix before carrying out the experiment: no data are needed.

2.2 Fisher matrix formalism: application to galaxy surveys

We now specify the expression of the Fisher information matrix when applied to analysing

galaxy redshift surveys data (Tegmark, 1997; Seo & Eisenstein, 2003).

In this case, the elements in our vector x will correspond to values of the average power

spectrum measured in thin shells in Fourier space . We decide to work in Fourier space since

this choice brings great simplification: in fact, for a linear perturbative regime, the covariance

of Fourier modes is diagonal, as a result of homogeneity and isotropy. The nth shell will have

radius kn, width dkn and volume (Tegmark, 1997):

Vn =
1

(2π)3
4πk2

ndkn (2.11)

If we choose these shells to be thick enough so that each of them contains many uncorrelated

modes, then the distribution of our data points x will approximate a multivariate gaussian,

due to the central limit theorem (Tegmark, 1997). This allows one to exploit the simplification

expressed by (2.10).

In particular, in our galaxy survey case, we can write (Tegmark, 1997; Feldman, Kaiser, &

Peacock, 1993):

µn ≈ P (kn) (2.12)

Cmn ≈ 2
P (kn)P (kn)

VnVeff (kn)
δmn (2.13)

where
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Veff (k) ≡
∫ [

n̄(r)P (k)

1 + n̄(r)P (k)

]2
d3r (2.14)

The symbol n̄(r) represents the survey selection function, which gives the theoretical ex-

pectation value for the number density of galaxies at a given position r.

Therefore, Veff can be interpreted as the effective volume, i.e. that portion of the total sur-

veyed volume which is actually used to extract relevant information about the power spectrum.

In fact, the effective volume only accounts for those regions in which the signal P (k) exceeds

the Poissonian shot noise 1/n̄.

We now introduce the flat-sky approximation, in which the survey box is considered to be

far from the observer, so that the line of sight direction is the same through the whole survey.

In this approximation, the selection function can be taken as independent on position, and we

can introduce the quantity

µ ≡ k · r̂
k

=
k∥
k

(2.15)

where r̂ is the unit vector along the line of sight and k is the wavevector with norm k = |k|.
Therefore, µ corresponds to the cosine of the angle between the wavevector and the line of

sight.

Consequently, in flat-sky we have

Veff(k, µ) =

[
n̄P (k, µ)

1 + n̄P (k, µ)

]2
Vsurvey (2.16)

where Vsurvey indicates the entire surveyed volume.

In the limit where VnVeff(k, µ) ≫ 1 (corresponding to assuming thick layers in k-space), the

second term in (2.10) will be completely dominated by the first one (Tegmark, 1997).

Replacing (2.12), (2.13) into (2.10), we obtain the following expression for the Fisher infor-

mation matrix in flat-sky, for a single redshift value (Seo & Eisenstein, 2003):
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Fαβ =
1

2(2π)3

∫ kmax

kmin

∂ lnP (k)

∂θα

∂ lnP (k)

∂θβ
Veff(k)dk =

=
2π

2(2π)3

∫ 1

−1

∫ kmax

kmin

∂ lnP (k, µ)

∂θα

∂ lnP (k, µ)

∂θβ
Veff(k, µ)k

2dkdµ

(2.17)

where we have exploited the azimuthal symmetry around the line of sight.

Since the survey size defines the maximum scale from which we can extract information, it

is reasonable to take

kmin ≈ 2π/(Vsurvey)
1/3 (2.18)

Conversely, the value of kmax stands for the minimum scale from which we can extract

valuable information. Things get problematic when addressing increasingly smaller scales, since

non-linear effects get more and more prominent. The choice of kmax is thus rather arbitrary,

but this is one of the cases in which the Fisher forecast can help us choose the most suitable

value, i.e. that which provides us with the most information.

While Veff is linked to the technical features of our survey, the derivatives of the power

spectrum with respect to the model parameters represent the portion of information strictly

related to cosmology. Such derivatives must be computed at a chosen reference cosmology:

the Fisher matrix thus provides the Cramér-Rao bound on an unbiased estimator of a given

parameter, taking as the true value of the parameters those of the fiducial cosmology.

The P (k, µ) appearing in (2.17) stands for the observed linear power spectrum of galaxies,

Pg,obs(kref, µref). We already recovered the form of such quantity in chapter 1, after a thorough

analysis.

In the remaining part of this chapter, we present a simple practical application of Fisher

Forecasting, when applied to two different galaxy surveys: SPHEREx and ATLAS. The refer-

ence cosmology employed in the following analysis corresponds to that of (Ade et al., 2016),

and reported in Table 2.1.

In this analysis, we aim at recovering constraints on the following set of redshift-dependent
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Reference cosmology

Cosmology wcdm wb h σ8 ns Mν [eV ] Ωm Ωk

Planck 0.12 0.022 0.67 0.816 0.96 0.06 0.317 0.0

Table 2.1: Adopted reference values of cosmological parameters for the Fisher Forecast application:
they are close to the Planck best fit cosmology (Ade et al., 2016).

parameters: {H(z), DM(z), b(z), f(z), Psn(z)}. They represent, respectively, the Hubble param-

eter (containing information about the expansion history of the Universe), the angular diameter

distance, the linear galaxy bias, the growth rate of linear perturbations and the shot noise term

(whose fiducial value is set to Psn(z) = 0 at each redshift). Therefore, the number of parame-

ters effectively entering in the Fisher matrix is given by {H(z), DM(z), b(z), f(z), Psn(z)}×Nz,

where Nz is the number of redshift bins considered by each survey.

Importantly, it must be noted that excluding a parameter from the Fisher matrix corre-

sponds to assuming that one has a complete knowledge over such parameter. Therefore, those

parameters excluded from the Fisher matrix will be effectively fixed to their fiducial values. In

this analysis, a really strong assumption has been made: namely, that we have complete knowl-

edge over all the (redshift-independent) cosmological parameters. Such assumption is rather

unrealistic, but it is nonetheless a great simplification for this analysis, whose purpose is solely

to highlight the differences in constraining power between the three galaxy surveys.

Specifications for the Fisher Forecasts performed with each of the two surveys can be found

in Appendix C. There, redshift bins are indicated, as well as effective redshifts, computed at the

center of each bin. We also show corresponding values of the galaxy number density, expressed

in (h/Mpc)3, and galaxy bias for each bin. All the three surveys follow the same prescription

in the definition of the k and µ intervals over which the integrations in (2.17) are performed.

In particular, kmin is computed from each bin’s survey volume, as in (2.18), while kmax = 0.2

for all the three surveys, and a total of 200 logarithmic spaced k-bins have been employed3;

additionally, 50 values of µ ranging linearly from -1 to 1 have been employed.

For the SPHEREx survey analysis (Doré et al., 2014), Nz=11 redshift bins have been em-

ployed, ranging from zmin = 0.0 to zmax = 4.6, with a variable bin size: ∆z = 0.2 for the first

5 bins, while ∆z = 0.2 for the last 6 bins. The redshift uncertainty adopted for the SPHEREx

analysis is σz = 0.003. For this survey, 75% of an all-sky coverage has been assumed, amounting

to ≃ 31000 square degrees.

For the ATLAS survey analysis (Wang et al., 2019), Nz=18 redshift bins have been em-

3It has been tested that this number is sufficient to reach saturation in the Fisher Forecast code.

44



ployed, ranging from zmin = 0.5 to zmax = 4.1, with bin size ∆z = 0.2. The redshift uncertainty

adopted for the ATLAS analysis is σz = 0.0001, while the sky coverage amounts to 2000 square

degrees. In this case, the bias is computed as b(z) = 1.5 + 0.4(z − 1.5).

Therefore, a Fisher Forecast analysis is performed for each of the two considered galaxy

surveys4. One of the results of these analyses is presented in Figure 2.1. Here, we show

the relative uncertainty on the parameter f , obtained after marginalizing over all the other

parameters, as a function of the redshift. This is displayed for the two cases: SPHEREx (blue)

and ATLAS (orange). In other words, the plot is showing the (relative) Cramér-Rao bound for

the parameter f , i.e. the lowest possible theoretical uncertainty one can achieve from a given

galaxy survey, with the given specifications.

A few observations can be made about this plot.

First of all, we need to stress again that this analysis is based on the strong assumption of

knowing the true values of cosmological parameters. If we had chosen to pursue a more realistic

type of analysis, then we would have had to marginalize over those cosmology parameters as

well, thus worsening the achievable precision.

Additionally, the two surveys, although being both quite deep in redshift, seem to produce

visibly different results. SPHEREx is expected to constrain very well (≈ few percent con-

straints) the growth rate of cosmic structure at low-z, since this is where such quantity is most

rapidly changing. However, the constraining power decreases when moving to higher redshifts,

since the galaxy number density visibly decreases, in accordance with SPHEREx specifications.

Conversely, the ATLAS survey, albeit employing a considerably smaller sky coverage (≈ 1/20

of the full-sky) is expected to analyse a larger number of galaxies in total: this corresponds

to larger values of n(z), thus improving the effective volumes (see (2.14)) and, in turn, the

constraining performance.

We close this chapter by presenting a further example of how the Fisher Forecast analysis

can be exploited.

The Fisher matrix for a chosen set of parameters does not only contain information limited

to those parameters. For example, after having constructed a Fisher matrix with a specific

parameter set, one might decide to look for constraints on other parameters, belonging to a

different set. In this case, one simply has to project the Fisher matrix already at hand into the

new parameter space. Namely, given a starting set p = (x, y, z) and a new set p′ = (a, b, c), the

4The derivatives appearing in (2.17) have been computed numerically via the five-point stencil method, and the
derivative step has been opportunely adapted for each of the parameters.
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Figure 2.1: Relative uncertainty on the parameter f , obtained after marginalizing over all the other
parameters, as a function of the redshift. This is displayed for the two cases: SPHEREx (blue) and ATLAS

(orange).

new (projected) Fisher matrix can be obtained as follows (Coe, 2009):

F ′
mn =

∑
ij

∂pi
∂p′m

∂pj
∂p′n

Fij (2.19)

As a practical example, we employ this Fisher matrix projection to study a simple extension

of the ΛCDM model. In particular, we are interested in a dynamical dark energy model, i.e.

a model featuring an evolving equation of state for the dark energy component. A commonly
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used and well-tested redshift parametrization is the following (Blanchard et al., 2020):

wDE(z) = w0 + wa
z

1 + z
(2.20)

where w0 is the present-day value of the equation of state, while wa is a measure of the time

variation.

In this case, the evolution of the dark energy density obeys the law:

ρDE(z) = ρDE,0(1 + z)3(1+w0+wa)exp

[
−3wa

z

1 + z

]
(2.21)

while the function E(z) (defined in the Premise of this work for a flat ΛCDM) becomes

E(z) =

√
Ωm,0(1 + z)3 + ΩDE,0(1 + z)3(1+w0+wa)exp

[
−3wa

z

1 + z

]
+ Ωrad,0(1 + z)4 (2.22)

In order to put constraints on these new ΛCDM-extension parameters, i.e. w0 and wa

(which respectively take value -1 and 0 within baseline ΛCDM), we start from the Fisher ma-

trices computed beforehand for the ATLAS and SPHEREx galaxy survey, we marginalize with

respect to the bias (b(z)) and shot noise (Psn(z)) parameters, and finally project them to the

new parameter space {w0, wa}. Once again, this analysis is based on the strong assumption

that everything else about this ΛCDM-extended model is known (Ωk fixed to 0, ΩDE,0 fixed to

1− Ωm,0). Results are shown in Figure 2.2, and they suggest that ATLAS will be able to put

tighter constraints on the two dynamical dark energy parameters, with respect to SPHEREx.
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Figure 2.2: Posterior contours for the two dynamical dark energy model parameters, w0 and wa, as resulting
from the projection of the Fisher matrices computed with the ATLAS (blue) and SPHEREx (red) survey

specifications onto the new parameter space {w0, wa}, after marginalizing over bias and shot noise parameters.
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Chapter 3

Cosmology with ShapeFit

Before introducing the ShapeFit analysis, it is time to recall the two main methods that have

been employed to investigate the LSS and extract information about cosmological parameters.

These are the Classic (either BAO or RSD) analysis, and the Full Model (FM) analysis.

This section closely follows (Brieden et al., 2021b), in which an extensive overview of the

different techniques is presented.

3.1 Classic approach: overview

The Classic approach to the statistical analysis of LSS is based on exploiting the AP effect

and the standard ruler provided by BAO, in order to obtain distance-redshift relations at the

effective redshifts of surveys’ samples.

Such approach gained popularity after the signal-to-noise ratio of BAO detection from red-

shift surveys became high enough. This new BAO signal provided new relevant information

about the LSS of the Universe, so the community adopted this method in a widespread fashion,

hence the name ”classic”.

To be more specific, the Classic approach can be split into Classic BAO and Classic RSD.

Even though they feature a slightly different data pipeline, and different quantities are involved,

the core technique is the same: they both manage to compress the power spectrum data into

few physical observables, which are only sensitive to late-time physics. The great advantage of

this kind of analysis is that, in order to compute such few variables, one needs to build a tem-

plate power spectrum only once and from a reference cosmology, while no cosmological model

is required to be chosen a priori. It is only after having computed the compressed variables

that a cosmological model is chosen, and these model-independent variables are interpreted in
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light of it. The data compression employed by the Classic approach allows for a considerable

computational advantage, as it will appear more clear from a comparison with the FM approach.

3.1.1 Classic BAO analysis

In the case of the Classic BAO, the analysis focuses on the information carried by the

BAO peak position along and across the line of sight. The collected data is separated into

two components, a wiggle and a broadband (non-wiggle) one: the former contains the BAO

information, while the latter does not, and it is thus marginalized over. On the other side, a

template power spectrum is constructed from the chosen reference cosmological model. The

aim is to employ such template to perform a fit of the collected data.

Now, the power spectrum we observe (i.e. the data at our disposal) will inevitably be

a function of the chosen reference cosmology, and the same can be said for the template.

So, in principle, we should take these dependences into account by rescaling both quantities

accordingly: to be more specific, we should use some late-time rescaling parameters for the

data, and some early-time rescaling parameters for the template. But actually the standard

habit consists in combining these together into new rescaling parameters (which now take into

account both late and early time), and applying them to the template only. This choice, which

is simply driven by practical reasons, means that the data remain untouched (i.e. they preserve

their dependence from the reference cosmology), while the template is adapted to the data.

These new scaling parameters are defined as (Brieden et al., 2021b; Beutler et al., 2014;

Alcock & Paczyński, 1979):

α⊥(z) =
DM(z)rrefd

Dref
M (z)rd

, α∥(z) =
Href (z)rrefd

H(z)rd
(3.1)

Here, DM/rd and 1/Hrd respectively indicate the comoving angular diameter distance and

the Hubble distance (in natural units), in units of the sound horizon at the end of drag epoch.

The presence of the superscript ref indicates that the given quantity is being computed in the

chosen reference cosmology, while the lack of it means that we are dealing with true quantities.

With this in mind, the scaling parameters (3.1) express the ratio between true and reference

distances, in units of the sound horizon, across and along the line of sight. Expressing them in

units of rd is not a choice, but rather a necessity: the length of rd is set by early-time physics

and it cannot be recovered from late-time observations, such as LSS, and without early-time
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physics assumptions. Therefore, the two scaling parameters cannot be used to probe absolute

distances, but only distances with respect to the standard ruler rd.

It is obvious that if our chosen reference cosmology differs from the true one (which re-

alistically is always the case), then α⊥ and α∥ will be different from 1, and all the observed

geometrical quantities will be distorted compared to true ones.

Such distortion reflects the AP effect, and it is exploited to get information about the BAO

peak position. In fact, if we assume that the Universe is homogeneous and isotropic, then

the BAO should be a symmetric structure along all spatial directions. The AP effect would

break this symmetry, leading to an apparent anisotropy, i.e. an excess in the relative BAO

scales along and across the line of sight. Reverting back this line of thought, we can see that

measuring such anisotropy will allow us to infer what the true cosmology of the Universe might

be (Gil-Maŕın et al., 2020).

The AP effect also produces a distortion1 in the power spectrum wavenumber k and in the

cosine of the angle between the wavevector and the line of sight, µ

k → k̃ =
k

α⊥

[
1 + µ2

(
α2
⊥

α2
∥
− 1

)]1/2
(3.2)

µ → µ̃ = µ
α⊥

α∥

[
1 + µ2

(
α2
⊥

α2
∥
− 1

)]−1/2

(3.3)

The transformations (3.2) and (3.3) are applied to the smooth component of the template.

Therefore, the template power spectrum multipoles can be finally expressed as2:

P (ℓ)(k) =
(2ℓ+ 1)

2α2
⊥α∥

∫ 1

−1

Pmodel(k̃(k, µ), µ̃(µ))Lℓ(µ)dµ (3.4)

1Notice that these transformations greatly resemble those presented in section 1.2.1 , but on a closer look they
appear slightly different. This is because here rescaling parameters are defined in a different way: we are assuming that
k̃∥ = k∥/α∥ and k̃⊥ = k⊥/α⊥. Compare with (1.30) to appreciate the difference.

2This is an approximation, since a prefactor (rrefd /rd)
3 should actually be included in the volume rescaling. In

(Gil-Maŕın et al., 2020), the impact of such approximation is investigated.
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By using this template to fit the measured multipoles, we are able to extract, in a given

redshift bin, the value of α⊥ and α∥, i.e. two parameters containing information about the

BAO position. Importantly, these two rescaling parameters describe the geometry and expan-

sion history of the Universe in a model-independent way.

We now spend a few words to clarify the role of the reference cosmology in this approach3.

In principle, these Classic techniques require the choice of two reference cosmologies: one

to convert redshift and angular position measurements into distances, the other to build the

power spectrum fitting template. Even though these cosmologies could in principle be different,

the standard habit is to make them coincide.

Moreover, our final results will depend on our initial choice of the reference cosmology, which

is in principle totally arbitrary . In this regard, mock catalogues become a valuable ally, since

they allow us not only to check if our pipeline brings some systematic errors, but also to explore

the impact of choosing different reference cosmologies. In (Gil-Maŕın et al., 2020), the Nseries

mocks (Alam et al., 2017) have been employed in order to recover the values of α∥ and α⊥ when

starting from different reference cosmologies. In particular, the highest deviations for these two

parameters, with respect to α∥ and α⊥ computed from the true cosmology of Nseries, amount

to 1% for α∥ and 0.8% for α⊥. These are obtained from an adopted reference cosmology which

is very distinct from the true cosmology of Nseries, with shifts of ∆Ωm = 0.08 and ∆Ωb = 0.019,

which are 10 and 50 sigma away, respectively, from the results reported by Planck (Aghanim et

al., 2020). On the other hand, if a closer-to-standard ΛCDM reference cosmology is used, such

as {∆Ωm = 0.025,∆Ωb = 0.011}, these shifts reduce to 0.5% on α∥ and 0.3% for α⊥. These

results thus state the robustness of the technique.

3.1.2 Classic RSD analysis

This analysis follows almost the same steps as the Classic BAO one, but this time the focus

is not centred only on the BAO position: BAO amplitude and anisotropy signal induced by

RSD are now relevant as well.

Accordingly, in this case no decomposition is exerted on the power spectrum template, but

the rescaling is instead applied to the full P
(ℓ)
RSD(k).

As we know, RSD correspond to an enhanced clustering signal along the line of sight due to

the large-scale bulk velocity component of galaxies. Such bulk velocity is related to the growth

3The same considerations are valid for the Classic RSD analysis as well.
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rate f . Thus, the Classic RSD approach provides information about the growth of structures:

more specifically, fσ8 is chosen as third compressed variable (thus joining α⊥ and α∥).

This choice is made to get rid of the degeneracy which haunts f and σ8 in a 2-point statistics

(in other words, any change in σ8 is reabsorbed into f).

Actually, to be more precise, the third compression variable is not fσ8, but fσ8s, where
4

σ8s ≡ σ(R = s · 8h−1Mpc,Ω) (3.5)

and

s ≡ rd

rrefd

(3.6)

Such redefinition of the matter fluctuation amplitude is promptly motivated. The original

definition of σ8 features the presence of P (k,Ω) in the integrand. But we know that this quan-

tity is subject to a rescaling through α∥ and α⊥, which in turn depend on the chosen cosmology.

Consequently, the value of σ8 changes as the parameter space is explored during the RSD fitting

process. The redefinition (3.5) is thus employed in order to keep σ8 fixed to its reference value5,

as promptly shown:

σ2
8s(Ω) =

∫ ∞

0

d(lnk)k3Plin(k,Ω)W 2
TH(ks · 8h−1Mpc) |Ω → Ωref

=

∫ ∞

0

d(lnk)k3s3Plin(sk,Ω
ref )W 2

TH(ks · 8h−1Mpc) |k′ = ks

=

∫ ∞

0

d(lnk′)k′3Plin(k
′,Ωref )W 2

TH(k
′ · 8h−1Mpc)

= σ2
8(Ω

ref )

(3.7)

4In Eq. (1.19) we were defining a present-day matter fluctuation amplitude. A more general definition would be

σ2(R, z,Ω) =
1

2π2

∫
dkk2Pm(k, z,Ω)|WTH(kR)|2, making explicit the scale, redshift and cosmology dependences.

5If the data from a galaxy survey are combined with those coming e.g. from Planck, then this new set of data will fix
σ8 to its reference value. But this is not the case if only galaxy-survey data is employed.
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In the above expression we employed the early-time rescaling of the power spectrum which,

conceptually6, can be written as

P lin
model(k,Ω) = s3P lin

model(sk,Ω
ref ) (3.8)

The rescaling (3.8) reflects the fact that, within the Classic approach, all early-time physics

is assumed to be captured by the sound horizon rd (i.e. rd parametrizes all signatures of early-

time physics). This assumption comes from fixing the power spectrum template after choosing

a reference cosmology (as we will see, the FM approach follows a different route). This also

explains why the smoothing scale of the redefined fluctuation amplitude σ8s is defined relative

to the sound horizon scale. As a final word, it may be useful to notice that all the three physical

compressed variables measured by the RSD analysis, α∥, α⊥ and fσ8s, are given in terms of the

sound horizon ratio s.

3.2 Full Modelling approach

As previously stated, the great advantage of the Classic approach lies in the data compres-

sion step, which allows to obtain model-independent variables. But these variables only depend

on late-time geometry and kinematics, while they remain independent of physical processes

which take place in earlier epochs, and which determine the shape of the matter transfer func-

tion. This implies that the information we can extract from the Classic approach is somewhat

limited: employing a fixed power spectrum template could be both a blessing and a curse.

The FM approach follows a different route: it avoids the compression step, and cosmological

models are directly fitted to P (ℓ)(k). During the fit, as cosmological parameter space is explored

(usually via MCMC), the model prediction for the transfer function, along with non-linear

corrections to the power spectrum, is computed for every choice of parameters. It appears

evident that this requires a larger computational effort compared to the Classic analysis.

Moreover, while the Classic analysis doesn’t require the choice of any cosmological model

6In reality, full angular dependence should be considered.
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before the compression step, within FM one has to choose a model in order to start their

analysis, meaning that the model-independence of the Classic analysis is lost in the context of

FM.

But in exchange to these downsides, the FM approach grants better constraints on the

inferred parameters. In fact, within FM, parameters will depend both on geometry and on the

transfer function, thus leading to an interpretation which is not only geometrical (as it is the

case in the Classic approach).

A tangible example from (Ivanov, Simonović, & Zaldarriaga, 2020; Philcox, Ivanov, Si-

monović, & Zaldarriaga, 2020): when imposing a Big Bang Nucleosynthesis (BBN) prior, FM

is able to obtain a 1.6% constraint on the Hubble constant, while the same parameter is mildly

constrained (10%) in the Classic approach (Alam et al., 2021).

Of course the increase in precision brought by FM is only evident when constraining cos-

mology with galaxy clustering data alone. Conversely, combining LSS data with other datasets,

especially CMB data, would fix the sound horizon scale and the transfer function shape, leaving

geometry as the main source of information to be exploited, and effectively taking us back to

the philosophy of the Classic analysis.

3.3 Classic approach: pipeline in detail

Here, we take a deeper dive into the pipeline of the Classic approach, which essentially can

be reduced in four main branches: constructing the model, acquiring the data, fitting one to

other, and finally interpreting the result of the fit.

3.3.1 Model pipeline

After having chosen a reference cosmology, the template non-linear galaxy power spectrum

in redshift space can be built. The first step is to compute the linear one Plin(k,Ω
ref ) (corre-

sponding to (1.52)). This will be needed in order to compute the non-linear power spectrum

Pnl(k,Ω
ref ) (1.54). Lastly, the power specturm multipoles P

(ℓ)
RSD(k) are computed, via α∥, α⊥,

f , using (3.4).

The final touch consists in adding the window function contribution: the observed power

spectrum multipoles (which are extracted from the data) contain the effect of the survey selec-

tion function convolved with the actual galaxy power specturm signal. In order to perform an

unbiased analysis, one needs to include the effect of the survey selection function in the theory
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model as well. This is done by multiplying the Hankel transform of the theory-predicted power

spectra multipoles by some quantitiesW ℓ(s), which will be better defined in the next paragraph.

3.3.2 Data pipeline

We will now illustrate the pipeline which starts from the data acquired by a survey (or

generated by a mock catalogue) and leads to the quantity to which the template will be even-

tually fitted. Such data pipeline makes extensive use of mock catalogues, so it might be wise

to introduce them.

Mock catalogues are designed to generate many realizations of objects distributions which

reproduce the angular and radial selection function and small scale clustering of real data. In

general, they are employed to estimate the covariance matrix, quantify the impact of systematic

errors and to validate the pipeline and methods employed on the data.

Apart from mocks, this pipeline also makes use of so-called ”random catalogues”: they

contain α−1
ran times more objects than individual mocks, and feature the same selection func-

tion, but no intrinsic clustering (apart from that spuriously generated by the selection function).

Conversion into distances

The first step consists in converting the redshift and angular coordinates collected from the

survey into distance measurements. This is obviously done on the basis of the chosen reference

cosmology, and via the following equations7 for the Hubble parameter H, the Hubble distance

DH and the comoving angular distance DM :

H(z) = H0

√
(1 + z)4Ωr + (1 + z)3Ωm + ΩΛ (3.9)

DH(z) =
c

H(z)
(3.10)

DM(z) =

∫ z

0

cdz′

H(z′)
(3.11)

7Assuming we are working in the context of a flat ΛCDM model, the budget equation to be fulfilled is the following:
Ωγ +Ων,rel +Ωcdm +Ωb +Ων,massive +ΩΛ = 1.
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where c is the speed of light, and Ωr = Ωγ + Ων,rel is the radiation energy budget (i.e. the

sum of the photon and massless neutrinos energy budgets).

Power spectrum estimator

The next step consists in measuring the power spectrum multipoles P
(ℓ)
data, from the collected

data. This requires the definition of a power spectrum estimator. The procedure to obtain such

estimator is the following.

Once redshifts have been converted into distances, galaxies are placed into a cubic box of

length Lbox (expressed in [Gpc/h]). Galaxies and random objects are then assigned to a 5123

cells grid, thus obtaining their respective densities per cell, n(r) and nran(r). These are used

to define the weighted galaxy fluctuation field F (r) (also known as Feldman-Kaiser-Peacock,

or FKP, function) (Feldman et al., 1993):

F (r) =
wFKP (r)√

I2
[wcp(r)ng(r)− αrannran(r)] (3.12)

I2 =

∫
d3rwFKP (r)⟨wcp(r)ng(r)⟩2 (3.13)

Here, ng(r) =
∑

i δ(r − ri), with ri being the location of the ith galaxy, and similarly for

the random mock. The term wFKP is the FKP weight, which can be expressed as a function

of redshift as wFKP (z) = 1/(1 + n̄(z)P0), with n̄ being the average number density. This

weight is used to minimize the power spectrum variance at the typical BAO scale P0 ≡ P (k =

0.1 h/Mpc).

Instead, the term wcp is the close-pair weight, accounting for galaxy pair neighbours which

are closer than the instrument angular resolution (limited by the fiber size)8.

Therefore, the power spectrum multipoles are obtained via Fourier transformations follow-

ing the Yamamoto approximation (Yamamoto, Nakamichi, Kamino, Bassett, & Nishioka, 2006;

8For example, in (Gil-Maŕın et al., 2020), this weight is defined as wcp = Ntarg/Nspec, i.e. the ratio between the
number of targeted objects and the number of objects with actual spectroscopic observation. Anyway, both wFKP and
wcp can be provided by mock catalogues.
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Bianchi, Gil-Maŕın, Ruggeri, & Percival, 2015):

P
(ℓ)
data(k) =

2ℓ+ 1

2

∫
dΩ

4π

[∫
dr1F (r1)e

ik·r1
∫

dr2F (r2)e
−ik·r2Lℓ(k̂ · r̂2)

]
− P (ℓ)

sn (3.14)

which assigns the varying line of sight towards one of the galaxies of each pair. The Poisson

shot noise term P
(ℓ)
sn is subtracted from the monopole only, as it is null for ℓ > 0.

Multipoles are computed in bins ∆k.

Computing covariance matrix

In this step, mock catalogues are employed to compute the covariance matrix, which in turn

provides error bars for the multipoles, and correlations between different k-bins.

In particular, if the mocks provide us with the power spectra multipoles Pℓ(k)
n, where

n ∈ {1 ... N} is an index which marks the nth realization, and N is the total number of re-

alizations, then the covariance matrix can be computed as (Hartlap, Simon, & Schneider, 2007):

Cij =
1

N

N∑
n

[Pℓ(ki)
n − µ(ki)] [Pℓ(kj)

n − µ(kj)] (3.15)

where the mean is computed as

µ(ki) =
1

N

N∑
n

Pℓ(ki)
n (3.16)

Measuring the window function

The effect of the survey selection function is modelled by the quantities W ℓ(s). They cor-

respond to the ”window function pair-counts” functions performed on the random catalogue
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(Beutler et al., 2014) (Wilson, Peacock, Taylor, & de la Torre, 2017):

W ℓ(s) =
2ℓ+ 1

I2α−2
ran

Nran∑
j>i

wcp(ri)wFKP (ri)wcp(rj + s)wFKP (rj + s)

2πs2∆s
Lℓ

(
xi · s
xis

)
(3.17)

where s marks the position in redshift space.

The pair-count for each redshift bin is normalized by the associated volume given by 2πs2∆s,

where ∆s is the binning size of the s-count, and the j > i condition prevents counting the same

pairs twice. The window function is normalized by I2α
−2
ran in order to account for the difference

in number density between the random and data catalogue, and to ensure the same normaliza-

tion of (3.14).

3.3.3 Compression step

At this point, one should have in their hands both the model power spectrum multipoles,

including the W (ℓ)(s) terms, and the multipoles obtained from the data, along with errors bars.

It is now time to get constraints on the compressed parameters α∥, α⊥ and fσ8s, and this is

done via a MCMC fit. In practice, the model multipoles are fitted to the data ones, while the

compressed parameters are being varied (along with nuisance parameters).

3.3.4 Cosmology inference step

Once the compressed variables have been found for every redshift bin, they are treated as

new input data, and compared to any cosmological model of choice: the full covariance between

the compressed variables is included in computing the likelihood, and the resulting parameters

posterior is sampled via MCMC (in particular, the χ2 is computed for the theoretical prediction

for each quantity, obtained from an input cosmological model and parameters values).

It might be interesting to highlight that these last steps would appear different in a FM

pipeline. In fact, within a FM context, they are actually replaced by one single step, during

which nuisance parameters are varied along with cosmological ones, while the physical parame-

ters (α∥, α⊥ and fσ8s) are not varied, since they are derived from the chosen cosmological model.
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The Classic approach pipeline is illustrated in Figure 3.1. We have put a lot of focus on

illustrating this pipeline in order to better understand the novelty brought by ShapeFit. In

fact, ShapeFit can be thought as an extension of the Classic RSD approach, so the ShapeFit

pipeline will take the one illustrated in Figure 3.1 as a starting point, and simply add a few

more steps and variables to it.

3.4 Introducing ShapeFit

In the previous sections we explored the advantages and disadvantages of the most widely

used LSS analysis technique. It is now time to introduce the ShapeFit approach, a new tech-

nique initially presented in (Brieden et al., 2021b), which attempts to take the best from its

predecessors, while overcoming their respective limitations.

The ShapeFit technique has much to share with the Classic RSD approach, such that it can

easily be considered as an extension of it. ShapeFit follows the same philosophy of compressing

information into few parameters, to be later interpreted: this means that this new technique

preserves the model-independence of the Classic ones. But the revolution brought by ShapeFit

consists in adding new compression parameters, which should be able to trace the signatures of

early-time physics in the large-scale broadband shape of matter power spectrum. The presence

of these additional parameters should allow ShapeFit to reach the same level of precision as the

FM approach.

3.4.1 Theoretical parameter dependencies

In chapter 1, we constructed the full model of the observed galaxy power spectrum. As it

can be appreciated from (1.52) and the following description, its overall shape and look depends

on many parameters and variables. But the part which is most tightly connected to early-time

physics is the true linear matter power spectrum Pm(k, z). In the following discussion, we will

numerically explore and visualize the way this quantity depends on different parameters.

If not stated otherwise, in what follows we will assume a flat ΛCDM model, and the refer-

ence cosmology shown in Table 3.1.

To begin with, in Figure 3.2 we are plotting the present-day linear matter power spectrum,

obtained from the definitions (1.18) - (1.21) and the analytical transfer function provided by

(Eisenstein & Hu, 1998). Some characteristic scales are shown as well, making it quite evident

that the sound horizon at the end of drag epoch rd plays a big role in determining the shape of
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Figure 3.1: Classic approach pipeline. Steps above the blue line correspond to the data and model pipelines,
while the cosmological interpretation step is located below the blue line. This scheme has been adapted from

Figure 5 in (Brieden et al., 2021b).
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Reference cosmology

Cosmology wcdm wb h σ8 ns Mν [eV ] Ωm rd [Mpc]

Planck 0.1190 0.022 0.676 0.8288 0.9611 0.06 0.31 147.78

Table 3.1: Adopted reference values of cosmological parameters: they are close to the Planck best fit
cosmology (Aghanim et al., 2020).

the power spectrum. Hereafter, we list all the displayed scales.

- The Jeans scale for cold dark matter keq: it corresponds to the main turnaround of the

shape.

- The Jeans scale for baryons kdamp = 1/rd (green dashed line): smaller scales get damped

with respect to a baryon-less Universe, and wiggles (BAO) appear in the shape.

- The scales kpeak =
4n+ 1

2

π

rd
(red dotted lines) and ktrough =

4n− 1

2

π

rd
(blue dotted lines),

corresponding to the BAO peaks and troughs respectively (Eisenstein & Hu, 1998).

- The scale kslope = π/rd (yellow dashed line), corresponds to the zero-crossing before the

first BAO trough, and it marks the maximum slope of baryon suppression. This implies a

further connection between rd and the BAO wiggles position.

- Two scales, 0.008 [Mpc/h] and 0.5 [Mpc/h] (pink solid lines), delimiting the range of modes

which are usually observed by spectroscopic galaxy surveys.

In Figure 3.3 we show the normalized derivative of the linear matter power spectrum with

respect to some parameters. Each derivative is normalized by a factor ∆i in order to match

the effect of σ8 at large scales. As one parameter is being varied, all others are kept fixed to

the reference cosmology. As we can see, varying σ8 only changes the power spectrum global

amplitude, while varying ns changes its global tilt.

Dependence on parameters {ωm, ωb, h} is quite similar on large and small scales, but differ-

ences arise in the intermediate range of scales. In particular, BAO wiggles show changes both

in their position and amplitude. In other words, when one of the parameters is varied, both

BAO amplitude and BAO position are simultaneously modified. In order to break the ambi-

guity between these two kinds of modifications, it would be better to make the BAO wiggles’

positions overlap, thus leaving the change in amplitude as the only effect.
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Figure 3.2: Linear matter power spectrum at redshift z = 0. The two pink vertical lines delimit the range of
modes which are usually observed by spectroscopic galaxy surveys, 0.008 ≤ k [Mpc/h] ≤ 0.5. keq denotes the
Jeans scale for cold dark matter, and corresponds to the main turnaround of the shape. kdamp denotes the

Jeans scale for baryons: smaller scales get damped with respect to a baryon-less Universe, and wiggles (BAO)
appear in the shape. The wiggles troughs and peaks are denoted by ktrough and kpeak respectively. The scale

denoted by kslope corresponds to the maximum slope of baryon suppression.

It is rather easy to track down the cause behind the change in wiggles position. Essentially,

varying a parameter among {ωm, ωb, h} produces a shift in rd, whose value determines the

position of BAO peaks and troughs.

Therefore, in order to return wiggles back to their original positions, it will be sufficient to

perform a rescaling of the power spectrum through the quantity s:

Pm(k, z) → P̂m(k, z) =
1

s3
Pm

(
k

s
, z

)
(3.18)

s =
rd(Ωi + ∂Ωi)

rd(Ωi)
(3.19)

According to definition (1.19), σ8 features a dependence on Pm(k, z), implying that its value

does not remain unchanged under the rescaling (3.19). To avoid such modification (i.e. to leave
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Figure 3.3: Present-day linear matter power spectrum derivatives with respect to parameters
Ωi ∈ {ns, σ8, h, ωm, ωb}. Normalization factors ∆i are chosen such that all parameters have the same impact
on the power spectrum as σ8 in the large scale limit. The two pink vertical lines delimit the range of modes

which are usually observed by spectroscopic galaxy surveys, 0.008 ≤ k [Mpc/h] ≤ 0.5.

normalization unaffected by the rescaling), when computing the derivatives for P̂m in Figure

3.4, we actually employ the redefinition σ8s
9.

From Figure 3.4 we can notice how the effect of h has been completely absorbed by the

rescaling, since we are expressing rd in [Mpc/h] units. On the other hand, ωb and ωm show a

similar effect on the slope, with a small offset visible at keq. This can be explained by observing

that, within standard ΛCDM, keq and rd are closely related, so a shift in rd will likely be ac-

companied by a shift in keq as well. Finally, it appears clear that the value of rd is independent

of σ8s and ns.

All in all, the picture presented by this simple theoretical analysis of the linear matter power

spectrum shape is not so comforting: both Figure 3.4 and Figure 3.4 suggest some degeneracy,

9A technical note is needed. In the present work, we have employed the ratio (σ8/σN )2, defined in (1.18)-(1.21), as
the matter power spectrum normalization. The way we numerically compute such normalization consists in leaving σ8

fixed as a given value, while σN is computed via numerical integration. Now, the purpose of employing the redefinition
σ8s is to leave the normalization unchanged with respect to the chosen reference value: this is done by rescaling the
top-hat filter scale R8 by s, in order to account for the mode rescaling k → k/s. Therefore, adapting this to our own
case, we leave σ8 as a fixed value, while σN is redefined as σNs n the same fashion of Eq. (3.5).

64



Figure 3.4: Present-day rescaled linear matter power spectrum derivatives with respect to parameters
Ωi ∈ {ns, σ8s, h, ωm, ωb}. Notice that in this case we are employing σ8s instead of σ8. Normalization factors ∆i

are chosen such that all parameters have the same impact on the power spectrum as σ8 in the large scale limit.
The two pink vertical lines delimit the range of modes which are usually observed by spectroscopic galaxy
surveys, 0.008 ≤ k [Mpc/h] ≤ 0.5. The dependence on h is lost since we are expressing rd in [Mpc/h] units.

which makes it difficult to get reasonably good constraints for cosmological parameters. But,

as the plots suggest, additional information coming from early-time physics, and affecting the

power spectrum broadband shape via the transfer function, must be looked for in the large

scale regime (and, to a smaller extent, in the amplitude of BAO wiggles). This additional,

early-time, information is what ShapeFit exploits in order to improve parameter constraints

with respect to the Classic approach (as we will see in chapter 4).

Another important point to take in is that, although the effect of ns, ωb and ωm on the

shape is expected to be degenerate, a crucial difference can be highlighted: ωb and ωm produce

a slope change which is scale-dependent, while the one produced by ns is scale-independent.

This is a key aspect in the context of the ShapeFit methodology.

3.4.2 Slope rescaling and slope parameters

The Classic approach lives on the (unrealistic) assumption that all early-time physics can

be captured by rd, and the whole method consists in exploiting the standard ruler nature of
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such quantity. But unfortunately, as shown by the derivative plots, rd does not depend on the

parameters ns and σ8 (and thus on the primordial amplitude As, which is reabsorbed inside it).

Moreover, as we anticipated in chapter 1 ((1.24) and (1.25)) and confirmed by derivative plots,

the linear matter transfer function depends on many parameters, such as ωb, ωm, h. Crucially,

such dependence lingers even after reabsorbing the effect of rd (Figure 3.4).

In other words, the power spectrum slope features some early-time parameter dependence

which is disjointed from the value of rd, thus marking the limitations of the Classic approach.

The ShapeFit approach overcomes such limitations by compressing the bulk of this early-

time information into new effective parameters. In this way, early-time and late-time informa-

tion is still decoupled (as it was the case in the Classic approach), but it can be easily and

consistently combined at the interpretation stage when constraining cosmological parameters.

This new method is able to preserve the same model-independent nature of the compressed

variables of the Classic approach, while also reaching the same constraining power of the FM

approach at the interpretation step.

Before introducing the new compressed parameters, one important aspect must be high-

lighted.

The ShapeFit approach is designed so that it extracts cosmological information from the

BAO position, the overall power spectrum normalization and the power spectrum slope, but not

from the BAO wiggles amplitude. This is done for two reasons. Firstly, the bulk of information

is expected to come from the variation in the slope, not in the BAO amplitude10. Secondly, the

BAO amplitude signal is not as robust as their position: in fact, despite being an early-time

signal, it is heavily processed by late-time effects (e.g. non-linearities, bias, mode-coupling),

which introduce some model-dependence).

We can thus proceed to model the slope of the linear power spectrum template, and its

dependence on cosmological parameters. This is done by taking the reference template Pr(k)

and turning it into a new reference template P ′
r(k), defined such that

ln

(
P ′
r(k)

Pr(k)

)
=

m

a
tanh

[
a ln

(
k

kp

)]
+ n ln

(
k

kp

)
(3.20)

10In order to get significant cosmological information from the BAO amplitude, one would require a survey with a
volume way larger than 300 [Gpc/h]3, which is already unrealistically large for the next decade’s standards.
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where:

· n represents the overall scale-independent slope (completely degenerate with ns);

· m represents a scale-dependent slope, which follows the transition of the linear power

spectrum from the large scale to the small scale limit (in a ΛCDM model this is driven by the

combined effect of ωb and ωm);

· the chosen pivot scale kp = π/rd is the scale corresponding to the zero-crossing before the

first BAO trough: interestingly, it corresponds to the scale of maximum baryon suppression,

thus showing that the BAO wiggles position and the scale of suppression are linked by rd;

· a is an amplitude which controls how fast the large and small scale limits are reached;

· the hyperbolic tangent is a generic sigmoid function reaching its maximum slope at the

pivot scale kp.

From the definition given in (3.20) it is evident that the two templates perfectly coincide

for k = kp for all values of n and m, meaning that this slope rescaling is actually changing the

power spectrum tilt by pivoting it around the scale kp. In fact, the slope parameter m is added

a posteriori to the linear power spectrum template in order to effectively parametrize a slope

variation at the pivot scale kp.

Additionally, the two spectra coincide for all values of k if n = 0 and m = 0: these two

conditions mean that the primordial scale-independent slope ns coincides with the reference

one, and no further scale-dependent slope change is considered with respect to the original

reference template.

The ”goodness” of such slope rescaling has been computed numerically in Figure 3.5. These

plots are displaying (solid lines) the ratio between two linear power spectra, both computed

from the definitions (1.17) and (1.22) through the analytical no-wiggle EH98 transfer function

(1.25), P no wiggle
lin,EH98(Ω)/P no wiggle

lin,EH98(Ωref ): here, the numerator is the response to a shift in ωb, ωm

or ns (as shown by the color bar in the plots), while the denominator is computed at the

reference cosmology of Table 3.1. Importantly, the pivot scale adopted when computing the
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power spectra11 is chosen to coincide with kslope = π/rd. Moreover, the power spectra involved

in this ratio are opportunely rescaled by their corresponding value of rd (i.e. the rescaling

(3.18)-(3.19) is applied).

The plots also show the position of keq, after having accounted for the rd rescaling (dashed-

dotted vertical lines).

On top of the solid curves, the plots also show (dotted lines) the exponential of the right

hand side of (3.2). In order to plot such quantity, the following definitions are employed:

n(Ω) = ns(Ω)− ns(Ωref ) (3.21)

m =
d

dlnk

ln

 P no wiggle
lin,EH98

(
k

s
,Ω

) /
PR

(
k

s
,Ω

)
P no wiggle
lin,EH98 (k,Ωref )

/
PR (k,Ωref )



∣∣∣∣∣
k=kp

(3.22)

where PR is the primordial power spectrum. Meanwhile, kp and a are left as free parameters,

and tuned to get the best overlap between the two sets of curves.

By calibrating them for the cases of varying ωm and ωb, one finds a remarkable overlap

for a ≈ 0.6 and kp ≈ 0.03 h/Mpc ≈ π/rrefd = kref
slope (the scale kslope is also shown as dotted

vertical lines). In other words, for these values of a and kp, the proposed rescaling model, i.e.

(3.20), is able to capture very well the power spectrum slope dependence on ωm and ωb. More

specifically, the colored and grey curves agree up to ∼ 1% (ωm plot) and ∼ 3% (ωb plot) in the

range 0.02 ≤ k [h/Mpc] ≤ 0.25.

One can notice that the overlap is perfect in case of varying ns. This is expected, since

a shift in ns only affects the primordial power spectrum, while leaving the transfer function

unchanged; furthermore, as previously observed, rd does not depend on ns, resulting in s = 1.

Therefore, the ratio between power spectra effectively results in a ratio between the primor-

dial power spectra, which in turn reduces to the quantity (k/kp)
(ns−nref

s ) = (k/kp)
n. At the

same time, the natural logarithm in definition of m vanishes, since its argument essentially

corresponds to a ratio between transfer functions12 computed at the same scales. Therefore, m

11Namely, k0 in (1.17).
12Here, we are not talking about the Eisenstein-Hu transfer function Tm, but the one denoted as T 2

m and appearing in
(1.17).
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vanishes in the right hand side of (3.20), thus leaving ln(k/kp)
n as the only remaining term,

and effectively matching the left hand side.

The slope rescaling (3.20) enters the ShapeFit pipeline right before the template rescaling

by α∥ and α⊥. Effectively, ShapeFit consists in applying the Classic RSD fit to a reference

template P ′
r(k), that is transformed at each step via (3.20) with free parameters m and n.

In principle, such transformation should be also applied to the reference power spectra ap-

pearing in the integrand of higher-order perturbation corrections. However, in order to avoid

re-evaluating all perturbative terms at each step of the likelihood exploration, one can decide

to apply this transformation as if it was scale-independent. In practice, all loop corrections are

pre-computed using the linear power spectrum Pr, and then transformed in an approximated

way during the likelihood evaluation. Here we show such approximation when evaluating the

1-loop correction P1-loop = P13 + P22 within SPT theory:

P13(k) = P ′
r(k)

∫ ∞

0

d3qP ′
r(q)F3(k, q,−q) ≈

≈
(
P ′
r(k)

Pr(k)

)2

Pr(k)

∫ ∞

0

d3qPr(q)F3(k, q,−q)

P22(k) =

∫ ∞

0

d3qP ′
r(q)P

′
r(|q − k|)F2(k, q − k) ≈

≈
(
P ′
r(k)

Pr(k)

)2 ∫ ∞

0

d3qPr(q)Pr(|q − k|)F2(k, q − k)

(3.23)

where Fi are the respective kernels.

In (Brieden et al., 2021b) it is shown that such approximation, which aims to reduce the

computational time of ShapeFit, does not hinder the analysis precision. In fact, the systematic

errors made by factorizing m outside the loop integrals are found to be below 2% for k ≤ 0.15

Mpc/h and below 3% for k ≤ 0.20 Mpc/h.
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3.4.3 Variables complementarity

Lastly, we try to visualize what the introduction of the slope parameter m means in the

context of constraining different parameters. Figure 3.6 displays cosmological constraints for

a standard flat ΛCDM model , obtained from two BOSS samples13, and using three different

sets of physical compressed variables. Grey curves correspond to the Classic RSD analysis

based on the late-time variables {α∥, α⊥, fσ8}; green curves come from a ShapeFit analysis, in

which the compressed variables are {α∥, α⊥, fσ8,m}; red curves arise from an analysis which

only compresses the slope parameter m. This last kind of analysis has been chosen to bet-

ter understand and visualize the complementarity between m and the classic RSD variables

{α∥, α⊥, fσ8}. Opaque and transparent contours correspond to performing the interpretation

respectively with a Gaussian BBN prior wb = 0.02268± 0.00038 or with a broad uniform prior

0.005 < wb < 0.04.

The slope parameter m is an early-time variable, sensitive to early-time quantities which

enter in the matter transfer function such as equality scale, sound horizon scale and primor-

dial power spectrum. while the latter are late-time variables (only depending on geometry,

expansion history and growth rate of the Universe). These variables are sensitive to physical

processes affecting the Universe evolution in different epochs: we can therefore expect them to

constrain different derived parameters. In particular, the BAO signal is able to constrain h · rd,
while m is able to constrain Ωmh (which determines the shape of the matter transfer function

via matter-radiation equality epoch).

Therefore, the introduction of the new compressed parameter m to the classic set appears as

a great improvement in terms of constraints, since it makes the analysis sensitive to early-time

physics as well, while not hindering the ability to extract information from the classic late-time

variables14.

Here we suggest a small example of how one might exploit the complementarity between m

and the classic BAO variables.

As previously observed, m is able to constrain the parameter Ωmh. Conversely, within a

ΛCDM model, the purely late-time expansion history constrains the ratio α∥/α⊥, which in turn

can be used to constrain Ωm. Combining these two constraints, it would therefore be possible to

13Luminous Red Galaxies (LRG) samples of the SDSS-III BOSS survey (Alam et al., 2017) have been employed, and
two uncorrelated redshift ranges have been considered: 0.2 < z < 0.5 (zeff = 0.38, Veff = 3.7Gpc3) and 0.5 < z < 0.75
(zeff = 0.61, Veff = 4.1Gpc3).

14In the left panel of Figure 4.2 it will appear clear that, being m (mostly) uncorrelated to the classic compressed
parameters, introducing the former does not jeopardize the constraining precision of the latter.
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obtain a constraint on H0: this constraint would arise from a combination of early and late-time

physical effects15.

3.5 ShapeFit pipeline

As previously anticipated, the ShapeFit can be thought as an extension of Classic RSD.

Consequently, its pipeline is almost identical to what we already presented in section 3.3.

This shows from Figure 3.7, where the full ShapeFit pipeline is shown. Here, the new steps

introduced by the ShapeFit methodology are displayed as orange boxes, while blue boxes are

the Classic RSD steps.

The data pipeline is exactly the same as in Classic RSD, so we will not explore it further.

Instead, the introduction of the new shape parameters m and n, which are the true protagonists

of the ShapeFit technique, implies a few additions to the rest of the pipeline.

In particular, a new step is added to the model pipeline: now, right after having com-

puted the non-linear template power spectrum Pnl(k,Ωref ), the slope rescaling (3.20) is ap-

plied, in conjunction with the approximation (3.23), thus producing the new reference template

P ′
nl,r(k,Ωref ), which includes the shape parameters m and n. This new quantity is then used

to build the multipoles, as in the usual Classic approach.

Consequently, the fitting step is now used to get constraints on five compressed variables

(α∥, α⊥, fσs8, m and n), and the cosmological interpretation step will be accordingly affected.

In particular, the interpretation of the scaling parameters α∥ and α⊥ is identical to the Classic

approach, while the other parameters deserve some more words.

Fluctuation amplitude and growth

The interpretation of fσ8s is nearly the same as in Classic RSD, with the only exception

that now we are using σ8s instead of σ8.

Actually, from the definition (3.7) it is easy to see that modifying the power spectrum via

the slope rescaling (3.20) with (m,n) ̸= (0, 0) would also modify σ8s.

15In (Brieden, Gil-Maŕın, & Verde, 2021a), the Ωmh measurement shown in Figure 3.6 (Ωmh = 0.220+0.029
−0.019, without

BBN prior on wb) is combined with that obtained from the uncalibrated BAO of the full BOSS+eBOSS sample (Table
4 of (Alam et al., 2021)) Ωm = 0.299 ± 0.016, thus obtaining H0 = 73.6+10.5

−7.5 . Of course, the final value will depend on
the chosen prior for wb and on the chosen value of Ωm.
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Thus, it might be convenient to define the fluctuation amplitude at the pivot scale kp as

Ap = P no wiggle
lin (kp,Ω) (3.24)

which does not change with slope, since it is computed at the pivot point.

During the fitting procedure in the cosmological interpretation step, this amplitude param-

eter becomes

Asp =
1

s3
P no wiggle
lin (kp/s,Ω) (3.25)

Then, the actual velocity fluctuation amplitude measurement is given as fA
1/2
sp , and thus

fσ8s =
(fσ8s)

ref

(A
1/2
sp )ref

A1/2
sp (3.26)

which connects the more frequently used parameter (fσ8s) with that more suitable to em-

ploy for parameter inference (A
1/2
sp ).

Power spectrum slope

The scale independent slope n is interpreted as in (3.21), while the scale dependent slope m

follows (3.22).

In case n is varied during the cosmological fit, (3.22) has to be applied to the power spectrum

obtained with ns fixed to nref
s : this ensures that a change in ns does not lead to a different

prediction for m, but only for n, via (3.21). In this way, n is obtained from the primordial

power spectrum (whose slope is ns), while m is obtained from the transfer function squared

(which is the ratio between power spectrum and primordial power spectrum16). It is useful to

16So, the square brackets of (3.22) contain the ratio between the transfer functions associated to input cosmology and
that computed at reference cosmology.
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stress that the interpretation of m is not any late-time physics phenomenon, but a series of

early-time processes modulating the power spectrum broadband shape.

3.5.1 Computational advantage

After having taken a deep dive into the ShapeFit pipeline, it will appear clear why this

approach is computationally faster and more convenient than FM.

First of all, the ShapeFit procedure, whose goal is extracting the physical parameters

{α∥, α⊥, fσs8, n,m} (upper part of Figure 3.7), is model-independent, since it employs a refer-

ence template: therefore, it must be performed only once. In comparison, the FM approach

requires to fit the power spectrum multipoles for each chosen model. Moreover, at the moment

of cosmological interpretation (lower part of Figure 3.7), the MCMC deals with a much sim-

pler likelihood surface and a much smaller number of variables (one compressed parameter for

each chosen redshift). Conversely, within FM, the MCMC has to deal with a larger number of

variables, i.e. one power spectrum measurement P (ℓ)(k, z) for each considered multipole, k-bin,

redshift and galactic hemisphere17. Consequently, the ShapeFit MCMC needs 5-10 times fewer

sampled points to reach the same level of convergence. In conclusion, ShapeFit yields an overall

speed-up factor of 40-80 (Brieden et al., 2021a).

This computational advantage with respect to FM, coupled with an improved statistical

performance with respect to Classical analysis (as it will be shown in the chapter 4), mark the

true benefits of adopting the ShapeFit methodology.

17See chapter 5 for a practical example.
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Figure 3.5: Rescaled EH98 prediction of the power spectrum shape (colored sold lines) comparison with the
parametrization of (3.20) for a = 0.6, kp = 0.03Mpc/h. This choice fits the response to wm (upper panel) very
well and to wb (middle panel) less well but still sufficient for our purposes. Dashed-dotted vertical lines show

the rescaled location of keq for each model and dotted vertical lines highlight the positions where the
scale-dependent slope reaches a maximum. This position is constant with varying cosmological parameters

and very close to the expectation kp = π/rrefd ≈ 0.03Mpc/h. The scale independent slope fits the prediction of
varying ns (bottom panel) perfectly by definition.
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Figure 3.6: Interpretation within a flat-ΛCDM model with a Gaussian BBN prior on wb (opaque contours)
and without (transparent contours), of different physical variables constraints from the low- and high-redshift
BOSS samples. Grey corresponds to classic RSD analysis based on late-time variables {α∥(z), α⊥(z), fσ8(z)},

red corresponds to the early-time shape variable m(z) only, and their combination is shown in green.
Transparent contours are for a broad uniform prior 0.005 < wb < 0.04, the opaque contours for a Gaussian

BBN prior wb = 0.02268± 0.00038. This image is actually borrowed from chapter 5 of the present text, but it
better fits the discussion if put here.
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Figure 3.7: ShapeFit pipeline. Steps above the dashed lines correspond to the data and model pipelines, while
the cosmological interpretation step is located below the dashed lines The purple fields represent steps in the
Classic approach, while orange fields represent the ShapeFit additions. This image corresponds to Figure 5 in

(Brieden et al., 2021b).
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Chapter 4

Application to mocks

In this section, closely following chapter 5 of (Brieden et al., 2021b), we will see how this

new ShapeFit methodology fares in comparison to the Classical and FM ones. In particular,

we will compare the results of a fiducial analysis, conducted with the three methods, on the

MultiDark-Patchy BOSS DR12 mocks1, created by (Kitaura et al., 2016)(Rodŕıguez-Torres et

al., 2016), and whose fiducial ΛCDM parameters are the following:

MultiDark simulation fiducial cosmology

Cosmology Ωm Ωb h σ8 ns

MultiDark 0.307115 0.048206 0.6777 0.8288 0.9611

Table 4.1: Fiducial cosmology adopted by the PATCHY simulated mocks.

In particular, the present analysis has made use of the ”ngc z3” mocks, which correspond

to a sample located at the north galactic cap, within a redshift range of 0.5 < z < 0.75

(zeff = 0.61). All 2048 realizations of the PATCHY mocks are employed in order to extract our

dataset: multipole power spectra are measured for each individual mock catalogues, and the

mode-weighted power spectra average of all 2048 realizations is then taken as data. To be more

precise, multipoles are measured in bins ∆k = 0.005 hMpc−1, and the analysis is conducted

over a scale-range 0.01 ≤ k
[
hMpc−1

]
≤ 0.15.

After computing the covariance matrix, this is rescaled by a factor 0.01, corresponding to

the volume of 100 stacked mocks2.

1https://fbeutler.github.io/hub/boss papers.html
2There is no need to ”use” all the 2048 realizations: the effective volume of 100 stacked mocks is ≈ 300 Gpc3, which

is still significantly larger than the effective volume of the next generation of galaxy surveys.
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Before showing the results, it is better to specify the prior ranges adopted for the cosmo-

logical, physical and nuisance parameters during the fitting process. These are collected in the

table of Figure 4.1, but here we expand on them a little bit.

Figure 4.1: Prior ranges for parameters used for the ShapeFit (SF) and the FM fit. For each, we define a case
with minimum (”min”) and maximum (”max”) freedom, where overlapping prior choices between the two

choices are written in the center. Flat priors are given as [min; max], Gaussian priors are denoted as (mean ±
std). ”lag.” stands for the local Lagrangian prediction prior. Parameters separated by ” / ” correspond to

different conventions used between ShapeFit and FM fit for the same physical effect.

The model adopted for the ShapeFit is based on the 1-loop SPT + TSN model (1.54);

whereas, for the FM fit, the EFT implementation of (Ivanov et al., 2020) has been chosen.

These two different choices also imply different choices for some parameters within the two

approaches (separated by ” / ” in the table of priors).

It may be useful to specify that the present implementation of ShapeFit is unable to correctly

model large scale displacements and, consequently, the effects that their non-linear coupling has

on the BAO amplitude. The same effect could be more easily modelled within the FM approach,

by the introduction of the IR resummation (which brings a phenomenological damping of the

BAO amplitude). But, for the sake of comparing the two approaches, the IR resummation has
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been neglected during the FM fit3.

Two different cases are defined for nuisance parameters’ prior ranges: minimum and maxi-

mum freedom. The minimum freedom scenario leans towards the fiducial setup of most Classic

RSD analyses, where non-local bias parameters are fixed by the local Lagrangian prediction

(Baldauf et al., 2012; Saito et al., 2014):

bs2 = −4

7
(b1 − 1), b3nl =

32

315
(b1 − 1) (4.1)

while in the maximum freedom case b1, bs2, b3nl are treated as independent parameters4.

Some words about the counterterms c0, c2, c4, which are characteristic of the EFT imple-

mentation of the FM approach5: in the minimum freedom scenario, c0 is fixed to 0 to match

the ShapeFit configuration, while the other counterterms are varied, since they correspond to

ShapeFit’s σP .

In general, the prior choices made for the maximum freedom case are dictated by the deci-

sion to follow as closely as possible the setup of (Ivanov et al., 2020).

Another difference revolves around the primordial amplitude: in the ShapeFit implemen-

tation, the employed parameter is ln(1010As), while FM uses A1/2 = (As/A
Planck
s )1/2, with

APlanck
s = 2.0989× 10−9.

Finally, while FM uses a Gaussian prior on the difference between shot and Poissonian noise,

∆Pnoise = Pnoise−PPoissonian, ShapeFit employs a flat prior on the fractional difference Anoise.

4.1 ShapeFit vs Classic RSD

First, we compare the performance of ShapeFit and Classic RSD in the context of the

compression step (so, for now, we leave out the interpretation part). It might be useful to take

3Actually, the inclusion of the IR resummation for ShapeFit would bear tangible effects only for a survey volume of
at least ≈ 300 [Gpc/h]3

4Bias parameters describe the connection between dark matter and galaxy density fluctuations in real space. But (4.1)
are motivated by theoretical considerations on the dark matter to halo connection, which doesn’t necessarily translate
equivalently into the dark matter to galaxy connection.

5They phenomenologically account for higher order non-linearities. c0 corrects for dark matter behaving differently
than a perfect fluid on small scales, while c2 and c4 account for non-linear RSD. Within the ShapeFit TSN model, instead
of c2 and c4, there is one single parameter, σP (so, there is less freedom).
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another look at the pipeline scheme presented in Figure 3.1 and Figure 3.7, in order to better

appreciate the differences between the two methods.

In both approaches, the template power spectrum is built by adopting the MultiDark cos-

mology (see Table 4.1) as the reference one (Ωref ).

The crucial difference between the two approaches is the absence of the new compressed

parameters m and n in the Classic RSD. Therefore, the slope parameter m is varied only in

the ShapeFit, while it is fixed to m = 0 for the Classic RSD.

Both ”min” and ”max” scenarios are evaluated, and the results are plotted in Figure 4.2,

in which the dashed lines indicate the underlying parameter values of the simulation. Keep

in mind that the error-bars displayed in these plots are relative to an effective volume of 300

[Gpc/h]3: this is done to make explicit and quantify biases in recovered parameter estimates.

Figure 4.2: Results of the classic RSD fit (grey) and the ShapeFit (green) applied to the Patchy ”ngc z3”
sample, showing the ”min” (minimal freedom, non-local bias parameters to follow the Lagrangian prediction)
case on the left; and the ”max” (maximal freedom, fully free non-local bias parameters) case on the right

panel. For the ”min” case a systematic deviation of the slope parameter can be observed from the expectation
m = 0, indicating that assumptions about the biasing scheme may introduce systematic shifts even at very
large and linear scales. To make explicit and quantify biases in recovered parameter estimates, the error-bars

are relative to an effective volume of 300 [Gpc/h]3.

One can easily notice that, in the ”maximal freedom” case, uncertainties on α∥ and α⊥ are
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almost indistinguishable for the two approaches; whereas, ShapeFit recovers a slightly larger

error for the parameter f : this may be due to the correlation between f and m (while m is

totally uncorrelated with α∥ and α⊥)
6. The remaining biases on the found parameter values with

respect to the expected ones can be due to both statistical uncertainty and incorrect modelling

of non-linearities or RSD. But , in terms of uncertainties, ShapeFit is able to reproduce RSD’s

results almost perfectly.

Instead, looking at the ”minimum freedom” case, the constraints recovered by Classic RSD

appear closer to the actual theoretical predictions. This happens because, in the ”min” scenario

(i.e., non-local biases following the Lagrangian prediction), m undergoes a systematic shift

towards m = −0.036 ± 0.006, hence being in 6σ tension with the expected m = 0 value.

This tension is not there for the RSD approach, since m is fixed to m = 0 from the start.

Furthermore, this tension disappears when the non-local biases priors are relaxed, and the

”maximal freedom” case is chosen: in fact, in the ”max” scenario, the correct value of m = 0

is recovered by ShapeFit.

On the one hand, this finding highlights how priors (and, therefore, model) assumptions

can lead to the emergence of systematic errors affecting parameter constraints: the authors of

(Brieden et al., 2021b) then recommend to always allow maximal freedom for bias and nuisance

parameters in forthcoming data analyses. This will slow down the MCMC chain convergence,

but thanks to the design of ShapeFit, the fit only needs to be performed once.

On the other hand, the authors suggest that the characteristics of the employed mocks

(ngc z3) may have played a part in the emergence of these systematics: for example, such

mocks may feature some inconsistencies with the local Lagrangian bias scheme (4.1). As a

further check, the analysis has been repeated with a different type of mocks, namely, N-body

mocks.

4.1.1 N-body mocks analysis

As just stated, some systematic errors in the previous analysis could stem from the charac-

teristics of the employed mocks. In order to hunt for such systematics, further analyses have

been conducted by the authors of the ShapeFit paper, which make use of N-body mocks instead

of the PATCHY ones. First, a very simple and idealized case is analysed, in order to better

highlight the systematic shift in parameter constraints. Then, a more complete and realistic

6The degradation of the constraints on f , due to this small degeneracy between f and m, is small (20% for a 300
[Gpc/h]3 volume), and it is expected to decrease for smaller, more realistic survey volumes (5% for a DESI-like volume
of 30 [Gpc/h]3).
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case is explored. Further details about the chosen N-body mocks and the followed procedure

can be found in Appendix D. Here, we just outline the procedure in a few words, but the main

goal is to present the main plots and results of such analysis.

Dark matter in real space

The analysis focuses on the very simple case of a set of dark matter particles, without

survey geometry or selection function. No RSD are introduced either. Initial conditions are

generated according to the second-order Lagrangian PT, and three redshift snapshots have been

considered (z = 0.5, 1.0, 1.5). For simplicity, only the posteriors of {α∥, α⊥, f,m} are explored,

while n is fixed to n = 0 and the rest of nuisance parameters {b1, b2, σP , Anoise} are marginalized.

The main results are illustrated by the dashed contours in Figure 4.3, showing the difference

between the measured and the expected value for the 4 relevant physical parameters (accord-

ingly scaled for visualization purposes).

The first lesson to take in is that, even if one chooses a very idealized situation, systematic

shift are still visible. They are reported in the upper row of Table 4.2.

Geometric correction G ∆sys
α∥ ∆sys

α⊥ ∆sys
f ∆sys

m

without ≃ 0.01 (1%) ≃ 0.005 (0.5%) ≃ 0.003 (0.3%) ≃ −0.04 (4%)

with ≃ 0.005 (0.5%) ≃ 0.0 (0%) ≃ 0.003 (0.3%) ≃ −0.01 (1%)

Table 4.2: Shifts on parameter constraints, with and without the geometric correction defined in Eq.
(3.2).

Furthermore, these shifts appear to be redshift-independent, hinting that they are not due

to a theoretical limitation of the PT-model, or any biasing model assumption, but likely stem

from a geometric effect. In what follows, we trace the cause of such shifts.

In the standard procedure, the power spectrum model is evaluated at the effective k-vector of

each bin i, Pmodel(ki,eff ), where ki,eff ≡ ⟨k⟩i is the ensemble average over all possible directions

of the k-vector within the i-bin. Conversely, the data-vector is measured by taking the average

of P (ki) across all k-directions, i.e. P data(ki) = ⟨P data(k)⟩i. During the analysis, these two

quantities, P data(ki) and Pmodel(ki,eff ), are subject to a fit, but they evidently do not represent

the same thing, since P (⟨k⟩) ̸= ⟨P (k)⟩: this generates spurious signals, especially for the large-

scale modes, where the number of modes per bin is small, and the discrepancy between the two
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quantities gets larger. So, the parameter shifts are ultimately due to mode discreteness, which

is introduced by survey geometry (hence, it counts as a ”geometric effect”).

In principle, in order to overcome such issue, one should evaluate Pmodel for each k within

the bin, and treat them in the same way as the data-vector, i.e. compute ⟨Pmodel(ki)⟩. But

this would be too computationally expensive to be actually implemented with a MCMC.

The alternative solution proposed in (Brieden et al., 2021b) consists in the introduction of

a geometric factor G, defined as

G(k) ≡ ⟨Pmodel(k)⟩
Pmodel(⟨k⟩)

(4.2)

which should accordingly modify the data-vector as

P data,G−1

(k) = G−1 × P data(k) (4.3)

and ⟨ ⟩ represents the ensemble average taken over all directions of the k-vector7.

The addition of such correction allowed to improve the parameter constraint shifts, as indi-

cated in the bottom row of Table 4.2 and by the solid-line posteriors in Figure 4.3.

Here, posteriors have been derived by fitting the mean of 160 full N-body dark matter

realization in real space, while the covariance has been rescaled to correspond to an effective

volume of 2200 [Gpc/h]3. The model described in (1.53) and (1.54) and the local-Lagrangian

bias scheme of (4.1) have been employed. Even though all nuisance parameters are varied

during the fit, the plot only shows the physical parameters f, α∥, α⊥,m. The empty-dashed

contours display the results of fitting the data-vector without any geometric correction (as

usually done), whereas the filled contours account for the geometric correction through (4.2).

For all parameters p, the expected value is ∆p = 0.

The correction is particularly effective for m, with a shift of about 0.03 towards positive val-

7G slightly depends on the parameters at which the model is evaluated. Therefore, it is computed in an iterative way:

the non-corrected (G = 1) data-vector is initially fit, and G is evaluated; then P data,G−1

is computed, and the process
repeats until convergence in the derived posteriors is observed (one or two iterations should be enough).

Another sidenote: the entity of the G-correction also depends on the size of k-bins, and the size of the box in which
the sample is embedded.
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ues, for the specific set of geometric choices: ∆k = 0.01h/Mpc, size of the periodic box, L = 2.4

Gpc/h, and the k-range fitted, 0.02 ≤ k [h/Mpc] ≤ 0.15. Even after applying the correction, a

residual systematic shift lingers. The authors of (Brieden et al., 2021b) estimate that, thanks

to this geometric correction, such residual bias becomes comparable to the statistical error for

an effective volume greater than 400 Gpc3, while without the correction that would happen for

a volume of only 25 Gpc3.

Full N-body mocks

With the previous analysis, we explored a very simple scenario, in which many aspects

of modelling the LSS, like galaxy bias and RSD, have been neglected. But an inaccurate

modelling of such effects could possibly lead to systematic errors. It is thus wise to evalu-

ate a more complete case scenario, in which all possible effects are taken into account. This

is achieved by repeating the previous analysis, but this time with full N-body galaxy mocks

(in particular, the Nseries mocks are used, see Appendix D). Results of this analysis are dis-

played in Figure 4.4. Here, posteriors are obtained from Nseries N-body mocks using P (0,2,4)

at 0.02 ≤ k[Mpc/h] ≤ 0.15. Different colours highlight the comparison among the different

analyses performed: RSD (purple) and ShapeFit (orange), both with local-Lagrangian bias

parametrization of (4.1), and ShapeFit with free non-local biases (green). All cases correspond

to the fit of the mean power spectra of the 84 independent Nseries realizations with an associ-

ated effective volume of Veff = 308 Gpc3. Solid and dashed contours respectively correspond to

posteriors with and without (G = 1) the G-correction. Nuisance parameters are marginalized

over, while n is set to n = 0 for ShapeFit (for simplicity). Black-dashed lines indicate the

expected values for the underlying cosmology of the Nseries mocks.

The geometric correction appears to have a smaller effect for these mocks, compared to what

we saw in the previous case. One reason is that here a smaller (hence, more realistic) effective

volume has been employed (308 Gpc3 versus 6448 Gpc3 of the previous case), thus increasing

statistical errors. The other reason is that here a larger box (4 Gpc/h side length) has been

chosen compared to the previous case (2.4 Gpc/h side length), yielding a finer sampling of

k-modes, which reduces the geometric effect with respect to the dark matter case.
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Realistic case

From Figure 4.4, it appears once again evident that the most significant shift is the one

affecting the parameter m, and amounting to ∆sys
m ≈ 0.01 − 0.02. At this point, it may be

useful to investigate how such shift fares when contextualized in a realistic survey case.

In Figure 4.5, orange contours result from fitting the mean of the 84 Nseries mocks (as it is

done in Figure 4.4): this corresponds to an associated effective volume of 308 Gpc3. Conversely,

blue contours result from averaging the individual 84 posteriors, each one with an associated

effective volume of 3.67 Gpc3, which is way closer to a real-life case. The main observation

to make is that all the systematic errors reported in Figure 4.4 are quite subdominant with

respect to statistical errorbars associated to a real-life volume, including ∆sys
m . Therefore, such

systematic shift should not provide any significant issue when fitting actual datasets.

4.2 ShapeFit vs FM

We now turn back to the PATCHY mocks analysis, and show a comparison between the

ShapeFit and the FM approach (Classic RSD results are also displayed in the plots for complete-

ness). In particular, the plots show resulting constraints for four parameters: {wcdm, h,Ωm, σ8}.
Prior-wise, both maximum and minimum freedom scenarios are explored. During the fit, one

can choose either to fix some of the parameters or to let them vary freely. Here, three different

cases are presented: fixed wb, varying wb, varying ns.

4.2.1 Fixing wb

In this case, wb is kept fixed to its mock expected value wb = 0.02214: this choice is quite

realistic, since constraints on wb coming from LSS alone are usually not competitive with CMB

or BBN ones.

Results are displayed both as posteriors in Figure 4.6 and in the table of Figure 4.7.

The table shows the error and the bias for each parameter, for each approach, for each

prior freedom assumption, and also for two different survey volumes. In particular, constraints

are shown for the parameters Ω = {wcdm, h,Ωm, σ8}, whose mean values are ΩPATCHY =

{0.118911, 0.6777, 0.301175, 0.8288}. The uncertainty on the mean value Ω is indicated as σΩ,

while the bias is given in units of uncertainty, as (Ω̄− ΩPATCHY )/σΩ. ShapeFit (SF), FM and
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Classic RSD fits results are compared for the different bias model cases ”min” and ”max”.

Fits have been carried out using a covariance matrix corresponding to two diffrent volumes: a

volume of 300 [Gpc/h]3 (V × 100) and a more realistic DESI-like survey volume of 30 [Gpc/h]3

(V × 10). The mean values cited here are obtained from the (V × 100) runs, as these are more

Gaussianly distributed. They do not necessarily coincide with the mean values of the (V × 10)

runs due to non-Gaussianity, but it has been checked that best-fits agree with each other.

The plot displays results of the ShapeFit and FM fits to the PATCHY ”ngc z3” sample

compared to the Classic RSD ”max” results for reference.

From both the table and the plot it can be appreciated how well ShapeFit performs in

recovering the expected parameter values (black dotted lines in the plot), while featuring the

same precision as the FM approach: with a considerably lower computational effort, ShapeFit

appears able to capture the same bulk of cosmological information captured by the FM. The

fact that the size of the constraints is very similar in the two cases indicates that this bulk

of information is concentrated on large linear scales and corresponds to the early-time physics

imprint left on the matter transfer function8. Therefore, the cosmological information enclosed

in the BAO amplitude appears subdominant with respect to the early-time one.

In particular, parameter values are very well recovered, as expected, in the maximum free-

dom case (within 0.5σ for the realistic volume case); whereas, the minimum freedom case

appears clearly biased (by up to 2σ for the realistic volume case).

Such biases show up within the FM approach as well, and they are likely due to the choice of

neglecting IR resummation in the power spectrum modelling (as anticipated in the introduction

of chapter 4): introducing the IR resummation correction would modulate the BAO amplitude,

but also broaden the constraints. ShapeFit does not use any BAO amplitude information, and

therefore does not need to account for any IR resummation correction.

4.2.2 Varying wb

Here we investigate the case in which no external prior constraints (e.g. from CMB or BBN)

are included in our analysis: therefore, we repeat the same analysis as before, but now wb is let

free to vary with a uniform prior in the range [0.005,0,04].

Results are displayed in Figure 4.8, where only the maximum freedom case is tackled.

8Once again, we stress that the same bulk of information was out of reach for the Classic approach, since it followed
a late-time geometrical interpretation of the fitted variables.
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By looking at the ShapeFit results in the left panel of the figure, we can easily notice some

degeneracies. These arise because the slope m is degenerate with wb and wcdm, so ShapeFit

is unable to constrain them individually. Since h is also strongly dependent on the wb prior,

we can conclude that ShapeFit is not able to constrain the three parameters wb, wcdm and h,

while it can put constraints on the derived parameters Ωm,σ8 and DV /rd
9 (displayed in the

right panel).

Figure 4.8 makes it evident that the FM fit brings an additional constraining power with

respect to ShapeFit: in fact, it is indeed able to constrain wb, wcdm and h. This additional

constraining power comes from the BAO amplitude10, which linearly depends on wb/wcdm, hence

breaking the degeneracy between wb and wcdm. From the plots, one can observe the effect of

IR-resummation for the FM fit. This correction is needed to account for all the late-time effects

(e.g. mode coupling, bias, non-linearities) which affect the BAO amplitude (which, by itself, is

an early-time physics imprint). The no-IR posteriors are evidently biased, and the introduction

of IR-resummation has the effect of broadening them, while keeping their peak maxima: in the

end, they are still biased, but tension with the expected values is reduced by the broadening

effect.

The bottom line of this section is that, for both ShapeFit and FM, the case of varying

wb appears quite problematic in terms of recovering some of the parameters, and even BAO

amplitude (which should in principle fix up things by breaking the degeneracies) doesn’t look

like a reliable probe for these LSS analyses.

4.2.3 Varying ns

We now investigate the case in which the scalar tilt ns is taken as an additional free param-

eter. In such case, the ShapeFit analysis must be run with both the scale-dependent and the

scale-independent slope parameters, m and n. Since these two produce a similar effect on the

power spectrum, they are strongly anti-correlated (due to the intrinsic degeneracy between wb,

wcdm and ns through the slope). See Figure 4.9 to visually appreciate such anti-correlation (the

posteriors displayed here have been obtained from applying the ShapeFit analysis to Nseries

mocks, in the minimum freedom case).

9DV ≡ [D2
M (z)DH(z)]1/3.

10As already stated in section 3.4.2, ShapeFit is designed so that it does not compress any BAO amplitude feature as
a way to extract information: therefore, the degeneracy between wb and wcdm stays.
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Posteriors for the parameters {wcdm, h, ns,Ωm, σ8} are shown in Figure 4.10 (keep in mind

that now wb is fixed). The shown posteriors have been computed for a flat ΛCDM model and

from the PATCHY ”ngc z3” sample. Green contours display ShapeFit results, while violet and

blue contours show FM results respectively with and without IR resummation correction.

The first thing to observe is that both ShapeFit and FM + IR-resummation are able to

recover the expected parameters quite well, while the FM without the IR-resummation is clearly

biased.

The already cited degeneracy between ns and wcdm (and, consequently, ns and Ωm) through

the slope leads to visible anti-correlations.

FM is able to break this degeneracy by introducing the IR corrections, which implies taking

into account late-time physics in order to correctly model the damped BAO amplitude. Con-

versely, ShapeFit does not make use of the BAO amplitude, so there is no need to introduce

late-time physics in the picture: constraints on ns, wcdm and Ωm are purely driven by the

early-time imprint on the power spectrum slope.

As a final note, it can be added that in the case where both ns and wb are let free to vary

for the FM fit, the bias in wb observed in Figure 4.8 propagates into a bias in ns, regardless of

IR corrections.

In the next chapter, we will highlight another advantage ShapeFit has with respect to FM,

namely the greater robustness of the compressed physical variables against systematics.
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Figure 4.3: Posteriors derived when fitting the mean of 160 full N-body dark matter realization in real space.
The covariance has been rescaled to correspond to an effective volume of 2200 [Gpc/h]3. We have used the
model described in Eqq. (1.53) and (1.54) and the local-Lagrangian bias scheme of Eq. (3.1). In the plot we
only show the physical parameters f, α∥, α⊥,m, although the remaining four nuisance parameters are also
varied. The empty-dashed contours display the results of fitting the data-vector without any geometric

correction (as usually done), whereas the filled contours account for the geometric correction through Eq.
(3.2). For all parameters p, the expected value is ∆p = 0. We observe that m is especially sensitive to the

geometric correction with a shift of about 0.03 towards positive values, for the specific set of geometric choices:
∆k = 0.01h/Mpc, size of the periodic box, L = 2.4 Gpc/h, and the k-range fitted, 0.02 ≤ k [h/Mpc] ≤ 0.15.
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Figure 4.4: Posteriors from Nseries N-body mocks using P (0,2,4) at 0.02 ≤ k[Mpc/h] ≤ 0.15. We display the
comparison of classic RSD (purple) and ShapeFit (orange), both with local-Lagrangian bias parametrization
of (4.1), and ShapeFit with free non-local biases (green). All cases correspond to the fit of the mean power
spectra of the 84 independent Nseries realizations with an associated effective volume of Veff = 308 Gpc3.

Horizontal black-dashed lines represent the true expected value for each compressed variable. The
empty-dashed contours display the results without any geometric correction (G = 1) and the filled-solid

contours with this correction included.
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Figure 4.5: Case of ShapeFit with the local-Lagrangian bias assumption when fitting the mean of the 84
realizations (orange contours) and when fitting the averaged-posteriors of all 84 individual realizations (blue
contours), which in this last case represents an effective volume similar to BOSS CMASS NGC, 3.67 Gpc3.
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Figure 4.6: Results of the ShapeFit and FM fits to the PATCHY ”ngc z3” sample compared to the Classic
RSD ”max” results for reference. The size of the constraints are very similar in the two cases, indicating that
ShapeFit captures the bulk of cosmological information captured by FM. The systematic shifts associated to
the FM contours are partly caused by neglecting the IR resummation correction, which modulates the BAO
amplitude, but also broadens the constraints. ShapeFit does not use any BAO amplitude information, and
therefore does not need to crucially account for any IR-resummation correction. The fact that the size of the
constraints is very similar in the two cases indicates that the cosmological information enclosed in the BAO

amplitude is subdominant to the one enclosed in the large-scale shape of the power spectrum.

92



Figure 4.7: Parameter constraints for Ω = {wcdm, h,Ωm, σ8} given by the corresponding mean Ω̄, error σΩ and
bias (Ω̄− ΩPATCHY ) divided by σΩ with respect to the PATCHY cosmological parameters

ΩPATCHY = {0.118911, 0.6777, 0.301175, 0.8288}. ShapeFit (SF), FM and Classic RSD fits results are
compared for the different bias model cases ”min” and ”max”. Fits have been carried out using a covariance
matrix corresponding to the volume of 100 stacked mocks (V × 100) and to 10 stacked mocks (V × 10), where

V = 3 (Gpc/h)3. The mean values cited here are obtained from the (V × 100) runs, as these are more
Gaussianly distributed. They do not necessarily coincide with the mean values of the (V × 10) runs due to

non-Gaussianity, but it has been checked that best-fits agree with each other.
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Figure 4.8: Results when analysing the PATCHY ”ngc z3” sample with free wb within a flat prior range of
[0.005,0.04]. The green contours display the results from ShapeFit, whereas the blue and purple contours

correspond to the FM fit case, with (purple) and without (blue) the IR resummation correction.
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Figure 4.9: Posterior distribution for the mean of the Nseries mocks, corresponding to the minimum freedom
case, for ShapeFit, with only m varying (in orange contours), and when both n and m are varied (green

contours). The image is adapted from Figure 18 in Appendix C of (Brieden et al., 2021b).
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Figure 4.10: Derived posteriors for a flat ΛCDM model (for a fixed wb) for ShapeFit (green contours) and the
FM fit to the PATCHY ”ngc z3” sample. The FM results are shown for the IR resummation correction turned
on and off, in violet and blue contours, respectively. The differences between ShapeFit and FM posteriors are
due to the extra constraining power from the BAO peak amplitude (not implemented in ShapeFit) which
helps to break degeneracies between wcdm and ns. The BAO damping effect due to non-linear bulk flows,
which IR resummation describes within FM, greatly reduces the BAO-amplitude-based constraining power,

and hence broadens the ns posteriors.

96



Chapter 5

Application to SDSS-III BOSS data

In chapter 4, the ShapeFit, Classic RSD and FM approaches have been applied to mock

data. This allowed us to highlight some differences between the different methods that would

otherwise remain unnoticed. For example, the larger effective volume provided by mocks makes

it possible to appreciate some systematic shift that would otherwise be overcome by larger

statistical errors.

The goal of this chapter, which will closely follow some results from (Brieden et al., 2021a),

is to show how the different approaches fare when applied to a real dataset.

In particular, the analyses have been performed on the Luminous Red Galaxies (LRG) sam-

ples of the SDSS-III BOSS survey (Alam et al., 2017), covering two overlapping redshift ranges:

0.2 < z < 0.5 (zeff = 0.38, Veff = 3.7Gpc3) and 0.5 < z < 0.75 (zeff = 0.61, Veff = 4.1Gpc3).

The two redshift ranges are considered uncorrelated.

The left panel of Figure 5.1 displays constraints on the compressed physical variables for

Classic RSD ({α∥, α⊥, fσs8}), black dashed contours, and ShapeFit ({α∥, α⊥, fσs8,m}), solid
green contours. In both cases the 1-loop SPT theory has been used to model the monopole

and quadrupole signals for 0.01 ≤ k[Mpc/h] ≤ 0.15. Only the high-z bin of BOSS has been

employed.

The lack of correlation betweenm and the other variables results in an almost perfect overlap

between the two approaches’ results. Actually, there exist a small correlation between m and

fσs8, but it produces an increase in error of 5% only.

The physical variables constrained by ShapeFit in the left panel (along with another set of

4 parameters evaluated from the low-z bin of BOSS) have been taken as a starting point for

the interpretation step. In particular, they are interpreted within a flat ΛCDM model with

a Gaussian BBN prior wb = 0.02268 ± 0.00038. The resulting posteriors on the parameters

{Ωm, wcdm, h, σ8} are displayed in the right panel of Figure 5.1, along with those obtained from
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Figure 5.1: Left Panel: compressed physical parameters posteriors derived from power spectra measurements
of the BOSS high-z sample, zeff = 0.61 (constraints from the low-z sample show a very similar behaviour).
Black dashed contours display the classic RSD results, while novel ShapeFit results are shown in green. In

both cases the 1-loop SPT theory has been used to model the monopole and quadrupole signals for
0.01 ≤ k[Mpc/h] ≤ 0.15. Right Panel: posteriors derived from low and high-z samples of BOSS using the same
scale-cuts as in the left panel. The blue contours correspond to the FM approach when a flat-ΛCDM model

(+BBN Gaussian prior on wb) is directly fitted to the 224 power spectra multipoles bins, P (ℓ)(k, z), using EFT
to model the power spectrum. Conversely, green contours are drawn from the 8 compressed physical variables

of ShapeFit, interpreted under the same cosmological model as for the blue contours.

a FM fit (blue contours). The agreement between posteriors is evident from the plots, but it

is necessary to highlight the difference in required computational effort. As already stressed

in section 3.5.1, ShapeFit brings a significant computational advantage, since the fit must be

taken only once, and the MCMC has to deal with less parameters. In this particular case,

ShapeFit posteriors have been obtained from just 8 variables (4 physical variables for 2 redshift

bins), while FM ones have been obtained from 224 P (ℓ)(k, z) measurements (28 k-bins for two

multipoles, two redshift bins and two galactic hemispheres).

Another advantage of ShapeFit with respect to FM lies in the greater robustness of the

former approach against systematic effects, which could arise when dealing with realistic sur-

veys. Such systematic effects appear to be ”absorbed” by the early-time parameter m (which,

as a result, gets shifted): this happens because late-time physics constraints from clustering

measurements are significantly more robust than early-time ones.
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Figure 5.2: Effect of turning on and off the imaging systematic weights of BOSS data for ShapeFit in its
compressed set of physical variables (upper panels); and for the FM fit in the {Ωm, wcdm} plane (lower panel).
For ShapeFit fσ8 and α⊥ are barely affected by this correction, whereas m absorbs most of the effect. For FM

fit, wcdm and Ωm are significantly biased. The image corresponds to FIG.3 of (Brieden et al., 2021a).

Such advantage is not present in the FM approach, as evident from Figure 5.2, showing

results obtained from both the low-z and high-z BOSS samples. It displays constraints for the

ShapeFit compressed variables (upper panel) and for the parameters Ωm and wcdm computed

via FM. Results are shown for two scenarios: ”wsys off”, corresponding to the case in which

we account for the systematics (opportunely weighting them); ”wsys on”, corresponding to the
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case in which systematic errors are present.

Switching the systematics on and off has two different effects for ShapeFit and FM. In the

upper plots, we see that such action manifests as a shift in m, while other compressed variables

stay mostly unchanged. In the lower panel, the same action produces a bias in the resulting

constraints.

We can conclude that the compression step is able to isolate the part of cosmological signal

whose information content is least affected by systematics.
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Conclusions

In the present work, we have taken a deep dive into the ShapeFit approach, as a new

methodology to extract information from LSS observations. This new technique presents itself

as a step forwards in the field of statistical analysis of the LSS: it preserves the same model

independence and computational advantage of Classic RSD, while reaching the same precision

of FM.

This is achieved by the introduction of additional compressed parameters (i.e. the slope

parameters m and n), with respect to Classic RSD, which provide a new source of information

by modelling the power spectrum slope dependence on early-time physics. In particular, n

models the scale-independent slope, while m corresponds to the slope of the matter power

spectrum at a specific pivot scale. The complementarity between m and the classic compression

variables has been tested by direct application of the ShapeFit technique to both mocks and

real datasets (see Figure 3.6).

Conversely, ShapeFit is not designed to extract information the BAO amplitude, while this is

achieved within the FM approach through the IR corrections, and contributes to the accuracy of

a FM fit. This design choice lies in the fact that BAO amplitude information becomes relevant

only when no CMB or BBN wb prior is employed (see Figure 4.8 and Figure 13 in Appendix

A of (Brieden et al., 2021b)); additionally it comes from an early-time physics imprint which

is heavily processed by late-time effects, and therefore not robust enough. Implementing a IR

resummation correction for ShapeFit would produce a tangible statistical improvement only for

a survey volume of at least 300 [Gpc/h]3, to be compared with a more realistic volume ≲ 100

[Gpc/h]3

The performed tests have confirmed that ShapeFit is indeed able to recover the same pre-

cision of FM (see Figure 4.6), while saving up on computational effort and appearing more

robust against systematics (see Figure 5.2): more specifically, the computational time required

by ShapeFit to perform the cosmological inference step is effectively indistinguishable from that

of the Classic approach, and ∼ 30 times faster than FM.

For the tests on mocks, two different prescriptions have been adopted in the choice of nui-

sance parameters’ prior ranges: they have been denoted as ”minimum freedom” and ”maximum
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freedom”. The former fixes non-local bias parameters by the local Lagrangian prediction, while

the latter treats them as independent parameters. Since the broadband power spectrum shape,

and hence the slope m, is sensitive to bias assumption, the authors of (Brieden et al., 2021b)

advocate the adoption of ”maximal freedom” in ShapeFit implementations, although this would

slow down the MCMC chains convergence.

Further tests on mocks have highlighted the presence of some systematic shifts haunting the

ShapeFit compressed variables. In particular, the employment of a geometric correction has

been advocated, in order to counter the largest shift observed, the one in the parameter m for

the ”minimal freedom” case. However, such systematic shifts should have a very small impact

on the next decade’s surveys, since realistic effective volumes will still be relatively small, thus

allowing statistical errors to dominate.

From these various applications and tests, ShapeFit appears as a very functional and conve-

nient tool: therefore, its application to future surveys may provide new and interesting results.
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Appendix A

Here the bias terms in (1.53) are displayed. These can be also found in (Beutler et al., 2014).

Pm,b2δ(k) =

∫
d3q

(2π)3
P lin
m (q)P lin

m (|k − q|)F (2)
S (q,k − q) (A.1)

Pm,b2θ(k) =

∫
d3q

(2π)3
P lin
m (q)P lin

m (|k − q|)G(2)
S (q,k − q) (A.2)

Pm,bs2δ(k) =

∫
d3q

(2π)3
P lin
m (q)P lin

m (|k − q|)F (2)
S (q,k − q)S(2)(q,k − q) (A.3)

Pm,bs2θ(k) =

∫
d3q

(2π)3
P lin
m (q)P lin

m (|k − q|)G(2)
S (q,k − q)S(2)(q,k − q) (A.4)

Pm,b22θ(k) =
1

2

∫
d3q

(2π)3
P lin
m (q)

[
P lin
m (|k − q|)− P lin

m (q)
]

(A.5)

Pm,b2s2θ(k) = −1

2

∫
d3q

(2π)3
P lin
m (q)

[
2

3
P lin
m (q)− P lin

m (|k − q|)S(2)(q,k − q)

]
(A.6)

Pm,bs22θ(k) = −1

2

∫
d3q

(2π)3
P lin
m (q)

[
4

9
P lin
m (q)− P lin

m (|k − q|)S(2)(q,k − q)2
]

(A.7)

The symmetrized second order PT kernels are given by

F
(2)
S (q1, q2) =

5

7
− q1 · q2

2q1q2

(
q1
q2

+
q2
q1

)
+

2

7

(
q1 · q2

q1q2

)2

(A.8)
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G
(2)
S (q1, q2) =

3

7
− q1 · q2

2q1q2

(
q1
q2

+
q2
q1

)
+

4

7

(
q1 · q2

q1q2

)2

(A.9)

S(2)(q1, q2) =

(
q1 · q2

q1q2

)2

− 1

3
(A.10)

Additionally, we can define

D(2)(q1, q2) =
2

7

[
S(2)(q1, q2)−

2

3

]
(A.11)

σ2
3(k) =

105

16

∫
d3q

(2π)3
P lin
m (q)

[
D(2)(−q,k)S(2)(q,k − q) +

8

63

]
(A.12)
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Appendix B

Here, we present the steps needed to recover the form of the Fisher Matrix for a MVN

likelihood. Throughout the derivation, the following notation will be employed: ∂f/∂θα = f,α.

Starting from (2.9), we calculate the derivatives of the right hand side terms ln C and C−1D:

(ln C),α = C−1C,α (B.1)

(C−1D),α = C−1
,α D + C−1D,α (B.2)

By exploiting the identity (C−1),α = −C−1C,αC
−1, and using (B.1) and (B.2), we get:

(−2lnL),α = Tr
[
C−1C,α − C−1C,αC

−1D + C−1D,α

]
(B.3)

Now, in order to obtain (−2lnL),αβ, we need to further differentiate, this time with re-

spect to β. As before, we first compute the derivatives of the right hand side terms C−1C,α,

(C−1C,α)(C
−1D) and C−1D,α:

(C−1C,α),β = C−1
,β C,α + C−1C,αβ =

= −C−1C,βC
−1C,α + C−1C,αβ

(B.4)
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[
(C−1C,α)(C

−1D)
]
,β
= (C−1C,α),β(C

−1D) + (C−1C,α)(C
−1D),β =

= −C−1C,βC
−1C,αC

−1D + C−1C,αβC
−1D+

+ (C−1C,α)(C
−1
,β D) + (C−1C,α)(C

−1D,β) =

= −C−1C,βC
−1C,αC

−1D + C−1C,αβC
−1D+

− C−1C,α − C−1C,βC
−1D + C−1C,αC

−1D,β

(B.5)

(C−1D,α),β = −C−1C,βC
−1D,α + C−1D,αβ (B.6)

Therefore, putting everything together we get

(−2lnL),αβ =Tr
[
− C−1C,βC

−1C,α) + C−1C,αβ+

+ C−1(C,βC
−1C,α − C,αβ + C,αC

−1C,β)C
−1D+

+ C−1C,αC
−1D,β − C−1C,βC

−1D,α + C−1D,αβ

] (B.7)

Therefore, putting everything together we get

(−2lnL),αβ =Tr
[
− C−1C,βC

−1C,α) + C−1C,αβ+

+ C−1(C,βC
−1C,α − C,αβ + C,αC

−1C,β)C
−1D+

+ C−1C,αC
−1D,β − C−1C,βC

−1D,α + C−1D,αβ

] (B.8)

When taking the ensemble average, we need to consider that all data dependence is inside

the data matrix D. So, by exploiting the linearity of the ensemble average operator, we find:
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〈
− 2

∂lnL

∂θα∂θβ

〉
= Tr

[
− C−1C,βC

−1C,α + C−1C,αβ+

+ C−1(C,βC
−1C,α − C,αβ + C,αC

−1C,β)C
−1⟨D⟩+

+ C−1C,αC
−1⟨D,β⟩ − C−1C,βC

−1⟨D,α⟩+ C−1⟨D,αβ⟩
] (B.9)

Therefore, one needs to compute the ensemble average of the data matrix and its derivatives.

According to the definition of Covariance, we can start by writing

⟨Dij⟩ = ⟨(xi − µi)(xj − µj)⟩ = Cij (B.10)

Since the data do not depend on parameters (which are denoted here by greek letters), and

since, by definition, ⟨xi⟩ = µi, we find:

⟨Dij,α⟩ = ⟨(xi,α − µi,α)(xj − µj) + (xi − µi)(xj,α − µj,α)⟩ =
= ⟨−µi,α(xj − µj)− µj,α(xi − µi)⟩ =
= −⟨µi,αxj⟩+ ⟨µi,αµj⟩ − ⟨µj,αxi⟩+ ⟨µj,αµi⟩ =
= −⟨µi,αµj⟩+ ⟨µi,αµj⟩ − ⟨µj,αµi⟩+ ⟨µj,αµi⟩ =
= ⟨−µi,αµj + µi,αµj − µj,αµi + µj,αµi⟩ = 0

(B.11)

⟨Dij,αβ⟩ = ⟨[−µi,α(xj − µj)− µj,α(xi − µi)],β⟩ =

= ⟨[−µi,αxj + µi,αµj − µj,αxi + µj,αµi],β⟩ =

= ⟨−µi,αβxj − µi,αxj,β + µi,αβµj + µi,αµj,β+

− µj,αβxi − µj,αxi,β + µj,αβµi + µj,αµi,β⟩ =
= ⟨−µi,αβxj + µi,αβµj + µi,αµj,β − µj,αβxi + µj,αβµi + µj,αµi,β⟩ =
= −µi,αβµj + µi,αβµj + µi,αµj,β − µj,αβµi + µj,αβµi + µj,αµi,β =

= µi,αµj,β + µj,αµi,β

(B.12)
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Therefore, in vector matrix notation, we can write such results as

⟨D⟩ = C (B.13)

⟨D,α⟩ = 0 (B.14)

⟨D,αβ⟩ = µT
,αµ,β + µT

,βµ,α ≡ Mαβ (B.15)

which we can substitute in (B.9), thus finally obtaining:

〈
− 2

∂lnL

∂θα∂θβ

〉
= Tr

[
− C−1C,βC

−1C,α + C−1C,αβ+

+ C−1(C,βC
−1C,α − C,αβ + C,αC

−1C,β)C
−1C+

+ 0− 0 + C−1Mαβ

]
=

= Tr
[
C−1C,αC

−1C,β + C−1Mαβ

]
(B.16)
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Appendix C

SPHEREx specifications

zmin zmax zeff n(z) [h/Mpc]3 b(z)

0.0 0.2 0.1 9.97× 10−3 1.3

0.2 0.4 0.3 4.11× 10−3 1.5

0.4 0.6 0.5 5.01× 10−4 1.8

0.6 0.8 0.7 7.05× 10−5 2.3

0.8 1.0 0.9 3.16× 10−5 2.1

1.0 1.6 1.1 1.64× 10−3 2.7

1.6 2.2 1.3 3.59× 10−6 3.6

2.2 2.8 1.5 8.07× 10−7 2.3

2.8 3.4 1.7 1.84× 10−6 3.2

3.4 4.0 1.9 1.5× 10−6 2.7

4.0 4.6 1.7 1.13× 10−6 3.8

Table 5.1: Specifications adopted for the Fisher Forecast performed for the SPHEREx galaxy survey.
The adopted redshift uncertainty is σz = 0.003. For this survey, 75% of an all-sky coverage has been

assumed, amounting to ≃ 31 000 square degrees.
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ATLAS specifications

zmin zmax zeff n(z) [h/Mpc]3 b(z)

0.5 0.7 0.6 2.88× 10−2 1.14

0.7 0.9 0.8 2.39× 10−2 1.22

0.9 1.1 1.0 2.81× 10−2 1.3

1.1 1.3 1.2 2.01× 10−2 1.38

1.3 1.5 1.4 1.95× 10−2 1.46

1.5 1.7 1.6 2.53× 10−2 1.54

1.7 1.9 1.8 1.29× 10−2 1.62

1.9 2.1 2.0 8.76× 10−3 1.7

2.1 2.3 2.2 6.76× 10−3 1.78

2.3 2.5 2.4 5.98× 10−3 1.86

2.5 2.7 2.6 8.63× 10−3 1.94

2.7 2.9 2.8 3.36× 10−3 2.02

2.9 3.1 3.0 3.06× 10−3 2.1

3.1 3.3 3.2 1.70× 10−3 2.18

3.3 3.5 3.4 1.77× 10−3 2.26

3.5 3.7 3.6 7.47× 10−4 2.34

3.7 3.9 3.8 4.42× 10−4 2.42

3.9 4.1 4.0 2.04× 10−4 2.5

Table 5.2: Specifications adopted for the Fisher Forecast performed for the ATLAS (WIDE) galaxy
survey. The adopted redshift uncertainty is σz = 0.0001, with a sky coverage of 2000 square degrees.

The bias is computed as b(z) = 1.5 + 0.4(z − 1.5) (Wang et al., 2019)
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Appendix D

Here we provide some more details about the N-body mocks employed for the analysis pre-

sented in section 4.1.1 .

Simple dark matter scenario

For this analysis, a N-body suite of 160 simulations has been employed. The simulations

are based on a flat ΛCDM cosmology, consistent with WMAP (Hinshaw et al., 2013) bestfit

cosmology. Each simulation corresponds to a box with size L = 2.4 Gpc/h, and Np = 7683

particles. The initial conditions have been generated at z = 49 by displacing the particles

according to second-order Lagrangian PT from their initial grid points. In this analysis, the

outputs at three redshifts have been considered: z = 0.5, 1.0, 1.5. No RSD are applied, out of

simplicity.

The data-vector of each of the 160 realizations is obtained at each redshift bin, consisting of

its monopole, quadrupole and hexadecapole signals between 0.02 ≤ k[Mpc/h] ≤ 0.15, sampled

in bins of ∆k = 0.01 Mpc/h size, and with a total of 13×3 elements. The average of the 160

data-vector realizations is used as dataset. The total associated volume of such data-vector

amounts to 6448 Gpc3. Covariance is estimated from the 160 realizations, and then rescaled to

be that corresponding to the full effective volume available.

More information about these simulations can be found in section 3.1 of (Gil-Maŕın, Wag-

ner, Norena, Verde, & Percival, 2014).

Nseries mocks

These mocks have been generated out of 7 independent periodic boxes of 2.6 Gpc/h side.

From those, a total of 84 pseudo-independent realizations have been extracted, with sky geome-

try similar to the northern galactic cap of CMASS DR12 data, for 0.43 < z < 0.7 (zeff = 0.56).

20483 dark matter particles per box are considered. The identified halos are populated with
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galaxies following a halo occupation distribution model tuned to match the clustering of LGRs

observed by BOSS. Covariance is estimated from the 2048 realizations of NGC CMASS DR12

PATCHY mocks catalogues, and then rescaled by a 10% factor, since the PATCHY mocks have

10% fewer particles than the Nseries mocks. The underlying cosmology of the Nseries mocks is

close to that of WMAP. The effective volume sampled is Veff = 84× 6.67 = 308[Gpc]3.

Further details on these mocks can be found in section 2.2.2 of (Gil-Maŕın et al., 2020).
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