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Abstract

Inflation is a period during which the Universe expansion accelerated at very early
times. Originally introduced to solve the fine tuning problems of the cosmological Hot Big
Bang model, it has been a great success in explaining the origin of the small temperature
anisotropies of the Cosmic Microwave Background (CMB). Actually the most accepted
models of inflation are the so-called standard single-field models of slow-roll inflation. The
quantum field theory (QFT) description of such models consists in the presence during
inflation of one scalar field, the inflaton, which slowly rolls down an almost flat potential.
At the beginning of inflation both the inflaton and the metric tensor have small oscilla-
tions around their background (i.e. their quantum fluctuations). During inflation these
primordial perturbations are stretched by the accelerated expansion on very large (super-
horizon) scales, where they get frozen. They form the seeds for the formation of primordial
scalar (curvature) perturbations, associated to primordial density perturbation, which can
explain the temperature anisotropies observed in the CMB. Another fundamental predic-
tion of Inflation is the production of a stochastic background of tensor perturbations,
corresponding to primordial gravitational waves. The statistics of the primordial pertur-
bations predicted by the standard slow-roll models of Inflation is almost Gaussian. The
small deviations from a Gaussian distributions of the primordial perturbations predicted
by the standard single-field slow-roll models of Inflation cannot be observed at the mo-
ment given the sensitivity of the actual measurements. In the last years the WMAP and
Planck satellites have constrained with increasing precision the level of primordial non-
Gaussianity. The best constraints at present are those from the Planck measurements
of the temperature (and polarization) CMB anisotropies. In this work we have studied
a possible indirect way to detect the primordial stochastic background of Gravitational
Waves which goes under the name “tensor fossils”. The latter are primordial degrees of
freedom that no longer interact or very weakly interact during late-time cosmic evolution.
The only observational effect of an Inflation fossil might therefore be its imprint in the
primordial curvature perturbation. Indeed the effect of these tensor fossils would entail
a quadrupole perturbation in the mass distribution in the Universe. In order to measure
their contribution it can be shown that it is possible to define a parametrization strictly
connected both with the bispectrum, i.e., the scalar-scalar-tensor (fossil) three-point cor-
relation function, and with the power spectrum (the two point correlation function) of
the tensor (fossil) perturbations. A new model, Gaugid Inflation, has been studied. In
this model the fields responsible for Inflation are three Abelian gauge vector fields with
vacuum expectation values that manifestly break invariance under spatial rotations and
translations. Imposing additional symmetries on the fields, allows us to restore, at the
background level, the wanted isometries, and also to study the inflationary phase driven by
these fields. Perturbing the fields we found that, besides the usual metric tensor perturba-
tions, additional tensor degrees of freedom due to the gauge fields arise, which could play
the role of tensor fossils. The original contribution of this work was the study of primor-
dial perturbations for Gaugid Inflation in an extension of the original version proposed,
and the finding that these new tensor degrees couple to the metric ones in a non-trivial
way. This result affects the spectral index of the tensors. In our generalization we tried
to add a manifestly parity-breaking term due to presence of time derivative of the gauge
field. We expect this term to modify the power spectrum of gravitational waves, polarizing
the primordial GW into left (L) and right (R) polarization states in the sense that the
statistics of such L and R polarization states becomes different.
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Introduction

Inflation is a period during which the Universe expansion accelerated, in the first moments
of its life.
The success of this theory is due to the fact that it represents a powerful solution for the
Hot Big Bang shortcomings: horizon, flatness and cosmic relics problems. Furthermore,
Inflation is mainly considered because it provides a dynamical description for the origin
of the temperature perturbations of the Cosmic Microwave Background (CMB), which
is so far the most important observable that carries information about the very early
Universe. These perturbations, as we will see, are strictly connected with the density
perturbations, which are themselves the cause of the formation of the Large-Scale Struc-
tures. The simplest inflationary model, the so called single-field slow-roll model, is based
on the hypothesis of the presence of a scalar field, the so-called inflaton, responsible of
the accelerated expansion. In this model the potential of the scalar field is assumed to be
approximately flat, according to the so called slow-roll conditions. During Inflation we can
decompose the inflaton field into a background value, which is isotropic and homogeneous,
and a small fluctuation around the background. We can do the same for the components
of the metric tensor gµν . The background dynamics of the inflaton is responsible for the
accelerated expansion of the primordial Universe. Then the initial small fluctuations are
stretched on superhorizon cosmological scales by the expansion of the Universe so that
their amplitude gets “frozen”. This happens because at a certain time the wavelength of
a given oscillatory mode λ exits the comoving Hubble horizon rH(t), which provides a
measure of the dimensions of the cosmological regions causally connected in the Universe
at a fixed time t. At the end of Inflation, the inflaton decays into radiation through a
process called reheating of the Universe, so that the standard Hot Big Bang phase can
start.

Theoretical predictions show that the relevant types of dynamical perturbations dur-
ing Inflation are two: scalar (curvature) perturbations, associated to primordial density
perturbations, and primordial gravitational waves (GW). The former, after the reheat-
ing, remains frozen until the corresponding wavelength reenters into the comoving Hubble
horizon, creating perturbations in the energy density of the radiation fluid. Then through
this mechanism we explain essentially how in the Universe small perturbations that we
observe in the CMB formed. The same mechanism explains the first seeds from which,
via gravitational instability, the Large-Scale Structure of the Universe formed during the
matter dominated epoch. The basic predictions of the slow-roll paradigm, like the approx-
imate scale invariance and Gaussianity of the primordial power spectrum are in complete
agreement with CMB and Large-Structures data. In the last years the Planck satellite has
also put the strongest constraints on deviations from a pure Gaussian distribution of the
primordial perturbations. Such constraints are compatible with a zero level of primordial
non-Gaussianity as predicted by the slow-roll models, but there is still a window of almost
two orders of magnitude unexplored, see e.g. [32, 43].
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A common feature of all the inflationary models is the production of a stochastic
background of gravitational waves, i.e. tensor degrees of freedom of the metric. Observ-
ing this background would be a smoking gun for the Inflation theory, because it would
definitely confirm the theory. Furthermore a measure of the amplitude of the GW would
allow to define also the energy scale at which the Inflation happened: this would be an
extraordinary result for the understanding of the first moments of the Universe. Another
important cosmological prediction is that the amplitude of the GW as predicted by the
standard single-field slow-roll models of Inflation is much smaller compared to the scalar
one. This constitutes a great challenge for a detection of the primordial gravitational
waves; for this reason, in order to have indirect observation of such GW, some different
ways have been proposed. One fundamental tool to investigate the primordial GW is
provided by the so called tensor fossils, defined as “a hypothesized primordial degree of
freedom that no longer interacts or very weakly interacts during late-time cosmic evolu-
tion. The only observational effect of an Inflation fossil might therefore be its imprint in
the primordial curvature perturbation” [69]. These tensor fossils represent a fascinating
indirect way to detect the primordial tensor perturbations: a tensor fossil would entail a
quadrupole distortion in the CMB temperature perturbations and in the mass distribution
in the Universe, as we will see. In this work we will also deal with the specific predictions
of the single-field models about a tensor-scalar-scalar bispectrum, the Fourier transform
for the three-point correlation function, between one gravitational wave (tensor) mode
and two density perturbation (scalar) modes. It is indeed through this correlation that we
will define the tensor fossils that will lead to a local power quadrupole. The tensor-scalar-
scalar bispectrum satisfies a particular consistency relation (cr) that relates its functional
dependence on the tensor wavenumber K and scalar wavenumbers k1 and k2 to the tensor
and scalar power spectra in the so called squeezed limit (K ≪ k1 ∼ k2). An observation of
violation of the consistency relation, both for scalar and tensor perturbations, would rule
out all single-field models of inflation, which would be, of course, an extraordinary result.

In the last decade a new model which violates the consistency relations has been pro-
posed: Solid Inflation [53]. In this theory the scalar fields which drive Inflation have
background values which manifestly break the standard isometries, invariance under spa-
tial translations and rotations. We will deeply study this model and its consequences for
the predictions about the tensor fossils.

This Thesis focuses on a generalization of a new “solid-like” model of inflation: Gaugid
Inflation [52]. In Gaugid Inflation the fields responsible for Inflation are three Abelian
gauge vector fields, with vacuum expectation value (vev) that break invariance under spa-
tial rotations and translations. Imposing additional (internal) symmetries on the fields
allows us to restore, for the background, the wanted isometries, and also to study the
inflationary phase driven by these fields. Perturbing the fields one finds that, besides the
metric tensor perturbations, there are additional tensor degrees of freedom, due to the
gauge fields, coupled to the metric ones in a non-trivial way. This is an interesting re-
sult: indeed the presence of an additional tensor degree of freedom will enhance the power
spectrum of the gravitational waves, a prediction which is different from the standard
inflationary models. Moreover, this new tensor degree of freedom could play the role of a
tensor fossil.

The original contribution of this Thesis is the generalization was considering also the
possibility of a parity-breaking term in the Lagrangian and in the vev of the field. This
generalization is supported by previous works about possible parity-breaking signatures in
the gravitational wave power spectrum and bispectrum, like [98]: a detection of a similar
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signature would give us essential informations about the fundamental physics of (very)
high energy. Our aim was to find possible signatures at the level of power spectra: we
have found that a parity breaking is possible in Gaugid Inflation both for scalars and
tensors degree of freedom.

This Thesis is organized as follows.
In Chapter 1 the physics of the isotropic and homogeneous background Universe is

described. We explore the Hot Big Bang model and its problems, then we introduce
Inflation as a powerful mechanism to solve them and describe the features of the simplest
model, the single-field slow-roll.

In Chapter 2 we outline the theory of cosmological perturbations and the methods
involved to compute quantum correlations in a cosmological framework. We will focus on
the evaluation of the scalar and tensor perturbations power spectra from Inflation. We
will also briefly describe how to connect primordial (scalar) perturbations with the actual
measurements on CMB.

In Chapter 3 we define statistical correlators that describe the effects of primordial
non-Gaussianity, like the bispectrum: we will describe a theoretical formalism to search
for non-Gaussianities of the primordial perturbations in the slow-roll models of Inflation.
We will introduce the role of the consistency relations for the bispectra of primordial
perturbations and describe the observational consequences of a tensor fossil in the CMB
and Large Scale Structure observations.

In Chapter 4 the Solid Inflation model is reviewed. We will describe in detail the
dynamics of this theory, its novelties with respect to the single-field slow-roll model and
its predictions. We will then calculate what are the possible observable prediction for
tensor fossils using this theory.

In Chapter 5 the original contribution of this Thesis is developed. After reviewing
Gaugid Inflation, we will generalize it in order to obtain new parity-breaking signatures
for the gravitational waves observables. In this respect we have found new outcomes,
such as the violation of parity both in the scalar and in the tensor sector, that whose
consequences can be analyzed in more details in possible future works.
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Chapter 1

Standard Cosmology

1.1 Cosmological Principle: homogeneity and isotropy of
the Universe

Cosmology is the study of the properties, the composition and the dynamics of the Universe
as a whole. In order to achieve this goal we need some practical (and supported by
the experiments) assumptions about the background properties of the Universe. A large
portion of modern cosmology is based on the Cosmological Principle, that is, the hypothesis
that all the comoving observers in the Universe are equivalent. In other words, it can be
formalized with two fundamental features:

Homogeneity of the Universe. Saying that the Universe is homogeneous means that
there are non preferred locations: every location looks the same in every point of
the space. Mathematically it can be expressed as the translational invariance of the
quantities that describes the Universe. This is not a feature of all the spacetime
points of the Universe, but it applies only to a “smeared-out” Universe averaged
over cells of diameter 108 to 109 light years, which are large enough to include a
sufficient number of cluster of galaxies. Homogeneity means, in simple words, that
our point of observation is not privileged with respect to all the other points of the
Universe, the so called Copernican Principle[1, 2, 3, 4];

Isotropy of the Universe. Isotropy means that the Universe looks the same on different
directions of lines-of-sight of an observer. Wherever you look you always see he same
things, on scale of the order of 100 Mpc, larger than the dimensions of the structures
like galaxies and galaxy-clusters [1, 2, 3, 4].

The formulation of the Cosmological Principle given above allows us to consider the
background metric as Friedmann-Lemaitre-Robertson-Walker (FLRW):

ds2 = gµνdxµdxν = −dt2 + a2(t) [ dr2

1 −Kr2 + r
2dΩ] 1, (1.1)

which describes a maximally symmetric and expanding (if ȧ(t) > 0) Universe. The metric
in Eq. (1.1) is written from the point of view of a comoving observer2 in polar coordinates

1Here we consider the usual convention that implies summation over repeated indices; greek letters
running from 0 to 3 denote the four space-time components, latin letters running from 1 to 3 denote the
spatial components.

2A comoving observer is an observer that sees the source of the geometry of the Universe homogeneous
and isotropic.
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(dx2 = (1 −Kr2)−1dr2 + r2dΩ = (1 −Kr2)−1dr2 + r2dθ2 + r2 sin2 θdφ2); K represents the
curvature of the hypersurfaces at constant time t [5]. K can have three different values
depending on the geometry of the Universe: we can clarify it calculating the proper dis-
tance at a fixed time t from the origin of the reference frame to a comoving object at fixed
radial coordinate r (dΩ = 0):

d(r, t) = ∫
r

0
ds = a(t) ⋅ ∫

r

0

dr′√
1 −Kr′2

= a(t) ⋅

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

sin−1 r if K = +1
sinh−1 r ifK = −1
r if K = 0

(1.2)

In this coordinate system a comoving object has r time-independent, so the proper distance
from us to a comoving object increases (or decreases) with a(t), this clarifies also the
meaning of the scale factor. K = +1 is the solution for a curved and closed Universe,
K = −1 is the solution for a curved and open Universe and K = 0 is a Universe which is
spatially flat (Euclidean). Observations show that the Universe we live is very close to
being flat, or in other words it is compatible with the solution K = 0 [6, 7]. We will see in
the next section which implication this measurement will have.

For this reason we will always assume a spatially-flat background:

ds2 = −dt2 + a2(t)δijdxidxj . (1.3)

In Eq. (1.3), t indicates the time with respect to a comoving observer, a(t) is the usual
scale factor. We can use instead the conformal time τ defined as dτ = dt/a, obtaining the
conformal metric

ds2 = a2(τ) [−dτ + δijdxidxj] . (1.4)

1.2 Dynamics in FLRW metric
We are now ready to study the background dynamics in the FLRW Universe. We begin
by writing the Einstein field equations:

Gµν = 8πGTµν . (1.5)

In General Relativity (GR) the dynamic variable is the metric itself [5, 8], describing
the spacetime that changes in response to the presence of matter and energy. In Eq. (1.5),
Gµν is the Einstein tensor and contains the metric and its second order derivative; Tµν is
the energy-momentum tensor and describes the distribution of matter and energy. We will
see later the possible forms of Tµν under the assumption of a homogeneous and isotropic
spacetime. Gµν is the symmetric tensor defined by:

Gµν = Rµν −
1
2
Rgµν . (1.6)

Rµν is the Ricci tensor, the contraction of the Riemann tensor, while R is the Ricci
curvature scalar, defined again as the contraction of the Ricci tensor:

Rµν = gρσRµρνσ = Rρµρν , (1.7)

R = gµνRµν . (1.8)
We adopt the convention for which the Riemann tensor is defined as [5]

Rρµσν ≡
∂Γρµν
∂xσ

−
∂Γρµσ
∂xν

+ ΓηµνΓρση − ΓηµσΓρνη. (1.9)

2



The Riemann tensor contains the second-order derivatives of the metric w.r.t. the space-
time coordinates via the Christoffel symbols defined as:

Γρµν =
1
2
gρσ (∂µgσν + ∂νgσµ − ∂σgµν) . (1.10)

These symbols measure the variation of the metric and are fundamental in GR for their
connection with the motion of freely falling particles in a curved space through the geodesic
equation:

d2xµ

dt2
− Γµρσ

dxρ

dt

dxσ

dt
= 0 (1.11)

With some trivial computations it can be shown that in the metric (1.3) the only Christoffel
symbols which survive are

Γ0
ij = aȧδij = a2Hδij , (1.12)

Γi0j = Γij0 =
ȧ

a
δij =Hδij , (1.13)

where H =H(t) ≡ ȧ(t)/a(t) is the Hubble parameter.
Using these results in Eq. (1.7) we obtain:

R00 = −3 ä
a
, (1.14)

R0i = Ri0 = 0, (1.15)

Rij = a2 ( ä
a
+ 2H2) δij . (1.16)

Finally inserting these expressions into Eq. (1.8) we have

R = 6( ä
a
+H2) . (1.17)

The components of the Einstein tensor result to be

G00 = 3H2, (1.18)

Gij = −a2 (2 ä
a
+H2) δij . (1.19)

We have already said that in the right side of the Eq. (1.5) appears the energy-momentum
tensor appears, which is the source of the geometry of the Universe. Saying that the Uni-
verse must be homogeneous and isotropic means requiring the homogeneity and isotropy
also for the energy-momentum tensor. To define it we consider a set of observers with
four-velocity

uµ = dx
µ

dτ
, (1.20)

with τ the proper time of the observer, so that gµνuµuν = −1. For example, in the case of
a perfect fluid the energy-momentum tensor becomes [5]

Tµν = [ρ(t) + p(t)]uµuν + p(t)gµν (1.21)

where p = p(t) is the isotropic pressure of the fluid and ρ = ρ(t) is its background matter-
energy density. They depend only on time because of homogeneity and isotropy. Taking

3



into account a comoving observer with null spatial velocity we obtain for the energy-
momentum tensor of the cosmic fluid:

T00 = ρ(t), T0i = Ti0 = 0, Tij = p(t)gij (1.22)

Then substituting Eq. (1.22) into Eq. (1.5) we obtain two independent equations, the
so-called Friedmann equations

ä

a
= −4πG

3
(ρ + 3p), (1.23)

H2 ≡ ( ȧ
a
)

2
= 8πG

3
ρ. (1.24)

Now we use a property of the stress-energy tensor

∇µTµν = 0, (1.25)

which can be interpreted as the continuity equation for the cosmic fluid. It can also be
read as the consequence of the second Bianchi identity for the Riemann tensor and the
metric compatibility, ∇µgρσ = 0, required to have the Christoffel symbols (1.10)

∇ηRµνρσ +∇ρRµνση +∇σRµνηρ = 0, (1.26)

which gives
∇µ (Rµν − 1

2
gµνR) = ∇µGµν = 0. (1.27)

Eq. (1.25) gives a third Friedmann equation,

ρ̇ = −3H (p + ρ) . (1.28)

The three Friedmann equations define a system of non-independent first and second order
derivative equations; Eq. (1.23) defines the dynamics, while Eq. (1.24) and Eq. (1.28) are
just constraining equations. Indeed, deriving, for example Eq. (1.24) gives

H ( ä
a
−H2) = 4πG

3
ρ̇,

and substituting (1.28) we have

ä

a
= −4πG(ρ + p) +H2.

Using again the expression for H2 from (1.24) we resemble the first Friedmann equation,
Eq. (1.23). These steps show the non-independence of the three Friedmann equations.
Given that the independent variables in this system are three (a(t), ρ(t) and p(t)) but
the independent equations are just two, we will add the equation of state of the cosmic
fluid which connects the pressure to the energy density, p = p(ρ). In general it can take
the form

p = wρ. (1.29)

w represents a measure of the adiabatic speed of sound in the considered fluid. In general
it can be variable, it can evolve with time, for example, but as a first, good, approximation
we will consider it as a constant. We will see that for different kind of fluids it takes a
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precise value.
Substituting Eq. (1.29) into Eq. (1.28) one obtains

ρ̇

ρ
= −3(1 +w) ȧ

a
(1.30)

or
ρ∝ a−3(1+w). (1.31)

Since the constant parameter w defines a certain kind of matter/energy, Eq. (1.31) clarifies
the evolution of energy density with respect to the expansion of the Universe:

w=0 corresponds to a ordinary matter dominated Universe with null or negligible pres-
sure, for which we have

ρ∝ a−3; (1.32)

w=1/3 corresponds to a radiation dominated Universe with density-pressure relation
p = 1

4ρ

ρ∝ a−4; (1.33)

w=-1 corresponds to a Universe dominated by a sort of exotic fluid with constant energy
density (due to a cosmological constant)

ρ = ρ0 = constant. (1.34)

The dynamics of this kind of fluid will be of great interest for the theory of Inflation
theory.

Now, substituting Eq. (1.31) into Eq. (1.24) we find the explicit time-dependent
solution for the scale parameter, the energy density and the Hubble parameter in a flat
Universe for a general fluid, assuming w is constant:

a(t) = a0 [1 +
3
2
(1 +w)H0(t − t0)]

2
3(1+w)

, (1.35)

ρ(t) = ρ0 [1 +
3
2
(1 +w)H0(t − t0)]

−2
, (1.36)

H(t) =H0 [1 +
3
2
(1 +w)H0(t − t0)]

−1
. (1.37)

Here H0 and a0 are the Hubble and scale parameters defined at the time t0, usually set
as the present time. One can see that there exists a value for t such that the argument
into the brackets is null

tBB − t0 = −
2

3H0(1 +w)
, (1.38)

and if we define now the new time parameter

t′ ≡ t − tBB = t − t0 +
2

3H0(1 +w)
(1.39)

we obtain the following expressions for Eq. (1.35), Eq. (1.36) and Eq. (1.37)

a(t′) = a0 [
3
2
(1 +w)H0t

′]
2

3(1+w)
, (1.40)
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ρ(t′) = ρ0 [
3
2
(1 +w)H0t

′]
−2
, (1.41)

H(t′) = [3
2
(1 +w)t′]

−1
. (1.42)

Setting t′ = 0, or equivalently t = tBB, in these equations we see that we obtain the
following situation

a(t) → 0, ρ(t) → ∞, H(t) → ∞, (1.43)

namely, a configuration of the Universe with infinity energy density. We usually denote
this event with the name Big Bang. In simple terms the Big Bang theory affirms that the
Universe begin in a definite moment in the past from an initial configuration characterized
by high energies, as we will see, high temperature (that’s why we will refer to it as Hot
Big Bang model). We will explore this model, its prediction and its consistency problems
in the next section.

1.3 Hot Big Bang
Talking about the physical history of the Universe implies the knowledge about its thermal
history, i.e. its evolution with the temperature, which means knowing also the variation
of the temperature with respect to time (or, equivalently, a(t), given Eq. (1.40)). How
can we describe the thermal history of the Universe? We begin by defining the particle
numerical density

n(T,µ) = g

(2π)3 ∫ f(q, T, µ)d3 q, (1.44)

where q are the moments of the particles, g is the number of possible helicity states for each
particle and µ is the chemical potential (that for primordial Universe can be considered
negligible for all the particles)3. For the energy density we have

ρ(t, µ) = g

(2π)3 ∫ E(q)f(q, T, µ)d3 q, 4 (1.45)

while the pressure is

p(T,µ) = g

(2π)3 ∫
q2

3E(q)
f(q, T, µ)d3 q. (1.46)

Depending on the statistics of the particles (Fermions or Bosons), f will assume a different
form and consequently also n, ρ and p. In the relativistic case (T ≫m) we have:

n(T ) =
⎧⎪⎪⎨⎪⎪⎩

g
ζ(3)
π2 T

3 Bosons
3
4g

ζ(3)
π2 T

3 Fermions
, ρ(T ) =

⎧⎪⎪⎨⎪⎪⎩

g π
2

30T
4 Bosons

7
8g

π2

30T
4 Fermions

(1.47)

and p = 1
3ρ as can be expected for a relativistic fluid. Instead in the non-relativistic

(T ≪m) case one finds that the number density is suppressed by a factor ∼ e−mT .
3In general f , the distribution function of the particles over the energy or momentum states, should

also depend on the particles’ spatial components, but in a homogeneous and isotropic Universe we can
directly mediate on the possible positions.

4Remember that E(q) =
√
m2 + q2.
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In the early Universe the dominant component was the radiation, as we can easily see
from the a-dependence of the various energy densities in Eqs. (1.33), (1.32) and (1.34),
hence for primordial times we can consider just this ultra-relativistic fluid. This fluid was
initially in a thermodynamic equilibrium, in the sense that the rate of interactions between
the particles was much greater than the rate of expansion of the Universe, the Hubble
parameter H. Considering the conservation of the entropy in an expanding Universe one
can find the following relation between the temperature and the scale factor:

T ∝ a−1, (1.48)

or analogously, using the cosmic redshift definition

1 + z = λo
λe

= ao
ae

= 1
ae
, (1.49)

where λo is the observed wavelength, i.e. at the present time, and λe is the emitted
wavelength, i.e. at the time of emission, we have

T ∝ 1 + z. (1.50)

Eq. (1.48) tells us that going backwards in time, the Universe becomes hotter (or, equiva-
lently, that the Universe becomes colder as time passes); this is the reasons why we call the
Big Bang Hot. In this sense we can briefly describe the evolution of the Universe through
its thermal history.
At early epochs all the particle species were in thermal equilibrium. For very high ener-
gies, with values that cannot be achieved by the modern accelerators, we expect that there
could have been a phase where the symmetry between matter and anti-matter was broken.
We usually call this era as baryogenesis, an epoch baryons and antibaryons annihilated,
and a little initial asymmetry (109 + 1 baryons for 109 antibaryons) created the actual
observed matter.
For early epochs, i.e. high energies, the weak interaction and the electromagnetic interac-
tion were unified in the electroweak interaction. At energies of order ∼ 1 MeV, the energy
at which the rate of interaction for the electroweak processes became smaller than the
Hubble parameter, the neutrinos ceased to interact with the photons. This means that
the neutrinos were not in thermodynamical equilibrium with the radiation anymore.
At the temperature of the order ∼ 100 MeV, i.e. around ∼ 100 s after the Big Bang, the
temperature of the radiation was so high to break all the nuclear bonds: all the nucleus
were decomposed into protons and neutrons. While the temperature goes down we reach
a moment in which the boundary nuclear energies are higher than the temperature of the
nucleons, or in other words their kinetic energies. In this moment the formation of the
first fundamental nucleus happens: this phase is called nucleosynthesis. This phase was
described by Gamow, see [9] and it is a fundamental prediction of the Big Bang theory. It
predicts an abundance of Helium, 4He which is not justified considering only the elements
produced in the stellar nuclear reactions. The observation of an abundance of chemical el-
ements in accordance with the nucleosynthesis prediction was one of the striking successes
of the Big Bang theory.
Until now the Universe was dominated by the radiation. It is highlighted by the scale fac-
tor dependence of the various components of the Universe in (1.32), (1.33) and (1.34). For
early times, a≪ 1, the dominant component was the radiation. This epoch is called radi-
ation dominated era. This era continued until the matter component became dominant.
Matching Eqs. (1.33) and (1.32), it follows that the energy density of the radiation fluid
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became soon smaller than the energy density of the matter fluid. When this happened
in the Universe, it started a new epoch, the matter dominated era. During this epoch all
the large scale structures that we observe in the Universe, such as galaxies and clusters,
started to form through gravitational instability.
After the radiation-matter equivalence happened one of the most important event in the
Universe history. When the Universe was almost ∼ 106 years old the temperature was
higher than the bound energy of the Hydrogen, 13.6 eV. This means that the Universe
was ionized and opaque to the radiation. The photons were not free to stream as they
interacted with the electron through the Compton scattering. When the temperature went
down the boundary energy of H, the electron could interact with the protons through the
interaction

e− + p+ →H + γ, (1.51)

i.e. the first atoms of Hydrogen were created. At this point the interaction between pho-
tons ad electrons was ceases to be to dominant one and the photons were free to travel.
This point in the time (more precisely it is not a point since this precess happened in a
finite time) defines the last scattering surface and this epoch is the so called Hydrogen
recombination. The radiation which leaves the last scattering surface was then cooled by
the expansion of the Universe to the value of ∼ 3 K, and now constitutes the Cosmic
Microwave Background (CMB) we observe. The cosmic microwave background is a fun-
damental prediction of the Big Bang model and it represents a milestone of the history
of Cosmology: its discovery, see [10], opened the way to a more detailed study of the first
moments of the Universe. Today we have very-high resolution photos of this last scattering
surface, as Fig. 2.1. We will see that the CMB represents a treasure trove of informations
about the early epoch of the Universe [11].

This is a brief description of the Hot Big Bang model, we refer the reader to [1, 4, 2]
for more (standard) details.

1.3.1 ΛCDM model

Figure 1.1: Actual composition of the Universe: here all the elements of the standard ΛCDM
cosmological model are represented. The pie graphic illustrates the fraction of each component
with respect to the total energy density of the Universe [12]. For the most precise measurements
of the abundance of these elements see [7].
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The last measurements on the Cosmic Microwave Background (CMB) [6, 7] allow a detailed
description of the composition of the Universe. As we have explained above, at early times
the Universe was dominated by its radiation component, then it passes through a matter-
dominated era and now the dominant component is the dark energy, whose equation of
state is constrained to be wde = −1.028±0.032 (68% CL) [7], which is completely consistent
with a cosmological constant. We have just mentioned above that the spatial curvature
of the Universe is compatible with zero: a direct consequence of this measurement is that
the actual density of the Universe is almost the critical one. The basis model to describe
the cosmic evolution is the so-called ΛCDM model, which is depicted in in Fig. 1.1. Λ
indicates the dark energy component, which is measured to be almost the 70% of the
total energy density. This dark energy is also responsible for the actual acceleration of the
expansion.
CDM means Cold Dark Matter, which is another fundamental component of our Universe,
being almost the 25% of the total energy density. This component is called dark because
it does not emit light and we can measure its presence only by indirect observations (e.g.
galaxies rotation curves, large scale structure measurements, CMB). Its appellative cold
means that it was non-relativistic at the time of decoupling: if the dark matter was hot,
i.e. relativistic at the time of its decoupling, it would have had important consequences
on the formation of the large scale structure of the Universe [13].
The baryonic matter, the galaxies, the stars, the planets and also us, is only a little
percentage of the total composition of the Universe, meaning that the Universe we live in
is almost dark, as we stressed above. In Fig. 1.2 it is possible to see all the six fundamental
parameters (the first six of the list) that define with the ΛCDM model. The most striking
characteristic of this model is, indeed, its unreasonable effectiveness for the description of
the history of the Universe using just 6 parameters. Though many of the ingredients of
the model remain highly mysterious from a fundamental physics point of view, ΛCDM is
one of the most successful phenomenological models.
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Figure 1.2: Table of all the fundamental parameters in ΛCDM cosmological model as measured
by the Planck mission [6].

1.3.2 The problem of the initial conditions

The Big Bang model was universally accepted after some fundamental observations about
the abundance of 4He and CMB radiation [9, 10]. Despite this, the model presents some
theoretical issues: we observe today that the Universe is the result of very unlikely initial
conditions. In order to understand these problems we define an important concept, the
one of horizon, as it is usually used in cosmology. Here we will use the notation adopted
in [1].

Particle Horizon: from the metric given in Eq. (1.1) one can define the distance traveled
by a light ray between two points of our spacetime. If we define

dl2 = dr2

1 −Kr
+ r2dΩ2

the comoving distance is given by

χp(t) = ∫
l(t)

0
dl′

The isotropy of the space allows us to consider a fixed angle (dΩ = 0), from ds2 we
have:

dt

a(t)
= dr√

1 −Kr
,
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hence the comoving distance results to be

χp(t) = ∫
r(t)

0

dr√
1 −Kr

= ∫
t

0

dt′

a(t′)
. (1.52)

It is known that in general, in cosmology, if we want a physical quantity one as to
multiply the comoving quantity for the scale factor

λphys = a(t)λcom.

Hence if we want the proper, or physical, distance travelled by a light ray we obtain
the so-called particle horizon:

dH = a(t)∫
t

0

dt′

a(t′)
. (1.53)

dH(t) defines the radius of a sphere centered in the observer within which are con-
tained all the points that may have come into causal connection with the observer
until the time t. If one point is outside this sphere then it cannot have been influ-
enced in any way from the observer (and vice versa). More generally: if two points
are separated by a distance greater than dH(t) then they have never been in causal
connection.
We have seen that in the the standard FLRW models this relation between the scale
factor and the time holds

a(t) ∝ tα,

with α = 2
3(1+w) . So, looking at Eq. (1.53) we see that the integral converges if α < 1,

i.e. if w > −1/3 and, in particular, in this case assumes the form

dH(t) = 3(1 +w)
3w + 1

t. (1.54)

We also note that from the Friedmann equation (1.23) the condition on the value of
w for the convergence of the particle horizon corresponds to ä(t) < 0.
Hence, in a decelerated Universe the particle horizon exists.

Hubble horizon: be τH ≡ H−1 the Hubble time, the expansion characteristic time (re-
member that H can be interpreted as the expansion rate of the Universe). We can
now define the Hubble radius, in natural units

RH(t) =H−1(t) = τH , (1.55)

which represents the distance travelled by a photon in a Hubble time. RH tells us
which are the points that have been in causal connection in a Hubble time.
The corresponding comoving Hubble radius is:

rH(t) = RH(t)
a(t)

= (aH)−1 = 1
ȧ(t)

. (1.56)

Like the particle horizon, the comoving Hubble radius represents a measure of the
distance under which two points in the Universe are causally connected. The spher-
ical region centered in the observer with radius rH(t) contains all the points with
which the observer is causally connected at the time t. For this reason the comoving
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Hubble radius is also called comoving Hubble horizon.
With a simple change of variable in Eq. (1.53) we can relate the particle horizon
with the Hubble horizon

dH(t) = a∫
t

0

dt′

a(t′)
= a∫

a

0

da′

a′
1
ȧ′

= a∫
a

0
d(log a)rH ,

i.e. the particle horizon is given by the logarithmic integral of the Hubble horizon.

Note that, despite their profound conceptual difference, the Hubble and the particle hori-
zon have the same value, except for a factor of the order ∼ O(1), compare the equations
(1.42) and (1.54). Now, we have all the elements to understand the so called horizon and
flatness problems of the standard Hot Big Bang model.

Horizon Problem

We have understood that a region of the Universe with a comoving characteristic length
λ can be all causal connected only if λ = rH , i.e. when the comoving Hubble horizon,
becomes larger than the characteristic length.
This means that physical processes that occur at t cannot causally connect the region
with dimension λ until t ≤ tH : this region will become causally connected when t > tH ,
i.e. when λ < rH . According to this argument if a region is large enough it gets in causal
connection only recently, but this is not what we observed with the CMB. In theory all
the photons that arrives to us from two different points of the last scattering surface with
an angular distance higher than θ ≃ 1.6°, which represents the angle subtended by the
horizon at the time of last scattering, have become causally connected only recently [4].
In other words, in a matter- or radiation-dominated Universe no physical influence could
have smoothed out initial inhomogeneities and brought points at at the redshift of the
recombination that are separated by more than a few degrees to the same temperature.
This is in contradiction with what we actually see. The COBE experiment [14] showed
that the background radiation was nearly homogeneous ad isotropic, all the points had the
same temperature with very small fluctuations of the order ∆T

T ∼ 10−5. The instrument
had an angular resolution of ∆θ ∼ 7°, i.e. was observing regions causally disconnected
(more precisely, regions that have become causally connected only in recent times). This
is a problem: how it is possible that two regions, which were not able to talk to each other
for their entire past evolution history, are observed to have the same properties (same
temperature, same energy density)?
Another way to see the problem is the following: consider the metric in Eq. (1.1) and
carry out the following change of coordinates:

dτ = dt
a
,

r = fK(χ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

sinhχ if K=-1
χ if K=0
sinχ if K=+1

.

With this choice the metric becomes

ds2 = a2(τ) [−dτ2 + dχ2 + f2
K(χ)dΩ2]
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Figure 1.3: Conformal diagram of Big Bang cosmology. Here becomes clear that different
patches of the Last Scattering Surface, in this scenario, are causally disconnected, contrary to
what we observe today [15].

i.e., in this coordinate system the structure of the spacetime is analogous to that of
Minkowski’s, it is said to be conformally flat; if we look at the light cones of a light
ray that travels with radial direction (dΩ2 = 0) we obtain exactly the same situation as in
Minkowski spacetime:

dτ = ±dχ.

In Fig. 1.3 we can see that the two light cone that leave a point at the recombination
time, which are part of the last scattering surface (CMB), will never meet in the past with
another light cone of the same constant-time hypersurface, because of the limit imposed by
the Big Bang. In the right figure of Fig. 1.3 one can see a schematic representation of what
we mentioned above: two light rays starting from different points of the last-scattering
surface, which have never been in causal connection before, arrives at the observer in the
center, us, showing almost the same properties. How is it possible if they have never had
the possibility to communicate each other? Is there a dynamical process which explains
what we observe today?

Flatness Problem

From recent observations and studies on the CMB [6, 7, 16] it results that our Universe is
compatible with the solution of a spatially flat Universe, i.e. with a value of K, present in
the FLRWmetric, compatible with 0. Why we consider this as an issue within the standard
Hot Big Bang model? In order to understand it we need to consider in the Friedmann
equation (1.24) also the contribution deriving from the curvature K. It becomes

H2 = 8πG
3

ρ − K
a2 . (1.57)

We can define the critical density

ρc =
3H2

8πG
, (1.58)

as the density needed to have a Universe with null spatial curvature. We can also define
the density parameter as the ratio between the energy density of the cosmic fluid at the
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time t and the critical energy density at the time t

Ω(t) ≡ ρ(t)
ρc(t)

= 8πG
3H2 ρ(t). (1.59)

Now substituting Eq. (1.59) in Eq. (1.57) we can rewrite the Friedmann equation as

1 = Ω(t) − K

a2H2

or
Ω(t) − 1 = K

a2H2 ,

and, in the end, if we now remember the definition of the Hubble comoving horizon given
in Eq. (1.56) we obtain

Ω(t) − 1 =Kr2
H(t). (1.60)

This equation describes the evolution of the density parameter with respect to time, and
in particular we see that its evolution is connected with the Hubble horizon. This equation
tells us one important thing: if the Universe is perfectly flat then Ω = 1 exactly, but if
Ω(t) ≠ 1, the difference between Ω and 1 will grows as fast as rH does. In fact we have
seen above that rH during a matter- or radiation-dominated era grows while time passes;
vice versa, going backwards in time the density parameter will be closer to 1. Today the
measured value for Ω(t) is [7]

∣Ω0 − 1∣ = 0.0007 ± 0.0019 (68%).

Eq. (1.60) tells us that the value at the beginning of the Universe was much closer to 1
with respect to today. We take as reference time for the primordial Universe the Planck
time tPl ∼ 10−44 s after the Big Bang. This is the time below which the modern quantum
field theory description of the nature’s law is incomplete. By a direct estimation we find
[3, 15]:

∣Ω(tPl) − 1∣ ≃ ∣Ω0 − 1∣ ⋅ 10−60

or
∣Ω(tPl) − 1∣ ≤ 10−62

i.e., at the beginning of the Universe the spatial curvature needed to be extremely close to
1 (with one part over 1062). This is a problem because the probability that the Universe
was exactly spatially flat is null (is one configuration over infinite possibilities): this issue
is also called fine tuning problem.

Unwanted Relics

According to several extensions of the Standard Model of particles (e.g. Grand Unification
Theories GUT or string theories), in the early Universe at very high energies, the ones
predicted in the Hot Big Bang model, various cosmological defects, such as magnetic
monopoles, cosmic strings, domain walls and so on, could have been produced, which would
still be present in the Universe, with an abundance that would overclose the Universe by
many orders of magnitudes. These are called cosmological relicts, and they represent a
problem, the so called problem of unwanted relics or magnetic monopoles problem, since
what we observe today is an almost spatially-flat Universe. Historically the problem of
the magnetic monopoles was the first theoretical evidence of the necessity to introduce
Inflation in the primordial Universe [17, 18]. The Inflation provides a powerful solution
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also for this kind of problem. If we call X the relic particle hence its number density will
have a behavior nX ∼ a−3 where a is the scale factor. If we have a primordial era in which
the expansion was (nearly) exponential, as Inflation is, a ∼ eHt and the number density is
exponentially suppressed nX ∼ e−3Ht. We refer the reader to Refs. [1, 19] for more details
about other types of cosmological relicts.

1.3.3 A possible solution

Before giving a solution to the horizon and flatness problems we should spend some words
about these issue of the primordial Universe. The flatness and the homogeneity of areas
causally disconnected would not be so problematic if one assumes that the initial condi-
tions of the Universe were exactly the flatness and the homogeneity and isotropy. So, why
we do not accept the very high grade of order of the primordial Universe and solve these
two problems before they even arise? Because if we consider all the possible Universes,
the possibilities that a Universe started with a high level of order are very few (more
precisely, they are null): one can even say that the initial conditions of the Universe were
exactly those necessary to guarantee the existence of intelligent life. This statement goes
under the name of anthropic principle, but it is not a real answer to our questions and
not all the physicist accept it [1]. We are looking for a theory, a mechanism that explains
these initial conditions dynamically: we will analyze the Inflationary Universe solution,
the most accredited theory about the primordial Universe and the one which is up to now
in complete agreement with different cosmological observations (we will see that besides
solving the Big Bang puzzles, it will also explain the origin of the Large-Scale structure
of the Universe).

Figure 1.4: In the left figure we can see that, during the inflationary period, the comoving
Hubble sphere has been shrunk, becoming smaller of the causally connected region at early
times. On the right we can see the comoving length of the region considered that remains
constant all along the cosmological evolution. At a certain time it exits the horizon, while
Inflation occurs. Then it re-enters the horizon at late times [3, 15].

We can solve both the problem of causally-connected regions and the flatness one
assuming that before the radiation-dominated era there was an epoch where ṙH(t) < 0,
i.e. a primordial era during which the Hubble comoving horizon decreases instead of
increasing as it usually happens in the standard FLRW Universes. Given this, the regions
of dimension λ that entered the horizon only recently were already causally connected
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during inflation, see Fig. 1.4. In particular, assuming a decreasing Hubble horizon means
assuming an epoch of accelerated expansion:

ṙH(t) = − ä
a2 < 0 ⇒ ä(t) > 0. (1.61)

Hence we will call Inflation, in full generality, a primordial epoch of the Universe where
the expansion is accelerated.
We have seen above that we need an accelerated expansion, Eq. (1.61), but looking at Eq.
(1.23) we see that this corresponds to have a component with an effective pressure given
by

p < −1
3
ρ, (1.62)

i.e. with a negative pressure, assuming ρ is positive. We have seen a particular case in
the previous section which is compatible with the condition (1.62), the case of a Universe
dominated by an exotic component with constant energy density and w = −1 exactly. In
this case the Hubble scale factor is exactly constant in time while increases exponentially
with the law

a(t) = a⋆eH(t−t⋆) (1.63)
where tstar is some reference time and astar ≡ a(t⋆). If the dominant component during
Inflation had exactly w = −1 we would have an eternal exponentially expanding Universe.
In order to have a finite inflationary period we need a primordial era described by a slowly
varying Hubble parameter, as we will formalize later, which corresponds to have a quasi-de
Sitter Universe

a(t) ∝ eHt. (1.64)
The condition of an accelerated expansion period is not sufficient to solve the horizon
problem: we must impose also a condition on the duration of this accelerated expansion
era. In fact Inflation needed to begin at a time ti such that the comoving Hubble horizon
at that time was larger than what we observe today: we need this condition to explain
the high degree of homogeneity on regions of the Universe that, for us, have entered the
horizon only recently. Imposing this condition means that the regions we observe today
were already causally connected, then they exited the comoving Hubble horizon (because
it was decreasing during inflation) and re-entered the horizon after inflation, showing
homogeneity and isotropy. Quantitatively we can write

rH(ti) ≥ rH(t0). (1.65)

We see now that this equation can be interpreted as a condition on the total duration of
Inflation.
A region of physical dimensions a(ti)rH(ti), where ti is the time when Inflation begins,
expands, during inflation, by a factor

Z ≡
a(tf)
a(ti)

, (1.66)

which can be rewritten as

Z =
a(tf)
a(ti)

= exp{[∫
tf

ti
H(t)dt]} = eNinf .

We have introduced the quantity Ninf , which is called the number of e-foldings. It gives
a natural measure for the duration of the inflation

Ninf = log [
a(tf)
a(ti)

] (1.67)
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Our question now is: which is the necessary e-foldings number to solve the horizon prob-
lem? The answer comes from Eq.(1.65): with some trivial calculations one finds

Ninf ≥ log ( T0
H0

) + log(Hi

Tf
) (1.68)

where T0 and H0 are the temperature and the Hubble parameter at the present time, Hi is
the Hubble parameter at the beginning of Inflation and Tf is the temperature at the end
of Inflation. The first term on the right hand side of Eq. (1.68) is known experimentally,
given that [7, 20]

H0 = (67.66 ± 0.42)km s−1Mpc−1 (68%CL),

T0 = (2.72548 ± 0.00057)K (95%CL) (1.69)

and results to be
log ( T0

H0
) ≃ 67,

while the second term depends on the model of Inflation considered and in particular it
depends on how the Inflation ends. We will see that the inflationary period will end with
a mechanism called reheating, a phase in which the scalar field decays into light particles
which reheat the Universe so that the standard Hot Big Bang phase, in a radiation-
dominated epoch, could start. This heuristic description of the end of Inflation allow us
to estimate also the second term in the left hand side of Eq. (1.68). If we consider a
constant Hubble parameter during all the inflationary period, i.e. Hi ≃ Hinf ≃ const., we
have, using Friedmann equation together with (1.47)

H2
inf =

8πG
3

ρr =
8πG

3
π2

30
gT 4∣

te

,

where te means the time at which the end of Inflation occurs. In natural units we have
MPl = G−1/2 = TPl, so that we can give an approximate measure of Hi

H2
i =H2

inf ≃
T 4
e

T 2
Pl

→ Hi

Te
≃
Tf

TPl
.

Given that [21]
10−5 ≤ Te

TPl
≤ 1,

we can estimate a range of possible values

log(Hi

Tf
) ≃ log ( Te

TPl
) ∈ [−11,0].

Hence we obtain a range for the possible values of Ninf

Ninf > (56 − 67),

which means that the minimal number of e-folds is around 60, that corresponds to a total
expansion during Inflation of a factor

af

ai
= eNinf ≃ 1026 − 1030.

We can see that this minimal number of e-foldings, a measure of the expansion factor
during inflation, solves also the flatness problem. In fact we have seen that the density

17



parameter is strictly correlated to the comoving Hubble horizon through Eq. (1.60) and
during an epoch dominated by radiation it tends to grow. But in an epoch with accelerated
expansion the comoving Hubble horizon decreases, Eq. (1.61). If we have a de Sitter
Universe, with a metric (1.79) which satisfies the condition (1.64), we have

Ω(t) − 1 ∝ r2
H(t) = 1

a2H2 ∝ e−2Ht,

i.e. the inflationary phase exponentially suppresses the deviation of Ω from 1. In this
sense we can describe Inflation as an attractor mechanism. The problem of the curvature
of the Universe can be solved if we require that

Ω−1
i − 1

Ω−1
0 − 1

≥ 1, (1.70)

i.e. if the density parameter at the beginning of Inflation is more distant from 1 with
respect to today (for this computation it is more convenient using the difference between
Ω−1 and 1). Using the definition of Eq. (1.67) and after some tedious but straightforward
calculations we find that the minimum number of the e-foldings to solve the flatness
problem turns out to be

Ninf ≃ 60 ∼ 70,

the same as in the case of the horizon problem. Therefore we can state that solving the
horizon problem is equivalent to solve the flatness problem. This result does not come as
a surprise because of the dependence of the density parameter from the Hubble horizon.
We have found a new dynamical way to solve these two problems; the inflationary scenario
seems very attractive to us because it describes a mechanism which, whatever are the ini-
tial conditions (spatial curvature, inhomogeneities or anisotropies), attracts the Universe
towards a FLRW solution, that is exactly what we were looking for. What are the physical
implication of inflation? How does Inflation know when to stop? Is there new physics?
These and other questions will be faced up in the following chapter.

1.4 Inflation

The first proposal to solve the problems we described in the previous chapter was the
theory of cosmic Inflation [17, 18],[22]-[26]; this theory was born to solve principally the
problem of the so-called cosmic relics, the appearing of new particles in the context of the
spontaneous symmetry breaking of GUT theories [17, 18, 25, 26]. This powerful solution
found in the early 80s was then studied and improved, until it became the standard model
for cosmological inflation, with specific observable predictions that have been investigated
in the last thirty years, and are still subject of active research.
In this chapter we will describe the dynamics of standard slow-roll models of inflation:
we will see in detail the primordial (quantum) perturbations of the inflaton (a scalar field
responsible of the inflationary era) and of the metric tensor. From this we will extract some
observables starting from the definition of some gauge invariant variables, studying their
statistics, and comparing them to the standard inflationary predictions. We will work with
linear perturbations for the moment, making observational predictions about the Gaussian
statistics of such perturbations. Indeed we will see that the some crucial observables will
emerge from the non-Gaussianities of the primordial, inflationary, perturbations that will
be analyzed in the next chapters.
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1.4.1 Slow-Roll paradigm

In the previous chapter we described a kinematical process to solve the flatness and the
horizon problems that contemplates the presence of a “fluid” with equation of state (1.62).
There exist a dynamical process that can explain this negative pressure? We will see that
the slow-roll paradigm has a very simple field theory description: it involves only the
Einstein general theory of Relativity and a real scalar field, minimally coupled to the
gravity [27]. The action we will consider is the following

S =
M2
pl

2 ∫ dx4√−gR + ∫ dx4√−gLφ[φ, gµν] + SM , (1.71)

with g ≡ det gµν .
The first term in Eq.(1.71) is clearly the Hilbert-Einstein action [5], with R the scalar
curvature; the second terms involves Lφ, which represents the Lagrangian density of a
scalar field φ, whose dependence on the metric is explicitly highlighted by the presence of
the metric gµν ; SM represents the action of other fields and possible interactions with the
scalar field (fermionic fields, gauge bosons and others) that, we will see, give in general
negligible contribution during Inflation. We consider now the dynamics of a scalar field
with Lagrangian density.

Lφ = −
1
2
gµν∂µφ∂νφ − V (φ). (1.72)

Note that in general in the kinetic term one should use the covariant derivative instead
of the partial derivative, but for a scalar field we have ∇µφ = ∂µφ. V (φ) is the potential
term that takes into account the φ mass term, auto-interactions of the field and and
eventually interactions of φ with other fields that have been integrated out or vacuum
loop-corrections.
We can associate a symmetric stress-energy tensor to our field, using the well-known
definition given in General Relativity [5]

Tµν ≡ −
2

√−g
δ(√−gL)
δgµν

, (1.73)

where L represents the Lagrangian of any matter component. The functional derivative
δ/δgµν can be rewritten in terms of partial derivatives with respect to the metric

Tµν = −
2

√−g
[
∂(√−gL)
∂gµν

− ∂α (
∂(√−gL)
∂gµν,α

) + ...] . (1.74)

The dots represent terms with higher order derivative with respect to gµν5.
After some trivial calculations we obtain, in the case of a minimally coupled scalar

field
T φµν = ∂µφ∂νφ − gµν (−

1
2
gρσ∂ρφ∂σφ − V (φ)) . (1.75)

5Terms like
∂α (

∂(√−gL)
∂gµν,α

)

are different from 0 if in the Lagrangian are present terms of the form ξφR2, i.e. when the scalar field
is directly coupled with gravity. This is the case of a non-minimal coupling, appearing in scalar-tensor
theories of gravity [28, 19].
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Figure 1.5: Example of inflationary potential with an almost flat region. While the inflaton
slowly rolls on the flat region of the potential the slow-roll parameters respect the condition
ε, ∣η∣ ≪ 1. When the inflaton arrives around the minimum of the potential these condition are
violated and reheating starts [29], see Section 1.4.3.

In general the two fields gµν and φ will depend both on the space and time coordinates, but
we have seen in the previous chapter that we observe an approximately homogeneous and
isotropic Universe on large, cosmological, scales. These two properties can be translated,
in the mathematical language, as the invariance of the metric under spatial translations
and rotations (we will see how important are these two conditions), i.e., the (background)
metric depends only on time. Given that the Inflation mechanism driven by φ has been
introduced to explain the problem of initial conditions, also his background value, which
we will indicate with φ0, will depend only on time. For the metric, the background value
is simply the Friedmann-Lemaitre-Robertson-Walker metric in (1.3), the solution for a
homogeneous and isotropic Universe. Given this, we can split our fields, the metric and
the inflaton, into two parts, the background value and the perturbation:

φ(x, t) = φ0(t) + δφ(x, t), (1.76)

gµν(x, t) = g(0)µν (t) + δgµν(x, t). (1.77)

Both the perturbation will, in general, depend also on space coordinates.
This splitting is a good approximation in the case

⟨δφ2⟩ ≪ φ2
0(t) (1.78)

and, from an observational point of view, we do expect that this property needs to be
satisfied if we want to come up with a Universe where the temperature anisotropies of the
CMB are very small ∆T /T ∼ 10−5.

To understand the basics of the inflationary mechanism we begin studying the background
dynamics, then we will add the (quantum) perturbations.
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1.4.2 Background Dynamics of Inflation

The background dynamics is important because it describes the accelerated expansion
during the inflationary period. In the following we will use the FLRW metric with null
spatial curvature, i.e. the background solution for our Universe

ds2 = −dt2 + a2(t)δijdxidxj . (1.79)

Our scalar field background will have the same properties, homogeneity and isotropy, so
its stress-energy tensor will be of the form

T φ00 = ρφ0 , (1.80)
T φij = pφ0gij , (1.81)

and using Eq. (1.75), we obtain

ρφ0 =
1
2
φ̇2

0 + V (φ0), (1.82)

pφ0 =
1
2
φ̇2

0 − V (φ0). (1.83)

These results for the energy density and the pressure of the scalar field show us that it
is possible to realize and inflationary epoch, thanks to the presence of the −V -term in
the expression of the pressure. In fact, for certain values of the interaction potential it
is possible to have a negative pressure satisfying the condition (1.62), i.e. accelerated
expansion. The condition given in Eq. (1.62) translates, for our field, into

V > φ̇2
0.

If we consider now a Universe dominated by the field φ with a potential much larger than
its kinetic term

1
2
φ̇2

0 ≪ V, (1.84)

then from Eq. (1.82) and (1.83) we obtain

pφ0 ≃ −ρφ0 . (1.85)

In the previous chapter we derived the evolution equation for the scale factor a in the
case of an exact equality in the previous expression: it represents the solution of a quasi
de Sitter Universe. In our case, Eq (1.85) represents a quasi-de Sitter Universe with
accelerated and nearly exponential expansion

a(t) ≃ a0e
Ht.

What does Eq. (1.84) represent from a dynamical point of view? It is telling to us that
the field is moving very slowly with respect to its potential: this kind of motion is called
slow-roll of the scalar field. We can see that this condition corresponds to have an almost
flat potential for all the duration of Inflation. If we substitute Eq. (1.84) into Eq. (1.24)
we obtain

H2 = 8
3
πGρφ ≃

8
3
πGV (φ) ≃ const (1.86)

where the last equalities holds for a quasi-de Sitter Universe.
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We look now the evolution of the background of the scalar field: the equation of motion
for a scalar field with a potential term is described by the Klein-Gordon equation

� φ = ∂V
∂φ

, (1.87)

where, for a curved Universe, the box operator takes the form [19]

� φ = 1
√−g

∂µ (
√
−g gµν∂νφ) . (1.88)

We obtain, after some trivial calculations, the equation of motion of φ0(t)

φ̈0 + 3 ȧ
a
φ̇0 = −

∂V

∂φ
. (1.89)

The term Hφ̇0 is the true difference between the Minkowski and the FLRW metric: it
takes into account the expansion of the Universe and represents a sort of friction term.
Summing up, we have seen that a scalar field is sufficient to generate an inflationary epoch,
but we need to constrain its potential (essentially its auto-interactions); now we want to
define some model-independent parameters useful to describe, in a general way, the various
models of Inflation. Then we will analyze also the perturbations of the scalar field.

We have just seen that the minimal condition we need to have cosmic Inflation is to
have a potential term much larger than the kinetic one. In Eq. (1.86) it is fundamental
to have an approximate equality, i.e. to have a potential that is almost constant, but not
exactly constant. This ensures that the inflationary epoch will have an end. Eq. (1.86)
also shows that the Hubble parameter must remain almost constant while the nearly
exponential expansion. The variation of a generic quantity f in an expanding Universe
with scale factor a(t) can be estimated by the parameter

εf =
d log f
d log a

= ḟ

Hf
, (1.90)

which gives a measure of the variation of f with respect the expansion of the Universe.
Therefore we can define a similar parameter for the Hubble parameter, defining the first
slow-roll parameter using (1.90)

ε ≡ − Ḣ
H2 . (1.91)

Remind that the expression for the Hubble parameter H = ȧ/a so its variation w.r.t. time
is given by

Ḣ = ä
a
− ( ȧ

a
)

2
= ä
a
−H2,

hence
ä = aH2 (1 + Ḣ

H2) .

Imposing an accelerated phase expansion we obtain:

ä > 0⇒ − Ḣ
H2 < 1

i.e., the Hubble parameter must vary slower than its squared value. For a quasi-de Sitter
we want

− Ḣ
H2 ≪ 1
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i.e.
ε≪ 1. (1.92)

This condition has been found without constraining our theory of Inflation or the form
of the potential. However we will see that (1.92) could be translated into a condition for
the potential of the scalar field using the Friedmann equations. As a first insight one can
easily see that, deriving with respect to time Eq. (1.24) with Eq. (1.82) and Eq. (1.89),
condition (1.92) corresponds automatically to the condition (1.84). The other request we
need to satisfy is about the duration of Inflation. We have seen above that the horizon
problem (but also the flatness problem) imposes to Inflation to last long enough to allow
the causal connection of an area of the Universe large enough to justify what we see today.
This means that the Hubble parameter must stay constant for at least the necessary time
for the Universe to expand of a number of e-folds around N ∼ 60−70. This is equivalent to
ask that ε varies very slowly during the inflationary period. If we define dN = d lna =Hdt,
we see that we can define the parameter

η ≡ d ln ε
dN

= ε̇

Hε
. (1.93)

For this parameter we will ask again
η ≪ 1. (1.94)

It is easy to see that this condition corresponds to [28]

φ̈≪ 3Hφ̇

Eq. (1.92) and (1.94) are the so called slow-roll conditions.

Related to the parameters above we can also define a new couple of parameters εV and
ηV that take into account the form of the potential of the theory [30, 31]

εV =
M2
pl

2
(V

′

V
)

2
(1.95)

ηV =M2
pl

V ′′

V
, (1.96)

that can be rewritten also as
ηV = 1

3
V ′′

H2 . (1.97)

Here with ′ we mean a derivation of the potential w.r.t the scalar field V ′ ≡ ∂V
∂φ . In the

slow-roll approximation it is easy to demonstrate that

ε ≃ εV , η ≃ ηV − εV . (1.98)

Then, ε and η are adimensional parameters that will be different between the various
theories because they depend on the kind of potential chosen. Eq. (1.95) and (1.96) show
explicitly that the potential of the scalar field has to be rather flat relative to its height
[32]. We will see, in particular when studying the theories of solid inflation, and similar
ones (which are the focus of this Thesis), that the definitions (1.91) and (1.93) are more
general. Indeed in other theories these two definitions, with their conditions, will ensure
the possibility to have an inflationary period long enough [32].
The experimental bounds on the slow-roll parameters given by the Planck satellite are [21]

εV < 0.0097 (95%CL), (1.99)

ηV = −0.010+0.0078
−0.0072 (68%CL). (1.100)
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1.4.3 Reheating

What happened when the Inflation ended? We know that the observable results are in good
agreement with the predictions given by the standard Hot Big Bang Model. Therefore we
need a mechanism that allow the transition from the inflationary period to the standard
FLRW Universe dominated by the radiation. This period of transition is the so-called
reheating.
We know that Inflation holds as long as ε, ∣η∣ ≪ 1, so Inflation ends when ε, ∣η∣ → 1, when
the potential that drives Inflation is not much flat as before. If the potential is of the form
given in Fig. 1.5, we have that at the point of minimum σ for the potential it will acquire
a mass and starts oscillating,

V ′(φ) ≃ V ′(σ) + V ′′(σ)φ = 0,

with V ′(σ) = 0. The equation of motion for the scalar field becomes

φ̈ + 3Hφ̇ + V ′′(σ)φ = 0.

This is the standard evolution equation for an oscillating field in an expanding Universe.
A possible reheating mechanism is the following: while oscillating the field starts decaying
into light an relativistic particles, giving rise to the standard radiation dominated epoch.
To the evolution equation we need to add a term which takes into account the decays of
the scalar field

φ̈ + (3H + Γφ)φ̇ + V ′(φ) = 0, (1.101)

where Γφ is the decay rate of the inflaton. This expression can be manipulated and
becomes [1]

ρ̇φ + (3H + Γφ)ρφ = 0. (1.102)

Inside Γφ there are information about the model adopted for the Inflation and the energies
at which it occurs. These will not be described here. Eventually, the inflationary energy
density is converted into standard model degrees of freedom and the Hot Big Bang starts.

1.4.4 A digression on the charm of the Inflation model

We conclude this chapter outlining a fundamental principle, which we will not completely
describe, but we will mention it for its importance.
We have seen the problems arising in the Big Bang theory are solved by the slow-roll
Inflation paradigm. We have found a dynamical process which explains the homogeneity,
the isotropy and the flatness of our Universe, starting from the more general condition of
anisotropy or curved Universe. We can easily see what we stated above by considering the
Friedmann equation for the Hubble parameter

H2 = 8πG
3

(ρφ + ρr) −
K

a

2
.

Here we are also considering the contribution to the energy density due to the radiation
and the term which takes into account the possible curvature of the Universe. During
Inflation we have seen that the scalar field mimics an cosmological constant, so its energy
density is essentially not diluted by the expansion of the Universe, while the radiation
energy density and the curvature term have a behavior ρr ∝ a−4 and K/a2 ∝ a−2. If we
start with an expanding Universe, at a certain moment the inflaton will dominate over all
the possible fluid components of the Universe.
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This means that, starting from generic conditions, the Universe is attracted to an infla-
tionary epoch: except for the scalar field, all the other components are wiped out. This is
a qualitative formulation of the cosmic no-hair theorem [33, 34, 1].
The cosmic no-hair theorem guarantees that also anisotropic and inhomogeneous initial
conditions will go through the homogeneous and isotropic solution, which therefore jus-
tifies in the previous sections the use of a FLRW metric. We can take, for example, a
homogeneous but not isotropic Universe6. The metric in this case could take the form

ds2 = −dt2 + a2
x(t)dx2 + a2

y(t)dy2 + a2
z(t)dz2

with ax(t) ≠ ay(t) ≠ az(t). In this solution we have a Universe that expands differently
along the three directions x,y and z. It is possible to define a mean scale factor

ā = (axayaz)1/3 = V 1/3,

and we can write an equation analogous to the Friedmann equation

H2 = (
˙̄a
ā
)

2
= 1

2
( V̇
V

) = 8πG
3

(ρφ + ρm + ρr + . . . ) + F (ax, ay, az).

The dots inside the parenthesis denotes all the possible contribution to the energy density.
The function F accounts for the effect of the anisotropic expansion on the mean expansion
rate. This function can be, in general, very complicated, but its crucial feature is that for
all the Bianchi models it scales at least as fast as ā−2 [33]. Again, if the energy terms
scales at most as ā−2, like radiation (ρr ∝ a−4) and pressure-less matter (ρr ∝ a−3), at a
certain moment the contribution of the inflaton will dominate, so the Inflation starts and
all the anisotropies are wiped out because ā∝ eHt.
Wald studied a Universe dominated by an exact cosmological constant ρφ = Λ in presence of
ordinary matter: under this condition the cosmic no-hair theorem is called Wald theorem
[34]. It affirms that all the Bianchi models, except for the IX Bianchi Universe, with
a positive cosmological constant become asymptotically a de Sitter Universe in a time
τW ∼ (8πGΛ

3 )−1/2. For a more general version of the cosmic no-hair theorem see [35].

6These are the so-called Bianchi models.
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Chapter 2

Cosmological perturbations

Figure 2.1: This is a photo of our Universe when it was almost 380000 years old. We see that,
despite the assumption of homogeneity and isotropy, it presents small perturbations. This is an
image based on the temperature measurements of the CMB, showing small anisotropies of the
order ∆T

T
∼ 10−5. These small perturbations are the seeds for the formation of the Large Scale

Structure of the Universe [36].

The measurements on CMB show us a Universe which is neither homogeneous nor
isotropic. It presents, indeed, small fluctuations in temperature, which are strictly con-
nected with the primordial density perturbation [28]. This observational results does not
surprise: the Universe as can be observed from anyone is not isotropic. Looking at the
sky we can see structures of different shape, size and complexity, such as planets, stars,
galaxies, clusters of galaxies and so on. The observed perturbation pattern would explain
the inhomogeneities we easily see: more precisely it would explain the structure of the
Universe at Large Scales. However, in the Chapter 1 we have seen that the inflationary
model is a natural attractor mechanism: regardless the initial conditions of the Universe,
after the Inflation it will be well described by (1.1) with null spatial curvature. An obvious
question arises: which is the cause of the primordial fluctuations we observe in the CMB?
The full treatise we gave in the previous chapter solves the Big Bang puzzles, but what
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about the perturbations? In this chapter we will see that the most powerful prediction
of inflationary model is the production of perturbations due to (quantum) oscillations of
the scalar field around its background value. Here we will study the perturbation theory
in the context of General Relativity, perturbing both the scalar field and the metric, in
accordance with the Einstein field equations. We will then calculate what are the possible
observable predictions.

2.1 Perturbation theory in General Relativity

We know that the perturbations of the scalar field are connected with the density pertur-
bation of the cosmic fluid [28]. Recall that the Einstein equations,

Gµν = 8πGTµν ,

affirm that a perturbation in the right-hand side, i.e. a perturbation in the stress-energy
tensor, entails a perturbation in the left-hand side, i.e. the metric, and vice versa. This
means that perturbing the scalar field implies that we also need to consider the metric
perturbations. We can see that the case we are interested in necessarily needs a general
relativistic approach: we will describe of to extend the Newtonian perturbative approach
(Jeans instability) [37] to a more general case. In which limit it is allowed to use the non
relativistic approach without doing large mistakes? To evaluate it we consider the linearly
perturbed Poisson equation for the gravitational potential

∇2ϕ = 4πGδρ = 4πGρ̄δ (2.1)

with δ ≡ δρ/ρ̄ and ρ̄ is the mean value of the matter density. Here ϕ denotes the pertur-
bation of the gravitational potential [5]. Using the Friedmann equation

H2 = 8
3
πGρ̄

we obtain
∇2ϕ = 3

2
H2δ.

We can define λH ≡ H−1 as the physical Hubble radius (or length, or wavelength). If
we indicate the characteristic length of the gravitational potential perturbation, i.e. the
length in which the gravitational field varies significantly, with λ, to the first order we
have:

ϕ

c2 ∼ ( λ

λH
)

2
δ. (2.2)

Note that here the light speed, c, has been explicated. It is necessary a relativistic approach
in the case ϕ/c2 ∼ 1. From Eq. (2.2) we can extrapolate the conditions in which it is
necessary to use the Einstein equations. We know that δ ∼ 10−5 [36], hence there are three
possibilities:

• λ = λH , i.e. when we consider scales of the order of the Hubble horizon;

• λ≪ λH , i.e. scales much smaller than the horizon;

• λ > λH , i.e. scales larger than the Hubble horizon.
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The first two cases imply ϕ/c2 ≪ 1, so one can easily use the Newtonian approach in these
two limits. In particular, in the second one, one can use the Newtonian approach both in
the case of linear perturbation δ ≲ 1 and in the case of non-linear perturbation δ ≳ 1, i.e.
when the amplitude of the perturbation has the same order of the density mean value.
The third case is the most interesting. When we consider scales higher than the Hubble
horizon we necessarily need to use the general relativistic approach. In particular we are
interested in this case because the CMB is part of this case. We will give a treatise of
perturbation theory in General Relativity.

Throughout this work we are assuming that our observable Universe can be approx-
imately be described by a homogeneous and isotropic FLRW spacetime. Thus we are
assuming that Eqs. (1.76) and (1.77) are valid, i.e. that the metric and the scalar
field can usefully be decomposed into a homogeneous background (which dynamics we
have already described) and inhomogeneous perturbations. The perturbations thus live
on the background spacetime and it is this background spacetime which is used to split
four-dimensional spacetime into spatial three-hypersurfaces, using a (3+1) decomposition
[38, 39].
We start defining arbitrary perturbations of tensorial quantities and then proceed by de-
composing vectors and tensors in “time” and “space” parts on the spatial hypersurfaces.

Any tensorial quantity, of our interest, can be split into a homogeneous background
and an inhomogeneous perturbation

T (t,x) = T0(t) + δT (t,x). (2.3)

Here T0(t) represents the value of the tensor in the background spacetime (FLRW),M0,
depending only on t for obvious reasons. T is the tensor in the perturbed spacetimeMλ.
The perturbation can be further expanded as a power series

δT (t,x) =
∞
∑
n=1

λn

n!
δTn(t,x), (2.4)

where the subscript n denotes the order of the perturbations, and we explicitly include here
the small parameter λ. In linear perturbation theory, for example, we only consider first-
order terms, λ1, and can neglect terms resulting from the product of two perturbations,
which would necessarily be of order λ2 or higher, which considerably simplifies the resulting
equations. In the following sections we shall omit the small parameter λ whenever possible,
as it is usually done to avoid the equations getting too cluttered.
Because the perturbations are small, i.e. ∣δT ∣ ≪ ∣T0∣, expanding the Einstein equations
at linear order in perturbations approximates the full non-linear solution to very high
accuracy

δGµν = 8πGδTµν . (2.5)
We will use these perturbed Einstein’s equations to study the dynamics of the perturba-
tions.

2.1.1 Gauge problem

We need now to consider a peculiarity arising in General Relativity. If we rewrite Eq.
(2.4) as

δT = T − T0,
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Figure 2.2: Passive approach in perturbation theory. The point P is mapped into two different
point of the perturbed space through the definition of two different maps [38].

we see that the perturbation is defined, as usual, as the difference between the tensor
in the perturbed spacetime and the background one. In Generale Relativity when we
compare two tensors they need to be evaluated at the same point; here, instead, we are
comparing two tensors which lie in two different spacetimes. It is necessary to connect
these two spacetimes using a map, a diffeomorphism [38], which goes from the unperturbed
spacetimeM0 toMλ. We call this map ψλ

ψλ ∶ M0 Ð→Mλ

ψλ(P ) Ð→ O
(2.6)

where P ∈ M0 and O ∈ Mλ, the meaning of the subscript λ will be clear further. It is
obvious that ψλ is not the unique way one can use to go fromM0 toMλ, but, as can be
seen in the Fig. 2.2, one can choose a new map, ϕλ for example. A particular choice of
the correspondence betweenM andMλ is a gauge choice1. A change in the used map is
what we usually call a gauge transformation. The liberty in the choose of the gauge is very
useful tool: we can choose the gauge we prefer, to simplify the calculations or highlight
different physical features. But it is not so easy. A consequence of this freedom in the
choice is that changing the gauge entails different representations for the tensor T on the
spacetime M0. If T and T̃ are two different representations of a tensor due to different
gauge choices we have

δT = T − T0

δT̃ = T̃ − T0,

and, in general we will have δT̃ ≠ δT . This means that changing the gauge correspond
to a variation in the perturbation side. This feature is known under the name of gauge
problem. Why it is a problem? To understand it we follow [15].
Choosing a particular gauge could lead us to make a mistaken when studying pertur-
bations. In fact the freedom of choice translates in an explicit “gauge dependence” of
the perturbations. To demonstrate it we can consider an unperturbed homogeneous and
isotropic Universe (as our background is). We have seen that the energy density in this

1[40] stresses that the word gauge has a lot of different meanings, depending on the discipline, such as
physics or mathematics, or the approach used. Here and further we will use the definition given above,
without ambiguity.
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Figure 2.3: Active approach in perturbation theory. Two different points P of the starting
spacetime are mapped into the same point O using, again, two different maps [38].

Universe is only a function of cosmic time ρ(t,x) = ρ(t). We can consider now a new time
coordinate t̃ = t + δt(t,x). In general, the energy density in the new time slice will not be
homogeneous, due to the x dependence of the new coordinate, ρ̃(t̃,x) = ρ(t(t̃,x)). The
inhomogeneity of the density function implies the presence of new density perturbations,
but our hypothesis was homogeneity and isotropy! These new fictitious perturbations in
the energy density aren’t indeed physical, but entirely due to the choice of new time coor-
dinate. Similarly, we can remove a real perturbation in the energy density by choosing the
hypersurface of constant time to coincide with the hypersurface of constant energy den-
sity2. Then the perturbation in the new coordinates disappear, δρ̃ = 0, although they are
real inhomogeneities. To avoid this ambiguity we need to consider both the metric pertur-
bation and the matter-energy perturbation. For example, choosing a gauge where metric
perturbation are reabsorbed will make appear new perturbations in the matter-energy side
and vice versa. Otherwise, if this does not happen we are sure that the perturbation are
not real, but only due to our gauge choice. We will see that the standard approach to avoid
such an ambiguity is to identify combinations of perturbations which are gauge-invariant
quantities, that is to say quantities which are independent of the gauge transformation.

2.1.2 Gauge transformations

It is important to stress that a gauge transformation is different from a coordinate trans-
formation. To understand it we can consider the background spacetime M0, supposing
we have fixed the coordinate system xµ. Fixing a gauge ψλ, i.e. a map between points
means bringing intoMλ the coordinate fixed inM0. A gauge transformation corresponds
to a different choice of the map M0 Ð→Mλ once the background coordinates are fixed.
A coordinates transformation affects both the background spacetime and the perturbed
one.
Looking at Fig. 2.2 we can affirm that: ψλ identifies the point P ∈ M0 with the point
O ∈ Mλ and will assign to O the same coordinate system xµ. A new map (a new gauge
choice) ϕλ will identify the same starting point P the point O′ ∈ Mλ, assigning to O′ the
coordinates of P . In this view, a gauge transformation corresponds to a coordinate change
in the perturbed space Mλ. This interpretation is called passive view [41]. To make it
more clear we can proceed as follow. Given that the maps used are diffeomorphisms, they
must be invertible: thus we can define the inverse map ψ−1

λ as
2The choice of a particular gauge corresponds to the choice of spacelike hypersurfaces constant time t,

slicing of spacetime, and of the timelike worldlines of constant x, the threading of spacetime [15, 38, 39].
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ψ−1
λ ∶ Mλ Ð→M0

ψ−1
λ (O) Ð→ P.

(2.7)

Given also that

ϕλ ∶ M0 Ð→Mλ

ϕλ(P ) Ð→ O′ (2.8)

we can define the composition of this two maps, Ψλ, as a map that brings a point inMλ

to another point of the same spacetime: it can be interpreted as change of coordinates on
Mλ,

Ψλ ≡ ψ−1
λ ○ ϕλ ∶ Mλ Ð→Mλ

O Ð→ O′,
(2.9)

with Ψλ(O) = ϕλ (ψ−1
λ (O)) = O′.

For the active view we choose instead a point O ∈ Mλ and find the point P on M0
which maps to O under the gauge choice ψλ and the point Q, also on M0, which maps
to O under the gauge choice ϕλ, see Fig. 2.3, O = ψλ(P ) = ϕλ(Q). With an analogous
procedure, once fixed the coordinates xµ on M0, we can construct a map from M0 into
itself:

Φλ ≡ ϕ−1
λ ○ ψλ ∶ M0 Ð→M0

P Ð→ Q
(2.10)

with Φλ(P ) = ϕλ (ϕ−1
λ (P )) = Q. Again this gauge transformation can be interpreted as a

univocal correspondence between different points of the background spacetime. Φλ is also
called infinitesimal point transformation, see Fig. 2.6. In both the approaches we haven’t
changed the coordinates, which are still xµ, here we are considering two different points
of the same spacetime connected by a gauge transformation.
This allows us to calculate what are the tensor3 transformation laws under a gauge

Figure 2.4: Gauge transformation in the active approach. Through the mapping Φλ it is possible
to connect two different points of the same spacetime [38].

3For tensor here we indicate the most general mathematical object we will consider in our future
calculations. Further we will write the transformation law for scalars, vectors and tensors.
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transformation, in order to identify what are the possible gauge-invariants quantities we
can define.

Consider now the coordinate system xµ onM0 and the four-vector ξµ, which defines
the parametric curve, through the parameter λ,

dxµ
dλ

= ξµ, (2.11)

such that, given P ∈ M0, xµ(λ = 0) = P . Consider the point Q ∈ M0 at a parametric
distance λ from P along the defined curve. P will simply have coordinates xµ(P ), while
xµ(Q) will be the coordinates of Q4. At the first order in the parameter λ we have

xµ(Q) = xµ(P ) + λξµ(x(P )) + o(λ2). (2.12)

This is a direct way to construct the map Φλ defined above a an infinitesimal point
transformation, or active transformation, since we are working in the active approach. At
the zeroth order one has xµ(P ) ≃ x(Q), hence ξµ(x(P )) ≃ ξµ(x(Q)), therefore we can
write

xµ(P ) = xµ(Q) − λξµ(x(Q)). (2.13)

We see that Eq. (2.13) recalls an usual (passive) coordinate transformation

xµ Ð→ x′µ = xµ − ξµ (λ = 1),

where the new coordinate x′ is represented by the P’s coordinates. Hence we can introduce
a new coordinate system5 yµ in which Q has coordinates

yµ ≡ xµ(P ) Ð→ yµ(Q) = xµ(Q) − λξµ(Q).

The choice of the point Q is completely arbitrary, so this relation must hold for each point
in the spacetimeM0

yµ(λ) = xµ − λξµ. (2.14)

We are now ready to write the general transformation law for a tensor under a gauge
transformation. Given a tensor with m contravariant indices and n covariant indices on
the space M0 with coordinates system xµ, Tµ1...µm

ν1...νn(x(P )), we know that after a
gauge transformation it will take the form T̃µ1...µm

ν1...νn(x(P )). Can we relate T with T̃?
In the passive approach we have seen that the transformed tensor is not more than the
starting tensor but evaluated in another point of the spacetime. We have defined the new
coordinate system as xµ(P ) = yµ(Q), hence we can write

T̃µ1...µm
ν1...νn(x(P )) = T ′µ1...µm

ν1...νn(y(Q))

= ∂y
µ1

∂xα1
. . .

∂yµm

∂xm
∂xβ1

∂yν1
. . .

∂xβn

∂yνn
Tα1...αm

β1...βn
(x(Q)).

(2.15)

The first equality holds because we are going from the active view to the passive one; here
′ indicates the tensor T in the new coordinate system. The second equality is the general
transformation law for a tensor under a coordinates transformation[5]. For Eq. (2.14) we
have

∂yµ

∂xν
= δµν − λ∂νξµ

4We underline, again, that the coordinates of P and Q are defined in the same coordinate system.
5Here we are finally acting with a coordinates transformation.
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and
∂xµ

∂yν
= δµν + λ∂νξµ,

because at the zeroth order xµ ≃ yµ. Eq. (2.15) becomes, at the first order in λ

T̃µ1...µm
ν1...νn(x(P )) = (δµ1

α1 − λ∂α1ξ
µ1) . . . (δµmαm − λ∂αmξµm)

(δβ1
ν1 + λ∂ν1ξ

β1) . . . (δβnνn + λ∂νnξ
βn)Tα1...αm

β1...βn
(x(Q))

= Tµ1...µm
ν1...νn(x(Q))

− λ (∂α1ξ
µ1Tα1µ2...µm

ν1...νn + ⋅ ⋅ ⋅ + ∂αmξ
µmTµ1...µm−1αm

ν1...νn)

+ λ (∂ν1ξ
β1Tµ1...µm

β1ν2...νn
+ ⋅ ⋅ ⋅ + ∂νnξβnT

µ1...µm
ν1...νn−1βn

) .

(2.16)

We can now expand in Taylor series T (x(Q)) around the point P using Eq. (2.12)6:

T (x(Q)) ≃ T (x(P )) + λξν∂νT. (2.17)

Inserting Eq. (2.17) into Eq. (2.16) we have

T̃µ1...µm
ν1...νn(x(P )) = Tµ1...µm

ν1...νn(x(P )) + λξρ∂ρTµ1...µm
ν1...νn

− λ (∂α1ξ
µ1Tα1µ2...µm

ν1...νn + ⋅ ⋅ ⋅ + ∂αmξ
µmTµ1...µm−1αm

ν1...νn)

+ λ (∂ν1ξ
β1Tµ1...µm

β1ν2...νn
+ ⋅ ⋅ ⋅ + ∂νnξβnT

µ1...µm
ν1...νn−1βn

) .
(2.18)

An expert eye can easily recognize that the all the terms after the first in the right hand
side of Eq. (2.18) is the explicit expression of the Lie derivative of the tensor T along the
vector field that generates the gauge transformation ξµ[5]:

(LξT )µ1...µm
ν1...νn = ξ

ρ∂ρT
µ1...µm

ν1...νn

− (∂α1ξ
µ1)Tα1µ2...µm

ν1...νn + ⋅ ⋅ ⋅ + (∂αmξµm)Tµ1...µm−1αm
ν1...νn

+ (∂ν1ξ
β1)Tµ1...µm

β1ν2...νn
+ ⋅ ⋅ ⋅ + (∂νnξβn)T

µ1...µm
ν1...νn−1βn

.

(2.19)

All the quantities in Eq. (2.18) are evaluated at the same point P , which is arbitrary,
hence

T̃µ1...µm
ν1...νn = T

µ1...µm
ν1...νn + λ (LξT)µ1...µm

ν1...νn
, (2.20)

for each point. Eq. (2.20) is the transformation law of a general tensor under a change of
the gauge. More concisely it can be written as

T̃ = T + λLξT. (2.21)

This equation is valid at the linear order, i.e. ∼ o(ξ) ∼ o(λ)). It is possible to extend this
formula at higher order in ξµ, for example

T̃ = [exp(λLξ)T ] = T + λLξT + λ
2

2
L2
ξT + . . .

Here we need also to consider the second order expansion of the four-vector ξ

ξµ =
∞
∑
r=1

ξµr
r!

= ξµ(1) +
1
2
ξµ(2) + . . .

6Here we are omitting, without loss of generality, all the indices.
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All the calculations we will perform will be at the linear order in the perturbations, for a
complete study of the perturbations at the second order look e.g. [38, 39, 42]. From now
on we will consider only the r = 1 case.
We conclude this section writing the transformation law for the tensor perturbation. We
have seen that a tensor can be divided into its background value plus a perturbation:

T = T0 + δT, (2.22)

T̃ = T0 + δT̃ . (2.23)

Using Eq. (2.21) we obtain, at the linear order

δT̃ = δT + LξT0. (2.24)

We are now ready to study the cosmological perturbations.

2.1.3 Perturbed metric

Using the conformal time dτ = dt/a, we can perturb the FLRW metric, using the following
decomposition [15, 41]

g00 = −a2(τ) [1 + 2
∞
∑
r=1

Ψ(r)(τ,x)] = −a2(τ) [1 + 2Ψ(τ,x)] , (2.25)

g0i = gi0 = a2(τ)
∞
∑
r=1

ω
(r)
i (τ,x)
r!

= a2(τ)ωi(τ,x), (2.26)

gij = a2(τ)
⎧⎪⎪⎪⎨⎪⎪⎪⎩
[1 − 2

∞
∑
r=1

Φ(r)(τ,x)
r!

] δij +
∞
∑
r=1

γ
(r)
ij (τ,x)
r!

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= a2(τ) [(1 − 2Φ(τ,x)) δij + γij(τ,x)] .

(2.27)

Here we can easily recognize the background metric Eq.(1.4), the functions Ψ(r), ω(r),
Φ(r) and γ(r)ij represent the rth-order perturbations of the metric. In particular γ(r)ij is a
transverse and traceless tensor:

∂iγij = γ i
i = 0. (2.28)

As we said previously, we will consider only the linear case with r = 1. It is useful to de-
compose these functions using the properties of the background metric. The symmetries of
the FLRW metric allow a decomposition of the metric and the stress-energy perturbations
into independent scalar (S), vector (V) and tensor (T) degrees of freedom, i.e. into objects
with well-defined transformation under spatial rotations [29, 15]. This is useful because,
at the linear order, the dynamics of the different degrees of freedom7 is uncoupled. The
functions Φ and Ψ are clearly scalar.
Exploiting the Helmholtz theorem, we can decompose each vector degree of freedom into
a solenoidal part and a longitudinal part, the former is the vector one, the latter the scalar
one:

ωi = ∂iω∥ + ω�i . (2.29)
7Different means “with different transformation under spatial rotations”; this is the usual manner one

uses to define scalar, vector and tensor in general relativity, that is, the transformation law of a certain
object under a change of coordinates [8, 5]. The homogeneity and the isotropy of the background allow us
to restrict just to the rotations.
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ω�i is the solenoidal vector, meaning that ∂iω�i = 0 and ω∥ is the longitudinal one. We can
perform a similar decomposition of the traceless perturbation of gij

γij =Dijγ
∥ + ∂iγ�j + ∂jγ

�
i + γ

T
ij , (2.30)

where γ∥ is a scalar function, γ�i is a solenoidal vector field, and the tensor part hTij is
symmetric, solenoidal and traceless. D is defined as Dij = ∂i∂j − δij∇2/3.

We perform now a gauge transformation of the metric tensor using Eq. (2.24). With
the same procedure adopted above, we can decompose the vector field ξµ into its scalar
and vector parts [43]:

ξ0 = α, (2.31)

ξi = ∂iβ + di, (2.32)

with ∂idi = 0. The transformation law for the perturbations becomes, for the metric

δg̃µν = δgµν + (Lξg(0))
µν
.

After some trivial calculations we obtain

Ψ̃ = Ψ + α′ +Hα, , (2.33a)

Φ̃ = Φ − 1
3
∇2β −Hα, (2.33b)

ω̃∥ = ω∥ − α + β′, (2.33c)
ω̃�i = ω

�
i + d

′
i, (2.33d)

γ̃∥ = γ∥ + 2β, (2.33e)
γ̃�i = γ

�
i + di, (2.33f)

γ̃Tij = γTij . (2.33g)

In Eq. (2.33) ′ ≡ d/dτ , and H = a′/a is the Hubble parameter in the conformal time. Here
we immediately see a peculiarities that will be of great interest in the next. Eq. (2.33g)
affirms that the tensorial part of the metric perturbation is a gauge-invariant quantity, at
the linear order. Whatever the gauge choice is, the tensor perturbations will always be
the same.
After having calculated the left hand side of Eq. (2.5), we can calculate its right hand
side: the matter perturbations.

2.1.4 Matter perturbations

The stress-energy tensor for a generic fluid can be written as [5]

Tµν = (ρ + p0)uµuν + p0gµν + σµν (2.34)

with respect to Eq. (1.21) we have added the anisotropic stress tensor, constrained as
uνσµν = π µ

µ = 0. For a perfect fluid or a minimally coupled scalar field, it vanishes. The
four-velocity, in the conformal metric, can be determined considering its normalization
uµu

µ = −1:
uµ = a(−1 −Ψ, vi), and uµ = a−1(1 −Ψ, (vi − ωi)). (2.35)
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The three-velocity vi is the perturbation to the spatial velocity, given that the background
value for the four-velocity of a comoving observer is ui = 0. The three-velocity can be
decomposed as usual

vi = ∂iv∥ + vi� with ∂iv
i
� (2.36)

We obtain, perturbing the stress-energy tensor[29, 15]

T 0
0 = −(ρ0 + δρ), (2.37a)
T ii = 3(p0 + δp) = 3p0(1 + σL), (2.37b)
T 0
i = −(ρ0 + p0)vi, (2.37c)
T i0 = (ρ0 + p0)(vi − ωi), (2.37d)
T ij = p0 [(1 + σL)δij + σiT, j] . (2.37e)

We will never consider the anisotropic part of the stress-energy tensor for our cosmic fluid.
Applying again the transformation rule given in Eq. (2.24) we obtain

δρ̃ = δρ + αρ′0, (2.38a)
δp̃ = δp − p′0, α (2.38b)
ṽ∥ = v∥ −H, α − α′ (2.38c)
ṽi� = vi� − ∂iβ′ − (di)′. (2.38d)

Here we have to do some considerations. Note that ρ is a scalar function, meaning that it
is invariant under a change of coordinates (diffeomorphism). From Eq. (2.38a) we see that
its perturbation varies under a gauge transformation. This highlights again the difference
between a coordinate transformation and a gauge one.
From Eqs. (2.33) and (2.38) we clearly see that the transformation law of the perturba-
tions, both metric and matter, are gauge dependent through the presence of the gauge
parameter α, β and di. In particular the gauge is fixed when these parameter are fixed,
that corresponds to the choice of certain hypersurfaces at constant time and the timeline
worldline at constant x [15]. At the linear order fixing the gauge means fixing the value
of two scalar and one vector 8 perturbations.

2.2 Quantum fluctuations during inflation
After the analysis of the dynamics of the background of the scalar field we consider now
its perturbation given in Eq. (1.76). If we consider the complete field φ(x, t) with also its
space coordinates dependence, the full equation of motion Eq. (1.87) becomes9

φ̈(x, t) + 3Hφ̇(x, t) − a−2∇2φ(x, t) = −∂V
∂φ

, (2.39)

where ∇2 = ∂i∂i.
If we insert the background equation (1.89) and perturb to the first order, we obtain the
equation of motion for the perturbations δφ(x, t)

δφ̈ + 3Hδφ̇ − ∇2δφ

a2 = −∂
2V

∂φ
δφ (2.40)

8With only two degree of freedom, due to ∂idi.
9In this equation we are considering a perturbed (i.e. not homogenous or isotropic) scalar field in a

background metric. To be rigorous both the metric and the scalar field must be perturbed, as we will see.
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If we derive with respect to the time Eq. (1.89), we obtain the following equation for φ0
10

(φ̇0)̈ + 3H(φ̇0)˙ = −V ′′φ̇0. (2.41)

Here we can see that Eq.(2.40) and Eq.(2.41), respectively in the variable δφ and φ̇0 are
analogous except for the Laplacian term a−2∇2δφ; in the limit of large scale, they are
exactly analogous, and non independent as we will see shortly. Let’s consider the two
terms 3Hδφ̇− a−2∇2δφ: if we perform a Fourier transform and we go from the coordinate
space to the momentum space we have

3Hδφ̇ − a−2∇2δφ Ð→ 3Hδφ̇k +
k2δφk
a2 ,

we can make a qualitatively treatment of the perturbation profile on large scales. If
δφ̇ ∼Hδφ, since H−1 = τ the characteristic time of expansion, we have

3Hδφ̇k +
k2δφk
a2 ∼ (3H2 + k

2

a2 ) δφk.

Considering the case k2

a2 ≪ H correspond to neglect the second term, that means con-
sidering wavelength of physical dimension λphys ≫ H−1, since k is the wave number.
This condition is equivalent to consider large scale lengths, or, more precisely, to consider
wavelength larger than the Hubble horizon. This qualitatively process, that will become
quantitative, is a sort of smoothing of the system, since this becomes homogeneous, and
allow us to neglect the Laplacian term.
Now we solve the system of equations

⎧⎪⎪⎨⎪⎪⎩

(φ̇0)̈ + 3H(φ̇0)˙ = −V ′′φ̇0

δφ̈ + 3Hδφ̇ − ∇2δφ
a2 = −∂2V

∂φ δφ

An accurate check shows that φ̇0 and δφ are not independent. We can calculate the
Wronskian function defined, in the case with variables x and y, as

W (x, y) = ẋy − xẏ, (2.42)

and in the case W = 0, x and y are correlated, i.e. linearly dependent. In our case x→ φ̇0,
y → δφ, we have

W (φ̇0, δφ) = φ̈0δφ − φ̇0δφ̇

deriving this equation with respect to time we obtain

Ẇ = −3HW ⇒W ∝ e−3Ht.

This means that after a little transient (t ∼H−1), the Wronskian goes to zero exponentially,
and φ̇ and δφ becomes linearly dependent (remember that we are considering the large
scale limit, or over-horizon limit). Mathematically we can write

δφ(x, t) = −δτ(x)φ0(t). (2.43)

The minus sign is purely conventional, while the dependence of δτ only on x reflect the
null Laplacian at large scales.
Given Eq. (1.76), in force of Eq. (2.43) we can write

φ(x, t) = φ0(t − δτ(x)). (2.44)
10Here we are considering H ≃ const.
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We remember that Eq. (2.44) is the equation for the complete scalar field at large scale.
This equation points out an important thing: in each point the scalar field assumes the
same value of φ0 but at different times, and this time displacement is due to the different
space coordinate.

We look now for a general solution of Eq. (2.40). We perform a Fourier transform11

δφ(x, t) = 1
(2π)3 ∫ d3 keikxδφk, (2.45)

where δφk = δ̃φ(k, t). The equation becomes now

δφ̈k + 3Hφ̇k +
k2δφ

a2 = −V ′′δφk.

For the sake of simplicity we will omit, from now on, the pedice k. Eq. (1.97), tells us that
the mass term is negligible. In fact the potential V contains also the usual term 1

2m
2
φφ

2,
and the condition cited above is equivalent to take a massless scalar field: m2

φ = V ′′ ≃ 0.
The equation now becomes

δφ̈ + 3Hδφ̇ + k
2

a2 δφ = 0.

We study this equation in two different regimes.

Small-scale regime λphys ≪H−1

The wavelength we are consider are well under the horizon, and the friction term
become negligible

δφ̈ + k
2

a2 δφ = 0. (2.46)

Eq.(2.46) is not more than the harmonic oscillator equation with a time dependent
width

ωa =
k2

a2

that decreases with time. On small scales the field fluctuates around its (false)vacuum
value φ0.

Large-scale regime λphys ≫H−1

In this case the equation is
δφ̈ + 3Hδφ̇ = 0.

Its exact solution is
δφ = ae−3Ht + b

with a and b constants. This means that almost immediately (in a time t ≳ (3H)−1),
the perturbation remains constant. Over the horizon the perturbation is frozen at
its value at the time of its passing the Hubble horizon.

11Two notation: we are using here the Fourier transform because for linear perturbations the various
modes (k) evolve independently. The second concerns the eikx factor inside the Fourier transform. This
terms implicitly means that we are considering the plane-wave decomposition, valid only with null spatial
curvature. In the case of positive or negative curvature of the Universe we should use a generalization of
the plane waves , the so-called Helmholtz functions, Qk, which satisfy the equation

∇2
KQk + ∣k∣2Qk = 0

, where ∇2
K is the curved Laplacian [4].
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The situation is schematically explained in Fig. 2.5.

Figure 2.5: Stretching of the cosmological perturbation during the inflationary period. Quantum
perturbations in the curvature, R, are created during Inflation and their wavelengths, λ, are
stretched from microscopic scales to astronomical scales during Inflation [43].

In the previous paragraphs we have referred to the perturbations of the scalar field as
quantum perturbations. These same perturbations are strictly connected with the density
perturbation that causes the observed anisotropy in the temperature in the CMB [28, 19].
This connection, that will be clear soon, arises a fundamental issue: the density perturba-
tion causes (after the expansion of the Universe and the stretching of these perturbation)
the collapse at the origin of the large-scale structure, like the galaxies and the clusters. But
the latter are obviously classical objects! It is clear that if their formation origin resides
in density perturbations whose origin in turn are the quantum fluctuations of the vacuum
state during the inflationary period, there must have been a mutation of the profound
nature of these perturbation at a certain time. There must have been a sort of phase
transition from quantum to classical nature. Is there a mechanism that can explain this
transition? This question is very attractive, but goes beyond the purpose of this work.
We will bypass this question (unwillingly, with clear conscience) and quantize directly the
perturbations of the scalar field, following [27, 15, 29].

2.2.1 Power-Spectrum

Before going on with the quantization of the perturbations we need to introduce a fun-
damental tool: the power spectrum. It represents an efficient way to characterize the
properties of a field perturbations. In general one assumes that the perturbation is much
smaller than the background value of the field, as we emphasized in Eq. (1.78). In
particular we are implicitly assuming that all the perturbation fields are stochastic, i.e.
⟨δ(x, t)⟩ = 0, where δ is a generic field perturbation. Another hypothesis one takes into
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account is that these fields has Gaussian statistics: this hypothesis simplifies our calcula-
tion, given that a Gaussian field is completely described by its mean value (that is 0 in
our case) and its covariance, or its two-point correlation function defined as:

χ(r) ≡ ⟨δ(x), δ(x + r)⟩, (2.47)

where angle brackets denote ensemble average. Given a galaxy in a random location, the
correlation function describes the probability that another galaxy will be found within a
given distance [37].
Note that if the background metric is homogeneous and isotropic as Eq. (1.1), χ depends
only on the modulus of r, r. For the same reasons we can expand in the Fourier space the
perturbation field

δ(x) = 1
(2π)3 ∫ d3k eikxδ̃(k), (2.48)

here δ̃ stands for the Fourier transform of δ. We can define now an efficient tool to
characterize the statistical properties of a field perturbations: the power-spectrum. It is
simply defined as

⟨δ̃(k), δ̃(p)⟩ = (2π)2δ(3)(k + p)Pδ(k). (2.49)

We can see that the argument of Pδ is just the modulus of the momentum: this is due to
the isotropy of the background. The homogeneity is guaranteed by the three dimensional
Dirac delta. We can see that, with this definition, Pδ is nothing more than the Fourier
transform of the two-point correlation function.

χ(r) = ⟨∫
d3k

(2π)3 e
ik⋅(x+r)δk,∫

d3p
(2π)3 e

ip⋅x⟩

= ∫
d3k

(2π)3 ∫
d3p
(2π)3 e

i(k+p)⋅xeik⋅x⟨δ̃k, δ̃p⟩ = ∫
d3k

(2π)3P(k)

For a Gaussian statistics it can bee shown that [19] the three point correlation function
vanishes12

⟨δ̃k1 δ̃k2 δ̃k3⟩ = 0

In general all the n-correlators vanish

⟨δ̃k1 . . . δ̃kn⟩ = 0

if n is odd. The expression for the even-n can be rewritten in function of the two-point
correlator; for the four-point function we have:

⟨δ̃k1 δ̃k2 δ̃k3 δ̃k4⟩ = ⟨δ̃k1 δ̃k2⟩⟨δ̃k3 δ̃k4⟩ + ⟨δ̃k1 δ̃k3⟩⟨δ̃k2 δ̃k4⟩ + ⟨δ̃k1 δ̃k4⟩⟨δ̃k2 δ̃k3⟩

which becomes

⟨δ̃k1 δ̃k2 δ̃k3 δ̃k4⟩ = (2π)6δ(3)(k1 + k2)δ(3)(k3 + k4)Pδ(k1)Pδ(k2) + permutations.

Similar expressions hold for higher correlators. We have expressed what with mentioned
before: if the perturbation have Gaussian statistics they are completely described by their
two-point correlation function. We will see that are much more interesting the cases in
which are present non-Gaussianities of the perturbation spectrum, which also contain a

12Here we are considering directly the Fourier space, the same argument holds also in the x-space.

41



lot of physical information.

We define now the dimensionless power-spectrum ∆δ(k) as

⟨δ̃(k), δ̃(k′)⟩ = 2π2

k3 δ
(3)
D (k − k′)∆δ(k). (2.50)

Again, ∆ is function only of the modulus of k (or k’, thanks to presence of the Dirac delta
due to the homogeneity). ∆ power spectrum measures the amplitude of the fluctuation
at a given mode k. We see that P and ∆ are strictly correlated

∆(k) = k3

2π2P(k)

We can find, after some trivial calculations,

⟨δ2(x)⟩ = ∫
dk
k
Pδ(k) = ∫ d(lnk)Pδ(k). (2.51)

Eq. (2.51) means that Pδ represents the contribution to the variance per unit logarithmic
interval in wave-number k.
We also define a new physical quantity to describe the slope of the power spectrum, the
spectral index:

nδ(k) − 1 = d ln ∆δ

d lnk
. (2.52)

In general the spectral index will depend on the considered scale; in the case of a constant
value we have that the power spectrum13 has a simple power law dependence on the
considered scale:

∆(k) = ∆(k0) (
k

k0
)
ns−1

(2.53)

with k0: pivot scale. We will see soon that the spectral index will depend on the slow-roll
parameters. An interesting particular case is when the spectral index is exactly equal to
1: it means that the power spectrum of the considered field is scale invariant (Harrison-
Zel’dovich power spectrum). The amplitude of the perturbation in this case is the same
for each cosmological scale.
We are now ready to specify the form that the power-spectrum gets in a general case, when
the stochastic field is a canonically quantized scalar field φ living in a curved spacetime,
as the inflaton is.
We proceed, referring to Eq.(2.40), with the standard second quantization procedure of a
new variable, the physical perturbation

δ̂φ = aδφ, (2.54)

and using the conformal time defined as dτ ≡ a−1dt. Quantizing the new variable means
promoting it to an operator through the definition of the two operators ak and a†

k:

δ̂φ(τ,x) = 1
(2π)3 ∫ d3k [uk(τ)ake

ikx + u∗k(τ)a
†
ke

−ikx] , (2.55)

One vacuum choice, that will be clear in the next section, is that with the normalization
of the uk functions

u∗k(τ)u
′
k(τ) − uk(τ)u

′∗
k (τ) = −i, (2.56)

13We refer to the dimensionless power spectrum simply with power spectrum.
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with ′ ≡ d
dτ .

The quantization rules descend directly from this choice

[ak, ap] = [a†
k, a

†
p] = 0,

[ak, a
†
p] = δ(3) (k − p) ,

(2.57)

where δ(3) (. . . ) is the usual three-dimensional Dirac delta.
From the redefinition of δ̂φ and Eqs. (2.55)-(2.57) we get

⟨δφk1
δφk2

⟩ = ∣uk∣2

a2 δ(3)(k1 − k2)

which leads to the power spectrum

∆δφ(k) =
k3

2π2 ∣δφk∣
2 (2.58)

2.2.2 Scalar perturbations in curved spacetime

In Eq. (2.55), ak and a†
k are, respectively, the annihilation and creation operators, defined

as:

ak ∣0⟩ = 0
⟨0∣a†

k = 0
(2.59)

for all the possible values of k. ∣0⟩ is defined as the free vacuum state of the system, i.e.
here we are considering only the mass term V ′′ of our theory, not also the interaction
with other field and auto-interactions. Despite this assumption, it remains a fundamental
ambiguity in the choice of the vacuum state due to the expansion of the background
spacetime. In fact uk(τ)14 are classical functions of time and in the limit of flat spacetime
they are oscillating functions

uk ≃
e−iωkτ√

2k
(2.60)

with ω2
k = k2 +m2. The ambiguity arises here. Eq.(2.60) is the solution to the Klein-

Gordon equation in the flat spacetime, but so far we have considered this equation in an
expanding Universe: this means that while the field is evolving, the background spacetime
itself is varying. We can use here the equivalence principle: for small scales and short time
intervals (with short we mean much shorter than the characteristic expansion time), we
can locally approximate our spacetime to the Minkowski’s, so that we can use the plane
wave[5, 4] solution (2.60), i.e.

uk(τ)
k≫aHÐÐÐ→ e−iωkτ√

2k
. (2.61)

This choice is called Bunch-Davies vacuum [44].
After all these considerations, and after some straightforward computations, we obtain an
equation for the function uk(τ)

u′′k(τ) + [k2 − a
′′

a
+ ∂

2V

∂φ2 a
2]uk(τ) = 0. (2.62)

14Note that the function u depends only on the modulus of the moment ∣k∣ ≡ k and not on its direction:
again, this is a consequence of the homogeneity and isotropy of the background.
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The first thing we can notice is that the friction term u̇k disappeared, leaving only a
metric-dependent term of the form a′′

a . Eq. (2.62) is the standard harmonic oscillator
equation with a time-dependent angular frequency

ω2
k = k

2 − a
′′

a
+ ∂

2V

∂φ2 a
2 (2.63)

We will solve Eq. (2.62) exactly in the case of a massless scalar field in a quasi-de Sitter
Universe where we have H ≃ const, or

Ḣ = −εH2

with ε ≪ 1, so H varies very slowly. At the first order in the slow-roll parameter we can
find the time dependence of the scale factor

a(τ) = − 1
H(1 − ε)τ

, (2.64)

so that the term a′′/a in the equation of motion becomes

a′′

a
= 2
τ2 (1 + 3

2
ε) .

Massless scalar field
This case will be very useful when studying the tensor perturbation of the metric. With
massless scalar field we mean V ′′(φ) = 0, hence the equation of motion is

u′′k(τ) + [k2 − 2
τ2 (1 + 3

2
ε)]uk(τ) = 0

and defining ν2 = 9/4 + 3ε we have

u′′k(τ) + [k2 − ν
2 − 1/4
τ2 ]uk(τ) = 0. (2.65)

At the first order the slow-roll parameter are constant, so we can consider also the index
ν ≃ const. We can define x = −kτ and the equation becomes

x2 d
2

dx2u(x) + [x2 − (ν2 − 1
4
)]u(x) = 0. (2.66)

This allow us to solve the previous equation as a Bessel equation of the form

x2y′′(x) + xy′(x) + (x2 − ν2)y(x) = 0 (2.67)

of which we know the exact solutions [43, 29]

uk(τ) =
√
−τ [C1(k)H(1)ν (−kτ) +C2(k)H(2)ν (−kτ)] , (2.68)

where H(i)ν are the Hankel functions of i-th kind with index ν. The Ci(k) are the inte-
gration constants depending only by k: they can be constrained using the Bunch-Davies
vacuum choice given in Eq. (2.61). The subhorizon limit k ≪ aH in a quasi de Sitter
spacetime becomes, thanks to Eq. (2.64)

−τk ≫ 1
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The behavior in the subhorizon limit for the Hankel functions is note

H(1)ν (x) x≫1ÐÐ→
√

2
πx
ei(x−

π
2 ν−

π
4 ) (2.69)

that is the expected behavior for the function uk in the subhorizon limit. This allow us to
fix C1 and C2, using also the property H(2)ν = [H(1)ν ]

∗

uk(τ)
x≫1ÐÐ→

√
−τ

⎡⎢⎢⎢⎢⎣
C1(k)

√
2

−πkτ
ei(−kτ−

π
2 ν−

π
4 ) +C2(k)H(2)ν (−kτ ≫ 1)

⎤⎥⎥⎥⎥⎦
.

In this result the second term inside the square brackets has negative frequency, so that
we have to fix

C2(k) = 0 and C1(k) =
√
π

2
ei(ν+

1
2 )
π

2
.

The exact solution is
uk(τ) =

√
π

2
ei(ν+

1
2 )

π
2
√
−τH(1)ν (−kτ). (2.70)

In order to calculate the power spectrum we consider the super-horizon limit −kτ ≪ 1.
For the Hankel function we have

H(1)ν (x) x≪1ÐÐ→
√

2
π
e−i

π
2 2(ν−

3
2 )

Γ(ν)
Γ(3/2)

x−ν (2.71)

where Γ(z) is the Gamma function defined by

Γ(z) = ∫
+∞

0
dxxz−1e−x.

This means that uk in the super-horizon limit has the following behavior

uk(τ) ≃ 2ν−
3
2 ei(ν−

1
2 )

π
2

Γ(ν)
Γ(3/2)

(−kτ)
1
2−ν

√
2k

.

For the amplitude of the scalar perturbations we have

∣δφk∣ =
∣uk∣
a

= 2ν−
3
2

Γ(ν)
Γ(3/2)

H√
2k3

(−kτ)
3
2−ν ,

where we have used again Eq. (2.64). At the first order we have ν = 3
2 + ε, so we can write

the expression for the amplitude at the first order in the slow-roll parameter

∣δφk∣ =
H√
2k3

(−kτ)−ε = H√
2k3

( k

aH
)
−ε
. (2.72)

Using Eq. (2.58) we obtain, for the power spectrum,

∆δφ(k) = (H
2π

)
2
( k

aH
)
−2ε

. (2.73)

This is a fundamental result which shows that the power spectrum for a massless scalar
perturbation in a quasi de Sitter space is almost scale invariant. The dependence on the
scale k is k−2ε and in the slow-roll limit this term is almost null. This is an important
prediction for the standard single field slow-roll model for Inflation.
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2.2.3 Gauge-invariant scalars

Until now we have a little cheated. In the previous section we have seen the evolution
of the scalar perturbations in a quasi-de Sitter phase, as the Inflation predicts, without
perturbing the metric in which the field lives. For the Einstein equations a perturbation
in the stress-energy tensor, i.e. a perturbation of the scalar field, involves inevitably
a perturbation in the metric side: this causes a variation in the motion equation of the
scalar field. We consider now both the perturbation of the scalar field and the perturbation
of the metric. While for the tensor perturbation we have seen that we can use a gauge
invariant quantity, γTij , for the scalar perturbations we not defined a good quantity in
this sense. There are various scalar perturbation, four just in the metric, what quantity
we will use? We can see that we can define different gauge invariant scalar quantities
exploiting the transformation law under a gauge transformation [40]. A good candidate
to describe the scalar perturbation is the intrinsic spatial curvature on hypersurfaces of
constant conformal time

(3)R = 4
a2∇

2Φ̂ (2.74)

where we have defined the curvature perturbation15

Φ̂ = Φ + 1
2
∇2γ∥. (2.75)

Φ̂ is not a gauge-invariant quantity, since under a transformation on constant time hyper-
surfaces τ → τ + α we have Φ̂→ Φ̂ −Hα. For this reason we need a gauge-invariant scalar
quantity which reduces, in some gauge choices, to the curvature perturbation. Considering
the transformation law for the matter perturbation given in Eq. (2.38) we can define the
following gauge invariant quantity

ζ ≡ −Φ̂ −Hδρ
ρ′0
. (2.76)

It is trivial to show the gauge invariance of ζ:

ζ̃ = − ˜̂Φ − a
′

a

δ̃ρ

ρ′0
= −Φ̂ + a

′

a
α − a

′

a
(δρ
ρ′0

+ α) = −Φ̂ − a
′

a

δρ

ρ′0
= ζ.

ζ is defined as the gauge-invariant curvature perturbation of the uniform energy-density
hyper-surfaces.
In the case of a single scalar field we can define also the gauge-invariant perturbation on
comoving hyper-surfaces

R ≡ Φ̂ + H
φ′
δφ. (2.77)

15The meaning of this name becomes clear when performing a full calculation of the intrinsic spatial
curvature on hypersurfaces of constant conformal time, which gives the result, in an unperturbed Universe

(3)R = 6
a2K,

where K is the space curvature introduced in Eq. (1.1). This means that when we have K = 0 we have
(3)R = 0. In the perturbed Universe we have the general expression

(3)R = 6
a2K + 12K

a2 Φ̂ + 4
a2∇

2Φ̂,

which confirms what we said before.
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The combinations R and ζ are related [15, 29]

− ζ = R + 2ρ
9(ρ + p)

( k

aH
)

2
Ψ. (2.78)

From this equation we see that in the super-horizon limit (k ≪ aH), R = −ζ.

The importance of ζ
The gauge-invariant quantity ζ hold a fundamental role in the Inflation models because,
thanks to its definition and properties on super-horizon scales, it allows to connect the
energy-density perturbations δρ to the perturbation of the scalar field δφ. Indeed we
can see that for super-horizon scales it is constant in time. To understand it we have to
consider the perturbed continuity equation which reads

δρ′ + 3H(δρ + δp) − 3(p0 + ρ0)Φ̂′ + (p0 + ρ0)∇2(V + σ) = 0, (2.79)

where σ = −ω∥ + 1/2γ′∥ is the shear.
If we consider super-horizon scales we can neglect the contribution due to the Laplacian.
We can choose now the uniform energy density gauge in which δρ = 0. So

3Hδρ + 3(p0 + ρ0)ζ ′,

because in this gauge ζ = −Φ̂. The previous equation gives an equation for the time
evolution of ζ

ζ ′ = − Hδp
(p0 + ρ0)

∣
δρ=0

. (2.80)

Remind that the equation of state for a generic fluid is given by

δp = c2
sδρ + δpNA

where δpNA is the non adiabatic contribution. Hence we can write Eq. (2.80) as

ζ ′ = − H
p0 + ρ0

δpNA.

The non adiabatic contribution arises in the presence of a relative difference in the density
perturbations of the different components which fill the Universe. If we have different
components ρi, there are non adiabatic modes, or entropy modes, if

Hδρi
ρi

≠
Hδρj
ρj

,

for i ≠ j [1]. Nowadays there are strong observational limits on a possible deviation from
the adiabaticity condition for the expansion of the Universe. Furthermore during the
Inflation we have seen that there is, in the simplest models, only one, scalar, component:
relative differences are not permitted, simply because all the components are “swept away”
by the Inflation. During inflation, on super-horizon scales δpNA, so

ζ ′ = 0 → ζ = const

We underline again that ζ is a gauge-invariant quantity, so this equation holds in any
gauge.
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The constance of ζ during Inflation and on scales much larger than the Hubble horizon
allow to connect today observables to quantities strictly connected with the Inflation
period. If we call with t

(1)
H (k) the time at which the wavelength of mode k exit the

horizon and t(2)H (k) the time at which the same mode re-enters the horizon we have, look
Fig. 1.4

ζ
t
(1)
H (k)

= ζ
t
(2)
H (k)

that is, an observed mode which re-enters the horizon today (like the CMB modes) can
give information about the inflationary epoch. Both t

(1)
H (k) and t

(2)
H (k) correspond to

the condition k = aH, i.e. when the k mode has the same value of the Hubble horizon.
For example we can consider a mode which passes the horizon in the radiation dominated
epoch will be

ζ
t
(2)
H (k)

= 1
4
δρ

ρ
∣
t
(2)
H (k)

= ζ
t
(1)
H (k)

= Hδφ
φ̇

∣
t
(1)
H (k)

.

We see again what we affirmed before: the temperature anisotropies of the CMB, connected
with the density perturbations, are related to the fluctuations of the primordial scalar field.
This situation is schematically represented in Fig. 2.5.

2.2.4 Power spectrum for scalar perturbations

We have seen that the evolution equation for the inflaton field is the Klein-Gordon equa-
tion:

◻φ = ∂V
∂φ

where the d’Alambertian is defined as ◻ ≡ DµD
µ. After some manipulation it can be

written in the more convenient form [19]

◻ = 1
√−g

∂µ (
√
−ggµν∂ν) . (2.81)

Perturbing the KG equation at the linear order using Eqs. (2.25), (2.26) and (2.27) we
obtain [43, 15, 29]

δφ′′ + 2Hδφ′ −∇2δφ + a2δφ
∂2V

∂φ
a2 + 2Ψ∂V

∂φ
− φ′0 (Ψ′ + 3Φ′ +∇2ω∥) = 0. (2.82)

We see that with respect to Eq. (2.40) there are more terms due to the metric perturbations
to be considered.
To get a simpler equation of motion we introduce the Sasaki-Mukhanov gauge-invariant
variable [45, 43]

Qφ ≡ δφ +
φ′

H
Φ̂. (2.83)

As usual we introduce the field Q̃φ = aQφ. The Klein-Gordon equation now reads16, [43]

Q̃′′φ + (k2 − a
′′

a
+M2

φa
2) Q̃φ = 0, (2.84)

16We are clearly omitting some steps, the Eq. (2.84) is obtained after the second quantization of the
field Q̃φ, as we did in the previous section for the field δφ̃.
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where
M2

φ =
∂2V

∂φ2 − 8πG
a3 (a

3

H
φ̇2)

is the effective mass of the inflaton field. At the first order in the slow-roll parameter it
can be shown that

M2
φ

H2 = 3ηV − 6εV .

Eq. (2.84) is formally identical to Eq. (2.62), so we can perform the same procedure to
solve it. We consider the case of a quasi-de Sitter Universe and a light scalar field, i.e.
M2

φ ≪ H2 given that we are considering a slow-roll model. With these hypothesis the
equation becomes identical17

Q′′φ +
⎛
⎝
k2 −

ν2
φ −

1
4

τ2
⎞
⎠
Qφ = 0 (2.85)

where we have defined νφ = 3/2+3ε−η at the first order in the slow-roll parameters. From
the previous section we can conclude that on super-horizon scales and to the lowest order
in the slow-roll parameters the inflaton fluctuations amplitude is

∣Qφ(k)∣ =
H√
2k3

( k

aH
)

3
2−νφ

. (2.86)

We can see now that Qφ and R and ζ are connected:

R = H
φ′
Qφ = −ζ

so we can calculate the power spectrum of ζ using Eq. (2.58) and

∣ζ ∣2 = ∣R∣2 = (H
φ′

)
2
∣Qφ∣2 = (H

φ̇
)

2
H2

2k3 ( k

aH
)

3−2νφ
.

Finally, the power spectrum is

∆ζ(k) = ( H
2

2πφ̇
)

2
( k

aH
)

3−2νφ
. (2.87)

Again, Eq. (2.87) shows that curvature perturbations remain time-independent on super-
horizon scales. The spectral index at the lowest order in slow-roll reads

nζ − 1 = 3 − 2νφ = −6ε + 2η. (2.88)

Remind that we are interested to the value of the power spectrum when a certain mode
crosses the horizon, i.e. t1H(k) such as k = aH, so the power spectrum for ζ becomes

∆ζ(k) = ( H
2

2πφ̇
)

2
∣
t1H(k)

.

Here the k dependence is inside t1H(k): each mode exit the horizon at a different time.
17We omit the .̃
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2.3 Gravitational Waves from Inflation
The inflationary scenario predicts also the production, in the early Universe, of a back-
ground of stochastic Gravitational Waves [46]. Here we will perform the full calculation to
obtain the second-order action for the gravitational waves. The action we have to perturb
is the following

S =
M2
Pl

2 ∫ d4x
√
−gR + Sφ (2.89)

where Sφ is the one given in (1.71).
We will follow Refs. [29] and [47]. Perturbing Eq. (2.89), and manipulating the integral
argument, we finally find that

S
(2)
T =

M2
Pl

8 ∫ d4xa3(t) [(γ̇ij)2 − a−2(∂γij)2] . (2.90)

As already mentioned γij is a gauge invariant quantity, so varying the action with respect
to this quantity, we get the required equation of motion

γ̈ij + 3Hγ̇ij − a−2∇2γij = 0. (2.91)

It is now clear that tensor perturbations solve a wave equation (in an expanding Uni-
verse), hence the name gravitational waves. Exploiting the γij properties, it is possible to
decompose the field in the following form [29]

γij(t,x) = ∑
λ=+,×

γ(λ)(t)ε(λ)ij (x). (2.92)

ε
(+,×)
ij is the polarization tensor whose properties reflect the γ ones:

ε
(λ)
ij = ε(λ)ji , kiε

(λ)
ij = 0 = εii,

and +,× are the two GW polarization states [8].
If we use now the conformal time we obtain

S
(2)
T =

M2
Pl

8 ∫ dτd3xa2(τ) [(γ′ij)
2 − (∂γij)2] . (2.93)

We see that a useful transformation to solve the motion equation for the tensor field in
the conformal time is

γij =
√

2
aMPl

vij . (2.94)

In terms of the new variable vij the action Eq. (2.93) becomes, after some integration by
parts,

S
(2)
T = 1

4 ∫
dτd3x [(v′ij)2 + a

′′

a
(vij)2 − (∂vij)2] . (2.95)

If we perform now a Fourier transform, using also the decomposition Eq. (2.92),

vij(τ,x) = ∫
d3k

(2π)3 ∑
λ=+,×

v
(λ)
k (τ)e(λ)ij (k)eik⋅x. (2.96)

Exploiting the orthogonality of polarization tensor

eλije
λ′

ij = δλλ
′ (2.97)
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we can easily find the equation of motion for each mode v(λ)k

v
′′(λ)
k + (k2 − a

′′

a
) v(λ)k = 0. (2.98)

We see that the equation of motion for each mode resembles Eq. (2.62): this means that
the each mode v can be described as a massless18 scalar field, thanks to the absence of the
term V (φ)′′. So we can treatise vk in the same manner as uk, in particular in the case of
a massless scalar field. After the standard second quantization of the field v(λ)k

v
(λ)
k = vk(τ)a

(λ)
k + v∗k(τ)a

(λ)†
−k (2.99)

The procedure now is analogous to that for the massless scalar field given above, the
solution for vk is

vk =
√
π

2
ei(ν+

1
2 )

π
2
√
−τH(1)ν (−kτ), (2.100)

with ν ≃ 3/2 + ε. For large scales we obtain

vk = ei(ν−
1
2 )

π
2 2ν−

3
2

Γ(ν)
Γ(3/2)

1√
2k

(−kτ)
1
2−ν . (2.101)

The only difference resides into the calculation of the power spectrum, given that now we
have two different polarization states for the tensor perturbations:

∆γ(k) =
k3

2π2∑
λ

∣γ(λ)k ∣2, (2.102)

so that on super-horizon scales we obtain the following power-spectrum

∆γ(k) =
8

M2
Pl

(H
2π

)
2
( k

aH
)
−2ε

. (2.103)

We define the spectral index for the tensor perturbation as

nγ =
d log ∆γ(k)

d log k
. (2.104)

From Eq. (2.103) we see that it has the value nγ = −2ε < 0. In this case the power-spectrum
is called red, while for nγ > 0 it is called blue. We will see that some theories will present
a blue tilt for the tensor power spectrum.

2.3.1 Consistency relations

In the considered inflationary scenario an interesting consistency relation holds for scalar
and tensor power spectra. We have seen that they can be rewritten as

∆ζ(k) = AS ( k
k0

)
nζ−1

∆γ(k) = AT ( k
k0

)
nγ

(2.105)

18It can be states that this field has an effective mass squared equal to a′′/a [29].
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where k0 = 0.002 Mpc−1 is the pivot scale [48]. AS and AT represent the amplitude of the
power spectra at the pivot scale k0. It is useful to define the tensor-to-scalar ratio

r ≡ AT
AS

(2.106)

that yields the amplitude of the GW with respect to that of the scalar perturbations at
some fixed pivot scale. Knowing that

AS = ( H
2

2πφ̇
)

2
and AT = 8

M2
Pl

(H
2π

)
2

and recalling that during Inflation holds Ḣ = −4πGφ̇2, we obtain

r = 16ε (2.107)

or
r = −8nγ . (2.108)

This is called consistency relation because it connects three different parameters and holds
for each single field slow-roll model of Inflation [28]. This equality can be checked only
with a measurement of the tensor power spectrum, i.e. not only of its amplitude, but also
of its spectral index. Furthermore if this relation really holds true it means that it will
be very hard to measure any scale dependence of the tensors, since a large spectral index
would invalidate the consistency relation. At present we have only un upper bound on the
tensor-to-scalar ratio: r0.05 < 0.07 at 95% CL [48], assuming the consistency relation.

2.3.2 Energy scale of inflation

We seen above that the amplitude of the GW has an expression

AT = 2
π2

H2

M2
Pl

,

and during Inflation we have H2 ≃ (3MPl)−2V (φ), hence

AT = 2
3π2

V (φ)
M4
Pl

.

From this equation we can define an energy scale for the Inflation as

Einf = V 1/4, (2.109)

so that the amplitude of the tensor power spectrum depends on the energy scale at which
the Inflation acted. This is a fundamental feature for the single field slow-roll models:
observing the GW would entail a confirm and a comprehension of the Inflation period.
For this reason the GW are said to be a smoking gun for the Inflation. Using the note
relation holding during Inflation and the consistency relation we can give an estimation
of the scale energy [48]

Einf = V 1/4 = (1.88 × 1016GeV) ( r

0.10
)1/4

We can conclude noting that a measurement of r provides the energy scale of Inflation.
We have seen that a measurement of the primordial gravitational waves would be of crucial
importance for the description of the primordial Universe [49]. Although it is much difficult
[50], we will see that it is possible to define new quantities which will provide good indirect
observables for the gravitational wave background.
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2.3.3 CMB observations

We briefly introduce here a useful formalism to connect the anisotropies in temperature
of the CMB and the primordial matter perturbations. Fig. 2.1 shows the small variation,
point by point, in the temperature of the Cosmic Microwave Background radiation. In
general we can parametrize the temperature field, which will depend on (conformal) time,
position and the direction of the photon momentum

T (τ,x, p̂) = T0(τ) +∆T (τ,x, p̂) = T0(τ) (1 +Θ(τ,x, p̂)) , (2.110)

where T0 represent the background black-body temperature, see (1.69), while we have
defined Θ ≡ ∆T /T the temperature perturbation field. Although this field is defined at
all times and positions we can observe it only at the present time τ0 and in our position
x0: one can easily object that our observations (COBE, WMap, Planck) have been made
over the last 30 years and the satellites are not exactly located on Earth. We stress
that these excursions from the spacetime point (τ0,x0) are negligible with respect to the
scales over which the temperature varies (of the order of the Hubble time) [2]. Hence
the only fundamental dependence of the perturbation field is the momentum direction
p̂. To understand which information we can gain from the temperature of the photons
from CMB we need to understand how the photons distribution function evolve while the
Universe is expanding. We use the Boltzmann equation

L[f] = C[f] (2.111)

where L is the Liouville operator which takes into account the evolution of the distribution
function f and in a general metric takes the form [1]

L = pµ ∂

∂xµ
− Γρµνpµpν

∂

∂pρ
.

The right hand side of (2.111) represents the collision operator and contains all possible
collision term, i.e. all the interaction of the particular particle species we are considering.
We are interested in studying the photons distribution functions, therefore we need to
know all the possible interactions with the other components of the Universe. We will
not study the entire Boltzmann equation for all the components of the Universe, but we
will mention some tools that will be useful also in Chapter 3. For a detailed, clear and
exhaustive study of the Boltzmann equation of all the particle species see Ref. [2]. We
know that the CMB radiation is a black-body radiation [36], hence there is a one to one
relation between the temperature and the momentum of the photon. Hence we can use the
temperature perturbation field to described the variation in energy for the photons: some
equations which describes the evolution of the temperature perturbation field considering
also matter perturbations, metric perturbations and so on, are found. One useful tool is
the multipole expansion of the temperature perturbation

Θ(k, p̂) =
∞
∑
l=1

(−i)l(2l + 1)Pl(p̂)Θl(k) (2.112)

where Pl are the Legendre polynomials, solutions of the Legendre differential equation.
Each multipole is defined as, inverting the previous relation

Θl ≡
1

(−i)l ∫
1

−1

dµ

2
Pl(µ)Θ(µ) (2.113)
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Exploiting the properties of the Legendre polynomials, the photon perturbations can be
described either by Θ or by a whole hierarchy of moments, Θl. l = 0 corresponds to
the monopole, i.e. a constant perturbation, l = 1 describes a dipole perturbation, l = 2
the quadrupole, l = 3 the octupole, and so on. The Boltzmann equations are written in
terms of the first multipole Θl. Now we want to connect the observations on the CMB
temperature to the theoretical Θl. Given that we are observing a spherical sky, it is useful
to decompose the temperature perturbation field using spherical harmonics

Θ(τ,x, p̂) =
∞
∑
l=1

+l
∑
m=−l

alm(τ,x)Ylm(p̂). (2.114)

This expansion is the equivalent of a Fourier transform on the surface of a sphere. The
subscripts l,m are conjugate to the real space unit vector p̂, just as the variable k is con-
jugate to the Fourier transform variable x in (2.45). The complete set of eigenfunctions, of
the operator i∇, for the Fourier transform are eik⋅x, here the complete set of eigenfunctions
for expansion on the surface of a sphere are Ylm(p̂). Now, in the expansion (2.114) the co-
efficients alm are of fundamental fundamental importance in cosmology. They contain all
the information for the temperature field or, more precisely, they contain the information
about the temperature perturbation field. Therefore we want to find the relation between
the coefficients alm and Θl. We use the orthogonality property of spherical harmonics

∫Ω
dΩYlm(p̂)Y ∗

l′m′(p̂) = δll′δmm′ , (2.115)

where Ω represents the solid angle spanned by p̂. We can invert the relation (2.114)
multiplying for Y ∗

lm)(p̂) and integrating in the solid angle

alm(τ,x) = ∫ dΩY ∗
lm(p̂)Θ(τ,x, p̂) = ∫

d3k

(2π)3 e
ik⋅x∫ dΩY ∗

lm(p̂)Θ(τ,k, p̂), (2.116)

in the second equality we have used the Fourier transform of the temperature perturbation
field, since all the solution are in the momentum space. As for all the perturbative field,
also alm are stochastic fields, which means that their mean value is zero and the first
observable we can define is their variance

⟨alm⟩ = 0, ⟨alma∗l′m′⟩ = δll′δmm′Cl, (2.117)

where we have indicated with Cl the variance. It is very important to note that, for a
given l, each alm has the same variance. For l = 50, for example, all the 101 a50,m’s
are drawn from the same distribution and when we measure these 101 coefficients we are
sampling the distribution. Therefore this much information will give us a good handle on
the underlying variance of the distribution. But if we measure the quadrupole, i.e. l = 2,
we do not get very much information about the variance, since it has only 5 a2,m. This
fundamental uncertainty in the low-l variances is called cosmic variance, see Fig. 2.6.
We can now obtain an expression for Cl in terms of Θl. First we square (2.116) and take
the expectation value

⟨alma∗lm⟩ = ∫
d3k

(2π)3
d3k′

(2π)3 e
i(k⋅x−k′⋅x)∫ dΩdΩ′Y ∗

lm(p̂)Ylm(p̂′)⟨Θ(τ,k, p̂)Θ∗(τ,k′, p̂′)⟩.

(2.118)
We need to evaluate now the expectation value ⟨Θ(τ,k, p̂)Θ∗(τ,k′, p̂′)⟩. This expecta-
tion value is complicated since it depends on two phenomena: the initial amplitude and
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phase of the perturbation, which depend on the Inflation mechanism; the evolution of the
perturbations produces anisotropies, i.e., dependence on p̂. It is useful to separate these
two phenomena rewriting the photon distribution as δDM ⋅ (Θ/δDM), where δDM is the
Dark Matter overdensity, which does not depend on any direction vector [2]. We divide Θ
into these two pieces because Θ/δDM can be found using the Boltzmann equation (2.111)
and it has a particular feature: the ratio does not depend on the initial amplitude of the
perturbations, so it can be removed from the averaging over the distribution. We have

⟨Θ(k, p̂)Θ∗(k′, p̂′)⟩ = ⟨δDM(k)δ∗DM(k′)⟩Θ(k, p̂)
δDM(k)

Θ∗(k′, p̂)
δDM(k′)

= (2π)3δ(3)(k − k′)PDM(k)Θ(k, k̂ ⋅ p̂)
δDM(k)

Θ∗(k, k̂ ⋅ p̂′)
δDM(k)

,

(2.119)

where PDM is the dark matter power spectrum, and we have used the fact that the ratio
Θ/δDM depends only on the magnitude of k and the dot product k̂ ⋅ p̂. Now inserting Eqs.
(2.112) and(2.119) into (2.118) we obtain, using the spherical harmonics properties,

Cl =
2
π
∫

∞

0
dkk2PDM(k)∣ Θl(k)

δDM(k)
∣
2
. (2.120)

For a given l, then, the variance of alm, Cl, is an integral over all Fourier modes of the
variance of Θl. Using the Boltzmann equation for all the modes Θl it is possible to plot
the anisotropy spectrum today, see Fig. 2.6.

Figure 2.6: This is the latest plot for the temperature multipoles power spectrum, [11]. The
position of each peak can indicate the history and the composition of the Universe. In the figure
is plotted DTTl ≡ l(l+1)Cl/(2π), not exactly Cl. This is because for large scales, i.e. small l the
dominant effect is the so called Sachs-Wolfe effect [51], which predicts l(l + 1)Cl ≃ const. when
considering small multipoles. Note also that the error bars become larger when considering
small ls: this is the effect of cosmic variance described above.

2.4 Beyond the standard slow-roll inflation
We conclude mentioning possible alternatives to the standard single-field slow-roll Infla-
tion model. The possibilities for getting inflationary expansion are (maybe frustratingly)
varied. Inflation is a paradigm, a framework for a theory of the early Universe, but it
is not a unique theory. A large number of phenomenological models has been proposed
with different theoretical motivations and observational predictions. In this thesis we will
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consider one of this class of models, the so-called Gaugid Inflation [52], a generalization
of the Solid Inflation, [53] . However, in this short section we want mention the broader
landscape of inflationary model-building (see also Ref. [30]). The simplest inflationary
action Eq. (1.71) can be extended in a number of obvious ways

Non-minimal coupling to gravity
The action (1.71) is called minimally coupled in the sense that there is no direct
coupling between the inflaton field and the metric. The inflaton interacts with the
metric only through the measure of the integral, √−g, and the indices contraction
in the kinetic term. In principle we could imagine a non-minimal coupling between
the inflaton and the graviton, however, in practice, non-minimally coupled theories
can be rewritten as minimally coupled theories by a field redefinition.

Modified gravity
Similarly, we could entertain the possibility that the Einstein-Hilbert part of the
action is modified at high energies. However, the simplest examples for this UV
modification of gravity, so-called f(R) theories, can again be transformed into mini-
mally coupled scalar field with potential V (φ). With the last Planck measurements
it results that the modified gravity theory called R2 − inflation still survives [48].

Non-canonical kinetic term
The action (1.71) has a canonical kinetic term

Lφ =X − V (φ), X ≡ gµν∂µφ∂νφ.

Inflation can then only occur if the potential V (φ) is sufficiently flat. More generally,
however, we could imagine that the high-energy theory has fields with non-canonical
kinetic terms

Lφ = F (φ,X) − V (φ)
where F (φ,X) is some function of the inflaton field and its derivatives. For such an
action it is possible that Inflation is driven by the kinetic term and occurs even in
the presence of a steep potential.
These are the so-called K-inflation models [54].

More than one field
If we allow more than one field to be dynamically relevant during inflation, then the
possibilities for the inflationary dynamics (and the mechanism for the production of
fluctuations) expand dramatically and the theory loses a lot of its predictive power.

Breaking the de Sitter spacetime isometries
Until now we have considered a background metric of a (quasi) de Sitter spacetime.
We know that this choice was dictated by the request of having an isotropic and
homogeneous background. We also know that these two features can be mathemat-
ically formalized as the invariance under spatial translations and three-dimensional
rotations. One possibility is considering a vacuum state of the field which drives
Inflation which manifestly breaks these symmetries but is symmetric under time
diffeomorphism, i.e. is time independent while it depends on the coordinate

⟨φ(x)⟩ = αx.

To restore the wanted homogeneity and isotropy of the space one impose some in-
ternal symmetries. While simple in principle this procedure gives important and
nontrivial outcomes that will be deepen in the next chapter.
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Chapter 3

Probing Inflation:
non-Gaussianities and Tensor
Fossils

We have seen that the slow-roll Inflation model provides a very good description of the
evolution of the Universe in its first moments. A small number of parameters is needed
to define the standard cosmological model, just the first six parameters of in Fig. 1.2, but
it is not enough. Knowing the relative abundances of the elements in the Universe does
not tell us what these elements are, e.g. dark matter and dark energy. Also knowing the
behavior of the power spectrum of the primordial perturbations does not tell us what are
their possible sources. The power spectrum alone, indeed, is not sufficient to constrain the
interactions of the field which drives Inflation during the primordial era: different Inflation
models1 can produce similar results for the power spectrum prediction [55, 43]. Resuming
the slow-roll model we see that it makes the following assumptions:

Single Field
We have assumed so far that there was only one quantum field responsible for driving
Inflation and generating the seeds for large scale structures due to its fluctuations.

Canonical Kinetic Energy
We have pointed out that the kinetic term used above has a canonical form, which
means that the speed of propagation of fluctuations is equal to the speed of light.

Slow Roll
The time evolution of the field was very slow compared to the Hubble time during
Inflation.

Initial Vacuum State
The quantum field was in the preferred adiabatic vacuum state, the Bunch-Davies
vacuum.

Assuming all these properties for the scalar field implies that the quantum fluctuations of
scalar field have an almost Gaussian statistics, i.e. their statistics is completely defined
by the two-point correlation function [42, 56]. Hence we will have undetectable level of
primordial non-Gaussianities for those models which respect the conditions listed above.

1The differences between the Inflation models can be of various types: different interactions, non-
standard kinetic term, new physics at high energies, different symmetries.
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This results does not surprise too much. Since the inflaton field is driving Inflation has a
very flat potential, this means that the interaction terms must be suppressed, hence also
the non-linearities eventually producing non-Gaussian features.
Detecting a certain amount of non-Gaussianity (or determining stringent bounds on it)
would entail precise constraints on the interactions of the quantum field(s) responsible
for inflation, i.e. it will it will crucially help in determining the right theory for the
primordial Universe, [32, 43]. The simplest idea to calculate the non-Gaussianity is looking
at the predictions on the three-point correlation function of the primordial perturbations
generated during inflation, given that it would vanish in the Gaussian case. Indeed we
have seen in Chapter 2 that a perturbation with a Gaussian statistics is completely defined
by its 2-point correlator, while all the odd-point correlation functions are null. In presence
of a non-Gaussian statistics we would have a non-zero 3-point function or, equivalently, a
4-point function which cannot be rewritten in terms of the 2-point function. Calculating
a non-zero 3-point function is the first sign of a deviation from the “standard” model of
Inflation.
In the following we will calculate what are the prediction for the bispectrum, the Fourier
transform of the three-point function. We have already mentioned the importance of an
observation of the primordial gravitational wave background, because it would provide
a striking proof for Inflation. In this chapter we will briefly describe the importance of
non-Gaussianities and the prediction for the standard inflationary theories. Then we will
consider an interesting effect from a gravitational wave background: tensor fossils and a
related quadrupole perturbation in the power spectrum of the galaxy clustering. We will
review what are the consequences of a stochastic background of gravity waves both in the
primordial Universe and at the present time.

3.1 Primordial non-Gaussianities

In the previous chapters we have seen the predictive power of the inflationary models.
While the latest observations on the CMB have ruled out various Inflation models, there is
still a sort of “theory degeneracy”. There are still various models which fit the observational
data at our disposal. A good understanding of the power spectrum of the theory of
Inflation might not be sufficient to provide a good description of the physics of Inflation
[55]. The non-Gaussianities would be crucial from this point of view. Different theories
can make similar predictions for the power spectrum; the true difference might arise in
the three-point function, or in its Fourier transform, the Bispectrum.

3.1.1 Bispectrum

In chapter 2 we have seen that in the case of a Gaussian field the three-point correlation
function vanish. Therefore if we consider a non-Gaussian field, we have that the first corre-
lator which manifests non-Gaussianity is the three-point function, ⟨δ(x1)δ(x2)δ(x3)⟩. For
our purpose we are interested in the Fourier-space of the three-point function ⟨δk1δk2δk3⟩.
Analogously to Eq. (2.49) it is possible to exploit the homogeneity and isotropy of the
background to parametrize the three-point function as follows

⟨δk1δk2δk3⟩ = (2π)3δ(3)(k1 + k2 + k3)Bδ(k1, k2, k3).

The momentum conservation is a consequence of the homogeneity, while the dependence of
Bδ only on the modulus of the three momenta derives from the isotropy. Bδ is the so-called
bispectrum of the perturbation field δ. We have mentioned above the importance of this
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new correlator and the consequences which arise if a non-zero value would be measured.
In the following we will consider the bispectrum of the ζ perturbation, because of its
importance in cosmology and because it is directly related to the to the CMB angular
bispectrum [57, 43]:

⟨ζk1ζk2ζk3⟩ = (2π)2δ(3)(k1 + k2 + k3)Bζζζ(k1, k2, k3). (3.1)

In the formula (3.1) is not explicitly exposed the time at which we evaluate the correlator.
It is implicitly assumed that we evaluate it in the large scale limit, which correspond to
the time at the end of Inflation. The delta function ensuring the momentum conservation
entails that the three momenta of the perturbation fields form a triangle: k1+k2+k3 = 0.
We will see that the shape of this triangle will be of fundamental importance. In general
we can parametrize the bispectrum as

Bζζζ(k1, k2, k3) = S(k1, k2, k3)
∆2
ζ(k∗)

k2
1k

2
2k

2
3
, (3.2)

where ∆2
ζ(k∗) is the dimensionless power spectrum, defined in Eq. (2.50), of ζ evaluated

at a fixed scale k∗. The function S is adimensional and, in the case of scale-invariant
bispectra, it is invariant under the rescaling of all the three momenta ki. The function S
also allows to define the momentum dependence of the bispectrum. In fact there are two
types of the momentum dependence, the shape of the bispectrum and the running of the
bispectrum:

The shape of the bispectrum is the dependence of the function S on the ratios of the
momenta k2/k1 and k3/k1, while we fix the overall momentum K = (k1 + k2 + k3)/3;

The running of the bispectrum is the dependence of S on the overall momentum K, while
we take constant the ratios between the momenta.

It is possible to give a first evaluation of the amplitude of non-Gaussianities through
the definition of a parameter which provides a measure for the non linearities of the
primordial perturbations, the so called non-linearity parameter fNL. It can be defined
as the bispectrum in the equilateral configuration, k1 = k2 = k3 = K, normalized for the
square of the power spectrum of the perturbation ζ evaluated at the momentum k. In
formula it reads

fNL = 5
18
Bζζζ(K,K,K)
P2
ζ (K)

. (3.3)

The factor 5/18 comes from the relation between the Bardeen’s gravitational potential and
ζ during the matter dominated epoch, see Ref. [57]. This dimensionless amplitude tells us
if a particular shape of non-Gaussianity is detectable or not by the experiment. From the
definition given above we can see that it depends on k. Moreover, if we substitute (3.3)
into (3.2) we have

fNL = 5
18
S(K,K,K)

i.e. fNL corresponds to the shape function in the equilateral limit times a 5/18 factor. If
the bispectrum is scale invariant in general we can extract the amplitude fNL from the
shape function S and parametrize the bispectrum of ζ as:

Bζζζ(k1, k2, k3) =
18
5
fNLS(k1, k2, k3)

∆2
ζ(k∗)

k2
1k

2
2k

2
3
,
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where the shape function is normalized as S(k, k, k) = 1. The predictive power of the
three-point function resides in the fact that different models of Inflation predict different
shapes of the non-Gaussianities. Following [58, 57, 32, 43] we can find different examples
of non-Gaussianities depending on the particular shape of the considered triangle:

Local shape of non-Gaussianity: a local non-Gaussian shape arises from a local
(point by point in the real space) non-linear correction to the perturbation ζg, where
the suffix g denotes that this perturbation coincides with the linear, Gaussian, per-
turbation ζ analyzed in the previous chapter. We can rewrite the new non-linear ζ
as:

ζ(x) = ζg(x) +
3
5
f locNL [ζ2

g (x) − ⟨ζ2
g (x)⟩] . (3.4)

As explained in Ref. [59, 43, 56], this non-linearity parameter is defined for the
Bardeen Newtonian potential in matter dominance, which implies, at linear level

Φg =
3
5
ζ;

this explains the factor 3/5 in the definition. This type of non-Gaussianity is called
local because the non-linear relation (3.4) is locally defined. In Eq. (3.4) already
appears the amplitude of non-Gaussianity produced. The bispectrum in this case
turns out to be:

Blocζζζ(k1, k2, k3) =
6
5
f localNL [Pζ(k1)Pζ(k2) + Pζ(k1)Pζ(k3) + Pζ(k2)Pζ(k3)] (3.5)

where, as usual, Pζ(k) is the power spectrum of the comoving curvature perturbation
ζ. It is possible to verify, going in the equilateral limit, the Eq. (3.3). Considering
the limit in which the bispectrum is (almost) scale invariant we obtain:

Blocζζζ(k1, k2, k3) =
6
5
f locNL

∆2
ζ(k∗)

k2
1k

2
2k

2
3
( k2

1
k2k3

+ k2
2

k1k3
+ k2

3
k1k2

) , (3.6)

where ∆ζ is the dimensionless power spectrum of the perturbation ζ in the limit in
which we neglect the scale dependence.
Thus, the template for the local shape reads

Sloc(k1, k2, k3) =
1
3
( k2

1
k2k3

+ k2
2

k1k3
+ k2

3
k1k2

) .

The signal of the local non-Gaussianities peaks in the so-called squezeed configuration
of the triangle (k1 ≪ k2 ≃ k3) and it can arise in the case of multi-fields models of
inflation, [43, 32, 58, 60].

Equilateral shape of non-Gaussianity: this is a shape which is peaked in the equi-
lateral configuration k1 = k2 = k3 =K and it arises a consequence of several Inflation
models such as k-Inflation [54], or in general models in which a non-canonical kinetic
term is present [43, 32, 58, 60]. The corresponding shape function has the form:

Sequil(k1, k2, k3) (
k1
k3

+ 5perms.) − ( k2
1

k2k3
+ 2perms.) − 2.

This kind of shape arise from considering higher derivative interactions in the action
of several inflationary models of Inflation.
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Orthogonal shape of non-Gaussianity: this is another shape of non-Gaussianity
which arise, as the equilateral shape, from considering higher derivative interactions
in inflationary models. The template associated to this shape is:

Sortho(k1, k2, k3) = −3.84( k2
1

k2k3
+ 2perms.) + 3.94(k1

k3
+ 5perms.) − 11.10. (3.7)

This non-Gaussianity is also present in single-field models of Inflation with a non-
canonical kinetic term, or with general higher order-derivative interactions.

For more details about these shapes and the mechanism that can create such non-Gaussianities
we refer the reader to Ref. [57, 43, 32, 58, 60]. In the same references the latest results of
the Planck satellite (updated to year 2015) on primordial non-Gaussianities are exposed.
The experimental constraints for the three amplitudes of primordial non-Gaussianities
relative to the measurement of the CMB temperature anisotropies are the following

f locNL = 2.5 ± 5.7 (68%CL) (3.8)

fequilNL = −16 ± 70 (68%CL) (3.9)

forthoNL = −34 ± 33 (68%CL) (3.10)
Combining temperature and polarization data the Planck collaboration finds the following
constraints

f locNL = 0.8 ± 5.0 (68%CL) (3.11)
fequilNL = −4 ± 43 (68%CL) (3.12)

forthoNL = −26 ± 21 (68%CL) (3.13)
These measurements represent the tightest constraints that have been obtained so far from
CMB measurements (and for temperature CMB data the ultimate ones). As it can be
seen these constraints are compatible with Gaussianity. However notice that there is still a
very large window between the single-field predictions for fNL (of the order of the slow-roll
parameters [56, 42]) and the present error bars. So why is actually so important trying to
reduce the errors for better constraining such non-Gaussianities? As we will see in detail
in the next section, it is possible to compute at the leading order in slow-roll parameters
the bispectrum of the gauge invariant perturbation ζ with a non linear extension of the
slow-roll models of Inflation. We anticipate that the amplitude of such bispectrum is
suppressed in the slow-roll limit: such a low level of primordial non-Gaussianity is (at
present) impossible to measure. Therefore any signals of non-Gaussianities may come
only from an extension or a modification of the slow-roll theories of Inflation which, for
the moment, are the most accepted paradigms for describing Inflation. A violation of just
one of the standard single field slow-roll (SFSR) conditions listed above would entail a
high level of non-Gaussianity, ∣fNL∣ ≫ 1 [55]. Hence a detection of such a signal would
rule out the simplest model of Inflation described in the previous chapter.
In particular, such non-Gaussianities can be signatures of possible modifications of the
law of physics at the energy scales at which Inflation can take place that are no still
achievable in the actual colliders. The reason is that contributions on non-Gaussianities
from Inflation of the gauge invariant variable ζ arise essentially by auto-interaction terms
of ζ and by interaction terms between ζ and the primordial gravitational waves γij (or any
other possible field present during inflation). These interactions in the standard slow-roll
models of Inflation are suppressed. So signals of non-Gaussianity can be signatures of
interaction terms between scalar perturbation and new fields associated to new degrees of
freedom that could appear at high energies in a new physics scenario.
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3.1.2 In-In Formalism

Now our aim is to perform an explicit computation of the bispectrum Bζζζ , following
[43, 56].
So far we have always used as observables of inflationary models the various n-point
correlation functions

⟨δ1 . . . δn⟩,

where the brackets ⟨⟩ denotes the ensemble average. Now, following [32] and the exhaustive
[61] we will briefly describe the in-in formalism, a useful formalism to calculate the various
correlation functions.
In general we consider a perturbation δ(t,x), that must be quantized, as we have done
so far for all the perturbations we have encountered (scalar, tensor) during Inflation. In
general we are dealing with correlators of the type:

⟨Ω∣ δ(t,x1) . . . δ(t,xn) ∣Ω⟩ . (3.14)

Here ∣Ω⟩ represents the vacuum state of our full theory, i.e. also considering the interactions
of the field, not only the vacuum state of the free particle theory as it is used in QFT.
We will deepen this argument in the following. It is clear from Eq. (3.14) that we are
working in the Heisenberg picture, where only the operators evolve in time, and states do
not. In order to explain the method we will work within the Hamiltonian formalism. We
know indeed that the predictions in the Lagrangian formalism and in the Hamiltonian one
must be equal2. We can decompose the Hamiltonian function into a quadratic part H0
and some interaction terms Hint as:

Htot =H0 +Hint. (3.15)

The quadratic part describes essentially the free evolution of the field δ. The fundamen-
tal step of the in-in formalism consists in switching from the Heisenberg picture to the
interaction picture. The operator in the interaction picture, which we will indicate with
δI(t)3, is related to the corresponding one in the Heisenberg picture at the time t, δ(t) by
the relation [61]

δI(t) = F (t, t0)δ(t)F −1(t, t0), (3.16)

where we have defined
F (t, t0) = T exp{−i∫

t

t0
HI
int(t′)dt′} (3.17)

where T indicates the time-ordered operator. HI
int is the interaction Hamiltonian in the

interaction picture which coincides with the one in the Heisenberg picture. The time t0 is
the time in which we switch on the interaction Hint(t).
If we insert (3.16) into (3.14) we have

⟨Ω∣ [T̄ exp{−i∫
t

t0
HI
int(t′)dt′}] δI(t,x1) . . . δI(t,xn) [T exp{−i∫

t

t0
HI
int(t′)dt′}] ∣Ω⟩ ,

(3.18)
where T̄ is now the anti-time-ordered operator.
In addition the relation between the Hamiltonian and the Lagrangian in the interaction
picture is:

HI
int = −LIint. (3.19)

2In addition, we know that, except for derivative terms in the interaction part, we have Lint = −Hint.
3For the moment we will omit the space dependence since we are interested in the time evolution of the

field.
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In fact the Legendre transform which links Hamiltonian formalism to Lagrangian one reads
like HI ∼ (δ̇πδ−L), where πδ is the conjugate momentum of the field δ. But the term δ̇πδ is
a quadratic term and, if we consider only the interaction terms, the equality (3.19) follows.
We can extend this consideration also for the case where there is more than one field in
the theory. Then, if we compute the interaction terms in the Lagrangian of the theory,
we can compute perturbatively the correlator (3.18) by expanding the time(anti)-ordered
exponentials. If we drop the expansion of the exponentials up to first order and we use
Eq. (3.19), we obtain:

⟨δ(t,x1) . . . δ(t,xn)⟩ = i∫
t

t0
dt′ ⟨Ω∣ [δI(t,x1) . . . δI(t,xn), Lint] ∣Ω⟩ . (3.20)

As a final consideration we should remark that the vacuum ∣Ω⟩ is the vacuum of the full
theory, including also interaction terms in the theory. If we call ∣0⟩ the vacuum of the
theory whose action is dropped at quadratic order in the fields (which is the free vacuum
of the theory), we would like to write ∣Ω⟩ as a function of ∣0⟩. The reason is that ∣0⟩ is
the vacuum that we have introduced in Chapter 2 to quantize the primordial cosmological
perturbations, and so we know how the creation and annihilation operators act on it.
In studying scattering processes in QFT in general the two vacuum states do not coincide
due to vacuum fluctuations caused by the interactions. But in our case we are evaluating
expectation values. These processes do not generate any non-trivial vacuum fluctuations
through interactions. This is a direct consequence of the identity:

F−1F = 1

where F is defined in Eq. (3.17).
For this reason we can replace ∣Ω⟩ with ∣0⟩ in (3.20), see [61]. This fact is crucial for
doing the computations. In fact the fields in the interaction picture evolve as in the free
quadratic case. Thus, if we know the free solutions in terms of annihilation and creation
operators a and a† (which are the ones we have introduced in Chapter 2), we can do easily
the contractions with the free vacuum state ∣0⟩.

3.1.3 Computation of the bispectrum ζζζ

Using the in-in formalism, now we want to evaluate the three-point function (3.1) in the
single field slow-roll model exposed in [56]. We perform a three level computation, so we
have

⟨ζ(k1, τe)ζ(k2, τe)ζ(k3, τe)⟩ = −i∫
τe

τi
dτ ′a ⟨0∣ [ζ(k1, τe)ζ(k2, τe)ζ(k3, τe),Hint(τ ′)] ∣0⟩ .

(3.21)
The time at which we evaluate the correlators in this expression is τe = 0, corresponding
to the end of a Inflation and to the super-horizon limit, and the switching on of the inter-
actions is kept when the fluctuation modes are on very sub-horizon scales, corresponding
to τi → ∞. The Wick theorem guarantees that bra-ket contractions with the vacuum
state are non zero only if the interaction Hamiltonian has the same number of fields of the
operator on the left hand side of the commutator operator. For this reason to evaluate
the right hand side of equation (3.21) we need to compute the Hamiltonian cubic in the
field ζ and its derivatives. In order to describe the third order Hamiltonian, it is useful
to define perturbations and the inflationary action in the Arnowitt-Deser-Misner (ADM)
form [56, 62, 40]. In this formalism the metric tensor is described by

ds2 = −(N2 −NiN
i)dt2 + 2Nidx

idt + a2(t)hijdxidxj , (3.22)
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where hij takes the form described in the previous chapter (2.27) and (2.30). The action
in Eqs. (1.71) and (1.72) can be rewritten as

S = 1
2 ∫

d4x
√
h [NR(3) +N(KijK

ij −K2) +N−1(φ̇ − ∂iN i)2 −Nhij∂iφ∂jφ −NV ] ,
(3.23)

where we have put the reduced Planck mass equal to one for simplicity of notation. It
will be easily restored by dimensional analysis. In addition h = −det(hij) and Kij is the
extrinsic curvature tensor defined as

Kij =
1

2N
[∇(3)i Nj +∇(3)j Ni − ḣij] , K2 =Ki

i (3.24)

∇(3)i is the covariant derivative computed with the three-metric hij instead of the full
metric gµν . R(3) is the curvature scalar computed with the three-metric.
The advantage of the ADM formalism is that it allows us to perform more easily a non-
linear analysis, in particular as far as the count of the number of the propagating degrees of
freedom is concerned. In fact the fields N and Ni are not dynamical and can be expanded
in power of series of the dynamical degrees of freedom [56]. The zero order value of this
expansion is fixed by the background, namely N(0) = 1,N i

(0) = 0. To find the other orders,
we have to derive from the action (3.23) the Euler-Lagrange equations for N and Ni and
then to solve them order by order. If we are interested to an expansion of the action at
cubic order in the dynamical fields, we need to know the expressions of N and Ni only at
first order. Indeed it turns out that the third order terms in N , Ni would be multiplying
the constraint equations evaluated at zeroth order, i.e. they gives null contribution to the
total action. The second order terms in N , Ni multiply the constraints evaluated to first
order, which vanish due to the first order expressions for N and Ni, see Ref. [56].
We fix now the spatially flat gauge, in which all the scalar perturbations of the three-metric
are removed, leaving only the scalar perturbation of the inflaton δφ, besides the ones in
N and N i. Then one is free to remove also the vector perturbation remaining with a
three-metric hij of the form

hij = a2[δij + γij], γii = ∂iγij , (3.25)

together with the scalar Inflation perturbations δφ. In the gauge (3.25) we can connect
the perturbation of the inflaton δφ to the curvature perturbation ζ through the linear
relation [40, 43]

δφ = − φ̇
H
ζ. (3.26)

Following the classical field theory approach, we should derive the equations of motion for
the fields N and Ni by doing the functional derivatives δS/δN and δS/δNi respectively
and putting them equal to zero. After some calculations and throwing away all terms but
the first order ones we find the solutions

N (1) = φ̇0
2HM2

Pl

δφ, N
(1)
i = ∂iχ

M2
Pl

, χ = −a2 φ̇0
2H2∂

−2 [ d
dt

(Hδφ
φ̇0

)] , (3.27)

where the Planck mass has been restored through a dimensional analysis. Using all these
steps, we compute the cubic interaction Lagrangian for ζ1 (which is the first order expres-
sion of ζ) at the leading order in the slow parameters and find [56]

Lint = ε2VM2
Pl ∫ d3x [a3ζ1ζ̇1

2 + aζ1(∂iζ1)(∂iζ1) − 2a3ζ̇1(∂i∂−2ζ̇1)(∂iζ1)] . (3.28)
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Given that we have found all the solutions in the conformal time we express the action
with respect to the conformal time:

Lint = ε2VM2
Pl ∫ d3x [aζ1ζ

′2
1 + aζ1(∂iζ1)(∂iζ1) − 2aζ ′1(∂i∂−2ζ ′1)(∂iζ1)] . (3.29)

The interaction Hamiltonian is simply minus the interaction Lagrangian because it takes
only the potential terms, as we have seen above. In these expressions we have omitted the
suffix int for the fields, it is understood that we are evaluating them in the interaction
picture. From now on to the end of the chapter we will use this convention.
If we insert the Fourier decomposition of the field ζ1

ζ1(τ,x) = ∫
d3k

(2π)3 ζ1(τ, k)eik⋅x (3.30)

into the Hamiltonian, we find

Hint(τ) = −
εVM

2
Pl

(2π)6 ∫ d3k d3pd3q δ(3)(k + p + q)[aζ1(k)ζ ′1(p)ζ ′1(q)

− a(p ⋅ q)ζ1(k)ζ1(p)ζ1(q) − 2a(p ⋅ q)
p2 ζ ′1(k)ζ ′1(p)ζ1(q)].

(3.31)

The Dirac delta comes from an integration ∫ d3xei(k+p+q)⋅x, where the integral is the one
in the definition of the Hamiltonian. Putting Eq. (3.31) into Eq. (3.21) we obtain

⟨ζ1(k1)ζ1(k2)ζ1(k3)⟩ =i
ε2M2

Pl

(2π)6 ∫ d3Kδ(3)(k + p + q)×

× ∫
0

−∞
dτ ′a[A1(τ ′) +A2(τ ′) +A3(τ ′)],

(3.32)

where we have used the notation d3K = d3k d3pd3q and the functions An stands for the
contractions

A1 = a ⟨0∣ [ζ1(k1, τe)ζ1(k2, τe)ζ1(k3, τe), ζ1(k, τ ′)ζ ′1(p, τ ′)ζ ′1(q, τ ′)] ∣0⟩
A2 = −a(p ⋅ q) ⟨0∣ [ζ1(k1, τe)ζ1(k2, τe)ζ1(k3, τe), ζ1(k, τ ′)ζ1(p, τ ′)ζ1(q, τ ′)] ∣0⟩

A3 = −2a(p ⋅ q)
p2 ⟨0∣ [ζ1(k1, τe)ζ1(k2, τe)ζ1(k3, τe), ζ ′1(k, τ ′)ζ ′1(p, τ ′)ζ1(q, τ ′)] ∣0⟩

(3.33)

From the Wick Theorem we know some rules that simplify the evaluation of these con-
tractions. We have to sum over the terms obtained by doing all the possible bra-ket
contractions with the vacuum states between couples of fields evaluated at different times.
The terms in which at least one field remains uncontracted are vanishing. From the form
of our interaction Hamiltonian we need to compute the following two contractions

⟨0∣ ζ1(k, τ)ζ1(k′, τ ′) ∣0⟩ ,
⟨0∣ ζ1(k, τ)ζ ′1(k′, τ ′) ∣0⟩ .

(3.34)

Inserting the solution of ζ in the form (2.55) we can write the two contractions in term of
the mode function

⟨0∣ ζ1(k, τ)ζ1(k′, τ ′) ∣0⟩ = ⟨0∣ [fk(τ)ak + f∗k (τ)a
†
−k][fk′(τ

′)ak′ + f∗k′(τ
′)a†

−k′] ∣0⟩
= (2π)3δ(k + k′)fk(τ)f∗k′(τ

′),
(3.35)
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⟨0∣ ζ1(k, τ)ζ ′1(k′, τ ′) ∣0⟩ = ⟨0∣ [fk(τ)ak + f∗k (τ)a
†
−k]

d

dτ
[fk′(τ ′)ak′ + f∗k′(τ

′)a†
−k′] ∣0⟩

= (2π)3δ(k + k′)fk(τ)
d

dτ
f∗k′(τ

′).
(3.36)

Now we can compute the An functions

A1 =(2π)9a [fk1(0)fk2(0)fk3(0) (
d

dτ
f∗k1(τ

′))( d
dτ
f∗k2(τ

′)) f∗k3(τ
′) − c.c.] + perm(ki),

A2 = − (2π)9a(k1 ⋅ k2) [fk1(0)fk2(0)fk3(0)f∗k1(τ
′)f∗k2(τ

′)f∗k3(τ
′) − c.c.] + perm(ki).

A3 =(2π)9(−2a)(k1 ⋅ k2)
k2

1
×

× [fk1(0)fk2(0)fk3(0) (
d

dτ
f∗k1(τ

′)) f∗k2(τ
′) ( d

dτ
f∗k3(τ

′)) − c.c.] + perm(ki).

(3.37)

The permutations over the ki come from all the different ways of contracting the fields
and the minus complex conjugate comes from the commutator operator between fields in
the expression of An. Inserting the expression (3.37) into (3.32) we can write

⟨ζ1(k1)ζ1(k2)ζ1(k3)⟩ =i(2π)3δ(k1 + k2 + k3)εVM2
Pl×

× Im[I1 − (k1 ⋅ k2)I2 − 2(k1 ⋅ k2)
k2

1
I3] + perm(ki),

(3.38)

where the In are the integrals

I1 = fk1(0)fk2(0)fk3(0)∫
0

−∞
dτ ′a2 [( d

dτ
f∗k1(τ

′))( d
dτ
f∗k2(τ

′)) f∗k3(τ
′)] ,

I2 = fk1(0)fk2(0)fk3(0)∫
0

−∞
dτ ′a2 [f∗k1(τ

′)f∗k2(τ
′)f∗k3(τ

′)] ,

I1 = fk1(0)fk2(0)fk3(0)∫
0

−∞
dτ ′a2 [( d

dτ
f∗k1(τ

′)) f∗k2(τ
′) ( d

dτ
f∗k3(τ

′))] .

In order to perform these integrals we need an analytic expression for the mode function
fk(τ). We have seen that it is sufficient to use the free mode function, i.e., we need to
multiply a(τ) to the Bunch-Davies solution for the Sasaki-Mukhanov variable vτ , which
yields

fk(τ) =
iH

MPl

√
2εV k3

(1 + ikτ)e−ikτ , (3.39)

where we have also restored the correct normalization factor for the variable ζ(x, τ) [56, 32].
In such a computation (at lowest-order in the slow-roll parameters), we can use the de-
Sitter approximation for the scale factor a(τ) = −1/(Hτ) with H ≃ const. The time
derivative of f is

d

dτ
fk(τ) =

iH

MPl

√
2εV k3

k2τe−ikτ .

To perform the computation of the In we are dealing with integrals of the type

I(n,K) = ∫
0

−∞
dxxneiKx = (−1)nΓ(n + 1)

(iK)n+1 = (−1)n n!
(iK)n+1 , (3.40)

where the second equalities holds for natural numbers. Starting with I1 we have

I1 = −H4
∗k

2
1k

2
2 (

3
∏
i=1

1
M2
Pl2εV k3

i

)∫
0

−∞
dτ ′(1 − ik3τ

′)eiKτ
′

. (3.41)
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Here the suffix ∗ indicates that the corresponding quantity is evaluated at horizon crossing
time. This seems to create an ambiguity because we have three different modes that exit
from the horizon at different conformal times. In order to solve this ambiguity we choose
the time of horizon crossing of the momentum K = k1+k2+k3, that corresponds to a time
at which we are sure that all the three momenta have already left the horizon. In the de
Sitter solution H is constant so that definition does not cause any problem. In order to
evaluate the integral (3.41) we have to correct the oscillatory behavior at τ → −∞ of the
exponential. We achieve this by performing a Wick rotation of the real axis. We promote
the real integration variable to a complex one and do the change τ ′′ = iτ ′. The form (3.41)
becomes now

I1 = iH4
∗k

2
1k

2
2 (

3
∏
i=1

1
M2
Pl2εV k3

i

)∫
0

−∞
dτ ′′(1 − ik3τ

′′)eKτ
′′

. (3.42)

Using Eq. (3.40) we can integrate to obtain

I1 = iH4
∗k

2
1k

2
2 (

3
∏
i=1

1
M2
Pl2εV k3

i

)(k
2
1k

2
2

K
+ k

2
1k

2
2k3

K2 ) . (3.43)

We now evaluate

I2 = −H4
∗k

2
1k

2
2 (

3
∏
i=1

1
M2
Pl2εV k3

i

)∫
0

−∞

dτ ′

(τ ′)2 (1 − ik1τ
′)(1 − ik2τ

′)(1 − ik3τ
′)eiKτ

′

. (3.44)

In computing some integrals in this equation we will make use again of (3.40), but we
need also another type of integral, which reads

Ī = ∫
0

−∞

dx

x2 (1 − iKx)eiKx

= ∫
0

−∞

dx

x2 e
iKx − iK ∫

0

−∞

dx

x
eiKx

= −e
iKx

x
∣
0

−∞
+ iK ∫

0

−∞

dx

x
eiKx − iK ∫

0

−∞

dx

x
eiKx

= lim
x→0

(−1
x
eiKx) = lim

x→0
[−cosKx

x
] + lim

x→0
[−isinKx

x
] .

(3.45)

The first limit in the last form gives a real divergent contribution to the integral. For-
tunately it does not create any problem, because at the end we have to take only the
imaginary parts of the integral we compute. The second limit is finite and pure imaginary

lim
x→0

[−isinKx
x

] = −iK

Therefore I2 can be easily evaluated as

I2 = iH4
∗ (

3
∏
i=1

1
M2
Pl2εV k3

i

)(K − k1k2 + k2k3 + k1k3
K

− k1k2k3
K2 ) . (3.46)

The computation of I3 is very similar to I1 and it gives

I3 = iH4
∗(k2

1k
2
3)(

3
∏
i=1

1
M2
Pl2εV k3

i

)( 1
K

+ k2
K2) . (3.47)
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Inserting Eqs. (3.43), (3.46) and (3.47) into Eq. (3.38) we have, at the leading order in
the slow-roll parameters

⟨ζ1(k1)ζ1(k2)ζ1(k3)⟩ =(2π)3δ(k1 + k2 + k3)4
H4
∗

M4
Pl

1
εV

(
3
∏
i=1

1
2k3

i

)×

[k
2
1k

2
2 + k2

2k
2
3 + k2

1k
2
3

K
+ k

2
1k

2
2k3 + k2

2k
2
3k1 + k2

1k
2
3k2

K2 ] .
(3.48)

This is the three-point function for the variable ζ1, which is the linear approximation of
ζ. On super-horizon scales we can link the two variables by [56]

ζ = ζ1 + αζ2
1 , α = 1

2
φ̈

φ̇H
+ 1

4
φ̇2

H2 ζ
2
1 ≃ −1

2
ηV . (3.49)

With the symbol ≃ we mean that α is evaluated at first order in the slow-roll parameters.
This means that when passing from ζ1 to ζ then the three-point function has an additional
contribution to the bispectrum. We find [56]

⟨ζ(k1)ζ(k2)ζ(k3)⟩ =⟨ζ1(k1)ζ1(k2)ζ1(k3)⟩ + 2α(2π)3δ(k1 + k2 + k3)×
× (Pζ(k1)Pζ(k2) + Pζ(k2)Pζ(k3) + Pζ(k1)Pζ(k3)),

(3.50)

where Pζ(k) = H∗

M2
Pl

1
2εV k3 is the power spectrum for the curvature perturbation ζ on super-

horizon scales. At the end we get the three-point correlator

⟨ζ(k1)ζ(k2)ζ(k3)⟩ =(2π)3δ(k1 + k2 + k3)
⎛
⎝∑i<j

Pζ(ki)Pζ(kj)
⎞
⎠
×

× [−ηV + 2εV (k
2
1k

2
2k3 + k2

2k
2
3k1 + k2

1k
2
3k2

K2∑i k3
i

)] + 2εV
∑i>j k2

i k
2
j

K∑i k3
i

.

(3.51)

We finally obtain the bispectrum

Bζ(k1, k2, k3) =
⎛
⎝∑i<j

Pζ(ki)Pζ(kj)
⎞
⎠
×

× [−ηV + 2εV (k
2
1k

2
2k3 + k2

2k
2
3k1 + k2

1k
2
3k2

K2∑i k3
i

)] + 2εV
∑i>j k2

i k
2
j

K∑i k3
i

.

(3.52)

Now we want to match this result with the non-Gaussianities constrained by the Planck
satellite in the CMB anisotropies [57]. In equation (3.52) the fractions that depend on the
ki in the square brackets are approximately of order ∼ O(1) due to momentum conservation
[56]. Then we can take as a good approximation

Bζ ≃
⎛
⎝∑i>j

Pζ(ki)Pζ(kj)
⎞
⎠
(4εV − ηV ). (3.53)

This expression corresponds to the bispectrum of the local shape of Non-Gaussianity (3.6),
so matching the two expressions we predict

(f locNL)slow−roll ≃
10
3
εV −

5
6
ηV . (3.54)
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From the experimental constraints on the slow-roll parameters (see Eqs. (1.99) and
(1.100)) it follows

(f locNL)slow−roll ≲ 10−2 (3.55)
This value is very small and definitely compatible with the best constraints on local non-
Gaussianity from the Planck experiment, see Eqs (3.11), (3.12) and (3.13), [57, 58]. We
have therefore seen that a measurement of these non-Gaussianities would entail a high
sensibility of the measurement instrument. We can now proceed through a more general
treatment of the bispectrum function in single-field models for inflation, which go also
beyond the standard single-filed slow-roll models whose primordial bispectrum we have
discussed in this section. We will see that, in a certain limit, it is possible to find some
consistency relations which connect the bispectrum and the power spectrum.
An alternative way to calculate the 3-point correlation function for the scalar perturbation,
or its Fourier transform the bispectrum, is given in [42]. In this work the in-in formalism
is not used, while a second-order perturbative expansion is performed. This method is
more similar to the one used in Chapter 2 to calculate the power spectra. One expands
the metric the scalar field up to the second order in the perturbations, finds the perturbed
Einstein and Klein-Gordon equations and then provides an exact solution for the gauge
invariant variables ζ and R, up to the second order in perturbations and in the slow-roll
approximation. With this method used in [42], the predictions on the non-Gaussianities
for single-field slow-roll model of Inflation are in accordance with the ones of [56].

3.2 Consistency relations

3.2.1 Scalar consistency relation

In [56] some remarkable results about the bispectrum functions of the primordial per-
turbations, both scalars and tensors have been obtained. In the previous calculation we
have considered the most general configuration for the three momenta ki of the perturba-
tion modes. In this section we will consider a particularly interesting case, the so called
squeezed limit, in which one of the three momenta is much smaller than the other two.
Thanks to the momentum conservation in this limit holds k3 ≪ k1 ∼ k2. In this configura-
tion the mode labeled by k3 crosses the horizon much earlier than the other two modes.
When the two modes k1,2 cross the horizon ζ3 is already constant and its only effect will be
to make the comoving scales k1,2 cross the horizon at a slightly earlier time. It is possible
to give an intuitive estimate of this time shift [63]:

δt∗ ≃ −
ζ3
H
. (3.56)

In this limit we obtain the following relation [56]

⟨ζk1ζk2ζk3⟩ ∼ −⟨ζk3ζ−k3⟩
′ 1
H

d

dt∗
⟨ζk1ζk1⟩

∼ −(ns∗ − 1)⟨ζk3ζ−k3⟩⟨ζk1ζk2⟩,
(3.57)

where ns∗ is the scalar spectral index and (ns∗ − 1) measures the deviation from a scale
invariant power spectrum. Eq. (3.57) is the so-called consistency relation for the scalar
perturbations. Despite the assumption of single-field slow-roll, it has been demonstrated
that this relation holds in a more general case [59]. This relation, indeed, is a direct
consequence of the invariance under space diffeomorphisms of the classical and quantum
theory. In addition, one need not necessarily specify the form of the action as long as the

69



symmetry is in place and a locality requirement is satisfied. The relation (3.57) holds for
all single-field models of inflation4 [63].
This statement is of great importance in the studies about the primordial non-Gaussianities.
In [64, 59] it is underlined that the presence of only one dynamical field entails that there
is only one clock of the Universe: the time dependence of the scalar field which drives
Inflation fixes the Hubble parameter and fluctuations of the inflaton are equivalent to a
relative rescaling of the scale factor in different parts of the Universe. This implicite as-
sumption we have made so far will be a fundamental difference between the “standard”
model of Inflation (where here by standard we mean models which respect, in general, the
standard isometries of a de Sitter spacetime) and the new proposal of Solid and Gaugid
Inflation models, the latter being the main focus of the original results of this Thesis.
We have seen in the previous section that the theoretical prediction about the non-
Gaussianities in single-field models of slow-roll Inflation is very small, much smaller of
the present observable constraints. This implies an objective difficulty at the present in
testing the validity or the violation of the consistency relation for the single-field models
in (3.57) with an adequate precision with a measurement of the non-Gaussianity. On the
other side, mathematics and physics share a feature which is very appreciated by the re-
searchers: it is very difficult to demonstrate that a theory, or more specifically, a relation
is true, but it is very simple to show that a law is false. There are infinite ways to violate
a consistency relation, but there is only one way for it to be correct. A violation of the
consistency relation would rule out the entire class of (“standard”) single-field models of
Inflation. For this reason a great work has been spent in searching new models which
violate these conditions. The model we will focus on arose exactly with this intention.

3.2.2 Tensor consistency relation

In [56] some consistency relations involving also the tensor degrees of freedom in the
squeezed limit have been similarly obtained. From now on we will concentrate on the
these degrees of freedom, given their importance for the description of the early Universe,
see Section 2.3. The most important three-point correlator is the one which involves two
scalar and one graviton5, in the squeezed limit k1 ≪ k2 ≃ k3, where k1 represents the mode
of the graviton and k2, k3 are the modes of the scalars. It takes the form [56]

⟨γsk1ζk2ζk3⟩
′ ∼ −⟨γks1γ−ks1⟩ε

s
ij(k1)ki2k

j
3
∂

∂k2
2
⟨ζk2ζk3⟩, (3.58)

where εsij(k1) is the polarization tensor introduced in Eq. (2.92). The prime denotes
the time when k3 crosses the horizon. Analogously to the scalar case the squeezed limit
corresponds to the physical situation in which when k2, k3 cross the horizon the tensor
mode with k1 is already frozen so that the fluctuations of ζ will be those that we expect
in this deformed geometry. So the effect of a frozen gravitational wave on the scalar
perturbation would be to modulate the power spectrum of the scalar perturbation when
they cross the horizon. In [59] it is stressed out that this effect can be easily reabsorbed
by a simple coordinate redefinition, entailing that every observer goes through the same
history and scalar and tensor modes have physical meaning only when they reenter in the
horizon. In [56] also the three-point functions for scalar-tensor-tensor and tensor-tensor-
tensor, with their respective consistency relations have been computed.

4Note that it is a general feature of single-field model for Inflation and it is not required the slow-roll
condition, see also [65]. For a critical review of the validity of these consistency relations see e.g. [32, 66].

5With graviton we mean the particle associated to the tensor fluctuations.
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Another, more precise, expression for the tensor-scalar-scalar consistency relation is given
in Refs. [63, 67]:

⟨ζk1ζk2γ
s
K⟩ K≪k1∼k2ÐÐÐÐÐ→ (2π)3δ(3)(K + k1 + k2)

1
2
d lnPζ
d lnk

εsij(K)k̂i1k̂
j
2Pγ(K)Pζ(k), (3.59)

where we have defined k = (k1+k2)/2. We will see that this consistency relation will allow
us to define new observable quantities that allow to provide a new indirect way to detect
primordial gravitational waves.
We conclude underlining again that an observation of the violation of the consistency
relation, both for scalar and tensor perturbation, would rule out all single-field models of
inflation, which, of course, would be an extraordinary result. Now, the question is: are
there new observables which allow us a more precise reconstruction of what happened in
the early Universe?
The answer is (in theory) yes. In the next sections we will study two possible indirect way
to observe the gravitational wave background: the tensor fossils and the galaxy clustering.

3.2.3 Deviation from Statistical isotropy

We briefly describe now, what is the fundamental effect of a long-wavelength gravitational
wave (GW) on the curvature perturbation power spectrum. Following [68] we will see
that the effect of long-wavelength GW can be seen as a change of coordinates with respect
to the standard cosmic frame. In this new frame homogeneity and isotropy hold, so the
power spectrum resembles the standard form seen in Chapter 2. When going back to the
cosmic frame, we will see, the net effect will be a departure from statistical isotropy. We
begin with the standard FLRW perturbed metric. Given that at the first order the tensor
and scalar perturbations are decoupled we will consider only the GW

ds2 = a2(η) [−dη2 + (δij + γij)] .

The frame in which the line element resembles this equation will be referred to as the
Cosmic Frame (CF). Using the equivalence principle it is possible to define a coordinate
transformation such that the spacetime appears locally Minkowski. The new coordinates
can be defined as

x̃µ = (δµν +
1
2
γµν )xν (3.60)

or, at the first order in γij
xµ = (δµν −

1
2
γµν ) x̃ν . (3.61)

Here we are considering γ0µ = 0. We easily see that this change of coordinates affects only
the spatial part of the metric, given that

η̃ = (δ0
ν +

1
2
γ0
ν)xν = η,

at the first order. For the spatial part we have

dxi = dx̃i − 1
2
γijdx̃

j − 1
2
x̃j∂µγ

i
jdx̃

µ,

so we obtain
ds2 = a2 [−dη2 + δijdx̃idx̃j − x̃j∂µhijdx̃µdx̃i] . (3.62)
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We see that in this metric the gravitational waves appears only with their derivative. It
is said that in this coordinate system the GW are gauged away. This frame with metric
(3.62) will be referred to as locally Friedmann frame (LFF), because in this coordinates
the metric is locally that of an unperturbed FLRW Universe.
We have seen that on small scales Inflation generates scalar curvature perturbation. Now,
for the equivalence principle, scalar perturbation on small scales cannot be affected by
the long-wavelength tensor. For this reason we can assume statistical homogeneity and
isotropy in the LFF, so that the power spectrum of scalar perturbation can be rewritten
as a function of only the modulus of the wavenumber, P̃(k̃) = P̃(k̃). Here we indicate
the observed quantities in the LFF with a tilde. Going back to the CF using the Fourier
transform of (3.61), i.e., k̃i → ki − kjγji /2 the power spectrum becomes

P (k) = P̃ (k) −
kikjγ

ij

2k
dP̃

dk
+O(

kγ

k
γij , γ

2) 6. (3.63)

Hence breaking isotropy. This is a particular case of a more interesting class of observable
effects we will investigate in the following section.

3.3 Fossils from primordial Universe
In the last few years, much strength has been devoted to the studies about new quantities
to constrain the properties about the primordial gravitational waves background. Despite
the difficulties of a detection of primordial gravitational waves we have seen that it is
possible to have an indirect detection of it using the scalar perturbations. A possibility
to detect the primordial gravitational waves we will deal with is provided by the fact that
long-wavelength gravitational waves may give rise to an apparent local departure from
statistical isotropy in the form of a power quadrupole, detectable with observations on
the CMB. Another possibility is given by Eq. (3.59), from which we can see that the
presence of a gravitational wave background, in the squeezed limit, entails a quadrupole
distortion in the power spectrum of the curvature perturbation and, as we will see in the
next section, in the matter perturbations characterizing the Large Scale Structure of the
Universe. We can define now a new, intriguing, definition to define primordial fields whose
effect is only an imprint on other observable quantities: Inflation fossil. These are defined
as a hypothesized primordial degree of freedom that no longer interacts or very weakly
interacts during late-time cosmic evolution, as metric tensor perturbations are [69, 70].
The only observational effect of an Inflation fossil might therefore be its imprint in the
primordial curvature perturbation, as we have seen in the case of the squeezed limit of the
ζζγ bispectrum. Inflation fossils can be those extra fields that are introduced in a variety
of alternatives to the single-field slow-roll model. An example is given by the model we
will study in the last chapter, Gaugid Inflation model [52]. In this model is predicted an
additional tensor degree of freedom, which could play the role of the tensor fossil.
We are now ready to formalize the possible prediction for the tensor fossils. The expression
(3.58) allow us to define a new correlation induced on the inflaton by the tensor degrees
of freedom [69, 70]

⟨ζ(k1)ζ(k2)⟩∣hp(K) = (2π)3δ(3)(K + k1 + k2)fp(k1,k2)h∗p(K)εpij(K)k̂i1k̂
j
2. (3.64)

With hp we mean a generic fossil field, which can be, in general, a scalar, a vector or a
tensor field.

6Remember that here we are considering the squeezed limit, in which kγ ≪ k.
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fp is a “shape” function which is connected with the scalar-scalar-new field bispectrum as

Bp(k1, k2,K) = Pp(K)fp(k1,k2)εpijk
i
1k
j
2. (3.65)

The subscript of the fossil field p indicates the nature of the field, while εpij(K) it polariza-
tion tensor, a symmetric 3×3 tensor. Due to its symmetry, εij has six degrees of freedom,
hence it can be decomposed into six orthogonal polarization states, which we can labeled
with p = {+,×,0, z, x, y}, which satisfy the orthonormality condition εpijεp

′,ij = 2δpp′ . Each
orthogonal state describes a different polarization for the perturbation which causes the
departures from statistic homogeneity and isotropy [70]: they can be taken to be two scalar
modes ε0ij ∝ δij and εzij ∝ KiKj − (K2/3)δij , two transverse-vector modes εx,yij ∝ K(iwj),
with Kiwi = 0, and two transverse traceless modes, the tensor modes, ε+ and ε×.
To understand the meaning of these polarizations we can consider the case in which the
modeK is taken to be in the ẑ direction. In this case the two tensor polarization are found
to be ε+xx = −ε+yy = 1 and ε×xy = ε×yx = 1, with all other components are zero in both cases. In
Fig. 3.1 it is clear that a distortion due to ε× or ε+ generate a quadrupole displacement
in the two point correlation function of the field we are interested in.
For the scalar mode we have ε0ij =

√
2/3δij , whose normalization is given by the or-

thonormality condition. This perturbation represents just an isotropic modulation of
the correlator function, as can be seen in FIg. 3.1. The other scalar takes the form
εzij = diag(−1,−1,2)/

√
3, that represents a stretching and compression along the ẑ direc-

tion. Both the scalar describe a distortion which is invariant under rotations around the
ẑ-axis, i.e. around the direction of K.
For the vector modes we have εxxz = εxzx = 1 and εyyz = εyzy = 1, with all other components
equal to zero. These vector modes represent, respectively, stretching and compression
along the ±xz and ±yz directions. For the final chapter of this work we are interested in
the possibile detection of a tensor fossil, hence we will concentrate only on tensor fields.

Figure 3.1: Distortion induced to an isotropic 2-point correlation function by correlation of the
density (or any other scalar field) with a fossil field with different polarization, pointing in the
ẑ. The distortions to the sphere show the distortions of the two-point correlation function as
one moves along the direction ẑ of the Fourier mode. Left: two scalar modes (0, z), two vector
modes (x, y) and the two tensor modes (+,×). In particular note the quadrupole distortion due
to the tensor modes. Right: the circular polarizations of the tensor mode (h+t) and vector mode
(h+v).[70].

Using the consistency relation in Eq. (3.59) and the new parametrization for the

73



two-point correlator for the scalar in the presence of a long-wavelength tensor we have [67]

⟨ζk1ζk1⟩∣γK =(2π)3δ(3)(k1 + k2)Pζ(k)

+ ∫
d3K
(2π)3∑

s

(2π)3δ(3)(k1 + k2 +K)1
2
d lnPζ
d lnk

Pζ(k)×

× γ∗s (K)εsij(K)k̂i1k̂
j
2 +O((K/k)2),

(3.66)

where the possible polarizations are summed over. It is possible to observe the imprint left
by these primordial fossils? Refs. [69, 70] provide a full treatment to connect the tensor
modes in the observables connected with the CMB anisotropies in temperature. We will
follow these references. Before focusing on it is important to underline that the specific
functional form of the shape function fp depends on the coupling of the new fossil field
(which can be scalar, vector and tensor) with the inflaton. This is true in the case of a
model which violates the relation (3.59), while for single-field models the shape of fp does
not depend on the coupling between the scalar and the tensor perturbations, since (3.59)
is a sort of universal relation valid for all the single-field models, as we mentioned above.
Because of the statistical isotropy we have that fp will be te same for the two tensor
polarization and the same for the two vector polarizations, i.e. f×(k1,k2) = f+(k1,k2)
and fx(k1,k2) = fy(k1,k2). It is possible to show that the same is not true for the two
scalar polarizations. It is possible to define a new generic polarization s which merges the
contributions due to the two scalar polarizations [70]. This means that the characterization
of the contribution of the fossil fields is complete with the definition of one scalar, two
vector and two tensor degrees of freedom.

3.3.1 Tensor fossils in CMB

Following [69] it is possible to calculate some estimators for the contribution of the fossil
field to the observed CMB anisotropies in temperature. We can use the so-called TAM
formalism (total-angular-momentum) to decompose the fields we are considering using
spherical harmonics, see Ref. [71]. In practice we perform an expansion using spherical
waves, which are general solution of the Helmholtz equation. This is useful to exploit
the spherical symmetry of the background. The features of these wave functions is that
they are eigenfunctions of the total angular momentum J and its third component M . In
the following section we will briefly summarize the results of this method, then we will
construct some estimators for the tensor fossils in the CMB.

Introduction to TAM formalism

Let us summarize the main results of this method. Later we will deal with the multipole
expansion of the CMB temperature perturbation we have introduced in Section 2.3.3.
For this reason we need a formalism which helps us to decompose the perturbations us-
ing spherical functions (remind that all the cosmological observation are performed on a
spherical sky). We will describe here the decomposition of a scalar field as an introduction
to this method, for more details see [71, 72]. Consider a scalar field which is solution of
the Helmholtz equation (∇2 + k2)φ(x) = 0. The most general solution can be written in
terms of plane waves eik⋅x ≡ Ψk(x)

φ(x) = ∫
d3k

(2π)3φkΨk(x), (3.67)
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where we have indicated with φk the Fourier transform of the scalar function. We want to
decompose this solution into eigenfunctions of the angular momentum operator. We use
the plane-wave expansion

Ψk(x) = eik⋅x = ∑
lm

4πiljl(kr)Y ∗
lm(k̂)Ylm(n̂), (3.68)

where jl are the spherical Bessel functions of the first kind and Ylm are the spherical
harmonics. Here we have used the notation x ≡ rn̂. Now we can define the total-angular-
momentum (TAM) basis functions

Ψk
lm(x) ≡ jl(kr)Ylm(n̂). (3.69)

Now using the following properties of spherical harmonics and first kind Bessel function

∫ k2dkjl(kr)jl(kr′) =
π

2r2 δ(r − r
′), ∑

lm

Ylm(n̂)Y ∗
lm(n̂′) = δ(n̂ − n̂′),

we can write
φ(x) = ∑

lm

4πil ∫
k2dk

(2π)3φlm(k)Ψk
lm(x), (3.70)

where we have defined

φlm(k) = ∫ d3k [4πilΨk
lm(x)]∗ φ(x). (3.71)

These are the angular-momentum dependent coefficient we are interested in. We can
decompose the ζ perturbation using (3.71). Furthermore we are dealing with scalar,
vector and tensor fossil degrees of freedom that can be all incorporated into a symmetric
traceless tensor field hab(x), as we have seen in Section 3.3. We can expand this tensor
field using the TAM formalism: the longitudinal mode hLJM(K) describes a scalar fossil
field, the two divergence-free vectorial modes hV EJM(K) and hV BJM(K) describe a transverse-
vector fossil, and the two divergence-free tensorial modes hTEJM(K) and hTBJM(K) describe
a transverse-tensorial fossil. We will indicate a generic mode of the fossil field with hαJM ,
where α = L,V E,V B,TE,TB.
Using this expansion Eq. (3.64) becomes [69, 71]

⟨ζl1m1(k1)ζl2m2(k2)⟩hαJM (K) =[h
α
JM(K)]∗fαh (k1, k2,K)(4π)3(−i)l1+l2+J×

× 1
k1k2

∫ d3x (∇iΨk1
(l1m1)(x)) (∇jΨk2

(l2m2)(x))Ψα,K
(JM)ij(x),

(3.72)

with α the polarization of the fossil field. Here Ψk
(lm)(x) are the scalar TAM functions

introduced above. With similar arguments one can introduce the analogous TAM wave
function Ψα,K

(JM)ab(x) for tensor fields. We will connect the perturbations ζlm to alm,
which are the coefficients for the temperature perturbation spherical expansion. We are
now ready to build some estimators for the tensor fossils using the CMB temperature
perturbations.

CMB estimators

We look now to the temperature map of the CMB. A long-wavelength tensor fossil would
modulate the scalar perturbation, as it can be seen in Eq. (3.64) and 3.1. This means that
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it would be possible to see the effect of a tensor fossil also in the correlation between the
harmonic modes of the CMB anisotropies. This effect translates into a (local) departure
from statistical isotropy of the correlation of CMB temperature multipoles, i.e.:

⟨aTl1m1a
T∗
l2m2⟩h = ⟨aTl1m1a

T∗
l2m2⟩ +∆h. (3.73)

Here ⟨aTl1m1
aT∗l2m2

⟩ represents the “standard” correlator in absence of a fossil field and has
the usual form

⟨aTl1m1a
T∗
l2m2⟩ = C

TT
l1 δl1l2δm1m2 , (3.74)

while ∆h represents the contribution of the fossil field which breaks isotropy. We want
to write it in way that the TAM formalism introduced above can be useful. We can use
another expansion for the temperature multipoles, which is the so-called bipolar spherical
harmonics expansion (BiPoSH) [73]. With this formalism we have

∆h = ∑
JM

(−1)m2⟨l1m1l2,−m2∣JM⟩AJMl1l2 , (3.75)

where the ⟨l1m1l2,−m2∣JM⟩ denotes the Clebsch-Gordan coefficients. The AJMl1l2 are the
BiPoSH coefficients, given by

AJMl1l2 = (−1)l1+l2+M
√

2J + 1 ∑
m1m2

W l1l2J
m1,−m2,−M ⟨aTl1m1a

T∗
l2m2⟩h. (3.76)

The notation W l1l2l3
m1m2m3 indicates the Wigner-3j symbol. We know that the scalar pertur-

bation sources the CMB anisotropies. Hence, in this formalism, we can connect the TAM
coefficients ζlm with the temperature multipoles using the transfer function [69]

aTlm = 1
2π2 (−i)

l ∫ k2dkgTl (k)ζlm(k), (3.77)

where gl(k) is the scalar radiation transfer function for the temperature.
Using Eqs. (3.72), (3.76) and (3.77) we obtain the modulation of the BiPoSH of the
temperature due to a fossil wave in the TAM formalism:

AJMl1l2 ∣hαJM (K) = − (−i)J(−1)l1+l2+P (α)hαJM(K)16
π

× ((2l1 + 1)(2l2 + 1)
4π

)
1
2

∫ k2
1dk1g

T
l1(k1)∫ k2

2dk2g
T
l2(k2)

× fαh (k1, k2,K)Iαl1l2J(k1, k2,K).

(3.78)

The polarization takes different values according to the different nature of the fossil field
[69, 71], P (α) = 0 for the scalar mode and the E vector and tensor mode, P (α) = 1 for the
B vector and tensor mode. The integral functions are connected with the TAM coefficients

Iαl1l2J(k1, k2,K) = [ 4π
(2l1 + 1)(2l2 + 1)(2J + 1)

]
1
2

×

× [∫ d3xΨL,k1,a
(l1m1)(x)Ψ

L,k2,b
(l2m2)(x)Ψ

α,K
(JM)ab(x)] /W

Jl2l1
Mm2m1

.

(3.79)

Due to parity conservation, the E scalar vector and tensor modes induces on even-parity
BiPoSHs, i.e. J + l1 + l2 = n, with n even, while vector and tensor fossils, which contain
B-mode TAM waves, induce BiPoSHs with J + l1+ l2 = r, with r odd. Therefore vector and
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tensor fossils, but we are more interested in tensors, can be distinguished from scalar fossils
from their signature in odd-parity. It is important to stress that much experiments will be
devoted to the detection of the B mode of the polarization in the CMB. Nevertheless, with
this treatment, vectors and tensors cannot be geometrically distinguished from each other,
but we will see another method to distinguish them. This impossibility in distinguishing
them can be understood as a loss of information. When observing the CMB we are
watching a two-dimensional image, i.e. a projection of the background radiation. The lost
information could be regained with three-dimensional surveys [70]. The power spectrum
for the fossil field is simply given by

⟨hαJM(K)hα
′

J ′M ′(K′)⟩ = Pαh
(2π)3

K2 δ(3)(K −K′)δJJ ′δMM ′δαα′ (3.80)

Note that in this formula we are assuming an almost scale invariant power spectrum. We
are also assuming that at first order, all the possible fossil fields are uncorrelated: this is
guaranteed by δαα′ .
We need now to define some quantities which provide good estimators for the fossil fields.
From Eqs. (3.73) and (3.75) we see that we need to give an estimator which takes into
account the coefficients AJMl1l2 . It is possible to give a statistical measurement of the imprint
of the fossil through [69]

CJl1l2,l3l4 =
1

2J + 1
⟨

+J
∑

M=−J
AJMl1l2 [AJMl3l4 ]

∗ ⟩, (3.81)

which is simply the average over all realizations of the fossil field. From Eq. (3.76) we see
that the definition in Eq. (3.81) corresponds to the four-point correlations in the temper-
ature map.
We assume, then, a phenomenological parametrization for the fossil field. The two param-
eters which describes it are the normalization PZh of the power spectrum

PZh (K) = PZh P̃
Z
h (K) (3.82)

and the normalization of the scalar-scalar-fossil bispectrum BZ
h

fZh (k1, k2,K) = BZ
h f̃

z
h(k1, k2,K). (3.83)

With the tilde we have indicated the fiducial-shape of the power spectrum and bispectrum.
Here Z can represent scalar, vector and tensor fossil field, without distinction between E
and B-modes. This is due to the statistical homogeneity, as we have mentioned above.
Finally, with these parametrization, we can rewrite Eq. (3.76) as

AJMl1l2 ∣hαJM (K) = B
Z
h F

J,α
l1l2

(K)hαJM(K), (3.84)

where now α ∈ Z and the coefficients F J,αl1l2(K) can be obtained from Eq. (3.76)

F J,αl1l2(K) = − (−i)J(−1)l1+l2+P (α) 16
π

((2l1 + 1)(2l2 + 1)
4π

)
1/2

× ∫ k2
1dk1g

T
l1(k1)∫ k2

2dk2g
T
l2(k2)f̃Zh (k1, k2,K)

× Iαl1l2J(k1, k2,K).

(3.85)

Eq. (3.84) is the equivalent for the CMB of (3.64). It represents the quadrupole distortion
of the CMB temperature perturbation caused by a primordial tensor fossil. The distortion
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is visible in (3.85) through its fh dependence. This is an important results of the studies
on the tensor fossils because we have found a possible observable effect connected to the
CMB temperature perturbations, one of the most important observables of the last thirty
years.
From Eq. (3.84) we explicitly see that the departure from statistical isotropy for the 2-
point correlator of the CMB temperature is given, in this case, by the presence of a fossil
field. If we define the reduced amplitude as AZh ≡ PZh (BZh )

2, the BiPoSHs power spectra
are then calculated

CJl1l2,l3l4 =
AZh

(2π)3 ∑
α∈Z
∫ K2dKP̃Zh (K)F J,αl1l2(K) [F J,αl3l4(K)]

∗
. (3.86)

It is evident that to perform this calculation, the temperature transfer functions gTl play an
fundamental role in this calculation, as shown in (3.85). It is possible now to define some
estimator [69, 70] which are useful to determine the reduced amplitude experimentally.
An estimator for the BiPoSH coefficients is

ÂJMl1l2 = ∑
m1m2

(−1)m2 ⟨l1m1l2,m2∣JM⟩aTl1m1a
T∗
l2m2 , (3.87)

while the estimators for the CJl1l2,l3l4 can be written as

ĈJl1l2,l3l4 =
1

2J + 1
J

∑
M=−J

ÂJMl1l2 [ÂJMl3l4 ]
∗
−CTTl1 CTTl2 (δl1l3δl2l4 + (−1)l1+l2+Jδl1l4δl2l3). (3.88)

Defining
FJ,Zl1l2,l3l4 ≡

1
(2π)3 ∑

α∈Z
∫ K2dKP̃Zh (K)F J,αl1l2(K) [F J,αl3l4(K)]

∗
, (3.89)

we are ready to define an estimator for the reduced amplitude which will allow us to write
down the statistical error. Given that the reduced amplitude is given by, see (3.86)

AZh =
CJl1l2,l3l4

FJ,Zl1l2,l3l4
, (3.90)

we can write an estimator for the reduced amplitude for each combination of J and li,
i = 1, . . . ,4, using (3.90) and (3.88)

̂AJ,Zh,l1l2,l3l4 =
ĈJl1l2,l3l4

FJ,Zl1l2,l3l4
. (3.91)

We can use these estimator to construct another one for the total reduced amplitude, ÂZh .
Treating the estimators in (3.91) as statistically independent estimators, we can combine
them obtaining the inverse-variance-weighted estimator

ÂZh =
⎡⎢⎢⎢⎢⎣
∑
J

∑
(l1,l2,l3,l4)

̂AJ,Zh,l1l2,l3l4⟨(
̂AJ,Zh,l1l2,l3l4)

2
⟩
−1

0

⎤⎥⎥⎥⎥⎦
⋅
⎡⎢⎢⎢⎢⎣
∑
J

∑
(l1,l2,l3,l4)

⟨( ̂AJ,Zh,l1l2,l3l4)
2
⟩
−1

0

⎤⎥⎥⎥⎥⎦

−1

.

(3.92)
The subscript 0 indicates that, at the zeroth order we can consider all the ̂AJ,Zh,l1l2,l3l4 as
uncorrelated modes. This feature is highlighted also by the sum over (l1,l2,l3,l4), which is
performed over all the independent combinations of the multipoles [69]. The denominator
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of this expression is equal to the inverse variance of the reduced amplitude estimator,
which is found to be

(σZA)−2 ≡ ⟨ [ÂZh ]
2
⟩
−1

0
= 1

8∑J
∑

l1l2l3l4

2J + 1
CTTl1 CTTl2 CTTl3 CTTl4

FJ,Zl1l2,l3l4 [FJ,Zl1l2,l3l4]
∗
. (3.93)

A high signal-to-noise S = AZh /σZA indicates a detectable BiPoSH from Inflation fossil. For
numerical results about the detectability of these fossils see Ref. [69].

3.3.2 Quadrupole anisotropy in mass distribution

We conclude this section introducing also another visible effect due to the presence of a
stochastic background of gravitational waves on large scales.
The correlations of primordial tensor perturbations with primordial scalar perturbations
can have observational consequences for the mass distribution.
It has been shown that the presence of a fossil tensor field would entail a quadrupole
anisotropy in mass distribution of the large scale structure [67, 70, 63]. This does not
come as a surprise given the general formulas and arguments that we have described
previously. It can be shown that in the case of a theory violating the consistency relations
described above one has [63]

Pζ(kS)∣γp(kL) = Pζ(kS) [1 +Q
p
ij(kL)k̂

i
sk̂
j
s] , (3.94)

with power quadrupole
Qpij(L) =

B�cr(kL, k,S , kS)
Pγ(kL)Pζ(kS)

γpij(L), (3.95)

where, again, B�cr(kL, kS , kS) is the consistency-relation-violating part of the tensor-scalar-
scalar bispectrum. The theory then predicts that this locally observed power quadrupole
has variance [63]

⟨Q2⟩ ≡ ⟨QijQij⟩ =
2
π2 ∫

kminS

kminL

k2
LdkL [B�cr(kL, kS , kS)

Pγ(kL)Pζ(kS)
]

2
Pγ(kL). (3.96)

Here, the upper limit of integration, kminS , is the smallest wavenumber probed by the
observations. The lower limit, kminL , corresponds to the longest wavelength gravitational
wave mode produced during Inflation.
It is possible to provide some estimators to measure the effect of these tensor fossils in
clustering of galaxies [70, 63]. Eqs. (3.64) and (3.95) provide an estimator for the fossil
field for each mode ζ

γ̂(K) = ζ(k1)ζ(k2) [fγs(k1,k2)εsijki1k
j
2]
−1

=
ζ(k1)ζ(k2)Pγ(K)
Bγζζ(k1,k2,K)

. (3.97)

The variance of this estimator can be evaluated considering the experimental formula for
the observed power spectrum of a general field

⟨∣δ(k)∣2⟩ = V P TOTδ (k), (3.98)

where V is the survey volume and P TOTδ is the total observed power spectrum, including
both the signal power spectrum and the noise, given, in general, by

P TOT (k) = P (k) + Pn(k). (3.99)
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The variance of (3.97) is given by

var (γ̂(K)) = 2V P TOTζ (k1)P TOTζ (k1)∣fγs(k1,k2)εsijki1k
j
2∣
−2
.

In order to have a good measure we have to find the estimator which minimize the variance:
for this reason we have to sum (3.97) over all the possible mode pairs k1-k2 weighted by
the variance

γ̂(K)min = P
n
γ (K)∑

k

f∗γs(k,K − k)εsijki(K − k)j

2V P TOTζ (k)P TOTζ (∣K − k∣)
ζ(k)ζ(K − k), (3.100)

where the noise power spectrum

Pnγ (K) =
⎡⎢⎢⎢⎢⎣
∑
k

∣fγ(k,K − k)εijki(K − k)j ∣2

2V P TOTζ (k)P TOTζ (∣K − k∣)

⎤⎥⎥⎥⎥⎦

−1

, (3.101)

is the variance with which the tensor estimator is measured. We can write the power
spectrum splitting it into its amplitude and its fiducial power spectrum

Pγ(K) = AγP fγ (K). (3.102)

The fiducial power spectrum gives only the scale-dependence of the power spectrum, for
nearly scale-invariant power spectrum it will be

P f(k) = kn−3, (3.103)

with ∣n∣ ≪ 1. We are now ready to give an estimator for the fossil amplitude Aγ . Using
(3.98) and the definition (3.102) we have

ÂK
γ = [P fγ (K)]−1 [V −1∣γ̂(K)∣2] .

To unbias the estimator we have to subtract the noise

ÂK
γ = [P fγ (K)]−1 [V −1∣γ̂(K)∣2 − Pnγ (K)] . (3.104)

In this case the variance of this estimator is [70]

var (ÂK
γ ) = 2

[Pnγ (K)]2

[P fγ (K)]
2 (3.105)

As we did before for the γ estimator we can find the minimum-variance estimator for the
amplitude

ÂK
γ min

= σ2
γ ∑
K,s

[P fγ (K)]
2

[Pnγ (K)]2 (V −1∣γ̂s(K)∣2 − Pnγs(K)) , (3.106)

where the variance is

σ−2
γ = ∑

K,s

[P fγs(K)]
2

2 [Pnγs (K)]2 . (3.107)

Note that in Eq. (3.106) we have to sum over the possible values for the tensor polarizations
s = +,×. We can now evaluate the smallest amplitude which can be detected with a given
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survey. Using the single-field slow-roll model prediction for the γζζ bispectrum in Ref.
[56] we have, in the squeezed limit K ≪ k1 ∼ k2

fγ(k1,k2) = −
3
2
Pζ(k1)
k2

1
. (3.108)

We go from discrete to continue limit ∑k → V ∫ d3k
(2π)3 and we use now the following

approximation for the total power spectrum. We define

P (k)
P TOT (k)

= θ(kmax − k) =
⎧⎪⎪⎨⎪⎪⎩

1 if k < kmax
0 if k > kmax

, (3.109)

where θ is the Heaviside function. kmax is the UV cut to the integral which represents the
largest wavenumber for which the power spectrum can be measured with high signal to
noise. These hypothesis give a noise power spectrum for a tensor fossil

Pnγ = 20π2

k3
max

. (3.110)

We stress, again, that this is a prediction for the SFSR models of Inflation.
Evaluating the integral (3.107) gives

σ−2
γ = 2V ∫

d3k
(2π)3

k6
max

800π4k6 = k6
max

100π3
V

(2π)3 ∫
kmax

kmin

dk

k4 ≃ 1
300π3 (kmax

kmin
)

6
, (3.111)

where kmin is the smallest wavenumber detectable in the survey. The factor 2 in the first
step is given by the sum over the two polarizations of the gravitational wave. In the last
step we have used the fact that the volume of the survey is given by V = (2π)3k−3

min and
that kmax ≫ kmin. We want to see what are the detectable tensor amplitudes at > 3σγ

3σγ = 30π
√

3π (kmax
kmin

)
−3
. (3.112)

This result shows us that the smallest detectable GW power spectrum amplitude is in-
versely proportional to the Fourier modes present in the survey. If we consider a value
for the tensor amplitude near the maximum amplitude Aγ ≃ 2 ⋅ 10−9, see Ref. [70, 63], a
detection requires

kmax
kmin

> 5200. (3.113)

This request is beyond the actual reach of galaxy surveys. We will see that in solid Inflation
the number of Fourier modes required for a detection of a tensor fossil power spectra is
reduced, enhancing the possibilities of an observation. [63] provides a correction to the
previous clustering fossils results obtained in [70], in particular they consider also the late
time evolution of tensor fossils, solving some problems arising in the previous works. For a
study of the effect of late-time evolution of tensor fossil see Ref. [63]. For other interesting
effects of primordial gravitational waves on Large Scale Structures observations see, e.g.
[74, 75, 76, 77]
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Chapter 4

Solid Inflation

4.1 Why a new model of inflation?

Up to now we have studied the standard model of Inflation, the single-field slow-roll model.
Despite the last observations have ruled out several inflationary models, see Ref. [21], there
are still various models compatible with the data. It is useful to classify them in terms of
an effective field theory description [78], where the behavior of the perturbations can be
understood in terms of symmetries and symmetry breaking. In Chapter 2 we have seen that
to have an inflationary period we need an almost flat potential for the field which drives
Inflation. This property can be described as an approximate shift symmetry φ → φ + a,
where φ is the inflaton field. A small and controlled breaking of this symmetry ensures
a slow roll inflaton evolution, which breaks time translational invariance. The broken
time translation invariance is made explicit in the time dependence of all the background
quantities for the description of the evolution of Universe. The breaking of time translation
invariance also ensures that during Inflation we have a quasi-de Sitter background, which
allows the end of the Inflation. Despite this symmetry breaking, the observed homogeneity
and isotropy of the Universe on large scales require the assumption of invariance of the
background value of the field under spatial translations and rotations. Most of the Inflation
models have these features, hence we need to discriminate them using some univocal
observation. In [53] it is proposed a new model of Inflation called Solid Inflation. In this
model has been implemented a previous idea, called Elastic Inflation [79], for which the
“fluid” which drives Inflation is composed by three scalar fields which have very particular
properties: their background values are time-independent and x⃗-dependent. This means
that the standard invariance under spatial translations and rotations are broken, while
time translation is preserved. The homogeneity and the isotropy required to satisfy the
Cosmological Principle are restored adding internal symmetries on the scalar fields. This
simple procedure entails very interesting outcomes for various aspects: we will see that it
predicts a blue tilt for the tensor perturbations, it breaks the consistency relation for the
bispectra and it predicts interesting results for tensor fossils. For these reasons we will
take into account this theory: it has observable predictions which are different from most
of the (standard) single-field models of Inflation.

4.1.1 Solid on Minkowski

In [53] the field which drives Inflation manifestly breaks the standard isometries of a de
Sitter spacetime. We have always considered a homogeneous and isotropic background,
which means taking a background invariant under the spatial rotations and translations.
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In other words all the quantities evaluated on the background are only time dependent,
only the time diffeomorphism is broken. By the way, if we consider, for example, a scalar
field with vev

⟨φ⟩ = αx (4.1)

with α = const, we are breaking the translations along x, while we are preserving the
time diffeomorphism. In order to restore the homogeneity we can assume an internal shift
symmetry of the scalar field, i.e.

φ→ φ + a with a = const, (4.2)

so that the background (4.1) is invariant under a combination of x translation and shift
transformation. To restore the isotropy we need to add an internal index, I = 1,2,3, for
which (4.1) becomes

⟨φI⟩ = αxI . (4.3)

Now (4.3) breaks rotations, and to restore them we add another internal symmetry which
involves the internal index I

φI → OIJφ
J with OIJ ∈ SO(3), (4.4)

so that (4.3) is invariant under a combination of internal and spatial rotations. Eq. (4.2)
with an internal index become simply

φI → φI + aI with aI = const, (4.5)

The index I indicates the internal coordinates: consider a fluid which fills all the space. We
can describe this fluid by attaching to each volume element a three-dimensional label φI
and following its trajectory as a function of the label and of time x = x(φI , t). Since at any
given time the mapping between φI and x is invertible, the medium can be equivalently
described by φI as a function of the comoving coordinates φI(t,x), and for our purpose it
is more useful to work using φ as a function of the coordinates.. The mathematics under
these assumption is very trivial: (t,x) = xµ are the usual coordinates and φI are three
Lorentz scalars. We only need to build a theory for three Lorentz scalars respecting the
symmetries (4.4) and(4.5) on a curved spacetime. We start with the low-energy limit, i.e.,
we will consider our solid on a Minkowski spacetime.
To construct our theory we need Lorentz scalar and shift-rotation invariant quantities.
The shift invariance forces the field φI to appear only with its derivative, the Lorentz
condition implies that these derivatives must be contracted. We can construct only one
quantity with these features

BIJ = ∂µφI∂µφJ . (4.6)

From (4.6) we can construct the SO(3) variables with which we will construct our action
which are

[B], [B2], [B3],

where the square brackets stand for the trace of the matrix [..] = Tr(..). It is useful to
consider only one of these three invariants to keep track of the size of the matrix B, it will
be fundamental when studying the background dynamics on the de Sitter spacetime. We
can define the three variable we will consider for the solid action:

X = [B], Y = [B2]
[B]2 , Z = [B3]

[B]3 . (4.7)
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In this definition only the variable X is sensible to the stretching of the field, while Y and
Z are defined in such a way they do not feel the expansion. The most general action we
can construct with these blocks is

S = ∫ d4xF (X,Y,Z) + . . . . (4.8)

Note that in Eq. (4.8) we are using the flat Minkowski metric because we are considering
the low-energy limit, for which we can omit, for the moment, the coupling with gravity.
The dots indicate the higher energy contributions, like higher derivative terms of X, Y
and Z.
The perturbations to the background (4.3) are

φI = α(xI + πI). (4.9)

Inserting Eq. (4.9) into Eq. (4.6) we have the perturbed expression for the building block
BIJ

BIJ = α2(δIJ + ∂IπJ + ∂JπI + ∂µπI∂µπJ). (4.10)

For X we have
X = δIJBIJ = α2[3 + 2∂IπI + π̇I2 + (∂iπJ)2], (4.11)

The second order action is [53, 80]

S(2) =∫ d4x[ − 1
3
FXX ⋅ π̇2

i + (1
3
FXX + 6

27
(FY + FZ)) (∂iπj)2

+ (2
9
FXXX

2 + 2
27

(FY + FZ)(∂iπi)2)].
(4.12)

The perturbations πi represent Goldstone bosons arising from breaking the global symme-
tries of a de Sitter space. These excitations are the analogue of the phonons in a real solid,
this is the reason of the name of the model. We split now the excitations into longitudinal
and transverse part,

πi = πLi + πTi , εijk∂jπ
L
k = 0, ∂iπ

T
i = 0, (4.13)

so that the action becomes

S(2) = ∫ d4x[ − 1
3
FXX ⋅ ((π̇Li )2 + (π̇Ti )2)

+ (1
3
FXX + 6

27
(FY + FZ)) ((∂iπTj )2 + (∂iπLi )2)

+ (1
9
FXXX

2 + 2
27

(FY + FZ)) (∂iπLi )
2 ].

(4.14)

From Eq. (4.14) it is straightforward to calculate the longitudinal and transverse propa-
gation speeds

c2
L = 1 + 2

3
FXXX

2

FXX
+ 8

9
FY + FZ
FXX

, c2
T = 1 + 2

3
FY + FZ
FXX

, (4.15)

in terms of which we can rewrite the action

S(2) = −1
3 ∫

d4xFXX [π̇2
i − c2

T (∂iπj)2 − (c2
L − c2

T )(∂iπi)2] . (4.16)
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We impose now the condition of subluminal propagation for the longitudinal and transverse
modes 0 < c2

L < 1 and 0 < c2
T < 1 we obtain the following constraints for the F derivatives

− 3
2
< FY + FZ

FXX
< 0, −3

2
< FXXX

2

FXX
< 2. (4.17)

These conditions do not have an important role now. We will see their fundamental utility
when studying the conditions for having an inflationary period.

4.2 Background dynamics

After the study of the subhorizon limit we want to see if this model predicts an era of
(quasi) exponential expansion, an inflationary period. Which conditions may satisfy the
fields?
We need now to reintroduce the coupling with gravity, given that we want to study our field
in a (quasi) de Sitter Universe. We adopt the standard procedure of minimally coupling
the field to the gravitational field. The definition (4.6) now is contracted with the generic
metric gµν instead of ηµν

BIJ = gµν∂µφI∂νφJ , (4.18)

and the action (4.8) has in addition a √−g term in the integral measure

S = ∫ d4x
√
−gF (X,Y,Z). (4.19)

Also the standard derivative in (4.6) should become covariant derivative, however, since
we are dealing with scalar fields, we will not need to introduce any covariant derivative
whatsoever. For the stress-energy tensor we use the standard Hilbert definition (1.73),
and from Eqs. (4.18) and (4.19) we have, at the first order [53]

Tµν = −2 ∂F

∂BIJ
∂µφ

I∂νφ
J + gµνF. (4.20)

We can interpret now the coordinates xI in (4.3) as the comoving FLRW coordinates,
because now the de Sitter spacetime is invariant under the spatial translation and rotation
and we want both the sides in (4.3) to be invariant under the same symmetries. For this
reason we will not make difference between the internal index I and the coordinate index i.
We can also choose the normalization of the comoving coordinates to set the α parameter
to one

⟨φi⟩ = xi. (4.21)

We are now ready to calculate the background dynamics. We start from the computation
of the stress-energy momentum; using the standard perfect-fluid definition (1.21) and Eq.
(4.21) we have

ρ = −F, p = F − 2
a2FX . (4.22)

We first underline that from the first equation of (4.22) F must be negative, in order to
have a positive energy density and a stable theory. Note also that in the expression for
the pressure appears only the derivative with respect to X. The reason resides in the
definitions of Y and Z, Eq. (4.7). The only variable sensitive to the expansion of the
Universe is X, since Y and Z are rescaled. Hence, since the pressure takes into account
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also the dilatation and the contraction of the Universe, when calculating the pressure we
need only to consider the derivative of F w.r.t. X. For the general expression of the stress-
energy tensor see Ref. [53, 80]. As a general result from the Friedmann equations (1.23)
and (1.24) we obtain the following equation for the derivative of the Hubble parameter

Ḣ = −4πGρ(1 +w),

where we have used the state equation p = wρ. We see that, except for particular models
with a cosmic fluid with w < −1, we have Ḣ < 0, from which we obtain FX < 0.
The Friedmann equations in the solid paradigm become

H2 = −8πG
3

F,
ä

a
= −8πG

3
(F − 3

a2FX) , ρ̇ = 6HFX , (4.23)

from which we can define the slow-roll parameter (1.91), given that

Ḣ = 8πG
a2 FX ,

one obtains
ε = 3

a2
FX
F

= ∂ logF
∂ logX

, (4.24)

where we have used the background values for X → 3/a2(t), Y → 1/3 and Z → 1/9.
The slow-roll condition imposes ε ≪ 1, hence, from Eq. (4.24) we need a very weak
X-dependence for F in order to obtain an inflationary Universe. We have to do some
clarifications. In this theory we do not have a field which slowly rolls along its potential
along all the duration of the Inflation. We are, indeed, using the condition (1.92), which
is more general than the single field slow roll models: it simply resumes the request of an
accelerated expansion for the Universe (quasi-de Sitter condition).
We can see that the small X-dependence of F can be thought as an approximate symmetry
with respect to scale transformation

φI → λφI , λ = const (4.25)

Under the transformation (4.25) BIJ takes a multiplicative term λ2 and the same argument
hols for X, while Y and Z are insensitive to this internal transformation. If F depended
only on Y and Z, the symmetry (4.25) would be exact, since they are both independent
from rescaling of the field. Hence the smallness of FX can be interpreted as an approximate
invariance under (4.25). This not surprises too much since X is the only invariant which is
sensible to the expansion of the Universe. During Inflation the energy of the solid should
not change much if we dilate the solid.
The second “slow-roll” parameter given in (1.93) gives constraint also on the second order
derivative of F with respect to X. We note that, using the background value of X,

H = ȧ
a
= −1

2
Ẋ

X
,

and
ε̇ = Ẋ (FX

F
+ XFXX

F
−
XF 2

X

F 2 ) .

We obtain
η = ε̇

Hε
= −2(1 + X

2FXX
XFX

− ε) (4.26)
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which must satisfy the minimum e-folds condition η ≪ 1. From (4.26) we obtain a con-
straint equation for FXX

X2FXX
XFX

= −1 + ε − 1
2
η, (4.27)

which will allow us to consider XFXX ≃ −FX . With this new condition the expressions
for the propagation velocities become, with respect to (4.15)

c2
L = 1

3
+ 8

9
FY + FZ
XFX

, c2
T = 1 + 2

3
FY + FZ
FXX

. (4.28)

Manipulating these two expressions we find that the two speeds are connected by the
relation, at all the orders in the slow-roll parameters

c2
T = 3

4
(1 + c2

L −
2
3
ε + 1

3
η) (4.29)

and, at the zeroth order,
c2
T = 3

4
(1 + c2

L). (4.30)

The subluminality conditions differs from (4.17), since (4.29) implies

c2
L < 1

3
+ 2

3
ε − 1

3
η (4.31)

which reduces to
c2
L < 1

3
(4.32)

The condition (4.31) entails some constraints on the derivative of F with respect to Y and
Z:

−∣F ∣ (3
4
ε2 − 3

8
εη) < FY + FZ ≤ 3

8
ε∣F ∣

where we have used the fact that F must be negative, so XFX = −ε∣F ∣ from (4.24). We
see that the left inequalities involves terms of order two in the slow-roll parameters. At
the first order they can be neglected, and we can rewrite

0 < FY + FZ ≤ 3
8
ε∣F ∣. (4.33)

This constraint has important outcomes on the predictions of the theory. We see that
the derivative combination FY + FZ is suppressed by the slow-roll parameter. In [81] it is
stressed out that the smallness of this combination can be interpreted as an insensibility
of the solid which drives Inflation to the anisotropies of the geometry in which it resides.
It is possible to satisfy Eq. (4.33) in two particular cases:

All the derivative of F are small. This statement can be formalized as
∂F

∂BIJ
BKL ∼ εF, (4.34)

which can be interpreted as an approximate internal symmetry under diffeomor-
phisms

φI → ξI(φ) (4.35)
and not only under rescaling of the field. Eq. (4.34) means that the action we
are considering does not depend too much on the fields which drive Inflation. It
corresponds to have an inflationary period driven by a cosmological constant whose
dynamics does not depend on the fields. Authors in [53] do not take into account
this case, while we will consider exactly this case following [80].
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Derivative of the same order. We can consider FY ≃ −FZ ∼ F , with an underlying
symmetry which forces the combination FY + FZ to vanish. This case simplifies a
lot the calculations, especially when we will calculate the third order action and the
bispectra. In [80] the fact that this assumption entails non negligible errors on the
observable predictions is highlighted. We will deepen this argument in Section 4.4.

It is possible to introduce other two slow-roll parameters which involve the variation of
the propagation speed of the longitudinal and transverse modes:

s ≡ ċL
cLH

, (4.36)

u ≡ ċT
cTH

. (4.37)

From the two definitions (4.28) we see that these two parameters must be small, given the
small X-dependence of F during Inflation [53]. The two speeds are almost constant while
Inflation acts.
Finally we mention how the possible UV divergencies can be avoided in Solid Inflation. The
phonons enter the action with its derivative, see Eq. (4.12) and the following expressions
for the perturbed action. This means that the nonlinear interactions becomes strong at
energies greater than the scale

Estrong ≃ F 1/4(ε3c9
L)1/4.

The perturbation theory is under control when this energy scale is much lesser than the
Hubble parameter, Estrong ≫ H, this ensures that exists a finite window of subhorizon
scales in which the theory is weakly coupled. Give the first Friedmann equation in Eq.
(4.23), we can rewrite the stability condition as

εc3
L ≫ ( H

MPl
)

2
3
.

This condition can be satisfied easily with sufficiently small H, where with “sufficiently
small ” we means smaller than the Planck mass.

4.3 Perturbations in Solid Inflation
We are now ready to introduce gravity in our model and to study the perturbation pattern
arising from the breaking of the standard symmetries. We will make use of the metric
(3.22), where the metric elements are

g00 = −N2, g0i = gi0 = Ni, gij = hij , (4.38)

g00 = − 1
N2 , g0i = gi0 = Ni

N2 , gij = hij − N
iN j

N2 . (4.39)

Now the action becomes [53]

S = ∫ d4xN
√
h{

M2
Pl

2
[R(3) +N−2(EijEij −E2)] + F (X,Y,Z)} . (4.40)

We can easily find the constraint equations for N and Ni by varying the action, obtaining

M2
Pl

2
[R(3) −N−2(EijEij −E2)] + F (X,Y,Z) +N ∂F (X,Y,Z)

∂N
= 0, (4.41)
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M2
Pl

2
∇i [N−1(Eij − δijE)] +N ∂F (X,Y,Z)

∂N j
= 0. (4.42)

Using the definition in (4.18) it is possible to calculate the derivative of F with respect to
N and Ni

BIJ = − 1
N2 (φ̇I −Nk∂kφ

I) (φ̇J −Nk∂kφ
J) + hkl∂kφI∂lφJ (4.43)

For the moment it is useful to work in the so-called Spatially Flat Slicing Gauge (SFSG),
defined in [53] as

φI = xI + πI , hij = a(t)2exp(γij), N = 1 + δN, (4.44)

where γij is, as usual, transverse and traceless ∂iγij = γii = 0. Now we spilt the vector
perturbation into transverse and longitudinal parts, such as [53]

πi = ∂i√
−∇2

πL + πiT , and N i = ∂i√
−∇2

NL +N i
T , (4.45)

with ∂iπ
i
T = ∂iN

i
T = 0. It is useful to note that in our treatise there is not difference

between the internal indices I and the spatial ones i. This is because both πi and N i

transform as vectors under SO(3); from now on we will not distinguish between spatial
and internal indices.
We can find a simplified expression for Bij calculating (4.43) in the SFSG at the first
order in the perturbations

Bij = a(t)−2 (δij + ∂iπj + ∂jπi − γij) . (4.46)

We have now to solve the constraint equations (4.41) and (4.42) for δN , NL and N i
T . It

is useful to solve them in the Fourier space, finding [53]

δN(t,k) = −a
2Ḣ

kH

π̇L − ḢπL/H
1 − 3Ḣa2/k2

NL(t,k) =
−3a2Ḣπ̇L/k2 + ḢπL/H

1 − 3a2Ḣ/k2

N i
T (t,k) =

π̇iT
1 − k2/4a2Ḣ

.

(4.47)

In Chapter 2 we have seen that it is possible to define some gauge invariant quantities
which provides good estimators for the scalar perturbations. Looking at the definitions
of ζ and R given in (2.76) and (2.77) we obtain the following expressions in the Fourier
space [81] and in the mentioned gauge

ζ = −Hδρ

ρ
= 1

3
∂iπ

i
L, R = −Hv∥ = −

k

3Hε
π̇L +HεπL

1 + k2/3a2H2ε
. (4.48)

Note that in the Fourier space ζ becomes simply

ζ = −k
3
πL. (4.49)

It is easy to see that now the relation between ζ and R is

R = 1
Hε

ζ̇ +Hεζ
1 + k2/3a2H2ε

. (4.50)
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We see that in solid Inflation the two quantities do not coincide anymore in the super-
horizon limit, as they did in the SFSR model. In addition neither ζ nor R is conserved in
time. This is in contrast with the standard predictions of the SFSR models and they are
peculiar features which make the studied model much more appealing.
We are now ready to study the two- and three-point functions and see the observable
predictions of solid Inflation. We will proceed with the standard steps we have used so
far: we will find the solution to the free equation of motion of the mode we are interested
in (scalar, vector, tensor) and then we will use it to calculate the power spectrum and the
bispectrum.
We can find the second order action by inserting equations (4.47) into (4.40)

S(2) = S(2)γ + S(2)T + S(2)L ,

with

S(2)γ =
M2
Pl

4 ∫ d4xa3 [1
2
γ̇2
ij −

1
2a2 (∂mγij)

2 + 2Ḣc2
Tγ

2
ij] , (4.51)

S
(2)
T =M2

Pl ∫ dt
d3k

(2π)3a
3 [ k2/4

1 − k2/4a2Ḣ
∣π̇iT ∣2 + Ḣc2

Tk
2∣πiT ∣2] , (4.52)

S
(2)
L =M2

Pl ∫ dt
d3k

(2π)3a
3
⎡⎢⎢⎢⎢⎣

k2/3
1 − k2/3a2Ḣ

∣π̇L −
Ḣ

H
πL∣

2
+ Ḣc2

Lk
2∣πL∣2

⎤⎥⎥⎥⎥⎦
(4.53)

We can notice that in the action for the tensor modes (4.51) it is present a mass term γ2
ij

which will depend on the slow-roll parameter and on the parameter cT of the theory. In
the expressions (4.52) and (4.53) we clearly see that are present non-trivial k-dependent
terms, which arise due to particular symmetries breaking pattern of the theory. Indeed
the would translate into a spatially non-local structure in real space.

Time dependence of background quantities

Before going on with the equation of motion of the scalar, vector and tensor modes we
write the explicit (conformal) time dependence of the background quantities, such as a(τ),
H(τ) and ε(τ) and the two propagation speeds cL and cS . Recalling (4.24) we easily see
that

d

dτ
( 1
aH

) = −1 + ε,

and integrating we have
1
aH

= −(1 − εc)τ +O(ε2). (4.54)

Here we have indicated with c a particular value for the conformal time τc, chosen as
the conformal time at which the longest mode of observational relevance today exits the
horizon, i.e. ∣cL,ckminτc∣ ≃ ∣cL,cτcHtoday ∣ = 1, see Appendix A of [53]. The integration
constant is chosen by demanding a(τ) ≫ a(τc), for τ/τc → 0. From Eq. (4.54) we obtain
the time-dependence of the scale factor

a(τ) = ac (
τ

τc
)
−1−εc

+O(ε2). (4.55)
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For the Hubble parameter we have

H(τ) = a′

a2 = −1 + εc
acτc

( τ
τc

)
εc

+O(ε2). (4.56)

Using the definition of the second slow-roll parameter (4.26) we have for ε

ε(τ) = εc (
τ

τc
)
−ηc

+O(ε3). (4.57)

Finally, for the two velocities we have

cL(τ) = cL,c (
τ

τc
)
−sc

+O(ε2), cL = cT,c (
τ

τc
)
−uc

+O(ε2), (4.58)

where sc and uc are the two slow-roll parameters defined in Eqs. (4.36) and (4.37).

4.3.1 Two-Point functions

Tensor modes

We start calculating the tensor mode functions decomposing them into the two polarization
+,×

γij(t,x) = ∫
d3k

(2π)3 ∑
s=+,×

εsij(k)γs(k, t)eik⋅x, (4.59)

with εsij(k)ε
p ∗
ij (k) = 2δsp and εii = kiεij = 0. Substituting (4.59) into (4.51) and exploiting

the εij properties we obtain

S(2)γ =
M2
Pl

4 ∫ dt∫
d3k

(2π)3 ∑
s=+,×

a3 [γ̇2
s + (4Ḣc2

T −
k2

a2 )γ
2
s] . (4.60)

Using the conformal time we have

S(2)γ =
M2
Pl

4 ∫ dτ ∫
d3k

(2π)3∑
s

[2a2γ
′2
s − (4εa4H2c2

T + a2)γ2
s ] , (4.61)

where we have used Eq. (4.24) and the notation ′ ≡ d/dτ . Following the same path we
have undertaken for the SFSR model, we promote the field γs to an operator, such as

γs(τ,k) = γscl(τ,k)as(k) + γscl(τ,k)∗as†(−k). (4.62)

Here γscl are the classical solution to the equation of motion derived from (4.61), as† and
as are the usual creation and annihilation operators, obeying the commutation relation

[as(k), as
′†(k′)] = (2π)3δ(3)(k − k′)δss

′

. (4.63)

The equation of motion extracted from (4.61) varying the action is

γ′′cl + 2aHγ′cl + (4εa2H2c2
T + k2)γcl = 0. (4.64)

We can rewrite the coefficients of this equation making explicit their time dependence
using Eqs. (4.55), (4.56), (4.57) and (4.58):

γ′′cl −
2 + 2εc
τ

γ′cl + (k2 +
4εccT,c
τ2 )γcl = 0. (4.65)
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It manifest that, using the variable z = −kτ and manipulating (4.65) it resembles the form
of (2.67), for which the general solution is

γcl(τ,k) = (−τ)3/2+εc [AH(1)νT (−kτ) +BH(2)νT (−kτ)] , (4.66)

with νT = 3
2 +εc−

4
3c

2
T,cεc, and Hν are the Hankel functions we have encountered in Chapter

2. Following the same steps performed in Chapter 2 (using Bunch-Davies vacuum for the
sub-horizon limit) we obtain the solution for the tensor mode on the super-horizon limit,
at the first order in the slow-roll parameter

γscl(τ,k)
−kτ→0+ÐÐÐÐ→ k−

3
2 ( τ
τc

)
4c2
T,cεc

3
(−kτc)c

2
L,cεc ( iHc

MPl
+O(ε)) . (4.67)

We are finally ready to obtain the two-point function for the gravitational waves. We
consider the limit at which two tensor modes are well outside the horizon:

⟨γs(τ,k1)γp(τ,k2)⟩ = (2π)3δ(3)(k1 + k2)δsp∣γcl(τ,k1)∣2

−kτ→0+ÐÐÐÐ→ (2π)3δ(3)(k1 + k2)δsp
H2
c

M2
Pl

1
k3

1

(τ/τc)8c2
T,cεc/3

(−k1τc)−2c2
L,cεc

,
(4.68)

so that the power spectrum becomes

Pγ =
2H2

c

M2
Pl

1
k3

1

(τ/τc)8c2
T,cεc/3

(−k1τc)−2c2
L,cεc

. (4.69)

From this expression we can easily read off the tensor tilt to the first order in slow-roll,
defined in (2.104)

nT = 2cL,c2εc. (4.70)
This is a fundamental outcome of the theory. From Eq. (2.103) we saw that for SFSR
model the power spectrum should be red tilted. In this case we clearly see that the
prediction for solid Inflation is a blue-tilted tensor power spectrum. We will see, after
the calculation of the ζ power spectrum, that the standard slow-roll consistency relation
(2.108) is violated in this theory. We will also see that will be violated also the consistency
relations associated to the three-point functions [80, 63].

Scalar perturbations

For the scalar perturbations we must be careful. We have always considered the curvature
perturbation ζ in order to have observable predictions, but in this case we have two
potentially good candidates for the observations, ζ and R, since we have seen that they
are no more equal on super-horizon scales. We will calculate the power spectrum of
the curvature perturbation since it can be shown that when considering the end of the
inflationary period, the reheating era, ζ is a continue function, see [53]. We proceed in the
same way as before: as a first step we decompose the field of interest in terms of creation
and annihilation operators

ζ(t,k) = ζcl(t,k)b(k) + ζcl(t,k)∗b†(−k), (4.71)

with the usual commutation relation [b(k), b†(k′)] = (2π)3δ(3)(k−k′). We can then rewrite
the action (4.53) as a function of ζ, using (4.48) and the conformal time:

S
(2)
ζ =M2

Pl ∫ dτ ∫
d3k

(2π)3 [ 3a2

1 + k2/3εa2H2 ∣ζ
′ + εaHζ ∣2 − 9εH2c2

La
4∣ζ ∣2] . (4.72)
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Extracting and solving the equation of motion for ζ is quite lengthy, due to the time
dependence of the various coefficients, but it is possible to use a simple calculation trick
to find the scalar mode function. Using the expression of R in (4.48) we can rewrite the
action for the scalar mode in terms of the other gauge invariant quantity and obtain a
new equation for the evolution of the scalar modes which simplifies the calculations [53]

1
H
Ṙcl(t,k) + (3 + η − 2ε)Rcl(t,k) = −3c2

Lζcl(t,k). (4.73)

Deriving in time this expression we obtain, at the first order in the slow-roll parameters

ζ̇cl = −
R̈cl

3Hc2
L

− (9 − 5ε + 3η − 2s
9c2
L

) Ṙcl +
sH

c2
L

Rcl (4.74)

We can eliminate ζ in the expression (4.50) and obtain a second-order derivative equation
for Rcl

R̈cl + (3 + η − 2s)Ṙcl + a−2 [3a2H2(ε + c2
Lε − 2s) + k2c2

L]Rcl = 0

where we have used the definition (4.36). This equation becomes, using the conformal
time

R′′
cl + aH(2 + η − 2s)R′

cl + [3a2H2(ε + c2
Lε − 2s) + c2

Lk
2]Rcl = 0. (4.75)

Using the explicit time dependence of the various parameters we can find an equation of
motion which resembles a Bessel equation

τ2R′′
cl − τ(2 − ηc + 2sc − εc)R′

cl + [c2
Lk

2τ2 + (3εc − 6sc + 3c2
L,cεc)]Rcl = 0. (4.76)

using the new rescaled variable σ(τ) = (−τ)
α
2Rcl1, with α = −3 − ηc + 2sc − 2εc we have

τ2σ′′ + τσ′ + [c2
Lk

2τ2 − 9
4
− 3

2
ηc − 3sc + 3c2

L,cεc]σ = 0

defining the new “time variable” y = −cLk(1+ sc)τ and νS = 1
2(3+ 5sc − 3c2

L,cεc + ηc) at the
first order we have

y2d
2σ

dy2 + y
dσ

dy
+ (y2 − ν2

S)σ = 0 (4.77)

which has exactly the same form of Eq. (2.67). We know the exact solution and the
relation between σ and Rcl, so

Rcl(τ,k) = (−τ)−α [CH(1)νS ( − cLkτ(1 + sc)) +DH(2)νS ( − cLkτ(1 + sc))] . (4.78)

In order to restore the correct initial condition, i.e. to use the Bunch-Davies vacuum we
have to canonically normalize the scalar mode πL. Looking at (4.53) we can define the
canonically normalized field and its behavior on small scales

v(τ,k) =
√

2
⎡⎢⎢⎢⎢⎢⎣

M2
Pla

2k2

3 (1 + k2

3a2H2ε)

⎤⎥⎥⎥⎥⎥⎦

1
2

πL
−kτ→∞ÐÐÐÐ→

√
2εMPlHa

2πL. (4.79)

The action of this new variable resembles exactly the one of the harmonic oscillator, hence
we can use the normalization induced by the Bunch-Davies vacuum behavior. We are now

1Remind that the time goes from −∞ to 0, so this definition does not create any mathematical problem.
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ready to give the behavior of the scalar modes in the subhorizon limit, remind the two
definitions in (4.48)

lim
τ→−∞

ζcl(τ,k) = −
kvcl

3
√

2εMPlHa2
= −

√
k

4εcL
e−i(1+sc)cLkτ

3MPlHa2 (4.80)

and
lim
τ→−∞

Rcl(τ,k) = −
a2H2

k

d

dτ
(vcl
H

) = i
√

cL
4εk

e−i(1+sc)cLkτ

MPla
(4.81)

Knowing the behavior of the Henkel function in the subhorizon limit given in (2.69) we
can fix the two parameters in (4.78), setting D = 0 and

C = −i
√

π

8εc
cL,cHc

MPl
(−τ)sc−εc−ηc/2 (1 + 1

2
sc − εc) ei(ηc+5sc−2c2

L,cεc)π/4 +O(ε3/2). (4.82)

We have now the exact solution for Rcl, hence we can find the exact solution for ζcl
substituting it into Eq. (4.73). We need to use the Hankel function property

d

dy
H(1)ν (y) = νS

y
H(1)νS (y) −H(1)νS+1(y)

where y = −cLkτ(1 + sc). Eq. (4.73) gives

ζcl(τ,k) = −i
√
π

2
ei
π
2 (νS+

1
2 )
cL,cHc(1 − sc − 2εc)
3MPl

√
4εcc5

L,ck
3

( τ
τc

)
εc+ ηc2 + 5

2 sc

× [y5/2H(1)νS+1(y) + c
2
L,cεcy

3/2H(1)νS (y)] .

(4.83)

It is important to note that this solution We are interested in the super-horizon limit.
Using (2.71) we obtain, for Rcl and ζcl

lim
−kτ→0+

ζcl(τ,k) = ( τ
τc

)
4
3 c

2
L,cεc

(−cL,ckτc)c
2
L,cεc−

5
2 sc−

1
2ηc

⎛
⎜
⎝

Hc
√

4εcMPlc
5/2
L,ck

3/2
+O(ε1/2)

⎞
⎟
⎠
,

(4.84)

lim
−kτ→0+

Rcl(τ,k) = ( τ
τc

)
4
3 c

2
L,cεc−2sc

(−cL,ckτc)c
2
L,cεc−

5
2 sc−

1
2ηc

⎛
⎜
⎝
− Hc
√

4εcMPlc
1/2
L,ck

3/2
+O(ε1/2)

⎞
⎟
⎠
.

(4.85)
At first glance we can note that neither ζ nor R is conserved on scales larger than the
horizon, even if their time dependence is suppressed by the slow-roll parameter ζ,R ∼
τ cL,cεc ; remind that also the longitudinal mode propagation speed presents a small time
dependence, which have to be taken into account when describing the time evolution of
the two gauge invariant quantities. We also notice that the two quantities are not equal
anymore, but are proportional, on large scales

R ≃ −c2
L(τ)ζ. (4.86)

We can finally calculate the two point function of ζ and its power spectrum

⟨ζ(τ,k1)ζ(τ,k2)⟩ = (2π)3δ(3)(k1 + k2)∣ζcl(τ,k1)∣2

−kτ→0+ÐÐÐÐ→ (2π)3δ(3)(k1 + k2)
H2
c

4εcc5
L,cM

2
Pl

1
k3

1

(τ/τc)8c2
L,cεc/3

(−cL,ck1τc)5sc−2c2
L,cεc+ηc

.
(4.87)
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The power spectrum becomes

Pζ(k) =
H2
c

4εcc5
L,cM

2
Pl

1
k3

(τ/τc)8c2
L,cεc/3

(−cL,ckτc)5sc−2c2
L,cεc+ηc

(4.88)

from which we can extract the scalar index at the first order in the slow-roll parameters

nS − 1 ≃ 2εcc2
L,c − 5sc − ηc. (4.89)

We can calculate the tensor-to-scalar-ratio (2.106), which gives, considering Eqs. (4.69)
and (4.88),

r ∼ εc5
L. (4.90)

We clearly see that the consistency relation (2.108) is not satisfied anymore, since there is
an extra ∼ c4

L factor. This is a fundamental outcome of the theory which makes observable
prediction which differs from the ones of single field slow roll theories.

4.4 Three-Point Functions

We have seen that new features appears at the level of the power spectrum predictions.
We calculate now the third order Lagrangian in order to obtain the observable predictions
of Solid Inflation for the non-Gaussianities, the relation between the γζζ bispectrum and
the ζ power spectrum, i.e. we want to test the consistency relation found in [56], and, in
the next section, the predicted tensor fossils.
Finding the third order action is a lengthy work, for this reason the authors in [53] make
a fine tuning hypothesis on the shape of the function F . We have seen that the request
of subluminality for the subhorizon limit of the theory can be translated in the condition
(4.33) on the derivative of F with respect to Y and Z. [53] assumes FY , FZ ≃ F in the limit
FY +FZ ≃ 0 in order to simplify the calculations for the third order action. In this section
we will briefly review the results of [53] and [82] for the bispectra in this particular case.
We will then proceed with the generalization of the calculations done in [80]. The results
of this article will be used to calculate the prediction for the tensor fossils in solid Inflation.

We want to calculate the non-Gaussianities arising from this new model; we have
learnt that the three-point function is given by the in-in formalism [61], schematically,
using (3.20)

⟨ζ(τ)3⟩ = i∫
τ

−∞
dτ ′ ⟨0∣ [ζ(τ)3,Lint(τ ′)] ∣0⟩ . (4.91)

We have seen that it is not necessary to calculate the entire interaction Lagrangian, since
the only commutator which are different from zero are the ones with the same number
and the same kind of field, e.g. three scalar fields on the left and two scalar fields and one
derivative of a scalar field on the right. Considering the limit FY = −FZ it is found that
the third order Lagrangian with three scalar fields is [53, 82]

Lπππ = a3H2M2
Pl

FY
F

[ 7
81

(∂π)3 − 1
9
∂π∂iπ

j∂jπ
i − 4

9
∂π∂jπ

k∂jπ
k + 2

3
∂jπ

i∂jπ
k∂kπ

i] . (4.92)

Here we are simplifying the notation, removing the subscript L and denoting πL simply
by π.
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Without going into the detailed calculations (we will be more detailed in the following),
the three-point function for ζ is [53]

⟨ζ(τe,k1)ζ(τe,k2)ζ(τe,k3)⟩ =(2π)3δ(3)(k1 + k2 + k3)×

× 3
32
FY
F

H4
c

M4
Pl

1
ε3c12

L

(τe
τc

)
4c2
T ε Q(k1,k2,k3)U(k1k2k3)

k3
1k

3
2k

3
3

,

(4.93)

where

Q(k1,k2,k3) =
7
81
k1k2k3 −

5
27

(k1
(k2 ⋅ k3)2

k2k3
+ k2

(k1 ⋅ k3)2

k1k3
+ k3

(k1 ⋅ k2)2

k1k2
)

+ 2
3
(k1 ⋅ k2)(k2 ⋅ k3)(k3 ⋅ k1)

k1k2k3

(4.94)

and

U(k1, k2, k3) =
2

k1k2k3(k1 + k2 + k3)3 [3 (k6
1 + k6

2 + k6
3) + 20k2

1k
2
2k

2
3

+ 18 (k4
1k2k3 + k1k

4
2k3 + k1k2k

4
3) + 12 (k3

1k
3
2 + k3

3k
3
1 + k3

2k
3
3)

+ 9 (k5
1k2 + 5perms) + 12 (k4

1k
2
2 + 5perms) + 18 (k3

1k
2
2k3 + 5perms) ].

(4.95)

The corresponding amplitude for non-Gaussianities fNL from the three-point function
(4.93) results to be huge [53]

fNL ≃ −O(1) ⋅ FY
F

1
εc2
L

. (4.96)

As stressed out in [80], taking FY ≃ F , c2
L ≃ 1/3 and ε ∼ few percents, compatible with

the value in (1.99), fNL takes an absolute value ≳ 100, which is clearly too high for the
actual observational constraints [57], see Eqs. (3.8)-(3.13). For this reason we will follow
the generalization and the correction made in [80].

4.4.1 Non-Gaussianities

The third order Lagrangian obtained in [53] was found with the assumption of large
derivative of the function F , i.e. FY ∼ FZ ∼ F . As a result the authors considered only the
leading terms ∣FY,Z/F ∣ = 1+O(ε), neglecting all that terms that are of order of the slow-roll
parameter ε. It can be naively seen that this induces errors on the calculation of fNL of
the order of unity. The leading value of fNL from Eq. (4.96) is fNL ∼ FY /εF ∼ 1/ε, hence
a correction to the Lagrangian of the order ∼ ε would induce correction of order unity on
fNL, which are discarded. A symmetry argument also holds in disfavor of [53]. There
is no profound reason for assuming FY + FY ≃ 0 while preserving the constraint equation
(4.33), while, we have seen, the assumption of small derivatives of F can be explained
with an approximate symmetry (4.35). More physically it provides a description of an
inflationary period driven by a cosmological constant, which does not sound so strange as
it seems. We will calculate the three-point functions ⟨ζζζ⟩ and ⟨γζζ⟩ considering FY and
FZ as free parameters of the theory. We will see that are also present other corrections
from performing a more precise computation of the bispectra.
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The full calculation of the ζζζ bispectrum is performed in detail in Ref. [80]. The full
three-point function is given by

⟨ζk1ζk2ζk3⟩ = ⟨ζk1ζk2ζk3⟩lead + ⟨ζk1ζk2ζk3⟩(1) + ⟨ζk1ζk2ζk3⟩(2) (4.97)

The leading contribution is due to the computation of the three-point function using the
leading order Lagrangian

Llead
πππ = a3H2M2

Pl[
FY
F

(−16
27

(∂π)3 + 8
9
∂π∂iπ

j∂jπ
i + 4

3
∂π∂iπ

j∂iπ
j − 4

3
∂jπ

i∂jπ
k∂kπ

i)

+FZ
F

(−55
81

(∂π)3 + ∂π∂iπj∂jπi +
16
9
∂π∂iπ

j∂iπ
j − 2∂jπi∂jπk∂kπi)].

(4.98)

Taking the first order solution for the mode function from (4.83)

ζcl(τ, k) =
H

2MPl

√
εc5
Lk

3
(1 + icL −

1
3
c2
Lk

2τ2) e−icLkτ (4.99)

⟨ζ3⟩lead has the form

⟨ζk1ζk2ζk3⟩lead =(2π)3δ(3)(k1 + k2 + k3)

× 3
32

( H

MPl
)

4 1
ε3c12

L

1
k3

1k
3
1k

3
2
U(k1, k2, k3)F(k1,k2,k3)

(4.100)

wit U given in (4.95) and

F(k1,k2,k3) = QY (k1,k2,k3)
FY
F

+QZ(k1,k2,k3)
FZ
F
,

with

QY (k1,k2,k3) ≡ −
16
27
k1k2k3 +

20
27

( k1
k2k3

(k2 ⋅ k3)2 + 2 perm.) − 4
3
(k1 ⋅ k2)(k1 ⋅ k3)(k2 ⋅ k3)

k1k2k3
(4.101)

QZ(k1,k2,k3) ≡ −
55
81
k1k2k3 +

25
27

( k1
k2k3

(k2 ⋅ k3)2 + 2 perm.) − 2(k1 ⋅ k2)(k1 ⋅ k3)(k2 ⋅ k3)
k1k2k3

(4.102)
Note that the expression (4.100) coincides with the one found in [53], Eq. (4.93), when
FZ = −FY and Q = QY −QZ .
If we consider the two derivative FY and FZ of order ∼ εF we are not allowed to neglect
the order ε terms in the Lagrangian. ⟨ζ3⟩(1) is the terms calculated using the subleading
order Lagrangian, obtained considering the following solid relations

FXX = −a
4

9
εF, FXXX = 2a6

27
εF, (FXZ + FXY ) = O(ε2)

which is
Lsubπππ = εa3H2M2

Pl (−
8
27

(∂π)3 + 2
3
∂π∂iπ

j∂iπ
j) . (4.103)

The correction to the three-point function takes the same form of (4.100)

⟨ζk1ζk2ζk3⟩(1) = (2π)3δ(3)(k1 + k2 + k3)
3
32

( H

MPl
)

4 ε

ε3c12
L

1
k3

1k
3
2k

3
3
U(k1, k2, k3)Q̄(k1,k2,k3)

(4.104)
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with
Q̄(k1,k2,k3) ≡ −

8
27
k1k2k3 +

2
9
( k1
k2k3

(k2 ⋅ k3)2 + 2 perm) ,

There are other two corrections: the first one comes from considering the full solution for
the ζ mode function which is [81]

ζ(τ, k) = − i
√
π

2
cL,cHc

2MPl
√
εc

(−τ)3/2 [1 + (εc +
ηc
2
− sL,c) ln τ

τc
]

× [−εc
3
H(1)νS (y) + kτ

3cL
(1 − εc)H(1)νS+1(y)]

(4.105)

Considering the super-horizon limit of Eq. (4.105) we can write

ζ
−kcLτ→0ÐÐÐÐÐ→ (−cLkτ)−A(1 +B ln(−cLkτ)), (4.106)

with
A = η

2
+ 5

2
s − c2

Lε, B = ε + η
2
− s. (4.107)

The structure of in-in integrals for this case is exactly the same as the leading order one,
the only exception is the additional factor (B −A) ln (−cLkτe). We obtain

⟨ζk1(τe)ζk2(τe)ζk3(τe)⟩(2) =(2π)3δ(3)(k1 + k2 + k3)
9
32

( H

MPl
)

4 (B −A) ln(−cLkτe)
ε3c12

L

1
k3

1k
3
2k

3
3
U(k1, k2, k3)F(k1,k2,k3).

(4.108)

The last correction is due to the order ε correction for the Hankel function for the small
argument limit (super-horizon scales) and has expression [80]

⟨ζk1ζk2ζk3⟩(3) =(2π)3δ(3)(k1 + k2 + k3)
9
16

( H

MPl
)

4 ε ln(−k3cLτe)
ε3c12

L

1
k1k2k3

Ū(k1, k2, k3)F(k1,k2,k3),
(4.109)

where
Ū(k1, k2, k3) ≡

k2
1

k2k3
+ k2

2
k1k3

+ k2
3

k1k2
.

The complete three-point function can be written as

⟨ζ3(τe)⟩ = ⟨ζ3(τe)⟩lead + ⟨ζ3(τe)⟩(1) + ⟨ζ3(τe)⟩(2) + ⟨ζ3(τe)⟩(3), (4.110)

so that the complete result for the bispectrum is

Bζζζ(k1,k2,k3) =
3H4

32M4
Pl

U(k1, k2, k3)
ε3c12

L

Qeff

k3
1k

3
2k

3
3
, (4.111)

where Qeff is

Qeff = εQ̄(k1,k2,k3) + (FY
F
QY +

FZ
F
QZ)(1 + (B −A)∑

i

Nki + 2ε∑
i

Nki

Ū

U
) . (4.112)

99



Note that Nki = ln (−cLkiτe), which represents the number of e-folds when the mode ki
has left the horizon. It can easily be seen that when considering FY = −FZ and FY,Z/F ≃ 1
Eq. (4.111) resembles the result of [53], Eq. (4.93).
We can evaluate the squeezed limit for the three-point function of the mode ζ to test
the Maldacena consistency relation. Using the following relations, which hold in the limit
k3 → 0,k1 ≃ −k2

U = 15k1
k3

, Ū = 2k1
k3

,

Q̄ = 2k2
1k3

27
(6c2 − 1), QY = 4k2

1k3
27

(c2 + 1), QZ = 4k2
1k3

81
(5 − 3c2),

where c ≡ cos θ and θ is angle between k1 and k3, we obtain

Bsq
ζζζ =

5
96

( H

MPl
)

4 1
ε3c12

L

1
k3

1k
3
3
{2ε(6c2 − 1)

+ (4FY
F

(c2 + 1) + 4
3
FZ
F

(5 − 3c2)) [1 + (B −A)(Nk3 + 2Nk1) +
4ε
15

(Nk3 + 2Nk1)]}.
(4.113)

Using the first order solution for the scalar power spectrum in (4.88) and defining
G(θ) =2ε(6c2 − 1)

+ (4FY
F

(c2 + 1) + 4
3
FZ
F

(5 − 3c2)) [1 + (B −A)(Nk3 + 2Nk1) +
4ε
15

(Nk3 + 2Nk1)] ,

(4.114)
we can rewrite (4.113) as

Bsq
ζζζ =

5
6
G(θ)
εc2
L

Pζ(k1)Pζ(k3). (4.115)

Note that, except for tuned values for the parameters of the theory, the consistency relation
(3.57) is violated in this theory, also because of the explicit angular dependence inside
(4.114), which is that of a pure quadrupole. This result emerges also in the hypothesis
of [53], see Ref. [82]. Eq. (4.115) generalizes the result found in Ref. [63]. Following
[80] it is possible to evaluate the non-Gaussianities in this limit. The amplitude of non-
Gaussianities is given by (3.5), which can be evaluated in the squeezed limit

fsqNL = 25
36c2

L

(6c2 − 1) + 25
18εc2

L

[FY
F

(1 + c2) + FZ
F

(5 − 3c2)]

× [1 + 4ε(2Nk1 +Nk3)
15

+ (B −A)
4Nk1

− 3Nk3] .
(4.116)

The first term in this expression has very particular features. It is (almost) model in-
dependent, which means that it depends on the form of F (X,Y,Z) only through cL. It
comes from the subleading order terms of the Lagrangian (4.103). The other terms have
the same form of [53, 82]. If we consider a particular limit, for which FY = FZ = 0 we have
an F (X) theory. For this model, considering cL = 1

3 we obtain

fsqNL = 25
12

(6 cos2 θ − 1). (4.117)

This result is very interesting. It shows that for all the F (X) theories of solid Inflation
the amplitude of the non-Gaussianities has a universal form. Therefore, this amplitude is
consistent with the bounds from the Planck observations [57], as opposed to the results of
[53]. In the end, we note that the expression (4.117), but also (4.116), is anisotropic, due
to its angular dependence.
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4.4.2 Testing the γζζ Consistency Relation

In this section we will calculate the scalar-scalar-bispectrum. In the previous chapter we
have seen its importance. For SFSR models it assumes the form of a consistency relation
in the squeezed limit, when the long mode is tensorial. We will calculate the leading order
bispectrum and test the consistency relation (3.59), then we will calculate the observable
prediction for the tensor fossil in this theory. For the reason described above we will follow
[80] for the full calculation, which we report here. It is fundamental, for simplification of
the calculation, to see that the leading contribution to the bispectrum is due to the matter
sector, and the contributions from the metric perturbations are sub-leading [80]. For this
reason we only need to calculate the ππγ terms deriving from varying F .
At the first order in the slow-roll parameters the action involving two scalar modes π and
one tensor mode γ is [80]

Lγππ = a3[ − 1
3
FXXγkj∂kπ

i∂jπ
i − 4

9
FXXX

2γij∂iπ
j∂kπ

k

+ FY (8
9
γij∂iπ

j∂kπ
k − 4

9
γij∂iπ

k∂jπ
k − 2

9
γij∂kπ

i∂kπ
j − 4

9
γij∂iπ

k∂kπ
j)

+ FZ (32
27
γij∂iπ

j∂kπ
k − 5

9
γij∂iπ

k∂jπ
k − 1

3
γij∂kπ

i∂kπ
j − 2

3
γij∂iπ

k∂kπ
j)]

(4.118)

We have to Fourier transform the gravitational waves

γij(τ,x) = ∫
k
eik⋅x∑

s

εsij(k)γsk(τ), (4.119)

where εsij is the polarization tensor, which, in flat gauge, satisfies

kiε
s
ij(k) = 0 = εsii(k), εsij(k)εs

′ ∗
ij (k) = 2δss′ . (4.120)

For the scalar mode we will use the first order solution (4.99), the relation (4.49) and

ζ(τ,x) = ∫
k
eik⋅xζk(τ).

Now we write the interaction Hamiltonian having in mind the following fundamental
relations

FXX

F
= ε, FXXX

F
= −1 +O(ε), F = −3M2

PlH
2,

which are the relations found in the study of the background dynamics. The interaction
Hamiltonian results to be

Hγζζ(τ) = −9M2
Pla

3H2∫
p1p2p3

(2π)3δ(3)(p1 + p2 + p3)∑
s

εsij(p1)γsp1
ζp2ζp3

×[εp̂2ip̂3j p̂2lp̂3l −
4
3
εp̂2ip̂2j

+ FY
F

(−8
3
p̂2ip̂2j +

10
3
p̂2ip̂3j p̂2pp̂3p)

+ FZ
F

(−32
9
p̂2ip̂2j +

14
3
p̂2ip̂3j p̂2pp̂3p)],

(4.121)
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where we have used the notation ki = kik̂i. The three-point function now takes the form

⟨γsk1ζk2ζk3⟩τe =

= i9M2
Pl∑

s′
∫

τe

−∞
dτa4H2∫

p1p2p3
(2π)3δ(3)(p1 + p2 + p3) × [εp̂2ip̂3j p̂2lp̂3l −

4
3
εp̂2ip̂2j

+ FY
F

(−8
3
p̂2ip̂2j +

10
3
p̂2ip̂3j p̂2pp̂3p) +

FZ
F

(−32
9
p̂2ip̂2j +

14
3
p̂2ip̂3j p̂2pp̂3p)]εs

′

ij(p1)

× [⟨γsk1(τe)ζk2(τe)ζk3(τe)γ
s′

p1
(τ)ζp2(τ)ζp3(τ)⟩ − c.c.]

(4.122)

It remains to solve the time integral. We use the firs order relation for the conformal time
aHτ = −1 and the Wick theorem to write the correlator. The procedure is standard, we
quantize the tensor mode

γsk(τ) = γ
s
cl(τ, k)ak + γs

′∗
cl (τ, k)a†

−k ≡ γs+k (τ) + γs−k (τ), (4.123)

where we will use for γscl the first order solution, which is, looking (4.66),

γscl(τ, k) =
√
π

2
H

MPl

√
k3

(−kτ)
3
2H
(1)
3
2

(−kτ)

= i H

MPl

√
k3

(1 + ikτ)e−ikτ .
(4.124)

The commutation relation between the creation and annihilation operators a†, a, induces
the following commutation relation for the tensor modes

[γs+k (τ), γs
′−

p (τ ′)] = (2π)3δ(3)(k + p)δss
′

γcl(τ, k)γ∗cl(τ
′, p). (4.125)

Now, the contraction between two tensor modes is defined as

γsk(τ)γ
s′

p (τ ′) = ⟨0∣γsk(τ)γs
′

p (τ ′) ∣0⟩ = [γs+k (τ), γs
′−

p (τ ′)]. (4.126)

for which we have, using the Wick theorem

⟨γsk1(τe)ζk2(τe)ζk3(τe)γ
s′

p1
(τ)ζp2(τ)ζp3(τ)⟩ =

γsk1(τe)ζk2(τe)ζk3(τe)γ
s′

p1
(τ)ζp2(τ)ζp3(τ) + γ

s
k1(τe)ζk2(τe)ζk3(τe)γ

s′

p1
(τ)ζp2(τ)ζp3(τ)

= (2π)9δss
′

δ(k1 + p1)γcl(τe, k1)ζcl(τe, k2)ζcl(τe, k3)ζ∗cl(τ, p2)ζ∗cl(τ, p3)γ∗cl(τ, p1)×
[δ(k2 + p2)δ(k3 + p3) + δ(k2 + p3)δ(k3 + p2)].

(4.127)

The correlator (4.122) becomes

⟨γsk1ζk2ζk3⟩ = 18M2
Pl(2π)3δ(3)(k1 + k2 + k3)εsij(k1)Mij(k2,k3)×

[iγcl(τe, k1)ζcl(τe, k2)ζcl(τe, k3)∫
τe

−∞
dτa4H2γ∗cl(τ, p1)ζ∗cl(τ, p2)ζ∗cl(τ, p3) − c.c.]

(4.128)

with

Mij(k2,k3) = (ε + 10
3
FY
F

+ 14
3
FZ
F

) k̂2ik̂3j k̂2lk̂3l −
2
3
(ε + 2FY

F
+ 8

3
FZ
F

)(k̂2ik̂2j + k̂3ik̂3j) .
(4.129)
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The expression inside the square brackets becomes

H4

16ε2c10
L M

6
Pl

1
k3

1k
3
2k

3
3
(−2Im[I1])

Where

I1 = ∫
τe

−∞(1−iε)
dττ−4(1 − ik1τ)(1 − ik̄2τ −

1
3
k̄2

2τ
2)(1 − ik̄3τ −

1
3
k̄2

3τ
2)eiKtτ (4.130)

where we have used the notation k̄i = cLki, Kt = k1 + k̄2 + k̄3 and H, ε = const, aHτ = −1.
The integral can be solved exactly, the result is

I1 = { − [ 1
3τ3
e

+ 1
6τe

(3k2
1 + k̄2

2 + k̄2
3)] −

iKt

9
(4k2

1 + k̄2
2 + k̄2

3 − k1k̄2 − k̄2k̄3 − k1k̄3)

− ik̄2k̄3
9K2

t

[K̄t (3k1k̄2 + 3k1k̄2 + k̄2k̄3) + k1k̄2k̄3] + i
k3

1
3 ∫

τe

−∞(1−iε)
dτ
eiKtτ

τ
}

(4.131)

Note that we have used the fact that Ktτe ≪ 1 to expand the exponential function
eiKtτe = 1 + iKtτe + O(K2

t τ
2
e ).

Before going on, we have to solve the integral in the second line

I = ∫
τe

−∞(1−iε)
dτ
eiKtτ

τ
.

It is possible to solve this integral promoting the variable τ from to real to complex

I = Re [∫
xe

−∞(1−iε)
dx
eiKtx

x
]

with x complex. Performing a Wick rotation x→ ix and a rescaling of the variable z =Ktx
we obtain

I = Re [∫
iKtτe

−i∞(1−iε)
dz
e−z

z
] .

The integral inside the square brackets is related with the exponential integral, defined as

E1(z) ≡ ∫
∞

z
dx
e−x

x
, (4.132)

for which is valid the following expansion

E1(z) = −γM − ln z −
∞
∑
k=1

(−1)kzk
k ⋅ k!

, (4.133)

where γM ≃ 0.577 is the Eulero-Mascheroni constant.
In our case we have

I = −Re [E1(iKtτe)]

and, since we are interested in the super-horizon limit Ktτe ∼ 0, we finally have

I = Re[γM + ln iKtτe] = Re[γM + ln ∣Ktτe∣ + iπ/2] = γM + ln ∣Ktτe∣ = γM +NKt
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where NKt is the number of e-folds since the scale corresponding to Kt crossed the horizon
until the end of Inflation. Plugging the imaginary part of I1 (4.131) into (4.128) we can
finally write the expression for the three-point function

⟨γsk1ζk2ζk3⟩τe = (2π)3δ(3)(k1 + k2 + k3)
H4

4M4
Plε

2c10
L

1
k3

1k
3
2k

3
3
εsij(k1)Mij(k2,k3)

{Kt (4k2
1 + k̄2

2 + k̄2
3 − k1k̄2 − k̄2k̄3 − k1k̄3)

+ k̄2k̄3
K2
t

[K̄t (3k1k̄2 + 3k1k̄2 + k̄2k̄3) + k1k̄2k̄3] + 3k3
1(γM +NKt)}

(4.134)

hence the bispectrum becomes

Bγζζ(k1,k2,k3) =
H4

4M4
Plε

2c10
L

1
k3

1k
3
2k

3
3
εsij(k1)Mij(k2,k3){Kt (4k2

1 + k̄2
2 + k̄2

3 − k1k̄2 − k̄2k̄3 − k1k̄3)

+ k̄2k̄3
K2
t

[K̄t (3k1k̄2 + 3k1k̄2 + k̄2k̄3) + k1k̄2k̄3] + 3k3
1(γM +NKt)}.

(4.135)

Note that this is the result for the bispectrum of one tensor mode and two scalar ones
in the general configuration of the momenta. Neither [80] nor [82] reported this general
result, while they take directly the squeezed limit. Their result could be taken as a check
for the correctness of our result. We are interested in the possibility of violating the CR
seen in the previous chapter, so we need to calculate the squeezed limit of (4.135). Here
we want the long mode to be the tensor one, i.e. kL ≡ k1 ≪ k2 ∼ k3 ≡ kS . In this limit the
functionMij in Eq. (4.129) becomes

Mij
k1≪k2,k3ÐÐÐÐÐ→ (− ε

3
+ 2

3
FY
F

+ 10
9
FZ
F

) k̂2ik̂2j (4.136)

while the function inside the braces in (4.135) becomes 5
2k

3
2. Plugging (4.136) into (4.135)

we obtain the squeezed limit of the bispectrum

Bγζζ(k1, k2, k3)
k1≪k2,k3ÐÐÐÐÐ→ 5

8
( H

MPl
)

4 1
ε2c7

L

1
k3

1k
3
2
(− ε

3
+ 2

3
FY
F

+ 10
9
FZ
F

) εsij(k1)k̂2ik̂2j .

(4.137)
This expression is in agreement with the result of [80]. We can now rewrite the expression
for the squeezed limit of the bispectrum as a function of the power spectrum of the tensor
and the scalar modes

Bsq
γζζ(k1,k2,k3) =

5
2

1
εc2
L

Pγ(k1)Pζ(k2) (−
ε

3
+ 2

3
FY
F

+ 10
9
FZ
F

) εsij(k1)k̂2ik̂2j (4.138)

Taking FZ = −FY and neglecting the ε/3 term we have accordance with the result of [82].
We underline that except for particular conditions on the parameters of the theory, this
expression violates the consistency relation (3.59)2. Eq. (4.138) shows a fundamental out-
come of this theory: the squeezed limit of the tensor-scalar-scalar bispectrum departures
from the standard expression of SFSR models. This is what makes so fascinating this
theory and a test of the consistency relation would rule out one or the other model. We
will use this formula for the predictions about the tensor fossil coming from this model.

2See Ref. [63] for the study of the violation of tensor-scalar-scalar consistency relation in Solid Inflation
using the hypothesis of [53]
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4.5 Tensor fossil in Solid Inflation
We have seen in the previous chapter that the a long tensor mode can affect the power
spectrum of the scalar field. We have called this effect tensor fossil and we have seen how
important is the Maldacena consistency relation for the bispectrum γζζ. Now we are in
presence of a theory which violates the mentioned CR, hence this fossil effect can be large.
Using the parametrization (3.64) we clearly see that the effect of a long tensor mode is
a quadrupole remodulation. Through the parametrization of Ref. [63] it is possible to
estimate the effect of this quadrupole, using (3.96). Using the notation of [67]

⟨Q2⟩ ≡ 8π
15

⟨QijQij⟩ =
16

15π ∫
kminS

kminL

k2
LdkL [

Bγζζ(kL, kS , kS)
γ(kL)Pζ(kS)

]
2
Pγ(kL), (4.139)

where Qij is the power quadrupole defined in Eq. (3.95). Here kL represents the mo-
mentum of the long-wavelength mode, the tensor one, and kS the momentum of the
short-wavelength modes, the scalar ones. We remind that the upper limit of integration,
kminS , is the smallest wavenumber probed by the observations while the lower limit, kminL ,
corresponds to the longest wavelength gravitational wave mode produced during Inflation.
We can calculate exactly the integral using the bispectrum calculated in the squeezed limit
(4.138) and the first order power spectrum (4.69), obtaining

⟨Q2⟩ = 20
3π

1
ε2c4

L

(−1
3
+ 2

3
FY
F

+ 4
9
FZ
F

)
2
( H

MPl
)

2
ln(

kminS

kminL

). (4.140)

We can define the parameter

K ≡ −5
3

1
εc2
L

(−1
3
ε + 2

3
FY
F

+ 10
9
FZ
F

) , (4.141)

so that Eq. (4.140) becomes

⟨Q2⟩ = 12
5π
K2 ( H

MPl
)

2
ln(

kminS

kminL

). (4.142)

We know that the quadrupole distortion in (3.94) must be a perturbative effect, hence
its perturbative nature imposes some limit on ⟨Q2⟩. Given that the maximum theoretical
observable wavelength today is the comoving Hubble horizon we have kminS =H0, imposing
⟨Q2⟩ < 1 we have

12
5π
K2 ( H

MPl
)

2
∣ ln(

kminL

H0
)∣ < 1. (4.143)

For single-filed inflationary models all the above relations hold with K = 1. In this work
we want to evaluate the departure from the standard prediction, i.e. we will concentrate
on that part of the bispectrum which violates the consistency relations, see Ref. [63]. It
is equivalent to replace K with K − 1 in (4.142).
As seen in the previous chapter it is possible to construct an estimator for the detection of
the primordial GW from the quadrupole correction on the power spectrum. Following the
same steps of [70] exposed in Chapter 3 we find a variance for the amplitude of gravitational
waves

3σγ = 30π
√

3πK−2 (kmax
kmin

)
−3
, (4.144)

where kmax and kmin comes respectively from the UV and IR cut-off on momentum inte-
gral, they represent the minimum and maximum detectable scales. Note that with respect
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to the result for SFSR models found in [70], see Eq. (3.112) there is an extra K−2 fac-
tor. Eq. (4.144) can give an estimation on the possibility of measuring the primordial
gravitational waves. More precisely it gives an estimate of the possible GW amplitudes
detectable at > 3σ: a smaller variance entails a higher chance of detection. So, to estimate
the detectability limits for solid Inflation we have to bound the parameter K. Its bounds
can be found using the subluminality condition (4.33), which can be rewritten as, using
c2
L = 1/3,

5
3
− 20

9
FY
ε∣F ∣

< K < 15
4
− 20

9
FY
ε∣F ∣

. (4.145)

Up to now we have made use of the hypothesis FY,Z ∼ εF , and we have seen that in this
case the predicted non-Gaussianities are in good agreement with the bounds from the
Planck measurements [57]. For this reason we can bound FY as

− ε < FY
∣F ∣

< ε. (4.146)

A smaller variance arises in the case of a higher K, hence if we saturate the value of FY
to the case FY = −ε∣F ∣, (4.145) becomes

35
9

< K < 215
36

. (4.147)

The maximum value that K can assume is K ≃ 6, for which we obtain, in the case of a
tensor amplitude near to its maximum value AT ≃ 2.2 × 10−9,

kmax
kmin

> 1550, (4.148)

which means that the signal is detectable at 3σ if the galaxy survey under consideration
has kmax

kmin
> 1550. In Chapter 3 we have seen that the observable predictions were more

pessimistic on the possibility of a detection of a tensor fossil from a SFSR model, see
Eq. (3.113) and compare it with (4.148). This is a very interesting feature of the Solid
Inflation: it predicts a detectable of primordial tensor fossils. In [63] it has been shown
that this possibility arises also in the hypothesis of [53], i.e. FY,Z ∼ F . A detection of these
kind of tensor in the reach of the future experiment, 21-cm surveys or EUCLID, not only
would confirm the Inflation model but it would rule out all the SFSR model, in favor of
solid-like inflationary models.

We have seen that Solid Inflation have very interesting outcomes which will be verified
with the future observations and analysis, see e.g [83] for an analysis of the perspectives
of future detection of primordial tensor modes with interferometers, like LISA, or [84]
for a complete and detailed analysis of the possible constraints on Inflation coming from
galactic surveys, like EUCLID.
However, as we will see, the predictions for the tensor power spectrum are not so dis-
tant from the single-field predictions. For this reason we will try to generalize the solid
paradigm. A possible generalization is considering the case of an inflationary period driven
by a supersolid, [85]. In this theory in addition to the three scalar fields which break space
diffeomorphisms, is present a fourth field which breaks the time diffeomorphism coupled
to the solid in a non-trivial way. Another possibility is searching for a solid which is
not constructed with scalar fields but with vector gauge fields: this is the case of Gaugid
Inflation, [52], and it is this theory that we will study and generalize int his Thesis.
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Chapter 5

Gaugid Inflation

In the previous Chapter we have seen the original features coming from the model of
Solid Inflation. Its relevance is due to the non-standard approach to Inflation using the
spontaneous-symmetry breaking mechanism, which entails very interesting and intriguing
outcomes. Nevertheless we have seen that the prediction of this model for the power
spectrum amplitude of the gravitational waves is similar to the prediction of single-field
models. Indeed their amplitude is of the same order, see Eqs. (2.103) and (4.68)

ASFγ ∼ ASolidγ ∼ H2

M2
Pl

. (5.1)

This is a very interesting feature of the gravitational waves, which arises also in more
general scenarios, see [86]. Therefore for the gravitational waves, at the level of the power
spectrum, the model of Solid Inflation does not give any particular novelty. However, as
we will see, there is the possibility to generalize the solid paradigm in order to obtain
new outcomes for the gravitational waves. The study of the possible symmetry-breaking
patterns preserving the homogeneity and isotropy is deepen in [87].
In this final chapter we will study and generalize one of these new models, the so called
Gaugid Inflation [52], which is a sort of generalization of the solid paradigm. In Gaugid
Inflation the fields which drive Inflation are three vector Abelian fields AIµ with a vev
which manifestly breaks the spatial translations and rotations, as for Solid Inflation. The
possibility of using a (Abelian or non-Abelian) gauge field as the responsible for Inflation
has been studied, e.g., in Refs. [88, 89, 90, 91] (see also [92, 93, 94]). The fundamental
difference is the choice of the background. In all the previous studies a vacuum expectation
value that depends only on time has been used, i.e. breaking the time diffeomorphisms.
In our case, we will choose a particular solid-like configuration for the vev of the gauge
field AIµ. In [52] the authors take the expectation value

⟨AIµ⟩ = εIjkδjµxk, (5.2)

where I = 1,2,3 is the internal index in the vector, µ = 0,1,2,3 is the Lorentz index and
i, j, k = 1,2,3 are the spatial indices. This configuration is called, in analogy with the elec-
tromagnetic four-potential Aµ, magnetic gaugid, because, as we will see, it describes three
mutually orthogonal homogeneous “magnetic” fields. Here we are not really considering
an electromagnetic field in a particular configuration, but anyway, following the notation
of [95], we will keep the electromagnetic notation.
Using this electromagnetic notation we can write another possible expression for the vev
of the vector fields

⟨AIµ⟩ = δ0
µx

I (5.3)
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which can be called electric gaugid with an analogous reasoning [87]. In general we can
think of a vev expression as a combination of (5.2) and (5.3). In [52] this possibility is con-
sidered but the expression for the vev used is only the magnetic one, for parity-preserving
reasons which will be clear later. In this work we will consider also a term of the kind (5.3)
in order to generalize the results of [52]. We focus in particular on the predictions for the
generation of primordial gravitational waves, given that also in the original model very
interesting results arise in this respect. Indeed when studying the perturbation dynamics
of this theory a new tensor degree of freedom for the cosmological perturbations of the
gaugid vector fields arises, which we will indicate with Eij . The coupling with this new
tensor degree of freedom will enhance the power spectrum amplitude for the gravitational
waves γ, giving an original result for their power spectrum. Moreover, in Chapter 3 we
have studied the inflationary tensor fossils and their cosmological implications. The new
tensor field Eij could represent the fossil field we have described in Chapter 3, given that
it would leave no traces except for a remodulation of the scalar power spectrum. Studying
the possible predictions for the tensor fossils from this theory can be the object for future
work.

Here, in the first section we will describe the Gaugid Inflation and its predictions;
then we will introduce the generalization mentioned above, its consequences and possible
outcomes for the gravitational waves.

5.1 Review of Gaugid Inflation
In this section we will review the most important features and outcomes of Gaugid Inflation
as obtained in [52]. We will describe the hypothesis of this new model, we will calculate
the second-order action and the two-point functions predicted for the scalar and the tensor
perturbation modes.

5.1.1 Extension of the solid paradigm

The basic idea behind the Gaugid Inflation model is the same of Solid Inflation. We want
a field with a vev which breaks the standard isometries of a de Sitter spacetime. In this
case we will not consider a triad of scalar fields φI but we will consider a triplet of U(1)
Abelian gauge fields AIµ. As for Solid Inflation, to restore the homogeneity and isotropy
of the space we impose additional symmetries on the internal index of the gauge field

AIµ → AIµ∂µχ
I , AIµ → RIJA

J
µ, (5.4)

where χI are three gauge parameters and RIJ is a SO(3) matrix. We define the usual
antisymmetric field strength with which we will build up the Lagrangian

F Iµν = ∂µAIν − ∂νAIµ. (5.5)

We will build our Lagrangian constructing some building blocks which will be invariant
under Lorentz and SO(3) transformation1, i.e. we want it to be a function of SO(3) ×
SO(3,1) invariants built out of F Iµν . In order to have SO(3,1) invariants all the Lorentz
indices must be contracted, like F IµνF Jµν . To construct all the possible Lorentz invariant
combinations we must define the dual of the field strength

F̃ Iµν =
1
2
ε ρσ
µν F Iρσ, (5.6)

1Note that the shift symmetry in (5.4) implies that the field must appear with its derivatives, i.e. we
have to use the field strength to write down our Lagrangian.
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where εµνρσ is the Levi-Civita tensor completely antisymmetric. There are four possible
Lorentz invariant independent terms that we can construct with F Iµν [52]

Y IJ = F IµνF Jµν , Ỹ IJ = F IµνF̃ Jµν , U IJK = F I νµ F J σν FKµ
σ , Ũ IJK = F I νµ F J σν F̃Kµ

σ .
(5.7)

Terms like F̃ 2 are not present given that F̃ IµνF̃ Jµν = F IµνF Jµν . Now we are ready to write
down the possible SO(3) invariants using (5.7). There is a total of 11 invariants

X = F IµνF I µν = [Y ],

I1 =
[Ỹ ]
[Y ]

, I2 =
[Y 2]
[Y ]2 , I3 =

[Ỹ 2]
[Y ]2 , I4 =

[Y Ỹ ]
[Y ]2 ,

I5 =
[Y 3]
[Y ]3 , I6 =

[Y 2Ỹ ]
[Y ]3 , I7 =

[Ỹ 3]
[Y ]3 ,

I8 =
[Y 3Ỹ ]
[Y ]4 , I9 =

U IJKεIJK

[Y ]3/2 , I10 =
Ũ IJKεIJK

[Y ]3/2 .

(5.8)

Here the square brackets represent the trace of a matrix and the Lorentz indices are
contracted using the general metric gµν . As for Solid Inflation the only variable which will
be affected by the expansion of the Universe will be only X, since all the other variables
are rescaled with the right power of X. The most general gaugid Lagrangian we can write
is thus a function of all the eleven variables in (5.8)

L = −Z(X,I1, . . . , I10). (5.9)

5.1.2 Background solutions with magnetic configuration

We will consider now the background solution for gaugid inflation, considering the vacuum
configuration in (5.2)

⟨AIµ⟩ = εIjkδjµxk.

This is the so called magnetic configuration. Indeed, working with the “electric” and
“magnetic” fields E⃗I and B⃗I , defined using the “four-potential”

BIj = εjkl∂kAIl
EIj = ∂jAI0 − ∂0AIj

(5.10)

we can see that Eq. (5.2) provides the description of a constant magnetic field. Indeed
taking (5.10) and using (5.2) we have the background values for the fields

⟨EIj ⟩ = 0,
⟨BI

j ⟩ = −2δIj ,
(5.11)

i.e. a constant magnetic field and a null electric field. We can see that we can consider
this configuration since it is a solution to the equation of motion in the background, i.e.
considering the FLRW metric in the case of a spatially flat Universe

ds2 = −dt2 + a2(t)δijdxidxj . (5.12)

To verify this let us consider a general configuration of the electric and magnetic fields
EIj (t,x), BI

j (t,x). The only way to be compatible with homogeneity and isotropy for the
fields is to be only time dependent, i.e. EIj (t,x) = f1(t)δIj , BI

j (t,x) = f2(t)δIj . Before
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constraining the two time-dependent functions f1 and f2 with the equation of motion we
can use the Bianchi identities for the field strength, which reads

∇µF Iνρ +∇νF Iρµ +∇ρF Iµν = 0, (5.13)

where ∇µ stands for the covariant derivative. Considering µ = 0, ν = i and ρ = j and the
FLRW metric (5.12), the Bianchi identity in this case becomes

ḂI
j + εjkl∂kEIl = 0, (5.14)

which, in the case of only time-dependent functions, automatically gives f2 = const.. In
other words, for a homogeneous and isotropic background the configuration (5.11) for the
magnetic field is a solution. For the electric field the reasoning is different, given that its
form depends on the chosen dynamics. To see it we can consider a simplified form of the
Lagrangian (5.9), L = −P (X). In this case the action for the system becomes

SA = −∫ d4xa3(t)P (X),

and varying it with respect to the field AIµ one obtains that the equation of motion is
simply

∂µ (a3 ∂L
∂∂µAIν

) = 0.

This equation finally becomes

∂µ(a3P ′(X)F I µν) = 0, (5.15)

where ′ indicates a derivative w.r.t. X, which simplifies to

d

dt
(aP ′(X)f1(t)) = 0. (5.16)

This equation describes the dynamics of an electric gaugid. At this point this Thesis and
the authors in [52] take different paths. Here we will review the work of [52], where no
electric gaugid, for the background, is considered, while later on we will consider also the
possibility of a non-vanishing contribution due to an electric field.
One can argue that the magnetic gaugid is always a solution of the equations of motion
as long as the Lagrangian respects parity P, see [52]. Indeed, inspection of the building
blocks in Eq. (5.7) makes it clear that parity forces the Lagrangian to depend only on
even powers of the electric field. Therefore, around a magnetic gaugid configuration with
vanishing electric fields, the Lagrangian is automatically stationary with respect to varia-
tions of the electric fields. Moreover on homogeneous backgrounds at hand, the action is
obviously stationary with respect to variations of the BI

j as these are pure space deriva-
tives. Hence the magnetic gaugid FRW Universe is always a solution when P is respected.
In our generalization of Gaugid Inflation we will consider also the possibility of a parity
breaking Lagrangian, i.e. we will consider also the electric component of the vev of the
field AIµ, see Section 5.2.1.

We are now ready to study the background dynamics with the choice for the vacuum
(5.2). First of all notice that the only background value of the variables (5.8) which
depends on the metric is that of X, since

⟨X⟩ ≡ X̄ = 24
a4(t)

. (5.17)
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Using (1.73) for the stress-energy tensor we obtain, in the most general case (5.9), for the
background

Tµν = −gµνZ + 4ZXF IµαF I αν (5.18)
where we have used the notation ZX = ∂Z/∂X. In (5.18) we have considered only the
X-derivative of the Lagrangian since it is the only variable which feels the expansion of
the Universe. Using the stress-energy tensor of a perfect fluid we have

ρ = Z,

p = −Z + 4
3
X̄ZX ,

(5.19)

where we used (5.17) and the fact that the background values for the field strength are

F I0µ = 0,
F Ijk = −2εIjk.

(5.20)

The Friedmann equations in this case become

H2 = 8πG
3

Z,

ä

a
= 8πG

3
Z (1 − 2X̄ZX

Z
) ,

(5.21)

which allow us to write down the slow-roll parameter2 which ensures the nearly constant
behavior of H during inflation

ε = − Ḣ
H2 = 2

3
X̄ZX
M2
PlH

2 = 2X̄ZX
Z

= 2 ∂ lnZ
∂ lnX

≪ 1. (5.22)

The condition (5.22) is in perfect agreement with what we found for the Solid Inflation,
Eq. (4.24), i.e. we can interpret the first slow-roll condition as a weak dependence of the
Lagrangian for gaugid Inflation on the expansion of the Universe, implicitly expressed by
X. Now we can evaluate the expression for the second slow-roll parameter. We use the
relation on the background (5.17) to obtain

H = −1
4

˙̄X
X̄
.

The condition on the second slow-roll parameter, η ≪ 1 ensures that the Inflation holds
for an enough long time and in this theory we have

η = ε̇

εH
= −4 [1 − ε

2
+ X̄ZXX

ZX
] . (5.23)

We obtain a useful relation for the second order derivative of Z
∂ lnZX
∂ lnX

= −1 + ε
2
− η

4
, (5.24)

which can be rewritten as
X̄2ZXX

X̄ZX
= −1 +O(ε, η), (5.25)

2As said in Chapter 4, here there is nothing which is rolling but we will use the same expressions used
in the slow-roll approximation for simplicity.
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which we will use throughout to express ZXX in terms of ZX . All the derivatives w.r.t.
X are evaluated on the background value X̄.
From now on we will consider a simplified Lagrangian which preserves parity for the
arguments mentioned above. The action we will focus on is the following

S = ∫ d4x
√
−g [

M2
Pl

2
R − P (X) − (27M4

1 + 18M4
2 )I2 + 72M4

2W] , (5.26)

where we have defined

W ≡
F I βα F I γβ F J δγ F J αδ

X2 = 1 + I2 + I3
4

. (5.27)

Here the coefficients M4
1 and M4

2 are parameters with the dimension of a mass.
Extending this Lagrangian to a more general parity preserving one of the form (5.9) is
straightforward, but it is not expected to introduce any qualitative novelty compared
to the minimal case we study in this first section. Instead (as an original computation
contained in this Thesis) we will add new terms when studying the case of a breaking-parity
Lagrangian and we will see what the effects will be.

5.1.3 Perturbing the Gaugid

We are now ready to study the perturbations in Gaugid Inflation using as background
the chosen vacuum (5.2). Up to now we have distinguished between internal and spatial
indices, but, given the imposed symmetries (5.4) and the magnetic configuration, we are
allowed to make no distinction between spatial and internal indices. From now on we will
indicate both with lower-case letters and we will treat the internal index as a spatial index.
The perturbed gauge field can be written, in general, as

Aiµ = ⟨Aiµ⟩ + aiµ, (5.28)

where aiµ is the perturbation field given by a general 3 × 4 matrix. Therefore it can be
decomposed into a 3-vector ai0 and a 3-tensor aij . We will see that the action will not
involve time derivatives on ai0, hence their equations of motion are equivalent to constrain
equations and all the propagating degrees of freedom reside in aij . It is useful to decompose
the perturbation field into scalar, vector and tensor fluctuation modes, according to what
we have explained in Chapter 2. More precisely, using helicity representations

aij = αδij + ∂i∂jS + ∂iSj + ∂jSi +Eij + εijk (Vk +
∂kT√
−∂2

) , (5.29)

where ∂2 = δij∂i∂j . We see that, without fixing any gauge, there are 9 degrees of freedom:
α, S and T are helicity scalars, Si and Vi are transverse (∂iSi = ∂iV i = 0) helicity vectors
and Eij is a symmetric, transverse and traceless (Eii = ∂iEij = 0) helicity tensor mode. The
fields Aiµ form a U(1) triplet, hence a U(1)3 gauge redundancy is present, which is given
by δaij = ∂jξi ≡ ∂j(ξTi +∂iξ), where ξTi is the transverse part of the gauge parameter. This
means that we can fix three parameters, two using ξTi and one using ξ. We can eliminate
Si and S, in order to have

aij = αδij +Eij + εijk (Vk +
∂kT√
−∂2

) . (5.30)
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We can use the parity transformation

Ai0(t,x) → Ai0(t,−x), Aij(t,x) → −Aij(t,−x) (5.31)

to classify our perturbations, since parity is preserved by vacuum (5.2). The perturbation
field transforms as aij(t,x) → −aij(t,−x), therefore the presence of the Levi-Civita symbol
in (5.30) ensures that T and Vk are polar fields, i.e.with parity (−1)h, where h is the helicity
of the field, while α and Eij are axial fields, i.e. with (−1)h+1. The polar excitations T and
Vk are the exact analogs of the longitudinal and transverse modes of an ordinary solid, and
therefore they are the same perturbations present in Solid Inflation [53], see Sec. 4.3. This
is a confirmation of what we said above: this theory is a generalization of Solid Inflation.
We see that the novelty appears already. The two modes α and Eij are new outcomes
of the theory, and in particular, as we will see, the tensor field Eij is the main source of
novel results for this model. It represents an extra tensor degree of freedom, which can
have non trivial effects when evaluating tensor fossils in this model. Before starting with
the computation we decompose also ai0

ai0 =
∂iχ√
−∂2

+Bi. (5.32)

We first perform the subhorizon calculations in order to find the conditions for the stability
and the subluminality of the theory (5.26). In the small scale limit we can work with a
Minkowski metric, i.e., we can neglect the coupling with gravity. Inserting (5.28) into Fiµν
we can define the perturbation of the field strength

Fiµν = ⟨Fiµν⟩ + fiµν , (5.33)

where we have defined
⟨Fiµν⟩ = ∂µ⟨Aiν⟩ − ∂ν⟨Aiµ⟩ = −2εiµν (5.34)

and
fiµν ≡ ∂µaiν − ∂νaiµ. (5.35)

We expand the action (5.26) up to second order in perturbations.
The matrices Yij = FiµνFµνj and its dual Ỹij = FiµνF̃µνj at second order in the perturbations,
are

Yij =8δij − 2εilmfjlm − 2εjlmfilm − 2fik0fjk0 + filmfjlm, (5.36)

Ỹij = −4fij0 − 4fji0 − εlmn (fi0lfjmn + fj0nfilm) . (5.37)

We can see that in this configuration Ỹij arises only at the level of the perturbations. On
the other hand in our computations with an electric vacuum we will see that it has also a
non vanishing zeroth order background value.
From (5.36) X becomes

X = FiµνF iµν = 24 − 4εijkfijk + fiµνfµνi . (5.38)

In order to calculate I2 and I3, the two building blocks into the Lagrangian, we have to
calculate the two contractions [Y 2] = YijYij , [Ỹ 2] = Ỹij Ỹij up to second order in perturba-
tions and then we have to multiply for expression of X−2 expanded up to the second-order.
All the expressions and the computations are in Appendix A. In the following we report
only the final result for I2 and I3 in the magnetic gauge:

I2 =
1

576
[192 + 64

3
fijkfijk − 32fiikfjjk +

64
3
fijkfjik] , (5.39)
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I3 =
1

576
[32fij0fij0 + 32fij0fji0] . (5.40)

The second-order perturbed expression for the kinetic term is

P (X)∣(2) =
X̄PX

24
fiµνf

µν
i − X̄PX

72
(εijkfijk)2. (5.41)

Inserting these expressions into (5.26) we obtain the second order action in Minkowski
spacetime

S(2) =∫ d4x[ − X̄PX
24

fµνi fiµν +
X̄PX

72
(εijkfijk)2

−M4
1 (fijkfijk + fijkfjik −

3
2
fiikfjjk) +M4

2 (fij0fij0 + fij0fji0) ].
(5.42)

In this work we have performed all the calculations of [52] and we have obtained the same
result. Expanding the various fiµν using (5.30) we can write down the second order action
for all the perturbation modes

S(2) = ∫ d4x[(X̄PX
4

+ 6M4
2) α̇2 − X̄PX

6
(∂α)2 − (X̄PX

6
+ 4M4

2)
∂2χ√
−∂2

α̇

− (X̄PX
12

+ 2M4
2)χ∂2χ + X̄PX

6
Ṫ 2 − (2M4

1 −
X̄PX

18
)(∂T )2 + X̄PX

6
V̇ 2
k

− (X̄PX
12

+ 3
2
M4

1)(∂Vk)2 − X̄PX
6

εijk∂jBiV̇k + (X̄PX
12

+M4
2)(∂Bk)2

+ (X̄PX
12

+ 2M4
2) Ė2

ij − (X̄PX
12

+ 3M4
1)(∂Eij)2].

(5.43)

We see, as anticipated, that the fields χ and Bi, i.e. the fields which characterize ai0, are
non dynamical since their time derivative does not appear. Therefore we can obtain their
expressions in terms of the other fields as

Bi =
X̄PX

X̄PX + 12M4
2
εijk∂

−2∂iV̇k, χ = − α̇√
−∂2

, (5.44)

and inserting these solution back into the action yields the final expression

S(2) = S(2)α + S(2)T + S(2)V + S(2)E (5.45)

with

S(2)α = ∫ d4x [(X̄PX
6

+ 4M4
2) α̇2 − X̄PX

6
(∂α)2] , (5.46)

S
(2)
T = ∫ d4x [X̄PX

6
Ṫ 2 − (2M4

1 −
X̄PX

18
)(∂T )2] , (5.47)

S
(2)
V = ∫ d4x [X̄PX(X̄PX + 24M4

2 )
12(X̄PX + 12M4

2 )
V̇ 2
k − (X̄PX

12
+ 3

2
M4

1)(∂Vk)2] , (5.48)

S
(2)
E = ∫ d4x [(X̄PX

12
+ 2M4

2) Ė2
ij − (X̄PX

12
+ 3M4

1)(∂Eij)2] . (5.49)
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From these equations we can easily extrapolate the propagation speeds of the fluctuation
modes and impose the subluminality for the different modes

c2
α =

X̄PX

X̄PX + 24M4
2
, c2T = 36M4

1 − X̄PX
3X̄PX

,

c2
V = (X̄PX + 18M4

1 )(X̄PX + 12M4
2 )

X̄PX(X̄PX + 24M4
2 )

, c2
E = X̄PX + 36M4

1
X̄PX + 24M4

2
.

(5.50)

We note that the speed of sound of the scalar α can be rewritten in terms of c2
T and c2

E :
c2
α = c2

E/(3c2
T + 2). Imposing 0 < c2

i < 1, with i = α,T, V,E we obtain the conditions on the
kinetic term and on the parameters of the theory M4

1 and M4
2 in order to have a stable

theory
X̄PX

36
<M4

1 < X̄PX
9

, M4
2 > 3M4

1 X̄PX

2X̄PX − 36M4
1
. (5.51)

Note that w.r.t. the results of [52] the higher bound of M4
1 presents a little difference, in

the original article they have X̄P (X)/18 while we have X̄P (X)/9. To find these conditions
we have considered that the product X̄PX must be positive. This condition has profound
reasons. If we consider the simplest model with Lagrangian L = −P (X) we would have,
using the Friedmann equations (5.21),

X̄PX = 3
4
(ρ + p).

The second member must remain positive in order to satisfy the Null Energy Condi-
tion [96]: this condition, if we write the state equation p = wρ, consist in requiring that
w > −1. Given that the expression for the variation rate of the Hubble parameter is
Ḣ = −4πGρ(1 +w) it is equivalent to require an ever-decreasing Hubble rate, Ḣ < 0. For
more details about the Null Energy Condition and its possible violations see Ref. [96].
For these reasons we will take, together with the conditions (5.51), also XPX > 0.
Recall that the only variable sensible to the expansion of the Universe is X, hence the
“minimal” model one can consider is that with only the kinetic term. So, why do we not
consider the simplest model L = −P (X)? We do not use this model because perturbing
it one finds that all the fluctuation modes have exactly the speed of light except for the
T mode, which would have an imaginary speed of sound, i.e. a UV instability. One can
verify this statement by imposing M1 = 0 in (5.50). Note also that the model with M4

1 ≠ 0
and M4

2 = 0 would entail some problems: it would predict superluminal modes. Hence
we can affirm that (5.26) (with the conditions (5.51)) is the “minimal” magnetic Gaugid
theory to avoid instabilities.

After all these premises we are ready to switch on gravity in order to study the cosmo-
logical perturbations predicted by the Gaugid Inflation. We will use, as before, the ADM
formalism for the metric

ds2 = −N2dt2 + gij(dxi +N idt)(dxj +N jdt), (5.52)

where N and Ni are the usual lapse and shift non-dynamical variables. We can fix the
gauge using the diffeomorphism invariance: in particular for our studies we will use the
spatially flat slicing gauge (SFSG) where the 3-metric is perturbed only by the helicity
2-mode (i.e. by the tensor perturbations)

gij = a2(t) exp[γij], (5.53)
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where γij is the transverse traceless metric perturbation satisfying

γii = ∂iγij = 0. (5.54)

The lapse and shift function are not affected by this choice of gauge and they can be
integrated out using their equations of motion. Therefore SFSG does not affect the gaugid
degrees of freedom. The calculation to obtain the second order actions for the different
modes is lengthy and we leave all the details in Appendix A. The second order action
including mixing with gravity is [52]

S(2) = S(2)α + S(2)T + S(2)V + S(2)GW (5.55)

where

S(2)α = ∫ d4xa3 3c2
T + 2
4c2
E

M2
PlH

2ε [a2α̇2 − c2
α(∂α)2] , (5.56)

S
(2)
T =

M2
Pl

4 ∫ dt∫
d3k

(2π)3a
3 [ k2/3

1 + k23a2H2ε
∣Ṫk + εHTk∣2 − εH2c2

Tk
2∣Tk∣2] , (5.57)

S
(2)
V =M2

Pl ∫ dt∫
d3k

(2π)3a
3 [ k2/16

1 + k2/16a2N 2
V

∣V̇ i
k∣

2 − c2
VN 2

V k
2∣V i

k∣
2] , (5.58)

S
(2)
GW = ∫ d4xa3{

M2
Pl

8
(γ̇2

ij −
1
a2 (∂γij)

2 − 3(c2
T + 1)H2εγijγij)

+
(3c2

T + 2)
8

M2
PlH

2ε (a2c−2
E Ė

2
ij − (∂Eij)2) + 3

4
(c2
T + 1)M2

PlH
2εεijk∂kEilγlj},

(5.59)

where we have defined

N 2
V ≡

2 + 3c2
T

4(2 + 3c2
T + c2

E)
H2ε. (5.60)

Here we have just integrated out the non-dynamical lapse and shift functions. After the
expansion N = 1+δN , Ni = ∂iψ+NT

i one finds that the solutions, in Fourier space, contains
only the scalar and the vector fields T and Vi, as for Solid Inflation [53]

δN = −a
2Ḣ

2kH
Ṫ − ḢT /H

1 − 3a2Ḣ/k2 , ψ = −a
2

2k
3a2ḢṪ /k2 − ḢT /H

1 − 3a2Ḣ/k2 , NT
i = V̇i

1 − k2/4a2Ḣ
. (5.61)

We immediately note the first non-trivial outcome of this theory: we have just said above
about the importance of a new tensor degree of freedom, Eij . In (5.59) we explicitly see
that the metric tensor perturbation and the one due to the gaugid mixes with a terms
∼ ∂Eγ. We will see later the importance of this new coupling between the two tensor fields
when studying the tensor power spectrum.
We also note that the action for the scalar mode T , which is connected, as we will see, to
the ζ perturbation, (5.57) is identical to the one of the longitudinal scalar mode in Solid
Inflation in (4.53). For the vector degree of freedom we found the same analogy in the
case of absence of the new tensor degree of freedom, i.e. imposing c2

E = 0, compare (5.58)
with (4.52). For this reason, as we will see, the prediction for the power spectrum of the
scalar field will be the same as in Solid Inflation. We will see that the true novelty comes
from the tensor sector, for which we will provide a full description of the calculations.
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Time dependence of background quantities

As for solid Inflation we need to define some new “slow-roll” parameters of this theory
and describe the time-dependence of background quantities. We switch to conformal time,
defining the integration constant such that a→∞ when τ → 0, i.e.

aH = −1 + εc
τ

, (5.62)

where we use the notation εc = ε(τc), see (5.22). We set τc to be the time correspond-
ing to the longest CMB mode exiting the horizon during inflation, so that all modes of
phenomenological interest cross the horizon at ∣τ ∣ ≤ ∣τc∣. It follows that Nmin

e = ln(τc/τf)
where τf stands for the end of Inflation and hence Nmin

e is the minimum number of e-folds
for Inflation. We can now define the new slow-roll parameter

εγ =
3
2
(c2
T + 1)ε, εE =

3c2
T + 2
c2
E

ε, (5.63)

and their respective “η”s, which define their time dependence

ηγ =
ε̇γ

εγH
, ηE = ε̇E

εEH
. (5.64)

All the ε parameters have the following time dependence

ε = εc (
τ

τc
)
−ηc

, εγ = εγ,c (
τ

τc
)
−ηγ,c

, εE = εE,c (
τ

τc
)
−ηE,c

. (5.65)

We can also define the parameters sE = ċE
cEH

and sT = ċT
cTH

, which measure the time
dependence of the two speeds of propagation cE and cT through the relation

cE = cE,c (
τ

τc
)
−sE,c

, cT = cT,c (
τ

τc
)
−sT,c

. (5.66)

These parameters can be rewritten in terms of the other slow-roll parameters

sE = 1
2
[

2εγηγ − εη
2εγ − ε

− ηE] , sT =
εγ(ηγ − η)
2εγ − 3ε

. (5.67)

Note that the new εi give a measure of the two graviton masses. In terms of these new
parameters the subluminality and stability conditions (5.51) can be rewritten

ε > 0, 3
2
ε < εγ < 2ε, εE >

εεγ

2ε − εγ
. (5.68)

5.1.4 Scalar perturbations

As we mentioned above the action for the T mode is the same as πL in solid Inflation. We
now perturb the stress-energy tensor in order to see that this scalar field is the one which
enters in the definition of ζ and R, the comoving and uniform energy-density curvature
perturbations respectively, introduced in Chapter 2. The other scalar degree of freedom α
plays no role, as we will see soon. The stress energy tensor can be easily written looking
at the action (5.26)

Tµν = −δµν [P (X) + (27M4
1 + 18M4

2 )I2 − 72M4
2W ] + 4PXFµI αF

α
Iν . (5.69)
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The perturbed scalar quantities are defined as

T 0
0 = −(ρ + δρ), T 0

i = ∂iδq, T ij = δij(p + δp) + σij , (5.70)

where σij is the anisotropic stress. Using the perturbed expressions for I2 and I3, one finds
[52]

δρ = −M2
PlH

2ε
√
−∂2T,

δq =M2
PlH

2ε(2ψ − a2 Ṫ√
−∂2

) ,

σij =M2
PlH

2ε(∂i∂j −
1
3
δij∂

2) T√
−∂2

,

(5.71)

where ψ is given in (5.61). The two gauge-invariant variables R and ζ are defined, in
general, using the notation of (2.27), as

R = Φ − H

ρ + p
δq, ζ = Φ − δρ

3(ρ + p)
. (5.72)

In the spatially flat slicing gauge Φ = 0 and they take the forms (in Fourier space)

Rk = k

6Hε
Ṫk +HεTk

1 + k2/3a2H2ε
, ζk = k

6
Tk. (5.73)

Since the action and the equation of motions for T is identical to the scalar field πL then we
can proceed with the identical path undertaken in Section 4.3.1. Therefore the predicted
scalar power spectrum takes the same form of (4.88)

Pζ(k) =
H2
c

4εcc5
L,cM

2
Pl

1
k3

(τ/τc)8c2
L,cεc/3

(−cL,ckτc)5sc−2c2
L,cεc+ηc

, (5.74)

and the scalar spectral index is

nS − 1 ≃ 2εcc2
L,c − 5sc − ηc. (5.75)

5.1.5 Tensor perturbations

The main novelty of Ref. [52] is indeed the new arising tensor degree of freedom Eij ,
Eq.(5.59). Usually, as we have seen in Sections 2.3 and 4.3.1 (where we have studied the
gravitational waves arising in the single-field slow-roll and in the solid Inflation models),
the calculations for the tensore degrees of freedom, are the simplest. However in this case
the computations become definitely more involved. Hence we will dedicate this section
to the complete calculation of the tensor power spectrum using the action (5.59). It is
convenient to switch to canonically normalized fields

γij =
2

aMPl
γcij , Eij =

2
a2MPlH

√
εE
Ecij , (5.76)

where we have used the definition in (5.63). If we use the conformal time we obtain the
action

S
(2)
GW = 1

2 ∫
d3xdτ[(γc

′

ij )
2 − (∂γcij)

2 + 1
τ2 (2 + 3ε − 2εγ)γcijγcij

+ (Ec
′

ij )
2 − c2

E(∂Ecij)2 + 1
τ2 (6 + 5ε + 5

2
ηE)EcijEcij

− 4
τ

εγ√
εE
εijk∂kE

c
ilγ

c
lj],

(5.77)
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where we have used the new slow-roll parameters in Eqs. (5.64) and (5.65) and the prime
denotes a derivative with respect to conformal time. Note that we have used the relation
(5.62) to integrate out some boundary terms. We now perform a Fourier transform of the
fields3

γcij(τ,x) = ∫
d3k

(2π)3 ∑
s=±

εsijγs(τ,k)eik⋅x, (5.78)

Ecij(τ,x) = ∫
d3k

(2π)3 ∑
s=±

εsijEs(τ,k)eik⋅x. (5.79)

Given the helicity operator s∥ij ≡ ik̂lεlij , the polarization eigenstates εsij(k) are defined by
[s∥, ε±] = ±2ε±. This property can be rewritten in a more useful expression [97]

εijl∂l [εsmj(k)eik⋅x] = skεsim(k)eik⋅x,

which can be rewritten as
iklεijlε

s
mj(k) = skεsim(k), (5.80)

where s = ±. Eq. (5.80) implies the usual properties for the polarization tensor

kiε
s
ij = εsii = 0, εs∗ij (k) = εij(−k), εsij(k)εs

′

ij(k)∗ = 2δss′ .

In particular the hermiticity property implies γ†
s(τ,k) = γs(τ,−k). Now the action reads

S
(2)
γE = 1

2 ∑s=±
∫ dτ

d3k
(2π)2{γ

′
s(k)γ′s(-k) − (k2 −

2 + 3ε − 2εγ
τ2 )γs(k)γs(-k)

+E′
s(k)E′

s(-k) − (c2
Ek

2 − 6 + 5ε + 5ηE/2
τ2 )Es(k)Es(−k)

− 2Bk
τ

[γ+(k)E+(−k) − γ−(k)E−(−k)]}

(5.81)

where we have integrated in x using the Dirac delta definition

δ(3)(k + p) = ∫
d3x

(2π)3 e
i(k+p)⋅x

and we have exploited the orthonormality property of the polarization tensors (we keep the
time dependence of the modes implicit). Note that the last line comes from the property
of the helicity polarization property (5.80). In (5.81) we have defined the quantity

B ≡ −2 εγ√
εE

= Bc (
τ

τc
)
−ηγ+ηE/2

. (5.82)

Note that in the action (5.81) modes with different helicity do not mix, hence they can be
treated separately. We have four equation of motion that can be written as

d2

dz2γ± + (1 − 2 + 3ε − 2εγ
z2 )γ± ±

B

z
E± =0, (5.83)

d2

dz2E± + (c2
E −

6 + 5ε + 5ηE/2
z2 )E± ±

B

z
γ± =0, (5.84)

3Note that here we are using the notation ± to indicate the helicity states, instead of the standard +,×.
Of course this dose not change the physics, however the helicity polarization states will be useful when
studying the parity properties of the tensor fields.
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where z = −kτ . We can verify that the invariance under parity transformation translates
into invariance of the system (5.83)-(5.84) under the parity transformation

γ±(k) → γ∓(−k) E±(k) → −E∓(−k). (5.85)

The system (5.83)-(5.84) is composed by two second order differential equations, in which
the two tensor functions γ and E are coupled through a source term in each equation. This
means that the quantization procedure is more delicate with respect to the previous cases
we have studied, since we have to consider also the correlation between the two modes.

As a first step we collect the fields of a given polarization into two doublets φ±α =
(γ±,E±)T , with φ±1 = γ± and φ±2 = E±. The system of equations can be then rewritten in
the synthetic form

d2

dz2φ±α(z) +Mαβ(z)φ±β = 0, (5.86)

where Mαβ is the symmetric matrix

Mαβ(z) = (1 − (2 + 3ε − 2εγ)/z2 ±B/z
±B/z c2

E − (6 + 5ε + 5ηE/2)/z2) . (5.87)

The equation (5.87) has two independent solutions, see Appendix B in Ref. [52], so that
each doublet can be expanded as

φ±α = φ(1)±α + φ
(2)
±α ,

where
φ
(n)
±α = f (n)±α (τ, k)a±n(k) + f (n)±α (τ, k)∗a†

±n(−k). (5.88)

Here a±n and a†
±n are the corresponding annihilation and creation operators respectively.

The mode functions f (1)± and f
(2)
± solve the system in Eqs. (5.83)-(5.84). They can be

chosen such that f (n)−α = Pαβf
(n)
+β where Pαβ = diag(1,−1) represents parity. We can impose

now the canonical commutation relations for the doublet φ

[φ±α(τ,k), φ±β(τ,q)] = 0 = [φ′±α(τ,k), φ′±β(τ,q)],
[φ±α(τ,k), φ′±β(τ,q)] = (2π)3iδ(3)(k + q)δαβ.

(5.89)

For the choice of vacuum we have to be precise. The two solutions f (1) and f (2) can be, in
general, correlated at a given time. To measure the correlation between two function we
have introduced in Section 2.2 the Wronskian function in Eq. (2.42). We can generalize
the normalization condition (2.56) to our theory through the following vacuum choice

W (f (m)± (τ, k), f (n)± (τ, k)) ≡ f (m)±α (τ, k) d
dτ
f
(n)
±α (τ, k)∗ − d

dτ
f
(m)
±α (τ, k)f (n)±α (τ, k)∗ = iδmn,

(5.90)
Given that the Wronskian is constant for all the functions which solve Eq. (5.86), see
[52], the vacuum choice (5.90) corresponds to the request that the two solutions f (1) and
f (2) are correlated at any time. The commutation relations between the annihilation and
creation operators are found to be

[a±m(k), a±n(p)] = [a†
±m(k), a†

±n(p)] = 0, [a±m(k), a†
±n(p)] = (2π)3δ(3)(p − k)δmn.

(5.91)

120



Using (5.90) we can make the following choice for the early time modes (−kτ →∞)

f
(1)
± (z →∞) = ( eiz√

2k
,0)

T

, f
(2)
± (z →∞) =

⎛
⎝

0,±e
−ik ∫ dτcE(τ)
√

2cE(τ)k
⎞
⎠

T

, (5.92)

we recall that the time dependence of cE is expressed in (5.66). The configuration (5.92)
correspond, as anticipated, to purely gravitational and purely gaugid Bunch-Davies ex-
citations. Now the two-point function for the canonically normalized graviton with “+”
polarization reads

⟨γc+(τ,k)γc+(τ,k′)⟩ = (2π)3δ(3)(k + k′)∑
n

∣f (n)+1 (τ, k)∣2 ≡ (2π)3δ(3)(k + k′)P+γ , (5.93)

where we have defined P+γ as the power spectrum of “+” polarization graviton field. For
the − polarization an analogous relation holds, moreover P+γ = P−γ . Using (5.76) we can
find the expression for the power spectrum

Pγ = ( 2
aMPl

)
2
(P+γ + P−γ ) = 2( 2

aMPl
)

2
P+γ . (5.94)

Now we have to find the solutions to (5.86), f (1)± and f (2)± , imposing the initial conditions
(5.92). We will see that the contribution of the first solution f (1) to the amplitude of the
tensor power spectrum is at most of the order of the standard single field result (5.1),
while the contribution of the second one f (2), as we will see, is parametrically large.
We will then solve Eq. (5.86) separately in two cases4: the small mode is the one with
initial condition (γ+

z→∞ÐÐÐ→ eiz/
√

2z,E+
z→∞ÐÐÐ→ 0) while the large mode is the one with initial

condition (γ+
z→∞ÐÐÐ→ 0,E+

z→∞ÐÐÐ→ e−ik ∫ dτcE(τ)/
√

2cE(τ)k).

Large mode

We need to solve now the system (5.83)-(5.84) using the initial conditions

γ+
z→∞ÐÐÐ→ 0, E+

z→∞ÐÐÐ→ e−ik ∫ dτcE(τ)√
2cE(τ)k

. (5.95)

Recall that at first order in slow-roll parameters we have

∫ dτcE(τ) = −(1 + sE,c)cEτ. (5.96)

The non-trivial solution of γ+ is entirely due to the mixing with E+ (in the absence of
this mixing γ+ would vanish at all times with the given initial conditions). To solve
(5.84) we can consider perturbative arguments: the difficulty of the system resides in the
coupling between γ and E, which is regulated by the coefficient B. This factor goes like
B ∼ εγ/ε1/2E and we can affirm, looking at the stability conditions rewritten in terms of the
new slow-roll parameters (5.68), that it is at most of order ε1/2, i.e. very small, but it can
also be smaller5. This means that E+ evolves practically independently of γ+ and we can
approximate (5.84) to

d2

dz2E+ + (c2
E −

6 + 5ε + 5ηE/2
z2 )E+ = 0. (5.97)

4Here we use only the +-polarization solution because the −-polarization can easily be found with a
parity transformation.

5If the values of εγ and εE are saturated respectively to their maximum and minimum value, one finds
that B is exactly 0.
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If we define now x = (1 + sE,c)cEz we have, at first order in the slow-roll parameters

x2 d
2

dx2E+ + [x2 − (ν2
E −

1
4
)]E+ = 0, (5.98)

where we have defined νE = 5
2 +

12
5 sE,c + εc +

1
2ηE,c. This equation resembles (2.66), for

which we know the exact solution

E+(τ, k) =
√
x [C1H

(1)
νE

( − kτcE(1 + sE,c)) +C2H
(2)
νE

( − kτcE(1 + sE,c))] . (5.99)

The two constants C1 and C2 can be found by imposing the initial condition (5.95), which,
using the asymptotic behavior of Hankel functions (2.69), imposes C2 = 0 and

C1 = (cEz)−1/2
√
πz

4k
ei(2νE+1)π/4. (5.100)

Therefore, the solution for E+ is

E+(τ, k) = (1 +
sE,c

2
)
√
πz

4k
ei(2νE+1)π/4H(1)νE ((1 + sE,c)cEz), (5.101)

where, we remind, z = −kτ . We will verify that (5.101) is a good solution for the system
(5.83)-(5.84) and that our approximation of an evolution of the mode E+ independent
from γ+ is justified. Taking the limit z ≫ 1 we know that at the leading order in the
slow-roll parameters E+ → eicE,cz/

√
2cE,ck. The equation (5.83) suggest a possible ansatz

for γ+ in this limit

γ+
z≫1ÐÐ→ A

eicE,cz

z
. (5.102)

Indeed, in this limit we have
d2

dz2γ+
z≫1ÐÐ→ −c2

E,cγ+. (5.103)

Plugging (5.102) and (5.103) and taking the small-scales limit of E+ fixes the coefficient
A

γ+
z≫1ÐÐ→ − Bc

(1 − c2
E,c)

√
2cE,ck

eicE,cz

z
. (5.104)

Now inserting this small-scale solution into (5.84) (now including also the source term
from γ+), one can easily show that there is no significant backreaction on the early-time
dynamics of E+: the correction to the zeroth-order solution (5.101) scales as δE+/E+∣z≫1 =
O(B2

c /z).
We now evaluate the late time evolution. Using (2.71) we have, from (5.101),

E+
z≪1ÐÐ→ − 3

2
√
kc5
E,cz

5sE,c
c

1
z2+εc+ηE,c/2

, (5.105)

where zc ≡ −kτc. Substituting this expression into (5.83) and using the explicit time
dependence of B, (5.82), we have

d2

dz2γ+ −
2 + 3ε − 2εγ

z2 γ+ −
3Bc (2kc5

E,c)
−1/2

z
ηE,c/2+5sE,c/2−ηγ,c
c

1
z3+εc+ηγ,c = 0. (5.106)

It is simple to find a solution for this equation. As a first step one could neglect the
source term (i.e. the third term) in (5.106) and consider the solution of the homogeneous
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differential equation. We can then find the particular solution considering a power-law
solution γ+ = Azα and solve the constraint equations for the two parameters A and α. The
full solution will be a linear combination of these solutions

γ+ =
3Bc (2kc5E,c)

−1/2

2εγ,cz
ηE,c/2+5sE,c/2
c

z−1−εc +C+zα+ +C−zα− , (5.107)

with
α± =

1 ± (3 + 2εc − 4εγ,c/3)
2

, (5.108)

where we have used (5.65). C± are two integration constants that can be fixed using
perturbative arguments [52]

C+ = O(1), C− = −
3Bc (2kc5

E,cε
2
γ,c)

−1/2

2zηE,c/2+5sE,c/2
c

. (5.109)

We will not consider the C+ mode because it decays outside the horizon. Finally, the
solution for the metric tensor mode in the large mode hypothesis and in the limit z ≪ 1 is

γ+ = −
3 (2kc5

E,cεE,c)
−1/2

z
ηE,c/2+5sE,c/2
c

1
z1+εc (1 − z2εγ,c/3) . (5.110)

We can note that in the limit εγ → 0, that is the limit in which the two tensor modes are
decoupled (the coupling terms in (5.83)-(5.84) go like ∼ εγ), γ+ vanishes. This argument
shows that in this model the effect of a large mode contribution to the power spectrum is
exclusively given by the presence of the gaugid graviton Eij . Now we can calculate the
contribution to the power spectrum coming out from this solution. For γ+ we have, using
the notation of (5.93)

P+(k) = ∣f (2)+ ∣2 = ∣γ+(k)∣2 =
9 (2kc5

E,cεE,c)
−1

z
ηE,c+5sE,c
c

(1 − z2εγ,c/3)2

z2(1+εc)
. (5.111)

For the physical mode, (5.76), we therefore find

Pγ(k) =
36H2

M2
Plc

5
E,cεE,c

1
k3

1
z
ηE,c+5sE,c
c

z−2εc (1 − z2εγ,c/3)
2

(5.112)

where we have a two factor from the P+ = P−. As we will see later this is the fundamental
result of this model. We can immediately see that the amplitude for the large mode is
enhanced w.r.t. the standard single-field predictions by a factor c−5

E,cε
−1
E,c. We will see that

this is the dominant contribution to the power spectrum, and it represents the true novelty
of this model [52].
We can calculate now the power spectrum for the small mode.

Small mode

We can evaluate now the contribution of f (1)+ in (5.93) solving (5.83)-(5.84) using the
initial conditions

γ+
z→∞ÐÐÐ→ eiz√

2k
, E+

z→∞ÐÐÐ→ 0. (5.113)
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As for the large mode we perform a perturbative expansion in the small mixing parameter
B, expecting that the backreaction of E+ in (5.83) would be negligible with respect to the
full mode γ. We expect indeed a gaugid tensor mode of the order E+ ∼ O(B) as for γ+ in
the large mode calculations, see e.g. (5.104) and (5.107). Neglecting the mixing term Eq.
(5.83) becomes

d2γ+
dz2 + (1 − 2 + 3ε − 2εγ

z2 )γ+ = 0. (5.114)

The solution, after matching the asymptotic behavior of the solution and of the Hankel
functions, reads

γ+ = ei(2νγ+1)π/4 (πz
4k

)
1/2
H(1)νγ (z) + δγ+, (5.115)

where νγ = 3
2 + ε +

2
3εγ . In(5.115) we have indicated with δγ+ the possible backreaction

due to the mixing term; it is expected to be of order δγ+ ∼ O(B2). We can can give an
estimation of this backreaction solving Eq. (5.84) in the limit z ≫ 1, for which we have

E+
z≫1ÐÐ→ B√

2k (1 − c2
E)

eiz

z
.

Plugging this solution into the equation for γ+ one finds

δγ+ ≃ −i
B2

2
√

2k (1 − c2
E)

eiz

z
,

i.e. we are allowed to neglect the backreaction at early times.
Unfortunately, for the late-time dynamics we cannot consider the same argument.

From (5.115) and using (2.71) we see that γ+ behaves, at late times, as

γ+ =
i√
2k

1
z1+ε+2εγ/3

. (5.116)

Plugging this expression into the equation for E+ one can find a solution analogue to
(5.107)

E+∣z≪1 = i
B

6
√

2k
1

zεc−2εγ,c/3
+D+z

λ+ +D−z
λ− , (5.117)

with
λ± =

1 ± (5 + 2εc + ηE,c)
2

, (5.118)

and D± are two integration constants expected to be of order D± ∼ B [52]. The first two
terms in this solution gives negligible contributions in the z ≪ 1 limit w.r.t. the third one
which scales as z−2−εc−ηE,c/2. If we consider only this dominant term we can evaluate the
δγ+ contribution to (5.115), using (5.83)

d2δγ+
dz2 − (2 + 3ε − 2εγ)

δγ+
z2 + BD−

z3+εc−+ηE,c/2
= 0, (5.119)

in the late time limit. The exact solution to this equation is

δγ+ = −
BD−

2εγ,c + 3ηE,c/2
1

z1+εc+ηE,c/2
+ c1z

−1−εc+2εγ,c/3 + c2z
2+εc−2εγ,c/3. (5.120)
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The third term is negligible in this limit and the constant of integration c1 wold be of the
same order of the first term coefficient. If we analyze the amplitude of this correction we
have

δγ+
γ+

∣
z≪1

∼ BD−
εγ

∼ B
2

εγ
= 4 εγ

εE
, (5.121)

where in the last equality we have used the expression of B, (5.82). Note that this
contribution can be considered small, justifying our perturbative method, only if εE ≫
εγ , which is admitted by the stability conditions (5.68); otherwise the effects from the
backreaction of the gaugid tensor mode for the late time dynamics of γ+ are O(1).
If we can neglect the backreaction we have that the solution for the γ+ mode in the
superhorizon limit is (5.116), which provides a power spectrum, using (5.94),

Pγ =
4H2

M2
Pl

(−kτ)−2εc−2εγ,c/3

k3 . (5.122)

For the sake of precision we consider now also the limit in which the backreaction is not
negligible. We will see that also considering the case εE ∼ εγ one finds an amplitude for the
gravitational waves power spectrum of the order of (5.1). First of all we fix the integration
constant D− following what we said in the previous section, see (5.109),

D− = −i
B

6
√

2k
.

Now we can correct the solution for the tensor mode using (5.116) and the dominant mode
in (5.120), obtaining

γ+ =
i√
2k
z−1−εc−2εγ,c/3 + iB2

6
√

2k(2εγ,c + 3ηE,c/2)
z−1−εc−ηE,c/2

which can be approximated to

γ+ ≃
i√
2k
z−1−εc (1 + εγ,c

2εE,c
) ≃ 4i

3
√

2k
z−1−εc , (5.123)

where we have neglected some ∼ O(εi, ηi) terms and used the exact expression for B (5.82)
in the limit εγ ∼ εE . Using this solution the predicted power spectrum (5.94) becomes

Pγ =
64H2

9M2
Pl

(−kτ)−2εc

k3 , (5.124)

i.e. very similar to (5.122). We can conclude that in the small mode case we have predic-
tions on the power spectrum that are of the order of the standard inflationary models

Asmallγ ≃ H2

M2
Pl

,

while for the large mode, Eq. (5.112), we have an enhancement by a factor c5
EεE due to

the coupling between the metric tensor mode γij and the gaugid one Eij .
For this reason we will consider only the contribution to the power spectrum coming from
the large mode, since it will be the dominant component.
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We can rewrite (5.112) in a more familiar version and we evaluate it at τf

P(k) = 16H2
c

M2
Plc

5
E,cεE,c

ε2γ,cN
2
e

k3(−kτc)2εc+ηE,c+5sE,c , (5.125)

where we have used the fact that Ne = ln(−kτf) represents the number of e-folds when
the mode k has left the horizon from the end of Inflation. Using the dimensionless power
spectrum (2.50) we can finally write

∆γ =
8
π2

H2
c

M2
Pl

ε2γ,cN
2
e

c5
E,cεE,c

1
(−kτc)2εc+ηE,c+5sE,c (5.126)

Eq. (5.126) is the main result of this section. We see that the “standard” amplitude
H2/M2

Pl is multiplied by a factor (ε2γ,cN2
e )/(c5

E,cεE,c) which depends on the parameters
of the theory. Moreover, we can consider two different limits for the parameter εγ since
(5.68) entails only a lower bound for it [52]: εγNe ≳ 1 and εγNe ≪ 1. In the first case the
amplitude and the tensor tilt are

Aγ =
18
π2

H2
c

M2
Pl

1
c5
E,cεE,c

,

nγ = −2εc − ηE,c − 5sE,c,
(5.127)

while in the second case

Aγ =
8
π2

H2
c

M2
Pl

ε2γ,c
c5
E,cεE,c

,

nγ = −
2
Ne

− 2εc − ηE,c − 5sE,c.
(5.128)

We see that in the first case, the most interesting, (5.127) ensures that the power spec-
trum amplitude arising in the standard inflationary models is enhanced by a large factor
c−5
E,cε

−1
E,c, i.e. this theory predicts an abundance of gravitational waves. However, we are

not capable to give a prediction about the sign of the tensor power spectrum since it (and
in particular its sign) depends on much parameters of the theory, which can have a large
set of possible values, see (5.67) and (5.68). However the possibility of a blue tilt is not
excluded, giving a possibility of detection with future experiments, [83, 84].

We can calculate now the tensor-to-scalar ratio in the εγ ≲ N−1
e

r ≃
c5
T

c3
E

(εγNe)2 . (5.129)

One can see that r is extremely sensitive the the scalar speed and can be highly sup-
pressed if the phonons are subluminal, i.e. cT < 1. On the other hand, the stability and
subluminality conditions (5.68) do allow for a large tensor-to-scalar ratio.

5.2 From Magnetic to Electromagnetic Gaugid

5.2.1 Parity violation in Cosmology

This section contains the main original results of this Thesis work.
Here we will consider a generalization of Gaugid Inflation in which we will consider a
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more general vacuum expectation value for the gauge field AIµ. In [52] a theory which is
manifestly invariant under parity transformation is considered. In the literature, see, e.g.
[98] and References therein, various inflationary models in which the parity transformation
is not preserved have been discussed. In particular in [98] is presented the case of a
modified gravity theory (with a gravitational Chern-Simons term) and its implications
for the inflationary power spectrum and bispectrum have been analyzed. In this kind of
theories a (small) violation of parity in the tensor power spectrum arises. The effects on
CMB of a possible parity violation has been studied in [99] (for the latest analysis see [100]
and Refs. therein for other previous analysis): having a fundamental theory which violates
parity entails a polarization of primordial gravitational waves into chiral-eigenstates, the
so-called left (L) and right (R) polarization states and the possibility to detect such parity
breaking signatures looking at CMB polarization.
We have seen that in [52] a vacuum state (5.2) which preserves the parity of the theory
is chosen, and the phenomenological action (5.26) is chosen so that it is invariant under
parity transformation. It can easily be shown that the original theory preserves parity.
Three U(1) gauge fields must transform under parity as [52]

Ai0(t,x) → Ai0(t,−x), Aij(t,x) → −Aij(t,−x). (5.130)

These transformation rules are respected by the vacuum (5.2), as one can easily verify. But
using the new choice of vacuum (5.3) we have Ai0(t,x) → −Ai0(t,−x), clearly violating
the parity transformation laws in (5.130).
For this reason we will consider as vacuum expectation value of our theory a combination
of a magnetic component, i.e. (5.2), and an electric component, i.e. (5.3)

⟨AIµ⟩ = εIjkδjµxk + gδ0
µxI . (5.131)

The parameter g in general can be time dependent: indeed we have seen in section 5.1.2
that, taking a homogeneous and isotropic background, the only possible expression for the
electric field is EIj = g(t)δIj , with g(t) such that

d

dt
(aP ′(X)g) = 0, (5.132)

with P ′(X) ≡ ∂P /∂X. Note that here we would have to consider a more general La-
grangian, such as L = −Z(X,I1, I2, I3) since I1, I2, I3, are the terms that we will consider.
This means that the equation of motion (5.132) could have, in general, other terms due
to the presence of a time dependent background of I1. The background value of I1 was
null in the original theory, but in our case, using a different vacuum choice, it can have a
small time dependence. In particular, one finds that the background value of I1 using the
vacuum (5.131) is

I1 = −
4g

4 − g2a2(t)
. (5.133)

This means that we will work in the hypothesis of switching on a small electric configura-
tion where the parameter g in the vacuum (5.131) is perturbatively small. This allows us,
as a zeroth-order approximation, to neglect the term I1, (5.133), as far as the background
dynamics is concerned.
We want to see now whether a background configuration with a constant electric and
magnetic field exists, i.e. g = const., which means

d

dt
(aP ′(X)) = 0. (5.134)
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This condition necessarily implies that the kinetic term has a non-trivial time dependence.
We will see that the background value of X in the electromagnetic configuration will scale
as ∝ a−2, which means that a possible solution to (5.134) is having a kinetic term of
the type P (X) ∝ X3/2. Possibilities of this type resemble closely the scenario of the so
called k-inflation models for scalar driven inflationary models, [54]. Another possibility to
have a constant electric field configuration is that of considering a standard kinetic term
which is coupled to another (scalar field) in such a way to give rise at the background
level to the expression P (X) = c(t)X, with c(t) ∝ a(t)−1. This possibility resembles the
case when we consider suitable couplings between a scalar field and the kinetic term of a
vector field, such as the one presented in [95] and Refs. therein. Here we will consider a
general case and g = const. We could impose g = 1 but we leave it to use the predictions
of [52] as a check for our theory when g = 0. We will study in detail the outcomes of this
hypothesis in particular as far as the gravitational waves are concerned. We will see that
a new coupling term in the tensor action appears, that will entail new non-trivial results.
As a consequence of violation of parity we will also see that there are novelties also in the
scalar side. There will be a coupling between the two scalar modes of the theory α and T ,
see Eq. (5.30), also in the subhorizon limit, which could also imply a violation of parity
for the scalar power spectrum. However we are more interested in the possible violation
of parity in the gravitational wave sector, so we will not consider the scalar fluctuations in
performing the calculations when mixing our field with gravity: we leave this calculation
for future works.

5.2.2 Inflation

Here we will see what are the conditions that our theory must satisfy in order to provide an
inflationary period. Using a FLRW, now all the contraction of the Lorentz indices, not the
internal ones, in (5.8) are performed using gµν . See Appendix A for the new components
of the field strength Fiµν .
First of all we notice that, in a FLRW metric, the background value of X changes using
(5.131)

⟨X⟩ ≡ X̄ = −6a−2(4a−2 − g2). (5.135)
We now use again the stress-energy definition (5.18) with the general Lagrangian L =
−Z(X,I1, . . . , I10) and obtain

ρ = Z + 12g2a−2,

p = −Z − 4g2a−2ZX + 32a−4ZX .
(5.136)

Hence the Friedmann equations become

H2 = 8πG
3

(Z + 12g2a−2) ,

ä

a
= 8πG

3
(Z − 48a−4ZX) ,

(5.137)

so the slow-roll condition (5.22) becomes

ε = − Ḣ
H2 = 3

2
8g2a−2ZX + 32a−4ZX
Z + 12g2a−2ZX

= 2X̄ZX
Z

≪ 1, (5.138)

where in the last equality we have considered the limit a ≫ 1. This means that, as
before, the request of an inflationary period translates into a weak X dependence of the
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Lagrangian. In this limit we can calculate also η. Using

˙̄X
X̄

= −2H, (5.139)

we obtain

η = 2 [−1 + X̄
2ZXX

X̄ZX
+ ε] ≪ 1 (5.140)

which means

X̄2ZXX

X̄ZX
= 1 + η

2
− ε = 1 +O(ε, η). (5.141)

We will exploit this relation in order to perform some perturbative calculations.
In the end, the theory we will consider is the same of [52], but to Eq. (5.26) we will

add the simplest parity breaking term I1 given in (5.8)

S = ∫ d4 x
√
−g [

M2
Pl

2
R − P (X) + sM4I1 − 27M4

1 I2 + 18M4
2 I3] . (5.142)

We will see that changing the vacuum expectation value from the case of Eq. (5.2) to Eq.
(5.131) and adding the term I1, will change significantly the perturbative expansion of the
action up to the second-order in the perturbations.

5.2.3 Perturbations in the subhorizon limit

We perform now the perturbative expansion up to second order in the perturbations
to study the stability and subluminality of this theory. We will use the same notation
introduced in 5.1.3, since the new choice for the vacuum does not change the perturbative
expansion of the gauge field Aiµ. The perturbed field strength will have the form

Fiµν = −2εiµν + g(δ0
νδiµ − δ0

µδiν) + fiµν , (5.143)

with fiµν defined in (5.35). Using the perturbed expressions for I1, I2 and I3 the we have
computed in the Appendix A the perturbed action up to second order in the Minkowski
limit is

S(2) = S(2)S + S(2)V + S(2)T , (5.144)
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where the subscripts S,V, T stands for Scalar, Vector and Tensor and

S
(2)
S =∫ d4x{(XPX

4
− 36g2

(4 − g2)2M
4
1 +

96(4g4 + 33g2 + 4)
(4 − g2)3 M4

2 +
4g(4 − 5g2)
(4 − g2)3 sM4) α̇2

+ (−XPX
6

+ 4g2(4g4 + g2 − 68)
3(4 − g2)4 M4

2 +
8g(20 − 23g2 + 5g4)

9(4 − g2)3 sM4)(∂α)2

− (XPX
6

+ 64(4g4 + 33g2 + 4)
(4 − g2)3 M4

2 +
8g(4 − 5g2)
3(4 − g2)3 sM4) α̇ ∂2χ√

−∂2

+ ( 72g
(4 − g2)2M

4
1 +

96g(3g4 + 8g2 + 48)
(4 − g2)4 M4

2 −
16(4 + g2)2

(4 − g2)2 sM4) α̇ ∂2T√
−∂2

+ (−XPX
12

+ 8g2M4
1

(4 − g2)2 +
32(4g6 + 16g4 − 129g2 − 4)

(4 − g2)3 M4
2 +

4g(4 + 3g2)
9(4 − g2)3 sM4)χ∂2χ

+ ( 32gM4
1

(4 − g2)2 +
16g(13g4 − 88g2 + 208)

3(4 − g2)4 M4
2 −

16(4 + g2)2

(4 − g2)2 sM4)T∂2χ

+ (XPX
6

+ 128g2

(4 − g2)3M
4
2 −

8g
3(4 − g2)2 sM

4) Ṫ 2

+ (XPX
18

− 32M4
1

(4 − g2)2 +
16g2(3g4 + 64g2 + 80)

3(4 − g2)4 M4
2 +

2g(96 − 56g2 + 5g4)
9(4 − g2)3 sM4)(∂T )2},

(5.145)

S
(2)
V =∫ d4x{(XPX

6
+ 128g2

(4 − g2)3M
4
2 −

8g
3(4 − g2)2 sM

4)(V̇k)
2

+ (−XPX
12

− 24M4
1

(4 − g2)2 +
4g2(g4 + 8g2 − 48)

(4 − g2)4 M4
2 +

g(96 − 56g2 + 5g4)
9(4 − g2)3 sM4)(∂Vk)2

+ (−XPX
6

− 128g2

(4 − g2)3M
4
2 +

8g
3(4 − g2)2 sM

4) εijk∂jBiV̇k −
8g(3M4

1 + 2M4
2 )

(4 − g2)2 ∂iVj∂iBj

+ (XPX
12

− 6g2

(4 − g2)2M
4
1 +

16(4 + 3g2)
(4 − g2)3 M4

2 −
4g

3(4 − g2)2 sM
4)(∂Bk)2},

(5.146)

and

S
(2)
T =∫ d4x{(XPX

12
− 12g2

(4 − g2)2M
4
1 +

32(4 + g2)
(4 − g2)3 M

4
2 −

4g
3(4 − g2)2 sM

4) Ė2
ij

+ (−XPX
12

− 48M4
1

(4 − g2)2 −
8g2(g4 + 32g2 + 48)

(4 − g2)4 M4
2 +

g(96 − 56g2 + 5g4)
9(4 − g2)3 sM4)(∂Eij)2.}

(5.147)

Despite the messy appearance of this action we can clearly highlight some new outcomes.
The only effect of the new term I1 in the action in (5.146) and (5.147) is only a renor-
malization of the coefficients of the dynamical terms, i.e. a renormalization of the speeds
of propagation. As we will see, the real noteworthy effect of the new term I1 appears
only in the scalar action. First we have computed the solution for the dynamical for the
non-dynamical field χ introduced in (5.32)

χ = A
2B

α̇√
−∂2

− C
2B
T, (5.148)
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where
A = XPX

6
+ 64(4g4 + 33g2 + 4)

(4 − g2)3 M4
2 +

8g(4 − 5g2)
3(4 − g2)3 sM4, (5.149)

B = −XPX
12

+ 8g2M4
1

(4 − g2)2 +
32(4g6 + 16g4 − 129g2 − 4)

(4 − g2)3 M4
2 +

4g(4 + 3g2)
9(4 − g2)3 sM4, (5.150)

C = 32gM4
1

(4 − g2)2 +
16g(13g4 − 88g2 + 208)

3(4 − g2)4 M4
2 −

16(4 + g2)2

(4 − g2)2 sM4. (5.151)

We see that with respect to the result of [52] here we have an extra term depending on
the scalar degree of freedom T , which disappears when neglecting parity-breaking terms,
i.e. when g = 0. This means that we will have, also in the quadratic action, a coupling due
to the presence of I1 between the two scalar fields α and T . Indeed substituting (5.148)
into (5.145) we obtain

S
(2)
S =∫ d4x{(XPX

4
− 36g2

(4 − g2)2M
4
1 +

96(4g4 + 33g2 + 4)
(4 − g2)3 M4

2 +
4g(4 − 5g2)
(4 − g2)3 sM4 + A

2

4B
) α̇2

+ (−XPX
6

+ 4g2(4g4 + g2 − 68)
3(4 − g2)4 M4

2 +
8g(20 − 23g2 + 5g4)

9(4 − g2)3 sM4)(∂α)2

+ ( 72g
(4 − g2)2M

4
1 +

96g(3g4 + 8g2 + 48)
(4 − g2)4 M4

2 −
16(4 + g2)2

(4 − g2)2 sM4 + AC
2B

) α̇ ∂2T√
−∂2

+ (XPX
6

+ 128g2

(4 − g2)3M
4
2 −

8g
3(4 − g2)2 sM

4) Ṫ 2

+ (XPX
18

− 32M4
1

(4 − g2)2 +
16g2(3g4 + 64g2 + 80)

3(4 − g2)4 M4
2 +

2g(96 − 56g2 + 5g4)
9(4 − g2)3 sM4 + C

2

4B
)(∂T )2},

(5.152)

i.e. we can see that a term α̇∂2T appears, sign of a coupling of the fields. This implies a
parity violation since in 5.1.3 we have seen that α is an axial field, i.e. with parity Pα = −1,
while T is a polar field, i.e. with parity P = +1. Therefore, the new term has a parity −1,
suggesting a possible violation of parity. Although very interesting, we will not consider
this effect in our studies. We will instead focus on the new outcomes for the new tensor
degree of freedom Eij using the electromagnetic vacuum. Since in this case the only effect
of I1 is a renormalization of the coefficients, we will not explicitly account for it in order
to have simplified expressions.
We can now give a zeroth order measure for the two scalars speeds of sound neglecting
the coupling term

c2
α ={27(4 − g2)4XPX − 216g2(4g4 + g2 − 68)M4

2

− 144g(4 − g2)(20 − 23g2 + 5g4)sM4}/{2(4 − g2)4XPX − 288(4 − g2)2g2M4
1

+ 768(4 − g2)(4g4 + 33g2 + 4)M4
2 + 32g(4 − g2)(4 − 5g2)sM4 + 8(4 − g2)4A2

4B
}

(5.153)

c2
T ={ − (4 − g2)4XPX + 576(4 − g2)2M4

1 − 96g2(3g4 + 64g2 + 80)M4
2

− 4(4 − g2)g(96 − 56g2 + 5g4)sM4 − 9(4 − g)2 C2

2B
}/{3(4 − g2)4XPX

+ 2304g2(4 − g2)M4
2 − 48(4 − g2)2gsM4}

(5.154)
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Now, neglecting the I1 terms, we obtain the two speeds of sound for the vector and
tensor perturbation modes,

c2
V = {XPX(4 − g2)3 [1 + 2N − G2]

+ 48 [g2(g2 + 12) + 32g2N + 4(4 − g2)G − 4(4 + 3g2)G2]M4
2

+ 72(4 − g2) [(4 − g2 + 4G + g2G2)]M4
1 }/{XPX(4 − g2)3[2 +N 2]

− 72g2(4 − g2)N 2M4
1 + 192[8g2 + (4 + 3g2)N 2]M4

2 },

(5.155)

c2
E = XPX(4 − g2)4 + 576(4 − g2)2M4

1 + 96g2(g4 + 32g2 + 48)M4
2

XPX(4 − g2)4 − 144g2(4 − g2)2M4
1 + 384(4 − g2)(4 + g2)M4

2
, (5.156)

where N and G are defined in Appendix A. We see that the expressions (5.153), (5.154),
(5.155) and (5.156) are very messy and do not give us much information about the sublu-
minality of this theory, which are 0 < c2

α < 1, 0 < c2
T < 1, 0 < c2

V < 1 and 0 < c2
E < 1.

5.3 Second order Lagrangian including mixing with gravity

We are now ready to switch on the gravity. We will make use, as usual, of the ADM
formalism, Eq. (5.52), and of the spatially flat gauge, defined in (5.53) and (5.54). In this
case the covariant components for the field strength are

Fij0 = −Fi0j = gδij + fij0, Fijk = −2εijk + fijk, (5.157)

while the contravariant ones are

F 0j
i = g

N2 δ
j
i −

hjkfi0k
N2 − 2εiklh

jlNk

N2 + N
khjlfikl
N2 ,

F jki = − g
N2 (N jδki −Nkδji ) −

fil0
N2 (N jhkl −Nkhjl)

− 2εilmhkmhjl + hjlhkmfilm + 2
N2 (εilmNkNmhjl + εilmN jN lhkm)

− film
N2 (NkNmhjl +N jN lhkm) .

(5.158)

Given that we are interested in the linear equation of motions, and that we are interested
only to the tensor degrees of freedom, we can consider from now on N = 1 and Ni = N i = 0
to simplify our calculations. The action one obtains is quite involved, but one can see
that the only fiµν terms which contribute to the tensor action are (here we write only the
tensor perturbation)

fij0 = −fi0j = −Ėij , fijk = ∂jEik − ∂kEij . (5.159)
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After some lengthy calculations, see Appendix A, the action for the two perturbations γij
and Eij turns out to be

S
(2)
GW = ∫ d4 x

√
−g{

M2
Pl

8
(γ̇2
ij − a−2 (∂γij)2)

+ ( − XPX
3(4a−2 − g2)

− 12g2M4
1

(4a−2 − g2)2 +
32a−2(4a−6 − g2a−4 + 2g2)M4

2
(4a−2 − g2)3 )Ė2

ij

+ ( a−2XPX
3(4a−2 − g2)

− 48a−4M4
1

(4a−2 − g2)2 +
8g2a−4(3g4 + 16a−4g2 − 64a−4)M4

2
3(4a−2 − g2)4 )(∂Eij)2

+ ( − 2 a−2XPX
3(4a−2 − g2)

− 3(4a−2 + g2)2M4
1

(4a−2 − g2)2 + 128g2a−4(5a−2 − g2)M4
2

(4a−2 − g2)2 )γijγij

+ (4 a−2XPX
3(4a−2 − g2)

+ 24a−2(4a−2 + g2)M4
1

(4a−2 − g2)2 + 16g2a−4(28a−2 − 3g2)M4
2

(4a−2 − g2)3 ) εijkγkl∂jEil

+ (2g XPX
3(4a−2 − g2)

− 12g(4a−2 + g2)M4
1

(4a−2 − g2)2 − 128g3a−4M4
2

(4a−2 − g2)2 )γijĖij}.

(5.160)

A detailed perturbative calculation show a particular feature, useful for future studies. In
the gravitational waves action can also appear another term coming from the I1 expansion,
see Appendix A. It is a term of the form εijkγ

kl∂lEjm but it gives a null contribution in
the integral, because it can be rewritten in terms of a total spatial covariant derivative.
Indeed

εijkγ
kl∂lEjm = ∂l(εijkγklEjm) − εijk∂lγklEjm.

Here the second term of the right-hand-side is null for the choice of the gauge. The first one
can be rewritten substituting the partial derivative with the covariant derivative. Indeed

∇lV l = ∂lV l + ΓllkV k

where we have defined V k ≡ εijkγklEjm. But Γlkl ∼ γ2, so that the term with the Christoffel
symbol is automatically negligible since it is of order ∼ O(γ3E). Therefore

∇lV l = ∂lV l,

i.e., contribution of εijkγkl∂lEjm to the equation of motion is null. This term could be
considered in a higher order perturbative expansion, with new possible parity-breaking
terms.
One can easily see that imposing g = 0 in (5.160) one founds the action (5.59), this is a
check of the goodness of our computations. Moreover, in (5.160) a new non-trivial term of
the form γijĖij is present in the gravitons action. This term will reappear in the equations
of motion for γ and E as a new coupling term different from εijkγkl∂jEil. Moreover in
the magnetic configuration, when expanding the two gravitons using (5.78) and (5.79), we
have seen that modes with different helicity do not mixed, hence they could be treated
separately. This was a direct consequence of the presence of the Levi-Civita symbol in
the coupling term and of the property (5.80). In this case we can qualitatively see that
the equation of motions of γij and Eij violate parity. If we use the decomposition in the
helicity eigenstates (5.79) we can write

A1γ
′′
± +B1γ± ±C1E± +D1E

′
± = 0,

A2E
′′
± +B2E± ±C2γ± +D2γ

′
± = 0,

(5.161)
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where Ai, bi,Ci,Di, with i = 1,2 will be, in general, some time-dependent coefficients and
a prime denotes a derivative w.r.t. the conformal time.
Using the parity transformation (5.85) we see that the system (5.161) becomes

A1γ
′′
∓ +B1γ∓ ∓C1E∓ −D1E

′
∓ = 0,

A2E
′′
∓ +B2E∓ ∓C2γ∓ −D2γ

′
∓ = 0.

(5.162)

We can see that the systems (5.162) and (5.161) are not equivalent, and the term which
manifestly violates the parity is due to the coupling γijĖij . We underline that this term
was not present in [52] and it represents the original contribution of this work. This further
complicates the calculations for the tensor degrees of freedom, but we expect that this new
term could give very interesting outcomes. In particular we need to calculate the explicit
expressions of Ai, bi,Ci,Di, and then find the solutions of the system (5.161) in order to
calculate the power spectrum for the gravitational waves. We leave for future works these
calculations concerning this generalization of Gaugid model.
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Conclusions

In this Thesis various aspects of Inflation have been investigated. First of all we have
introduced the inflationary scenario as a solution of the classical problems of the hot Big
Bang model: the horizon, the flatness and the “unwanted relics” problems. Then we have
introduced the single-field slow-roll models of Inflation to study the production and evolu-
tion of the primordial perturbations during Inflation. We have performed the computation
of the inflationary power spectra for scalar curvature and tensor perturbations and, always
remaining in the context of the slow-roll models, we have made a computation of primor-
dial non-Gaussianities provided by the scalar bispectrum (i.e. the Fourier counterpart of
the three-point correlation function) of the curvature (density) perturbations. In order
to do the computations we have defined and used the so called in-in formalism [61], the
natural extension of the diagrammatic Feynman rules in a dynamical spacetime. We have
reobtained the well-known and important result that the scalar bispectrum is suppressed
when the slow-roll parameters are small and therefore the non-Gaussianities predicted by
the slow-roll models of Inflation are very small [56, 42]: this is fully consistent with the
observational constraints on non-Gaussianity provided by the Planck satellite. Such con-
straints are compatible with a zero level of primordial non-Gaussianity as predicted by
the slow-roll models, but there is still a window of almost two orders of magnitude which
does not rule out a priori the possibility to find out profiles of non-Gaussianity in the next
future [43].
We have also presented the expressions for the scalar-scalar-scalar and tensor-scalar-scalar
bispectra arising in single-field inflationary models in the limit in which one perturbation
mode has momentum much smaller than the other two, the so-called squeezed limit. This
configuration is very interesting because in this case the perturbation mode labeled by k3
crosses the horizon much earlier that the other two modes, with new interesting physical
consequences. For the scalar-scalar-scalar bispectrum we have that, in the squeezed limit,
the following expression [56]

⟨ζk1ζk2ζk3⟩
k3≪k1∼k2ÐÐÐÐÐ→ −(ns − 1)⟨ζk3ζ−k3⟩⟨ζk1ζk2⟩

holds. In this expression ns is the scalar spectral index and (ns−1) measures the deviation
from a scale invariant (scalar) power spectrum. This relation between the bispectrum and
the power spectra in the squeezed limit holds in all single-field inflationary models, since
it is a consequence of the invariance under space diffeomorphisms of the classical and
quantum theory. For these reasons we will refer to it as consistency relation for the scalar
perturbations.
Actually there is an objective difficulty in verifying this consistency relation since it would
entail a high precision measurement of the level of non-Gaussianity. On the other hand, it
is easier to demonstrate, or observe, that a relation is false w.r.t. showing that it is true.
A violation of the consistency relation would rule out the entire class of “standard” single-
field models of Inflation. For this reason this consistency relation has been studied, and
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a great work has been spent in searching new models which violate these conditions. In
particular in this Thesis we have focused on the the tensor consistency relation. We have
studied the Gravitational Wave sector because of its fundamental importance in shedding
a light into the physics of the the Early Universe. In this case the perturbation mode with
smaller momentum is the tensor one and a relation similar to the scalar one holds in the
squeezed limit [63, 67]

⟨ζk1ζk2γ
s
K⟩ K≪k1∼k2ÐÐÐÐÐ→ (2π)3δ(3)(K + k1 + k2)

1
2
d lnPζ
d lnk

εsij(K)k̂i1k̂
j
2Pγ(K)Pζ(k),

where k = (k1+k2)/2 and Pζ , Pγ are respectively the scalar and the tensor power spectra.
In particular this consistency relation allow us to define a new observable quantity useful to
provide a new indirect way to detect primordial gravitational waves: tensor fossils. These
are defined as a hypothesized primordial degrees of freedom that no longer interacts or
very weakly interacts during late-time cosmic evolution, as metric tensor perturbations
are. The only observational effect of an Inflation fossil might therefore be its imprint in
the primordial curvature perturbation, as we have seen in the case of the squeezed limit
of the ζζγ bispectrum. The tensor consistency relation written above allows to define a
new correlation induced on the inflaton by the tensor degrees of freedom [70]

⟨ζ(k1)ζ(k2)⟩∣hp(K) = (2π)3δ(3)(K + k1 + k2)fp(k1,k2)h∗p(K)εpij(K)k̂i1k̂
j
2.

In this Thesis we have described what are the physical observable effects of the presence
of a primordial fossil field: we have described its effect on CMB observations and on the
mass distribution of Large Scale Structures. In both the cases the presence of a tensor
fossil would entail a quadrupole distortion. Observing this quadrupole would be a very
interesting result since it could be a sign of the presence of a gravitational wave background,
as predicted by the Inflation models.
We have then considered a new model which violates the standard scalar and tensor
consistency relations: Solid Inflation [53]. In this model three scalar fields are responsible
for Inflation. These three scalar fields have a very particular property: their background
values are time-independent and x⃗-dependent. This means that the standard invariance
under spatial translations and rotations are broken, while time translation is preserved.
We have recalled the procedure according to which, adding internal symmetries on the
scalar fields, homogeneity and isotropy can be restored for the background. This simple
procedure entails very interesting outcomes, such as a blue tilt predicted for the tensor
perturbations and a violation of the consistency relations described above. In Chapter 4
we have performed an original computation of the γζζ bispectrum calculated in a general
configuration of the three momenta, while in the literature such a computation has been
done only in the squeezed limit. The result we obtained is

Bγζζ(k1,k2,k3) =
H4

4M4
Plε

2c10
L

1
k3

1k
3
2k

3
3
εsij(k1)Mij(k2,k3){Kt (4k2

1 + k̄2
2 + k̄2

3 − k1k̄2 − k̄2k̄3 − k1k̄3)

+ k̄2k̄3
K2
t

[K̄t (3k1k̄2 + 3k1k̄2 + k̄2k̄3) + k1k̄2k̄3] + 3k3
1(γM +NKt)},

where k1 is the momentum of the gravitational wave while k2 and k3 are those of the
scalar perturbations. Here Mij is a function of the parameters of the theory and of the
momenta k2 and k3. We have then calculated the squeezed limit of this expression and we
have used it to reobtain observable prediction in the tensor fossil sector for Solid Inflation
[80].
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Finally in the last Chapter of this Thesis we have considered a new model, a generalization
of Solid Inflation: Gaugid Inflation [52]. In this model the fields which drive Inflation are
three vector Abelian fields with a vacuum expectation value which manifestly breaks the
spatial translations and rotations. It is a generalization of the Solid paradigm. The
background considered in the original work [52] for the vector field Aiµ is of the magnetic
type

⟨Aiµ⟩ = εijkδjµxk,

where i is the internal (spatial) index and µ is a Lorentz index. We have reviewed the
observable predictions of this theory using this particular choice of background. A note-
worthy result of this theory is the appearance of a new tensor degree of freedom, Eij , due
to the gauge fields, besides the metric tensor perturbations γij . This field could play the
role of a tensor fossil. The standard predictions on the amplitude of the tensor power
spectrum are

ASFγ ∼ ASolidγ ∼ H2

M2
Pl

,

while the presence of this new tensor field would enhance the tensor power spectrum
amplitude, giving

Aγ ∼
H2

M2
Pl

1
εEc5

E

.

Here εE and cE are two parameters of the theory that might be lesser than 1, i.e. the
factor (εEc5

E)−1 enhances the standard results for the tensor power spectrum amplitude.
As an original contribution we have explored the possibility of adding at the background
level an additional configuration, compatible with the hypothesis of the theory, i.e.

⟨Aiµ⟩ = δ0
µxi.

This in turns allows to also consider an additional parity-breaking term in the Lagrangian
of this theory which might have new observable results in the gravitational wave sector.
Using this generalization we have obtained two interesting results. At the quadratic action
level a possibility of violating parity for the scalar perturbations of the theory arises due
to the appearance of new coupling terms in the quadratic action.
Another intriguing result we have obtained concerns the gravitational waves: we have
found a new coupling term between the gauge tensor perturbation Eij and the metric one
γij of the form γijĖij . The complete action for the tensor degrees of freedom leads to the
system of equations of motion

A1γ
′′
± +B1γ± ±C1E± +D1E

′
± = 0,

A2E
′′
± +B2E± ±C2γ± +D2γ

′
± = 0,

where the coefficients Ai,Bi,Ci,Di, with i = 1,2 are, in general, time-dependent coeffi-
cients, and a prime denotes a derivative w.r.t. the conformal time. Thesis system of
differential equations is not invariant under parity transformation for the two polarization
states (±) of the tensor modes, as we have verified. This is a very interesting result that
could open to new possibilities.
In any case our theoretical computations have been just explorative. In order to have an
observable prediction we need to solve the system of equation presented above and find the
power spectrum for the gravitational waves. As a possible future extension of this work
one could find the third-order action in order to calculate the bispectra for this theory and
see the possible predictions about tensor fossils using also the new tensor field Eij .

137



138



Appendix A

Calculations for electro-magnetic
Gaugid Inflation

A.1 Subhorizon limit
The expression for the vev in our generalized theory is

⟨Aiµ⟩ = εijkδjµxk + gδ0
µxi, (A.1)

so that we can write the perturbed field as

Aiµ = ⟨Aiµ⟩ + aiµ = εijkδjµxk + gδ0
µxi + aiµ. (A.2)

The perturbed field strength will be

Fiµν ≡ ∂µAiν − ∂νAiµ = −2εiµν + g(δ0
νδiµ − δ0

µδiν) + fiµν , (A.3)

where we have defined
fiµν ≡ ∂µaiν − ∂νaiµ. (A.4)

The dual of the field strength is

F̃µνi ≡ 1
2
εµνρσFiρσ = −εµνjkεijk + gεµνi0 + 1

2
εµνρσfiρσ. (A.5)

Let us calculate the building blocks of our theory: we start with Yij = FiµνFµνj . Here
for the calculations we will use the Minkowski metric, given that we want to evaluate the
perturbations dynamics in the subhorizon limit, in which we can neglect the coupling with
gravity.
We obtain

Yij =2(4 − g2)δij
− 2εilmfjlm − 2εjlmfilm − 2gfij0 − 2gfji0 − 2fik0fjk0

+ filmfjlm,
(A.6)

while Ỹij ≡ FiµνF̃µνj is

Ỹij = − 8gδij
− 4fij0 − 4fji0 + gεilmfjlm + gεjlmfilm
− εlmn (fi0lfjmn + fj0nfilm) .

(A.7)
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We calculate now the terms we are interested in in Eq. (5.8)

X ≡ [Y ] =6(4 − g2)
− 4εijkfijk − 4gfii0
+ fijkfijk − 2fij0fij0,

(A.8)

X̃ ≡ [Ỹ ] = − 24g
− 8fii0 + 2gεijkfijk
− 2εlmnfi0lfimn.

(A.9)

Let us consider I2, defined as

I2 =
[Y 2]
X2 . (A.10)

We have

[Y 2] =12(4 − g2)2

− 16(4 − g2)εijkfijk − 16g(4 − g2)fii0
− 16(2 − g2)fij0fij0 + 8g2fij0fji0 + 16g(εilmfjlmfij0 + εilmfjlmfji0)
− 32fiikfjjk + 4(12 − g2)fijkfijk,

(A.11)

and

X2 =36(4 − g2)2

− 48(4 − g2)εijkfijk − 48g(4 − g2)fii0
+ 4(20 − 3g2)fijkfijk − 64fijkfjik + 16g2(fii0)2 − 24(4 − g2)fij0fij0 + 32gεijkfijkfll0.

(A.12)

We have to perform a perturbative expansion up to the second order, hence we have

X−2 = 1
36(4 − g2)2 [1 +

4εijkfijk
3(4 − g2)

+ 4gfii0
3(4 − g2)

+
(4 + g2)fijkfijk

3(4 − g2)2 + 4g2(fii0)2

3(4 − g2)2 −
16fijkfjik
3(4 − g2)2

+
2fij0fij0
3(4 − g2)

+
8gεijkfijkfll0

3(4 − g2)2 ]

(A.13)

The result for I2 in the subhorizon limit is

I2 =
1

36(4 − g2)2 [12(4 − g2)2 + 64
3
fijkfijk − 32fiikfjjk +

64
3
fijkfjik

− 32
3
gεijkfijkfll0 + 16g(εilmfjlmfij0 + εilmfjlmfji0)

− 16
3
g2(fii0)2 + 8g2fij0fij0 + 8g2fij0fji0]

(A.14)

Now we calculate I3, defined as

I3 =
[Ỹ ]2

X2 . (A.15)
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For the numerator we have

[Ỹ 2] =192g2 + 128gfiio − 32g2εijkfijk

+ 32fij0fij0 + 32fij0fji0
− 16gεilmfjlmfij0 − 48gεilmfjlmfji0 + 8g2fijkfijk − 8g2fiikfjjk

(A.16)

Using (A.13) we obtain the expression for I3 in the subhorizon limit

I3 =
1

36(4 − g2)2 [192g2 + 32g2(4 + g2)
4 − g2 εijkfijk +

128g2(4 + g2)
4 − g2 fii0

+ 8g2(3g4 + 32g2 + 16)
3(4 − g2)2 fijkfijk −

512g2(2 + g2)
3(4 − g2)2 fijkfjik

+ 256g2(8 + g2)
3(4 − g2)2 (fii0)2 − 8g2fiikfjjk

+ 128g(g4 + 4g2 + 16)
3(4 − g2)2 εijkfijkfll0 − 48gεklmfik0film

− 16gεklmfki0film + 32fij0fji0 +
32(4 + 3g2)
(4 − g2)

fij0fij0]

(A.17)

We only need to calculate I1, defined as

I1 =
[Ỹ ]
X

(A.18)

Note that this term was not calculated in the original article [52]. Let us first consider its
denominator, using (A.8)

X−1 = 1
6(4 − g2)

[1 +
2εijkfijk
3(4 − g2)

+ 2gfii0
3(4 − g2)

+ 3g2 + 4
18(4 − g2)2 fijkfijk −

16fijkfjik
9(4 − g2)2

+
fij0fij0

3(4 − g2)
+ 4g2(fii0)2

9(4 − g2)2 +
8gεijkfijkfll0

9(4 − g2)2 ],

(A.19)

and for I1 we have

I1 =
1

6(4 − g2)
[ − 24g − 2g(4 + g2)

(4 − g2)
εijkfijk −

8(4 + g2)
4 − g2 fii0

+ 4g(4 − 5g2)
3(4 − g2)

fijkfijk +
16g(4 + g2)
3(4 − g2)2 fijkfjik

− 8g
4 − g2 fij0fij0 −

16g(3g2 − 4)
3(4 − g2)2 (fii0)2

− 4(4 + g2)2

3(4 − g2)
εijkfijkfll0 + 2εijkfli0fljk].

(A.20)

The action we will use to generalize the results of Gaugid Inflation is:

S = ∫ d4 x
√
−g [

M2
Pl

2
R − P (X) + sM4I1 − 27M4

1 I2 + 18M4
2 I3] . (A.21)
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Here we have indicated with c the coefficient of the new term I1 and with M4 the energy
scale at which the effect of this new term becomes interesting. The value of c can be
chosen in order to simplify the calculations, but from now on we will always leave it a
parameter of the theory.

Eq. (A.21) at the second order, using the Minkowski metric, becomes

S(2) = ∫ d4 x{ − XPX
24

fµνi fiµν +
XPX

72
(εijkfijk)2 + sM4

6(4 − g2)
[4g(4 − 5g2)

3(4 − g2)
fijkfijk

+ 16g(4 + g2)
3(4 − g2)2 fijkfjik −

8g
4 − g2 fij0fij0 −

16g(3g2 − 4)
3(4 − g2)2 (fii0)2 + 2εijkfli0fljk

− 4(4 + g2)2

3(4 − g2)
εijkfijkfll0] −

27M4
1

36(4 − g2)2 [
64
3
fijkfijk − 32fiikfjjk −

32
3
gεijkfijkfll0

+ 64
3
fijkfjik + 16g(εilmfjlmfij0 + εilmfjlmfji0) −

16
3
g2(fii0)2 + 8g2fij0fij0 + 8g2fij0fji0]

+ 18M4
2

36(4 − g2)
[32g2(4 + g2)

4 − g2 εijkfijk +
128g2(4 + g2)

4 − g2 fii0 − 8g2fiikfjjk

+ 8g2(3g4 + 32g2 + 16)
3(4 − g2)2 fijkfijk −

512g2(2 + g2)
3(4 − g2)2 fijkfjik − 48gεklmfik0film

+ 256g2(8 + g2)
3(4 − g2)2 (fii0)2 + 128g(g4 + 4g2 + 16)

3(4 − g2)2 εijkfijkfll0

− 16gεklmfki0film + 32fij0fji0 +
32(4 + 3g2)
(4 − g2)

fij0fij0]}

(A.22)

Now we consider the decomposition of our perturbation field aiµ. In (5.30) and (5.32) we
have seen that, with a particular gauge choice, we can write

ai0 =
∂iχ√
−∂2

+Bi, (A.23)

and
aij = αδij +Eij + ε(

∂kT√
−∂2

+ Vk) . (A.24)

One can immediately note that in the expression for the field strength will never appear
the time derivatives of the fields χ and Bi. This means that their time derivatives will
never appear in the perturbed action (A.22). These fields will not be dynamical and their
equations of motion will only be two constraint equations.
For the terms that appear in (A.22) we have

fij0fij0 = (∂iBj)2 − 2εijk∂jBiV̇k − χ∂2χ − 2α̇ ∂2χ√
−∂2

+ 3α̇2 + (Ėij)2 + 2(V̇k)2 + 2Ṫ 2 (A.25)

fij0fji0 = 2εijk∂jBiV̇k − χ∂2χ − 2α̇ ∂2χ√
−∂2

+ 3α̇2 + (Ėij)2 − 2(V̇i)2 − 2Ṫ 2 (A.26)

fiikfjjk = 4(∂iα)2 + (∂iVj)2 (A.27)

fijkfijk = 4(∂iα)2 + 2(∂Eij)2 + 2(∂iVj)2 + 4(∂iT )2 (A.28)
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fijkfjik = 2(∂iα)2 + (∂Eij)2 + (∂iVj)2 − 2(∂iT )2 (A.29)

(fii0)2 = 9α̇2 − 6α̇ ∂2χ√
−∂2

− χ∂2χ (A.30)

εijkfijkfll0 = 4(T∂2χ + 3α̇ ∂2T√
−∂2

) (A.31)

εilmfjlmfij0 = 4α ∂2Ṫ√
−∂2

− χ∂2T + 2∂iVj∂iBj (A.32)

εilmfjlmfji0 = χ∂2T (A.33)

(A.34)

If we substitute now all these expression back into the action we obtain the messy expres-
sion

S(2) =∫ d4x{(XPX
4

− 36g2

(4 − g2)2M
4
1 +

96(4g4 + 33g2 + 4)
(4 − g2)3 M4

2 +
4g(4 − 5g2)
(4 − g2)3 sM4) α̇2

+ (−XPX
6

+ 4g2(4g4 + g2 − 68)
3(4 − g2)4 M4

2 +
8g(20 − 23g2 + 5g4)

9(4 − g2)3 sM4)(∂α)2

+ (−XPX
6

− 64(4g4 + 33g2 + 4)
(4 − g2)3 M4

2 −
8g(4 − 5g2)
3(4 − g2)3 sM4) α̇ ∂2χ√

−∂2

+ ( 72g
(4 − g2)2M

4
1 +

96g(3g4 + 8g2 + 48)
(4 − g2)4 M4

2 −
16(4 + g2)2

(4 − g2)2 sM4) α̇ ∂2T√
−∂2

+ (−XPX
12

+ 8g2M4
1

(4 − g2)2 +
32(4g6 + 16g4 − 129g2 − 4)

(4 − g2)3 M4
2 +

4g(4 + 3g2)
9(4 − g2)3 sM4)χ∂2χ

+ ( 32gM4
1

(4 − g2)2 +
16g(13g4 − 88g2 + 208)

3(4 − g2)4 M4
2 −

16(4 + g2)2

(4 − g2)2 sM4)T∂2χ

+ (XPX
6

+ 128g2

(4 − g2)3M
4
2 −

8g
3(4 − g2)2 sM

4) Ṫ 2

+ (XPX
18

− 32M4
1

(4 − g2)2 +
16g2(3g4 + 64g2 + 80)

3(4 − g2)4 M4
2 +

2g(96 − 56g2 + 5g4)
9(4 − g2)3 sM4)(∂T )2

+ (XPX
6

+ 128g2

(4 − g2)3M
4
2 −

8g
3(4 − g2)2 sM

4)(V̇k)
2

+ (−XPX
12

− 24M4
1

(4 − g2)2 +
4g2(g4 + 8g2 − 48)

(4 − g2)4 M4
2 +

g(96 − 56g2 + 5g4)
9(4 − g2)3 sM4)(∂Vk)2

+ (−XPX
6

− 128g2

(4 − g2)3M
4
2 +

8g
3(4 − g2)2 sM

4) εijk∂jBiV̇k −
8g(3M4

1 + 2M4
2 )

(4 − g2)2 ∂iVj∂iBj

+ (XPX
12

− 6g2

(4 − g2)2M
4
1 +

16(4 + 3g2)
(4 − g2)3 M4

2 −
4g

3(4 − g2)2 sM
4)(∂Bk)2

+ (XPX
12

− 12g2

(4 − g2)2M
4
1 +

32(4 + g2)
(4 − g2)3 M

4
2 −

4g
3(4 − g2)2 sM

4) Ė2
ij

+ (−XPX
12

− 48M4
1

(4 − g2)2 −
8g2(g4 + 32g2 + 48)

(4 − g2)4 M4
2 +

g(96 − 56g2 + 5g4)
9(4 − g2)3 sM4)(∂Eij)2}

(A.35)
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Here we can see some new peculiarities. The presence of the new term for the vacuum
expectation value and for the action translates into a new coupling term α̇∂2T between
the two perturbative scalar degrees of freedom of this theory. This is exactly what we
expected since α is an axial field, i.e. with odd parity Pα = −1, while T is a polar field,
i.e. with even parity PT = +1. A coupling between these two fields would entail a possible
parity breaking signature for the scalar perturbations, exactly what we were looking for.
Moreover we see that the presence of I1, traced back by the coefficient c, does not change
the equation of motion for the tensor field, i.e. does not add any new term, but it just
renormalizes the coefficients of Ė2

ij and (∂Eij)2. For this reason, we will consider the limit
c = 0 in order to simplify all the later calculations.
Now we go back to (A.35). Considering the case s = 0 we have

S(2) =∫ d4x{(XPX
4

− 36g2

(4 − g2)2M
4
1 +

96(4g4 + 33g2 + 4)
(4 − g2)3 M4

2) α̇2

+ (−XPX
6

+ 4g2(4g4 + g2 − 68)
3(4 − g2)4 M4

2)(∂α)2 + (−XPX
6

− 64(4g4 + 33g2 + 4)
(4 − g2)3 M4

2) α̇
∂2χ√
−∂2

+ ( 72g
(4 − g2)2M

4
1 +

96g(3g4 + 8g2 + 48)
(4 − g2)4 M4

2) α̇
∂2T√
−∂2

+ (−XPX
12

+ 8g2M4
1

(4 − g2)2 +
32(4g6 + 16g4 − 129g2 − 4)

(4 − g2)3 M4
2)χ∂2χ

+ ( 32gM4
1

(4 − g2)2 +
16g(13g4 − 88g2 + 208)

3(4 − g2)4 M4
2)T∂2χ + (XPX

6
+ 128g2

(4 − g2)3M
4
2) Ṫ 2

+ (XPX
18

− 32M4
1

(4 − g2)2 +
16g2(3g4 + 64g2 + 80)

3(4 − g2)4 M4
2)(∂T )2

+ (XPX
6

+ 128g2

(4 − g2)3M
4
2)(V̇k)

2 + (−XPX
12

− 24M4
1

(4 − g2)2 +
4g2(g4 + 8g2 − 48)

(4 − g2)4 M4
2)(∂Vk)2

+ (−XPX
6

− 128g2

(4 − g2)3M
4
2) εijk∂jBiV̇k −

8g(3M4
1 + 2M4

2 )
(4 − g2)2 ∂iVj∂iBj

+ (XPX
12

− 6g2

(4 − g2)2M
4
1 +

16(4 + 3g2)
(4 − g2)3 M4

2)(∂Bk)2

+ (XPX
12

− 12g2

(4 − g2)2M
4
1 +

32(4 + g2)
(4 − g2)3 M

4
2) Ė2

ij

+ (−XPX
12

− 48M4
1

(4 − g2)2 −
8g2(g4 + 32g2 + 48)

(4 − g2)4 M4
2)(∂Eij)2}.

(A.36)

If we calculate now the equations of motion for the non-dynamical degrees of freedom χ
and Bi we can eliminate them from the action. For Bi we have

Bi =
96g(4 − g2)(3M4

1 + 2M4
2 )

XPX(4 − g2)3 − 72g2(4 − g2)M4
1 + 192(4 + 3g2)M4

2
Vi

+ 2XPX(4 − g2)3 + 256g2M4
2

XPX(4 − g2)3 − 72g2(4 − g2)M4
1 + 192(4 + 3g2)M4

2
εijk∂

−2∂j V̇k

≡GVi +N εijk∂−2∂j V̇k,

(A.37)
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where we have defined

G = 96g(4 − g2)(3M4
1 + 2M4

2 )
XPX(4 − g2)3 − 72g2(4 − g2)M4

1 + 192(4 + 3g2)M4
2
,

N = 2XPX(4 − g2)3 + 256g2M4
2

XPX(4 − g2)3 − 72g2(4 − g2)M4
1 + 192(4 + 3g2)M4

2
.

(A.38)

For χ we obtain

χ = − [ 2XPX(4 − g2)3 + 768(4 − g2)(4g4 + 33g2 + 4)M4
2

XPX(4 − g2)3 − 8g2(4 − g2)M4
1 − 32(4g6 + 16g4 − 129g2 − 4)M4

2
] α̇√

−∂2

+ 4g [ 32(4 − g2)2M4
1 + 16(13g4 − 88g2 + 208)M4

2
XPX(4 − g2)4 − 96g2(4 − g2)2M4

1 − 256(4 − g2)(4g6 + 16g4 − 129g2 − 4)M4
2
]T

≡H α̇√
−∂2

+ ST,

(A.39)

where

H = − 2XPX(4 − g2)3 + 768(4 − g2)(4g4 + 33g2 + 4)M4
2

XPX(4 − g2)3 − 8g2(4 − g2)M4
1 − 32(4g6 + 16g4 − 129g2 − 4)M4

2
,

S =
4g [32(4 − g2)2M4

1 + 16(13g4 − 88g2 + 208)M4
2 ]

XPX(4 − g2)4 − 96g2(4 − g2)2M4
1 − 256(4 − g2)(4g6 + 16g4 − 129g2 − 4)M4

2
.

(A.40)

For the scalar modes we have

S(2) = ∫ d4x{[XPX
4

− 36g2

(4 − g2)2M
4
1 +

96(4g4 + 33g2 + 4)
(4 − g2)3 M4

2 + (XPX
6

+ 64(4g4 + 33g2 + 4)
(4 − g2)3 M4

2)H

+ (XPX
12

− 8g2M4
1

(4 − g2)2 −
32(4g6 + 16g4 − 129g2 − 4)

(4 − g2)3 M4
2)H2]α̇2

+ (−XPX
6

+ 4g2(4g4 + g2 − 68)
3(4 − g2)4 M4

2)(∂α)2

+ [ 72g
(4 − g2)2M

4
1 +

96g(3g4 + 8g2 + 48)
(4 − g2)4 M4

2

+ ( 72g
(4 − g2)2M

4
1 +

96g(3g4 + 8g2 + 48)
(4 − g2)4 M4

2)S

+ 2(−XPX
12

+ 8g2M4
1

(4 − g2)2 +
32(4g6 + 16g4 − 129g2 − 4)

(4 − g2)3 M4
2)RS

+ ( 32gM4
1

(4 − g2)2 +
16g(13g4 − 88g2 + 208)

3(4 − g2)4 M4
2)H]α̇ ∂2T√

−∂2

+ (XPX
6

+ 128g2

(4 − g2)3M
4
2) Ṫ 2

+ [XPX
18

− 32M4
1

(4 − g2)2 +
16g2(3g4 + 64g2 + 80)

3(4 − g2)4 M4
2

+ (XPX
12

− 8g2M4
1

(4 − g2)2 −
32(4g6 + 16g4 − 129g2 − 4)

(4 − g2)3 M4
2)S2

− ( 32gM4
1

(4 − g2)2 +
16g(13g4 − 88g2 + 208)

3(4 − g2)4 M4
2)S](∂T )2},

(A.41)
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while for vector modes

S
(2)
V = ∫ d4x{ + [XPX

6
+ 128g2

(4 − g2)3M
4
2

+ (XPX
12

− 6g2

(4 − g2)2M
4
1 +

16(4 + 3g2)
(4 − g2)3 M4

2)N 2] (V̇k)
2

+ [ − XPX
12

− 24M4
1

(4 − g2)2 +
4g2(g4 + 8g2 − 48)

(4 − g2)4 M4
2

+ (−XPX
6

− 128g2

(4 − g2)3M
4
2)N − 8g(3M4

1 + 2M4
2 )

(4 − g2)2 G

+ (XPX
12

− 6g2

(4 − g2)2M
4
1 +

16(4 + 3g2)
(4 − g2)3 M4

2)G2](∂Vk)2}.

(A.42)

The action for Eij remains the same since, at the linear order, it is cannot be coupled to
a scalar or a vector degree of freedom.
Now we can calculate the speed of propagation of the various mode, but the only two
we can calculate are the vector and the tensor ones, since for the scalars we have a two
coupled equations

c2
V = {XPX(4 − g2)3 [1 + 2N − G2]

+ 48 [g2(g2 + 12) + 32g2N + 4(4 − g2)G − 4(4 + 3g2)G2]M4
2

+ 72(4 − g2) [(4 − g2 + 4G + g2G2)]M4
1 }/{XPX(4 − g2)3[2 +N 2]

− 72g2(4 − g2)N 2M4
1 + 192[8g2 + (4 + 3g2)N 2]M4

2 }.

(A.43)

These two expressions are very messy . It is possible that inserting a specific value for
g we would get more useful expressions in order to write the subluminality and stability
condition for our theory.

c2
E = XPX(4 − g2)4 + 576(4 − g2)2M4

1 + 96g2(g4 + 32g2 + 48)M4
2

XPX(4 − g2)4 − 144g2(4 − g2)2M4
1 + 384(4 − g2)(4 + g2)M4

2
(A.44)

A.2 Mixing with gravity

Here we go to the superhorizon limit, the most interesting one, and hence we need to
consider also the gravity. We will repeat the same calculations of the previous section but
using a curved metric in the usual ADM formalism, see (5.52). The covariant components
for the field strength Fiµν are

Fi00 = 0,
Fi0j = −gδij + fi0j ,
Fij0 = gδij + fij0,
Fijk = −2εijk + fijk,

(A.45)
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while the contravariant ones Fµνi are

F 00
i =0,

F 0j
i = g

N2 δ
j
i −

hjkfi0k
N2 − 2εiklh

jlNk

N2 + N
khjlfikl
N2 ,

F jki = − g
N2 (N jδki −Nkδji ) −

fil0
N2 (N jhkl −Nkhjl)

− 2εilmhkmhjl + hjlhkmfilm + 2
N2 (εilmNkNmhjl + εilmN jN lhkm)

− film
N2 (NkNmhjl +N jN lhkm) .

(A.46)

We consider the spatially flat gauge (5.53) and (5.54). Given that we are at the linear
order and we are interested only in the tensor perturbations γij and Eij , we can also
consider N = 1 and Ni = N i = 0, and we obtain, for Yij

Yij =2a−2(4a−2 − g2)δij
+2a−2(4a−2 + g2)γij
+2ga−2(fi0j + fj0i) − 2a−4(εilkfjlk + εjlkfilk)
+2ga−2(γljfi0l + γki fj0k) + 4a−4(εinmγmsfjns + εjnmγmsfins)
−4a−4(δijγlkγlk − 2γikγkj ) − 2a−2fik0fjk0 + a−4filmfjlm.

(A.47)

Taking the trace of (A.47)

X = [Y ] =6a−2(4a−2 − g2)
− 4ga−2fii0 − 4a−4εijkfijk

− 4ga−2γijfij0 + 8a−4εijkγ
klfijl − 4a−4γijγ

ij

+ a−4fijkfijk − 2a−2fij0fij0,

(A.48)

and for [Y 2] we have

[Y 2] =12a−4(4a−2 − g2)2

− 16ga−4(4a−2 − g2)fii0 − 16a−6(4a−2 − g2)εijkfijk
− 128ga−6γijfij0 + 32a−6(4a−2 − g2)εimnγmsfins
− 16a−6(4a−2 + g2)εilkγijfjlk + 4a−4g2(12a−2 + g2)γijγij

− 16a−4(2a−2 − g2)fij0fij0 + 8g2a−4fij0fji0 + 8ga−6(εilkfjlkfij0 + εilkfjlkfji0)
+ 4a−6(12a−2 − g2)fijkfijk − 32a−8fiikfjjk.

(A.49)

For the dual components F̃µνi we have

F̃ 00
i = 0, (A.50)

F̃ 0j
i = −2δji +

1
2
εjlkfilk, (A.51)

F̃ j0i = −F̃ 0j
i , (A.52)

F̃ jki = −gε jk
i + εjklfi0l, (A.53)
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which lead to

Ỹij = − 8ga−4(δij + γij)
+ ga−4 (εilmfjlm + εjlmfilm) − 4a−6 (fij0 + fji0)
− 4ga−4δijγlmγ

lm − 8ga−4γimγ
m
j − ga−4 (εilsγmsfjlm + εjksγlsfikl)

+ 4a−6(γki fjk0 + γkj fik0) + a−6 (εklmfik0fjlm + εklmfjk0film) .

(A.54)

Taking the trace of (A.54) we have

[Ỹ ] ≡ X̃ = − 24ga−4

+ 2ga−4εijkfijk − 8a−6fii0

− 20ga−4γijγ
ij − 2ga−4εilsγ

msfilm + 8a−6γijfij0

+ 2a−6εklmfik0film,

(A.55)

while for [Ỹ 2] we obtain

[Ỹ 2] =192g2a−8 − 32g2a−8εijkfijk + 128ga−10fii0 + 256g2a−8γijγ
ij

+ 32g2a−8εilsγ
msfilm − 32g2a−8εilmγ

ijfjlm

+ 32a−12fij0fij0 + 32a−12fij0fji0 + 8g2a−8(fijkfijk − fiikfjjk)
− 48ga−10εilmfjlmfji0 − 16ga−10εilmfjlmfij0.

(A.56)

In order to calculate I2 e I3 we have to compute X2 and then take its inverse

X2 =36a−4(4a−2 − g2)2

− 48ga−4(4a−2 − g2)fii0 − 48a−6(4a−2 − g2)εijkfijk
+ 96a−6(4a−2 − g2)εijkγklfijl − 48ga−4(4a−2 − g2)γijfij0 − 48a−6(4a−2 − g2)γijγij

+ 16g2a−4(fii0)2 − 64a−8fijkfjik + 4a−6(20a−2 − 3g2)fijkfijk
− 24a−4(4a−2 − g2)fij0fij0 + 32ga−6εijkfijkfll0,

(A.57)

which gives, at the second perturbative order

X−2 = 1
A2 [1 + 4gfii0

3(4a−2 − g2)
+

4a−2εijkfijk
3(4a−2 − g2)

−
8a−2εijkγ

klfijl

3(4a−2 − g2)

+
4gγijfij0

3(4a−2 − g2)
+

4a−2γijγij
3(4a−2 − g2)

+ 4g2(fii0)2

3(4a−2 − g2)2 −
16a−4fijkfjik
3(4a−2 − g2)2

+ a
−2(4a−2 + g2)

3(4a−2 − g2)2 fijkfijk +
2fij0fij0

3(4a−2 − g2)
+

8ga−2εijkfijkfll0
3(4a−2 − g2)2 ],

(A.58)

where we have defined

A = 6a−2(4a−2 − g2).
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Using (A.49) and (A.58) we can write I2

I2 ≡
[Y 2]
X2 = 1

A2 [12a−4(4a−2 − g2)2 − 16ga−4(4a−2 + g2)γijfij0

− 16a−6(4a−2 + g2)εilkγijfjlk + 4a−4(4a−2 + g2)2γijγ
ij − 16

3
g2a−4(fii0)2

− 32
3
ga−6εijkfijkfll0 + 8g2a−4fij0fij0 + 8g2a−4fij0fji0

+ 8ga−6(εilmfjlmfij0 + εilmfjlmfji0) − 32a−8fiikfjjk +
64
3
a−8fijkfijk +

64
3
fijkfjik].

(A.59)

Note that imposing g = 0 we obtain the same expression of [52].
Using (A.56) and (A.58) we obtain I3

I3 =
1
A2{192g2a−8 + 128ga−8[g2(2 − a−2) + 4a−4]

4a−2 − g2 fii0 +
32g2a−8(4 + g2)

4a−2 − g2 εijkfijk

− 32g2a−8εilmγ
ijfjlm + 32g2a−8(20a−2 − g2)

4a−2 − g2 εijkγ
klfijl +

256g3a−8

4a−2 − g2 γ
ijfij0

+ 256g2a−8(5a−2 − g2)
4a−2 − g2 γijγ

ij + 256g2a−8(g2 + 8a−2)
3(4a−2 − g2)

(fii0)2 + 32a−10fij0fji0

+ 32a−6[4a−6 + (4 − a−4)g2]
4a−2 − g2 fij0fij0 +

128ga−8[g4 + 4g2a−2(2 − a−2) + 16]
3(4a−2 − g2)2 εijkfijkfll0

− 8g2a−8fiikfjjk − 48ga−10εilmfjlmfji0 − 16ga−10εilmfjlmfij0

− 512g2a−10(g2 + 2a−2)
3(4a−2 − g2)2 fijkfjik +

8g2a−8(3g4 + 32g2a−2 + 16a−4)
3(4a−2 − g2)2 fijkfijk}.

(A.60)

Again one can verify that imposing g = 0 one obtains the same result of the original article.
We will use this comparison as a check for the correctness of our calculations.
We only need to calculate the new term I1. In order to compute it we calculate X−1, i.e.

X−1 = 1
A

[1 + 2gfii0
3(4a−2 − g2)

+
2a−2εijkfijk
3(4a−2 − g2)

+
2gγijfij0

3(4a−2 − g2)
−

4a−2εijkγ
klfijl

3(4a−2 − g2)

+
2a−2γijγ

ij

3(4a−2 − g2)
+ a

−2(4a−2 + 3g2)
18(4a−2 − g2)2 fijkfijk −

16a−4fijkfjik
9(4a−2 − g2)2

+
fij0fij0

3(4a−2 − g2)
+ 4g2(fii0)2

9(4a−2 − g2)2 +
8ga−2εijkfijkfll0

9(4a−2 − g2)2 ].
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Finally, using (A.55) and (A.61) we can write down the expression for I1 in the superhori-
zon limit

I1 =
1
A

[ − 24ga−4 − 8a−4(2g2 − g2a−2 + 4a−4)
4−2 − g2 fii0 −

2ga−4(4a−2 + g2)
4a−2 − g2 εijkfijk

− 8a−4(2g2 + g2a−2 − 4a−4)
4a−2 − g2 γijfij0 +

2ga−4(12a−2 + g2)
4a−2 − g2 εijkγ

klfijl

− 4ga−4(24a−2 − 5g2)
4a−2 − g2 γijγ

ij − 8ga−4

4a−2 − g2 fij0fij0 −
16ga−4(2g2 + g2a−2 − 4a−4)

3(4a−2 − g2)2 (fii0)2

− 4a−2(g4 + 12g2a−2 − 4a−4g2 + 16a−6)
3(4a−2 − g2)2 εijkfijkfll0 − 2a−6εklmfik0film

+ 16ga−6(4a−2 + g2)
3(4a−2 − g2)2 fijkfjik +

4ga−6(4a−2 − 5g2)
3(4a−2 − g2)2 fijkfijk]

(A.62)

Now we can write, for the sake of completeness, the perturbed action up to the second
order when considering the mixing between the gaugid and gravity, considering only the
tensor degree of freedom

S(2) =∫ d4 x
√
−g{

M2
Pl

2
R − P (X) + sM4

6a−2(4a−2 − g2)
[ − 8a−4(2g2 + g2a−2 − 4a−4)

4a−2 − g2 γijfij0

+ 2ga−4(12a−2 + g2)
4a−2 − g2 εijkγ

klfijl −
4ga−4(24a−2 − 5g2)

4a−2 − g2 γijγ
ij − 8ga−4

4a−2 − g2 fij0fij0

− 16ga−4(2g2 + g2a−2 − 4a−4)
3(4a−2 − g2)2 (fii0)2 − 4a−2(g4 + 12g2a−2 − 4a−4g2 + 16a−6)

3(4a−2 − g2)2 εijkfijkfll0

− 2a−6εklmfik0film + 16ga−6(4a−2 + g2)
3(4a−2 − g2)2 fijkfjik +

4ga−6(4a−2 − 5g2)
3(4a−2 − g2)2 fijkfijk]

− 27M4
1

A2 [ − 16ga−4(4a−2 + g2)γijfij0 − 16a−6(4a−2 + g2)εilkγijfjlk

+ 4a−4(4a−2 + g2)2γijγ
ij − 16

3
g2a−4(fii0)2 − 32

3
ga−6εijkfijkfll0

+ 8g2a−4fij0fij0 + 8g2a−4fij0fji0 + 8ga−6(εilmfjlmfij0 + εilmfjlmfji0)

− 32a−8fiikfjjk +
64
3
a−8fijkfijk +

64
3
a−8fijkfjik]

+ 18M4
2

A2 [ − 32g2a−8εilmγ
ijfjlm + 32g2a−8(20a−2 − g2)

4a−2 − g2 εijkγ
klfijl +

256g3a−8

4a−2 − g2 γ
ijfij0

+ 256g2a−8(5a−2 − g2)
4a−2 − g2 γijγ

ij + 256g2a−8(g2 + 8a−2)
3(4a−2 − g2)

(fii0)2

+ 32a−10fij0fji0 +
32a−6[4a−6 + (4 − a−4)g2]

4a−2 − g2 fij0fij0

+ 128ga−8[g4 + 4g2a−2(2 − a−2) + 16]
3(4a−2 − g2)2 εijkfijkfll0

− 8g2a−8fiikfjjk − 48ga−10εilmfjlmfji0 − 16ga−10εilmfjlmfij0

− 512g2a−10(g2 + 2a−2)
3(4a−2 − g2)2 fijkfjik +

8g2a−8(3g4 + 32g2a−2 + 16a−4)
3(4a−2 − g2)2 fijkfijk]}

(A.63)
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If we consider only the gaugid and the metric gravitational waves, the only non zero terms
for fiµν are

γijfij0 = −γijĖij , (A.64)
εilmγ

ijfjlm = 2εilmγij∂lEjm, (A.65)

εijkγ
klfijl = εijkγkl∂jEil, (A.66)
fij0fij0 = Ė2

ij , (A.67)

fijkfijk = 2(∂Eij)2, (A.68)
fijkfjik = (∂Eij)2. (A.69)

We have

S(2) = ∫ d4 x
√
−g{

M2
Pl

2
R − P (X)

+ sM4

6a−2(4a−2 − g2)
[8a−4(2g2 + g2a−2 − 4a−4)

4a−2 − g2 γijĖij

− 4ga−4(24a−2 − 5g2)
4a−2 − g2 γijγ

ij − 8ga−4

4a−2 − g2 Ė
2
ij

+ 16ga−6(4a−2 + g2)
3(4a−2 − g2)2 (∂Eij)2 + 8ga−6(4a−2 − 5g2)

3(4a−2 − g2)2 (∂Eij)2]

− 27M4
1

A
[16ga−4(4a−2 + g2)γijĖij + 4a−4(4a−2 + g2)2γijγ

ij + 8g2a−4Ė2
ij

+ 8g2a−4Ė2
ij +

128
3
a−8(∂Eij)2 + 64

3
a−8(∂Eij)2 − 32a−6(4a−2 + g2)εilmγij∂lEjm)]

+ 18M4
2

A
[64g2a−8εijkγ

kl∂jEil +
32g2a−8(20a−2 − g2)

4a−2 − g2 εijkγ
kl∂jEil −

256g3a−8

4a−2 − g2 γ
ijĖij

+ 256g2a−8(5a−2 − g2)
4a−2 − g2 γijγ

ij + 32a−10Ė2
ij +

32a−6[4a−6 + (4 − a−4)g2]
4a−2 − g2 Ė2

ij

− 512g2a−10(g2 + 2a−2)
3(4a−2 − g2)2 (∂Eij)2 + 16g2a−8(3g4 + 32g2a−2 + 16a−4)

3(4a−2 − g2)2 (∂Eij)2]},

(A.70)
or

S
(2)
GW = ∫ d4 x

√
−g{

M2
Pl

2
R − P (X)

+ ( − 4sga−2M4

3(4a−2 − g2)2 −
12g2M4

1
(4a−2 − g2)2 +

32a−2(4a−6 − g2a−4 + 2g2)M4
2

(4a−2 − g2)3 )Ė2
ij

+ (8sga−4(6a−2 − 19g2)M4

9(4a−2 − g2)2 − 48a−4M4
1

(4a−2 − g2)2 +
8g2a−4(3g4 + 16a−4g2 − 64a−4)M4

2
3(4a−2 − g2)4 )(∂Eij)2

+ ( − 2sga−2(24a−2 − 5g2)M4

3(4a−2 − g2)2 − 3(4a−2 + g2)2M4
1

(4a−2 − g2)2 + 128g2a−4(5a−2 − g2)M4
2

(4a−2 − g2)2 )γijγij

+ (24a−2(4a−2 + g2)M4
1

(4a−2 − g2)2 + 16g2a−4(28a−2 − 3g2)M4
2

(4a−2 − g2)3 ) εijkγkl∂jEil

+ (4sa−2(2g2 + g2a−2 − 4a−4)M4

3(4a−2 − g2)2 − 12g(4a−2 + g2)M4
1

(4a−2 − g2)2 − 128g3a−4M4
2

(4a−2 − g2)2 )γijĖij}.

(A.71)
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We perturb now P (X). For X we have

X = X̄ + δX,

where

X̄ = 6a−2(4a−2 − g2),

and

δX = − 4ga−2fii0 − 4a−4εijkfijk

− 4ga−2γijfij0 + 8a−4εijkγ
klfijl − 4a−4γijγ

ij

+ a−4fijkfijk − 2a−2fij0fij0.

Hence we can expand P (X)

P (X) = P (X̄ + δX) = P (X̄) + PXδX + 1
2
PXXδX

2

We can immediately note an important thing. Here we are treating the case of the grav-
itational waves, hence it is enough to calculate the contribution due to this term for the
gravitational waves equation of motion. We see that the term δX2 appears but it gives
no contributions for the gravitational waves at this order. Indeed we have

δX2 = (−4ga−2fii0 − 4a−4εijkfijk)2 +O(f4, (γf)2, γ2),

i.e.

δX2 = 16g2a−4(fii0)2 + 14a−8(εijkfijk)2 + 32ga−6εijkfijkfll0.

Using the relations

(εijkfijk)2 = 2fijkfijk − 4fijkfjik (A.72)

εilmεiknfjlmfjkn = 2fijkfijk (A.73)

εilmεjknfjlmfikn = 2fijkfijk − 4fiikfjjk (A.74)

we can see that any term of δX2 gives a contribution for the tensors.
We can then write the first term of the series expansion as

PXδX =XPX
δX

X
=XPX

δX

X0
(1 − δX

X0
) =XPX

δX

X0
+ βδX2 =XPX

δX

X0
,

hence

P (X)(2) = XPX
6a−2(4a−2 − g2)

(4ga−2γijĖij+8a−4εijkγkl∂jEil−4a−4γijγ
ij+2a−4(∂Eij)2−2a−2Ė2

ij).
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Finally, in order to simplify our calculations, if we do not consider, for the reasons men-
tioned in the previous section, the corrective terms due to I1 (i.e. s = 0) we obtain

S
(2)
GW = ∫ d4 x

√
−g{

M2
Pl

8
(γ̇2
ij − a−2 (∂γij)2)

+ ( − XPX
3(4a−2 − g2)

− 12g2M4
1

(4a−2 − g2)2 +
32a−2(4a−6 − g2a−4 + 2g2)M4

2
(4a−2 − g2)3 )Ė2

ij

+ ( a−2XPX
3(4a−2 − g2)

− 48a−4M4
1

(4a−2 − g2)2 +
8g2a−4(3g4 + 16a−4g2 − 64a−4)M4

2
3(4a−2 − g2)4 )(∂Eij)2

+ ( − 2 a−2XPX
3(4a−2 − g2)

− 3(4a−2 + g2)2M4
1

(4a−2 − g2)2 + 128g2a−4(5a−2 − g2)M4
2

(4a−2 − g2)2 )γijγij

+ (4 a−2XPX
3(4a−2 − g2)

+ 24a−2(4a−2 + g2)M4
1

(4a−2 − g2)2 + 16g2a−4(28a−2 − 3g2)M4
2

(4a−2 − g2)3 ) εijkγkl∂jEil

+ (2g XPX
3(4a−2 − g2)

− 12g(4a−2 + g2)M4
1

(4a−2 − g2)2 − 128g3a−4M4
2

(4a−2 − g2)2 )γijĖij}.

(A.75)

Here we see that we have a new term, γijĖij due to the choice of a parity-breaking
vacuum. This term is exactly what we was looking for: it violates the parity since it mixes
the different helicity states equations of motion.

153



154



Bibliography

[1] E. W. Kolb, M. S. Turner, The Early Universe, Addison-Wesley publishing company,
1988.

[2] S. Dodelson, Modern Cosmology, Academic Press, Amsterdam, 2003.

[3] P. Coles, F. Lucchin, Cosmology. The Origin and Evolution of the Cosmic Structure,
John Wiley & sons, 2002.

[4] S. Weinberg, Cosmology, Oxford, UK: Oxford Univ. Pr. (2008).

[5] S. Weinberg,Gravitation and Cosmology, John Wiley and Sons, Canada, 1972, ISBN
0-471-92567-5.

[6] Planck Collaboration, P. A. R. Ade et al., Planck 2015 results. XIII. Cosmological
parameters, (2015), 1502.01589v3.

[7] Planck Collaboration, N. Aghanim et al., Planck 2018 results. VI. Cosmological pa-
rameters, (2018).

[8] C. W. Misner, K. S. Thorne and J. A. Wheeler, Gravitation,W. H. Freeman, San
Francisco, 1973.

[9] R. A. Alpher, H. Bethe and G. Gamow, The Origin of Chemical Elements, Phys.
Rev. D 73 (1948) 803.

[10] A. A. Penzias and R. W. Wilson, A Measurement of Excess Antenna Temperature at
4080 Mc/s, ApJ. 142 (1965) 419.

[11] Planck Collaboration, Y. Akrami at al., Planck 2018 results. I. Overview, and the
cosmological legacy of Planck, 2018, [arXiv:1807.06205v1].

[12] E. W. Kolb, Cosmology and the Unexpected, ArXiv.0709.3102 (2007)

[13] J. R. Primack, The Nature of Dark Matter, [arXiv:astro-ph/0112255].

[14] G. F. Smoot et al., Structure in the COBE differential Microwave Radiometer first-
year maps, ApJ, 396, L1(1992).

[15] D. Baumann, TASI Lectures on Inflation, arXiv:0907.5424 [hep-th].

[16] Planck Collaboration, P. A. R. Ade et al., Planck 2015 results. XVI. Isotropy and
statistics of the CMB (2015), 1506.07135v2.

[17] A. H. Guth, Inflationary Universe: A possible solution to the horizon and flatness
problems Phys. Rev. D23 (1981) 347.

155



[18] D. Kazanas, Dynamics of the Universe and spontaneous symmetry breaking, Astro-
phys. J. Lett. 241, L59 (1980).

[19] A. R. Liddle and D. H. Lyth, The primordial density perturbation, Cambridge Uni-
versity Press, 2009.

[20] D. J. Fixsen, The temperature of the cosmic microwave background, 2009, ApJ, 707,
916.

[21] Planck Collaboration, Y. Akrami et al., Planck 2018 results. X. Constraints on infla-
tion, 2018.

[22] R. Brout, F. Englert, and E. Gunzig, The creation of the Universe as a quantum
phenomenon, Ann. Phys. (N.Y.) 115, 78 (1978).

[23] A. A. Starobinsky, A new type of isotropic cosmological models without singularity,
Phys. Lett. B 91, 99 (1980).

[24] K. Sato, First-order phase transition of vacuum and the expansion of the Universe,
Mon. Not. R. Astron. Soc. 195, 467 (1981).

[25] A. R. Linde, A new inflationary Universe scenario: a possible solution of the horizon,
flatness, homogeneity, isotropy and primordial monopole problems, Phys. Lett. B108,
389 (1982).

[26] A. Albrecht and P. J. Steinhardt, Cosmology for Grand Unified Theories with Radia-
tively Induced Symmetry Breaking, Phys. Rev. Lett. 48, 1220 (1982).

[27] N. D. Birrel, P. C. W. Davies, Quantum Fields in Curved Space, Cambridge Mono-
graphs on Mathematical Physics, 1982.

[28] A. R. Liddle and D. H. Lyth, Cosmological Inflation and Large-Scale Structure, Cam-
bridge University Press, June, 2000.

[29] M. C. Guzzetti, N. Bartolo, M. Liguori and S. Matarrese, Gravitational waves from
inflation Riv. Nuovo Cim. 39 (2016) 399 495.

[30] D. H. D. H. Lyth and A. A. Riotto, Particle Physics Models of Inflation and the
Cosmological Density Perturbation, Phys. Rept. 314 (June, 1999) 1146.

[31] A. R. Liddle, P. Parsons and J. D. Barrow, Formalising the Slow-Roll Approximation
in Inflation, Phys. Rev. D50 (1994) 7222.

[32] X. Chen, Primordial Non-Gaussianities from Inflation Models Adv. Astron. 2010
(2010) 638979.

[33] R. M. Wald, General Relativity, Chicago, University of Chicago Press, 1984.

[34] R. M. Wald, Asymptotic behavior of homogeneous cosmological models in the presence
of a positive cosmological constant, Phys. Rev. D 28, 2118 (1983).

[35] A. Maleknejad, M. M. Sheikh-Jabbari, Revisiting Cosmic No-Hair Theorem for In-
flationary Settings, Phys. Rev. D 85, 123508 (2012).

[36] Planck Collaboration, P. A. R. Ade et al., Planck 2015 results. I. Overview of products
and scientific results, (2015), 1502.01582v2.

156



[37] P. J. E. Peebles, The Large-Scale Structure of the Universe (Princeton University
Press, New Jersey, 1972), ISBN 08137-9.

[38] K. A. Malik, D. R. Matravers, A Concise Introduction to Perturbation Theory in
Cosmology. arXiv:0804.3276, 2008.

[39] K. A. Malik and D. Wands, Cosmological perturbations, Phys. Rept. 475, 1 (2009).

[40] J. M. Bardeen, Gauge-invariant cosmological perturbations, Phys. Rev. D22 (1980)
1882.

[41] S. Matarrese, S. Mollerach, M. Bruni, Relativistic second-order perturbations of the
Einstein-de Sitter Universe, Phys. Rev. D58 (1998).

[42] V. Acquaviva, N. Bartolo, S. Matarrese and A. Riotto, Second-Order Cosmological
Perturbations from Inflation, Nucl. Phys. B667 (2003) 119, astro-ph/0209156.

[43] N. Bartolo, E. Komatsu, S. Matarrese, A. Riotto, Non-Gaussianity from Inflation,
Theory and Observations, 2004, Phys. Rept., 402, 103.

[44] T. S. Bunch and P. C. W. Davies, Quantum field theory in de Sitter space: renormal-
ization by point-splitting Proc. Roy. Soc. A 360 (1978) 117.

[45] M. Sasaki, Prog. Theor. Phys., Large Scale Quantum Fluctuations in the Inflationary
Universe, 76 (1986) 1036.

[46] A. A. Starobinskii, Spectrum of relict gravitational and the early state of the Universe,
JETP Lett. 30 (1979) 682, [Pisma Zh. Eksp. Teor. Fiz.30,719(1979)].

[47] M. S. Wang, Primordial Gravitational Waves from Cosmic Inflation, 2017.

[48] Planck Collaboration, P. A. R. Ade et al., Planck 2015 results. XX. Constraints on
inflation, (2017), 1502.02114v2.

[49] D. Baumann et al., CMBPol Mission Concept Study: Probing Inflation with CMB
Polarization, arXiv:0811.3919.

[50] BICEP2 Collaboration, P. Ade et al., BICEP2 I: Detection of B-mode Polarization
at Degree Angular Scales, arXiv:1403.3985.

[51] R. K. Sachs, A. M. Wolfe, Perturbations of a Cosmological Model and Angular Vari-
ations of the Microwave Background, 1967, ApJ, 147, 73.

[52] F. Piazza, D. Pirtskhalava, R. Rattazzi, and O. Simon, Gaugid Inflation JCAP 1711
no. 11,(2017) 041.

[53] S. Endlich, A. Nicolis, J. Wang, Solid Inflation 2013, J. Cosmol. Astropart. Phys.,
10, 11.

[54] C. Armendariz-Picon, T. Damour, V. Mukhanov, k-inflation, Phys. Lett. B 458,
(1999) 209.

[55] E. Komatsu et al., Non-Gaussianity as a Probe of the Physics of the Primordial
Universe and the Astrophysics of the Low Redshift Universe, (2009), 0902.4759.

[56] J. Maldacena, Non-Gaussian features of primordial fluctuations in single field infla-
tionary models, JHEP 05 (2003) 013.

157



[57] Planck Collaboration, P. A. R. Ade et al., Planck 2015 results. XVII. Constraints on
primordial non-Gaussianity, (2015), 1502.01592v2.

[58] Planck Collaboration, P. A. R. Ade et al., Planck 2013 results. XXIV. Constraints
on primordial non-Gaussianity, (2013), 1303.5084v2.

[59] P. Creminelli, M. Zaldarriaga, Single field consistency relation for the 3-point function,
JCAP, 0410, 006 (2004).

[60] D. Babich, M. Zaldarriaga, P. Creminelli, The shape of non-Gaussianities, M. 2004,
JCAP, 0408, 009.

[61] S. Weinberg, Quantum Contributions to Cosmological Correlations, Phys. Rev. D72,
043514 (2005), hep-th/0506236.

[62] R. Arnowitt, S. Deser, C. W. Misner, The Dynamics of General Relativity arXiv:gr-
qc/0405109, 2004.

[63] E. Dimastrogiovanni, M. Fasiello, D. Jeong, M. Kamionkowski, Inflationary tensor
fossils in large-scale structure (2015).

[64] D. S. Salopek and J. R. Bond, Nonlinear evolution of long wavelength metric fluctu-
ations in inflationary models, Phys. Rev. D42 (1990) 3936-3962.

[65] A. Gruzinov, Consistency relation for single scalar inflation, Phys. Rev. D 71, 027301
(2005).

[66] X. Chen, H. Firouzjahi, M. H. Namjoo, and M. Sasaki, A Single Field Inflation Model
with Large Local Non-Gaussianity, (2013), 1301.5699.

[67] L. Dai, D. Jeong, M. Kamionkowski, Anisotropic imprint of long-wavelength tensor
perturbation on cosmic structure, Phys. Rev. D 88 (2013) 4, 043507.

[68] K. W. Masui and U.-L. Pen, Primordial gravity waves fossils and their use in testing
inflation, Phys. Rev. Lett. 105, 161302 (2010).

[69] L. Dai, D. Jeong and M. Kamionkowski, Seeking Inflation Fossils in the Cosmic
Microwave Background, Phys. Rev. D 87, no. 10, 103006 (2013)

[70] D. Jeong and M. Kamionkowski, Clustering Fossils from the Early Universe, Phys.
Rev. Lett. 108 (25), 2012.

[71] L. Dai, M. Kamionkowski, D. Jeong, Total Angular Momentum Waves for Scalar,
Vector, and Tensor Fields, Phys. Rev. D 86 (2012) 125013.

[72] L. Dai, D. Jeong and M. Kamionkowski, Wigner-Eckart theorem in cosmology: Bis-
pectra for total-angular-momentum waves, [arXiv:1211.6110].

[73] A. Hajian, T. Souradeep and N. J. Cornish, Statistical Isotropy of the Wilkinson
Microwave Anisotropy Probe Data: A Bipolar Power Spectrum Analysis, Astrophys.
J. 618, L63 (2004).

[74] D. Jeong, F. Schmidt and C. M. Hirata, Large-scale clustering of galaxies in general
relativity, Phys. Rev. D 85, 023504 (2012).

158



[75] D. Jeong and F. Schmidt, Large-Scale Structure with Gravitational Waves I: Galaxy
Clustering, Phys. Rev. D 86, 083512 (2012).

[76] F. Schmidt, D. Jeong, Large-Scale Structure with Gravitational Waves II: Shear, Phys.
Rev. D 86, 083513 (2013).

[77] F. Schmidt, E. Pajer, M. Zaldarriaga, Large-Scale Structure with Gravitational Waves
III: Tidal Effects, Phys. Rev. D 89, 083507.

[78] C. Cheung, P. Creminelli, A. L. Fitzpatrick, J. Kaplan and L. Senatore, Effective
Field Theory for Inflation, JHEP 0803, 014 (2008).

[79] A. Gruzinov, Elastic Inflation, Phys. Rev. D 70 (2004) 063518.

[80] M. Akhshik, Clustering Fossils in Solid Inflation, JCAP 1505 (2015) 043.

[81] N. Bartolo, S. Matarrese, M. Peloso, A. Ricciardone, Anisotropy in solid inflation,
JCAP, 1308, 022 (2013).

[82] S. Endlich, B. Horn, A. Nicolis, J. Wang, The squeezed limit of the solid Inflation
three-point function, Phys. Rev. D 90(6):063506, 2014.

[83] N. Bartolo et al., Science with the space-based interferometer LISA. IV: Probing In-
flation with gravitational waves, JCAP 1612, 026 (2016).

[84] Euclid Theory Working Group Collaboration, L. Amendola et al., Cosmology and
Fundamental Physics with the Euclid Satellite, Living Rev.Rel. 16 (2013) 6.

[85] A. Ricciardone and G. Tasinato, Primordial gravitational waves in supersolid infla-
tion, arXiv:1611.04516.

[86] P. Creminelli, J. Gleyzes, J. Norena and F. Vernizzi, Resilience of the standard pre-
dictions for primordial tensor modes, Phys. Rev. Lett. 113 (2014) 231301.

[87] A. Nicolis, R. Penco, F. Piazza, and R. Rattazzi, Zoology of condensed matter:
Framids, ordinary stuff, extra-ordinary stuff, JHEP 06 (2015) 155.

[88] A. Maleknejad, M. Sheikh-Jabbari, and J. Soda, Gauge Fields and Inflation,
arXiv:1212.2921 [hep-th].

[89] A. Maleknejad, M.M. Sheikh-Jabbari, Non-Abelian gauge field inflation, Phys. Rev.
D 84 (2011) 043515.

[90] P. Adshead and M. Wyman, Chromo-Natural Inflation: Natural Inflation on a Steep
Potential with Classical Non-Abelian Gauge Fields, Phys.Rev.Lett. 108 (2012) 261302.

[91] A. Agrawal, T. Fujita, E. Komatsu,Tensor Non-Gaussianity from Axion-Gauge-Fields
Dynamics: Parameter Search, arXiv:1802.09284.

[92] N. Bartolo, E. Dimastrogiovanni, S. Matarrese, and A. Riotto, Anisotropic bispec-
trum of curvature perturbations from primordial non-Abelian vector fields, J. Cosmol.
Astropart. Phys. 10 (2009) 015.

[93] N. Bartolo, E. Dimastrogiovanni, S. Matarrese, and A. Riotto, Anisotropic Trispec-
trum of Curvature Perturbations Induced by Primordial Non-Abelian Vector Fields,
J. Cosmol. Astropart. Phys. 11 (2009) 028.

159



[94] E. Dimastrogiovanni, N. Bartolo, S. Matarrese, and A. Riotto, Non-Gaussianity and
statistical anisotropy from vector field populated inflationary models, Adv. Astron.
2010, 752670 (2010).

[95] N. Bartolo, S. Matarrese, M. Peloso, and A. Ricciardone, Anisotropic power spectrum
and bispectrum in the f(φ)F 2 mechanism, Phys. Rev. D 87, 023504 (2013).

[96] S. Dubovsky, T. Gregoire, A. Nicolis and R. Rattazzi, Null energy condition and
superluminal propagation JHEP 0603, 025 (2006).

[97] J. Soda, H. Kodama and M. Nozawa, Parity Violation in Graviton Non-gaussianity,
JHEP 1108, 067 (2011).

[98] N. Bartolo and G. Orlando, Parity breaking signatures from a Chern-Simons cou-
pling during inflation: the case of non-Gaussian gravitational waves, JCAP 1707, 034
(2017).

[99] A. Lue, L. Wang and M. Kamionkowski, Cosmological signature of new parity-
violating interactions, Physical Review Letters 83 (aug, 1999) 1506-1509.

[100] M. Gerbino, A. Gruppuso, P. Natoli, M. Shiraishi, A. Melchiorri, Testing chirality
of primordial gravitational waves with Planck and future CMB data: no hope from
angular power spectra, JCAP 1607, no. 07, 044 (2016).

160


	Introduction
	Standard Cosmology
	Cosmological Principle: homogeneity and isotropy of the Universe
	Dynamics in FLRW metric
	Hot Big Bang
	CDM model
	The problem of the initial conditions
	A possible solution

	Inflation
	Slow-Roll paradigm
	Background Dynamics of Inflation
	Reheating
	A digression on the charm of the Inflation model


	Cosmological perturbations
	Perturbation theory in General Relativity
	Gauge problem
	Gauge transformations
	Perturbed metric
	Matter perturbations

	Quantum fluctuations during inflation
	Power-Spectrum
	Scalar perturbations in curved spacetime
	Gauge-invariant scalars
	Power spectrum for scalar perturbations

	Gravitational Waves from Inflation
	Consistency relations
	Energy scale of inflation
	CMB observations

	Beyond the standard slow-roll inflation

	Probing Inflation: non-Gaussianities and Tensor Fossils
	Primordial non-Gaussianities
	Bispectrum
	In-In Formalism
	Computation of the bispectrum 

	Consistency relations
	Scalar consistency relation
	Tensor consistency relation
	Deviation from Statistical isotropy

	Fossils from primordial Universe
	Tensor fossils in CMB
	Quadrupole anisotropy in mass distribution


	Solid Inflation
	Why a new model of inflation?
	Solid on Minkowski

	Background dynamics
	Perturbations in Solid Inflation
	Two-Point functions

	Three-Point Functions
	Non-Gaussianities
	Testing the  Consistency Relation

	Tensor fossil in Solid Inflation

	Gaugid Inflation
	Review of Gaugid Inflation
	Extension of the solid paradigm
	Background solutions with magnetic configuration
	Perturbing the Gaugid
	Scalar perturbations
	Tensor perturbations

	From Magnetic to Electromagnetic Gaugid
	Parity violation in Cosmology
	Inflation
	Perturbations in the subhorizon limit

	Second order Lagrangian including mixing with gravity

	Conclusions
	Calculations for electro-magnetic Gaugid Inflation
	Subhorizon limit
	Mixing with gravity

	Bibliography

