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Introduction

Elliptic curves have been an important research topic of number theory and geometry
throughout the 20th century; their structure and properties have been widely studied in
mathematics. In recent years, many applications of elliptic curves to cryptography have
been developed. Cryptosystems based on groups of rational points on elliptic curves allow
more e�cient alternatives to �nite �eld cryptography, which usually requires groups with
larger cardinality and lower e�ciency. The existence of bilinear pairings raises even more
interest in this research area. These are non-degenerate, bilinear maps that were �rst
applied in the attack of cryptographic hard problems, such as the discrete logarithm and
its variants. Later, many e�cient cryptosystems based on pairings have been developed;
however, their security must be carefully studied. Among the various applications that
came out, we are interested in the broadcast encryption scheme, that was introduced by
Boneh, Gentry and Waters in 2005 [15]. Besides its feature of having constant size private
keys, it can be applied to manage revocation of users, as in [18]. Its security is based on
the decisional version of the `-BDHE problem, which is a variant of the classical Di�e-
Hellman problem, speci�cally constructed for pairing-based cryptography. Its hardness, is
still a research topic and only some theoretical evidence exists. The aim of this work is
to investigate the security of this broadcast encryption system, taking in account a model
that proves the hardness of the `-BDHE problem, under strong assumptions. Drawbacks of
this approach will be discussed: its main weakness is the system's behaviour during attack
simulations, which is far from real. The main result is Theorem 4.13, which is applied
to �nd an asymptotic lower bound on the running time of an adversary. Also the elliptic
curve choice, when implementing an encryption scheme, could a�ect its security. We will
review the main criteria for this choice and we will investigate the existence of elliptic
curves suitable for the system of our interest. This thesis has the following outline.

• Chapter 1 gives the mathematical background of elliptic curves, where the group
structure of the set of points is introduced. We study an algorithm for square
roots computation in �nite �elds, which allows to e�ciently �nd a�ne coordinates
of points.

• Chapter 2 introduces the Weil maps, together with a proof of their bilinearity and
other properties.

• Chapter 3 contains an overview of hard cryptographic problems and their connections.
We de�ne symmetric, asymmetric and general pairings. Then we show how the Weil
maps �t these de�nitions, introducing distortion maps for the symmetric case.

• Chapter 4 is about the security analysis of the broadcast encryption scheme. After
the de�nition of the generic group model, we present a bound on the adversary's
advantage in solving the `-BDHE problem, which can be applied to the case of the
encryption scheme in [15]. Eventually, we examine other security issues and propose
a family of elliptic curves suitable for implementing that cryptosystem.
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Chapter 1

Elliptic Curves

This chapter contains an overview of basic facts about elliptic curves needed to de�ne the
Weil pairing, a bilinear map that is useful in cryptographic applications. We show that
the set of points on an elliptic curve has a natural group structure and then we see that it
is possible to �nd, in probabilistic polynomial time, a random point on a given curve over
a �nite �eld. This is a key point when we want to use elliptic curves cryptography.

1.1 De�nitions

For our purposes, we de�ne an elliptic curve as the locus of some cubic equation, avoiding
a more general de�nition like the one introduced in algebraic geometry. We prefer that
approach because the �nal aim of this work is to apply such curves to cryptography rather
than to study their abstract properties. A more general approach can be found in [52].
Hence we give the following de�nition.

De�nition 1.1. An elliptic curve E over a �eld K, denoted by E/K, is the locus in P2
K

of the following cubic equation, called generalized (projective) Weierstrass equation:

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3, (1.1)

where a1, . . . , a6 ∈ K.

We will often refer to the a�ne equation, which can be obtained using the non-homogeneous
coordinates x = X/Z and y = Y/Z and which is

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6; (1.2)

where we just need to remember that there is an extra point O =
[
0, 1, 0

]
out at in�nity. We

also remark that this is the unique point at in�nity of E, relative to the dehomogeneization
with respect to Z. Indeed, recall that given

[
x, y, z

]
∈ P2

K with z 6= 0, then
[
x, y, z

]
=[

x/z, y/z, 1
]
and we call these points "�nite". The set of all such points can be identi�ed

with the a�ne plane A2
K . On the contrary, we call

[
x, y, 0

]
"points at in�nity" in P2

K .
Hence, consider the generalized projective Weierstrass equation and set Z = 0: this leads
to the equation X3 = 0, which gives a unique point P2

K 3
[
0, y, 0

]
=
[
0, 1, 0

]
on the curve.

Under further assumptions on the �eld we get more compact equations; �rstly suppose
that char(K) 6= 2, so that we can complete the square:(

y +
a1x

2
+
a3

2

)2
= x3 +

(
a2 +

a2
1

4

)
x2 +

(
a4 +

a1a3

2

)
x+

(
a2

3

4
+ a6

)
.
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Hence we can write the equation as

y′2 = x3 + b2x
2 + b4x+ b6, (1.3)

where

y′ = y +
a1x

2
+
a3

2
,

b2 = a2 +
a2

1

4
,

b4 = a4 +
a1a3

2
,

b6 =
a2

3

4
+ a6.

As shown in [52, III.3.1b], given an elliptic curve, any two Weierstrass equations for it are
related by a change of variable of the form:

x′ = u2x+ r, y′ = u3y + su2x+ t,

with u, r, s, t ∈ K, u 6= 0. Then 1.3 is a new Weierstrass equation for the same elliptic
curve.
Finally if char(K) 6= 2, 3 we can also write the right hand side of the previous equation as

y′2 =

(
x+

b2
3

)3

+

(
b4 −

b22
3

)
x+ b6 −

b32
27
.

Without loss of generality, we assume for our purposes that char(K) 6= 2, 3 and hence
consider throughout this thesis elliptic curves E/K as the locus of a (cubic) Weierstrass

equation of the form
y′2 = x′3 + ax′ + b (1.4)

for some a, b ∈ K, that come from the previous equalities, and letting x′ = x + b2/3.
Elliptic curves in characteristic 2 or 3 su�er from specialized discrete log attack [21] thus
they should generally be avoided. Moreover, given r1, r2, r3 the roots of the above cubic,
then it can be shown that the discriminant of the curve is

∆ =
∏
i<j

(ri − rj)2 = −(4a3 + 27b2).

We also do not allow E to have multiple roots, which is equivalent to require that ∆ 6= 0
and we call curves with this property non-singular. Under this hypothesis all points are
non-singular; indeed, at �rst we see that O is so di�erentiating the short homogeneous
equation E(X,Y, Z) = Y 2Z −X3 − aXZ2 − bZ3 = 0 with respect to Z:

∂E

∂Z
(O) = 1 6= 0.

Now assume by contradiction that E has a singular point at P0 = (x0, y0) and note that
the substitution

x = x′ + x0 y = y′ + y0

leaves ∆ invariant. Therefore, without loss of generality, we assume that E is singular at
(0, 0) and we consider the a�ne equation E(x, y), of the form 1.4. Di�erentiating we have

E(0, 0) = b = 0,
∂E

∂x
(0, 0) = a = 0,

∂E

∂y
(0, 0) = 0.
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Hence the discriminant of E is ∆ = 0, which contradicts the initial hypothesis.

Next we de�ne an important family of sets. Unless otherwise speci�ed, we will always
consider points on elliptic curves by means of their a�ne coordinates, adding the unique
extra point O.

De�nition 1.2. Let E/K be an elliptic curve de�ned over K and let L be a �eld such
that K ⊆ L; we de�ne the L-rational points of E by

E(L) = {O} ∪ {(x, y) ∈ L× L | y2 = x3 + ax+ b}.

We simply denote by E the set E(K) of the rational points on the algebraic closure of the
�eld over which the curve is de�ned.

Thus di�erent �elds give di�erent sets of points on the elliptic curve. We focus on the
case when the de�nition �eld is a �nite �eld K = Fpk , p prime; this is the usual setting of
cryptographic applications that we would like to investigate.

1.2 Group law

The sets of rational points of E are rather interesting, because we can de�ne a group
law on each of them, which is the aim of this section. These groups are useful for the
implementation of elliptic curve cryptosystems. Let E/K be an elliptic curve and let
L ∈ P2

K be a line. As a consequence of Bezout's Theorem [45] the intersection E ∩ L,
which are loci of some degree 3 and 1 polynomials respectively, contains three points, not
necessarily distinct, and taken with their multiplicity. We �rst need an auxiliary operation:

De�nition 1.3. Let P,Q ∈ E and let LPQ be the line connecting P and Q (the tangent
line through P if P = Q). Then we de�ne P ∗Q as the third point of intersection of LPQ
with E.

We �rst state a Lemma by Chasles about cubic curves, that can be found in [22]. It will
be useful in next proposition's proof.

Lemma 1.4 (Chasles). Let C1, C2 ⊆ P2
K be cubic plane curves that have 9 points of inter-

section. If C ⊆ P2
K is any cubic curve containing 8 of those points, then it contains the

ninth one as well.

We are now ready to prove the following properties of the operation de�ned above.

Proposition 1.5. Let E be an elliptic curve, then ∀P,Q,R, S ∈ E the following hold:

1. P ∗Q = Q ∗ P ;

2. (P ∗Q) ∗ P = Q;

3. P ∗Q = P if the line LPQ connecting P,Q is tangent to the curve at P ;

4. ((P ∗Q) ∗R) ∗ S = P ∗ ((Q ∗ S) ∗R).

Proof. 1. The lines LPQ and LQP coincide.

2. Take P,Q,R ∈ LPQ ∩ E, the three points of intersection of LPQ with E. Then
(P ∗Q) ∗ P = R ∗ P = Q.
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P Q

R

P ∗Q

(P ∗Q) ∗R

Q ∗ S(Q ∗ S) ∗R

S((P ∗Q) ∗R) ∗ S

P ∗ ((Q ∗ S) ∗R)

3. If LPP is the tangent line to E at P , the only other intersection point in LPP ∩E is
Q.

4. P, Q, P ∗ Q, (Q ∗ S) ∗ R, Q ∗ S, R, S, (P ∗ Q) ∗ R, P ∗ ((Q ∗ S) ∗ R) are 9 points
of intersection of E and the cubic curve generated by the vertical lines in the above
�gure. Then, by Lemma 1.4, the cubic curve generated by the horizontal lines,
containing 8 of the 9 previous points, must pass also through P ∗ ((Q ∗ S) ∗ R).
As the intersection of E and the horizontal lines must contain at most 9 points by
Bezout's Theorem [45], ((P ∗Q) ∗R) ∗ S must coincide with P ∗ ((Q ∗ S) ∗R).

We use the previous operation to de�ne a composition law on the group of point of E.

De�nition 1.6. Let O be the point at in�nity of an elliptic curve E, then we de�ne the
following composition law:

⊕ : E × E −→ E

(P,Q) 7−→ P ⊕Q := O ∗ (P ∗Q).
(1.5)

We �rst prove that the above de�nition is actually a group law, then we give explicit
formulae to compute this by means of a�ne coordinates for a curve with equation 1.4.

Theorem 1.7. The composition law 1.5 has the following properties:

1. If a line L intersects E at the points P,Q,R (not necessarily distinct), then:

(P ⊕Q)⊕R = O;

2. (identity element) P ⊕O = P, ∀P ∈ E;

3. (commutativity) P ⊕Q = Q⊕ P, ∀P,Q ∈ E;

4. (inverse) ∀P ∈ E there is a point denoted by 	P such that P ⊕ (	P ) = O;

5. (associativity) (P ⊕Q)⊕R = P ⊕ (Q⊕R), ∀P,Q,R ∈ E.

In other words, (E,⊕) is an abelian group with identity element O. Moreover, if we assume

that E is de�ned over K, then E(L) is a subgroup of E = E(K̄) for every �eld L such that

K ≤ L ≤ K̄.

Proof. We prove all parts mainly using properties of Proposition 1.5.

8



1. (P ⊕Q)⊕R = O ∗ ((O ∗ (P ∗Q)) ∗R) = O ∗ ((O ∗R) ∗R) = O ∗O = O.

2. P ⊕O = O ∗ (P ∗O) = O.

3. Follows directly from the commutativity of the operation ∗ and the de�nition of 1.5.

4. Consider 	P = P ∗O and check that it is the inverse element of P ; indeed P ⊕ (P ∗
O) = (P ⊕O)⊕ (P ∗O) = O, where the two equalities follow from (1) and (2)

5. (P⊕Q)⊕R = O∗(((P ∗Q) ∗O) ∗R) = O∗(P ∗ ((Q ∗R) ∗O)) = O∗(P ∗(Q⊕R)) =
P ⊕ (Q⊕R).

Finally, if P,Q have coordinates in L, then the equation of LPQ has coe�cients in L. If
further E is de�ned over K, then the third point of intersection must have coordinates
given by a rational combination of the coe�cients of both the line and the curve and hence
in L. This proves that E(L) ≤ E.

We will use only + and − instead of ⊕ and 	 to ease the notation. We also de�ne for each
m ∈ Z a scalar multiplication function [m] : E −→ E:

P 7−→ [m]P :=


P + P + . . .+ P︸ ︷︷ ︸

m times

if m ≥ 0,

(−P ) + (−P ) + . . .+ (−P )︸ ︷︷ ︸
−m times

if m < 0.
(1.6)

Next we can �nd explicit formulae for the group law, assuming to have an elliptic curve
de�ned by the a�ne equation y2 = x3 + ax+ b; note that one can also derive the formulae
for a general Weierstrass equation [52] with a similar approach. Given P1, P2 ∈ E(K), to
apply the De�nition 1.5 we need to compute P = P1 ∗ P2 and then O ∗ P . We will use
projective coordinates to easily interpret lines that contain O.

Lemma 1.8. Let P =
[
x, y, 1

]
∈ P2

K such that P ∈ E, then O ∗ P =
[
x,−y, 1

]
.

Proof. The line connecting P with O has points given by the following equation:[
x, y, 1

]
+ α

[
x, y − 1, 1

]
=
[
(α+ 1)x, (α+ 1)y − α, α+ 1

]
.

By substitution in the curve's homogeneous equation Y 2Z = X3 + aXZ2 + bZ3 we get:

y2(α+ 1)3 + α2(α+ 1)− 2yα(α+ 1)2 = x3(α+ 1)3 + a(α+ 1)3x+ b(α+ 1)3

⇔ (y2 − x3 − ax− b)(α+ 1)2 + α2 − 2yα(α+ 1) = 0

⇔ α(α(1− 2y)− 2y) = 0,

where the �rst left hand side term in the second equation vanishes since
[
x, y, 1

]
belongs

to the curve. Thus a solution is α = 0, which gives P , and the other is α = 2y/(1 − 2y),
so that

O ∗ P =
[

x
1−2y ,

−y
1−2y ,

1
1−2y

]
=
[
x,−y, 1

]
.

If, in the previous Lemma, we consider the a�ne coordinates, then given P = (x, y), it
holds O ∗ P = (x,−y).
It only remains to compute P1 ∗ P2, where Pi =

[
xi, yi, 1

]
i = 1, 2. We assume P1 6= P2

and also P1, P2 6= O; then we compute the connecting line LP1P2 in the projective plane.

LP1P2 : 0 =

∣∣∣∣∣∣
X x1 x2

Y y1 y2

Z 1 1

∣∣∣∣∣∣ = X(y1 − y2)− Y (x1 − x2) + Z(x1y2 − y1x2)

9



Assuming that x1 6= x2, the previous equation becomes

Y = mX + qZ,

with

m =
y1 − y2

x1 − x2
, q =

x1y2 − y1x2

x1 − x2
.

The unique point at in�nity of the curve is O =
[
0, 1, 0

]
, which does not lay on the line,

hence we can now look at LP1P2 by means of a�ne coordinates. The dehomogenisation
with respect to Z gives y = mx+ q and by substitution in the a�ne equation of E, we get
the cubic equation

x3 −m2x2 + (a− 2mq)x+ b− q2 = 0.

Note that two distinct roots of this equation, namely x1, x2, are already known since
P1, P2 ∈ LP1P2 ∩ E. Denoting by t the third one, we can write the cubic as

(x− x1)(x− x2)(x− t) = x3 − (x1 + x2 + t)x2 + . . . .

Therefore, the corresponding degree 2 terms must be equal and we have

x1 + x2 + t = m2 =⇒ t = m2 − x1 − x2.

Using the line's equation we �nd the coordinates of P1 ∗ P2 and according to Lemma 1.8
it su�ces to change the second coordinate sign to get

P1 + P2 = (m2 − x1 − x2;−m3 +mx1 +mx2 − q). (1.7)

Next assume x1 = x2 = x and y1 6= y2, so that the points are still distinct. We can �nd
the line connecting them as before, getting LP1P2 : X = Zx. This equation is satis�ed
by O which must be the third point in LP1P2 ∩ E. Then note that O ∗ O = O and hence
P1 + P2 = O.
The last case left is when P1 = P2 =

[
x̄, ȳ, 1

]
; we take as connecting line the tangent line

to E at P1 = P2 = P . Note that, as we proved in our general hypotheses, all points of E
are non-singular, thus LPP is given by

∂E

∂X
(x̄, ȳ, 1)X +

∂E

∂Y
(x̄, ȳ, 1)Y +

∂E

∂Z
(x̄, ȳ, 1)Z = 0,

which gives the equation

(−3x̄2 − a)X + 2ȳY + (ȳ2 − 2ax̄− 3b)Z = 0.

If ȳ = 0 the line becomes (−3x̄2 − a)X − (2ax̄+ 3b)Z = 0 and O belongs to it; this shows
that the third point of LPP ∩ E is O and P1 + P2 = O.
Otherwise, if ȳ 6= 0 we can work on the a�ne equation for LPP :

y = mx+ q.

where

m =
3x̄2 + a

2ȳ
, q =

−ȳ2 + 2ax̄+ 3b

2ȳ

and hence we can apply the same procedure as in the �rst case. Substituting in the curve's
equation we get again a cubic equation in the indeterminate x, of which we know the

10



double root x̄. Comparing the degree two term of that equation with the corresponding
one in

(x− x̄)2(x− t) = 0 ⇐⇒ x3 − (2x̄+ t)x2 + (x̄2 + 2x̄t)x− x̄2t = 0,

we �nd out that
t = m2 − 2x̄.

Hence substituting in the equation for LPP and changing the second coordinate sign we
have

P + P = (m2 − 2x̄,−m3 + 2mx̄− q)

To sum up we state the following theorem.

Theorem 1.9 (Group law formulae). Let E : y2 = x3 + ax + b be an elliptic curve and

Pi = (xi, yi) 6= O, with i = 1, 2. De�ne P = P1 + P2, then:

1. If x1 6= x2 we have

P = (m2 − x1 − x2;−m3 +mx1 +mx2 − q),

with

m =
y1 − y2

x1 − x2
, q =

x1y2 − y1x2

x1 − x2
.

2. If x1 = x2, but y1 6= y2, we have P = O.

3. If P1 = P2 and y1 = 0, we have P = O.

4. If P1 = P2 = (x̄, ȳ) and ȳ 6= 0, we have

P = (m2 − 2x̄,−m3 + 2mx̄− q),

with

m =
3x̄2 + a

2ȳ
, q =

−ȳ2 + 2ax̄+ 3b

2ȳ
.

These formulae show that the operation + can be computed in polynomial time, since all
the expressions found contain only sums, multiplications and fractions. As we can see, the
group law formulae are more complicated than operations on integers modulo n, classically
used in cryptography. However, the important fact is the existence of such a group law
that makes subgroups of the points of E appropriate also for cryptographic purposes.

1.3 Finding points on elliptic curves

The existence of a group structure in every set E(L) is certainly a nice property, but it
should be stressed that it is useful in cryptography only in case we are able to e�ciently
�nd random points on the curve. A procedure that would give such a point on E : y2 =
x3 + ax+ b, with a, b ∈ K, is the following:

1. given a �eld L ⊇ K, randomly choose x ∈ L;

2. solve y2 = x3 + ax+ b for y; if there are no solutions, then go to step (1),

3. if the solution is unique then set P = (x, y), otherwise set P = (x, yj), where j
is randomly chosen in {1, 2} and y1, y2 are the two distinct solutions to the curve
equation in the variable y.

11



In this way, we have established a possible method that has few acceptable drawbacks;
�rstly, it is not possible to �nd O, but this is not cryptographically interesting, since it is
the identity of the group and hence not relevant. Secondly, points (x, 0) on the x-axis have
slightly more probability to be found since that result does not lead to the �nal random
choice between two di�erent solutions. If the group is su�ciently large, the di�erence from
uniform distribution is small, because there are at most three such points (intersections
between the x-axis line and E).
The e�ciency of the previous procedure depends on methods used in �nding square roots
in a �eld. We will show that this is possible in whatever �nite �eld with probabilistic
polynomial time, applying a variant of the Tonelli-Shanks algorithm [3]. One can �nd
faster algorithms in [9], which are beyond the aim of this thesis.

1.3.1 Tonelli-Shanks Algorithm

Let q = pk with p an odd prime and consider the �nite �eld Fq. Let �rst show some
preliminary results.

Proposition 1.10. Let Fq be the �nite �eld with q elements. There are q − 1 squares in

Fq if q is even and 1
2(q − 1) squares if q is odd.

Proof. Recall that the multiplicative group F∗q of a �nite �eld is cyclic. Hence de�ne the
map

σ : F∗q −→ F∗q
x 7−→ x2,

(1.8)

which is a group homomorphism. Its kernel is

ker(σ) = {1} ∪ {g ∈ F∗q | ord(g) = 2};

and has cardinality

|ker(σ)|=

{
1 if q is even;

2 if q is odd.

Indeed, if q is odd then 2 | (q−1) and so there exists a unique element of order 2. Otherwise,
if q is even, then 2 - q − 1 and F∗q contains no elements of order 2. Hence, by isomorphism
theorems:

F∗q
ker(σ)

∼= Im(σ) =⇒ |Im(σ)| =

{
q − 1 q even;
1
2(q − 1) q odd.

The next result shows how to �nd square roots in a particular case.

Proposition 1.11. Let G be a group of odd order m and let a ∈ G, then x2 = a has a

unique solution in G, which is a(m+1)/2.

Proof. Note that if we set x := a(m+1)/2, we have x2 = am+1 = ama = a. To prove the
uniqueness, let us consider the map 1.8 and note that it is injective. Indeed, being m odd
we can write m+ 1 = 2k and, assuming x2 = y2, we have:

x = x2k = y2k = y.

Since G is �nite the map is also surjective and hence a bijection.
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Keeping the previous results in mind, we see what happens in general; at �rst, we can
easily write q − 1 = 2st for some t odd dividing by 2 as many times as possible. By the
structure theorem for cyclic abelian groups we know that

F∗q ∼= Z2s × Zt

Thus we have H = {(1, h) : h ∈ Zt}, the unique subgroup of order t of the cyclic group
F∗q . Next, if Z2s = 〈k〉, we build a chain of subgroups

H = G0 ⊆ G1 ⊆ . . . ⊆ Gs−1 ⊆ Gs = F∗q , (1.9)

with |Gs−i| = 2s−it and | GiGi−1
| = 2. To get each subgroup of the chain it su�ces to take

Gj := 〈k2s−j 〉×Zt for all j = 1, . . . , s. Next, consider the quotient Gs/H and the projection
map:

Gs
π−→ Gs

H
∼= Z2s .

Proposition 1.12. If g ∈ F∗q is not a square, then π(g) = gH is a generator of Gs/H.

Proof. By contradiction we assume that gH does not generate Gs/H and we show that it
must be g = a2, with a ∈ F∗q . As F∗q ∼= Z2s ×H ∼= 〈k〉× 〈h〉, we can write g = (ka, hb) with

1 ≤ a ≤ 2s and 1 ≤ b ≤ t. By Proposition 1.11, we know that
(
hb
)(t+1)/2

is a square root
of hb ∈ Zt. It remains to check if ka is a square too; we see that

ord(ka) =
ord(k)

(ord(k), a)
=

2s

(2s, a)
= 2s ⇔ (2s, a) = 1.

By the initial hypothesis, ka cannot have order 2s, thus a must be even. This shows that
ka = (ka/2)2.

Note that, assuming q odd, it exists a non-square element, because in this case only half
of the elements in F∗q are squares by 1.10. We do not know a deterministic algorithm that
�nds a non-square element, so we will pick g ∈ F∗q at random and Proposition 1.10 gives

probability 1
2 to �nd a non-square. This property can be tested e�ciently by the following

Proposition.

Proposition 1.13. A non zero element a ∈ Fq is a square (respectively non-square) if and

only if:

a
q−1
2 = 1 (respectively -1).

Proof. Consider the polynomial f(x) = xq−1 − 1 in Fq[x] and let a ∈ F∗q . As aq = a holds
in F∗q , we see that every element of the group is a root of f(x). Therefore, the polynomial
has exactly q − 1 roots; moreover

f(x) =
(
x
q−1
2 + 1

)(
x
q−1
2 − 1

)
, (1.10)

because q − 1 is even. Since in Fq there are no zero divisors and we know f(a) = 0, then

either a
q−1
2 = −1 or a

q−1
2 = 1 for all a ∈ F∗q . Both the polynomials in the product have

exactly 1
2(q − 1) roots and note that if a = b2, b ∈ F∗q then a

q−1
2 = bq−1 = 1. We conclude

that the square elements on Fq are exactly the roots of the second factor in 1.10 and the
non-square ones are roots of the �rst.
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The previous results allow us to �nd a generator gH of Gs/H; therefore, it is always
possible to write every element a ∈ F∗q in the form geh, for some h ∈ H. The idea is to �nd
the square root of a computing it separately for ge and h. The latter has an easy square
root provided by Proposition 1.11; for the �rst one we should use the above construction.
We look at the chain 1.9 and we start from the top, since we are given a ∈ Gs; we want
to descend the chain multiplying a by powers of the non-square element, which we can
write as g = (k2γ+1, hδ). Initialize an exponent counter e1 := 0 and let a = (k2α, hβ) be a
square; we check it applying Proposition 1.13. It follows that a ∈ 〈k2〉 × 〈h〉 = Gs−1.
We now examine the �rst step of the algorithm, where we check if a ∈ Gs−2: this happens

if and only if a
q−1

22 = a2s−2t = 1, because:

• |Gs−2| = 2s−2t gives that a ∈ Gs−2 ⇒ a2s−2t = 1;

• on the contrary, 1 = a2s−2t = (k2s−1αt, h2s−2bt) ⇔ 2s|(2s−1αt); since t is odd, we
have that 2 | α and a ∈ 〈k4〉 × 〈h〉 = Gs−2.

If that condition is true we set e2 := e1, otherwise, if a
q−1
4 6= 1, it is easy to see that α is

odd, as before. Thus we consider ag−2 and we show that it is contained in Gs−2:(
ag−2

)2s−2t
=
(
k2α−2(2γ+1), hβ−2δ

)2s−2t

=
(
k−2stγ+2s−1t(α−1), h(β−2δ)2s−2t

)
= (1, 1),

because α− 1 is even and so 2s divides the exponent of k. Thus we update the exponent
counter for g setting e2 := e1 + 22−1.
In general, given ei−1 such that ag−ei−1 ∈ Gs−i+1, we want to de�ne ei such that ag−ei ∈
Gs−i.

• If (ag−ei−1)
q−1

2i = 1, we have(
k2α−ei−1(2γ+1), hβ−ei−1δ

)2s−it
= (1, 1) ⇒ 2s | 2s−it(2α− ei−1(2γ + 1)).

Therefore 2i | 2α − ei−1(2γ + 1) and hence ag−ei−1 ∈ Gs−i = 〈k2i〉 × 〈h〉. We set
ei := ei−1.

• Otherwise, observe that ag−ei−1−2i−1 ∈ Gs−i. First, we remark that it easy to see by
construction that 2 | ei−1 and, as before, we �nd out that 2i - 2α− ei−1(2γ + 1), but
2i−1 divides it by de�nition of ei−1. Then we have(

ag−(ei−1+2i−1)
)2s−it

=
(
k2s−i+1tα−(2s−iei−1+2s−1)(2γ+1)t, h(β−ei−1δ−2i−1δ)2s−it

)
,

where the second component is 1 because t = ord(h) divides the exponent, so the
previous identity becomes, after few calculations,

k−2sγt · k2s−1t
(

2α−(2γ+1)ei−1

2i−1 −1
)

= 1.

Indeed, as seen before, 2 |
(

2α−(2γ+1)ei−1

2i−1 − 1
)
. In this case we set ei := ei−1 + 2i−1.

We apply the previous steps for i = 2, . . . , s and output g
es
2 h

t+1
2 ; this process is known as

randomized Tonelli-Shanks algorithm.
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Theorem 1.14. The randomized Tonelli-Shanks algorithm on F∗q, with q an odd prime

power, fails with probability 1/2; if it does not fail it returns a square root of a, provided
that a ∈ F∗q is a square.

Proof. A random choice for the non-square element g will succeed with probability 1/2,
then after Tonelli-Shanks loop we end up with ag−es ∈ H and 2 | es We conclude that

g
es
2 h

t+1
2 is actually the square root of a.

To sum up, we write down the algorithm.

Algorithm 1 Tonelli-Shanks Algorithm - computes b =
√
a with a ∈ F∗q and q odd.

Require: q odd, a ∈ F∗q .
Ensure: b =

√
a

1: A← a

2: Z ← g
R

∈ F∗q
3: if Z

q−1
2 = 1 then

4: fail
5: else {Z in a non-square}
6: let q − 1 = 2st
7: e← 0
8: for i = 2 to s do
9: if (AZ−e)

q−1

2i 6= 1 then
10: e← e+ 2i−1

11: end if

12: end for

13: h← AZ−e

14: return b← Z
es
2 h

t+1
2

15: end if

This proves that it is possible to e�ciently �nd random points on the set of rational points
of an elliptic curve over a �nite �eld.
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Chapter 2

The Weil pairing

The aim of this chapter is to de�ne the Weil pairing, that is a bilinear map de�ned on the
product of two subgroups of an elliptic curve's group of points. This provides an example
of a map for the pairing based cryptography. We need, at �rst, to generalize the de�nition
of elliptic curve, in order to introduce some tools that are necessary to de�ne the Weil
pairings.

2.1 Algebraic varieties and curves

A slightly more general approach to elliptic curves involves some algebraic geometry tools.
We brie�y introduce a�ne and projective algebraic varieties and see how general curves,
and more speci�cally elliptic ones, are de�ned as some of them. Then we will give some
de�nitions related to varieties, before introducing the Weil map. We denote by K[X] =
K[X1, . . . , Xn] the ring of n-variate polynomials over the �eld K and by An, Pn the a�ne
and projective spaces over the algebraic closure K̄ of the �eld K.

De�nition 2.1. Given an ideal I ⊂ K̄[X], we say that the a�ne algebraic set relative to
I is the set:

VI = {P ∈ An : f(P ) = 0, ∀f ∈ I}.
Moreover, if V is an a�ne algebraic set, the associated ideal I(V ) is the ideal of K̄[X]
given by

I(V ) = {f ∈ K̄[X] : f(P ) = 0 ∀P ∈ V }.
We say that an a�ne algebraic set V is de�ned over K, and we denote it by V/K, if I(V )
is generated by polynomials in K[X]. Its set of K-rational points is

V (K) = V ∩ AnK .

Eventually, we say that V is an a�ne variety when I(V ) is a prime ideal in K̄[X].

We see that every ideal of K[X] and K̄[X] is �nitely generated, since every �eld is Noethe-
rian and thus Hilbert's basis theorem applies, showing that these polynomial rings are
Noetherian. An important consequence is that every a�ne algebraic set V is the zero set
of a �nite set of polynomials. Therefore, an algebraic set is de�ned over the �eld K if and
only if there exist a �nite set {f1, . . . , fs} ⊆ K[X] such that for every f ∈ I(V ) we have
f = f1r1 + · · ·+ fsrs for some r1, . . . , rs ∈ K̄[X].

Remark 2.2. Let V be an a�ne algebraic set and de�ne I(V/K) := I(V ) ∩K[X]. Then
V is de�ned over K if and only if:

I(V ) = I(V/K)K̄[X].
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Indeed, if we assume the previous equality, we see that for every f ∈ I(V ) we have
f =

∑l
i=0 giri, where gi ∈ I(V/K) ⊆ K[X] and ri ∈ K̄[X] for i = 0, . . . , l. Thus,

I(V ) is generated by polynomials of K[X]. The converse follows from the de�nition of
ideal.

De�nition 2.3. The a�ne coordinate ring of an a�ne variety V/K is the quotient ring

K[V ] :=
K[X]

I(V/K)
=

K[X]

I(V ) ∩K[X]
.

We also call its �eld of fractions K(V ) the function �eld of V/K. We similarly de�ne K̄[V ]
and K̄(V ).

To justify the previous de�nition we remark that K[V ] is a commutative integral domain,
because V is an a�ne variety, thus I(V ) is a prime ideal and so I(V ) ∩K[X] is a prime
ideal in K[X]. Recall that the quotient of a ring by a prime ideal is an integral domain.
Moreover, the a�ne coordinate ring is Noetherian since it is the quotient of a Noetherian
ring.

De�nition 2.4. Let V be an a�ne variety and P ∈ V . We de�ne the following ideal in
K̄[V ]:

MP := {f ∈ K̄[V ] : f(P ) = 0},

which is maximal since the map

K̄[V ]

MP
−→ K̄ f 7→ f(P )

is an isomorphism. Indeed, it is clearly a ring homomorphism, which is surjective because
any k ∈ K̄ it is the image of the coset f(X) = k + MP . It is also injective, since
distinct cosets f + MP , g + MP ∈ K̄[V ]/MP are such that f − g /∈ MP , or equivalently
f(P )−g(P ) 6= 0. Then the quotient ring is a �eld, MP is maximal and thus prime. Notice
also that MP /M

2
P is a �nite dimensional K̄-vector space.

Proposition 2.5. The local ring of the a�ne variety V at P

K̄[V ]P :=
{
f ∈ K̄(V ) : f =

g

h
, with g, h ∈ K̄[V ], h(P ) 6= 0

}
.

is Notherian and local.

Proof. We claim that K̄[V ]P is the localization of K̄[V ] at MP . Indeed, the set S :=
K̄[V ] \MP is multiplicatively closed and it gives the localization S−1K̄[V ] =: A. The set:

M̃P :=

{
f

s
: f ∈MP , s ∈ S

}
is a well-de�ned ideal of A and for every g/t ∈ A\M̃P we have that g ∈ S and hence g/t is

a unit of A. It follows that M̃P is the unique maximal ideal of A and so that A is local. To
conclude, it is well-known that the localization of a Noetherian ring is still Notherian.

Therefore, the evaluation at P of every quotient of polynomials f = g/h ∈ K̄[V ]P is well
de�ned. Moreover, the functions in K̄[V ]P are said to be regular (or de�ned) at P .

De�nition 2.6. Let V be an a�ne variety: we say that its dimension, denoted by
dimAn(V ), is the transcendence degree of K̄(V ) over K̄.
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De�nitions and results about transcendence degree can be found for example in [58], [37]
and we do not study this topic here, because it's beyond the aim of this work.

These de�nitions can be stated also in the projective case with few di�erences; the two
cases are related, as usual, by the homogeneization and dehomogeneization mappings. We
say that an ideal I ⊂ K̄[X] is homogeneous if it is generated by homogeneous polynomials.
We associate to every such ideal a subset of the projective space by means of the following
de�nition.

De�nition 2.7. Given a homogeneous ideal I ⊂ K̄[X] we say that its associated projective
algebraic set is:

VI = {P ∈ Pn : f(P ) = 0, ∀f ∈ I}.

Moreover, if V is a projective algebraic set, the associated homogeneous ideal I(V ) is the
ideal of K̄[X] generated by

{f ∈ K̄[X] : f homogeneous, f(P ) = 0 ∀P ∈ V }.

We say that such a V is de�ned over K, denoting it by V/K, if I(V ) can be generated by
homogeneous polynomials in K[X]. Its set of K-rational points is

V (K) = V ∩ PnK .

Eventually, we say that V is a projective variety if I(V ) is a prime ideal in K̄[X].

Same properties as before hold for projective varieties de�ned over the �eldK and similarly
it is possible to construct the coordinate ring and the function �eld of a projective variety
V/K as K[V ∩ An] and K(V ∩ An) respectively. Notice that di�erent choices of the
a�ne space An ⊂ Pn give di�erent projective function �elds, but they are all canonically
isomorphic [52]. In general, we say that functions f ∈ K̄(V ) are regular or de�ned at P if
they are in the local ring K̄[V ]P , which is still de�ned in the projective case as the (a�ne)
local ring of V ∩ An.

Remark 2.8. In particular, if we consider an elliptic curve E/K with Weierstrass equation
1.4 and we set f(X,Y ) = Y 2−X3−aX − b, with a, b ∈ K, then the relative function �eld
is

K(E) = Frac

(
K[X,Y ]

〈f(X,Y )〉

)
.

Similarly as before, the projective dimension of a variety V is de�ned as:

dimPn(V ) = dimAn(V ∩ An).

With all this new notions we can work on elliptic curves in a more general context. They
were de�ned, in the �rst chapter, as the zero loci of the Weierstrass equations as 1.4. In
general, we can de�ne a curve to be a projective variety of dimension 1. This means that
we have the same de�nitions that we have just studied in this section also in the case of
elliptic curves. Next, we give some other de�nitions about curves in general. We assume
for our purpose that curves are non-singular, because we focus on elliptic curves that are
so. Recall that in this general context we de�ne a smooth or non-singular point P of a
variety V as a point such that (

∂fi
∂Xj

(P )

)
1≤i≤m, 1≤j≤n
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has rank n− dim(V ), where fi ∈ K̄[X] for i = 1, . . . ,m are generators for I(V ). A variety
is said to be smooth or non-singular if all its points are smooth.
The local ring of a curve C at P is a Noetherian local domain by Proposition 2.5. It follows,
by [2, Proposition 9.2], that it is a discrete valuation ring, because one can show:

dimK̄(M̃P /M̃
2
P ) = 1.

We have the following discrete valuation map.

De�nition 2.9. Let C be a curve and P ∈ C; the normalized valuation on K̄[C]P is the
following map:

ordP : K̄[C]P −→ {0, 1, . . .} ∪ {∞}
ordP (f) := sup{d ∈ Z : f ∈Md

P }.

Note that it is a discrete valuation since:

• ordP (fg) = ordP (f) + ordP (g), for every f, g ∈ K̄[C]P ;

• ordP (f + g) ≥ min(ordP (f), ordP (g)), for every f, g ∈ K̄[C]P .

From the de�nition it easily follow that ordP (f/g) = ordP (f) − ordP (g), hence the map
ordP can be extended to K̄(C):

ordP : K̄(C) −→ Z ∪ {∞}.

Functions in K̄(C) are quotients of polynomials f(X) = g(X)/h(X); we say that roots of
the polynomial g are zeros of the function and roots of h are poles of f . It clearly follows
by de�nition of the mapping ordP relative to P ∈ C(K̄) that:

• if k = ordP (f) > 0 then f has a zero at P of multiplicity k;

• if k = ordP (f) < 0 then f has a pole at P of multiplicity −k;

• if k = ordP (f) ≥ 0 then f is regular (or de�ned) at P .

This last condition agrees with the de�nition of regular (or de�ned) function that we gave
above, when we �rst de�ned the function �elds.
To keep track of zeros and poles of a function we introduce divisors. We say that the
divisor group Div(C) of a curve is the free abelian group generated by the points of C. So
a divisor D ∈ Div(C) is a formal sum:

D =
∑
P∈C

np (P ),

with nP ∈ Z and nP = 0 for almost every P ∈ C. We call the sum deg(D) :=
∑

P∈C np
degree of the divisor D. It is possible to associate to every function f ∈ K̄(C)∗ its divisor

div(f) =
∑
P∈C

ordP (f) (P ).

Note that div(f) ∈ Div(C) since, by [52, Proposition II,1.2], there are only �nitely many
points of C that are zeros or poles of f , thus the previous sum has just �nitely many terms.
We say that a divisorD ∈ Div(C) is principal ifD = div(f) for some f ∈ K̄(C)∗. Moreover,
two divisors D1, D2 ∈ Div(C) are called linearly equivalent if D1−D2 is principal. We will
apply [52, Propositions III,3.3-3.5], that are the following results about divisors on elliptic
curves.
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Proposition 2.10. Let E/K an elliptic curve and D =
∑

P∈E nP (P ) ∈ Div(E), then D
is principal if and only if

∑
P∈E nP = 0 and

∑
P∈E [nP ]P = O, where we denote by [·] the

scalar multiplication map 1.6.

Proposition 2.11. Let E/K be an elliptic curve and let P,Q ∈ E. Then, (P ) and (Q)
are linearly equivalent if and only if P = Q.

2.2 Maps between curves

After some basic de�nitions and properties about curves we examine maps between them,
�rst in general and then for elliptic ones. The main reference here is [52] too. We begin
giving a couple of de�nitions about maps and morphisms.

De�nition 2.12. Let V1, V2 ⊆ Pn projective varieties. A rational map from V1 to V2 is a
map

ϕ : V1 −→ V2

ϕ = [f0, . . . , fn],

such that f0, . . . , fn ∈ K̄(V1) are de�ned on every P ∈ V1 and whose images give a point
of V2:

ϕ(P ) = [f0(P ), . . . , fn(P )] ∈ V2.

De�nition 2.13. A rational map of projective varieties ϕ = [f0, . . . , fn] from V1 to V2 is
regular at P ∈ V1 if it exists g ∈ K̄(V1) such that:

1. gf0, . . . , gfn are regular at P ,

2. (gfj)(P ) 6= 0 for some j ∈ {1, . . . , n}.

If such a g exists we set ϕ(P ) = [gf0(P ), . . . , gfn(P )]. If, moreover, the map is regular at
every point of V1 we say that it is a morphism.

Note that the function g in De�nition 2.13 depends on the point P ∈ V1. Morphisms have
the following property.

Proposition 2.14. Let ϕ : C1 → C2 be a morphism of curves, then ϕ is either constant

or surjective.

Moreover, the following result gives conditions for a rational map to be a morphism.

Proposition 2.15. Let C be a curve, V ⊆ Pn a projective variety, P ∈ C a smooth point

and ϕ : C → V a rational map. Then ϕ is regular at P and, moreover, if C is smooth then

ϕ is a morphism.

Next, consider two curves C1/K, C2/K and ϕ : C1 → C2 a non-constant rational map
de�ned over K. Composition with ϕ induces an injection of function �elds �xing K:

ϕ∗ : K(C2) −→ K(C1) ϕ∗f = f ◦ ϕ. (2.1)

Indeed, applying the above results we know that ϕ needs to be surjective, so if f ◦ϕ(P ) =
g ◦ ϕ(P ), ∀P ∈ C1, then f and g coincide on C2. We say that a rational map of curves is
separable, inseparable or purely inseparable if the extension �eld K(C1)/ϕ∗K(C2) has the
same property.
Proposition 2.15 can be applied to elliptic curves, which are smooth, and to the rational
maps canonically associated to them, which have explicit formulae given by Theorem 1.9.
This gives the following result.
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Proposition 2.16. Let E/K be an elliptic curve, the maps giving the group law on E:

+ : E × E → E and − : E → E

(P1, P2) 7→ P1 + P2 P 7→ −P.

are morphisms of curves.

2.2.1 Isogenies

When studying elliptic curves it is useful to describe a particular case of maps between
them, that are isogenies.

De�nition 2.17. Let E1, E2 be two elliptic curves. An isogeny between E1 and E2 is a
morphism of curves

ϕ : E1 −→ E2,

such that ϕ(O) = O. E1 and E2 are isogenous if there exists an isogeny ϕ between them,
such that ϕ(E1) 6= {O}.

Note that by 2.14 we see that every isogeny ϕ satis�es either ϕ(E1) = {O} or ϕ(E1) = E2.
Let

Hom(E1, E2) := {isogenies ϕ : E1 → E2}.

We prove that Hom(E1, E2) is a group under the addition law:

(ϕ+ ψ)(P ) = ϕ(P ) + ψ(P ).

Indeed, by Proposition 2.16, the map ϕ+ ψ given by:

E1 E2 × E2 E2

P (ϕ(P ), ψ(P )) ϕ(P ) + ψ(P ),

ϕ×ψ +E2

is a composition of morphisms and thus a morphism. Moreover, it clearly maps O to itself
and hence it is an isogeny. As +E2 is a group law for the group of points of the elliptic
curve E2, it follows that the addition between isogenies de�nes a group law for the set
Hom(E1, E2). Since isogenies are maps between the groups of points of elliptic curves it
seems natural to focus our attention on isogenies that are group homomorphisms. It turns
out that all of them have this property.

Theorem 2.18. Let E1, E2 be elliptic curves and ϕ : E1 → E2 an isogeny. Then:

ϕ(P +Q) = ϕ(P ) + ϕ(Q),

for all P,Q ∈ E1.

Therefore, Hom(E1, E2) is exactly the group of those morphisms of curves that are group
homomorphisms. The endomorphism ring of an elliptic curve E is de�ned as End(E) =
Hom(E,E). It actually has a ring structure setting:

(ϕψ)(P ) = ϕ ◦ ψ(P ).

The distributive law follows from Proposition 2.18:

(α+ β) ◦ γ(P ) = (α+ β)(γ(P )) = α(γ(P )) + β(γ(P )) = α ◦ γ(P ) + β ◦ γ(P ).
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The invertible elements of the endomorphism ring form the automorphism group of E,
denoted by Aut(E). We implicitly worked on groups of rational points over K̄, but clearly
if the curves are de�ned over a �eld K we can look at isogenies de�ned over K. Their
collection is the group HomK(E1, E2) and consequently we de�ne the endomorphism ring
EndK(E) and the automorphism group AutK(E) over K.

Next, we focus on three particularly useful maps. The �rst one is the translation-by-Q
map:

τQ : E −→ E, τQ(P ) = P +Q. (2.2)

It follows from the addition formulae 1.9 that it is a rational map and so a morphism,
thanks to Proposition 2.15 and smoothness of elliptic curves. For every Q ∈ E the map
τ−Q provides an inverse for the translation-by-Q map, thus every such morphism is actually
an isomorphism. Clearly τQ is not an isogeny, unlessQ = O. It is interesting to notice, here,
that any morphism of elliptic curves is the composition of an isogeny and a translation.

Proposition 2.19. Let F : E1 → E2 be any morphism of elliptic curves. Then F = τ ◦ϕ,
where τ is a translation map as 2.2 and ϕ ∈ Hom(E1, E2) is an isogeny.

Proof. The map
ϕ = τ−F (O) ◦ F

is a composition of morphisms, such that ϕ(O) = F (O)−F (O) = O. Hence ϕ is an isogeny
and we get F = τF (O) ◦ ϕ, as wanted.

Therefore, it follows immediately from Proposition 2.18 that every morphism is the com-
position of a group homomorphism and a translation.
Secondly, we study the family of multiplication maps [m], with m ∈ Z, acting on points of
elliptic curves as de�ned in 1.6. Recall that if a curve is de�ned over K, then also [m] is
so.

Proposition 2.20. For each m ∈ Z the map [m] : E → E de�ned by 1.6 is an isogeny.

Moreover, if m 6= 0 then it is non-constant.

Proof. For every m ∈ Z, arguing by induction on m, we get from Proposition 2.16 that
the repeated sum is an isogeny.
To prove that [m] is non-constant, we �rst study the case m = 2. Consider an elliptic curve
given by the equation 1.4 and let P = (x, y) ∈ E; from the explicit addition formulae 1.9
we get that the x-coordinate of [2]P is:

x4 − 2ax2 − 8bx+ a2

4(x3 + ax+ b)
.

Since char(K) 6= 2, 3, if P has order 2, then it satis�es the identity

x3 + ax+ b = 0.

Hence only �nitely many points of E have order 2 and so [2] 6= [0]. Now, since [mn] =
[m] ◦ [n], applying the previous claim, we are reduced to considering the case of odd m.
Dividing the numerator by the denominator with the division algorithm for polynomials
we get −3ax2 − 9bx+ a2 as residue. If it vanishes, then also the discriminant of the curve
must vanish, as can be easily checked. So the denominator does not divide the numerator
and we can �nd x0 such that the former vanishes for x = x0, but not the latter. Choosing
y0 such that P0 = (x0, y0) ∈ E, then P0 is a non-trivial point of order 2, since [2]P0 = O.
For an odd m we have [m]P0 = P0 6= O, that concludes the proof.
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An important consequence of this result is that all the maps [m], for m ∈ Z, m 6= 0, are
surjective, because they are non-constant morphisms of curves.
Eventually, assume the elliptic curve E/K is de�ned over a �eld with char(K) = p, with
p > 0. Let q = pk and recall that the q-th power map K → K is a homomorphism,
that acts as the identity on Fq; more precisely, x ∈ Fq if and only if xq = x. Then, if E
is the zero locus of f(x, y) = y2 − x3 − ax − b (1.4), let E(q) be the curve generated by
f (q)(x, y) = y2−x3− aqx− bq. Note that E(q) is an elliptic curve too, being the zero locus
of a Weierstrass equation, and it is non-singular, since by means of an easy computation
it holds ∆(E(q)) = ∆(E)q 6= 0. The q-th Frobenius morphism is the map:

Φq : E −→ E(q) Φq(x, y) = (xq, yq). (2.3)

Indeed, for every point P = (x, y) ∈ E, it holds:

f (q)(Φq(P )) = f (q)(xq, yq) = f(x, y)q = 0.

The map is actually a morphism, since Proposition 2.15 applies; furthermore, having
Φq(O) = O, Φq is an isogeny. In particular, if K = Fq, then E = E(q) and so the q-
th Frobenius map is an endomorphism of E/Fq, whose set of �xed points is exactly E(Fq).

2.3 Weil pairing

We �nally have the background to construct the Weil pairing. First, we need to de�ne
an important subgroup of points on an elliptic curve. From now on all the curves E/K
are de�ned over a �nite �eld K = Fpk of characteristic p. Let n = |E(K)| and assume
without loss of generality that (n, p) = 1 since, on the contrary, one can set the anomalous
attack [57], which breaks the discrete logarithm problem in linear time.

De�nition 2.21. Let r ∈ N, r 6= 0; the subgroup of E(L), with L ⊇ K, given by

E(L)[r] = {P ∈ E(L) : [r]P = O},

is called the r−torsion subgroup. Its elements are all points whose order divides r. We
simply denote by E[r] the subgroup E(K̄)[r].

The r−torsion subgroup is the kernel of the scalar multiplication map [r]. Clearly it
exists some integer m ≥ 1 such that E(Fpm)[r] = E[r] and then for all m′ > m we have

E
(
Fqm′

)
[r] = E[r]. Next theorem describes the structure of E[r]; its proof follows from

theorems about isogenies, that we do not study.

Theorem 2.22. Let E/K be an elliptic curve and let r ∈ N, r 6= 0. Then it holds:

1. if either char(K) = 0 or char(K) = p > 0, with (p, r) = 1, then:

E[r] = Zr × Zr;

2. if char(K) = p > 0, then one of the following holds:

(a) E[pj ] = {O}, for all j = 1, 2, 3 . . .

(b) E[pj ] = Zpj , for all j = 1, 2, 3 . . .

This result leads to the following classi�cation of elliptic curves.
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De�nition 2.23. An elliptic curve E/K, de�ned over a �eld K of characteristic p > 0, is
called supersingular if E[p] = {O} and ordinary otherwise.

Now, we can actually construct the Weil pairing; we denote by r ≥ 2 an integer prime to
p. Let T ∈ E[r] and consider the divisor D = r(T ) − r(O). This is principal thanks to
Proposition 2.10, i.e. D = div(f) for some function f ∈ K̄(E). Next, it exists T ′ ∈ E such
that [r]T ′ = T , because the multiplication map is surjective. Applying again 2.10, we get
that it exists a function g ∈ K̄(E) such that:

div(g) =
∑

R∈E[r]

(T ′ +R)− (R).

Indeed, it su�ces to note that the coe�cients of the divisors sum to zero and∑
R∈E[r]

T ′ +R−R = [r2]T = [r]T = O,

because the r−torsion group E[r] contains r2 elements. The function g does not depend on
the choice of T ′, since varying R ∈ E[r], all the points P = T ′+R are such that [r]P = T .
Therefore, we could write:

div(g) =
∑

[r]P=T

(P )−
∑

R∈E[r]

(R).

Then, zeros and poles of the composite function f ◦ [r] are points such that multiplied by
r give T and O respectively, or in other words they are zeros and poles of f . So we have:

div(f ◦ [r]) = r

 ∑
[r]P=T

(P )

− r
 ∑
R∈E[r]

(R)

 = r div(g) = div(gr).

Therefore we can assume, multiplying by a suitable constant, that gr = f ◦ [r]. Next, let
S ∈ E[r] and P ∈ E (it could be P = T too); we have:

g(P + S)r = f([r](P + S)) = f([r]P ) = g(P )r.

This proves that g(P + S)/g(P ) ∈ µr is an r-th root of unity. So we can de�ne a map,
which is called Weil er-pairing, by:

er : E[r]× E[r] −→ µr

er(S, T ) =
g(P + S)

g(P )
,

(2.4)

where P ∈ E is any point such that both g(P + S) and g(P ) are de�ned and non-zero.
Note that although g is de�ned up to multiplication by an element of K̄∗, the Weil map
does not depend on it.
Before investigating the connection between the Weil map and cryptographic pairings, we
need to prove some properties. We start with a lemma on Galois theory on elliptic function
�elds, that we will apply in the next proof. Aut(L/K) denotes the group of automorphisms
of the extension �eld L/K that �x elements of K.
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Lemma 2.24. If ϕ : E1 → E2 is an isogeny, then the map:

kerϕ −→ Aut
[
K̄(E1)/ϕ∗K̄(E2)

]
T 7−→ τ∗T

is a group isomorphism, where τT denotes the translation-by-T map 2.2 and τ∗T the auto-

morphism induced on K̄(E1) as in 2.1. Moreover, if ϕ in separable, then [K̄(E1)/ϕ∗K̄(E2)
is a Galois extension.

The proof of this fact is part of [52, Theorem III,4.10]. From Galois theory, the last
part of the statement is equivalent to say that ϕ∗K̄(E2) contains exactly the elements
which are �xed by the automorphisms of K̄(E1), i.e. it is the �xed �eld of the group of
automorphisms.

Theorem 2.25. The Weil er-pairing de�ned by 2.4 is:

1. bilinear: er(S1 + S2, T ) = er(S1, T )er(S2, T )

er(S, T1 + T2) = er(S, T1)er(S, T2)

;

2. alternating: er(S, T ) = er(T, S)−1;

3. non-degenerate: if er(S, T ) = 1 for all S ∈ E[r], then T = O;

4. compatible: if Q ∈ E[rs] and T ∈ E[r], then ers(S, T ) = er([s]Q,T ).

Proof. 1. As in the previous construction, let P ∈ E; linearity in the �rst factor of the
map follows immediately from the de�nition:

er(S1 + S2, T ) =
g(P + S1 + S2)

g(P + S1)
· g(P + S1)

g(P )
= er(S2, T )er(S1, T ).

For the second factor let f1, f2, f3 ∈ K̄(E) and g1, g2, g3 ∈ K̄(E) the functions de�ned
above, relative to points T1, T2 and T3 := T1 + T2 respectively. By Proposition 2.10,
it exists a function h ∈ K̄(E), with divisor

div(h) = (T1 + T2)− (T1)− (T2) + (O).

Moreover, we have:

div

(
f3

f1f2

)
= r(T1 + T2)− r(O)− r(T1) + r(O)− r(T2) + r(O) = r div(h).

This proves that it exists a constant c ∈ K̄∗ such that f3 = cf1f2h
r. Then, if we

compose with the map [r] and recall that fi ◦ [r] = gri for i = 1, 2, 3, we get:

gr3 = f3 ◦ [r] = c(f1f2h
r) ◦ [r] = c(f1 ◦ [r])(f2 ◦ [r])(h ◦ [r])r = cgr1g

r
2(h ◦ [r])r.

So it exists another constant c′ ∈ K̄∗ such that g3 = c′g1g2(h ◦ [r]) and hence:

er(S, T1 + T2) =
g3(P + S)

g3(P )

=
g1(P + S)g2(P + S)h([r]P + [r]S)

g1(P )g2(P )h([r]P )

= er(S, T1)er(S, T2),

because [r]S = O and thus the factors with h simplify.
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2. From (1) we get the identity:

er(S + T, S + T ) = er(S, S)er(S, T )er(S, T )er(T, T ).

So, if we show that er(T, T ) = 1 for all T ∈ E[r], the identity (2) follows immediately
from the above equation.
For every point Q ∈ E, consider the translation-by-Q map τQ 2.2. It holds:

div

(
r−1∏
i=0

f ◦ τ[i]T

)
=

r−1∑
i=0

div
(
f ◦ τ[i]T

)
=

r−1∑
i=0

r([1− i]T )− r([−i]T ) = 0.

Indeed, if f has a zero at T of multiplicity r, then f
(
τ[i]T ([1− i]T )

)
= f(T ) = 0.

So [1− i]T is a zero of f ◦ τ[i]T , with the same multiplicity r; the same idea applies

for the pole. This equality proves that
∏r−1
i=0 f ◦ τ[i]T is constant. Then, we choose

T ′ ∈ E such that [r]T ′ = T , whose existence is provided by the surjectivity of the
map [r]. The product

∏r−1
i=0 g ◦ τ[i]T ′ is also constant, because for every P ∈ E:(

r−1∏
i=0

g ◦ τ[i]T ′(P )

)r
=

r−1∏
i=0

f
(
[r](P + [i]T ′)

)
=

r−1∏
i=0

f ([r]P + [i]T )

=
r−1∏
i=0

f ◦ τ[i]T ([r]P ),

where we know that the last product is constant. Its evaluation at P and P + T ′,
gives:

r−1∏
i=0

g(P + [i]T ′) =

r−1∏
i=0

g(P + [i+ 1]T ′).

When we simplify likewise terms on both sides of this equation, it remains the identity
g(P ) = g(P + [r]T ′) = g(P + T ). We conclude that:

er(T, T ) =
g(P + T )

g(P )
= 1.

3. er(S, T ) = 1 for all S ∈ E[r] implies that g(P +S) = g(P ) for every S ∈ E[r]. Recall
that [r] : E → E is a non constant isogeny with ker[r] = E[r] and it induces the
map [r]∗ : K̄(E)→ K̄(E) on the function �eld. It can be proved that if char(K) - r,
as this is the case, then the map [r] is separable and hence, setting ϕ = [r], the
automorphism group of Lemma 2.24 is a Galois group. Note that τ∗S �xes g for all
S ∈ E[r] = ker[r], since:

g(P ) = g(P + S) = g(τS(P )) = (τ∗Sg)(P ).

Thus, g is contained in the �xed �eld [r]∗K̄(E) and we have g = h ◦ [r], for some
h ∈ K̄(E). Therefore

(h ◦ [r])r = gr = f ◦ [r],

so that f and hm are equal up to multiplication by a constant. Finally, since
m div(h) = div(f), we get div(h) = (T ) − (O) and so we conclude that T = O,
by Proposition 2.11.
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4. Consider the functions f, g ∈ K̄(E), as de�ned above, and note that div(fs) =
rs(T )− rs(O). Then, recalling the above expression for div(g), we have:

div (f ◦ [rs])s = rs

 ∑
[rs]P=T

(P )

− rs
 ∑
R∈E[rs]

(R)


= rs

 ∑
[r]([s]P )=T

(P )

− rs
 ∑

([s]R)∈E[r]

(R)

 = div ((g ◦ [s])rs) .

Therefore, it exists a constant c ∈ K̄∗ such that (g ◦ [s])rs = c(f ◦ [rs])s. Following
the procedure that de�nes the Weil pairing we get:

ers(Q,T ) =
g ◦ [s](P +Q)

g ◦ [s](P )
=
g(P ′ + [s]Q)

g(P ′)
= er([s]Q,T ),

where P ′ = [s]P .

Recall that, assuming (char(K), r) = 1, the r-th roots of unity form a cyclic group of order
r and, thanks to Theorem 2.22, E[r] has Zr-vector space structure.

Corollary 2.26. There exist points S, T ∈ E[r] such that er(S, T ) is a primitive r-th root

of unity.

Proof. Let µd = {er(S, T ) : S, T ∈ E[r]}, with d | r, and note that µd is a subgroup of µr,
since the Weil pairing is bilinear and alternating. Thus, for all S, T ∈ E[r], it holds:

1 = er(S, T )d = er([d]S, T ).

Non-degeneracy implies that [d]S = O and since this holds for every S ∈ E[m], which
contains also some element of order m, it must be d = m.

Remark 2.27. It also possible to prove that if E[r] ⊂ E(K), then µr ⊂ K∗ (see [52]).

Corollary 2.28. Let S, T ∈ E[r], such that er(S, T ) is a primitive r-th root of unity. Then
the map:

f : 〈S〉 −→ µr f(R) = er(R, T ) (2.5)

is a group isomorphism.

A proof follows immediately from properties in 2.26.
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Chapter 3

Cryptographic pairings

3.1 Security problems

We have examined some basic facts about elliptic curves, because of their importance in
cryptography. They provide an alternative to the common choice of �nite groups F∗q , for
some integer q, in cryptographic applications. One of the earliest works on elliptic curves
cryptography (ECC) was proposed by Koblitz [35] in 1987; the group of points E(Fp), on
some elliptic curve, can be used to construct cryptosystems and this approach gives an
advantage in terms of group size. For example, when working on multiplicative groups of
�nite �elds we need to consider, for security's sake, �nite �elds that have 1024-bit size.
Elliptic curves group law needs more complex formulae to be computed and this leads to a
higher computational cost. However, it is often su�cient to take smaller groups, of about
160-bit size, in order to guarantee the same security level. This because, at the moment,
there is no known specialized algorithm to solve the discrete logarithm problem 3.1 on ellip-
tic curves: the most e�cient ones do not apply to the case of elliptic curves, as discussed
in [43]. The best generic methods are based on the birthday paradox and have O(

√
n)

expected running time, where n is the group order. For this reason we can work on elliptic
curves de�ned on smaller �nite �elds than those used in the common multiplicative group
case. This compensates for the increased complexity of the group operations, because the
underlying �eld arithmetic is faster. Though, one should be careful about the choice of
elliptic curves and security parameters, because of improvements in the e�ciency of algo-
rithms solving the discrete logarithm problem on �nite �elds. This induces a modi�cation
of these parameters; some comments and up-to-date information can be found in [46].
We de�ne the discrete logarithm problem (DLP), that is of great importance in cryptogra-
phy, since the security of many cryptosystems rely on its hardness and on related problems.
The choice of its additive formulation is due to the additive structure of the group of points
on an elliptic curve.

De�nition 3.1 (DLP). Let G = 〈P 〉 be an additive group of order n. An instance of the
discrete logarithm problem (DLP) on G is the problem, given P,Q ∈ G, of computing the
integer x ∈ {0, . . . , n− 1} such that Q = xP .

The corresponding problem on elliptic curves has an analogue de�nition, which uses the
multiplication maps 1.6. This problem is believed to be intractable for certain groups [41],
including the multiplicative group of a �nite �eld and the group of points of an elliptic
curve. A second crucial problem, which has been studied since the beginning of modern
cryptography is the following.
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De�nition 3.2 (CDHP). Let G = 〈P 〉 be an additive cyclic group of order n. An in-
stance of the computational Di�e-Hellman problem (CDHP) on G is the problem, given
P, aP, bP ∈ G, of computing abP .

Notice that the DHP easily reduces in polynomial time to the DLP. There are many
problems related to DHP; one of its most studied weaker versions is the following.

De�nition 3.3 (DDHP). Let G = 〈P 〉 be an additive group of order n. An instance of the
decisional Di�e-Hellman problem (DDHP) on G is the problem, given P, aP, bP, cP ∈ G,
of verifying whether cP = abP holds in G.

Of course, being able to solve the CDHP allows immediately to solve the DDHP. We will
examine some variants of these problems in chapter 4.
We show an approximate comparison of ECC on E(Fp) and "conventional" cryptography
on F∗q . Denote by n = dlog2 pe and N = dlog2 qe the approximate sizes of �eld elements in
the di�erent cases. Algorithms solving the DLP on elliptic curves generally have complexity
proportional to

CEC(n) = 2n/2,

as can be found in [10]. Then let:

Lq(µ, c) = exp
(
c(ln q)µ(ln ln q)1−µ) (3.1)

be a complexity function, dependent on the parameters µ, c. When µ = 1 the function
Lq is exponential in ln q, while for µ = 0 it is polynomial in ln q. If 0 < µ < 1 the
behaviour is strictly between polynomial and exponential and it is usually called sub-

exponential. Algorithms solving the DLP on elliptic curves have exponential complexity in
n, while sub-exponential algorithms solving the same problem in F∗q are available. Indeed,
discrete logarithms in such groups can be found in time proportional to Lq(1/3, c0); for
example, there exist algorithms that achieve c0 ≈ 1.92. Under certain assumptions on the
characteristic of the �eld, this parameter has been lowered [5, 33]. These new parameters
are more suitable for the implementation of cryptosystems, but they do not change the
ideas of this comparison. In terms of N and neglecting constant factors, we �nd that the
complexity in the "conventional" case is proportional to:

Cconv(N) = exp
(
c0N

1/3(ln(N ln 2))2/3
)
.

Equating CEC(n) and Cconv(N) and neglecting constant factors, it follows that in order to
achieve a similar level of security in both cases, it results:

n = c1N
1/3(ln(N ln 2))2/3,

where c1 ≈ 4.91. The constants n,N can be interpreted as key sizes, expressed in bits, for
cryptosystems in the two cases. One can �nd a detailed discussion on some well-known
modern algorithms and their complexities in [20, ch. 19-20].

A classical example in cryptography is the Di�e-Hellman key exchange protocol, which is
computationally secure if the CDHP hardness holds. Let G = 〈P 〉 be an additive cyclic
group of order n; the users Alice and Bob want to share a common secret key without
any handshake procedure. Assume that P and n are publicly known. The communica-
tion channel between the users is public and adversaries could get the information shared
through it. The protocol consists of the following steps:
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1. Alice chooses a secret random integer a ∈ {0, . . . , n− 1} and sends aP to Bob;

2. Bob chooses a secret random integer b ∈ {0, . . . , n− 1} and sends bP to Alice;

3. both Alice and Bob compute abP , which will be their common secret key.

If an adversary, that collects n, P, aP, bP , tries to compute the secret key it would have
to solve an instance of the CDHP. This protocol has only one exchange round, since the
messages are independent and can be exchanged at the same time. Moreover, we can easily
extend this procedure to the case of three users: they choose the secret personal param-
eters a, b, c and, after two exchange rounds, they agree on the common key abcP . An
adversary that is able to compute it from the knowledge of n, P, aP, bP, cP, abP, acP, bcP
could get the �nal secret key. This problem is believed to be not easier than CDHP [41].
It remains to understand whether it is possible to �nd a one-round key exchange protocol,
secure against an attacker that observes the communications. Joux in 2000 was able to
apply bilinear pairings, that will be introduced in the next section, to construct such a
protocol. There are many other examples of pairing-based cryptography, such as identity-
based encryption, by Boneh and Franklin [14], and the short signature scheme by Boneh,
Lynn and Shacham [17], that arise interest in studying those maps. Further information
and bibliography can be found in [41]. A more recent work by Boneh, Gentry and Waters
exploits bilinear pairings to construct a broadcast encryption scheme, which is proved fully
collusion secure [15]. An interesting feature of elliptic curves, which allows their applica-
tion to pairing-based cryptography, is the existence of bilinear pairings de�ned on some
subgroups the rational points group. The Weil pairing 2.4, is an easy example of such maps.

3.2 Cryptographic bilinear pairings

In the remainder of this chapter, we give three di�erent de�nitions of cryptographic pairings
and we prove, in the end, that the Weil map �ts them. We consider maps de�ned on
additive groups in analogy to the elliptic curves case. We denote by aP the sum of a ∈ Z
times the group element P and we write 0 for the zero in additive groups or 1 for the
identity in multiplicative groups.

De�nition 3.4 (Symmetric bilinear pairing). Let G,H be respectively an additive and a
multiplicative cyclic group of prime order r and let P be a generator of G. A symmetric

bilinear pairing or type-1 pairing is an e�ciently computable map

e : G×G −→ H

such that it is:

1. non-degenerate: e(P, P ) 6= 1;

2. bilinear : e(aS, bT ) = e(S, T )ab, for all a, b ∈ Z and S, T ∈ G.

The properties of De�nition 3.4 imply that when P is a generator of G, then e(P, P ) is a
generator of H. Indeed, by bilinearity e(P, P )r = e(0, P ) = 1. Moreover, if e(P, P )h = 1
for some h < r, then e(hP, P ) = 1 and hence, by bilinearity, e(hP, t) = 1 for all t ∈ G. We
conclude, since non-degeneracy gives hP = 0, while ord(P ) = r.
It follows that a symmetric bilinear pairing is completely determined by the value it takes
at e(P, P ). Besides the degenerate map, given by e(P, P ) = 0, there are other r − 1 ones
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that are all equivalent up to a constant. If e1, e2 are symmetric pairings, then it exists
c ∈ Z such that for all P1, P2 ∈ G:

e1(P1, P2) = e1(aP, bP ) = e1(P, P )ab = (e2(P, P )c)ab = e2(P1, P2)c,

Furthermore, these maps are symmetric, since:

e(aP, bP ) = e(P, P )ab = e(bP, aP ).

Remark 3.5. The non-degeneracy condition of the symmetric pairing is equivalent to:

e(P1, P2) = 1 ∀P1 ∈ G⇔ P2 = 0 and e(P1, P2) = 1 ∀P2 ∈ G⇔ P1 = 0

Indeed, assuming the conditions of De�nition 3.4 and the identities e(aP, bP ) = 1, for all
b ∈ Z, then e(b(aP ), P ) = 1 for every b ∈ Z. Thus if, by contradiction, aP 6= 0, then
aP must be a generator of G, that has prime order r. Hence b(aP ) = P for some b ∈
{0, . . . , r− 1} and so we get a contradiction. On the other hand, e(0, xP ) = e(P, P )xr = 1
for all P2 = xP ∈ G. The same proof holds for the second variable.
Conversely if, by contradiction, e(P, P ) = 1, then it holds e(aP, P ) = 1 for all a ∈ Z and
hence it would be P = 0.

Note that the e�cient computability is a strong requirement of De�nition 3.4.

In order to get more general de�nitions, one can loose a bit the symmetry requirement,
allowing maps de�ned on the product of di�erent groups.

De�nition 3.6 (Asymmetric bilinear pairing). Let G1, G2 be additive cyclic groups and
let H be a multiplicative cyclic group, all of prime order r. Assume that there exists
an e�ciently computable isomorphism of groups ϕ : G2 → G1, such that its inverse
ϕ−1 : G1 → G2 is not. An asymmetric bilinear pairing or type-2 pairing is an e�ciently
computable map

e : G1 ×G2 −→ H

such that it is:

1. non-degenerate: e(P1, P2) = 1 for all P2 ∈ G2 if and only if P1 = 0 and e(P1, P2) = 1
for all P1 ∈ G1 if and only if P2 = 0;

2. bilinear : e(aS, bT ) = e(S, T )ab, for all a, b ∈ Z and S, T ∈ G.

The existence of an e�ciently computable isomorphism with non e�cient inverse has many
consequences. In particular, one can analyse the pairings performance, vulnerabilities of
cryptosystems due to the application of di�erent types of pairing and the in�uence of
the isomorphism on relations between cryptographic problems, like Di�e-Hellman and
its variants. We do not focus on these topics: some comments on them can be found
in [53, 55] and related works. If ϕ : G2 → G1 had an e�ciently computable inverse,
then type-2 pairings would essentially be the same as type-1 ones. Indeed, consider e as
in 3.6 and the symmetric bilinear pairing σ : G2 × G2 → H, de�ned by the choice of
σ(P2, P2) := e(ϕ(P2), P2), where P2 is a generator of G2. Note that ϕ(P2) is a generator
of G1 and hence, for every S ∈ G1 and T ∈ G2:

e(S, T ) = e(aϕ(P2), bP2)

= e(ϕ(P2), P2)ab

= σ(P2, P2)ab

= σ(aP2, P2) = σ(ϕ−1(S), T ).
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Thus, the asymmetric pairing can be viewed as a symmetric one. In general, even if ϕ−1 is
not e�ciently computable, one can de�ne from the asymmetric pairing a symmetric one:

ẽ : G2 ×G2 −→ H

(aP2, bP2) 7−→ e(ϕ(aP2), bP2) = e(ϕ(P2), P2)ab,

with a, b ∈ {0, . . . , r − 1}. Note that we can prove, similarly to the symmetric case, that
when G2 = 〈P2〉, then e(ϕ(P2), P2) is a generator of H. Moreover, assuming that the
hypotheses in De�nition 3.6 hold, we can still require DDHP to be hard in G1, but not in
G2 any more. Indeed, it is possible to check, by means of an e�cient computation, whether
e(ϕ(aP2), bP2) = e(ϕ(P2), cP2). If this holds, then e(ϕ(P2), P2)ab = e(ϕ(P2), P2)c; it fol-
lows that ab ≡ c mod r and hence abP2 = cP2 in G2. Given the ine�cient computability
of ϕ−1, it is not possible to apply the same idea to solve the DDHP on G1. Eventually, we
can make the previous de�nition even more general.

De�nition 3.7. Let G1, H be an additive and a multiplicative cyclic group of order r,
respectively, and let G2 be an additive group where each element has order dividing r.
If there exist no e�ciently computable homomorphism neither from G1 to G2 nor in the
other direction, then we call general pairing the non-degenerate, bilinear map de�ned at
3.6.

Here the integer r needs not to be prime and the group G2 needs not to be cyclic. However,
if no e�ciently computable homomorphism exists, the de�nition gives a type-3 pairing,
according to literature. We give this general de�nition, as in [39, ch. 1], since in some
works on pairing-based cryptography are considered groups of composite orders and type-
3 pairings [13,16].

Remark 3.8. Assume that the hypotheses in De�nition 3.7 hold and let P1 ∈ G1 and
P2 ∈ G2, both elements of order r; then 〈e(P1, P2)〉 = H: this can be proved using non-
degeneracy and the fact that 〈P1〉 = G1.
The converse does not hold in general: for example, if G1

∼= Z`2 , with ` prime, and
G2
∼= Z` ⊕ Z`, there are no elements of order `2 in G2. However, the converse holds if the

order is a prime number r, because every non-trivial group G2 is cyclic of prime order.
So if e(P1, P2) generates H, then both P1 and P2 cannot be 0, and by non-degeneracy it
follows immediately that rP1 = 0, rP2 = 0. Eventually, if hP1 = 0 for some h < r, then
we come to a contradiction:

1 6= e(P1, P2)h = e(hP1, P2) = e(0, P2) = 1.

The same happens if hP2 = 0 for some h < r.

Remark 3.9. The non-degeneracy (1) in De�nition 3.7 is equivalent to the following
conditions:

• ∀P ∈ G1, P 6= 0, ∃Q ∈ G2 such that e(P,Q) 6= 1;

• ∀Q ∈ G2, Q 6= 0, ∃P ∈ G2 such that e(P,Q) 6= 1.

The proof is straightforward.

These pairings di�er from the previous ones: in particular, they are not all equivalent up
to exponentiation by a constant. This follows from the next proposition.
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Proposition 3.10. Let G1, H be two cyclic groups of composite order r, with additive and

multiplicative notation respectively. Then it exists a bilinear, non-degenerate pairing

e : G1 ×G2 −→ H

(P1, P2) 7−→ h,

where G2 is an additive group of order d | r, P1 ∈ G1, P2 ∈ G2 are generators and h ∈ H
is such that hd = 1.

Proof. Pick h ∈ H of order d | r; then the map de�ned extending by linearity the identity
e(P1, P2) = h is non-degenerate. Indeed, if b ∈ {0, . . . , d− 1} and

e(aP1, bP2) = e(P1, P2)ab = hab = 1 ∀a ∈ {0, . . . , r − 1},

then d | ab for all a ∈ {0, . . . , r−1}; thus d | b and so bP2 = 0. The same argument applies
to the second variable. Furthermore we have:

e(aP1, 0) = e(P1, P2)ad = had = 1,

for all a ∈ {0, . . . , r − 1}. Similarly e(0, bP2) = 1, for all b ∈ {0, . . . , d− 1}.

3.3 Applying the Weil pairing to cryptography

After having examined the various types of cryptographic bilinear pairings, we show that
suitable restrictions of the Weil maps produce examples of pairings for elliptic curves
cryptography. In this case, given an elliptic curve E/Fq, we can construct pairings from
products of additive subgroups of the rational points E(Fqk), for some extension �eld
Fqk ⊇ Fq, to the multiplicative group F∗

qk
. We remark that the Weil map is e�ciently

computable, thanks to Miller algorithm [57].
It is interesting to look for information on the smallest extension of Fq, such that E[r] ⊂
E(Fqk); the aim is to reduce as much as possible the size of the �eld where arithmetic
operations are performed, in order to drop their computational cost. To this purpose,
we de�ne the embedding degree as the integer k that produces this inclusion. It turns
out that if E[r] ⊂ E(Fqk), then r | (qk − 1); however, it may happen that for a certain

smaller extension �eld Fqh it holds that r | (qh − 1), but E[r] * E(Fqh). Only under
certain assumptions the previous condition is also su�cient for this inclusion to hold, as
the following theorem proves.

Theorem 3.11 (Balasubramanian-Koblitz [4]). Let E be an elliptic curve de�ned over Fq
and suppose that r is a prime divisor of N = |E(Fq)|, such that r - q − 1. Then E(Fqk)

contains r2 points of order r if and only if r | (qk − 1).

Proof. Whenever E[r] ⊂ E(Fqk), by 2.27 one gets µr ≤ F∗
qk

and so r | (qk−1). Conversely,

there exists a point P ∈ E(Fq) of order r, because r | N and groups of points are �nite
abelian. If r | (qk − 1), then r - q and hence E(Fqm) contains r2 points of order r, for
some m (2.22). Let Q ∈ E(Fqm), such that P,Q form a basis for the Zr-vector space
E[r] ∼= Zr×Zr. Let Φq denote the q-th Frobenius endomorphism 2.3 on points of E(Fqm).
Since Φq acts as a Zr-linear map on points of order r, [57, Theorem 4.10] states that its
characteristic polynomial modulo r is:

X2 − tX + q ∈ Zr[X],

33



with t = q+ 1−N . Let λ1, λ2 be the eigenvalues and note that Φq �xes P ∈ E[r]∩E(Fq).
Therefore, λ1 = 1 and then λ2 = q; indeed, by substitution in the characteristic polynomial:

q2 − tq + q = Nq ≡ 0 mod r.

Moreover, as r - (q − 1), we see that q 6≡ 1 mod r and so the eigenvalues are distinct.
Thus the action of Φq on E[r] is diagonalizable and hence Φk

q is diagonalizable too. The

latter turns out to be the identity matrix; therefore all points P,Q are �xed by Φk
q , which

implies that all r-torsion points are �xed. We conclude that E[r] ⊂ E(Fqk).

This leads naturally to the following de�nition.

De�nition 3.12. Let E/Fq be an elliptic curve and let r be a prime divisor of |E(Fq)|,
coprime to q. The embedding degree of E, with respect to r (or to a subgroup of E(Fq) of
order r), is the smallest integer k such that r divides qk − 1.

The choice of points when executing some protocol implicitly de�nes cyclic subgroups
generated by the points themselves. However, they might change at every execution of the
algorithm and we should avoid this situation. For example, to enhance e�ciency during
computations of Miller's algorithm, the pairing should act on subgroups G1, G2 of E[r]
de�ned over �elds whose cardinality should be as small as possible. We usually assume, for
cryptographic applications, to deal with subgroups whose order gives embedding degree
k > 1. We further suppose that |E(Fqk)| and p = char(Fqk) are relatively prime, as in
section 2.3. In the following analysis, the �rst group is always de�ned as:

G1 := E(Fq)[r] = E[r] ∩ E(Fq),

while the second one is chosen each time in order to �t the di�erent settings. Thus we will
obtain pairings of the form:

er|G1×G2
: G1 ×G2 −→ µr.

We �rst prove another important result about the structure of the r-torsion subgroup,
which will be useful in the proof of 3.15.

Lemma 3.13. Given an elliptic curve E/Fq, with N = |E(Fq)|, and given a large prime

r | N , let k be the embedding degree of E relative to r and assume that k > 1. Then

E[r] = G1 ⊕Gq ⊂ E(Fqk), where:

G1 = E(Fq)[r] = {P ∈ E[r] : Φq(P ) = P} rational subgroup (3.2)

Gq = {P ∈ E[r] : Φq(P ) = [q]P} trace-zero subgroup (3.3)

and Φq denotes the q-th Frobenius endomorphism 2.3.

Proof. Following the proof of Theorem 3.11, we can prove that Φq has two eigenvalues
λ1 = 1, λ2 = q as a Zr-linear map over E[r]. They are distinct modulo r, since from k > 1
it follows that q 6≡ 1 mod r; thus the r-torsion subgroup decomposes as:

E[r] = ker(Φq − Id)⊕ ker(Φq − q Id) = G1 ⊕Gq.

Now we introduce a crucial map for the implementation of type-2 pairings. Let E/Fq be an
elliptic curve, and let assumptions in the previous lemma hold. The trace map is de�ned
as:

Tr : E(Fqk) −→ E(Fq) R 7−→
k−1∑
i=0

Φi
q(R).

We have Tr(R) ∈ E(Fq), since Φq(Tr(R)) = Tr(R) for all R ∈ E(Fqk). Being the q-th
Frobenius map a group homomorphism, it easily follows that also the trace map is so.
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Remark 3.14. As every Q ∈ G1 is �xed by Φq, then the Frobenius trace obviously acts
on G1 as multiplication by k. Moreover, it acts on Gq as multiplication by (qk−1)/(q−1).
Indeed, given S ∈ Gq we have:

Tr(S) = S + [q]S + [q2]S + · · ·+ [qk−1]S =

[
k−1∑
i=0

qi

]
S =

[
qk − 1

q − 1

]
S.

If we assume, as in Lemma 3.13, that the embedding degree is k > 1, then we have that

r | (qk − 1) and r - (q − 1), hence r | q
k−1
q−1 . Therefore Tr(S) = O and we have:

ker
(

Tr|E[r]

)
= Gq im

(
Tr|E[r]

)
= G1.

It follows from the structure of the r-torsion subgroup E[r] (2.22), that both the rational
and the trace zero subgroups have order r, since they are both non-trivial.

Theorem 3.15. In the same hypotheses of Lemma 3.13, the restriction of the Weil pairing

er|G1×Gq
(or er|Gq×G1

) is non-degenerate. More generally, if G2 6= G1, Gq is any cyclic

subgroup of E[r], then the Weil pairing restricted to G1×G2, G2×G1, Gq×G2 or G2×Gq
is non-degenerate.

Proof. The Weil pairing er is non-degenerate on E[r], but it is trivial on G1 × G1 and
Gq × Gq, since both G1, Gq are cyclic and the map is alternate. Thus we can show that
for every O 6= P ∈ G1 it exists Q ∈ Gq, such that er(P,Q) 6= 1. Indeed, assume by
contradiction that all Q ∈ Gq give er(P,Q) = 1 and note that, being E[r] = G1 ⊕ Gq,
every point in E[r] can be written as [a]S+[b]T , with S, T generators of G1, Gq respectively.
Thus the equality

er(P, [a]S + [b]T ) = er(P, S)aer(P, T )b = er([c]S, S)aer(P, T )b = 1

gives a contradiction with the non-degeneracy condition on E[r]. This proves the non-
degeneracy of er|G1×Gq

and the same idea applies for er|Gq×G1
.

Moreover, let G2 be a cyclic subgroup: for every O 6= P ∈ G1, if Q ∈ Gq is such that
er(P,Q) 6= 1, then it exists R ∈ G1 such that R + Q ∈ G2. Therefore we get the non-
degeneracy of the restriction er|G1×G2

, since:

er(P,R+Q) = er(P,R)er(P,Q) = er(P,Q) 6= 1.

The other cases can be similarly proved.

Now, suppose that P,Q are generators of the groups G1 and Gq respectively, so that
E[r] = 〈P 〉 ⊕ 〈Q〉. We shall assume, in addition, that Tr(P ) = [k]P 6= O, since in a
cryptographic context r is much bigger than k [23].

Lemma 3.16. Let {P,Q} be a basis of E[r], as stated above. Then er(P,Q) is a primitive

r-th root of unity.

Proof. Suppose er(P,Q) = ζ, with ζd = 1 for some d | r. Thus er(P, [d]Q) = 1, by
bilinearity, and er(Q, [d]Q) = 1, since er is also alternating. We can write any R ∈ E[r] as
[a]P + [b]Q, for some integers a, b. Therefore for every R ∈ E[r]:

er(R, [d]Q) = er(P, [d]Q)aer(Q, [d]Q)b = 1.

Now, non-degeneracy implies that [d]Q = O and thus r | d.
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We begin studying type-2 pairings (3.6); �rst of all, note that given R = [a]P +[b]Q ∈ E[r]
for some integers a, b, then Tr(R) = [ak]P . The point

T := [k]R− Tr(R) = [bk]Q

is a generator of Gq, unless R ∈ G1, that would give T = O. In applications, one can
use the generators P, T , since they can both be e�ciently found. For the latter we can
construct an e�cient randomized algorithm by extracting random points until one is not in
G1. We refer to [46, ch. 8] for comments on the problem of hashing to subgroups of elliptic
curves. Next, it is possible to choose R ∈ E[r], such that it belongs to neither 〈P 〉 nor
〈T 〉. This can be checked with the Weil pairing, since R ∈ 〈P 〉 if and only if er(P,R) = 1.
Indeed, assume the latter condition and note that:

er(P,R) = er(P, [a]P + [b]Q) = er(P, P )aer(P,Q)b = er(P,Q)b = 1.

As er(P,Q) is a primitive r-th root, by Lemma 3.16, then b ≡ 0 mod r. This proves
that R = [a]P + O must be in 〈P 〉; the converse is straightforward. Similarly, R ∈ 〈T 〉
if and only if er(R, T ) = 1. Therefore set G2 := 〈R〉 and note that er|G1×G2

is bilinear
and still non-degenerate, by Theorem 3.15. Moreover, the trace map restricted to G2

gives an e�ciently computable isomorphism Tr|G2
: G2 → G1. Indeed, it is a non-trivial

homomorphism of groups, because R 6∈ 〈T 〉, and we have:

Tr([h]R) = Tr([ha]P + [hb]Q) = [ha] Tr(P ) + [hb] Tr(Q) = [hak]P ∈ 〈P 〉.

It is also injective, since Tr([h1]R) = Tr([h2]R) implies that [h1] Tr(R) = [h2] Tr(R) and
so h1 ≡ h2 mod r. Note also that, assuming r 6= char(Fqk), Theorem 2.22 shows that
the group E[r] is not cyclic; thus 〈R〉 cannot be the whole r- torsion subgroup and, unless
trivial, it must be a cyclic subgroup of prime order r. Then, Tr|G2

is also surjective and
so it is an isomorphism; this proves that er|G1×G2

, for the above choice of subgroups, is a
type-2 pairing. Restricting the Weil map to G1 ×Gq we obtain also an example of type-3
pairing, where no e�ciently computable, non-trivial isomorphism exists.

3.3.1 Distortion maps for the symmetric pairings

Eventually, we examine the case of symmetric pairings. However, recalling that the Weil
pairing is alternate, we have to face the problem that er is trivial when restricted to
products G × G of cyclic subgroups of E[r]. Following the ideas in [56], we need to
introduce a particular map that modi�es the points of G.

De�nition 3.17. Let E/Fq be an elliptic curve and let R ∈ E(Fq) be a point of prime
order r | |E(Fq)|. A distortion map, de�ned over a �eld K ⊇ Fq, with respect to the cyclic
group G = 〈R〉, is an endomorphism ψ ∈ EndK(E) such that for every Q ∈ 〈R〉, Q 6= O,
it holds ψ(Q) 6∈ 〈Q〉.

Let
ψ|G1

: E(Fq)[r] −→ E[r] \G1

be a distortion map with respect to the group G1; it allows us to construct a symmetric
bilinear pairing as follows:

ẽr : G1 ×G1 −→ µr ẽr(P,Q) := er(P,ψ(Q)). (3.4)
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This map is bilinear, since the Weil pairing is so and the distortion map is a group
homomorphism. Moreover, it is also non-degenerate; to prove it, we �rst show that
the group G = {ψ(T ) : T ∈ G1} is cyclic of order r. Indeed, if G1 = 〈P 〉, then
[r]ψ(P ) = ψ([r]P ) = O. In addition, if we assume [h]ψ(P ) = O for some h < r, we
get a contradiction with De�nition 3.17, since ψ([h]P ) = O ∈ 〈P 〉. Therefore, Theorem
3.15 applies, proving the non-degeneracy of ẽr.
Next, we investigate on conditions for the existence of distortion maps on elliptic curves,
because of their importance in applications. Since a non-zero point T ∈ G1 gives an image
ψ(T ) 6= O, a distortion map exists only in case E[r] is not a cyclic group. Otherwise there
would be a contradiction, because both Q and ψ(Q) would generate the unique cyclic sub-
group of order r in E[r]. Then, by Theorem 2.22, we get as a �rst condition r 6= char(Fq),
that is generally assumed to hold in applications. Consider any extension L of the �eld
Fq, then the ring EndL(E[r]) of endomorphisms restricted to E[r] can be viewed as the
subgroup of all Zr-linear maps on Zr × Zr. Clearly, the distortion maps with respect to
〈P 〉 correspond to those linear maps that do not have P as an eigenvector. It turns out
that they always exist when the curves are supersingular.

Theorem 3.18. Let E/Fq be a supersingular elliptic curve, with embedding degree k and

let L = Fqk . If P ∈ E(Fq) has prime order r, such that (r, char(Fq)) = 1, then EndL(E[r])
is isomorphic to the ring of all 2× 2 matrices over Zr. In particular, there exist distortion

maps over L, with respect to 〈P 〉.

For a proof of this theorem we refer to [56]; moreover, a complete characterisation of the
embedding degrees for supersingular elliptic curves can be found in [11, Theorem IX.20].
It is interesting to notice that these curves have embedding degree k ≤ 6. Then, it remains
to understand what happens in case of ordinary curves. Surprisingly, in most cases, there
are no distortion maps on such curves.

Theorem 3.19. Let E/Fq be an ordinary elliptic curve and let P ∈ E(Fq) be a point of

prime order r 6= char(Fq). When the embedding degree of E with respect to r is k > 1, no
distortion map with respect to 〈P 〉 exists.

Proof. Assume that ψ ∈ End(E) is a distortion map with respect to 〈P 〉 and recall that
the endomorphism ring of an ordinary curve is commutative ( [52]). Thus, the identity

Φq(ψ(P )) = ψ(Φq(P )) = ψ(P ),

holds, since P ∈ E(Fq). We know from 3.13 that, being k > 1, E[r] ∩ E(Fq) = 〈P 〉 is
the eigenspace of Φq with eigenvalue 1. Then Φq(R) 6= R for every R ∈ E[r] − 〈P 〉; in
particular, since ψ(P ) 6∈ 〈P 〉 by de�nition 3.17, we get a contradiction with the previous
identity.

The case of ordinary elliptic curves with embedding degree k = 1 is studied in [56, Theorem
7]. However, we do not consider it, since we previously remarked that in cryptographic
applications it is usually assumed k > 1.
As a conclusion, we propose an easy example of distortion map in the case of supersingular
elliptic curves over prime �elds. Consider the curve E/Fp, for some prime p ≡ 2 mod 3,
of equation y2 = x3 + b. First, we compute the cardinality of E(Fp).

Lemma 3.20. Given the prime p ≡ 2 mod 3, let E/Fp be the elliptic curve of equation

y2 = x3 + b; then |E(Fp)| = p+ 1.
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Proof. Consider the homomorphism

ϕ : F∗p −→ F∗p
x 7−→ x3.

Since 3 - (p − 1), there are no elements of order 3 in F∗p and so ker(ϕ) = {1}. Thus the
homomorphism is injective, and clearly also surjective. It follows that every element in Fp
has a unique cube root in this �eld. Therefore, given y ∈ Fp, it exists unique x = 3

√
y2 − b

such that (x, y) ∈ E(Fp). Having p distinct possible values for y, and counting the point
at in�nity, we conclude the proof.

Therefore, by [57, Proposition 4.29], these elliptic curves are supersingular; we focus on
the case of b = 1. Let ζ ∈ Fp2 be a primitive third root of unity (note that (p2 − 1) ≡ 0
mod 3) and de�ne the function:

ψ : E(Fp) −→ E(Fp)
(x, y) 7−→ (ζx, y)

O 7−→ O.

(3.5)

It can be proved that ψ is a group homomorphism, by means of the explicit formulae for the
group law 1.9. More precisely, it is an automorphism, since it is an injective homomorphism
of E(Fp) to itself. We prove that ψ is a distortion map.

Proposition 3.21. Let E/Fp be the elliptic curve de�ned above and let P ∈ E(Fp) a point

of order r | (p+ 1). Then ψ, de�ned by 3.5, is a distortion map with respect to G1 = 〈P 〉.

Proof. Assume that the equality ψ(P ) = [u]P holds for some integer u. The point [u]P
belongs to E(Fp), but we note that ψ(P ) ∈ Fp2 \ Fp and this proves that ψ(P ) 6∈ 〈P 〉.
Indeed, if P = (x, y) with x, y ∈ Fp, then ψ(P ) = (ζx, y) and assuming (ζx)p = ζx, we
have ζp−1 = 1. Since ζ has order 3, it holds 3 | (p− 1), which is a contradiction with the
hypothesis p ≡ 2 mod 3.

The distortion map allows to modify the Weil pairing er in order to get a symmetric bilinear
pairing, as seen before.
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Chapter 4

Security analysis of a pairing-based

broadcast encryption scheme

Pairings have turned out to be very useful in many protocols of modern cryptography. We
focus on an application of symmetric bilinear pairings: the broadcast encryption system
introduced by Boneh, Gentry and Waters [15], that we denote by B. Its security is based
on the so called `-BDHE problem, which will be de�ned later as a variant of standard cryp-
tographic problems 3.1. In this context, we always assume that an attacker can compute
the bilinear pairing or, at least, to ask for its computation to an oracle. From now on,
pairings e : G × G → H are supposed to be symmetric (3.4), since B is implemented by
means of this type of maps. Assume, as usual, that G,H are both cyclic groups of prime
order r, with multiplicative and additive notation respectively. We denote these groups and
the relative pairing as (G,H, e). Notation will always be similar to the elliptic curve case,
where elements of G are points and H is a subgroup of a �nite �eld. The non-degeneracy of
e allows to solve DDHP instances in G using the pairing. Indeed, if P ∈ G∗, then e(P, P )
must be a generator of H; thus given aP, bP, cP ∈ G, for some integers a, b, c, it holds:

abP = cP ⇔ e(aP, bP ) = e(P, cP ).

A direct consequence for pairing-based cryptography is the impossibility of building secure
cryptosystems on (G,H, e) based on the hardness of DDHP.

4.1 MOV reduction

A well known technique for the solution of DLP on elliptic curves was pointed out in
1993 by Menezes, Okamoto and Vanstone in [42]. The MOV attack, called after their
names, reduces the DLP computation from groups of rational points on elliptic curves to
�nite �elds. We outline the main idea of this algorithm, since it is crucial for the security
analysis. Suppose that an attacker knows P1, P2 ∈ G; so its aim is to �nd the integer
x ∈ {0, . . . , r − 1} such that P2 = xP1 in G. When those points are non-trivial, they
both have order r; therefore g = e(P1, P1) ∈ H and h = e(P1, P2) ∈ H have order r too.
Since the equality g = hx holds, solving DLP in H gives the solution of the original DLP
instance. Thus to guarantee hardness of this problem on G, its counterpart on H should
be hard. The MOV attack uses a similar technique, adapted to the speci�c elliptic curves
case. Assume to use pairings ẽr, obtained form a Weil pairing and a distortion map as in
3.4, and let E/Fq be an elliptic curve. We refer to [42] for details in the case of a general
elliptic curve; here suppose that E is supersingular, since we are concerned with this case.
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It can be proved [49,52] that for a supersingular curve it holds:

E(Fq) ∼= Zn1 ⊕ Zn2

for some integers n1, n2, such that n2 | n1. In particular, applying [49, Theorems 4.2, 4.8],
the supersingular case has n1 = n2 = cN , for appropriate integers c,N . A DLP instance
on E is given by P ∈ E(Fq) of known order n | |E(Fq)|, not necessarily prime, and a second
point R ∈ 〈P 〉. The MOV reduction algorithm works as follows.

Algorithm 2 Supersingular MOV reduction - Given P ∈ E(Fq) of order n on a
supersingular elliptic curve and R ∈ 〈P 〉, computes x ∈ {0, . . . , n− 1} such that R = [x]P .

Require: P ∈ E(Fq), R ∈ 〈P 〉, n = ord(P )
Ensure: x, such that R = [x]P
1: compute k, the embedding degree of E with respect to n
2: determine integers c,N such that E(Fq) ∼= ZcN ⊕ ZcN
3: pick Q′ ∈ E(Fq) at random
4: set Q = [cN/n]Q′

5: compute α = ẽn(P,Q)
6: compute β = ẽn(R,Q)
7: compute x such that β = αx in Fqk
8: if R = [x]P then

9: return x
10: else

11: go to step 3
12: end if

The algorithm outputs the correct answer, since

β = ẽn(R,Q) = ẽn([x]P,Q) = αx

In [42] the authors show that algorithm 2 terminates in probabilistic polynomial time; it
may happen that the point Q, de�ned at step 4, does not produce an element α with order
n. Note that the supersingular case is peculiar, because one can e�ciently compute the
embedding degree at step 1, thanks to the small bound k ≤ 6 and Theorem 3.11. Clearly,
the MOV attack allows to apply faster methods for the DLP solution, available in the case
of �nite �elds, to solve an instance of this problem on elliptic curves.

4.2 Variants of the Di�e-Hellman problem

A variant of the computational Di�e-Hellman problem 3.2, is its bilinear version, which is
speci�cally built for the pairing-based case.

De�nition 4.1. An instance of the bilinear Di�e-Hellman problem (BDHP) in (G,H, e)
is the problem of computing e(P, P )abc, given a generator P of G and aP , bP , cP , with
a, b, c integers.

When the BDHP is supposed to be hard in (G,H, e), then the CDHP is hard in both
the groups G and H. Indeed, if we assume that the CDHP can be e�ciently solved in
G, then it is possible to compute abP from an instance of the BDHP and hence �nd
e(abP, cP ) = e(P, P )abc, thanks to the pairing. The same result comes from the knowledge
of e(P, P )ab and e(P, P )c, assuming that CDHP can be e�ciently solved in H. Along with
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the implementation of many pairing-based cryptosystems, other weakened versions of the
main cryptographic problems have been developed. In particular, we de�ne the following
one, on which is based the security of the broadcast encryption system B.

De�nition 4.2. Consider the groups with pairing (G,H, e). Let S, T be generators of
G and pick an element a ∈ Z∗r . An instance of the (computational) `-bilinear Di�e-

Hellman exponent problem or `-BDHE is the problem of computing e(S, T )a
`
, given S, T,

aS, a2S, . . . , a`−1S, a`+1S, . . . , a2`S. In the same hypotheses, its decisional version requires
to decide whether e(S, T )a

`
= h holds or not in H, given h ∈ H.

Note that if an attacker is supposed to e�ciently solve the CDHP in G, then it can solve
the `-BDHE problem too, computing a`S from a`−1S, aS. We remark that the `-BDHE
problem is weaker than the BDHP too. Indeed, assuming that the latter is easy in (G,H, e),

then an adversary, knowing a`−1S, aS and T = bS, can compute e(S, S)a
`−1ab = e(S, T )a

`
,

solving the �rst problem.
We say that A ≺ B if the problem A can be solved in polynomial time, with polynomially
many queries to an oracle that solves B. Then, we summarize the connections between
cryptographic problems introduced before:

`− BDHE ≺ BDHP ≺ CDHP ≺ DLP.

The same relations hold for the corresponding decisional versions. The common approach,
when studying the hardness of such problems, is to investigate the probabilistic advantage
that an adversary has in solving one of them.

De�nition 4.3. A probabilistic algorithm A, that outputs an element h ∈ H, has advan-
tage ε in solving an instance of the `-BDHE problem in (G,H, e) if

Pr
[
A
(
S, T, aS, a2S, . . . , a`−1S, a`+1S, . . . , a2`S

)
= e(S, T )a

`
]
≥ ε.

The probability is taken over the random choice of generators S, T ∈ G, the random choice
of a ∈ Z∗r and the random bits used by A.

There are similar de�nitions for all other variants of the Di�e-Hellman problem, but here
we focus on the `-BDHE one. Moreover, in its decisional version the adversary is asked
to distinguish e(S, T )a

`
from a random value h ∈ H. In this case, the advantage of an

attacker is de�ned as follows.

De�nition 4.4. A probabilistic algorithm A, that outputs a bit b ∈ {0, 1}, has advantage
ε in solving an instance of the decisional `-BDHE problem in (G,H, e) if∣∣∣∣Pr

[
A
(
S, T, aS, a2S, . . . , a`−1S, a`+1S, . . . , a2`S; t0, t1

)
= b
]
− 1

2

∣∣∣∣ ≥ ε,
where tb = e(S, T )a

`
and t1−b = e(S, T )t. The probability is taken over the random bit

b ∈ {0, 1}, the random choice of generators S, T ∈ G, the random choice of a, t ∈ Z∗r and
the random bits used by A.

This de�nition is based on how far the probability that A guesses the correct bit is from
1/2. Note that when it is equal to 1/2 the algorithm is choosing the output at random, so
it has no advantage in solving the problem.

De�nition 4.5. We say that the (decisional) (t, ε, `)-BDHE assumption holds in (G,H, e)
if no t-time algorithm has advantage at least ε in solving the (decisional) `-BDHE problem
in G.
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4.3 Semantic security of the system B

In the remainder of this chapter we want to connect the security of the system B to
the decisional (t, ε, `)-BDHE assumption, and provide a result about the hardness of the
latter problem. Firstly, we need to de�ne the chosen ciphertext security of a broadcast
encryption system against a static adversary. The usual way to de�ne it is by means of an
attack simulation and the probability that it has success. Let us recall the construction of
a particular case of B, proposed in [15, Section 3.1], since it gives an example of notation
that will be used later. Consider n users and denote by S the set of recipients. The system
is based on the following algorithms, that work on (G,H, e).

• Setup(n) picks a random generator P ∈ G and random elements α, γ ∈ Z∗r . Then it
computes Pi := αiP , for i = 1, 2, . . . , n, n + 2, . . . , 2n, and Q := γP . The algorithm
outputs the public key:

kp := (P, P1, . . . , Pn, Pn+2, . . . , P2n) ∈ G2n

and the private keys Di = γPi, for all users i ∈ {1, . . . , n}.

• Encrypt(S, kp) picks a random t ∈ Z∗r , it sets an encryption key kS := e(Pn, P1)t and
it let:

Hdr :=

tP , Q+
∑
j∈S

tPn+1−j


be an header, that will be included in the message. Then, the encryption algorithm
outputs the pair (Hdr, kS).

• Decrypt(S, i,Di,Hdr = (C0, C1), kp) outputs the decryption key

ki :=
e(Pi, C1)

e
(
Di +

∑
j∈S, j 6=i Pn+1−j+i, C0

)
The simulation that follows describes an attack from a set of previously authorised users,
that now collude to get information on a broadcast message. The adversary chooses the set
of recipients and tries to disclose the secret key relative to the message. Security is based
on the indistinguishability of the secret key kS ∈ H from a random element of H. We
denote by A and C the attacker and the challenger respectively; assume they both know
the number n of users and let S denote the set of all authorised users. Then the simulation
consists of the following steps.

1. Initialization 1. A chooses to attack the target set S∗ of authorised users.

2. Initialization 2. C invokes Setup(n) and sends to A the resulting public key kp and
the private keys Di, for all i 6∈ S∗.

3. Query phase 1. A adaptively issues decryption queries, q1, . . . , qm, that are triples
qi = (ui, Si,Hdri), where ui ∈ Si ⊆ S∗ and Hdri ∈ G2 are valid headers. C invokes
Decrypt(Si, ui, Di,Hdri, kp) and answers with the decryption key ki.

4. Challenge. C runs the algorithm Encrypt(S∗, kp), that outputs (Hdr∗, k∗). Then C
chooses a random bit b ∈ {0, 1}, sets kb := k∗ ∈ H, it picks a random key k1−b ∈ H
and it sends to A the triple (Hdr∗, k0, k1).
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5. Query phase 2. A continues to adaptively issue decryption queries qm+1, . . . , qd,
where each query is a triple qi = (ui, Si,Hdri), where ui ∈ Si ⊆ S∗ and Hdri ∈ G2

are valid headers, with the additional constraint Hdr 6= Hdr∗. Then C answers as in
step 3.

6. Guess. A outputs the guess b′ ∈ {0, 1} for b and wins the challenge if b′ = b.

We make some comments on the previous attack.

• The attacker is static, because the target set of users is chosen at step 1 and it is
never updated during the simulation.

• A gets the private keys outside the set S∗, since we are assuming that users in S \S∗
collude to attack a message directed to S∗.

• During the second query phase, we assume that the attacker cannot issue a decryption
query of the form (u, S∗,Hdr∗), with u ∈ S∗, because this case would reveal the secret
key.

• This simulation tests the indistinguishability of the correct couple (Hdr∗, k∗) from
(Hdr∗, k), for a random k ∈ H.

Then we de�ne security in terms of the advantage in winning against C in the previous
simulation.

De�nition 4.6. A broadcast encryption system is (t, ε, n, qd) chosen cyphertext secure,
or (t, ε, n, qd) CCA secure, if for all t-time algorithms that make a total of qd decryption
queries it holds ∣∣∣∣Pr [A(n) = b]− 1

2

∣∣∣∣ < ε, (4.1)

where the algorithm A behaves as in the previous attack simulation, n is the number of
users and b ∈ {0, 1} is the random bit that A has to guess. The probability is taken
over the random choices of the simulation. In particular, a broadcast encryption system is
(t, ε, n) semantically secure when it is (t, ε, n, 0) CCA secure.

The idea proposed in [15] is to prove that the `-BDHE assumption implies the semantic se-
curity of the broadcast encryption system de�ned in [15, Section 3.2]; recall that the system
depends on a parameter and on the number of users, denoted by n and B respectively.

Theorem 4.7 (Semantic security). Consider the groups with pairing (G,H, e). For any

positive integers B and n = kB, k ∈ N, the B-broadcast encryption system is (t, ε, n) se-

mantically secure, assuming that the decisional (t, ε, B)-BDHE assumption holds in (G,H, e).

We do not give the proof of this result, which can be found in [15, Theorem 3.1].

4.4 `-BDHE problem hardness in the generic group model

Theorem 4.7 implies that we can study semantic security by means of investigating the `-
BDHE problem's hardness. We determine in this section an upper bound to the advantage
of a generic algorithm in solving this problem, mainly following [12] and [38].

Before stating the main theorem of this section, we need to de�ne the generic group model,
introduced by Shoup in [51]. This model can deal with adversaries that do not exploit any
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special feature of the group structure in their attacks. Adversaries in this setting are Turing
machines dealing with bit strings instead of group elements. They can store information
in their memory, but they are not able to compute group operations or pairings on their
own: these operations are provided by oracles. An encoding function of a �nite group G on
the set {0, 1}m, for some integer m, is an injective map σ : G→ {0, 1}m. The encoding σ
associates to every group element a distinct bit string. We adapt the de�nition of generic
algorithm given in [51] to the case of pairing-based cryptography.

De�nition 4.8. Consider the groups with pairing (G,H, e) and let m ∈ N be the length of
encodings. A generic pairing-based algorithm A is a probabilistic algorithm that behaves
as follows.

• It takes as input two encoding lists; the �rst one contains encodings of elements in
G, denoted by LG,s = (σ(P1), . . . , σ(Ps)), where Pi ∈ G and σ(Pi) ∈ {0, 1}m are
random bit strings, for i = 1, . . . , s. The second one contains encodings of elements
in H, denoted by LH,t = (%(h1), . . . , %(ht)), where hj ∈ H and %(hj) are random bit
strings, for j = 1, . . . , t.

• During the execution, it has access to three oracles. The answer to every query
is appended to the appropriate list, so that after the q-th query the new lists are
LG,s+q1 and LH,s+q2 , with q = q1 + q2. Consider now the (q + 1)-th query; then
two oracles output random bit strings σ(Pi ± Pj) or %(e(Pi, Pj)) in {0, 1}m, given
i, j ∈ {1, . . . , s + q1} and one more bit, in the �rst case, that speci�es the group
operation. The last oracle outputs random bit strings %(hi · h±1

j ) ∈ {0, 1}m, given
i, j ∈ {1, . . . , t + q2} and one more bit that speci�es the operation. Assume that if
A makes twice the same query, then the oracles must give twice the same answer.
Suppose also that A and the oracles keep track of outputs during the simulation.

• It outputs a bit string, denoted by A(LG,s, LH,t) ∈ {0, 1}∗, in the set of binary strings
of arbitrary length.

These oracles are indistinguishable from ones that encode elements by means of two random
encoding functions, as long as these maps satisfy the following de�nition.

De�nition 4.9. Consider the groups with pairing (G,H, e). The encoding functions σ :
G→ {0, 1}m and % : H → {0, 1}m are compatible with the oracles of De�nition 4.8 if there
exist two sequences P1, . . . , Ps+qG ∈ G and h1, . . . , ht+qH ∈ H, such that σ(Pi), %(hj) are
equal to the outputs of the corresponding queries and such that it holds:

Pk = Pi ± Pj , hk = hi · h±1
j , hk = e(Pi, Pj)

according to the choices made in the corresponding query. Here q = qG + qH is the total
number of queries.

The main limitation of the generic approach is that it may exist some speci�c algorithm
that exploits features of a particular group or bilinear pairing to achieve some more e�cient
attack. However it is possible, by means of this analysis, to get information on the hardness
of a problem, at least in this abstract framework. Such techniques provide evidence that
a cryptographic problem could be suitable for implementing a cryptosystem and that it
should not be discarded, as long as all known algorithms for solving it are generic. When
some speci�c one is known, the elliptic curve and other security parameters should be
chosen in order to make that algorithm have no advantage on generic ones. For further
comments on this model and its validity we refer to [36].
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4.4.1 General Di�e-Hellman Exponent problem

Before investigating the `-BDHE problem's hardness in the generic group model, we de�ne
it in a more general form, suitable for the next theorem. Let r be a prime integer and let
s, t, n be positive integers. In the following part Zr[X] = Zr[X1, . . . , Xn] will denote the
ring of n-variate polynomials over the �eld Zr. Let us consider the two vectors

U(X) = (u1(X), . . . , us(X)) ∈ Zr[X]s,

V (X) = (v1(X), . . . , vt(X)) ∈ Zr[X]t,

and the n-variate polynomial f ∈ Zr[X]; we assume that u1 = v1 = 1. Let (G,H, e) be a
pair of groups with pairing. Consider a generator P ∈ G and set h := e(P, P ) ∈ H. The
(U, V, f)-Di�e-Hellman problem in (G,H, e) is the problem of computing hf(x) ∈ H, given(

P, u2(x)P . . . , us(x)P, h, hv2(x), . . . , hvt(x)
)
∈ Gs ×Ht,

with x ∈ Znr . Its decisional version is the problem, given the same inputs as before, to
distinguish hf(x) ∈ H from a random element h′ ∈ H. The polynomials, once evaluated,
give values in Zr and so this new problem describes general instances of some variant of
the DLP, as ones de�ned in Section 4.2. In particular, to get an instance of the `-BDHE
problem it su�ces to choose:

U(X1, X2) = (1, X2, X1, X
2
1 , . . . , X

`−1
1 , X`+1

1 , . . . , X2`
1 ),

V (X1, X2) = (1),

f(X1, X2) = X`
1X2.

(4.2)

Next, we de�ne dependence and independence relations for polynomial vectors, in the
context of pairing-based cryptography.

De�nition 4.10. Let U = (1, u2, . . . , us) ∈ Zr[X]s and V = (1, v2, . . . , vt) ∈ Zr[X]t be
two multivariate polynomial vectors, with s, t positive integers. We say that a polynomial
f ∈ Zr[X] is dependent on the vectors U, V if the identity:

f =
s∑

i,j=1
i<j

ai,juiuj +
t∑

k=1

bkvk,

holds for some constants {ai,j}i<j; i,j=1,...,s and {bk}k=1,...,t in Zr. We say that f is inde-
pendent on U, V if it is not dependent on them.

Furthermore, let df denote the total degree of f ∈ Zr[X] and de�ne the total degree of a
polynomial vector U ∈ Zr[X]s as dU := max{df |f ∈ U}. Then, next de�nitions are useful
to deal with lists where a generic pairing-based algorithm stores information during the
execution. Assume that encodings are associated to polynomials.

De�nition 4.11. Let L = {(σi, vi)|i = 1, . . . , k} be a list, where (σi, vi) ∈ {0, 1}∗ ×Zr[X]
for every i = 1, . . . , k. We say that there is a collision in L if there exist two elements
(σi, vi) and (σj , vj) in L, with i 6= j, such that σi = σj , but vi 6= vj .

De�nition 4.12. Let L = {(σi, vi)|i = 1, . . . , k} be a list, where (σi, vi) ∈ {0, 1}∗ ×Zr[X]
for every i = 1, . . . , k. We say that L is coherent, with respect to x = (x1, . . . , xn) ∈ Znr , if
for all pairs ((σi, vi); (σj , vj)) ∈ L2 it holds:

vi 6= vj ⇒ vi(x) 6= vj(x).
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4.4.2 An upper bound on the advantage in generic bilinear groups

This generalisation allows to �nd the following upper bound on the advantage that a generic
algorithm has, in solving the decisional (U, V, f)-Di�e-Hellman problem in (G,H, e). In
particular, it will give an upper bound for the special case of the `-BDHE problem.

Theorem 4.13. Let U ∈ Zr[X]s and V ∈ Zr[X]t be two vectors of n-variate polynomials

over Zr. Let f ∈ Zr[X] be an n-variate polynomial over Zr and set d := max{2dU , dV , df}.
Let G and H be cyclic groups of prime order r, with additive and multiplicative notation

respectively and let e : G × G → H a symmetric bilinear pairing. Consider a generator

P ∈ G and set h := e(P, P ). If f is independent on U, V , then for any generic pairing-based

algorithm A, that makes at most q queries to the oracles, it holds:∣∣∣∣∣Pr

[
A

(
σ(U(x)P ), %(hV (x)),

%(ht0), %(ht1)

)
= b :

x
R

∈ Znr , y
R

∈ Zr, b
R

∈ {0, 1},
tb := f(x), t1−b := y

]
−1

2

∣∣∣∣∣ ≤ d(q + s+ t+ 2)2

2r
,

where σ and % are random encoding functions of G and H respectively. Here σ(U(x)P )
and %(hV (x)) denote the lists of encodings σ(ui(x)P ), for all i = 1, . . . , s, and %(hvj(x)), for
all j = 1, . . . , t.

According to De�nition 4.4, the left hand side of the above inequality is the advantage of
an adversary, which will be denoted by AdvA(q, r). The proof of this theorem depends on
the next lemma, which follows from results in [50].

Lemma 4.14. Let K[X] = K[X1, . . . , Xn] be the ring of n-variate polynomials over the

�eld K. Let p(X) ∈ K[X] be a polynomial of total degree d and assume that p is not

identically zero. Consider any �nite subset S of the �eld K. Then, if x1, . . . , xn are chosen

independently and uniformly from S, we get:

Pr[p(x1, . . . , xn) = 0] ≤ d

|S|

Proof. Arguing by induction on the number n of variables, in case of n = 1 the above
bound holds, since the polynomial p is univariate and hence it has at most d roots. In
case of n > 1, consider d1 = degX1

(p) and assume, without loss of generality, that d1 ≥ 1.
Therefore, one can write:

p(X1, . . . Xn) =

d1∑
i=0

Xi
1qi(X2, . . . , Xn).

By de�nition of d1, the polynomial qd1 cannot be identically zero and we note that its total
degree is at most d− d1. Thus, by inductive hypothesis, it holds:

Pr[qd1(x2, . . . , xn) = 0] ≤ d− d1

|S|
.

Moreover, evaluating the polynomials qi at x2, . . . , xn we get the univariate polynomial

f(X1) =

d1∑
i=0

X1qi(x2, . . . , xn).

Let ε1 and ε2 be the events that qd1(x2, . . . , xn) = 0 and f(x1) = 0 respectively. Observe
that, if the event ε1 does not occur, then Xd1

1 qd1(x2, . . . , xn) is not identically zero; this
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implies that also f is not identically zero. Being f univariate, the case of n = 1 applies,
giving the inequality Pr[ε2|¬ε1] ≤ d1/|S|. Eventually, since the event ε2 occurs if and only
if p(x1, . . . , xn) = 0, we conclude as follows:

Pr[ε2] = Pr[ε1 ∧ ε2] + Pr[ε2 ∧ (¬ε1)]

= Pr[ε1 ∧ ε2] + Pr[ε2|¬ε1] Pr[¬ε1]

≤ Pr[ε1] + Pr[ε2|¬ε1]

≤ d− d1

|S|
+
d1

|S|
=

d

|S|
.

Note that this bound gives non-trivial information only when deg(p) < |S|.

Proof of Theorem 4.13. Consider an algorithm C that interacts as follows with A. In order
to deal with the decisional version of the (U, V, f)-Di�e-Hellman problem we append the
polynomials vt+1 := T0 and vt+2 := T1 to the vector V (X), getting V ′(X1, . . . , Xn, T0, T1).
We will use them to model the two elements that the adversary tries to distinguish. During
the whole simulation C updates the following lists, where it stores the initial inputs and
new answers to the queries issued by A:

LG,k = {(σi, ui) : i = 1, . . . , τG,k}, LH,k = {(%j , vj) : j = 1, . . . , τH,k},

where ui ∈ Zr[X1, . . . , Xn], vj ∈ Zr[X1, . . . , Xn, T0, T1] and σi, %j ∈ {0, 1}m, for some
integer m. We associate encodings to polynomials, whose evaluation determines the group
elements, up to the choice of a random generator P ∈ G. The lists LG,k, LH,k are indexed
with k, which is the number of issued queries. The constraint τG,k + τH,k = k + s+ t+ 2
must hold for all k = 0, . . . , q. Moreover, let Sk and Rk denote the sets of encodings on G
and H respectively, given by all the �rst entries of pairs in LG,k and LH,k. The simulation
consists of three parts.
Initialization. At k = 0 the algorithm C puts the input values in the lists, setting:

LG,0 = {(σi, ui) : i = 1, . . . , τG,0 = s}, LH,0 = {(%j , vj) : j = 1, . . . , τH,0 = t+ 2},

with ui ∈ U(X1, . . . , Xn), vj ∈ V (X1, . . . , Xn, T0, T1) and σi, %j distinct random stings in
{0, 1}m. The order r of G and the initial encodings S0,R0 are given to A; without loss of
generality, we further assume that A makes oracle queries only on strings obtained from
C.
Query phase. At each step k = 1, . . . , q the interaction between A and C consists of one
of the following queries.

• Group operations in G,H. Whenever A asks for a group operation in G, it speci�es
a pair of encodings σi, σj ∈ Sk−1 and a bit indicating the operation σi ± σj . Then
C sets τG,k := τG,k−1 + 1 and performs the polynomial operation ui ± uj =: uτG,k .
If uτG,k = ul for some l ≤ τG,k−1, then it de�nes στG,k := σl; otherwise it chooses
στG,k as a new random bit string in {0, 1}m \ {σ1, . . . , στG,k−1

}. Eventually, C sets
LG,k = LG,k−1 ∪{(στG,k , uτG,k)} and sends στG,k to A, that updates the encoding set
relative to G as Sk = Sk−1 ∪ {στG,k}.
The procedure for a group operation query in H is analogous.

• Bilinear pairing. The algorithm A speci�es a pair of encodings σi, σj ∈ Sk−1. Then
C sets τH,k := τH,k−1 + 1 and performs the polynomial operation ui · uj =: vτH,k .
If vτH,k = vl for some l ≤ τH,k−1, then it de�nes %τH,k := %l; otherwise it chooses
%τH,k as a new random bit string in {0, 1}m \ {%1, . . . , %τH,k−1

}. Eventually, C sets
LH,k = LH,k−1 ∪{(%τH,k , vτH,k)} and sends %τH,k to A, that updates the encoding set
relative to H as Rk = Rk−1 ∪ {%τH,k}.
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Guess. After at most q queries, A terminates and returns b′ ∈ {0, 1}. Then C chooses
random x1, . . . , xn, t ∈ Zr and a random bit b ∈ {0, 1}, setting tb := f(x1, . . . , xn) and
t1−b = t. Eventually, C concludes the simulation evaluating polynomials in LG,q, LH,q at
Xi = xi, for i = 1, . . . , n, T0 = t0 and T1 = t1.

Note that LG,q, LH,q are collision-free, by construction. Moreover, once the polynomials
are evaluated, the bit strings are associated to group elements. Thus, C outputs are
indistinguishable from encodings by means of random encoding functions σ : G→ {0, 1}m
and % : H → {0, 1}m, compatible with the oracles simulated by C, when both LG,q, LH,q
are coherent with respect to x1, . . . , xn, t0, t1: let εs be such event. Otherwise an oracle
would encode the same element with two di�erent binary strings, as follows from De�nition
4.12. Therefore we need to bound the probability that εs occurs. Firstly we consider the
symbolic substitution Tb = f(X1, . . . , Xn): we claim that it does not create new polynomial
identities. Indeed, note that the variable Tb appears only in polynomials vj and assume
v := vi−vj 6= 0. Since the queries produce only sums and product from initial polynomials,
we can write v as:

v =
s∑

µ,λ=1
µ<λ

aµ,λuµuλ +
t∑

γ=1

bγvγ + c0T0 + c1T1 (4.3)

for suitable constants aµ,λ, bγ , c0, c1 ∈ Zr. From the independence assumption, it clearly fol-
lows that f is independent on U, V ′ in Zr[X1, . . . , Xn, T0, T1]. So if v 6= 0, but the substitu-
tion causes the right hand side of 4.3 to vanish, then the independence of f would be contra-
dicted. Therefore we now work on polynomials in the variablesX1, . . . , Xn, T1−b. The prob-
ability that ui − uj(x1, . . . , xn) = 0, for some ui 6= uj in LG,q, or vi − vj(x1, . . . , xn, t) = 0,
for some vi 6= vj in LH,q, is bounded by d/r. Indeed, Lemma 4.14 applies with K = S = Zr
and, by construction, d bounds the total degree of all the polynomials. Since there are at
most 2

(
q+s+t+2

2

)
such pairs (ui, uj) and (vi, vj), we get:

Pr(¬εs) ≤
(
q + s+ t+ 2

2

)
2d

r
≤ d(q + s+ t+ 2)2

r
.

When εs occurs, the simulation gives Pr[b′ = b|εs] = 1/2 and the following inequalities
hold:

Pr[b′ = b] ≤ Pr[b′ = b|εs](1− Pr[¬εs]) + Pr[¬εs] =
1

2
+

Pr[¬εs]
2

,

Pr[b′ = b] ≥ Pr[b′ = b|εs](1− Pr[¬εs]) =
1

2
− Pr[¬εs]

2
.

Thus, we conclude that

∣∣Pr[b′ = b]− 1

2

∣∣ ≤ Pr[¬εs]
2

≤ d(q + s+ t+ 2)2

2r
.

Theorem 4.13 gives relevant information on some speci�c problem, since the bound adapts
itself to the choice of input polynomials. In particular, Theorem 4.13 applies when such
input vectors are de�ned as in 4.2. Indeed, f(X1, X2) = X`

1X2 is independent on U, V in
Zr[X1, X2]. To prove it, assume that

X`
1X2 =

2`+1∑
µ,λ=1
µ<λ

aµ,λuµuλ + b,
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for some aµ,λ, b ∈ Zr. It follows that we should have the identity

X`
1 =

∑
λ∈{1,...,`−1,`+1,...,2`}

a2,λX
λ
1 ,

which cannot hold for any sequence a2,λ of coe�cients. Recall that this choice of the
inputs gives the polynomial model for the `-BDHE problem in a pair of groups with pairing
(G,H, e). Therefore the advantage of a generic algorithm A in solving the corresponding
decisional problem is bounded by

AdvA(q, r, `) ≤ 2`(q + 2`+ 4)2

r
, (4.4)

where q is the maximum number of queries allowed to A. This inequality implies a lower
bound on the complexity of such adversary, where the time, here, is measured by the
number of queries. Indeed, consider an advantage ε ∈ [0, 1/2] and assume that A can issue
at most q queries; then the inequality 4.4 gives, after few computations:

q ≥
√
rε

2`
− 2`− 4 =: qmin(r, ε, `). (4.5)

Thus qmin(r, ε, `) is the minimum number of queries needed to achieve advantage at most
ε and we conclude that any generic adversary, achieving such advantage ε, must take time
at least Ω(qmin(r, ε, `)). Recall that, if f, g : N→ R are two real valued functions, the big-
omega notation, f(n) ∈ Ω(g(n)), means that there exist two constants C ∈ R and N ∈ N,
such that it holds the inequality |f(n)| ≥ C|g(n)|, for all n > N . We will estimate later the
complexity of each query in a speci�c case, in terms of �nite �eld operations. Evidently,
the lower bound grows with the group order r, so that large groups give a higher security
level, as expected.

Remark 4.15. Let ε ∈ [0, 1/2] and n,B ∈ N be some �xed parameters; then the system
B is (t, ε, n) semantically secure for every t < qmin(r, ε, B), since the decisional (t, ε, B)
BDHE assumption holds in the same hypotheses and Theorem 4.7 applies. Thus we deduce
information on the parameters for the semantic security of the cryptosystem B. The
parameter t measures the number of queries issued by an adversary.

4.4.3 Limitations of the generic group model: an example case

The key point in the proof of 4.13 is the indistinguishability of the polynomial simulation
from a real one. When the coherence of both encoding lists is achieved, an adversary A
observes the same answers as those produced by a real oracle, which outputs encodings
given by a speci�c encoding function of some group. Therefore an attacker would behave
the same way in both cases; guessing on encodings of abstract polynomials, before their
evaluation, the probability that A outputs the correct bit must be 1/2. The assumption
that all encodings are random strings is particularly strong and it restricts the signi�cance
of Theorem 4.13 for real applications, although it remains an important theoretic result.
Indeed, the particular representation of real elements, such as points on elliptic curves,
matters, as it could make their encodings adversarially distinguishable from uniformly
distributed ones. An example is provided by the following attack from [47]. Let E/Fp
be an elliptic curve over a prime �eld, for some large prime p; for every integer k, the
point (X,Y, Z) ∈ E(Fpk) is represented by means of projective Jacobian coordinates, if
the corresponding a�ne point has coordinates

(
X/Z2;Y/Z3

)
. Thus it is a homogeneous

representation, where the �rst and second coordinates have weight 2 and 3 respectively.
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Recall that Jacobian coordinates allow to construct e�cient formulae for point operations.
Assume to use standard algorithms for doubling, addition and scalar point multiplication,
as de�ned in [10]. Let T ∈ E(Fp) be a point of prime order r, with a�ne coordinates
(xT , yT ); then pick a secret integer k and set P := [k]T , represented by means of Jacobian
coordinates (X0, Y0, Z0). Denote by Pi, for i = 1, . . . , l, the intermediate points obtained
during the execution of the doubling-and-add algorithm for scalar multiplication; moreover,
let (Xi, Yi, Zi) and (xi, yi) be their Jacobian and a�ne coordinates respectively. The binary
encoding of k is given by:

(k)2 = (km, km−1, . . . , k0) ⇔ k =

m∑
j=0

kj2
j ,

with kj ∈ {0, 1}, for j = 0, . . . ,m, and m = blog2(k)c. We claim that it is possible to
guess the least signi�cant bit k0 with probability at least 2/3, in the case of p ≡ 1 mod 3.
Indeed, let us focus on the computation of the Z-coordinate; recall that the attacker knows
Jacobian coordinates for Pl and hence also its a�ne representation (x0, y0). For each bit kj
of (k)2 the double-and-add algorithm performs one of the following intermediate operations:

1. if kj = 1, the addition Pj := [2]Pj−1 + T , which yields:

Z ′j
3

=
Zj

x′j − xT
,

where (X ′j , Y
′
j , Z

′
j) = P ′j =: [2]Pj−1;

2. if kj = 0, the doubling Pj := [2]Pj−1, which yields:

Z4
j−1 =

Zj
2yj−1

.

Note that, from (x0, y0), one can e�ciently compute x′j , by summing −T = (xT ,−yT )
(1.8), or yj−1, by reversing the a�ne version of the doubling formulae (1.9). Furthermore
assume, for example, k0 = 0, which causes the last step in the double-and-add algorithm
to be a doubling as in case 2. To brie�y analyse the probability to spot the correct k0 we
use the following lemma, that follows from [31, Proposition 7.1.2].

Lemma 4.16. Let q = pn be an odd prime power, for some integer n ≥ 1. Assume that

r | (q − 1), then the following hold:

• x ∈ F∗q is an r-th power in F∗q if and only if a(q−1)/r = 1;

• there are exactly (q − 1)/r distinct r-th powers in F∗q.

Therefore, since p ≡ 1 mod 3, the above Lemma implies that Z0
x′0−xT

is not a third power

in Fp with probability 2/3. In this case, the adversary would immediately understand the
correct value for k0, because the last step of the scalar multiplication could not be an addi-
tion as 1. Otherwise, there are at most three candidates for (X1, Y1, Z1) and it is possible
to check if halving the results is possible or not, looking again for a contradiction. By
means of this backtracking technique, the adversary can guess k0, with probability higher
that 2/3; a similar procedure works if k0 = 1. To avoid this speci�c attack one should
use projective coordinates only for internal calculations, giving outputs only by means of
a�ne coordinates. This analysis could not be performed in the generic group model, where
encodings are random bit strings, which do not take account of such vulnerabilities.
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In conclusion, although the application of Theorem 4.13 produces some important infor-
mation on the security level of the decisional `-BDHE problem and asymptotic bounds on
the parameters, one should be aware that these result does not guarantee the semantic
security in all particular cases. To the best of our knowledge, only generic algorithms are
available for solving this problem and so one can take advantage of the results of these
section, when studying the security of the broadcast encryption system B.

4.5 A family of elliptic curves for the secure implementation

of symmetric pairings

The hardness of the `-BDHE problem in a pair of groups with pairing is not the only
concern, when investigating the security of B. Other vulnerabilities should be taken into
account: this section aims to show that there exist suitable elliptic curves for the imple-
mentation of symmetric pairings. We mainly refer to [46] for comments on topics that we
do not examine in detail.

The MOV reduction, outlined in Section 4.1, allows to reduce instances of the discrete
logarithm problem on an elliptic curve to instances of the same problem on a �nite �eld,
taking advantage of bilinear pairings. Pairing-based cryptography requires to choose elliptic
curves that enable e�cient pairing computation as well as a high security level. Usually, a
suitable elliptic curve E/Fq should admit pairings taking values in su�ciently large �nite
�elds, such that the MOV reduction is ine�ective. In particular, the following conditions
should hold:

• the DLP must be computationally infeasible in the cyclic subgroup E(Fq)[r] ≤ E[r],
for some prime number r | N = |E(Fq)| such that (r, char(Fq)) = 1;

• the DLP must be computationally infeasible in F∗
qk
, where k is the embedding degree

of E with respect to r (3.12).

The former requirement is achieved when r is a large prime factor of N , while the latter
depends on the embedding degree, which can be studied by means of Theorem 3.11. Recall
that the `-BDHE problem is weaker than the DLP and so cryptosystems must be even more
protected from discrete logarithm attacks. A classical result by Hasse [52, ch.V, Theorem
1.1] gives information about the number of rational points on E.

Theorem 4.17 (Hasse). Let E/Fq be an elliptic curve and let N denote |E(Fq)|. Then it

holds:

|N − q − 1| ≤ 2
√
q.

Thus, when q is large, N has roughly the same bit size as q, because from the above
inequality we get:

log(
√
q − 1)2 ≤ logN ≤ log(

√
q + 1)2

c1 log q ≤ logN ≤ c2 log q

for some constants c1, c2 ∈ R. Then, the parameter

% :=
log q

log r

measures the ratio between the bit sizes of N and r. In order to get the above condition
on r, the ideal case is to choose a curve with % ≈ 1. Then the embedding degree k is
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completely de�ned by % and the choice of the bit sizes of r and qk, since log qk/ log r = k%.
Recall also that we will always assume, as in section 2.3, that |E(Fq)| and p = char(Fq) are
relatively prime, to avoid the anomalous attack [57]. Common ranges for these parameters
can be found in [24], where the authors de�ne, as follows, requirements needed to get
elliptic curves suitable for pairing-based cryptography.

De�nition 4.18. An elliptic curve E/Fq is pairing-friendly if the following two conditions
hold:

1. % ≤ 2, for some prime integer r | N ;

2. the embedding degree k of E with respect to r is less than log2(r)/8.

Pairing-friendly curves must be speci�cally constructed, since randomly chosen ones have
small probability to satisfy this de�nition, as shown in [4]. We refer to [46, ch. 4,10] for the
construction of pairing-friendly curves. Currently, the most e�cient cryptographic pair-
ings come from elliptic curves (or higher-dimensional algebraic varieties). As explained in
Section 3.3, distortion maps are needed to get non-degenerate symmetric pairings from the
Weil ones. More generally, the same ideas apply also in the case of more e�cient elliptic
curve pairings, such as the Ate ones and their variants. Therefore, as explained in Section
3.3.1, only supersingular elliptic curves allow the construction of symmetric pairings, which
are required for implementing B. In [24] there is a classi�cation of these curves, which
shows that they admit only embedding degrees k ∈ {1, 2, 3, 4, 6}. Due to results in [1,6,27],
it is advised to avoid supersingular elliptic curves de�ned on �elds of characteristic 2 and
3. This restricts signi�cantly the choice of parameters, since the remaining cases give em-
bedding degrees k = 2 or k = 3.

In recent years, improvements in the asymptotic complexity of the DLP computation in
�nite �elds have been achieved, forcing to update parameters of pairing-friendly elliptic
curves. In our case the best choice is a supersingular curve E/Fq, over some �eld with
large prime characteristic char(Fq) = p > 3, since the embedding degree is small. Medium
characteristic �elds should be avoided too. Indeed, authors of [6] show that there exists an
algorithm solving the DLP in FQ, which has quasi-polynomial computational complexity
(logQ)O(log logQ), when Q = q2m, q ≈ m and m ≤ q + 2. In our case, having few choices
for the embedding degree, the size of p should be decided depending on the complexity of
the DLP computation in Fqk = Fpn , for some integer n.

Remark 4.19. For a large prime p, we have the following cases, from [46, Section 9.3.10].

1. If n is prime, then the complexity depends on whether the prime p is the root of a
polynomial, i.e. p = P (u) for P (X) ∈ Z[X], or it has no special form. In the former
case only the generic algorithms apply, giving asymptotic complexity Lpn(1/3, 1.923),
where the complexity function Lq(µ, c) is de�ned by 3.1. In the latter case, methods
from [32] apply, but it holds deg(P ) = 2, so they give the same generic complexity,
as in the former case.

2. If n is composite, we distinguish the same cases as before; new methods for the DLP
computation, proposed in [7, 34, 48], apply. Therefore, if p is the root of a polyno-
mial of degree at least 3, then the asymptotic complexity becomes Lpn(1/3, 1.56);
otherwise, it is Lpn(1/3, 1.74).

According to [46], when n is composite, the �eld size should be enlarged, with respect to
the �rst case, by a factor 2 or 4/3 respectively.
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Next, let k be the embedding degree of E/Fq with respect to r. Recall that the image
of every pairing, taking values in a group of order r, is a subgroup of F∗

qk
. However, to

better determine the security of a pairing-based cryptosystem, we point out that this is
not always the minimal �eld containing the group µr of r-th roots of unity. Indeed, µr
lies in the minimal embedding �eld Fpordr(p) , where ordr(p) denotes the order of p in the
multiplicative group Z∗r . This gives an embedding into an extension of the �eld Fp, which
is not necessarily an extension of Fq. The di�erence in size between Fqk and the minimal
embedding �eld can be relevant, as the following result from [30] proves.

Proposition 4.20. Let q = pm be a prime power and let E/Fq be an elliptic curve; consider

a prime number r, dividing |E(Fq)|, and let k be the embedding degree of E with respect to

r. Then it holds:

k =
ordr(p)

gcd(ordr(p),m)

Proof. To ease the notation, set δ := ordr(p) and γ := gcd(δ,m). By Theorem 3.11, k is
the smallest integer such that qk ≡ 1 mod r; it follows that k | (δ/γ), since:

1 ≡ pδ ≡
(
pδ
)m/γ

≡ qδ/γ mod r.

Furthermore, the congruence pmk ≡ 1 mod r implies that δ | mk and hence δ
γ |

mk
γ . In

conclusion, it holds δ
γ | k, because gcd( δγ ,

m
γ ) = 1.

Thus the minimal embedding �eld is Fpordr(p) = Fpkγ , instead of Fqk = Fpkm and so the
bit sizes of elements in these �elds di�er by a factor of m. Moreover, it is possible to
enlarge this gap as wanted, by increasing the exponent m relatively prime to ordr(p);
these di�erences disappear when q is a prime number. In general, the elliptic curve choice
for cryptographic applications should guarantee that the DLP is computationally infeasible
in the minimal embedding �eld and not only in Fqk . It follows from [8] a characterisation
of this �eld.

Proposition 4.21. Assuming that the hypotheses in Theorem 4.20 hold, then the minimal

embedding �eld of E with respect to r is Fpn if and only if r | Φn(p), where Φn(X) is the

n-th cyclotomic polynomial.

After this review of the main security requirements, we introduce a family of pairing-
friendly supersingular elliptic curves that satisfy them, under the choice of suitable pa-
rameters, and that admit an e�cient pairing. These curves were �rst proposed in [54]
and, in a more general fashion, in [59]. They are a valuable choice for the implementation
of the broadcast encryption system B and, in general, for all cryptosystems that require
symmetric pairings. Take a prime p > 3, such that p ≡ 5 mod 6, set q := p2 and let
b ∈ Fq be a square, but not a cube. Then de�ne the elliptic curves Eb by means of the
a�ne equation

Eb/Fq : y2 = x3 + b.

The authors of [54] suggest to use the reduced Ate paring, from [29], since they propose
a faster algorithm for its computation on the curves Eb. In addition, [56, Theorem 2]
provides explicit distortion maps on these elliptic curves. It can be proved that the group
of Fq-rational points on all curves Eb has cardinality

|Eb(Fq)| = p2 − p+ 1.

53



For the sake of security and e�cient pairing computation, consider the largest prime divisor
r of |Eb(Fq)| and assume that r2 - |Eb(Fq)|; then the pairing should be de�ned on the group
G = Eb(Fq)[r]. Examples of elliptic curves satisfying all previous conditions are given in
the article. By Proposition 4.21, the minimal embedding �eld of all the curves Eb, with
respect to r, is Fp6 = Fq3 , since Φ6(p) = |E(Fq)|. Note that in this case the embedding
degree must satisfy the inequality 2k ≥ 6 = ordr(p) and we know that k ∈ {2, 3}. Thus
it must be k = 3 and so there is no di�erence between the embedding �eld Fqk and the
minimal one.
The �rst concern, before considering the computational complexity of the pairing com-
putation, is about the security of these curves. As remarked above, the large prime p
should guarantee the computational infeasibility of the DLP in Fp6 . In particular, since
its cardinality is a prime power with composite exponent, it should be assumed that the
complexity of the DLP computation is bounded as in the second case of Remark 4.19. The
other security issue that could concern curves Eb is the Weil descent attack. The idea,
�rst pointed out in [25], is to reduce the DLP from an elliptic curve over a composite
�nite �eld to the same problem on another curve over a smaller �eld, where more e�cient
methods apply. In the case of curves Eb this attack can be performed with computa-
tional complexity Õ(q). Recall that f(n) ∈ Õ(g(n)) if there exists a constant c such that
f(n) ∈ O (g(n) logc(g(n))). According to [54] the prime p should be at least an integer of
200 bit length, in order to get a curve secure against the Weil descent attack.

4.5.1 Computational complexity of the group law and pairing computa-

tion: the case of curves Eb

In Section 4.4.2, Theorem 4.13 gives a lower bound for the running time of an adversary
solving the decision `-BDHE problem, with maximum advantage ε. Assuming that an
attacker has access to oracles computing the group law, on elliptic curve points, or the
bilinear pairing, then time was measured as the number of queries to these oracles. Here
we collect their computational complexities in terms of �nite �eld operations. Despite
Theorem 4.13 deals with a polynomial form of such queries, a real adversary would have
access to oracles that work on rational points of some elliptic curve. Consider the family
of curves Eb, de�ned above, and the symmetric pairing of [54, De�nition 1]. Assume to
compute it by applying the modi�ed Miller's algorithm [54, Algorithm 1] and suppose that
points are represented by means of a�ne coordinates. For the study of computational
complexity, denote by Mn, Sn and In the multiplication, squaring and inversion in Fpn
respectively. Let Π denote the computation of the p-th Frobenius map over Fp6 and assume
that it has the same computational complexity as the p3-th Frobenius map computation
over the same �eld. Eventually, let exph denote the exponentiation by h in Fp6 . According
to [28], e�cient arithmetic can be performed in the optimal extension �eld Fpn , which
satis�es the following requirements:

• p = 2` − c, for some integers `, c, such that log2 |c| ≤ `/2;

• an irreducible polynomial f(X) = Xn − ω ∈ Fp[X] exists.

Furthermore we need to encode p− 1 in the following Non-Adjacent Form (NAF):

p− 1 =
∑̀
j=0

sj2
j , (4.6)

where sj ∈ {−1, 0, 1} and sjsj+1 = 0 for all j = 0, . . . , l − q. Refer to [10, ch. IV]
for an algorithm that gives this encoding. Note also that each integer has a unique NAF
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representation; let w+
NAF

and w−
NAF

denote its number of 1 and −1 components respectively.
All these assumptions, which are veri�ed in the examples proposed by [54], lead to the
following complexity for the pairing computation:

(49 + 8l + 8w+
NAF

+ 8w−
NAF

)M2 + (9 + 2l + 2w+
NAF

+ 3w−
NAF

)M6+

+(7 + 2l + w+
NAF

+ w−
NAF

)S2 + (2 + l)S6+

+(5 + l + w+
NAF

+ w−
NAF

)I2 + 1I6 + 2Π + 1 exph,

(4.7)

where h = |E(Fq)|/r. Moreover, assuming that all the previous hypotheses hold, we
study also the complexity of each group operation query. Indeed, the corresponding oracle
performs an addition or a subtraction of points in E(Fp2), which both require the following
number of �nite �eld operations:

3M2 + 1I2. (4.8)

Evidently, addition queries are much less expensive that pairing ones; note also that to
re�ne the result in 4.5 we need a lower bound on the complexity of every query. Since
no information on the adversary's strategy is known, a conservative assumption is that all
queries are group law computations on G. Therefore it follows that Remark 4.15 holds
with

tmin(r, ε, B) := qmin(r, ε, B)(3M2 + 1I2).

In this context, the time parameter in the decision `-BDHE assumption measures the
number of �nite �eld operations.

Remark 4.22. The group operation query of Theorem 4.13 can be easily modi�ed in
order to allow operations such as αPi±βPj , where α, β ∈ Zr and Pi, Pj ∈ G are admissible
query inputs. The procedure would be the same, since the new oracle would associate a bit
string to the polynomials αui±βuj in the same fashion as before. Moreover, the proof does
not change, since the maximum total degree of the resulting polynomials is the same as
in the original argument. However, we do not introduce such modi�ed query in this work,
because the above analysis would depend on the computational cost of scalar multiplication
[m] in E(Fq), de�ned by 1.6. There are many di�erent e�cient algorithms that compute
it; their complexity depends on the elliptic curve speci�c parameters; some classical ones
are proposed in [10]. The easiest method is the double-and-add algorithm [10, Algorithm
IV.1]; it can be adapted to the case of multiplication for some integer m, written in NAF
form, by replacing addition with subtraction in the steps corresponding to components −1
of the encoding. Its complexity becomes:

(w+
NAF

+ w−
NAF

)(3M2 + 1I2) + dlog2(m)e(4M2 + 1I2),

which is still less than the paring computation's complexity examined before. Hence the
analysis of the bound in the case of modi�ed oracles would be similar as above.

4.6 Conclusions and open problems

In Chapters 1 and 2 we introduced the mathematical background of pairing-based cryp-
tography. We mainly examined the construction of the Weil maps, which give examples of
cryptographic pairings. The general de�nitions of the latter ones are reviewed in Chapter
3, since there are many versions of those de�nitions in literature. The main topic, studied
in Chapter 4 is the security of the broadcast encryption system proposed in [15]. The
semantic security of this cryptosystem is connected to the decisional `-BDHE assumption
by [15, Theorem 3.1]. In Section 4.4, we proved the hardness of the latter problem in the
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generic group model, adapting [16, Theorem A.2] to the case of our interest. From this
result, we deduced a lower bound 4.5 on the complexity of an adversary with advantage ε.
Its running time is expressed in terms of queries to oracles computing the group law and
the bilinear pairing. This result allows to give a bound on the semantic security parameters
for the encryption scheme 4.15. Some drawbacks of the generic group model are examined
in Section 4.4.3; in particular, there is an example from literature showing that the spe-
ci�c encoding of points violates, in some cases, this model's assumptions. Eventually, we
analysed the main security issues of pairing-based cryptography, that can be avoided by
a meaningful choice of the elliptic curve. This raises the issue of the existence of suitable
curves for implementing the studied encryption system; in particular, supersingular ones
are needed. In Section 4.5 is proposed a family of such curves, that admit an e�ciently
computable pairing. Eventually, given its computational complexity, we re�ned the lower
bound 4.5, in terms of �nite �eld operations.
An article by Lubicz and Sirvent [38] introduces a slightly di�erent version of the generic
group model. Recall that the original one, followed in this thesis, is based on oracles that
output random bit strings, as answers to queries. These random choices correspond, at
the end of simulation, to the application of random encoding functions. In contrast, in
the new model two encoding functions are randomly chosen at the beginning and oracles
answers follow the group law induced by these maps. Then authors study the set of group
law pairs, that remain indistinguishable from the induced ones. The �nal probability, that
gives the bound, is computed over the random choice of such pairs over this set. It could
be interesting to adapt their results to the decisional `-BDHE problem. This would lead
to new lower bounds on the attack complexity.
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