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Abstract 
 

Carbon capture and storage is the process of capturing waste CO2 from large point sources, 

such as large fossil fuel power plants, transporting it to a storage site, and deposing it where it 

will not enter the atmosphere, normally an underground geologic formation. The aim of this 

study is to individuate the most critical processes concerning CCS plants in order to support the 

optimization of the known best practices in this field, in particular of the capture ones. The 

starting point has been the research, in the chemical plants history, of all the industrial accidents 

happened until today. Obviously in the investigation has not been reported CCS accidents since 

it is a new technology, not yet so widespread, evidently for the general barely capacity to sustain 

the costs for this pollution reduction technique. Thus, a collection of all the substances involved 

in the capture phase has been used to guide the research. Results have demonstrated that the 

capture process with MEA was potentially the most hazardous one, since the damages that could 

occur with that, would be huge. After that an Aspen Plus simulation has been run on an existing 

pilot plant to identify the most critical part of the plant: it will be verified to be the stripping 

section. In this part of the plant has been concentrated the attention: initially a hazard and 

operability study has been written about that section and after that, a fault tree and event tree 

analysis has been performed, with the choice of a release as Top event. So, first has been done 

some qualitative considerations and afterwards also the quantitative ones have been evaluated. 

To conclude the risk assessment, a software simulation on Aloha platform has been run to study 

all the possible consequences that a release of that type of substance can cause: different 

conditions has been hypothesized to include all the possible scenarios. 
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Introduction 
 

Nowadays it is becoming more and more evident that the rapid increase of the world population, 

the unchecked industrialization of the second world countries and the continue increase of 

energy demand of the world in general, it is increasing the presence of greenhouse gases in our 

atmosphere. In particular, the electric energy production is for the main part carried out with 

the combustion of fossil fuels, e.g. carbon and methane: this obviously creates some by-

products and, between them, there is the carbon dioxide, one of the greenhouse gases that 

continue to fuel the global warming. Apart from the unknown effective availability of fossil 

fuels, their employment in the future can probably continue only if the CO2 produced does not 

reach the atmosphere and keeps staying in. For this reason, the Carbon Capture and Storage 

technology, namely the capture of the carbon dioxide and its subsequently injection in the 

underground, is a solution that can satisfy both the fossil fuel utilization and the global warming 

reduction. In this thesis, a study on the capture section of a CCS plant is carried out using the 

tools, in general, provided by the risk analysis. The objective of this work is the identification 

of critical processes in CCS chains to support the advancement of best practices. Specifically, 

it is considered only what concerning the capture part of the process. For this purpose, this 

thesis starts from the study of all the dangerous substances that might be present in a carbon 

capture plant to identify the most hazardous process and consequently to improve the best 

practices in order to obtain a safer process. After the individuation of that, with a historical 

analysis of the industrial accidents involving all the substances that can be used for carbon 

capture, the work proceeds with a simulation of the ordinary operation of that process. 

Thereafter, alterations of the conditions are induced on a hypothetically flue gas exiting from a 

combustion power plant, to observe what is the “precarious” section of the capture. In the fifth 

section of this work the focus is on that section and an accurate risk analysis is performed, 

through its more common tools, i.e. Hazop, FTA and ETA, in order to evaluate the occurrence 

frequency of a flammable and toxic release and subsequently to provide all the countermeasures 

need to contrast it. Moreover, a simulation of consequent scenarios which may occur is also 

performed. 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Chapter 1 

Carbon Capture and Storage 

Global-warming and climate change concerns have triggered global efforts to reduce the 

concentration of atmospheric carbon dioxide (CO2). 

Different approaches are considered and adopted by various countries to reduce their CO2 

emissions, including: 

- Improve energy efficiency and promote energy conservation; 

- Increase usage of low carbon fuels, including natural gas, hydrogen or nuclear power; 

- Deploy renewable energy, such as solar, wind, hydropower and bioenergy; 

- Apply geoengineering approaches, e.g. afforestation and reforestation; 

- CO2 capture and storage. 

The application areas, advantages and limitations of these different approaches are compared 

in the Table 1.1. Some of these approaches deal with source emissions reduction, such as 

adopting clean fuels, clean coal technologies, while others adopt demand-side management, i.e. 

energy conservation. Each approach has intrinsic advantages and limitations that will condition 

its applicability. It is unlikely that adopting a single approach or strategy can adequately meet 

the IPCC goal of CO2 reduction, i.e. 50–85% by 2050 from 2000 levels, and therefore, a 

complimentary portfolio of CO2 emission reduction strategies needs to be developed [1]. 
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Table 1.1. Summary of CO2 reduction strategies 

Strategy Application 

area/sector 

Advantages Limitations 

Enhance energy 

efficiency and 

energy 

conservation 

Applied mainly in 

commercial and 

industrial buildings. 

Energy saving from 10% 

to 20% easily achievable. 

May involve extensive capital 

investment for installation of energy 

saving device. 

Increase usage 

of clean fuels 

Substitution of coal by 

natural gas for power 

generation. 

Natural gas emits 40–50% 

less CO2 than coal due to 

its lower carbon content 

and higher combustion 

efficiency; cleaner exhaust 

gas (lower particulates and 

sulfur dioxide emissions). 

Higher fuel cost for conventional 

natural gas. Comparable cost for 

shale gas. 

Adopt clean coal 

technologies 

Integrated gasification 

combined cycle 

(IGCC), pressurized 

fluidized bed 

combustor (PFBC) etc. 

to replace conventional 

combustion. 

Allow the use of coal with 

lower emissions of air 

pollutants. 

Significant investment needed to 

roll out technologies widely. 

Use of 

renewable 

energy 

Hydro, solar (thermal), 

wind power, and 

biofuels highly 

developed. 

Use of local natural 

resources; no or low 

greenhouse and toxic gas 

emissions. 

Applicability may depend on local 

resources availability and cost. 

Power from solar, wind, marine etc. 

are intermittent and associated 

technologies are not mature; most 

current renewable energies are more 

costly than conventional energy. 

Development of 

nuclear power 

Nuclear fission 

adopted mainly in US, 

France, Japan, Russia 

and China. Nuclear 

fusion still in research 

and development 

phase. 

No air pollutant and 

greenhouse gas emissions. 

Usage is controversial; development 

of world's nuclear power is hindered 

due to the Fukushima Nuclear 

Accident in 2011, e.g. Germany will 

phase out all its nuclear power by 

2022. 

Afforestation 

and 

reforestation 

Applicable to all 

countries. 

Simple approach to create 

natural and sustainable 

CO2 sinks. 

Restricts/prevents land use for other 

applications. 

Carbon capture 

and storage 

Applicable tolargeCO2 

point emission 

sources. 

It can reduce vast amount 

of CO2 with capture 

efficiency >80%. 

CCS full chain technologies not 

proven at full commercial scale. 
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1.1 Carbon Capture and Storage (CCS) 

Amongst that different approaches, CCS can reduce CO2 emissions (typically 85–90%) from 

large point emission sources, such as power production utilities, and energy intensive emitters, 

e.g. cement kiln plants. In this approach, CO2 is first captured from the flue/fuel gases, separated 

from the sorbent, transported and then either stored permanently or reutilized industrially. CCS 

includes a portfolio of technologies, involving different processes for CO2 capture, separation, 

transport, storage and monitoring that will be discussed later [1]. CO2 is formed during 

combustion and the type of combustion process directly affects the choice of an appropriate 

CO2 removal process. CO2 capture technologies are available in the market but are costly in 

general, and contribute to around 70–80% of the total cost of a full CCS system including 

capture, transport and storage [2]. Therefore, significant R&D efforts are focused on the 

reduction of operating costs and energy penalty. There are three main CO2 capture systems 

associated with different combustion processes, namely, post-combustion, pre-combustion and 

oxyfuel combustion. These three technologies are discussed in the following paragraphs. 

1.1.1 Post-combustion 

This process removes CO2 from the flue gas after combustion has taken place, as can be seen 

in the Figure 1.1. Post-combustion technologies are the preferred option for retrofitting existing 

power plants. The technology has been proven at small-scale with CO2 recovered at rates up to 

800 ton/day [3]. However, the major challenge for post-combustion CO2 capture is its large 

parasitic load.  

Figure 1.1. Post-combustion process scheme 

Since the CO2 level in combustion flue gas is normally quite low (i.e.7–14% for coal-fired and 

as low as 4% for gas-fired), the energy penalty and associated costs for the capture unit to reach 

the concentration of CO2 (above 95.5%) needed for transport and storage are elevated [4]. The 

U.S. National Energy Technology Laboratory estimated that CO2 post-combustion capture 

would increase the cost of electricity production by 70% [5]. A recent study reported that the 

cost of electricity would increase by 32% and 65% for post-combustion in gas and coal-fired 

plants, respectively [6]. It has been identified that 16 large scale integrated CCS projects are 
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currently operating or under construction but two of them are of post-combustion technology 

[7]. 

1.1.2 Pre-combustion 

In this process, the fuel (normally coal or natural gas) is pre-treated before combustion. For 

coal, the pretreatment involves a gasification process conducted in a gasifier under low oxygen 

level forming a syngas which consists mainly of CO and H2, and is mainly free from other 

pollutant gases (Eq. 1.1). The syngas will then undergo water gas shift reaction with steam 

forming more H2 while the CO gas will be converted to CO2 (Eq. 1.2): 

 

𝐶𝑜𝑎𝑙
𝑔𝑎𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛
→         𝐶𝑂 + 𝐻2                                                                                                            (1.1) 

 

𝐶𝑂 + 𝐻2𝑂
𝑤𝑎𝑡𝑒𝑟−𝑔𝑎𝑠 𝑠ℎ𝑖𝑓𝑡
→            𝐻2 + 𝐶𝑂2                                                                                            (1.2) 

 

𝐶𝐻4 + 𝐻2𝑂
𝑟𝑒𝑓𝑜𝑟𝑚
→     𝐶𝑂 + 𝐻2                                                                                                             (1.3) 

 

The high CO2 concentration (>20%) in the H2/CO2 fuel gas mixture facilitates the CO2 

separation [4] (typical CO2 separation methods will be discussed afterward). Subsequently, the 

H2 is burned in air producing mainly N2 and water vapor. Pre-combustion capture can be applied 

to Integrated Gasification Combined Cycle (IGCC) power plants using coal as fuel, but this will 

incur an efficiency loss of 7–8% [3,8]. EPRI and USDOE have developed a roadmap of IGCC 

technology developments that can potentially improve the IGCC efficiency matching or 

exceeding the current IGCC technology without capture [8]. Natural gas, as it mainly contains 

CH4, can be reformed to syngas containing H2 and CO (Eq. 1.3). The content of H2 can be 

increased by the water gas shift reaction (Eq. 1.2) and the rest of the process is similar to that 

described above for coal [9]. A performance and cost analysis were conducted on advanced 

combined cycle gas turbine plants operated by natural gas with a pre-combustion CO2 capture 

system and obtained a CO2 capture efficiency of 80% with the cost of CO2 avoided reaching 

$29/ton CO2 for an advanced design concept [10]. A schematic process flow diagram of a 

hypothetic pre-combustion process can be seen in the Figure 1.2. 

Figure 1.2. Pre-combustion process scheme 
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1.1.3 Oxyfuel combustion 

In oxyfuel combustion, oxygen, instead of air, is used for combustion. This reduces the amount 

of nitrogen present in the exhaust gas that affects the subsequent separation process. Substantial 

reduction in thermal NOx is another advantage of this process [11]. With the use of pure oxygen 

for the combustion, the major composition of the flue gases is CO2, water, particulates and SO2. 

Particulates and SO2 can be removed by conventional electrostatic precipitator and flue gas 

desulphurization methods, respectively. The remaining gases, contain high concentration of 

CO2 (80–98% depending on fuel used [12]), can be compressed, transported and stored. This 

process is technically feasible [11] but consumes large amounts of oxygen coming from an 

energy intensive air separation unit [13]. This results in high cost and the energy penalty may 

reach over 7% compared with a plant without CCS [14,15]. Also, high SO2 concentration in the 

flue gas may intensify the system's corrosion problems. At present, there is no full scale oxyfuel-

fired projects in the range of 1000–2000MWth under development but a few sub-scale 

commercial demonstration plants are under development worldwide such as the 25MWe and 

250MWe oxy-coal units proposed by CS Energy and Vattenfall, respectively [15]. 

Figure 1.3. Oxyfuel combustion process scheme 

1.2 Separation techniques for carbon dioxide 

Capture of CO2 contributes 75% to the overall CCS cost and CCS increases the electricity 

production cost by 50% [16]. Although these numbers may vary with different CCS schemes, 

reducing the capture cost is the most important issue for the CCS process to be acceptable to 

the energy industry. There are many options for CO2 separation but the optimum CO2 capture 

scheme could be determined by analyzing costs or the context of power generation. A wide 

range of technologies currently exist for separation of CO2 from gas streams, although they 

have not been designed for power-plant scale operations [17]. They are based on different 

physical and chemical processes including absorption, adsorption, cryogenics and membranes 

[18]. The choice of a suitable technology depends on the characteristics of the flue gas stream, 
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which depend mainly on the power-plant technology. Various CO2 separation techniques are 

discussed below. 

1.2.1 Chemical absorption technology 

A liquid sorbent is used to separate the CO2 from the flue gas. The sorbent can be regenerated 

through a stripping or regenerative process by heating and/or depressurization. This process is 

the most mature method for CO2 separation and is preferred for low to moderate CO2 partial 

pressures [19]. Typical sorbents include monoethanolamine (MEA), diethanolamine (DEA) and 

potassium carbonate [20]. Among the various aqueous alkanolamines, such as MEA and DEA, 

Veawab et al. [21] found that MEA is the most efficient one for CO2 absorption with efficiency 

over 90%. Subsequently, Aaron et al. [22] conducted a review on various CO2 capture 

technologies and concluded that the most promising method for CO2 capture for CCS is 

absorption using MEA. An absorption pilot plant with 1 tonCO2/h was constructed and 

successfully tested together with the post-combustion capture technology for a coal-fired power 

plant using a solvent containing 30% MEA [23]. Some other sorbents, such as piperazine and 

anion-functionalized ionic liquid have also received attention in recent years [24]. Piperazine 

has been found to react much faster than MEA, but because it has a larger volatility than MEA, 

its application in CO2 absorption is more expensive and is still under development [25]. One 

important challenge for the large deployment of this technology for CCS is its potential amine 

degradation, resulting in solvent loss, equipment corrosion and generation of volatile 

degradation compounds [26,27], while that atmospheric degradation has not been included. 

Moreover, amine emissions can degrade into nitrosamines and nitramines, which are potentially 

harmful to the human health and the environment. Chilled ammonia process uses aqueous 

ammonium salts (such as ammonium carbonate) to capture CO2 that can make use of waste 

heat to regenerate the CO2 at elevated temperature and pressures to reduce downstream 

compression [28]. This process will generate less problem as compared to those that amine is 

facing with degradation. A scheme of a chemical absorption technology for power plant flue 

gas is depicted in Figure 1.4. 

Figure 1.4. Process flow diagram of a typical chemical absorption system for CO2 recovery from flue gas. 
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1.2.2 Physical absorption process 

For physical absorption, CO2 is physically absorbed in a solvent according to Henry’s Law, 

which means that they are temperature and pressure dependent. Physical solvent processes use 

organic solvents to physically absorb acid gas components rather than reacting chemically. 

Removal of CO2 by physical absorption processes are based on the solubility of CO2 within the 

solvents and the solubility depends on the partial pressure and on the temperature of the feed 

gas. Higher CO2 partial pressure and lower temperature favor the solubility of CO2 in the 

solvents (Absorbent). The solvents are then regenerated by either heating or pressure reduction. 

Physical solvents scrubbing of CO2 are commercially available. Selexol (dimethyl ether of 

polyethylene glycol), a liquid glycol based solvent, has been used for decades to process natural 

gas, both for bulk CO2 removal and H2S removal [29]. Glycol is effective for capturing both 

CO2 and H2S at higher concentration. The Rectisol process, based on low temperature methanol 

(cold methanol), is another physical solvent process that has been used for removing CO2. 

Glycol carbonate is interesting because of its high selectivity for CO2 but it has relatively low 

capacity [30]. Other physical solvents for CO2 removal include propylene carbonate (FLUOR 

process) and N-methyl-2-pyrollidone (Purisol). The physical absorption process is illustrated 

in the Figure 1.5.  

Figure 1.5. Physical absorption to capture CO2 from syngas. 

 

CO2 dissolved in the solvent is recovered by reducing pressure in various flash drums. No heat 

is required to release CO2 due to the low heat of absorption. After depressurization, pure CO2 

streams are released at different pressures. Some CO2 capture applications benefit from a 

mixture of physical and chemical solvents. 
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1.2.3 Physical adsorption 

In contrast to absorption processes which use a liquid absorbent, a solid sorbent is used to bind 

the CO2 on its surfaces. Large specific surface area, high selectivity and high regeneration 

ability are the main criteria for sorbent selection. Typical sorbents include molecular sieves, 

activated carbon, zeolites, calcium oxides, hydrotalcites and lithium zirconate. The adsorbed 

CO2 can be recovered by swinging the pressure (PSA) or temperature (TSA) of the system 

containing the CO2- saturated sorbent. PSA is a commercial available technology for CO2 

recovery from power plants that can have efficiency higher than 85% [31,32]. In this process, 

CO2 is preferentially adsorbed on the surface of a solid adsorbent at high pressure, which will 

swing to low pressure (usually atmospheric pressure) to desorb the adsorbent and release CO2 

for subsequent transport. In TSA, the adsorbed CO2 will be released by increasing the system 

temperature using hot air or steam injection. The regeneration time is normally longer than PSA 

but CO2 purity higher than 95% and recovery higher than 80% can be achieved [33]. Operating 

cost of a specific TSA process was estimated to be of the order of 80–150US $/ton CO2 captured 

[34]. Finally, the use of residues from industrial and agricultural operations to develop sorbents 

for CO2 capture has attracted significant attention to reduce the total costs of capture [35–38]. 

1.2.4 Cryogenic distillation 

Cryogenic distillation is a gas separation process using distillation at very low temperature and 

high pressure, which is similar to other conventional distillation processes except that it is used 

to separate components of gaseous mixture (due to their different boiling points) instead of 

liquid. For CO2 separation, flue gas containing CO2 is cooled to desublimation temperature (-

100 to -135 °C) and then solidified CO2 is separated from other light gases and compressed to 

a high pressure of 100–200 atmospheric pressure. The amount of CO2 recovered can reach 90–

95% of the flue gas. Since the distillation is conducted at extremely low temperature and high 

pressure, it is an energy intensive process estimated to be 600–660 kWh per ton of CO2 

recovered in liquid form [39]. Several patented processes have been developed and research 

has mainly focused on cost optimization [40,41]. 

1.2.5 Chemical looping combustion 

Chemical-looping combustion (CLC), proposed by Richter and Knoche in 1983 [42], divides 

combustion into intermediate oxidation and reduction reactions that are performed separately 

with a solid oxygen carrier circulating between the separated sections. Suitable oxygen carriers 

are small particles of metal oxide such as Fe2O3, NiO, CuO or Mn2O3. A basic CLC system is 

shown in Fig. 1.6 [43]. The CLC has two reactors, one each for air and fuel. The oxygen carrier 

circulates between the reactors. In the air reactor, the carrier is oxidized by oxygen according 
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to reaction (1.1). In the fuel reactor, the metal oxide is reduced by the fuel, which is oxidized 

to CO2 and H2O according to reaction (1.2). 

Fig. 1.6. Chemical-looping combustion. 

 

𝑂2 + 2𝑀𝑒 → 2𝑀𝑒𝑂                                                                                                                  (1.1) 

 

𝐶𝑛𝐻2𝑚 + (2𝑛 +𝑚)𝑀𝑒𝑂 → 𝑛𝐶𝑂2 +𝑚𝐻2𝑂 + (2𝑛 +𝑚)𝑀𝑒                                                  (1.2) 

 

The amount of energy released or required in the reactors depends on these two reactions, as 

well as the temperature of reactions. CLC has several advantages compared with conventional 

combustion. The exhaust gas stream from air reactor is harmless, consisting mainly of N2. In a 

well-designed system, there should no thermal formation of NOx since the regeneration of 

oxygen carrier takes place without flame and at moderate temperatures. The exhaust gas from 

the fuel reactor consists of CO2 and H2O. Separation of CO2 can be done by a condenser, a 

major advantage with CLC which avoids the huge energy penalty necessary in traditional 

amine-scrubbing process to capture CO2, and thus leads to less operational cost. Research in 

metal oxide air separation is focused on cost and the physical and chemical stability of the 

oxygen carriers over many cycles. The particles usually consist of a reactive oxide and a 

supporting inert oxide. While various oxygen carrier particles are under consideration, copper, 

iron, manganese and nickel are the most promising reactive metals [44]. No large-scale 

demonstration has been performed but models predict that a power system utilizing metal oxide 

air separation has significant advantages. The lower irreversibility associated with the 

regeneration step relative to conventional combustion add to the already low energy 

requirement of the inherent separation of CO2 from nitrogen. Brandvoll and Bolland [45] 

reported that the resulting overall energy penalty could be as low as 400 kJ/kg CO2 for a natural 

gas combined-cycle plant, assuming idealized chemical stability of the oxygen carrier. 
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1.2.6 Hydrate-based separation 

Hydrate-based CO2 separation is a new technology by which the exhaust gas containing CO2 is 

exposed to water under high pressure forming hydrates. The CO2 in the exhaust gas is 

selectively engaged in the cages of hydrate and is separated from other gases. The mechanism 

is based on the differences of phase equilibrium of CO2 with other gases, where CO2 can form 

hydrates easier than other gases such as N2 [46]. This technology has the advantage of small 

energy penalty (6– 8%) [5] and the energy consumption of CO2 capture via hydrate could be as 

low as 0.57kWh/kg-CO2 [46]. Improving the hydrate formation rate and reducing hydrate 

pressure can improve the CO2 capture efficiency [46]. Tetrahydrofuran (THF) is a water-

miscible solvent, which can form solid clathrate hydrate structures with water at low 

temperatures. So, the presence of THF facilitates the formation of hydrate and is frequently 

used as a thermodynamic promoter for hydrate formation. Englezos et al. [47] found that the 

presence of small amount of THF substantially reduces the hydrate formation pressure from a 

flue gas mixture (CO2/N2) and offers the possibility to capture CO2 at medium pressures. 

Recently, Zhang et al. [48] studied the effects and mechanism of the additive mixture on the 

hydrate phase equilibrium using the isochoric method and confirmed the effect of THF on 

hydrate formation. US DOE considers this technology to be the most promising long term CO2 

separation technology identified today and is currently in the R&D phase [5,49,50]. 

1.2.7 Membrane separation 

Membranes can be used to allow only CO2 to pass through, while excluding other components 

of the flue gas. The most important part of this process is the membrane which is made of a 

composite polymer of which a thin selective layer is bonded to a thicker, non-selective and low-

cost layer that provides mechanical support to the membrane [51]. This method has also been 

used to separate other gases such as O2 from N2, and CO2 from natural gas. Through the 

development of high efficient membranes, Audus [52] and Gielen [53] achieved a CO2 

separation efficiency from 82% to 88%. The development of ceramic and metallic membranes 

[22] and polymeric membranes [54] for membrane diffusion could produce membranes 

significantly more efficient for CO2 separation than liquid absorption processes. Brunetti et al. 

[55] conducted a general review on current CO2 separation technology using membranes and 

compared with other separation technologies such as adsorption and cryogenic. It pointed out 

that the performance of a membrane system is strongly affected by the flue gas conditions such 

as low CO2 concentration and pressure, which are the main hurdles for applying this technology. 

Furthermore, Bernardo et al. [56] revealed that although there are significant developments in 

gas separation membrane systems, they are still far away to realize the potentialities of this 

technology. 
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1.3 CO2 transport 

Once CO2 is separated from the rest of the flue gas components it needs to be transported to the 

storage site or to the facilities for its industrial utilization. Whatever the chosen final fate of 

CO2, a reliable, safe and economically feasible system of transport is a key feature of any CCS 

project. Depending on the volumes involved a variety of means of transport may be utilized, 

ranging from road tankers to ships and pipelines. Pipelines are considered to be the most viable 

method for onshore transport of high volume of CO2 through long distances as CCS would 

likely involve when widely deployed [57]. Pipelines are also the most efficient way for CO2 

transport when the source of CO2 is a power plant which lifetime is longer than 23 years. For 

shorter period road and rail tankers are more competitive [58]. In order to optimize the 

mass/volume ratio CO2 is carried as dense phase either in liquid or supercritical conditions. 

Supercritical is the preferred state for CO2 transported by pipelines, which implies that the 

pipelines operative temperature and pressure should be maintained within the CO2 supercritical 

envelop, i.e. above 32.1 °C and 72.9 atm. [59]. The typical range of pressure and temperature 

for a CO2 pipeline is between 85 and 150 bar, and between 13 °C and 44 °C to ensure a stable 

single-phase flow through the pipeline [60]. The drop in pressure due to the reduction of the 

hydraulic head along the pipeline is compensated by adding recompression stations. Larger 

diameter pipelines allow lower flow rates with smaller pressure drop and therefore a reduced 

number of recompression stations; on the other hand, larger pipelines are more expensive 

therefore a balancing of costs needs to be considered [60]. Impurities in the CO2 stream 

represent a serious issue because their presence can change the boundaries of the pressure and 

temperature envelope within which a single-phase flow is stable. Moreover, the presence of 

water concentration above 50 ppm may lead to the formation of carbonic acid inside the pipeline 

and cause corrosion problems. Hydrates may also form that may affect the operation of valves 

and compressors. The estimated values of corrosion on the carbon steel commonly used for 

pipeline's construction can be up to 10 mm/year [60,61]. Currently only a few pipelines are 

used to carry CO2 and are almost all for EOR projects. The oldest is the Canyon Reef Carriers 

pipeline, a 225 km pipeline built in 1972 for EOR in Texas (USA). CO2 pipelines are mostly 

made of carbon steel and composed of insulated 12 m sections with crack arresters every 350 

m and block valves every 16–32 km. The onshore pipelines are buried in trenches of about 1 m 

deep. Offshore pipelines in shallow water also need to be deployed in trenches as protection 

from fishing and mooring activities. Deep water pipelines generally do not need to be buried 

unless their diameter is below 400 mm [60,62]. The rate of accidents involving CO2 pipelines 

is relatively low with a value of 0.30/year for every 1000 km calculated during the period 1990–

2001 considered for an overall pipelines extension of 2800 km [63]. The enlargement of the 

pipelines network leads to an increase in the number of accidents up to 0.76/year for every 1000 

km in 2002–2008 calculated over an overall pipeline length of 5800 km [64]. These values are 

still well below the ones involving pipelines for gas/oil or other hazardous fluids. However, the 
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current CO2 pipeline network is far smaller than that for gas/ oil transport, and therefore, the 

statistical significance of these values is somewhat uncertain. For commercial scale CCS 

projects an extensive network of CO2 pipelines needs to be developed. An integrate network, 

where different sources will merge for their final transport to the storage areas, can reduce the 

total pipelines length by 25%, but it will require that all sources produce CO2 stream with the 

same quality (e.g. pressure, T, water content) before being combined together [61]. When the 

flow managed through a network of pipelines increases there is an exponential decrease in the 

cost of transport; models highlight that the cost for transporting CO2 along a 1000 km pipeline 

is around 8 USD/ton for a mass flow of 25 MtCO2/year with a further reduction down to 5 

USD/ton if the flow increases to 200 MtCO2/year [65]. Further cost saving may be achieved 

from there use of existing gas pipelines but their suitability is to be verified. One of the biggest 

uncertainties is the effects on the pipelines' integrity of long term exposure to CO2 fluxes in 

terms of corrosion and potential brittle fractures propagation due to the sharp cooling of the 

pipelines in case of leak of supercritical CO2 [66]. The pipelines have to be periodically 

monitored to assess their integrity and an accurate fiscal metering system is to be in place to 

assure the quantification of the stored fluxes. The equipment used for gas/oil pipelines need to 

be modified to withstand the challenging environment experienced inside a CO2 pipeline. Poor 

lubrication capacity of CO2, high chemical reactivity and high pressure may all affect the 

performance of both monitoring and metering equipment [67]. Other issues could arise from 

the trans-national transport of CO2 and offshore storage due to legal aspects. 

1.4 CO2 geological storage 

CO2 can be stored into geological formations such as deep saline aquifers which have no other 

practical use, and oil or gas reservoirs. Geological storage is at present considered to be the 

most viable option for the storage of the large CO2 quantities needed to effectively reduce global 

warming and related climate change [68–71]. A typical geological storage site can hold several 

tens of million ton of CO2 trapped by different physical and chemical mechanisms [72]. Suitable 

geological sites for CO2 storage have to be carefully selected. General requirements for 

geological storage of CO2 include appropriate porosity, thickness, and permeability of the 

reservoir rock, a caprock with good sealing capability, and a stable geological environment [73]. 

Requirements such as distance from the source of CO2, effective storage capacity, pathways for 

potential leakage and in general economic constrains may limit the feasibility of being a storage 

site. Bachu [74] described the criteria and approaches for selecting suitable geological sites for 

storing CO2, including the tectonic setting and geology of the basin, its geothermal regime, 

hydrology of formation waters, hydrocarbon potential and basin maturity. In addition, economic 

aspects related to infrastructure and socio-political conditions will also affect the site selection. 

Furthermore, although techniques for geological storage can be derived from existing 
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processes, mostly enhanced oil recovery (EOR) projects, there is no real experience yet at 

commercial scale, and the potential long term environmental effects of large amounts of CO2 

stored is also limited. Three different geological formations are commonly considered for CO2 

storage: depleted (or nearly depleted) oil and gas reservoirs, unmineable coal beds, and saline 

aquifers. Deep ocean storage is also a feasible option for CO2 storage although environmental 

concerns (such as ocean acidification and eutrophication) will likely limit its application. It has 

been shown that CO2 storage potential can reach 400–10,000 GT for deep saline aquifers 

compared with only 920 GT for depleted oil and gas fields and 415 GT in unmineable coal 

seams [75]. Different geological settings have different criteria of consideration for their 

reliability as CO2 storage areas. 

1.4.1 Enhanced Oil Recovery (EOR) 

CO2 can be injected into depleted (or nearly depleted) oil/gas reservoirs to increase their 

pressure and provide the driving force to extract residual oil and gases, while the injected CO2 

remains stored there permanently. Up to 40% of the residual oil left in an active reservoir can 

be extracted after primary production [76]. In fact, fluids injection methods have been widely 

used in the oil and gas extraction industry for decades to enhance the recovery of the residual 

oil and gases. Therefore, there is an economical incentive for injecting CO2 (recovered from an 

associated capture process) into depleted oil and gas reservoirs in order to offset the high CCS 

cost commonly involved in the process. Technologies for injection of CO2 for EOR are mature 

and there are studies on various aspects of EOR, such as migration simulation [77,78], 

geochemical modeling [79,80], and leakage/risk assessment [81]. Several EOR projects for CO2 

storage are ongoing. The large stone is the Weyburn project that started in 2000 in the Weyburn 

oil reservoir in Saskatchewan, Canada. Although the aim of the project is not to investigate the 

potential for CO2 storage, the reservoir is estimated to be able to store more than 30 million ton 

of CO2 captured from a gasification plant in North Dakota, USA and transported to the site 

through a 320 km pipeline.  A number of larger EOR projects with much larger storage capacity 

are planned (such as Hatfield and California DF2) and will be commissioned in the next few 

years. This will build confidence in operators for the feasibility of larger CO2 storage 

demonstration projects. 
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Chapter 2 

Risk analysis 

Nowadays, environment and safety constitute two equivalent terms of a duo considered the base 

for a sustainable equilibrium or, more in general, for the anthropic activity. The problems linked 

with safety and environmental impact of the process industry are becoming more and more 

crucial to obtain a correct and sustainable advancement of the industrial society. In this context, 

risk analysis is becoming a fundamental tool to deal with that issues. 

2.1 Introduction to Risk Analysis 

The term “risk” (R) is a probabilistic quantity defined as the product between occurrence 

frequency of an undesired event (f) and the damage magnitude (M): 

𝑅 = 𝑓 ∗ 𝑀                                                                                                                                     (2.1) 

which is different from the common meaning given to “danger” that is an intrinsic property. As 

we can see from (2.1), a risk could be large when it refers to frequent events with modest 

consequences, but also when it refers to seldom events but with catastrophic consequences. 

This distinction is important in the risk reduction phase, in fact it is possible to limit the risk of 

accidental events through the realization of preventive measures, namely reducing the 

probability that an accident occurs, otherwise applying protective measures, that is mitigating 

the consequences. A simple diagram of the conceptual points of the risk analysis is reported in 

the Figure. 2.1: 

Figure 2.1. Risk analysis conceptual diagram 
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The frequency and magnitude study occurs in a distinct and independent manner; it is their 

combination which gives a certain risk. Although, while adopting all the possible interventions, 

it is not possible to achieve a zero-risk situation, but there always be a risk called residue which 

have to be managed and controlled. In order to perform a risk analysis in a plant, two different 

groups of methods could be used: qualitative one and quantitative one. Both of them are 

necessary, the first kind of methods are less accurate but cheaper: these usually are used to find 

out the most critical part of the plant. The second kind of methods that are more accurate but 

expensive are applied on the results came from the qualitative methods. The accidents historical 

analysis, Hazop, FTA and ETA are the techniques applied in this work to accomplish the risk 

analysis, that are going to be described in the following. 

2.2 Accidents historical analysis 

This is a qualitative method based on the collection of all the accidents that are “similar” at the 

supposed one, happened: 

• In the same place; 

• In similar plants; 

• Regarding the same type of substances; 

• In similar climate conditions. 

Several databases are available (ex. MHIDAS, ARIA, EGIG, CONCAWE, WOAD). They are 

essential for this technique: they have to be detailed at the right point, have a significant number 

of gathered events and contain quasi-accidents too. This hazard identification method permits 

to apply the lessons learnt from accidents occurred in the past, a really good advantage in terms 

of risk prediction. On the other hand, weak points arise: 

• Limited reliability and homogeneity of the sources; 

• Limited information regarding root causes and first phases of the development of the 

scenarios; 

• Difficulties in the elaboration of the information at statistical level. 

In conclusion, this is a useful tool, but needs to be integrated with more systematic techniques. 
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2.3 HAZOP (HAZard and OPerability study) 

This is a technique which allows the individuation of potential risks and operability issues 

caused by deviations from the project goals and linked, in particular, to malfunctions during the 

plant operation. Malfunctions mean not only mechanical failures or equipment breakdowns but 

also all the phenomena that influence the standard design parameters. The Hazop technique is 

based on a complete plant description and on the systematic analysis of each part or element; 

in the Figure 2.2 is summarized the logic procedure. This work is drove by an experts team 

having lots of experience and with solid bases of risk analysis.  

Figure 2.2. Methodology of HAZOP 

 

A typical team for Hazop evaluation include: 

• Chairman (safety engineer); 

• Scribe (safety engineer); 

• One representatives of each discipline involved in design (Process, Mechanical, Control 

and Instrumentation, etc.) 

• Representatives of commitment; 

• On call basis: other specialists (according to specific issues). 

They identify the most critical points (nodes) with the aim of foresee accidents that would never 

be found out from the historical analysis. 

Divide system into nodes

Define node and design intent

Select parameter and deviation

Identify all possible causes

Assess all credible consequences

Identify existing safeguards

Propose recommendations

Last deviation?

Last node?

End

Yes

Yes

No

No
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There is also the need of a big amount of information regarding all plant aspects: 

• Process Flow Diagram (PFD); 

• Piping & Instrumentation Diagram (P&ID); 

• Lay-out; 

• Chemical hazard data; 

• Blowdown and venting systems; 

• Other specific documentation. 

The study is founded on the use of guide words coupled with the most important process 

parameters and permits to identify the possible accidents with the consequent creation of the 

fault tree; the guide words summary in presented in Table 2.1.  

Table 2.1. Guide words of Hazop 

Guide words Meaning Comments 

NO, NOT, NONE 
The complete negation of 

the intention 

No part of the design intention is achieved, but nothing 

else happens. 

MORE, HIGHER, 

GREATER 
Quantitative increase 

Applies to quantities such as flowrate and temperature 

and to activities such as heating and reaction. 

LESS, LOWER Quantitative decrease 
Applies to quantities such as flowrate and temperature 

and to activities such as heating and reaction. 

AS WELL AS Qualitative increase 

All the design and operating intentions are achieved 

along with some additional activity, such as 

contamination of process streams. 

PART OF Qualitative decrease 
Only some of the design intentions are achieved, some 

are not. 

REVERSE The logical opposite of 

Most applicable to activities such as flow or chemical 

reaction. Also applicable to substances, for example, 

poison instead of antidote. 

OTHER THAN Complete substitution 
No part of the original intention is achieved – the 

original intention is replaced by something else. 

SOONER THAN 
Too early or in the wrong 

order 
Applies to process steps or actions. 

LATER THAN 
Too late or in the wrong 

order 
Applies to process steps or actions. 

WHERE ELSE In additional locations 
Applies to process locations, or locations in operating 

procedures. 

 

The plant is divided into cells with entrance and exit and the process/plant behavior is analyzed 

with the variation of properties like temperature, pressure, flowrate, level, composition, etc. It 

permits to obtain a logic-probabilistic analysis for the identification of the most critical points 

of the plant and the determination of the expected frequencies. To conclude, it has to be said 

that this is a powerful tool, but time consuming due to the large amount of details of the analysis 

that have to be taken into account. 
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2.4 FTA (Fault Tree Analysis) 

Once the possible failures and the relative consequences have been identified, in a qualitative 

way, it can go on with the quantification of their damage; this means give the frequency and 

magnitude evaluation. The FTA is a graphical representation of the different logic relations 

between the system components damages, human errors, failure mechanisms or whatever other 

cause which contributes to generate relevant accidents permitting additionally, thanks to data 

regarding the failure rate, to quantify the occurrence probability. It starts from a Top event 

(accidental event with unwanted consequences) and ends to the origin. It has to be considered 

each cause that has been found as a new consequence; the method is repeated until the 

elementary causes have been identified. The FTA construction permits a qualitative evaluation, 

concerning the elementary causes individuation which determine the unwanted event, and a 

quantitative evaluation, which consists in calculating the occurrence frequency of that Top 

event. The various base events are in relation each others through logic operators and with a 

defined symbology, presented in the Figure 2.3. 

Figure 2.3. Symbology of the FTA 
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Every equipment part has a failure frequency, which represents how many failures occur in a 

defined period of time: for example, a failure frequency of 3.6e-7 years-1 means that there will 

occur 3.6 failures in 10,000,000 years. These values are means taken from failure distribution 

curves. Now a brief and simple FTA example is made in Figure 2.4.  

Figure 2.4. FTA example. All the failures are linked together only through “and” and “or” gates. 

 

It can be seen that for the failures 1 and 2 there is an “and” gate, which means the event will 

verify only if both failures occur. For the failures 4 and 5 it is different, because they are linked 

together with an “or” gate, meaning that the event occurs only if at least one of the failures will 

verify. 

 

𝐸𝑣𝑒𝑛𝑡 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = [(1 ∗ 2) + 3] ∗ (4 + 5)                                                                                (2.1) 

 

Once the FTA is built it permits the quantification of failure frequency and Top event frequency 

with the Boolean algebra. The safety engineer task is to reduce that frequency, by the 

introduction, for instance, of alarms, indicators, valves, by-pass, etc. in the proper manner and 

location, until an acceptable value is reached. 

2.5 ETA (Event Tree Analysis) 

This is a graphical representation which individuates the frequencies and the different scenarios 

that can occur starting from a given Top event. Its construction and study are made after the 

FTA, and in a different way, in particular an inductive path is followed: starting from a 

determined Top event, all the possible scenarios related to it are identified with their occurrence 

frequencies. This analysis doesn’t demand to postulate a Top event, as in the Fault Tree, but 

needs to individuate preliminarily all the systems, phenomena and conditions that can influence 

a phenomenon evolution. Each of these systems, phenomena, etc. constitute a Node of the tree, 

which can have two exits, often indicated with “Yes” or “No”, respectively indicating if the 

1

System failure

2

3 4 5
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event occurs or not. At every exit, an occurrence probability is associated, which can be also 

calculated with the FTA application. In an overall analysis, these two techniques are 

complementary. An example of the event tree is in the Figure 2.5.  

Figure 2.5. ETA example 

 

The ETA can be used to study the failure combination of components which lead to different 

possible failure and operating conditions of the system; it is commonly used, however, for the 

definition and calculation of the scenario probability which can derive from the same starting 

point. The tree nodes are made up of phenomena like the immediate or delayed ignition, the 

occurrence of different weather conditions, the protection or mitigation systems intervention 

etc. When the FTA and ETA are included together, they form the so called Bow-tie Diagram. 
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Chapter 3 

Accidents historical analysis 

In order to improve the CCS best practices, it was performed an accidents historical analysis 

with the objective of find all the industrial accidents happened involving all the substances 

which can be used in the capture section of a CCS plant. There are a lot of flammable and toxic 

chemicals that can be encountered in this type of plant, and the amount required is great too, 

due to the large flue gas flowrate. At the end, the most disastrous events will be useful to detect 

the potential most dangerous substance. 

3.1 Accidents historical analysis 

Between all the phases of CCS processes, the focus of this work is on the capture section and 

its relative technologies (chemical absorption, physical absorption and adsorption, cryogenic 

distillation, chemical looping combustion and hydrate-based separation); transport and storage 

are not considered. The carbon capture, as seen in the Chapter 1, can be done with a wide range 

of techniques, exploiting all the various physical and chemical phenomena. The choice of a 

suitable technology relies on the characteristics of the flue gas stream, which depends mainly 

on the power-plant technology. The list of substances which can be used for the carbon capture 

was served to address the research; the accidents found are listed in the following paragraphs. 

3.1.1 Accidents regarding CO2 

• Date: 2008; 

Dead:0; 

Hospitalized:19; 

Description: approximately 15 tons of CO2 was accidentally released from a fire 

extinguishing installation in Monchengladbach, Germany. Due to coincidental failure 

of door seals, the released CO2 was not contained by the building and it spreads outside 

where there were very still air conditions. There were no fatalities from the incident but 

107 people were intoxicated, 19 of whom were hospitalized [1]. 
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3.1.2 Accidents regarding MEA (monoethanolamine) 

• Date: 23/07/1984; 

Dead:17; 

Hospitalized:22; 

Description: a vapor leak was noticed on a vessel, precisely from an amine absorber 

removing H2S from acid stream, pressured. Refinery workers, including the outside 

operator and an assistant outside operator, unsuccessfully attempted to by-pass the 

vessel and to depressurize it. The leak in the vessel wall had spread around the entire 8 

feet circumference of the vessel and it erupted like a missile. The top 45 feet of the 

vessel was lifted by the vapor cloud. The bottom 10 feet of the vessel stayed intact on 

the ground. The eruption of the vessel released a massive vapor cloud which ignited, 

causing a fire ball. This explosion engulfed much of the refinery in flames. Firefighters 

from the Union Oil Fire Brigade responded immediately with the company’s two 

engines, followed closely by the Romeoville Fire Department. As a result of the 

explosion, many towers, tanks, and other refinery structures began to rupture or collapse 

and the site’s fire hydrant system was damaged. So, firefighters were forced to draft 

water from a nearby sanitary canal. They were just beginning to attack the flames when 

a tank containing LPG erupted. The explosion created a huge fireball that rose thousands 

of feet into the air. Several members of the Union Oil Fire Brigade were caught in the 

blast. Once the burning structures were isolated, fire officials determined that allowing 

the fires to burn out on their own was the safest way to extinguish the blaze. The cause 

of this incident was the presence of cracks in the vessel walls [2]. 

3.1.3 Accidents regarding NH3 and (NH4)2CO3 

• Date: 21/02/1991; 

Dead:0; 

Hospitalized:0; 

Description: the accident occurred in one of the two glass lined storage tanks, 35 m3 

capacity each, holding the recirculated acid solution (about 29% of sulfuric acid) used 

to absorb the residual ammonia from the gaseous effluents of the phtalocyanines process 

unit. This solution was enriched with ammonium carbonate coming from the ammonia 

treatment unit. The pH of the solution was manually controlled once per shift and 

adjusted if necessary by adding sulfuric acid solution so that the pH was maintained 

within the slightly acidic range (5 to 6). The solution's pH was periodically checked 

(every 8 hours) by an operator. When the accident occurred, the operator realized too 

late that the ammonium sulfate and ammonium carbonate solution was becoming basic 

and suddenly added a 60% sulfuric acid solution to it. This resulted in an abnormal 
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production of carbon dioxide that over pressurized the tank which exploded because of 

inadequate pressure relieving capacity (the hydraulic trap with which the tank was 

equipped was not sufficient to withstand the peak pressure generated). The collapse of 

the tank caused the release of the solution (about 20 m3), which was partially recovered 

in the containment basin of the 2 glass lined tanks and partially in the yard. The rest of 

the solution was collected, through the sewer network, in the emergency basin of ACNA 

[3]. 

• Date: 29/07/2012; 

Dead:0; 

Hospitalized:6; 

Description: the detailed course of the accident was as follows: about 7:00 a.m., after 

regular check of the installation, a worker reported to his supervisor emission of the 

process solution (containing ammonium carbonate). The emission occurred in the upper 

part of the exchanger. The person responsible for maintenance works was called in deal 

with the damage. In the meantime, the affected exchanger was being prepared for the 

examination and repair. The exchanger was washed with water. This task involved 

opening and closing the proper valves on a pump and injection of water. After the 

exchanger had been washed, the process solution was added to the installation but with 

omitting the damaged exchanger. This allowed the maintenance staff to remove the 

isolation of the exchanger in order to examine it. After the examination of the exchanger 

was performed, it was decided that leakage would be temporary stopped with a caulker 

band. In order to do this, the internal rescue unit was called. They noticed punctual leaks 

in a few places. Before they started sealing operation it was decided to wash the 

exchanger again (doing this twice, in the same way as for the first time). While the 

caulker band was installed inside the exchanger there was water at a low pressure. After 

installation of the band it was decided to check the tightness using water. It appeared 

that it was not tight enough because water was leaking. The worker closed one valve to 

stop the water flow. At the same time, he also opened another valve allowing the process 

solution to get into the system. The other worker, not being aware that process solution 

was being injected, thought the tightness tests were going on so he cut (with the valve) 

the flow of the process solution. This caused the process solution to go the broken 

exchanger. Suddenly, the upper part of the exchanger ruptured causing the emission of 

the process solution. Due to its evaporation, toxic cloud was formed. One worker fell 

down because of the gust that appeared. The other five workers were intoxicated. All of 

them were injured and taken to the hospital. The analysis of the course of the accident 

showed that together with the emission of ammonium carbonate also ammonia was 

released, most probably from the absorption column due to the fact that one valve was 

partially opened [4]. 
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• Date: 08/05/1991; 

Dead:0; 

Hospitalized:0; 

Description: as a small leak was observed in a valve packing joint, it was tightened 

causing the valve insertion point to rupture. The attempt to isolate the valve was 

unsuccessful as two other valves could not be closed. A large amount of ammonia could 

escape through the broken valve. The fire brigade intervened using protective clothing. 

The accident occurred during normal operation of an ammonia plant in a food additives 

industry. The component involved was a valve on an ammonia pipeline operating at 2 

bar and at a temperature of -10°C [5]. 

• Date: 01/06/1992; 

Dead:0; 

Hospitalized:0; 

Description: the ammonia pipes leaked due to a faulty screw connection. Material 

defects caused damage in the screw connection. Liquid ammonia in the pipes was at 

constant pressure of 1.2 MPa [6]. 

• Date: 19/04/1996; 

Dead:2; 

Hospitalized:0; 

Description: two workers of a subcontractor (external company) were performing the 

repair (maintenance) of an engine throttle valve for the level control of a spherical tank. 

During the repair the spindle was pushed out of the fitting. Liquid ammonia was released 

with 14 bars through the section of the opening [7]. 

• Date: 16/06/1997; 

Dead:0; 

Hospitalized:6; 

Description: while carrying out repair works, one staff member of a construction 

company damaged an underground ammonia pipeline with a concrete cutting apparatus. 

This caused a release of liquid ammonia through the breach [8]. 

• Date: 04/01/2005; 

Dead:1; 

Hospitalized:0; 

Description: during the morning, it was foreseen to raise the ammonia level in the 

ammonia storage tank to a perceivable level by pumping cold ammonia through a drain 

pipe. As preparation of this operation the injection of cold ammonia on the tank head 

was interrupted and a refrigerant compressor was started. In the context of this operation 

at 11:05 a.m. the tank drainage valve, used as intake, was completely opened while the 

valve on the other end of the drain pipe was opened to ¼. During this operation, a worker 
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was staying on a platform at 3 m height, whereas another worker was standing below 

the platform. Both workers were permanently in contact over radio with the control 

room. Both workers heard an unusual noise after opening the valve of the drainage pipe. 

The worker on the platform closed the drain valve of the tank a few seconds after and 

left the platform over an access ladder. The control room operator noticed approximately 

at the same time a rapid pressure increase in the tank. In that moment 11:10 a.m. a loud 

bang occurred with the sudden release of ammonia gas which dispersed around against 

the wind [9]. 

• Date: 24/09/1996; 

Dead:0; 

Hospitalized:11; 

Description: the release occurred due to a valve opened in error. The release occurred 

in an installation for the dilution of anhydrous ammonia into a 10% ammonia solution 

employed in order to limit (reduce) the corrosion during the distillation of crude oil. 

This release occurred on one (or two) 1/4 turn valves isolating the dissolving column 

from a tank of 7 cubic meters of capacity (containing 3.8 tons of liquefied ammonia 

under 8 bars of pressure at the time of the accident) [10]. 

• Date: 06/07/1989; 

Dead:2; 

Hospitalized:5; 

Description: at 3:30 p.m. the crankcase of an Uraca horizontal action 3 throw pump, 

used to boost liquid ammonia pressure from 300 psi to 3400 psi, was punctured by 

fragments of the failed pump-ram crankshaft. The two operators investigating the 

previously reported noises from the pump were engulfed in ammonia and immediately 

overcome by fumes. Once the pump crankcase was broken, nothing could be done to 

prevent the release of the contents of the surge drum (10 tons were released in the first 

three minutes). The supply of ammonia from the ring main could only be stopped by 

switching off the supply pump locally. The crankshaft of the Uraca pump failed 

catastrophically smashing itself through the crankcase. Failure of the crankshaft was 

due to the propagation of a fatigue crack through the web separating the first and second 

crank pins. Metallurgical investigations found no initiating defect leading to crack 

propagation. It is thought that the failure was due to some overload of the web/crank pin 

radius at some unknown time. No inspections were foreseen for this component. The 

pump design was not adequate [11]. 
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• Date: 07/07/1989; 

Dead:0; 

Hospitalized:0; 

Description: a storage tank for aqueous ammonia solutions was up for maintenance 

(replacement of the bottom part). The tank got a new bottom on Wednesday (05/07/89) 

and was replaced Wednesday evening. After mechanical completion of the replacement 

work, the Thursday evening a trial had been undertaken to fill the tank up, but 

overpressure was registered in the tank and also the flange connecting the feeding line 

to the tank leaked. Consequently, the filling operation was stopped. The problems were 

reported to the maintenance department, the flange connection was repaired and the 

pressure relief line checked. The trial to fill the tank was not reported to the shift 

supervisor. A shift change took place and the supervisor recorded in the production log-

book that the tank was empty. The next day (Friday 07/07/89) a safe work permit was 

issued by the supervisor of the next shift to the mechanics to disconnect the piping 

associated with this tank for further repair. The repair work proceeded and during the 

grinding of a disconnected pipe, a mechanic noticed a whistling sound and hid, together 

with the 3 others mechanics, behind a concrete tank farm wall. Soon afterwards, the 

tank exploded. The top of the tank was blown over an adjacent manufacturing building, 

landing at the grass-strip between the adjacent building and the office-buildings and 

struck into another office building (approximately 60 meters away) which was empty. 

The ammonia vapors/air explosive mixture formed in the storage tank after the trial was 

probably ignited by the grinding of the disconnected pipe. The pressure relief lines also 

failed to operate as expected but from the Original Report is not fully clear if it was 

caused by a wrong component design or not [12]. 

3.1.4 Accidents regarding Selexol (dimethyl ether of polyethylene glycol) 

• Date: 01/09/1993; 

Dead:0; 

Hospitalized:4; 

Description: the accident occurred in a plant producing synthesized active ingredients 

for the pharmaceutical industry. An explosion and a fire occurred in one of the 

workshops of the plant. At 6:30 a.m. the operation started, 30 min before shift end. At 

6:45 a.m. the temperature threshold was reached, the operators started to cool the reactor 

(it contains aluminum trichloride anhydrous, sodium tetrahydroborate, imide, dimethyl 

ether triethylene glycol) in order to maintain the temperature around 65°C but the 

reaction ran away causing temperature and the pressure rise in the vessel. The operator 

nearest to the reactor smelled an unpleasant odor: through the sight glass he saw a glow 

preceding the explosion. Employees at 15 m distance perceived a blow. A flame 
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projected through the workshop, other flames shot out from a joint and other damaged 

connections of the reactor. Employees outside the building perceived a blow just before 

the explosion. A flame several meters high was visible for some seconds at the exit of a 

chimney connected with the reactor rupture disk (calibrated at 0.5 bar) that burst, 

allowing the decompression of the reactor [13]. 

3.1.5 Accidents regarding Rectisol (methanol) 

• Date: 25/09/1981; 

Dead:0; 

Hospitalized:6; 

Description: during normal operation, there was an unexpected and unwanted formation 

of methyl nitrate in a vessel for collecting chlorine residuals, which was collecting also 

methanol. Probably this has been caused by the introduction of hydrogen chloride 

contaminated with methanol in the electrolysis system. The explosion in the vessel 

caused a break in the pipe connecting it to the chlorine condensation plant, and hence a 

partial evaporation on the contents followed. The plant was shut-down and the 

population outside the establishment was alerted [14]. 

• Date: 08/09/1982; 

Dead:0; 

Hospitalized:0; 

Description: an unintentional spillage of methanol into an electric cable way caused a 

short-circuit which ignited the flammable liquid resulting in a large fire. The operators 

were able to leave the site of the fire. The population external to the establishment was 

alerted and preparations for an extended evacuation were initiated [15]. 

• Date:15/03/1993; 

Dead:1; 

Hospitalized:1; 

Description: on a alcoholysis band (rubber transport-band) took place an explosion 

through the open inspection valve air arrived in the band-case, which together with the 

existing vapors (methanol and methyl acetate, about 25 kg) created an explosive 

mixture. The releasing ignition spark arose obviously in the cutter, that is directly 

connected to the band and that during the inspection was on duty. Due to the explosion, 

the shift leader died and the department head was injured. Immediately after the 

explosion got into fire the rubber-transport-band, part of the facing building front and 

the asphalted tar paper. The firemen brought the fire under control. The quenching water 

was collected in a vessel of the biological clarification plant, but about 7 kg of methanol 

arrived in the nearby river. Due to the explosion, the polymerization from polyvinyl 

acetate should be interrupted. Emergency disconnection caused a rupture of the rupture-
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disk and of the vessel which in turn provoked the escape of a mixture (1000 kg) of 

methanol and polyvinyl acetate circa 250 kg, leaked mixture flowing over the roof of 

the installation. The fire brigade ordered as a precaution the evacuation of the 

installation and of the neighboring buildings. Dioxin analysis showed the usual values 

in burnt components [16]. 

• Date: 07/11/1998; 

Dead:0; 

Hospitalized:0; 

Description: due to a leak in a container, the release of substances caused a fire in an 

experimental fatty acid methyl esters production plant (causes are unknown). After the 

leak had been discovered, at 11:50 a.m. the shut-down of whole plant (the container's 

stirring system and the pumps) was initiated, and the valves were closed. At 12:02 p.m. 

the shut-down was complete. At 12:34 p.m., a fire involving the leaking container was 

noticed. The fire brigade was informed, the emergency plan was activated, 

extinguishing operations started with the help of transportable firefighting gear. At 

12:47 p.m., the disintegration of the tank and a release of flammable material into the 

plant hall could be observed from the control room. The smoke production became more 

intense and a major fire developed. The fire brigade's main concern was cooling the 

methanol tank and a roof. The extinguishing operations were concluded at 4:00 p.m., 

but had to be started again at 5:00 p.m., and went on, with several pauses, until the late 

evening [17]. 

• Date: 12/02/1985; 

Dead:0; 

Hospitalized:4; 

Description: while two operators were charging fiber drums of a penicillin material into 

a reactor containing a mixture of acetone and methanol, an explosion occurred at the 

reactor man-hole. The two operators were blown back by the force of the explosion. 

They were covered with a wet burnt powder. Two other operators, who were opening 

the drums 2 meters away, were also blown back and covered with wet powder. 

Subsequently, all four operators were drenched under emergency showers. They 

suffered superficial burns to the hands and face and spent one night in a local hospital. 

They suffered no side-effects. Investigations showed that the incident was initiated by 

the ignition of solvent vapors, which resulted in a dust explosion of the dry powder. The 

solvent mixture in the reactor did not ignite. Tests carried out on the polyethylene liners 

inside the fiber drums showed they were earthed to the reactor at the time of the 

explosion but they were of the non-conducting type. The most probable cause of the 

ignition was an electrostatic discharge from the polyethylene bags during the reactor 

charging. The underlying causes were inadequate process analysis and design plant, 
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together with a lack of safety culture, that allowed to operate with the risk of a dust 

explosion [18]. 

• Date: 15/05/1987; 

Dead:4; 

Hospitalized:1; 

Description: taking also into account witnesses who heard a first big explosion and a 

few seconds later two other more suffocated explosions, it was deduced that most likely 

the empty tank No 43 exploded first causing the explosions of tanks No 44 and 45. The 

explosions of tanks No 44 and 45 were followed by the fire of the contained methanol. 

Tank No 42 was also partially damaged because of the explosion of the adjacent No 43: 

it was still emitting hexane vapors during the inspection. Probably the explosion was 

caused by the ignition of a mixture of residual methanol vapors with air formed during 

the degassing operations of tank No 43 (it was degassed with air in order to recover 

nonane). According to Carmagnani's officials the tank's cleaning was considered a 

routine operation: depending on the substances to remove, water or air were used for 

cleaning purposes. In case of purging with water, washing water gathered by a draining 

system was conveyed to a waste-water treatment plant. In case that two incompatible 

substances had to be loaded subsequently into the same tank, purging with air was used 

(air was pumped in the vessel through a man-hole and was discharged from other 

openings). This situation occurred for tank No 43 because methanol residues were 

considered incompatible with nonane that had to be stored. All purging operations were 

normally carried out without neither nitrogen protection nor by monitoring the 

surrounding environment for the presence of flammable gases. No fixed explosimeter 

or smoke detectors were installed but the operators could make use of portable 

explosimeters and personal protection devices (breathing apparatuses, filters, masks). 

The first aid room was equipped with stretches and medical supplies and fire 

extinguishers were placed as laid down under the Fire Brigade's Regulations [19]. 

3.1.6 Accidents regarding cryogenic distillation 

• Date: 07/06/1996; 

Dead:0; 

Hospitalized:0; 

Description: during the start-up phase of the cryogenic unit a separator exploded, 

releasing ethane, ethylene, methane and hydrogen. The bursting of a tank was caused 

by a 1600 mm long incipient crack which had been formed at the inside of the tank 

along a weld line (a ferritic basis metal had been welded with an austenitic weld metal). 

The hydrogen induced incipient crack that was caused by the alternating load during 

start-up and shut-down phases in the course of the operating time. This hydrogen 
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induced cracking has been originated by the geometric form variation and the resulting 

plastic deformation in the area of the damaged longitudinal weld. This incipient 

cracking was favored by the high tensile strength of the austenitic weld metal with its 

particularly accentuated martensitic composite area along the transition between weld 

metal and basis metal and was also favored by its physical characteristics which differ 

strongly from the basis metal. There was possibly a lack of maintenance [20]. 

• Date: 21/09/2003; 

Dead:0; 

Hospitalized:1; 

Description: on September 21th, at about 7:30 a.m., the Isotec on-call system operator 

received an automatic pager alert indicating an alarm condition in a cryogenic nitric 

oxide (NO) distillation unit. Arriving at the facility at about 7:50 a.m., he observed 

reddish-brown gas venting from the distillation unit vacuum pump exhaust - which 

indicated a breach in the column piping within the vacuum jacket. Nitric oxide - a toxic 

gas - was venting to the atmosphere and reacting with air to form nitrogen dioxide 

(NO2), also a toxic gas. The responding employee immediately notified his supervisor, 

who called the 911 dispatcher. Isotec management and Sigma-Aldrich, the parent 

company of Isotec, were then notified. The reddish-brown gas cloud was observed 

drifting southwest from the site and slowly dissipating. By 8:15 a.m., employees secured 

the leak by closing the vacuum pump suction valve. Shortly thereafter, the vapor cloud 

was no longer visible. The operations manager and the other five Isotec employees 

believed they could safely remove the nitric oxide from the N3 distillation column and 

vacuum jacket, and proceeded with the necessary preparations. Their position was based 

on successful application of the same strategy to a column malfunction on September 

18, 1998. Distillation column N4 (same design as N3) had developed a NO leak into the 

vacuum jacket and vented nitric oxide from the vacuum exhaust. While closely 

monitoring pressure and temperature, operators successfully emptied the nitric oxide 

from the column and vacuum jacket. Once the September 21 leak was secured, 

personnel began installing temporary tubing to empty the nitric oxide in the 

malfunctioning column. Concurrently, they closely monitored the pressure inside the 

column, which was behaving as in 1998 when column N4 leaked nitric oxide. The 

pressure stabilized at no more than 130 pounds per square inch (psi) - well below the 

vacuum jacket calculated burst pressure of 1645 psi. Isotec personnel noted that the 

condenser was “vigorously venting nitrogen vapor”, which indicated increased heat load 

in the column. At 10:15 a.m. - with no warning - a violent explosion destroyed the 

distillation column, the blast containment structure, and nearby buildings. Windows 

were blown out of the main office building, about 140 feet from the explosion; and glass 

shards lacerated the hand of an Isotec employee. No other injuries were reported. Small 
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chunks of concrete and metal shards were propelled as far as 1000 feet and fell on 

adjacent property. Three houses north of the facility were struck by debris, causing 

minor damage to two roofs and a picture window. A large steel panel from the blast 

containment structure struck and dislodged a 52000 - pound gaseous carbon monoxide 

(CO) storage vessel, pushing it about 10 feet off its foundation. A second steel panel 

severely damaged adjacent equipment. A ruptured fill line vented CO gas, which then 

ignited and burned for about 1 hour, until the vessel was empty. As a precaution, the fire 

department requested that the police evacuate a 1-mile radius to protect the community 

from metal shards or other debris in the event that the CO vessel exploded. The 

evacuation order was lifted after 24 hours [21]. 

• Date: 30/07/2000; 

Dead:0; 

Hospitalized:0; 

Description: an explosion occurred at a specialty gas manufacturing facility in Dayton, 

Nevada. The plant manufactured small quantities of nitrogen trifluoride (NF3), a 

specialty chemical used for etching silicon wafers and for cleaning silicon production 

equipment in the microprocessor fabrication industry. While the building housing the 

process was damaged, no personnel were injured. Exponent conducted an engineering 

investigation of the incident to determine the cause of the explosion, to understand the 

chemical reactions leading to the incident, and to quantify the explosive energy of the 

blast. The incident occurred in the last stage of the manufacturing process, inside a 

distillation column/reboiler assembly that separates residual nitrogen (N2) and fluorine 

(F2) gas from condensed NF3. A process disruption occurred approximately 90 minutes 

before the explosion, when the plant received a liquid nitrogen delivery that was 

significantly colder than the nitrogen already present in the onsite tank. Liquid nitrogen 

was used as the heat exchange fluid inside the distillation column condenser and the 

influx of the colder delivery caused sufficient temperature decrease within the column 

condenser to liquefy fluorine. Analysis revealed that the condensed fluorine reacted with 

the stainless steel packing material to initiate a localized exothermic event inside the 

column/reboiler. The hot spot spread and initiated combustion between the stainless 

steel packing material and the liquid NF3. The energy released by these exothermic 

reactions evaporated NF3 and caused a rapid increase in the temperature and pressure 

of the column/reboiler contents. The gaseous outflow choked at the column/reboiler 

outlets and the resulting pressure buildup, estimated at approximately 8000 psi, 

ultimately failed the reboiler. The total energy yield was low (approximately 1.5 lb-

TNT) and no one was injured. However, this incident serves to highlight the care 

necessary in manufacturing highly reactive fluorinated gases [22]. 
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3.1.7 Accidents regarding NiO 

• Date: 21/02/2000; 

Dead:0; 

Hospitalized:6; 

Description: the accident occurred in a foundry. Six persons were injured by the 

explosion of the furnace. The treatment operation which was being carried out at the 

time of the accident was the fusion of a batch composed of metals and minerals, in order 

to obtain alloy ingots. The batch was composed of 836 kg of sand (mainly nickel oxide, 

silicon dioxide and aluminum), 6690 kg of Fe - Mo - Co - Ni alloy in ingots of 350 kg, 

540 kg of ordinary steel and 240 kg of lime. The nickeled sand in the bottom of the 

furnace did not melt completely; the intense mixing of the metal by the injection of 

gaseous oxygen helped the nickeled sand rise to the surface. The nickel oxide was 

deoxidized by passing through the metal; the oxygen thus released combined with the 

carbon present in the bath and produced large quantities of CO and CO2 very rapidly. 

This hypothesis is substantiated by the recording of the gas analyzers; a calculation 

shows that this reaction produces 73 m3 of CO in a few seconds. The not melted nickel 

sand in the bottom of the furnace contained a certain quantity of water and gas, held 

under pressure by a layer of pasty metal. The blast would have been due to the release 

of these during the fusion operation was an aggravating factor in the number of people 

injured gases; a calculation shows that this phenomenon generates 8 m3 of steam. The 

analysis of the causes concludes that the loading method (nickeled sand in the bottom 

of the furnace) was the origin of the accident [23]. 

3.1.8 Accidents regarding THF (tetrahydrofuran) 

• Date: 03/12/2004; 

Dead:1; 

Hospitalized:0; 

Description: at the end of every week the coating pan of the coating tower was to be 

cleaned. Normally this is done using scraping knives. However, it is easier to clean the 

pan if the pan is soaked in solvent for some time. For this purpose, methyl ethyl ketone 

(MEK) can be tapped into safety cans. A second solvent, tetrahydrofuran (THF), was 

available on site and is more effective in soaking the pan than MEK. The operators knew 

this and got the THF from the first floor of the coating tower using a bucket (no safety 

cans were available here since this was not the normal operation). In the accident, the 

victim also filled a bucket with THF on the first floor, but this time the liquid ignited 

(most likely from an electrostatic discharge). Knowing that the coating tower was a 

classified area, the victim has tried to carry the burning bucket outside. For that he had 
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to go down the stairs. In the staircase, he fell and dropped the bucket. This had two 

effects: burning liquid was splashed onto his clothes and there was a larger burning 

surface, resulting in a large fire, surrounding the victim. He was able to get out of the 

staircase and ran (with his clothes burning) towards a colleague in a nearby room. This 

colleague was able to put out the fire on his clothes. However, the burns were so severe 

that the victim died one day later [24]. 

• Date: 24/10/1995; 

Dead:0; 

Hospitalized:1; 

Description: an explosion and a fire of an organic chemical occurred at a chemical 

factory. By pressurizing a drum can with air, tetrahydrofuran (THF) was transferred to 

a tank. The drum can exploded and a fire occurred. The method was imperfect and 

unsuitable, although static electricity preventive measures were taken. Therefore, a 

combustible gas-air mixture in the drum can is considered to have been ignited by static 

electricity sparks generated by a liquid flow, followed by an explosion [25]. 

3.1.9 Accidents regarding an ASU (Air Separation Unit) 

• Date: 1978; 

Dead:0; 

Hospitalized:0; 

Description: the incident in Lae occurred in a very small plant (about 1 ton per day of 

oxygen). It was of modern design in that the liquid oxygen from the top column sump 

was pumped to cylinder-filling pressure then returned to the main exchanger to impart 

its cold to the feed air. The center of the explosion was the main exchanger, made of 

copper, not aluminum. This is the point at which the liquid oxygen evaporates, leaving 

behind the dissolved acetylene or other hydrocarbons, and the possibility of their 

accumulation. The ASU was closed to an acetylene works, which might have been a 

rich source of contamination [26]. 

• Date: 25/12/1997; 

Dead:0; 

Hospitalized:0; 

Description: a serious explosion in an air separation unit in Bintulu (Malaysia) occurred. 

Since the cause of the explosion was not obvious, a large number of possible scenarios 

was generated, followed by a systematic process of elimination. Ultimately, conclusive 

evidence was obtained that combustible airborne particulates had passed the main 

purification section of the air separation unit. These combustible contaminants had 

accumulated on the aluminum main vaporizers of the distillation column. Once 

hydrocarbon combustion was triggered, it led to aluminum combustion which generated 
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heat and vaporized the cryogenic liquids. This led to rapid pressure build up and 

explosive rupture of the distillation column. The exact ignition mechanism remains 

unclear, but a low activation energy chemical mechanism, involving radical reactions to 

provide the initiating trigger, has been proposed. However, by designing a purification 

system capable of efficiently removing aerosol material and other fouling contaminants, 

and by a proper design of the oxygen reboiler it is possible to design a plant that can be 

operated safely in an aerosol polluted environment [27]. 

• Date: 31/12/2001; 

Dead:1; 

Hospitalized:0; 

Description: on that day, the oxygen flow had been redirected for a certain period of 

time to the cooling tower over a by-pass line. In the same day, the oxygen flow was 

again switched from the by-pass line to the product pipe with the aim of directing the 

oxygen into the storage tank. Before starting oxygen storage operations, the product 

pipe had to be cleaned, due to the fact that the product pipe had not been used for a 

certain period of time and that contamination could not be excluded. The cleaning 

operation was performed by flushing the pipe with the product (oxygen). Due to the fact 

that the valve did not close correctly, oxygen was released over the pipe into the gravel 

bed near the tank and into the atmosphere instead of flowing into the oxygen storage 

tank. Switching from the by-pass line to the product pipe was made over a remote 

control from the control room of the other air separation unit. The monitoring system 

showed the opening of the flush valve and the closing of the valve after 2.5 min. In 

reality the flush valve was not closed. Oxygen spread over the site and it has to be 

assumed that it reached also the administration building at a distance of approximately 

50 meters. At 4:55 p.m. a fire broke out inside the building and an employee was killed. 

The fire destroyed most rooms on the ground floor and on the first floor of the building. 

The fire detectors responded in rapid sequence, it has therefore to be assumed that the 

fire spread very rapidly. The fire brigade brought the fire rapidly under control and 

extinguished it. A collaborator was inside the building when the fire broke out because 

one of the plant operators had requested him to check directly on-site the alarm signal 

released by an analyzing device. The analyzer indicated an oxygen content in the 

nitrogen cooling circuit near to the threshold value of 0.3 ppm. A defect in the analyzer 

was suspected. The collaborator instructed to check the analysis came into the 

installation at 4:00 p.m. and controlled the corresponding analysis. He contacted the 

control room communicating that no errors could be found and his intention to leave the 

installation. Shortly after, the fire detectors responded. The oxygen content 

measurement in the nitrogen cooling circuit of the air separator is an essential control 
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parameter for the cooling process. The values measured do not give any clue with 

regards to the oxygen content of the ambient air in the surroundings [28]. 

3.2 Historical analysis results 

It has been found that the most disastrous accident was the one regarding MEA happened in 

Romeoville, Illinois (USA); for this reason, it is described with more details in the following. 

Ethanolamine is an organic chemical compound which is flammable and toxic: in the Appendix 

is a present a detailed safety data sheet. This was a really destructive accident happened on 23 

July 1984, which caused 17 deaths, 22 hospitalized persons and 530 million dollars for repairs 

and compensation. Everything starts with a vapor leak noticed on a vessel at 5.45 p.m.: it was 

a pressured amine absorber removing H2S from an acid stream (55 feet tall, 1 in thick carbon 

steel, 34 tons of storage). Refinery workers, including the outside operator and an assistant 

outside operator, unsuccessfully attempted to by-pass the vessel and to depressurize it. At 5.52 

p.m., the leak in the vessel wall had spread around the entire 8 feet circumference of the vessel 

and it erupted like a missile. The top 45 feet of the vessel was lifted by the vapor cloud. The 

bottom 10 feet of the vessel stayed intact on the ground. The eruption of the vessel released a 

massive vapor cloud which ignited, causing a fire ball. This explosion engulfed much of the 

refinery in flames. Firefighters from the Union Oil Fire Brigade responded immediately with 

the company’s two engines, followed closely by the Romeoville Fire Department. As a result 

of the explosion, many towers, tanks, and other refinery structures began to rupture or collapse 

and the site’s fire hydrant system was damaged. So, firefighters were forced to draft water from 

a nearby sanitary canal. They were just beginning to attack the flames when a tank containing 

LPG erupted. The explosion created a huge fireball that rose thousands of feet into the air. 

Several members of the Union Oil Fire Brigade were caught in the blast. Firefighters were 

needed to both put out the flames and also prevent more refinery structures from catching fire. 

Once the burning structures were isolated, fire officials determined that allowing the fires to 

burn out on their own was the safest way to extinguish the blaze. The fires burned throughout 

the night at temperatures of 2200 °C, luckily without further explosions or loss of life, even 

though some workers jumped into the Illinois & Michigan Canal to escape the extreme heat. 

3.2.1 Amine vessel failure analysis 

As required by law, the inside of the vessel was inspected every two years. The inspectors were 

Union Oil employees in management positions. The vessel was last inspected three months 

before the explosion and the vessel inspectors found no problems with the vessel. Testimony 

from one of Union Oil’s own engineers indicated that his metallurgical testing performed after 

the explosion indicated that there were cracks in the vessel walls at least four years before the 

accident. The plaintiff’s evidence established that Union Oil’s vessel inspectors made only a 
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visual inspection which was inadequate to detect cracking within the vessel walls. The evidence 

indicated that Ultrasonic and wet magnetic particle testing techniques were well known and 

used in the oil industry to detect vessel wall cracking, but Union Oil did not use them on this 

vessel. In the Figure 3.1 it can be seen the amine vessel after the amine vessel after the 

explosion. 

 

Figure 3.1. Amine absorber column after the explosion, Romeoville, Illinois (USA), 1984 

 

Three other primary contributors to the settlement, Santa Fe Braun, Inc., UOP, Inc., and the 

Ralph M. Parsons Company, had responsibilities relating to the erection, process design and 

functioning of this vessel. One of Santa Fe Braun’s corporate predecessors, C.F. Braun and 

Company, was the general contracting firm that erected the vessel. Its engineers helped to 

determine the process requirements and capabilities of this vessel, specifically including what 

amount of chemical activity would go on within the vessel. UOP was also involved in those 

decisions, made with respect to process engineering. The Ralph M. Parsons Company has been 

hired by Union Oil to revamp part of the refinery, including the subject vessel. In its revamp, 

Parsons altered some of the process requirements of that vessel, and as well, made independent 

determinations of the suitability of the vessel and its characteristics for use in the amine treating 

system. The Union Oil Company alleged that the process design work done by these three 

companies was inadequate in that it failed to provide for sufficient safeguarding against 

corrosion which contributed to the cracking and the failure of the vessel. Union Oil determined 

that the operation of the subject vessel had caused significant metallurgical problems to the 

bottom portion of the vessel and that one of the vessel sections would need to be replaced. 

Welders from the Morrison Construction Company attempted to replace a major section of the 

vessel but due to poor quality control and inadequate welding work, were taken off the job by 

Union Oil and replaced by welders from the Nooter Corporation. Nooter’s welders finished the 



Accidents historical analysis                                                                                                                                      47 

 

job using specifications which the Union Oil Company claimed were inadequate. The welding 

specifications used by Morrison and Nooter contributed to the "high hardness" of the metal 

adjacent to the weld, which made it more brittle and subject to failure. Metallurgical testing 

work done after the explosion, both by engineers retained by Union Oil and engineers retained 

by the Illinois State Fire Marshall, showed that the cracking in this vessel which lead to the 

explosion and fire started in the metal adjacent to the welds done by Morrison and Nooter [2]. 
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Chapter 4 

Capture process simulation 

Starting from the point that the capture process using MEA is probably the most dangerous one, 

the next step is to perform a simulation in Aspen Plus of this process, in particular an existing 

pilot plant is taken as reference. The aim will be to perturb the flue gas operating conditions 

and see if and how the process will respond to them. The simulation will be brought to its 

physical and chemical limits: in this way, the most critical section will be identified. 

4.1 Carbon capture process with MEA 

The previous research and analysis have been useful to understand that capture processes 

involving MEA can really increase the riskiness of a plant and that a particularly high level of 

attention is absolutely needed. MEA is an organic chemical compound well known for its use 

in gas scrubbing, particularly in this case for flue gas scrubbing; it is unfortunately also a toxic 

and flammable substance. To find out the most hazardous part of a carbon capture plant working 

with MEA, it has been run a simulation with Aspen Plus. Feed conditions and unit operation 

block specifications in the rate-based model was provided from a pilot plant study at the 

University of Kaiserslautern (2012) [1]. 

4.1.1 Model components 

In the Table 4.1 are represented the chemical species present in the process. 

 

Table 4.1. Components used in the model 

ID Type Name Formula 

MEA Conventional Monoethanolamine C2H7NO 

H2O Conventional Water H2O 

CO2 Conventional Carbon dioxide CO2 

H3O+ Conventional H3O+ H3O+ 

OH- Conventional OH- OH- 

HCO3
- Conventional HCO3

- HCO3
- 

CO3-2 Conventional CO3
-- CO3

-2 

MEAH+ Conventional MEA+ C2H8NO+ 

MEACOO- Conventional MEACOO- C3H6NO3
- 

N2 Conventional Nitrogen N2 

O2 Conventional Oxygen O2 

CO Conventional Carbon monoxide CO 

H2 Conventional Hydrogen H2 
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H2S Conventional Hydrogen-sulfide H2S 

HS- Conventional HS- HS- 

S-2 Conventional S-- S-2 

CH4 Conventional Methane CH4 

C2H6 Conventional Ethane C2H6 

C3H8 Conventional Propane C3H8 

 

4.1.2 Physical properties 

The unsymmetrical electrolyte NRTL property method (ENRTL-RK) and PC-SAFT equation 

of state are used to compute liquid and vapor properties, respectively, in this rate-based MEA 

model. CO2, H2S, N2, O2, CH4, C2H6, and C3H8 are selected as Henry-components (solutes) to 

which Henry’s law is applied. Henry’s constants are specified for these components with water 

and MEA. In the reaction calculations, the activity coefficient basis for the Henry’s components 

is chosen to be Aqueous. Therefore, in calculating the unsymmetrical activity coefficients 

(GAMUS) of the solutes, the infinite dilution activity coefficients will be calculated based on 

infinite-dilution condition in pure water, instead of in mixed solvents. 

The Henry’s constant parameters of CO2 H2S, CH4, C2H6, and C3H8 are obtained from the 

literatures or regressed with the VLE data (see Table 4.2). The other Henry’s constants are 

retrieved from the Aspen Databank. 

 

Table 4.2. Henry’s constants 

Solute Solvent Source 

CO2 H2O Yan and Chen (2010) [4] 

H2S H2O Regression with H2S-H2O VLE data [5-12] 

CH4 H2O Regression with CH4-H2O VLE data [13] 

C2H6 H2O Regression with C2H6-H2O VLE data [14] 

C3H8 H2O Regression with C3H8-H2O VLE data [15] 

CO2 MEA Zhang and Chen (2011) [16] 

H2S MEA Set to that of H2S in H2O 

CH4 MEA Regression with CH4-H2O-MDEA VLE data [17,18] 

C2H6 MEA Regression with C2H6-H2O-MDEA VLE data [18] 

C3H8 MEA Regression with C3H8-H2O-MDEA VLE data [19] 

 

The PC-SAFT parameters of MEA are regressed from the vapor pressure data [20-23], the heat 

of vaporization data [24-25], the liquid heat capacity data [26-27] and the liquid density data 

[28-30]. Those of H2O are obtained from Gross and Sadowski [31], and those of the other 

components are retrieved from the Aspen Databank. The characteristic volume parameters of 

H2O for the Brelvi-O’Connell Model, VLBROC, are obtained from Brelvi and O’Connell [32], 

those of CO2 are obtained from Yan and Chen [4], those of CH4 and C2H6 are regressed with 

the CH4-H2O [13] and C2H6-H2O [14] binary VLE data, and those of MEA, H2S, C3H8, N2, O2 
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and CO are defaulted to their critical volume in the Aspen Databank. Unless specified 

otherwise, all molecule-molecule binary parameters and electrolyte-electrolyte binary 

parameters are defaulted to zero. All molecule-electrolyte binary parameters are defaulted to 

(8, -4), average values of the parameters as reported for the electrolyte NRTL model [33]. The 

nonrandomness factor is fixed at 0.2. The NRTL interaction parameters between MEA and H2O 

are determined from the regression with binary VLE data [23,33-37], excess enthalpy data 

[33,38-40] and heat capacity data [27, 1,42]. The interaction energy parameters between H2O 

and (MEAH+, HCO3
-), GMENCC, and those parameters between H2O and (MEAH+, 

MEACOO-), GMENCC and GMENCD, are regressed using the VLE data [43-46], absorption 

heat data [47], heat capacity data [42,45] and speciation concentration data [48]. The interaction 

energy parameters between H2O and (MEAH+, HS-), GMENCC and GMENCD, are regressed 

with the H2S solubility data in aqueous MEA solution [49-50]. The dielectric constants of 

nonaqueous solvents are calculated by the following expression: 

 

𝜀 = 𝐴 + 𝐵 (
1

𝑇
−
1

𝐶
)                                                                                                                        (4.1) 

 

The parameters A, B and C for MEA are 35.76, 14836.0 and 273.15, which are derived from 

Dean et al. [51]. The liquid molar volume model and transport property models have been 

validated and model parameters regressed from literature experimental data. Specifications of 

the transport property models include: 

• For liquid molar volume, the Clarke model, called VAQCLK in Aspen Plus, is used 

with option code 1 to use the quadratic mixing rule for solvents. The interaction 

parameter VLQKIJ for the quadratic mixing rule between MEA and H2O is regressed 

against experimental MEA-H2O density data from Kapadi et al. [52]. The Clarke model 

parameter VLCLK/1 is also regressed for the main electrolyte (MEAH+, HCO3
-), 

(MEAH+, MEACOO-) and (MEAH+, CO3
-2) against experimental MEA-H2O-CO2 

density data from Weiland [53]; that for  (MEAH+, HS-) is set to that of  (MEAH+, 

HCO3
-); 

• For liquid viscosity, the Jones-Dole electrolyte correction model, called MUL2JONS in 

Aspen Plus, is used with the mass fraction based Aspen liquid mixture viscosity model 

for the solvent. There are three models for electrolyte correction and the MEA model 

always uses the Jones-Dole correction model. The three option codes for MUL2JONS 

are set to 1 (mixture viscosity weighted by mass fraction), 1 (always use Jones and Dole 

equation when the parameters are available), and 2 (Aspen liquid mixture viscosity 

model), respectively. The interaction parameters between MEA and H2O in the Aspen 

liquid mixture viscosity model, MUKIJ and MULIJ, are regressed against experimental 

MEA-H2O viscosity data from Kapadi et al. [52] and Wadi et al. [54]. The Jones-Dole 

model parameters, IONMUB, for MEAH+, and MEACOO- are regressed against MEA-
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H2O-CO2 viscosity data from Weiland [53]; that of HCO3
- is regressed against KHCO3-

H2O viscosity data from Palaty [55]; that of CO3
2- is regressed against K2CO3-H2O 

viscosity data from Pac et al. [56]; and that of HS- is regressed against MDEA-H2OH2S 

viscosity data from Rinker et al. [57]; 

• For liquid surface tension, the Onsager-Samaras model, called SIG2ONSG in Aspen 

Plus, is used with its option codes being -9 (exponent in mixing rule) and 1 (electrolyte 

system), respectively. Predictions for the MEAH2O-CO2 system can be in the range of 

the experimental data from Weiland [53], which themselves have questionable qualities 

due to MEA degradation during experiments; 

• For thermal conductivity, the Riedel electrolyte correction model, called KL2RDL in 

Aspen Plus, is used; 

• For binary diffusivity, the Nernst-Hartley model, called DL1NST in Aspen Plus, is used 

with option code of 1 (mixture viscosity weighted by mass fraction). 

In addition to the updates with the above transport properties, the aqueous phase Gibbs free 

energy and heat of formation at infinite dilution and 25°C (DGAQFM and DHAQFM) and heat 

capacity at infinite dilution (CPAQ0) for MEAH+ and MEACOO- are regressed with the VLE 

data [43-46], absorption heat data [47], heat capacity data [42, 45] and speciation concentration 

data [48]. The CPAQ0 of HCO3
-, CO3

-2 and HS- are the average values of heat capacity between 

298 K and 473 K taken from Criss and Cobble [58], and that of S-2 is calculated from the Criss-

Cobble correlation [58] with the entropy value from Wagman et al. [59]. 

4.1.3 Reactions 

MEA is a primary ethanolamine, as shown in Figure 4.1. It can associate with H+ to form an 

ion MEAH+, and can also react with CO2 to form a carbamate ion MEACOO-. 

Figure 4.1. MEA molecular structure 

The electrolyte solution chemistry has been modeled with a CHEMISTRY model with 

CHEMISTRY ID = MEA (as seen in Figure 4.2).  

 

Figure 4.2. Chemistry ID: MEA 
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This CHEMISTRY ID is used as the global electrolyte calculation option in the simulation by 

specifying it on the Global sheet of the Properties | Specifications form. Chemical equilibrium 

is assumed with all the ionic reactions in the CHEMISTRY MEA. In addition, two REACTION  

models called Absorber (used in the absorber, 303-353 K) and Stripper (used in the stripper, 

353-393 K) have been created. In Absorber/Stripper, all reactions are assumed to be in 

chemical equilibrium except those of CO2 with OH- and CO2 with MEA (as seen in Figure 4.3).  

 

Figure 4.3. Reaction ID: Absorber/Stripper 

 

The equilibrium constants for reactions 1-7 in MEA are calculated from the standard Gibbs 

free energy change. DGAQFM, DHAQFM, and CPAQ0 of MEAH+ and MEACOO-, which are 

used to calculate the standard MEAH+ and MEACOO- Gibbs free energy, are determined in 

this work. The DGAQFM (or DGFORM), DHAQFM (or DHFORM), and CPAQ0 (or CPIG) 

parameters of the other components can be obtained from the databank of Aspen Plus. Power 

law expressions are used for the rate-controlled reactions (reactions 4-7 in Absorber/Stripper). 

The general power law expression is: 

 

𝑟 = 𝑘(𝑇/𝑇0)
𝑛𝑒𝑥𝑝 [(

−𝐸

𝑅
) (

1

𝑇
−

1

𝑇0
)]∏ (𝑥𝑖𝛾𝑖)

𝑎𝑖𝑁
𝑖=1                                                                      (4.2) 

 

Where: 

• r = rate of reaction; 

• k = pre-exponential factor; 

• T = absolute temperature; 

• T0 = reference temperature; 

• n = temperature exponent; 

• E = activation energy; 

• R = universal gas constant; 

• N = number of components in the reaction; 

• xi = mole fraction of component i; 

• yi = activity coefficient of component i; 

• ai = the stoichiometric coefficient of component i in the reaction equation. 
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If T0 is not specified, the reduced power law expression is used: 

 

𝑟 = 𝑘𝑇𝑛𝑒𝑥𝑝 (
−𝐸

𝑅𝑇
)∏ (𝑥𝑖𝛾𝑖)

𝑎𝑖𝑁
𝑖=1                                                                                                       (4.3) 

 

In this work, the reduced expression is used. In equation (4.3), the concentration basis is mole 

gamma, the factor n is zero, k and E are given in Table 4.3 

 

Table 4.3. Parameters k and E in equation (3.3) 

Reaction No. k E [cal/mol] 

6 1.33e+17 13249 

7 6.63e+16 25656 

8 3.02e+14 9855.8 

9 (Absorber) 5.52e+23 16518 

9 (Stripper) 6.50e+27 22782 

 

Note that Absorber and Stripper share all kinetic parameters except those of reaction 9. The 

kinetic parameters for reaction 6 (forward reaction) are taken from the work of Pinsent et al. 

[60], and the kinetic parameters for reaction 7 (reverse reaction) are calculated by using 

equation (3.4) with the kinetic parameters of reaction 6 and the equilibrium constants of the 

reversible reactions 6 and 7: 

 

𝑘𝑟
𝑎 =

𝑘𝑓
𝑎

𝐾𝑒𝑞
𝑎                                                                                                                                       (4.4) 

 

Where: 

• 𝑘𝑓
𝑎 = rate constant of the forward reaction, mole gamma basis; 

• 𝑘𝑟
𝑎 = rate constant of the forward reaction, mole gamma basis; 

• 𝐾𝑒𝑞
𝑎  = equilibrium constant, mole gamma basis. 

The kinetic parameters of reaction 8 in Table 3.3 are derived from the work of Hikita et al. [3] 

and the kinetic parameters of reaction 9 are calculated by using the kinetic parameters of 

reaction 8 and the equilibrium constants of the reversible reactions 8 and 9. Two sets of linear 

approximations (respect to 1/T) for the equilibrium constants (calculated from the Gibbs free 

energy change) are used for Absorber and Stripper, respectively. One is the linear 

approximation of the equilibrium constant for the temperature from 303 to 353 K (for the 

absorber) and the other is the linear approximation for the temperature from 353 to 393 K (for 

the stripper). Two sets of kinetic parameters of reaction 9 for Absorber and Stripper are 

obtained using equation (3.4), as listed in Table 3.3. 
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4.1.4 Simulation approach 

The flowsheet, which can be seen in the Figure 4.4, closely simulates of the pilot plant cited in 

Notz, Mangalapally, and Hasse [1] which incorporates an absorption and stripping column, heat 

exchange between the two columns, and water and amine recycles. The operating conditions of 

this plant were chosen to be as close to those used in case 1 as possible. Where data necessary 

for the simulation were not reported reasonable estimates for these missing data were made. An 

amine makeup stream and a water makeup stream were not present in the pilot plant, but were 

added to the simulation to maintain mass balance and to aid convergence. 

 

Figure 4.4. Rate-based MEA simulation flowsheet in Aspen Plus 

 

Major unit operations in this model have been represented by Aspen Plus blocks as outlined in 

Table 4.4. 

 

Table 4.4. Aspen Plus unit operations blocks in the rate-based MEA model 

Unit operation Aspen Plus block Comments / Specifications 

Absorber RadFrac 1. Calculation type: Rate-Based 

2. 20 stages 

3. Top pressure: 0.97708 bar 

4. Reaction: Reaction ID is ABSORBER for all stages 

5. Packing type: FLEXIPAC® 250Y 

6. Diameter: 0.125m 

7. Total height: 4.62m 

8. Wash section height: 0.42m 

9. Absorber section height: 4.2m 

10. WATEROUT flowrate: 28.53 kg/h 

11. Mass transfer coefficient method: Bravo (1985) [61] 

12. Interfacial area method: Bravo (1985) [61] 

13. Flooding method: Wallis [62] 

14. Heat transfer coefficient method: Chilton and Colburn 
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15. Film resistance options: Discrxn for liquid film; Film for 

vapor film 

16. Flow model: VPlug 

17. Estimates: provide temperature at stages 1, 12 and 20. These 

estimates are intended to aid convergence 

Stripper RadFrac 1. Calculation type: Rate-Based 

2. 20 stages 

3. Top pressure: 1.999 bar 

4. Reaction: Chemistry ID is MEA for condenser and reboiler, 

and then Reaction ID is STRIPPER for all other stages 

5. Packing type: FLEXIPAC® 250Y 

6. Diameter: 0.125m 

7. Total height: 2.92m 

8. Wash section height: 0.42m 

9. Stripper section height: 2.5m 

10. Distillate rate: 6.93 kg/h 

11. Reboiler duty: 7.05 kW 

12. Condenser temperature: 18°C 

13. Mass transfer coefficient method: Bravo (1985) [61] 

14. Interfacial area method: Bravo (1985) [61] 

15. Flooding method: Wallis [62] 

16. Heat transfer coefficient method: Chilton and Colburn 

17. Film resistance options: Discrxn for liquid film; Film for 

vapor film 

18. Flow model: VPlug 

19. Estimates: provide temperature at stages 20. This estimate 

is intended to aid convergence 

HX1 HeatX 1. Calculation type: Shortcut 

2. Hot inlet – Cold outlet temperature difference: 5.27°C 

3. Cold side outlet pressure: 2.9bar 

4. Valid phases: vapor-liquid both sides 

HX2 Heater 1. Outlet temperature: 112.85°C (set to match experimental 

data for inlet temperature for stripper caused by heat losses after 

heat recovery exchanger 

2. Outlet pressure: 2.9bar 

3. Valid phases: vapor-liquid 

HX3 Heater 1. Outlet temperature: 40°C 

2. Outlet pressure: 2bar 

3. Valid phases: vapor-liquid 

Pump Pump 1. Discharge pressure: 2.9bar 

 

Major inlet and outlet streams and properties are summarized in Table 4.5. The stream 

LEANIN, LEANOUT and WATERIN are tear streams in the simulation. Initial guesses for 

LEANIN and WATERIN were taken from the experimental data and shown in Table 4.5. 
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Table 4.5. Major experimental stream properties 

Stream ID FLUEGAS LEANIN RICHOUT CO2OUT COND WATERIN WATEROUT 

Temperature 

[°C] 
48.01 40.01 51.66 18.27 16.02 43.87 47.70 

Pressure 

[mbar] 
1004.49 2000 1065.06 2000 ~1000 ~1000 ~1000 

Total flow 

[kg/h] 
72 200.1 206.5 4.67 2.04 30.87 28.53 

Mass 

fractions 
       

MEA 0 0.275 0.265 0 0 0.0083 0.009 

H2O 0.071 0.673 0.661 0.004 1.0 0.9917 0.991 

CO2 0.085 0.052 0.074 0.996 0 0 0 

N2 0.743 0 0 0 0 0 0 

O2 0.101 0 0 0 0 0 0 

Molar CO2 

loading 
-- 0.262 0.387 -- -- -- -- 

 

The water makeup stream flowrate was determined using a standard balance block. The inlet 

stream was FLUEGAS and the water makeup stream, WATERMU, was introduced for the water 

balance. The outlet streams were GASOUT, CO2OUT and S7. The MEA makeup stream 

flowrate was determined using another standard balance block. The MEA makeup stream, 

MEAMU, was introduced for the MEA balance. The outlet streams were GASOUT, CO2OUT 

and S7. 

 

4.1.4.1 Simulation results 

A comparison of key simulation results with the measurements is given in the Table 4.6. It can 

also be demonstrated that these rate-based model correlations can reproduce quite accurately 

the experimentally measured temperature profiles in both the absorber and the stripper, the CO2 

weight fraction profiles in both columns, as well as the CO2 and water partial pressure profiles 

in both columns. 

Table 4.6. Key simulation results 

Variable Measurement Rate-based model 

CO2 loading of LEANIN [molCO2/molMEA] 0.262 0.262 

CO2 loading of RICHOUT [molCO2/molMEA] 0.387 0.384 

CO2 removal [%] 76.1 79.1 

Specific energy requirement of the reboiler excluding heat losses 

[MJ/kgCO2] 
5.01 5.25 

Makeup water [kg/h] 1.95 2.01 

Makeup MEA [kg/h] n/a 0.007 

Stripper reboiler heat duty excluding heat losses [kW] 6.47 7.05 

Heat recovery exchanger duty [kW] 13.52 12.39 
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4.2 Perturbation of FLUEGAS stream conditions 

In order to individuate the most critical part of the capture section, some changes in FLUEGAS 

operative conditions have been provided and the consequent alterations in the system have been 

observed. It is worth noting that a flue gas coming out of the stack is surely at a temperature 

not higher than 230°C and at a pressure approximately approaching the atmospheric one [66]. 

The capture process starts with an absorption step obviously to take off the CO2 from the other 

gases in the absorber, working at ~50°C and 1 atm, and continue with the desorption step in the 

stripper where MEA is regenerated and ready to be recycled back. In this work, it has been 

studied the system response to a higher flue gas temperature entering the absorber: it has been 

provided a continue increase of it, until 268°C has been reached. The results are presented in 

Figure 4.5. 

 

 

Figure 4.5. Stream results for the FLUEGAS at 265°C 

 

This FLUEGAS temperature is the maximum one permitting to obtain all the results without 

warnings and errors. The performance obviously worsens (more water and MEA are wasted 

and consequent need to increase their makeup) because absorption is optimized at temperature 

between 40 and 60°C, but the process still working perfectly. Obviously, this is an extreme 
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temperature for this type of plants, it can happen only, for example, in the case of an external 

fire and consequent irradiation of the stripper. If it will be tried to overcome that FLUEGAS 

temperature, warning messages will be found in the stripper block, as can be seen in Figure 4.6.  

 

Figure 4.6. Screenshot of the stripper block warning resulted in Aspen Plus after the attempt to overcome 268°C 

on FLUEGAS stream 

 

At this point material balances, precisely the charge balance, will not be respected anymore in 

the stripper section; moreover, this part of the process is the one operating at the highest 

temperature (usually between 100 and 140°C) and pressure (~2 bar). From these considerations, 

it can be stated that the stripper operation is the most hazardous one in the entire process, thus 

there is the need to perform a complete risk analysis. 
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Chapter 5 

Stripping section risk assessment  

In this chapter, a risk assessment will be done to evaluate the occurrence frequency of a release 

in the stripper section of a CCS plant. In order to achieve this task, the more common, useful 

and effective tools of the risk analysis will be employed: in particular, Hazop, fault tree and 

event tree analysis, respectively. To complete the study a release simulation on a hazard 

modeling program will be carried out. 

5.1 Hazop 

After the achievement and the examination of the results obtained by the simulation in Aspen 

Plus that have shown the “sore point” of the process, the risk analysis can start right there. The 

first step consists in the construction of the Hazop. This is a technique which allows the 

individuation of potential risks and operability issues by deviations from the project goals and 

linked, in particular, to malfunctions during the plant operation. This method has been applied 

at a simple P&ID of the section studied, that is represented in Figure 5.1. 

 

Figure 5.1. P&ID of the stripping section of the capture process with MEA 
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The results of this procedure have been written in Table 5.1, 5.2, 5.3, 5.4, 5.5 and 5.6, as can be 

seen in the following, each one regarding a specific stream entering or existing the stripping 

column. 

Table 5.1. Hazop of the RICHIN stream 

Guide 

word 
Deviation Possible causes Consequences Proposed measures  

NO Flow 

Catastrophic 

rupture of HX2. 

Economic loss for serious 

plant damage. Release of 

toxic and/or flammable 

substances. Possible 

explosions. 

Frequent inspections and 

maintenance. 

Advancement of an 

emergency plan. 

1 

Rupture of the 

pipe. 

Release of toxic and/or 

flammable substances. 

Possible explosions. 

Analogous measures of 

the point 1. Installation 

of both high pressure and 

low flowrate alarms. 

2 

Manual valve 

blocked in fully-

closed position. 

Increase of pressure in the 

pipe before the valve. 

Cooling of the stripper. 

Installation of a by-pass. 

Installation of both low 

pressure and low flow 

alarms after the valve. 

3 

MORE 

Flow 

Manual valve 

blocked in 

partially or fully-

open position. 

Stripper could achieve 

flooding conditions. Possible 

release of toxic and/or 

flammable substances. 

Installation of a control 

valve in series and of a 

large flow alarm. 

4 

Electrical or 

mechanical 

malfunctioning of 

the pump. 

Analogous consequences of 

the point 4. 

Frequent inspections and 

maintenance. Installation 

of an emergency 

generator that would start 

automatically. 

Installation of high 

flowrate alarm after the 

valve. 

5 

Richout flowrate 

larger than 

expected. 

Analogous consequences of 

the point 4. 

Analogous measures of 

the point 4. Monitoring 

of Richout flowrate. 

6 

Pressure 

Manual valve 

blocked in 

partially or fully-

closed position. 

Pressure rises before the 

valve. Possible 

disconnection of the flange 

with release of toxic and/or 

flammable substances. 

Installation of control 

system and control valve 

in parallel. Installation of 

both low flow and high 

pressure alarms. 

7 

Temperature 

Malfunctioning of 

HX2 or of its 

control system. 

Too high steam 

pressure or steam 

flow. 

Possible evaporation of 

CO2. Possible formation of 

carbamate. 

Installation of high 

temperature and high 

pressure alarms on 

Richin stream. 

8 
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Richout stream 

hotter than 

expected. 

Analogous consequences of 

point 8. 

Installation of high 

temperature and high 

pressure alarms on both 

streams. 

9 

Irradiation from 

external fire. 

Possible evaporation of 

CO2. Possible formation of 

carbamate. Possible failure 

of the pipe. 

Analogous measures of 

the point 7. Installation 

of water curtain. 

10 

LESS 

Flow 

Manual valve 

blocked in 

partially-closed 

position. 

Analogous consequences of 

point 3. 

Analogous consequences 

of the point 7. 
11 

Electrical or 

mechanical 

malfunctioning of 

the pump. 

Possible cooling of the 

stripper with consequent 

performance decreased. 

Frequent inspections and 

maintenance. Installation 

of an emergency 

generator that would start 

automatically. 

Installation of both low 

flowrate and low 

pressure alarms after the 

valve. 

12 

Rupture or loss 

from the pipe or 

flange loss. 

Release of toxic and/or 

flammable substances. 

Possible cooling of the 

stripper. 

Frequent inspections and 

maintenance. Installation 

of low pressure alarm. 

13 

Pressure 

Electrical or 

mechanical 

malfunctioning of 

the pump. 

Possible evaporation of 

CO2. 

Analogous measures of 

the point 12. 
14 

Rupture or loss 

from the pipe or 

flange loss. 

Analogous consequences of 

the point 13. Possible 

evaporation of CO2. 

Analogous measures of 

the point 13. 
15 

Temperature 

Malfunctioning of 

HX2 or of its 

control system. 

Insufficient steam 

pressure or steam 

flow. 

Decreased stripper 

performance, if the reboiler 

control system does not 

work properly. 

Installation of both low 

temperature and low 

pressure alarms on 

Richin stream. 

16 

PART 

OF 
Composition 

Feed composition 

changes. 
Possible economic loss. 

Accurate monitoring and 

control of the feed. 
17 

Absorber 

performance 

drops. 

Analogous consequences of 

the point 16. 

Accurate monitoring of 

the composition after the 

absorber to evaluate an 

eventual intervention. 

18 
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Table 5.2. Hazop of the LEANOUT stream 

Guide 

word 
Deviation Possible causes Consequences Proposed measures  

NO Flow 

Catastrophic 

rupture of the 

stripper. 

Economic loss for serious 

plant damage. Release of 

toxic and/or flammable 

substances. Possible 

explosions. 

Frequent inspections and 

maintenance. 

Advancement of an 

emergency plan. 

1 

Control valve 

blocked in fully-

closed position. 

Stripper goes in flooding 

conditions. Release of toxic 

and/or flammable 

substances. Possible 

explosions. 

Installation of a by-pass. 

Installation of low 

pressure and low 

flowrate alarms after the 

control valve. 

2 

Wrong calibration 

of the level 

sensor, failure of 

the control circuit 

or failure of the 

actuator. 

Analogous consequences of 

the point 2. 

Installation of valve and 

control system in 

parallel. 

3 

Rupture of the 

pipe. 

Release of toxic and/or 

flammable substances. 

Possible explosions. 

Analogous measures of 

the point 1. Installation 

of low pressure and low 

flowrate alarms. 

4 

MORE 

Flow 

Control valve 

blocked in 

partially open 

position. 

Stripper operation can be 

compromised. 

Addition of a manual 

valve in series. 

Installation of a high 

flowrate alarm. 

5 

Wrong calibration 

of the level 

sensor, failure of 

the control circuit 

or failure of the 

actuator. 

Analogous consequences of 

the point 5. 

Installation of a valve 

and control system in 

parallel. 

6 

Excessive Richin 

flowrate. 

Maintaining the same 

composition, temperature 

and pressure drop in the 

stripper when the reboiler 

does not increase its duty. 

Careful monitoring of the 

process conditions. 

Installation of pressure 

and temperature 

indicators. 

7 

Pressure 

Control valve 

partially or fully-

closed. 

Possible flange 

disconnection and release of 

toxic and/or flammable 

substances. 

Installation of control 

system and control valve 

in parallel. Installation of 

low flowrate and high 

pressure alarms. 

8 

Wrong calibration 

of the level 

sensor, failure of 

the control circuit 

Analogous consequences of 

the point 8. 

Analogous measures of 

the point 8. 
9 
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or failure of the 

actuator. 

Temperature 

Increase of Richin 

temperature. 

Increase of temperature in 

the pipe, with possible 

collapse and consequent 

release. Possible formation 

of carbamate. 

Installation of safety 

valve and rupture disc. 

Careful monitoring of the 

process conditions. 

Addition of temperature 

indicators. 

10 

Irradiation from 

external fire. 

Possible formation of 

carbamate. Possible collapse 

of the pipe with consequent 

release. 

Installation of water 

curtain. 
11 

Malfunctioning of 

the reboiler. 

Analogous consequences of 

the point 10. 

Analogous measures of 

the point 10. 
12 

LESS 

Flow 

Insufficient 

Richin flowrate. 

Maintaining the same 

composition, temperature 

and pressure decrease in the 

stripper. 

Careful monitoring of the 

process conditions. 

Addition of pressure and 

temperature alarms and 

indicators. Monitoring of 

Richin flowrate. 

13 

Rupture or loss 

from the pipe, 

loss from the 

flange. 

Release of toxic and/or 

flammable substances. 

Economic loss for decreased 

absorption capacity for the 

recycled stream. 

Frequent inspections and 

maintenance. Installation 

of low flowrate alarm. 

14 

Control valve 

blocked in 

partially-closed 

position. 

Economic loss for decreased 

absorption capacity for the 

recycled stream. 

Installation of control 

system and control valve 

in parallel. Installation of 

low flow and high 

pressure alarms. 

15 

Wrong calibration 

of the level 

sensor, failure of 

the control circuit 

or failure of the 

actuator. 

Analogous consequences of 

the point 15. 

Analogous measures of 

the point 15. 
16 

Pressure 

Wrong calibration 

of the level 

sensor, failure of 

the control circuit 

or failure of the 

actuator. 

Possible increase of 

temperature and pressure in 

the stripper, if the reboiler 

control system does not 

work properly. 

Addition of a control 

valve in series. 

Installation of a low 

pressure alarm. 

17 

Rupture or loss 

from the pipe, 

loss from the 

flange. 

Release of toxic and/or 

flammable substances. 

Frequent inspections and 

maintenance. Installation 

of low pressure alarm. 

18 
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Temperature 

Richin at lower 

temperature than 

expected. 

Decreased stripper 

performance. 

Addition of temperature 

indicators and alarms. 

Monitoring of the feed 

conditions. 

19 

Reboiler steam at 

lower pressure, 

lower flowrate or 

lower 

temperature. 

Analogous consequences of 

the point 19. 

Addition of temperature, 

pressure and flowrate 

indicators and alarms for 

the steam. 

20 

PART 

OF 
Composition 

Decreased 

stripper 

performance, 

more CO2 and 

less MEA in this 

stream. 

Economic loss for less CO2 

separated and worse 

composition quality for 

Leanout that is going to the 

absorber. 

Accurate monitoring of 

the Leanout stream 

composition to evaluate 

an eventual intervention. 

21 

Richin 

composition 

changed. 

Possible formation of 

flammable mixtures and 

possible economical loss. 

Accurate monitoring and 

control of the Richin 

stream. 

22 

 

Table 5.3. Hazop of the CO2OUT stream 

Guide 

word 
Deviation Possible causes Consequences Proposed measures  

NO Flow 

Catastrophic 

rupture of the 

stripper. 

Economic loss for serious 

plant damage. Release of 

toxic and/or flammable 

substances. Possible 

explosions. 

Frequent inspections and 

maintenance. 

Advancement of an 

emergency plan. 

1 

Control valve 

blocked in fully-

closed position. 

Pressure rises in the stripper, 

with possible collapse of the 

equipment and release. 

Installation of safety 

valve and rupture disc. 

Accurate monitoring of 

pressure drops and 

installation of gauge and 

pressure alarm. 

2 

Wrong calibration 

of the flow or 

temperature 

sensor, failure of 

the control circuit 

or failure of the 

actuator. 

Analogous consequences of 

the point 2. 

Installation of valve and 

control system in 

parallel. 

3 

Rupture of the 

pipe. 
Release of CO2. 

Frequent inspections and 

maintenance. Arrest of 

the feeding. Installation 

of low pressure and low 

flowrate alarms. 

4 

MORE Flow 
Wrong calibration 

of the flow or 

Increased pressure and flow 

in the pipe, with possible 

Installation of a safety 

valve and a rupture disc. 
5 
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temperature 

sensor, failure of 

the control circuit 

or failure of the 

actuator. 

collapse and consequent 

release. 

Careful monitoring of the 

process conditions. 

Addition of pressure 

indicators. 

Control valve 

blocked in 

partially open 

position. 

Stripper pressure decreases. 

Addition of a control 

valve in series. 

Installation of a high 

flowrate alarm. 

6 

Excessive 

pressure of the 

CO2 coming from 

the condenser and 

consequent 

inability of 

flowrate control 

from the valve. 

Analogous consequences of 

the point 5. 

Analogous measures of 

the point 5. 
7 

Malfunctioning of 

the stripper 

(reboiler is 

heating more than 

necessary). 

Analogous consequences of 

the point 5. Possible 

formation of carbamate. 

Possible MEA evaporation. 

Analogous measures of 

the point 5. 
8 

Excessive Richin 

flowrate and/or 

temperature. 

Analogous consequences of 

the point 5. Possible 

formation of carbamate. 

Possible MEA evaporation. 

Analogous measures of 

the point 5. 
9 

Pressure 

Control valve 

partially or fully-

closed. 

Possible condensation of 

CO2. Possible disconnection 

of the flange with release of 

CO2. 

Installation of the control 

system and control valve 

in parallel. Installation of 

low flowrate and high 

pressure alarms. 

10 

Excessive Richin 

flowrate and/or 

temperature. 

Increase of stripper and 

pipes pressure, with possible 

collapse of the equipment 

and consequent release. 

Possible formation of 

carbamate. 

Installation of safety 

valve and rupture disc. 

Careful monitoring of 

process conditions. 

Addition of pressure and 

temperature indicators. 

11 

Wrong calibration 

of the flow or 

temperature 

sensor, failure of 

the control circuit 

or failure of the 

actuator. 

Analogous consequences of 

the point 10. 

Analogous measures of 

the point 10. 
12 

Irradiation from 

external fire. 

Possible collapse of the 

pipes with release of CO2. 

Possible formation of 

carbamate. 

Installation of water 

curtains and temperature 

and pressure alarms. 

13 
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Malfunctioning of 

the stripper 

(reboiler is 

heating more than 

necessary). 

Analogous consequences of 

the point 8. Possible 

formation of carbamate. 

Analogous measures of 

the point 8. 
14 

Temperature 

Excessive Richin 

temperature. 

Increased temperature and 

pressure in the pipe with 

possible collapse and 

consequent release. Possible 

formation of carbamate. 

Analogous measures of 

the point 5. 
15 

Malfunctioning of 

the stripper 

(reboiler is 

heating more than 

necessary and/or 

condenser is 

cooling less than 

necessary). 

Analogous consequences of 

the point 15. Possible 

formation of carbamate. 

Analogous measures of 

the point 5. 
16 

Irradiation from 

external fire. 

Analogous consequences of 

the point 13. Possible 

formation of 

carbamate. 

Analogous measures of 

the point 13. 
17 

LESS Flow 

Control valve 

blocked in 

partially closed 

position. 

Economic loss due to less 

CO2 separated. Stripper 

pressure increases. 

Installation of control 

system and control valve 

in parallel. Installation of 

low flowrate and high 

pressure alarms. 

18 

Wrong calibration 

of the flow or 

temperature 

sensor, failure of 

the control circuit 

or failure of the 

actuator. 

Analogous consequences of 

the point 18. 

Analogous measures of 

the point 18. 
19 

Rupture or loss of 

the pipe, flange 

loss. 

Analogous consequences of 

the point 18. Possible release 

of CO2. 

Frequent maintenance 

and inspections. 

Installation of a low 

pressure alarm. 

20 

Insufficient 

pressure of CO2 

coming from the 

condenser. 

Analogous consequences of 

the point 18. It is possible 

that some CO2 comes back. 

Addition of a check 

valve after the control 

valve. Addition of a low 

pressure alarm. 

21 

Insufficient 

Richin flowrate. 

Maintaining the same 

composition, temperature 

and pressure decrease in the 

stripper. Economic loss due 

to less CO2 separated. 

Careful monitoring of the 

process conditions. 

Addition of low flowrate 

and pressure indicators 

and alarms. Monitoring 

of Richin flowrate. 

22 
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Temperature 

lower than 

expected. 

Volume contraction for the 

CO2out stream. Economic 

loss due to low pressure that 

afterwards will need to be 

increased. 

Addition of pressure and 

temperature indicators 

and alarms. Frequent 

inspections and 

maintenance of the 

cooling equipment. 

23 

Pressure 

Wrong calibration 

of the flow or 

temperature 

sensor, failure of 

the control circuit 

or failure of the 

actuator. 

Economic loss due to low 

pressure that afterwards will 

need to be increased. 

Addition of a control 

valve in series. 

Installation of a low 

pressure alarm. 

24 

Rupture or loss of 

the pipe, flange 

loss. 

Economic loss for the 

release of CO2. 

Frequent inspections and 

maintenance. Installation 

of low pressure alarm. 

25 

Insufficient 

stripper pressure. 

Analogous consequences of 

the point 24. 

Addition of low pressure 

alarm. 
26 

Temperature 

lower than 

expected. 

Volume contraction of 

CO2out stream. Analogous 

consequences of the point 

24. 

Addition of pressure and 

temperature indicators 

and alarms. Frequent 

inspections and 

maintenance of the 

condenser. 

27 

Temperature 

Excessive cooling 

of the condenser. 

Analogous consequences of 

the point 27. 

. Analogous measures of 

the point 23. Automatic 

control of the cooling 

water flowrate. 

28 

Temperature drop 

in the stripper 

(insufficient heat 

from the reboiler 

and/or cold 

Richin stream). 

Analogous consequences of 

the point 27. 

Addition of pressure and 

temperature indicators 

and alarms. Monitoring 

of the stripper feeding. 

29 

PART 

OF 
Composition 

Decreased 

performance of 

the stripper (more 

water and MEA 

and less CO2 in 

CO2out stream). 

Economic loss for reduced 

CO2 content. 

Accurate monitoring of 

the CO2out stream 

composition to evaluate 

an eventual intervention. 

30 

Richin 

composition 

changed. 

Possible formation of 

flammable mixtures and 

possible economical loss. 

Accurate monitoring and 

control of the Richin 

stream. 

31 
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Table 5.4. Hazop of the COND stream 

Guide 

word 
Deviation Possible causes Consequences Proposed measures  

NO Flow 

Catastrophic 

rupture of the 

stripper. 

Economic loss for serious 

plant damage. Release of 

toxic and/or flammable 

substances. Possible 

explosions. 

Frequent inspections and 

maintenance. 

Advancement of an 

emergency plan. 

1 

Rupture of the 

pipe. 
Release of water. 

Frequent inspections and 

maintenance. Installation 

of low pressure and low 

flowrate alarms. 

2 

MORE 

Flow 

Manual valve 

blocked in fully-

open position. 

Reflux flowrate decreases 

until it reaches zero, thus 

tripper performance 

worsens. 

Installation of a control 

valve in series and of a 

large flow alarm. 

3 

Pressure 

Manual valve 

partially or fully-

closed. 

Possible flange 

disconnection with release 

of water. 

Installation of control 

system and control valve 

in parallel. Installation of 

low flowrate and high 

pressure alarms. 

4 

Irradiation from 

external fire. 

Possible collapse of pipes 

with release of water. 

Possible formation of 

carbamate. 

Installation of water 

curtains. Installation of 

high pressure and 

temperature alarms. 

5 

Temperature 

Excessive Richin 

temperature. 

No consequences if excess is 

limited. Possible evaporation 

of MEA, thus Cond changes 

its composition. Possible 

formation of carbamate. 

Addition of high 

temperature alarm. 

Monitoring of Cond 

composition. 

6 

Malfunctioning of 

the stripper 

(reboiler is 

heating more than 

necessary and/or 

condenser is 

cooling less than 

necessary). 

Analogous consequences of 

the point 6. 

Installation of high 

temperature and high 

pressure alarms on Cond 

stream. 

7 

Irradiation from 

external fire. 

Possible collapse of pipes. 

Possible MEA evaporation 

ad formation of carbamate. 

Analogous measures of 

the point 5. 
8 

LESS Flow 

Manual valve 

blocked in 

partially-closed 

position. 

Increased reflux flowrate, 

thus increased heat duty. 

Installation of control 

system and control valve 

in parallel. Installation of 

low flowrate and high 

pressure alarms. 

9 
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Rupture or loss of 

the pipe, flange 

loss. 

Loss of water from the pipe. 

Frequent inspections and 

maintenance. Installation 

of low flowrate and low 

pressure alarms. 

10 

Insufficient 

Richin flowrate. 

Maintaining the same 

composition, temperature 

and pressure decrease in the 

stripper. Reflux flowrate, as 

well as Cond flowrate, 

decreases, thus stripper 

performance worsens. 

Careful monitoring of the 

process conditions. 

Addition of pressure and 

flowrate indicators and 

alarms. Monitoring of 

Richin flowrate. 

11 

Stripper 

temperature lower 

than expected (ex. 

Reboiler is 

heating less than 

wanted). 

Reflux flowrate decreases 

thus stripper performance 

worsen. 

Addition of pressure and 

temperature indicators 

and alarms. Monitoring 

of steam conditions. 

12 

Pressure 

Rupture or loss of 

the pipe, flange 

loss. 

Analogous consequences of 

the point 10. 

Analogous measures of 

the point 10. 
13 

Temperature 

Condenser is 

cooling more than 

necessary. 

No consequences if cooling 

is not excessive. 

Installation of low 

temperature alarms on 

Cond stream. Installation 

of temperature indicators 

in condenser utility 

stream. 

14 

PART 

OF 
Composition 

Temperature 

higher than 

expected. 

Possible increased presence 

of MEA. Possible formation 

of carbamate. 

Accurate control and 

monitoring of the stream 

composition. 

15 

 

 

Table 5.5. Hazop of the Reboiler steam stream 

Guide 

word 
Deviation Possible causes Consequences Proposed measures  

NO Flow 

Control valve 

blocked in closed 

position. 

Stripper stops working. 

Arrest of the feeding. 

Installation of a by-pass. 

Installation of low 

pressure and low 

flowrate alarms after the 

control valve. 

1 

Rupture of the 

pipe. 
Release of hot steam. 

Frequent inspections and 

maintenance. Installation 

of low pressure and low 

flowrate alarms. 

2 

Wrong calibration 

of the flow sensor, 

failure of the 

Analogous consequences of 

the point 1. 

Installation of valve and 

control system in 

parallel. 

3 
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control circuit or 

failure of the 

actuator. 

Absence of steam 

generation 

upstream. 

Analogous consequences of 

the point 1. 

Addition of low flowrate 

and low pressure alarms 

upstream the control 

valve, and eventually 

plant shutdown. 

4 

MORE 

Flow 

Control valve 

blocked in 

partially or fully-

open position. 

Stripper temperature and 

pressure increase with 

possible formation of 

carbamate. Possible 

evaporation of MEA. 

Addition of a manual 

valve in series. 

Installation of a high 

flowrate alarm. 

5 

Wrong calibration 

of the flow sensor, 

failure of the 

control circuit or 

failure of the 

actuator. 

Analogous consequences of 

the point 5. 

Analogous measures of 

the point 5. 
6 

Excessive steam 

pressure and 

consequent 

inability to 

control flowrate 

through the valve. 

Analogous consequences of 

the point 5. 

Analogous measures of 

the point 5. Addition of 

high pressure and 

flowrate alarms. 

7 

Pressure 

Control valve 

blocked in 

partially closed 

position. 

Possible corruption of the 

control valve. Possible 

increase of stripper 

temperature and pressure. 

Possible disconnection of 

the flanges. Possible steam 

condensation. 

Analogous measures of 

the point 5. Installation 

of high pressure alarm. 

8 

Wrong calibration 

of the flow sensor, 

failure of the 

control circuit or 

failure of the 

actuator. 

Analogous consequences of 

the point 8. 

Installation of control 

system and control valve 

in parallel. Installation of 

high pressure alarm. 

9 

Temperature 

Increase of 

temperature 

upstream. 

Analogous consequences of 

the point 5. 

Addition of high steam 

pressure alarm. 
10 

Irradiation from 

external fire. 

Possible increase of stripper 

temperature. Possible 

formation of carbamate. 

Possible evaporation of 

MEA. Possible failure of the 

pipes. 

Addition of high steam 

temperature alarm. 

Installation of water 

curtains. 

11 
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LESS 

Flow 

Control valve 

blocked in 

partially closed 

position. 

Stripper temperature 

decreases, thus performance 

decreases. 

Analogous measures of 

the point 9. Installation 

of low flowrate alarm. 

12 

Wrong calibration 

of the flow sensor, 

failure of the 

control circuit or 

failure of the 

actuator. 

Analogous consequences of 

the point 12. 

Analogous measures of 

the point 12. 
13 

Insufficient 

incoming steam 

pressure. 

Analogous consequences of 

the point 12. 

Addition of low flowrate 

and low pressure alarms. 
14 

Rupture or loss of 

the pipe. 

Analogous consequences of 

the point 12. Possible release 

of a hot steam jet. 

Frequent inspections and 

maintenance. Installation 

of a flowrate alarm and 

plant shutdown in case of 

serious lack of steam. 

Installation of low 

pressure alarm. 

 

15 

Pressure 

Insufficient 

incoming steam 

pressure. 

Analogous consequences of 

the point 12. 

Addition of a low 

pressure alarm. 
16 

Wrong calibration 

of the flow sensor, 

failure of the 

control circuit or 

failure of the 

actuator. 

Analogous consequences of 

the point 12. 

Installation of a low 

pressure and plant 

shutdown in case of 

serious lack of steam. 

17 

Rupture or loss of 

the pipe. 

Analogous consequences of 

the point 15. 

Frequent inspections and 

maintenance. Installation 

of low pressure alarm 

and eventual plant 

shutdown in case of 

serious lack of steam. 

 

18 

Temperature 

Insufficient 

incoming steam 

temperature. 

Possible stripper temperature 

diminution. Possible steam 

condensation. 

Addition of a 

temperature alarm and 

eventual plant shutdown. 

19 

PART 

OF 
Composition 

Improper pre-

treatment of water 

upstream. 

Possible equipment 

corrosion. 

Frequent inspections and 

maintenance. 
20 
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Table 5.6. Hazop of the Reflux stream 

Guide 

word 
Deviation Possible causes Consequences Proposed measures  

NO Flow 

Control valve 

blocked in closed 

position. 

Stripper stops working. 

Arrest of the feeding. 

Installation of a by-pass. 

Installation of low 

pressure and low 

flowrate alarms after the 

control valve. 

1 

Rupture of the 

pipe. 
Release of water. 

Frequent inspections and 

maintenance. Installation 

of low pressure and low 

flowrate alarms. 

2 

Wrong calibration 

of the level 

sensor, failure of 

the control circuit 

or failure of the 

actuator. 

Analogous consequences of 

the point 1. 

Analogous measures of 

the point 1. 
3 

Catastrophic 

rupture of the 

stripper. 

Economic loss for serious 

plant damage. Release of 

toxic and/or flammable 

substances. Possible 

explosions. 

Frequent inspections and 

maintenance. 

Advancement of an 

emergency plan. 

4 

MORE 

Flow 

Control valve 

blocked in 

partially open 

position. 

Stripper performance 

increased, but more heat 

duty needed. 

Addition of a control 

valve in series. 

Installation of high 

flowrate alarm. 

5 

Wrong calibration 

of the level 

sensor, failure of 

the control circuit 

or failure of the 

actuator. 

Analogous consequences of 

the point 5. 

Analogous measures of 

the point 5. 
6 

Excessive Richin 

flowrate. 

Maintaining the same 

composition, temperature 

and pressure drop in the 

stripper when the reboiler 

does not increase its duty. 

Careful monitoring of the 

process conditions. 

Installation of pressure 

and temperature 

indicators. 

7 

Pressure 

Control valve 

partially or fully-

closed. 

Possible flange 

disconnection and release of 

water. 

Installation of control 

system and control valve 

in parallel. Installation of 

low flowrate and high 

pressure alarms. 

8 

Wrong calibration 

of the level 

sensor, failure of 

the control circuit 

Analogous consequences of 

the point 8. 

Analogous measures of 

the point 8. 
9 
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or failure of the 

actuator. 

Temperature 

Excessive Richin 

temperature. 

Possible water evaporation 

with consequent pressure 

increase. Possible formation 

of carbamate. 

Installation of high 

temperature alarm in the 

Richin stream. Addition 

of high pressure alarm. 

10 

Irradiation from 

external fire. 

Analogous consequences of 

the point 10. Possible 

collapse of the equipment. 

Installation of water 

curtain. Addition of high 

pressure and temperature 

indicators and alarms. 

11 

Malfunctioning of 

the condenser. 

Possible water evaporation 

with consequent pressure 

increase. 

Installation of control 

system and control valve 

in the condenser. 

12 

LESS 

Flow 

Insufficent Richin 

flowrate. 

Maintaining the same 

composition, temperature 

and pressure decrease in the 

stripper. Decreased 

separation efficiency. 

Careful monitoring of the 

process conditions. 

Addition of pressure and 

temperature alarms and 

indicators. Monitoring of 

Richin flowrate. 

13 

Rupture or loss 

from the pipe, 

loss from the 

flange. 

Release of water. Decreased 

stripper performance. 

Frequent inspections and 

maintenance. Installation 

of low flowrate alarm. 

14 

Control valve 

blocked in 

partially-closed 

position. 

Decreased stripper 

performance. 

Installation of control 

system and control valve 

in parallel. Installation of 

low flow and high 

pressure alarms. 

15 

Wrong calibration 

of the level 

sensor, failure of 

the control circuit 

or failure of the 

actuator. 

Analogous consequences of 

the point 15. 

Analogous measures of 

the point 15. 
16 

Pressure 

Wrong calibration 

of the level 

sensor, failure of 

the control circuit 

or failure of the 

actuator. 

No consequences if 

diminution is not large. 

Addition of a control 

valve in series. 

Installation of a low 

pressure alarm. 

17 

Rupture or loss 

from the pipe, 

loss from the 

flange. 

Release of water. Decreased 

stripper performance. 

Frequent inspections and 

maintenance. Installation 

of low pressure alarm. 

18 

Temperature 

Condenser is 

cooling more than 

expected. 

Possible water solidification. 

Decreased stripper 

temperature and consequent 

performance diminution. 

Addition of temperature 

indicators and alarms. 

Monitoring of reflux 

temperature. 

19 
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Lower stripper 

temperature. 
Possible water solidification. 

Addition of temperature, 

pressure and flowrate 

indicators and alarms. 

20 

PART 

OF 
Composition 

Higher stripper 

temperature. 

Possible evaporation of 

MEA and consequent 

increased presence in the 

reflux. 

Accurate monitoring of 

reflux composition. 
21 

5.2 Fault Tree and Event Tree Analysis 

Although the Hazop was performed in a very accurate way, it is still a qualitative method. Now 

it is time to applicate a technique which can give a quantitative evaluation of the occurrence 

frequency: this is the FTA. It starts from a Top event, which in this case is a release from the 

stripping column, that obviously can come from a lot of different causes linked to stream 

conditions, equipment malfunctioning, control systems failures, etc. The resulted FTA, which, 

for space reasons, will be shown divided into Figure 5.2 and Figure 5.3 in the following pages, 

is based on the simple P&ID presented in the previous paragraph, precisely in the Figure 5.1. 
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Figure 5.2. Part A of FTA of a MEA release from a stripping column 
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Figure 5.3. Part B of FTA of a MEA release from a stripping column 

 

As can be seen in the figures, the resulted occurrence frequency of a release, for the piece of 

equipment represented in the P&ID, is really high, precisely about 4.1*10-5 events/hour: this 

means 0.36 events/year, that is evidently not acceptable. Thus, the FTA needs some corrections 

to reach a more reasonable frequency. For this purpose, the Hazop analysis is absolutely helpful: 

by watching at it, the proposed measures to contrast the system alterations, e.g., installation of 

valves and alarms, can be inserted in the FTA and, consequently, the number of events per year 

will decrease of some orders of magnitude. The FTA with the modifications are represented in 

the Figure 5.4, 5.5, 5.6 and 5.7: for space reasons, they are in the following pages. 
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Figure 5.4. Part 1 of modified FTA of a MEA release from a stripping column 
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Figure 5.5. Part 2 of modified FTA of a MEA release from a stripping column 

 

F=2.2e-6

Increase in RICHIN 
flowrate

Valve blocked in part ially  
open position

RICHOUT stream
F=8.3e-7

Failure level indicator 
(valve is opening)
RICHOUT stream

F=8.9e-7

Failure level controller 
(valve is opening)
RICHOUT stream

F=5.2e-7

F=4.1e-9

Manual valve blocked
in partially 

open position
RICHIN stream

F=8.3e-7

Pump malfunctioning
RICHOUT stream

F=2.6e-5

F=3.9e-9

F=6.4e-11

F=1.7e-10

Failure flowrate alarm
(valve is closing)
 RICHIN stream

F=5e-6

Failure flowrate indicator
(valve is closing)
 RICHIN stream

F=3.2e-6

Human 
error

F=2e-5

F=8.2e-6 F=2.1e-5

F=2.9e-5

Manual valve blocked in 
partial ly open position

RICHOUT stream
F=8.3e-7 Human 

error
F=2e-5

Failure flowrate alarm
(valve is opening)
 RICHOUT stream

F=5e-6

Failure flowrate indicator
(valve is opening)
 RICHOUT stream

F=3.2e-6

F=8.2e-6

Emergency diesel dr iven 
generator

RICHOUT stream
F=1.5e-4



Stripping section risk assessment                                                                                                                                87 

 

 

Figure 5.6. Part 3 of modified FTA of a MEA release from a stripping column 
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Figure 5.7. Part 4 of modified FTA of a MEA release from a stripping column 

 

As can be seen from the previous figures, the occurrence frequency of the release is decreased 

a lot from the precedent case: it results 1.75*10-8 events/hours that are equivalent of 1.53*10-4 

events/year. A really significant reduction happened, thanks to the improvements inserted: the 

frequency is more than 2000 times lower than before. The next step, after the occurrence 

frequency evaluation of the release, is the construction of the ETA in order to individuate all 

the possible scenarios that can originate. This is displayed in the Figure 5.8 in the following 

page. 
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Figure 5.8. ETA of a MEA release from a stripping column 
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5.3 Aloha® simulation of the consequences 

Subsequently to the achievement of FTA and ETA reports, it has been run a simulation on a 

hazard modeling software, which can give details about releases and it generates threat zone 

estimates for various type of hazards. The simulation details are summarized in the Figure 5.9. 

The location chosen for the release is the University of Kaiserslautern (Germany), where the 

pilot plant actually is. The atmospheric data have been set as mean local conditions. 

 

 

Figure 5.9. Site data, Chemical data and Atmospheric data loaded in Aloha to start the simulation 

 

The study of the consequences is structured in this way: three different temperatures and three 

different hole sizes are chosen at which the release exhibits. In particular, the temperatures are:  

• 120 °C: usually the best practice temperature for the stripping section; 

• 268 °C: the maximum temperature to which the Aspen Plus simulation reached the 

convergence without warnings in the material balances; 

• 190 °C: an intermediate value between the previous ones. 

The hole diameters instead are taken from the Standard API 581: 

• Small: 0.25 in; 

• Medium: 1 in; 

• Large: 4 in. 

Other simulation conditions that have to be specified: 

• Every hole is considered on the stripper bottom; 

• The MEA amount in the stripper is imposed to be 30 kg, as it is found to be during the 

process simulation in Aspen Plus; 

• The opening on the wall is supposed to be circular; 

• The ground temperature is supposed to be equal to the air temperature. 
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It has to be recognized also that there is a limit in this simulation: it has been used the same 

MEA mass contained in the stripper, but it does not take into account that there is not pure MEA 

but, in the pilot plant, is present a solution of about 30%. 

5.3.1 Release temperature of 120°C 

5.3.1.1 Case 1a: 120 °C, 0.25 in 

Results are displayed in Figure 5.10. 

 

 

Figure 5.10. Release simulation results of case 1a (120 °C, 0.25 in) in Aloha 

 

At this temperature, the MEA is liquid. Aloha displayed a message saying that “Threat zone 

was not drawn because effects of near-field patchiness make dispersion predictions less reliable 

for short distances”: in this case, Aloha was not able to provide a reliable result because the 

release was really scarce (the total amount released was only about 197 g at a flowrate of almost 

4 g/min). 

 

 

 

 

 

 

 

 

 



92                                                                                                                                                                   Chapter 5 

 

5.3.1.2 Case 1b: 120 °C, 1 in 

Results are displayed in Figure 5.11. 

 

Figure 5.11. Release simulation results of case 1b (120 °C, 1 in) in Aloha 

 

Results are analogous of the previous one. Also this time Aloha was not able to provide a 

reliable result because the release was really small (the total amount released was only about 

245 g at a flowrate of almost 50 g/min). 

 

5.3.1.3 Case 1c: 120 °C, 4 in 

Results are displayed in Figure 5.12. 

 

Figure 5.12. Release simulation results of case 1c (120 °C, 4 in) in Aloha 
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Results are analogous of the previous one. Also this time Aloha was not able to provide a 

reliable result because the release was really small (the total amount released was only about 

330 g at a flowrate of almost 154 g/min). 

5.3.2 Release temperature of 190°C 

5.3.2.1 Case 2a: 190 °C, 0.25 in 

Results are displayed in Figure 5.13. 

 

Figure 5.13. Plot of release simulation of case 2a (190 °C, 0.25 in) in Aloha 

 

All the MEA contained in the stripper has been released at a flowrate of 14.8 kg/min. It can be 

seen from the plot that a plume of gaseous MEA is forming: in fact, in this case the release 

temperature is a bit higher than the MEA boiling temperature (168.8°C).  

 

5.3.2.2 Case 2b: 190 °C, 1 in 

Results are displayed in Figure 5.14. 

 

Figure 5.14. Plot of release simulation of case 2b (190 °C, 1 in) in Aloha 
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Results are analogous of the previous one: obviously, the release flowrate and the area involved 

are bigger and consequent health risks too (appearance of the red zone in the plot). 

 

5.3.2.3 Case 2c: 190 °C, 4 in 

Results are displayed in Figure 5.15. 

 

Figure 5.15. Plot of release simulation of case 2c (190 °C, 4 in) in Aloha 

 

Results seem to be perfectly identical of the previous case: probably the system have reached a 

sort of asymptote in terms of release flowrate. 

5.3.3 Release temperature of 268°C 

5.3.3.1 Case 3a: 268 °C, 0.25 in 

Results are displayed in Figure 5.16. 

 

Figure 5.16. Plot of release simulation of case 3a (268 °C, 0.25 in) in Aloha 

Results are analogous of the previous one: obviously, the release flowrate and the area involved 

are bigger and consequent health risks too thanks to the higher temperature. 



Stripping section risk assessment                                                                                                                                95 

 

5.3.3.2 Case 3b: 268 °C, 1 in 

Results are displayed in Figure 5.17. 

Figure 5.17. Plot of release simulation of case 3b (268 °C, 1 in) in Aloha 

 

Results seem to be perfectly identical of the previous case: probably the system have reached a 

sort of asymptote in terms of release flowrate. 

 

5.3.3.3 Case 3c: 268 °C, 4 in 

Results are displayed in Figure 5.18. 

 

Figure 5.18. Plot of release simulation of case 3c (268 °C, 4 in) in Aloha 
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Results seem to be perfectly identical of the previous case: probably the system have reached a 

sort of asymptote in terms of release flowrate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Conclusions 

 

In this century, the attention for the environment is becoming always more and more effective. 

There are a lot of ways to reduce the CO2 emissions in the atmosphere, in order to try to reduce 

the greenhouse effects. In this work, the focus has been on the Carbon Capture and Storage 

technology, in particular on the capture section: the goal was to support the advancement of the 

known best practices in this field.  

 

Initially a historical analysis of the industrial accidents regarding the substances that can be 

used in the capture section of a CCS plant has been done, with the result that the manipulation 

of monoethanolamine, one of the solvents between the chemical absorption processes, is 

probable more critical than other capture process.  

 

Afterwards, an Aspen Plus simulation on a pilot plant operating a carbon capture process with 

MEA, permitted the identification of the main critical part of the plant that has been verified to 

be the stripping column. That has been obtained by running several simulations with a 

continuous increase in the flue gas temperature, until 268°C has been reached: this value is 

important because issues arose in the material balances, in particular the charge balance has not 

been respected anymore up from this point, right in the stripper.  

 

After these considerations, a risk analysis, which has been performed in this thesis, has brought 

a lot of different improvements, in particular through the Hazop. From this technique resulted 

that there was the need of a lot of improvements, like the installation of pressure, flowrate and 

temperature alarms, manual valves, control systems, emergency generators, addition of by-pass 

streams, writing an emergency plan and the prediction of an emergency shut down of the plant. 

This was the list of all the countermeasures the pilot plant needed to overcome all possible 

malfunctioning, equipment failures and, in general, process alterations from the ordinary 

operations, with the aim of reduce the occurrence frequency of a MEA release; that has been 

verified with the help of the Fault Tree Analysis done before and after that the modifications 

have been carried out. This brought to a reduction of more than 2000 times of the frequency of 

the MEA release: precisely the first FTA had a frequency of 0.36 events/year and the modified 

one reached 1.53*10-4 events/year. It is also strongly suggested to carry out the risk analysis in 

parallel with the process design because there is not so much experience with this technology, 

so the predictive part is extremely important and have to be really accurate. 
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To conclude this thesis, it has been performed a simulation with Aloha, a hazard modeling 

program, to graphically represent a MEA release between different conditions both in terms of 

temperature and in terms of hole diameters in the stripper. It resulted that by increasing the 

temperature and the hole size the seriousness of the release is intensified, with an enlarged 

spread of the substance. 
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