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Abstract

Autonomous mobile robots became over the recent years a popular topic of re-
search mainly for their capacity to perform tasks in complete autonomy without
the constant intervention of an human operator. In this context, autonomous
navigation represents one of the main studied branch of autonomous robotics.

Autonomous navigation in both structured and unstructured environments
have been widely researched over years, with the development of several tech-
niques that tries to solve this problem. In this context, there are several com-
ponents that are required to get the proper solution to the navigation problem,
and one of these is represented by the knowledge of the final position that an
autonomous robot has to reach inside an environment.

In this thesis, the goal is to enhance the autonomous capabilities of a robot
by making it able to detect and follow constantly a target placed inside an
unstructured environment. This result is obtained using a camera installed
as end-effector of a robotic arm, which in turn is installed on top of a mobile
robot. All the methodologies as well as the tools that have been used in the
development of this project are presented in this thesis.

The evaluation of the performances of the algorithm are performed both in
a static context, where the robot is fixed and the target is free to move, and in a
dynamic context where the robot moves and the target is fixed. The motion of the
robot is obtained using an innovative algorithm for navigation in unstructured
environments, NAPVIG.

The proposed approach has been implemented using ROS and been tested
both in a simulated environment using Gazebo as well as in a real world sce-
nario. The results obtained from both type of experiments will be presented and
discussed.





Sommario

I robot autonomi sono diventati in questi anni un argomento di ricerca popolare
principalmente per la loro capacità di eseguire compiti in completa autono-
mia, senza la presenza costante di un operatore umano. In questo contesto, la
navigazione autonoma rappresenta uno dei principali settori di studio per la
robotica autonoma.

La navigazione autonoma sia in ambienti strutturati che non è stata ampia-
mente studiata negli anni, portando allo sviluppo di diverse tecniche che cercano
di risolvere questo problema. In questo contesto, vi sono differenti componenti
richiesti per ottenere la soluzione adatta al problema della navigazione, e uno
di questi è rappresentato dalla posizione finale che il robot deve raggiungere
all’interno di un ambiente.

In questa tesi, l’obiettivo è di aumentare le capacità autonome di un robot
rendendolo in grado di riconoscere e seguire costantemente un target all’interno
di un ambiente non strutturato. Questo risultato è ottenuto utilizzando una
videocamera installata come utensile di un braccio robotico, installato a sua
volta sulla sommità di un robot mobile. Tutte le metodologie e gli strumenti
utilizzati nello svilippo di questo progetto sono presentati nella tesi.

La valutazione delle performance dell’algoritmo è effettuata sia in un contesto
statico, in cui il robot è fisso e il target è libero di muoversi, sia in un contesto
dinamico in cui il robot è in movimento ed il target è fisso. Il movimento del robot
è ottenuto utilizzando un algoritmo innovativo per la navigazione in ambienti
non strutturati, NAPVIG.

L’approccio proposto è implementato in ROS ed è stato testato sia in un
ambiente simulato utilizzando Gazebo sia in uno scenario nel mondo reale. I
risultati ottenuti da entrambi i tipi di esperimento saranno presentati e discussi.
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1
Introduction

In the context of mobile robots, autonomous mobile robots represent nowa-
days one of the most interesting and challenging topic of research in the sci-
entific community. Their application find place in different and various fields
in the daily lifetime, spacing from the domestic use (as for example vacuum
cleaner robots or lawn mower robots) to their usage inside extreme or harsh
environments where the presence of an human operator is prohibitive. In all
their applications, autonomous mobile robots help and support human activ-
ities by accomplishing tasks which are considered difficult or extreme to do.
Moreover, in the recent years, the development of new technologies, such as
high-performances microprocessors or faster sensors, allowed to improve even
more the capabilities of autonomous mobile robots, leading them even further
towards the fully autonomous direction.

Within the autonomous mobile robots world, the research topic concerning
the autonomous navigation represents one of the biggest issues when perceiving
the fully autonomy of a robot. Ideally, the aim of autonomous navigation is to
make a robot capable of travelling from a starting point towards a destination
in a completely independent way, with the robot being able to determine on its
own the path it has to follow and avoiding at the same time the presence of any
obstacle that would compromise the whole navigation process.

The knowledge of the destination, or target, that an autonomous mobile
robot has to reach plays a central role in the determination of the path it has to
follow. One way to determine the desired position to reach is to specify it by
hand, which, in a fully autonomous context, seems quite contradictory. In this
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1.1. THESIS STRUCTURE

sense, for an autonomous mobile robot the most logical thing to do should be to
use its sensors to detect an object which can be interpreted as a target inside the
environment.

The project presented in this thesis focuses mainly on this side of the au-
tonomous navigation process, dealing with the recognition of a target and the
following of it during the overall navigation of the robot. The proposed ap-
proach for the target detection makes use of a camera sensor which has been
installed on a robotic manipulator, mounted in turn on an autonomous mobile
robot. The usage of the robotic arm allows the constant following of the tar-
get, keeping always the camera fixed on it even where the mobile base of the
robot is moving inside the environment or when both the target and the robot
are moving together. With this approach, the purpose is to extend further the
autonomous capabilities of a robot excluding even more the intervention of an
external human operator.

1.1 Thesis structure

The present thesis work is structured into five chapters, where the first two
will give a state of the art about autonomous mobile robots, while the remain-
ing ones will focus onto the methodologies used to solve the target-locking
problem as well as the presentation of the results obtained from a campaign of
experiments. In particular:

• in chapter 2 is presented in detail a logical structure in which an au-
tonomous robot can be divided into, giving explanations on what each
substructure does to make an autonomous mobile robot such. There is
also presented the detailed modelling of a particular type of autonomous
mobile robot as well as the main control techniques that can be employed
to drive it;

• in chapter 3 an innovative algorithm for the autonomous navigation of a
robot is presented, which has been used in all the experiments performed.
The last part of this chapter deals with an odometric position estimation
algorithm that can be used to extend the autonomous capabilities of a
robot. There are briefly presented the results obtained from a campaign of
simulations;

2



CHAPTER 1. INTRODUCTION

• chapter 4 presents how the target-locking mechanism has been developed,
starting from a brief description of robotic manipulators and illustrating
the procedure that leads to the final algorithm;

• in chapter 5 the results obtained from a campaign of both simulated and
real-world experiments are presented, discussed and used to prove the
working of the target-locking algorithm described in chapter 4;

• at last, in chapter 6, there are given the conclusions about this project as
well as some suggestions for future works.

3





2
Autonomous mobile robot

An autonomous robot can be defined as an intelligent machine which has
the capability to operate without the constant presence of a human operator.
In this context, autonomous mobile robots, with their capability of moving
autonomously inside an environment and their ability in task solving, represents
one of the most innovative and vastest scientific field of research of the recent
years. The correct design of autonomous mobile robot may lead potentially to
the solution of every task it is asked to solve, however, the designing process
could result difficult in relation with the characteristic of the robot itself and of
the unpredictable nature of the surrounding environment.

2.1 Structure of autonomous mobile robots

As mentioned in the introduction of this chapter, an autonomous mobile
robot is considered to be so if it has the ability of determining what are the
actions to undertake in order to move autonomously inside an environment with
a little or even no intervention of an human operator. To achieve this result,
an autonomous mobile robot requires a series of components that, working
together, allows the correct motion of the robot. Considering the hardware
point of view, an autonomous mobile robot is composed by:

• Actuators: are the components that allows the motion of the robot by
converting energy into mechanical form. On an autonomous mobile robot
electric motors are the most diffused way to move it, but it is possible to

5
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find other types of actuators on it, such as hydraulic actuators, pneumatic
actuators and so on;

• Sensors: are used to perceive the surrounding environment and get infor-
mation from it;

• Controllers: are considered the brain of the robot, usually are computers,
microprocessors or embedded micro-controllers;

• Power system: stores the energy that needs to be supplied to the other
components of the robot.

The choice of the components that will be installed on the robot are made
depending on the necessities and tasks it has to accomplish and is typically
demanded to the manufacturer of the robot. This choice, in most of the cases, is
tricky and requires always a trade-off between performances and costs. Instead
of considering directly the hardware that will be used for an autonomous mobile
robot, it is possible to define a more general architecture that divides the robot
into different subsystems, which are identified as locomotion, perception, control

system and navigation [29][27] and that will be helpful in the designing process of
the robot. Each one of these subsystems is responsible of managing one aspect
in the entire motion process of the autonomous robot. In the following sections
there will be reported a description of these subsystems as well as their functions
inside a robot.

2.1.1 Locomotion

Locomotion is the first aspect in autonomous mobile robot design that will
be analyzed. The locomotion system allows the motion of the robot inside
environments of various type, which can space from known and controlled
ones (for example factories, laboratories) to the extreme and inhospitable ones
(underwater exploration, space missions). The design of an efficient locomotion
system however relies not only on the medium in which the robot will travel, but
depends also on other technical aspects such as stability, controllability, maneu-
verability, terrain conditions, efficiency. Depending on their locomotion system,
it is possible to divide autonomous mobile robots into different categories.

6



CHAPTER 2. AUTONOMOUS MOBILE ROBOT

Stationary

As the name mentions, these robots do not move inside an environment.
They are fixed to the world by means of a base and are composed of an open
kinematic chain with an end-effector as last component, which is typically used
for special tasks (grasping, welding, assembling, painting and so on)[1]. Inside
this category of robots it is possible to find manipulators and industrial arms
that are typically used inside industrial environments. However, in the recent
years it is possible to find stationary robots mounted on mobile robots, with the
aim to increase their capabilities in terms of tasks they are able to perform [26].
In chapter 4 there will be given a deeper analysis of the stationary robots since
a robotic manipulator will be used for the purposes of the present thesis work.

(a) Example of industrial arm
(b) Example of manipulator
on mobile robot

Figure 2.1: Examples of stationary arm

Ground-based

Ground-based mobile robots are nowadays one of the most diffused and stud-
ied category of mobile robots. In literature, they are also defined as Unmanned
Ground Vehicle (UGV)s. To allow motion inside ground environment, these
type of robots rely on different kinds of locomotion systems, and therefore can
be categorized as:

• Wheeled mobile robot: wheels represent one of the most diffused locomotion
system for mobile robots. The usage of a wheel instead of other locomotion
systems finds its advantages in cheaper cost of implementation and sim-
pler design, as well as simple control of them. On the other hand, wheeled
locomotion tends to not perform well in cases where there is low friction

7
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between the wheel and the terrain or when the robot has to overcome ob-
stacles. In literature it is possible to find different type of wheels (see figure
2.2) and they can be arranged in different number and configurations. For
thesis purposes, in section 2.2 there will be presented a detailed analysis
of one particular type of ground-based wheeled mobile robot;

• Legged mobile robot: legged mobile robots (also called walking mobile
robots) take inspiration from human motion, and, at the price of higher
implementation costs, provides higher adaptability and maneuverability
in presence of rough or uneven terrain with respect to the wheel imple-
mentation. As for the wheeled locomotion, it is possible to find robot with
different number and arrangement of legs, starting from the single-leg
robot (also called hopping robot [5]) to robots with six or more legs [2];

• Tracked mobile robot: can be used as an alternative to the wheeled loco-
motion, with high efficiency in environments with low friction or harsh
conditions. However, the usage of treads leads to issues when steering, re-
quiring a skid movement to steer the robot. This makes the dead-reckoning
of the robot very imprecise and difficult, requiring other systems to provide
the correct position of the robot (for example the usage of a GPS system,
when available, could solve the problem);

• Hybrid mobile robot: to overcome problems in some environments, as well as
to use advantages coming from the previously cited locomotion systems,
it is possible to find ground mobile robots with hybrid locomotion systems
[6].

Air-based

An Unmanned Aerial Vehicle (UAV) (also commonly known as "drone" [30])
is a type of a mobile robot which can operate in the aerial space without human
interaction. Their first usage were in military applications but in the recent years
they have found applications in other fields, such as photography, commercial,
agricultural and so on. It is possible to divide UAVs into:

• Fixed-wing: they look and behave like a plane;

8
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Figure 2.2: Wheels type: (a) Standard wheel. (b) Castor wheel. (c) Swedish
wheel. (d) Spherical wheel

• Rotor-craft: similar to helicopters, based on their application they can be
found in different sizes and with one to multiple rotors.

Water-based

Underwater environments are one of the most difficult places to reach for
man. An important branch of autonomous mobile robotics studies the de-
velopment of underwater mobile vehicles that allows the exploration of these
environments safely. Other than the submerging robots, it is possible to find
robots that works on the water surface like boats (they are called unmanned
surface vehicles).

(a) Example of UGV (b) Example of UAV
(c) Example of underwater
mobile robot [19]

Figure 2.3: Examples of mobile robots
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2.1.2 Perception

For an autonomous mobile robot, the knowledge of the surrounding environ-
ment as well as the state of the robot itself are fundamental. Perception tries
to solve these problems using different types of sensors and the information
that are obtained using them. The usage of sensors allows the mobile robot
to determine both its positioning inside an environment and a mapping of the
environment. Also, sensors are useful for what concerns the detection and
recognition of objects [20]. It is possible to categorize sensors by means of two
functional axes. The first one divides sensors by means of where measures takes
place:

• Proprioceptive: measures values internal to the robot, such as joint states,
battery voltage, temperature and so on;

• Exteroceptive: measures data from the surrounding environment, such as
distances, sounds, light measurements and so on. These measures are then
processed by the robot to get an crucial environment features.

while the second functional axes instead divides sensors by their working
functionality:

• Active: works by emitting energy into environment and then measuring
the environmental reaction.

• Passive: measure environmental energy entering the sensor (for example
microphones, CMOS or CCD cameras).

Sensors’ performances may vary depending on the environment they are
working in. For example, in a laboratory setting, some sensors may provide
better results rather then other sensors. It is important to characterize the
performances of a sensor by means of basic variables, which are explained in
the following:

• Dynamic range: it measures the spread between the lower and the upper
value measurable by the sensor in normal operating conditions. Dynamic
range is also important since many times sensors operate in environments
where they are subject to input values beyond their normal working range.
In these cases, it is difficult to predict how the sensor will react;
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• Resolution: represents the minimum difference between two measurable
values by a sensor. Typically, resolution coincides with the lower limit of
the dynamic range;

• Linearity: it governs the behaviour of the sensor’s output signal as the input
signal varies;

• Bandwidth: it measures the speed with which a sensor can provide a stream
of readings. For autonomous mobile robots the usage of limited bandwidth
sensors could limit the maximum operating speed of the robot, therefore
the increase of the bandwidth of sensors is still an active research topic.
Formally, the number of measurements per seconds of the sensor is defined
as its frequency and is measured in Hertz [Hz];

• Sensitivity: is defined as the ratio of output change to input change. Sensi-
tivity measures the degree with which a change in the input signal influ-
ences and changes the relative output signal.

At last, when dealing with perception and sensors, it is important to take into
account sensor errors. Error is defined as the difference between sensor’s output
and the true measured value. It is possible to divide errors into two possible
sources:

• Systematic errors: these errors depends on factors that theoretically can be
modeled (in fact it is possible to predict this kind of errors). Systematic
errors affects the accuracy of the sensor, which is formally defined as the
degree of conformity between sensor’s output measurements and the true
value;

• Random errors: these errors can be described only in a probabilistic way,
since it is impossible to define an accurate model that describes them.
Precision, which is defined as how close are measurements to each other,
is affected by random errors.

In literature there is a consistent number of sensors that can be used in a
robotic context, for example it is possible to find:

• encoders: are used to know the robot’s part position and speeds;
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• gyroscopes: are used to measure angular velocities and orientation of the
robot;

• laser range finder: it uses a laser beam to generate high-precision distance
measurements;

• vision-based sensors: they process data from any modality and use the
electromagnetic spectrum to produce an image.

2.1.3 Cognition and control

The mechanical structure of an autonomous mobile robot (in particular the
locomotion system defined in 2.1.1) requires to be controlled in order to perform
correctly tasks.

The control system of an autonomous mobile robot is responsible of this
process and usually implements one of the most common used paradigm in
autonomous mobile robot applications, the Sense-Plan-Act paradigm [11], where:

• the perception system described in 2.1.2, which provides information about
the robot and the environment, is in charge of the sense part;

• the cognition system, which will be described later, is responsible of the
plan part;

• the locomotion system, with the appropriate commands from the control
system, allows the motion of the robot and therefore is in charge of the act

part.

The planning and decision part of the sense-plan-act paradigm is managed
by the cognition system of the robot. Its goal inside the whole architecture is
firstly to get the correct interpretation of the data provided by the perception
system, and, for this reason, the robot could require a cognitive model of the
robot, the environment and of the way they interact. Using the information
from the perception system and the high-level objectives of the robot, the cog-
nition system is then able to plan the correct path the robot has to follow to
achieve them by taking the appropriate actions. At last, in cooperation with the
control system, the cognition system deliberates the suitable commands to the
locomotion system allowing the motion of the robot.
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Figure 2.4: The Sense-Plan-Act paradigm

2.1.4 Navigation

For an autonomous mobile robot, navigation skills represent one of the most
important aspect when designing it. The objective for an autonomous mobile
robot is to move from one place to another taking into account not only the final
position it has to reach but also all the information received from the sensors
about its surroundings. For these reasons, the definition of the correct path to
follow, united with the correct representation of the surrounding environment
and an appropriate method of avoiding obstacles, are crucial in the design of an
autonomous mobile robot.

Localization and mapping

One of the key aspect in navigation is localization. In order to obtain the
navigation in an environment, a robot must determine what is its position inside
it. On top of that however knowing only the position of the robot may not be
enough for navigation. For an autonomous mobile robot, the knowledge and the
representation of the surrounding environment plays a major role in navigation.
Therefore, it is possible to describe these two main aspects in navigation as:

• Localization: it is the exact knowledge of the pose of a mobile robot. In
literature, there have been developed various technologies and techniques
(odometry, inertial navigation, landmark navigation and so on [4]) to solve
the localization problem;

• Mapping: the representation of the map should be consistent with the
accuracy which the robot is working with but also with the accuracy of
the sensors providing information for map reconstruction. As for the
localization problem, there have been developed several techniques to
solve the map representation problem (for example probabilistic map-
based localization, Monte Carlo localization, Landmark-based localization
[23]).
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Path, trajectory and motion planning

With the localization and mapping, an autonomous mobile robot is able to
determine its position inside an environment and at the same time to determine
what are its surroundings. To ensure mobility, it is necessary to define how
the robot should move inside the environment, namely by defining a path or
trajectory to follow. Motion planning tries to solve this problem by defining a
series of action that an autonomous mobile robot must follow to move from a
starting point to reach the final target. Inside motion planning problem, it is
possible to define what are the two main issues to solve for a robot to move:

• Path planning: the aim of path planning is to determine what is the best path
to follow in order for the robot to reach the final destination without hitting
any obstacle, neglecting the temporal evolution and without considering
any velocity or acceleration;

• Trajectory planning: determines what is the force input necessary to move
the actuators of the robot, in order for it to follow a trajectory. Differently
from the path planning process, trajectory planning takes into account
both the temporal evolution and the forces (and therefore accelerations)
needed to obtain the motion of the robot.

Over the years, many motion planning techniques and algorithms have been
developed. It is possible to categorize them as:

• Classic methods: were the first developed methods in autonomous mo-
bile robotic industry. They are based on roadmaps (for example Voronoi
diagram [24] and visibility graphs), cell decomposition [7] and potential
functions [15];

• Probabilistic methods: some classic methods presented some problems, such
as high computational complexity and trapping of the planner in a local
minima solution. To overcome these problems, planning methods evolved
into "probabilistic methods". PRM (probabilistic roadmap) planners [13]
are one of the most diffused probabilistic planning methods. They are
based on single-dimensional roadmaps and the goal of the path planner
is to determine paths that link the initial and final point to the roadmap;
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• Heuristic methods: to speed up performances of previous methods, it is
possible to adopt heuristic approaches to solve the planning problem. The
most commonly used algorithms are A* algorithm [28] and D* algorithm
[31];

• Evolutionary algorithms: in the recent years this class of algorithms arise in
the field of motion planning. Evolutionary algorithms solve the motion
problem by mimicking behaviours of living things. Several of the most
common used techniques used in recent years are for example Genetic Al-
gorithms (GA) [9], Particle swarm optimization (PSO) [14] and Ant colony
optimization [10];

• Sensor-based algorithms: as the name mentions, these algorithms work using
sensors to perceive surroundings and determine the correct path to follow.
These methods have been used over years and continue to evolve in the
present. Their main advantage resides in the online computation of the
path.

Obstacle avoidance

The last aspect an autonomous mobile robot has to deal with when planning
the movement is obstacle avoidance. As already mentioned, the motion of
the robot from its current position to a final position requires a map of the
environment (which can be known or unknown), the goal location and the robot
current position (which is determined using the localization system). Other
than that, the motion planner should take into account the presence of any
obstacle which could be present in the trajectory and modify it suitably in order
to avoid collisions. Obstacle avoidance algorithms can be divided into two main
categories:

• Map based: these algorithms rely on the knowledge of the surrounding
environment provided by a map of it. Then, knowing the localization of the
robot at each time instant, its is possible to determine the detect collisions
by evaluating distances from obstacles and plan a suitable trajectory;

• Mapless based: there is no explicit knowledge of he surrounding environ-
ment, which is observed by means of the sensors mounted on the robot.
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The position of the obstacles as well as their distances from the actual position
of the robot can be retrieved using from the sensors of the robot. In this way,
the path planner can take into account any obstacle in the planning process and
modify the final trajectory accordingly in order to avoid the obstacles. Over
the years, there have been developed several techniques to solve the obstacle
avoidance problem, such as the Bug algorithm [22], vector field histogram [3],
potential field methods [17].

2.2 Unmanned Ground Vehicle (UGV)

As introduced in section 2.1.1, an UGV is an autonomous mobile robot which
is specialized in moving in different ground terrains. For the purposes of this
thesis, there will be given a brief description of a model that can be used for
UGV as well as the control techniques used to drive it.

2.2.1 Representation of an Unmanned Ground Vehicle (UGV)

An UGV which moves inside a 2D environment can be considered as a rigid
body whose pose can be described by means of two different reference frames:

• world reference frame (ℱ𝑤) which is inertial, fixed and could be known or
unknown;

• body reference frame (ℱ𝑏) whose origin typically coincides with the center
of mass of the robot.

Considering these two reference frames, it is possible to express the pose of
an UGV in the world reference frame using the vector:

q =

⎡⎢⎢⎢⎢⎢⎣
𝑥

𝑦

�

⎤⎥⎥⎥⎥⎥⎦ =

[︄
p
�

]︄
∈ R3 (2.1)

where, the first two components of the vector q (p = [𝑥, 𝑦]𝑇 ∈ R2) represents
the position of the robot in Cartesian coordinates, while the third component
(� ∈ (−𝜋,𝜋], � ∈ S1) accounts for the relative orientation of the robot with
respect ot the world reference frame.
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Figure 2.5: Representation of world and body reference frames

2.2.2 Unicycle model and Differential Drive Robot (DDR)

In order to obtain a simple model of an UGV, there will be considered the
unicycle vehicle. The unicycle is a planar vehicle built with a single orientable
wheel, whose pose is represented using equation (2.1). The determination of the
kinematic model of the unicycle starts by relating the translational and rotational
coordinates using the following equations:

�̇� = 𝑣 cos� (2.2)

�̇� = 𝑣 sin� (2.3)

𝑣2 = �̇�2 + �̇�2 (2.4)

where 𝑣 is the linear velocity of the UGV. By combining equations (2.2), (2.3) and
(2.4) it is possible to define the non-holonomic pure rolling constraint affecting
the UGV in the form Φ(q, q̇) = 0:

�̇� sin� − �̇� cos� = 0 (2.5)

At last, by taking into account also the angular velocity of the unicycle (𝜔), it is
possible to define the kinematic model of the UGV as:⎡⎢⎢⎢⎢⎢⎣

�̇�

�̇�

�̇

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
cos�
sin�

0

⎤⎥⎥⎥⎥⎥⎦ 𝑣 +
⎡⎢⎢⎢⎢⎢⎣
0
0
1

⎤⎥⎥⎥⎥⎥⎦ 𝜔 =

⎡⎢⎢⎢⎢⎢⎣
cos� 0
sin� 0

0 1

⎤⎥⎥⎥⎥⎥⎦
[︄
𝑣

𝜔

]︄
(2.6)
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Differential Drive Robot (DDR)

A Differential Drive Robot (DDR) is a particular type of UGV which is com-
posed by two standard wheels which are responsible for the motion of the robot
and typically one or two wheels (which can be spherical or castor) used for
stability purposes. The assumption of a pure rolling movement without any
slide causes the wheels to describe always arcs in the plane, in such a way that
the robot moves around a point which is defined as Instantaneous Center of
Rotation (ICR). If both driving wheels have the same velocity (namely 𝜔𝑙 and 𝜔𝑟

for left and right wheel) the ICR is placed at infinity, on the other hand if wheels
have different velocities then the robot will describe a circular trajectory. For a
DDR it is possible to derive the control inputs of the robot, namely the driving
(linear) speed 𝑣 and the steering (angular) velocity 𝜔 from the wheels velocity
as:

𝑣 =
𝑟(𝜔𝑟 + 𝜔𝑙)

2 𝜔 =
𝑟(𝜔𝑟 − 𝜔𝑙)

𝑑
(2.7)

where 𝑟 represents the radius of the driving wheels and 𝑑 is the distance between
them. In this way, it is possible to adopt the same model defined for the unicycle
also for the DDR.

2.2.3 Unicycle control

For the unicycle, there are introduced and presented three different types of
control:

Cartesian control

With the Cartesian control, the objective is to drive the unicycle to a desired
position p𝑑𝑒𝑠 = [𝑥𝑑𝑒𝑠 , 𝑦𝑑𝑒𝑠]𝑇 regardless of the orientation �. Without loss of
generality, it is possible to consider the following as the desired target pose:

q𝑑𝑒𝑠 =

[︄
p𝑑𝑒𝑠

∀

]︄
=

⎡⎢⎢⎢⎢⎢⎣
𝑥𝑑𝑒𝑠

𝑦𝑑𝑒𝑠

∀

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
0
0
∀

⎤⎥⎥⎥⎥⎥⎦ (2.8)
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The error with respect to the current position q = [𝑥, 𝑦]𝑇 , e𝑝 , as well as the unit
vector sagittal axis n, are defined in equation (2.9):

e𝑝 =

[︄
0 − 𝑥
0 − 𝑦

]︄
=

[︄
−𝑥
−𝑦

]︄
n =

[︄
cos�
sin�

]︄
(2.9)

In figure 2.6, it is reported the graphical meaning of equation (2.9). From that, it
is possible to define the projection of the error on the sagittal axis and the angles
presented in figure 2.6 as:

< e𝑝 , n >= e𝑇𝑝n = −𝑥 cos� − 𝑦 sin� (2.10)

𝛼 = atan2(𝑦, 𝑥), 𝛿 = 𝛼 + 𝜋 (2.11)

and at last, the angle between the position error vector and the sagittal axis is
defined as:

𝛾 = 𝛿 − � = atan2(𝑦, 𝑥) + 𝜋 − � (2.12)

Figure 2.6: Cartesian control: angles and vectors definition

The goal of the control action is to bring to zero both the projection error
defined in equation (2.10) and the angle defined in equation (2.12). To achieve
these results, it is possible to adopt the following control law acting on both the

19



2.2. UNMANNED GROUND VEHICLE (UGV)

driving and steering velocities:

𝑣 = 𝑘𝑣e𝑇𝑝n = 𝑘𝑣(−𝑥 cos� − 𝑦 sin�) (2.13)

𝜔 = 𝑘𝜔𝛾 = 𝑘𝜔(atan2(𝑦, 𝑥) + 𝜋 − �) (2.14)

where 𝑘𝑣 and 𝑘𝜔 are positive control gains.

Posture control

Differently from the Cartesian control, in posture control also the final ori-
entation of the robot is important. Therefore, without loss of generality, the
desired target pose is defined as:

q𝑑𝑒𝑠 =

[︄
p𝑑𝑒𝑠

�𝑑𝑒𝑠

]︄
=

⎡⎢⎢⎢⎢⎢⎣
𝑥𝑑𝑒𝑠

𝑦𝑑𝑒𝑠

�𝑑𝑒𝑠

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
0
0
0

⎤⎥⎥⎥⎥⎥⎦ (2.15)

By considering the length of the position error 𝑒𝑝 defined in equation (2.9)
𝜌 =

√︁
𝑥2 + 𝑦2, united with the angles 𝛾 and 𝛿 defined respectively in equations

(2.11) and (2.12), it is possible to give a polar representation of the unicycle pose.
The aim of the control action is to bring those quantities to zero. One possible
control law is:

𝑣 = 𝑘𝑣𝜌 cos 𝛾 (2.16)

𝜔 = 𝑘𝜔𝛾 + 𝑘𝑣
sin 𝛾 cos 𝛾

𝛾
(𝛾 + 𝑘𝛿𝛿) (2.17)

where again the parameters 𝑘𝑣 , 𝑘𝜔 and 𝑘𝛿 are the positive control gains of the
controller.

Tracking control

The aim of this controller is to drive the unicycle so that it follows a trajectory
over time. The desired trajectory is expressed as:

q𝑑𝑒𝑠(𝑡) =
[︄
p𝑑𝑒𝑠(𝑡)
�𝑑𝑒𝑠(𝑡)

]︄
=

⎡⎢⎢⎢⎢⎢⎣
𝑥𝑑𝑒𝑠(𝑡)
𝑦𝑑𝑒𝑠(𝑡)
�𝑑𝑒𝑠(𝑡)

⎤⎥⎥⎥⎥⎥⎦ (2.18)
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while, the trajectory error can be expressed both in the world reference frame
and in the body reference frame as:

e𝑊 =

⎡⎢⎢⎢⎢⎢⎣
𝑥𝑑𝑒𝑠 − 𝑥
𝑦𝑑𝑒𝑠 − 𝑦
�𝑑𝑒𝑠 − �

⎤⎥⎥⎥⎥⎥⎦ ⇒ e𝐵 =

⎡⎢⎢⎢⎢⎢⎣
𝑒1

𝑒2

𝑒3

⎤⎥⎥⎥⎥⎥⎦ = R𝑇
𝑧 (�)e𝑊 =

⎡⎢⎢⎢⎢⎢⎣
cos� sin� 0
− sin� cos� 0

0 0 1

⎤⎥⎥⎥⎥⎥⎦ e𝑊 (2.19)

Considering now the derivative of equation (2.19), united with the invertible
input transformation:

𝑣 = 𝑣𝑑𝑒𝑠 cos 𝑒3 − 𝑢1

𝜔 = 𝜔𝑑𝑒𝑠 − 𝑢2
⇔ 𝑢1 = −𝑣 + 𝑣𝑑𝑒𝑠 cos 𝑒3

𝑢2 = 𝜔𝑑𝑒𝑠 − 𝜔
(2.20)

it holds that:

ė =

⎡⎢⎢⎢⎢⎢⎣
0 𝜔𝑑𝑒𝑠 0
−𝜔𝑑𝑒𝑠 0 0

0 0 0

⎤⎥⎥⎥⎥⎥⎦ e +
⎡⎢⎢⎢⎢⎢⎣

0
sin 𝑒3

0

⎤⎥⎥⎥⎥⎥⎦ 𝑣
𝑑𝑒𝑠 +

⎡⎢⎢⎢⎢⎢⎣
1 −𝑒2
0 𝑒1

0 1

⎤⎥⎥⎥⎥⎥⎦ +
[︄
𝑢1

𝑢2

]︄
(2.21)

At last, it is possible to linearize the error dynamics described in equation (2.21)
around the point e = 0:

ė =

⎡⎢⎢⎢⎢⎢⎣
0 𝜔𝑑𝑒𝑠 0
−𝜔𝑑𝑒𝑠 0 𝑣𝑑𝑒𝑠

0 0 0

⎤⎥⎥⎥⎥⎥⎦ e +
⎡⎢⎢⎢⎢⎢⎣
1 0
0 0
0 1

⎤⎥⎥⎥⎥⎥⎦
[︄
𝑢1

𝑢2

]︄
(2.22)

and a possible control law is:[︄
𝑢1

𝑢2

]︄
=

[︄
−𝑘1 0 0
0 −𝑘2 −𝑘3

]︄
e (2.23)

Using this control law makes the closed-loop error dynamics become:

ė =

⎡⎢⎢⎢⎢⎢⎣
−𝑘1 𝜔𝑑𝑒𝑠 0
−𝜔𝑑𝑒𝑠 0 𝑣𝑑𝑒𝑠

0 −𝑘2 −𝑘3

⎤⎥⎥⎥⎥⎥⎦ e (2.24)

where the positive control gains 𝑘1,𝑘2 and 𝑘3 can be selected such that the error
dynamics asymptotically convergences to zero.
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3
Autonomous navigation - NAPVIG

In section 2.1.4 it was introduced the concept of autonomous navigation for
an autonomous mobile robot, as well as the main components of a navigation
system and the principal algorithms and techniques that find solution to this
problem. In this chapter, there is presented an innovative algorithm for the
autonomous navigation called Narrow Passage Navigation (NAPVIG) [18].

3.1 Introduction

As seen in section 2.1.4, the path planning problem presents different ways
to solve it. Despite the various number of techniques presented, nowadays the
solutions depend mainly on the application of graph-search methods and sensor-

based algorithms. For what concern sensor-based methods, the Rapidly-exploring
Random Trees (RRT) [16] and its derivation (for example RRT* [12]) can be found
nearly in most of the scenarios. On the other hand, graph-search methods
like A* [28] are commonly adopted especially when dealing with unknown
environments.

Despite their efficiency in finding a solution to the navigation problem, both
methods tends to be computationally highly demanding in cases of complex
scenarios and in presence of obstructed or cluttered passages. Moreover, when
dealing with unknown or dynamic environments, real-time requirements are a
challenging aspect to deal with, and the aforementioned methods, due to their
working process, are not well suited for reactive navigation.
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3.2. ALGORITHM DESCRIPTION

Reactive navigation is a diffused paradigm for controlling an autonomous
mobile robot in unknown, dynamic and cluttered environments, in which the
designed algorithm has to adapt to the variations around the robot making use of
any priori global information and using the information provided by the sensors
of the robot. Typically, in a reactive approach, the goal is to determine only the
next command of the robot instead of computing all the path to the final target.
The computation of the command starts by specifying a cost function for all
the possible movements that the robot can achieve in terms of the surrounding
obstacles and, if present, the desired target position. At each time instant,
the algorithm looks for the minimum in the cost function and executes the
command associated to it. As mentioned before, in order to ensure real-time
performances and allow the robot to be fast enough to the environment changes,
in the evaluation of the command are considered only local information over a
short period of time.

In this context, the NAPVIG algorithm deals with the reactive navigation
paradigm by computing a single point of the local Generalized Voronoi Diagram
(GVD) of the environment, which is obtained from the raw measurements of a
LiDAR scanner. The algorithm is written using C++ and Python languages and
is implemented using ROS (Robot Operating System), which is a set of software
libraries and tools widely used in robotic applications.

3.2 Algorithm description

The main goal of the NAPVIG algorithm, in order to achieve safe navigation,
is to determine a trajectory which is at maximum distance for every possible
obstacle in the movement direction of the robot. Due to its low computational
costs, it is possible to utilize this algorithm in environments where high reactivity
is required. As mentioned at the end of section 3.1, NAPVIG works using the
noisy data measurements provided by a LiDAR sensor installed on the robot,
which are collected with a certain sampling time 𝑇𝑚 ∈ R. All the measurements
are expressed in a frame ℱ𝑘 , while the pose of the robot at each time instant
is expressed by the frame ℱ𝑡 with respect to the inertial world frame ℱ𝑤 . The
measurements collected are used by NAPVIG to define what constitutes one of
the three pillars of which the algorithm is based on, the landscape function.

The landscape is a function whose goal is to map every point in R2 accord-
ingly to a value related to the distance of the nearest measurement provided by
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Figure 3.1: Example of a landscape function [18]. The yellow zone represents
the obstacles, while the blue areas are the safe zone to navigate in which the
trajectory will be computed

the LiDAR. The evaluation of the landscape function starts from the computa-
tion of Gaussian-like function centered on each point of the measurements 𝑚𝑘

at time instant 𝑡, as:

Γ : R2 × R2→ (0, 1] : (x,m) → 𝑒
− | |x−m| |2

2𝜎2 (3.1)

The superposition the Gaussian peaks defined in equation (3.1) allows the defi-
nition of the raw landscape function ℒ̌𝑎 . To obtain the real landscape function, the
raw landscape function ℒ̌𝑎 is convoluted with a Gaussian kernel, getting there-
fore a smooth version of it which is then used in the algorithm. The obtained
function gives a proportional representation of the surrounding space around
the robot, with higher values corresponding to obstacles and lower values to
the free space where the robot navigation is safe (in fact the robot moves in the
minimum of the landscape function).

The second key aspect in the NAPVIG algorithm are landmarks. They are used
to keep track of the movements made by the robot by storing useful information
about areas that have been already explored. A landmark is expressed using
the triplet 𝑙 = (ℱ𝑙 , 𝑡𝑙 , x𝑙) ∈ SE(2) × R × R2, where:

• ℱ𝑙 ∈ SE(2) is the last measurement frame where the landmark is created;
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• 𝑡𝑙 ∈ R is the timestamp when the landmark is created;

• x𝑙 ∈ R2 is the position of the robot at the landmark creation, expressed in
the frame ℱ𝑙 .

Landmarks are stored in a limited size batch which is treated as a First In
Last Out (FILO) queue, so that the oldest landmarks are replaced by the newest
and useful ones. Each landmark is used to evaluate a cost factor that penalizes
the navigation inside areas that have been already explored and encourages
therefore the exploration of different paths. The presence of the decaying factor
𝑒−�(𝑡−𝑡𝑙) in the evaluation of the cost factor takes into account the timestamp in
which the landmark had been created. This is done to allow the exploration of
already visited zones in a different timestamp, which results helpful especially
when dealing with dynamic scenarios (for example the removal of an obstacle in
a certain zone could make easier the reaching of the target through that specific
path).

The third and last key aspect for NAPVIG is the target position. Target is a
position 𝑥 𝑓 (𝑡) ∈ 𝒞𝑓 𝑟𝑒𝑒 , where 𝒞𝑓 𝑟𝑒𝑒 ⊂ R2 is the complementary set of 𝒞𝑐𝑜𝑙𝑙 ⊂ R2,
the set of all the possible collisions in the environment. Target plays a key role
in the working functionality of the NAPVIG algorithm, especially in the policy
switching phase as will be discussed later.

All the components described so far are necessary to determine the safest
trajectory (the one which is farthest from each possible obstacle) for the robot
to follow during the navigation. Moreover, it is important to point out that the
trajectory computed by NAPVIG always follows the GVD of the environment.
The GVD can be defined as the set of points which are equidistant from two or
more obstacles and it divides the space into cells defined Generalized Voronoi
Cells (GVCs). Each cell contains exactly one object (or seed) and the set of points
composing the GVC is such that each point of the cell is closer to the seed rather
than any other point in the space.

At last, the NAPVIG algorithm decides the trajectory to follow based on a
policy-switching method. The method is based on six different policies which
can be regrouped into three main classes: predictive, reactive and auxiliary. De-
pending on the status of the robot, each policy plays a specific role in the moment
of the computation of the trajectory. The policy-switching criterion is not dis-
cussed but there is given only a brief description of each one of the six policies
used in the algorithm.
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Predictive policies

Predictive policies are responsible for the navigation task. Each one of these
policies can predict one or more trajectories to follow 𝝃(ℎ), which are associated
to an exit status 𝑐(ℎ)𝝃 and a cost value 𝐽(𝝃ℎ , 𝑐(ℎ)𝝃 ). The decision of the best trajectory
to follow then relies on the minimization of the following optimization problem:

𝝃∗ = arg min
𝝃(ℎ) ,ℎ=0,...,𝐻

𝐽(𝝃(ℎ), 𝑐(ℎ)𝝃 ) (3.2)

The NAPVIG algorithm makes use of three predictive policies:

• Fully-exploitative policy: generates a trajectory that points directly towards
the target. It is activated when it is possible to determine a direct path
to the target, however, while the navigation could be very efficient, the
trajectory computed might not be the safest or in the worst case be a valid
one;

• Fully-explorative policy: it is used when the target is not in sight and the
goal of the navigation task is to explore as much map as possible. This
policy makes large use of the landmarks by applying a penalty factor in
the evaluation of the trajectory to areas that have been already explored by
the robot and encouraging the exploration of new areas of the map;

• Partly-exploitative policy: is used when the target is in sight but there is no
direct road towards it, therefore the robot is required to explore the map
in order to find a free path that reaches the target.

Reactive policy

Predictive policies are used to determine the best trajectory in cases where
more than one GVD branches are available (for example the presence of a bifur-
cation induces two possible trajectories). After choosing the path to follow, it
could be unnecessary to compute again all the possible routes toward the target
with the robot being required to follow only one direction. In these cases, the
legacy policy is adopted.
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Auxiliary policies

The remaining two policies are used in special states for the robot:

• Free-space policy: is used when the robot is sufficiently near to the target,
where it is possible to consider the space around it with a certain threshold
all safe to navigate;

• Halt policy: is used when the robot is required to stop, for example in cases
where all the other policies have been tried and rejected or when the robot
reached its final destination.

3.3 Odometric position estimation algorithm

In section 2.1.4 there was introduced the localization problem for an au-
tonomous mobile robot. In the experimental setup for NAPVIG, the robot has
no knowledge at all of its position inside the global reference frame ℱ𝑤 , and
the localization of the robot is entrusted other localization mechanism such as a
motion capture system [21]. This setup works finely only in a restricted environ-
ment such as laboratories, however, in the perspective of an usage of the robot
in uncontrolled environment, the usage of a motion capture system is nearly
impossible. Therefore, in order to extend the motion capabilities of the robot,
it was decided to implement a simple odometric position estimation algorithm
which exploits the characteristics of the DDR to retrieve the pose of the robot,
as well as the travelled path, from its initial pose.

3.3.1 Algorithm description

For a DDR, it is possible to estimate its pose q = [𝑥, 𝑦, 𝜗]𝑇 using an iterative
odometric position estimation algorithm which makes use of the distance trav-
eled by each wheel. The rotation of each wheel (that will be denoted as Δ𝜗𝑙 and
Δ𝜗𝑟 for left and right wheel respectively) is provided at each time instant Δ𝑡
by the optical wheel encoders mounted on each driving wheel. The odometric
position estimation algorithm determines the pose of the robot by making use
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of the incremental travel distance evaluated at each time instant, which can be
determined starting from the rotation of each wheel as:

Δ𝑠 = 𝑟
Δ𝜗𝑟 + Δ𝜗𝑙

2 (3.3)

Δ𝜗 = 𝑟
Δ𝜗𝑟 − Δ𝜗𝑙

𝑑
(3.4)

where the quantities 𝑑 and 𝑟 are respectively the distance between the two
driving wheels and the radius of each wheel. The quantities Δ𝑠 and Δ𝜗 are
the total linear and angular displacement of the robot and are expressed with
respect to the center point between the two driving wheels of the DDR. The
incremental travel distance for the 𝑥 and 𝑦 axis can be determined from equation
(3.3) as:

Δ𝑥 = Δ𝑠 cos (𝜗 + Δ𝜗/2) (3.5)

Δ𝑦 = Δ𝑠 sin (𝜗 + Δ𝜗/2) (3.6)

and finally, the updated pose of the robot is determined as:

q′ =

⎡⎢⎢⎢⎢⎢⎣
𝑥′

𝑦′

𝜗′

⎤⎥⎥⎥⎥⎥⎦ = q +
⎡⎢⎢⎢⎢⎢⎣
Δ𝑥

Δ𝑦

Δ𝜗

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
𝑥

𝑦

𝜗

⎤⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎣
Δ𝑠 cos (𝜗 + Δ𝜗/2)
Δ𝑠 sin (𝜗 + Δ𝜗/2)

Δ𝜗

⎤⎥⎥⎥⎥⎥⎦ (3.7)

With this algorithm it is possible to get a simple estimation of the pose of the
robot, however with this method the estimate obtained is quite rough and could
presents some error in the final position of the robot. Some of the causes of the
errors can be identified in:

• limited resolution during integration;

• unequal floor contact;

• misalignment of wheels;

• uncertainty in wheels dimension.

To overcome these errors it could be possible to define a more accurate
model, however, for the purposes of this thesis, the estimate provided with
this simple method works finely. To prove this, in section 3.3.2 are reported
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the results obtained from a campaign of experiments conducted in a simulated
environment.

3.3.2 Simulation results

For what concerns the simulations, the test of the odometric position esti-
mation algorithm were performed using Gazebo, which is an open-source 3D
robotic simulator. The robot in use is a modified version of the "Locobot_wx200"
provided by Trossen Robotics. The modifications made will be discussed later in
chapter 4 since they are not useful for the tests performed in this section. The
efficiency of the algorithm was tested by making the robot follow some trajec-
tories, obtained by applying directly to it different linear and angular velocities.
All the tests were performed in a completely free environment without any kind
of obstacle. The tested trajectories are:

• Linear trajectory (application of linear velocity only);

• Rotation on axis (application of angular velocity only);

• Circular trajectory (application of both linear and angular velocity);

• Random trajectories obtained by the application of linear and angular
velocity in different ways.

To prove the goodness of the algorithm, the results obtained are put in
comparison with the odometric position estimation provided by Gazebo itself.

Linear trajectory

The first tests were performed by applying to the robot a constant linear
velocity, obtaining therefore ideally a linear trajectory until the robot reached
approximately the final position p = [4, 0]𝑇 . From the results reported in figure
3.2, the robot starts drifting from the expected perfectly linear trajectory, with a
more marked effect as speed grows. However, this drifting phenomenon in the
evaluation of the effectiveness of the odometric position estimation algorithm
is out of concern since it is caused by other problems related to the robot itself
(e.g. slippage of the wheels).

By taking a look at the error graphs reported in figure 3.3, the error growth
rate can be considered acceptable when considering all the possible sources
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(a) 𝑣 = 0.1 [𝑚/𝑠] (b) 𝑣 = 0.2 [𝑚/𝑠]

Figure 3.2: Results with constant linear velocity

of errors mentioned in section 3.3.1. The detail of the error obtained in the
estimation of the final position is reported in table 3.1.

𝑣 [𝑚/𝑠] 𝑥𝑒𝑟𝑟 [𝑚] 𝑦𝑒𝑟𝑟 [𝑚] Euclidean distance between endpoints [𝑚]
0.1 0.0093 0.0203 0.0224
0.2 0.0413 0.0150 0.0439

Table 3.1: Errors in final position with constant linear velocity

(a) 𝑣 = 0.1 [𝑚/𝑠] (b) 𝑣 = 0.2 [𝑚/𝑠]

Figure 3.3: Error with constant linear velocity
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Rotation on axis

The second type of tests were performed by applying a constant angular
velocity to the robot, to evaluate its behaviour with respect to the rotation on its
vertical axis.

As shown in the results reported in figure 3.4, the odometric position estima-
tion algorithm provides good results in comparison with the ground truth, with
a difference in the order of millimeters. This difference can be imputed to an
incorrect definition of the robot parameters (wheel distance and radius), united
also with errors in the measurements. Also, in each test there is the presence of
a small linear displacement from the starting position. However, this problem
has to be imputed to the simulation itself, since at the spawn of the robot in the
environment it starts moving slightly from the start position.

(a) 𝜔 = 0.1 [𝑟𝑎𝑑/𝑠] (b) 𝜔 = 0.2 [𝑟𝑎𝑑/𝑠] (c) 𝜔 = 0.3 [𝑟𝑎𝑑/𝑠]

Figure 3.4: Results with constant angular velocity

As done for the tests with only linear velocity applied, the effectiveness of the
odometric position estimation algorithm is evaluated by taking a look at the error
graphs reported in figure 3.5 and at the error in the final position reported in table
3.2. Differently from the linear case, the error assumes here a different behaviour
which is however consistent with the trajectory described. To eliminate the
misalignment between the odometric position estimation algorithm and the
ground truth, one possible solution is to modify slightly the parameters used
in the odometric position estimation (wheel distance and wheel radius). This
however would influence the estimation process with other trajectories leading
to higher errors in the final position, therefore since the error obtained is under
the order of millimeters (as reported in table 3.2) it was decided to keep the
estimation parameters fixed.
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𝜔 [𝑟𝑎𝑑/𝑠] 𝑥𝑒𝑟𝑟 [𝑚] 𝑦𝑒𝑟𝑟 [𝑚] Euclidean distance between endpoints [𝑚]
0.1 0.30e-04 1.21e-04 1.24e-04
0.2 0.80e-04 0.37e-04 0.88e-04
0.3 4,19e-04 4.42e-04 6.09e-04

Table 3.2: Errors in final position with constant angular velocity

(a) 𝜔 = 0.1 [𝑟𝑎𝑑/𝑠]

(b) 𝜔 = 0.2 [𝑟𝑎𝑑/𝑠]

(c) 𝜔 = 0.3 [𝑟𝑎𝑑/𝑠]

Figure 3.5: Error with constant angular velocity
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Circular trajectory

The third typology of tests were performed by applying to the robot a constant
linear and angular velocity simultaneously, getting perhaps a circular trajectory.
There were tested out every possible combination of the velocities used in the test
of linear and angular velocity taken singularly. The results obtained, reported
in figure 3.6.

(a) 𝑣 = 0.1 [𝑚/𝑠] 𝜔 =

0.1 [𝑟𝑎𝑑/𝑠]
(b) 𝑣 = 0.1 [𝑚/𝑠] 𝜔 =

0.2 [𝑟𝑎𝑑/𝑠]
(c) 𝑣 = 0.1 [𝑚/𝑠] 𝜔 =

0.3 [𝑟𝑎𝑑/𝑠]

(d) 𝑣 = 0.2 [𝑚/𝑠] 𝜔 =

0.1 [𝑟𝑎𝑑/𝑠]
(e) 𝑣 = 0.2 [𝑚/𝑠] 𝜔 =

0.2 [𝑟𝑎𝑑/𝑠]
(f) 𝑣 = 0.2 [𝑚/𝑠] 𝜔 =

0.3 [𝑟𝑎𝑑/𝑠]

Figure 3.6: Results with circular trajectory

As done for the previous tests, there are reported in figure 3.7 the error
graphs obtained. The shape of the error is nearly similar to the ones reported
in figure 3.5, but with these simulations, the error obtained in the final position
is much higher. This is related directly to the fact that the circular trajectory is
obtained as superposition of both an angular and linear speed, and the presence
of the last one causes an higher error in the final positioning. Table 3.3 reports
the error in final position for each test case. As for the previous case, the error
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obtained for our purposes is acceptable, even for the cases where the error is
above 5cm.

𝑣 [𝑚/𝑠] 𝜔 [𝑟𝑎𝑑/𝑠] 𝑥𝑒𝑟𝑟 [𝑚] 𝑦𝑒𝑟𝑟 [𝑚] Euclidean distance between
endpoints[𝑚]

0.1 0.1 0.0317 0.0003 0.0317
0.2 0.1 0.0314 0.0001 0.0314
0.1 0.2 0.0138 0.0003 0.0138
0.2 0.2 0.0604 0.0004 0.0604
0.1 0.3 0.0232 0.0012 0.0233
0.2 0.3 0.0246 0.0012 0.0247

Table 3.3: Error in final position with circular trajectory

(a) 𝑣 = 0.1 [𝑚/𝑠] 𝜔 =

0.1 [𝑟𝑎𝑑/𝑠]
(b) 𝑣 = 0.1 [𝑚/𝑠] 𝜔 =

0.2 [𝑟𝑎𝑑/𝑠]
(c) 𝑣 = 0.1 [𝑚/𝑠] 𝜔 =

0.3 [𝑟𝑎𝑑/𝑠]

(d) 𝑣 = 0.2 [𝑚/𝑠] 𝜔 =

0.1 [𝑟𝑎𝑑/𝑠]
(e) 𝑣 = 0.2 [𝑚/𝑠] 𝜔 =

0.2 [𝑟𝑎𝑑/𝑠]
(f) 𝑣 = 0.2 [𝑚/𝑠] 𝜔 =

0.3 [𝑟𝑎𝑑/𝑠]

Figure 3.7: Error with circular trajectory
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Random trajectory

The last type of tests were performed by applying to the robot a random
combination of both linear and angular velocities to test the odometric position
estimation algorithm performances with different trajectories.

(a) First trajectory (b) Second trajectory

(c) Third trajectory

Figure 3.8: Results with random trajectory

The results obtained, shown in figure 3.8, prove that the odometric position
estimation algorithm is able to estimate correctly the trajectory and the pose of
the robot even with more complex trajectories. However, the case reported in
figure 3.8c presents a problem. As highlighted from the error graphs of figure
3.9, the error in figure 3.9c tends to grow more rapidly with respect to the other
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tested trajectories. This problem is due to the rapid turns that the robot makes
in the trajectory, causing a slight difference between the odometric position
estimation algorithm and ground truth, which integrated over time leads to an
higher error. However, for this case and for the remaining cases, the error we
obtain in final position, reported in table 3.4, is again low and acceptable for our
purposes.

(a) First trajectory (b) Second trajectory

(c) Third trajectory

Figure 3.9: Error with random trajectory
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Trajectory 𝑥𝑒𝑟𝑟[𝑚] 𝑦𝑒𝑟𝑟[𝑚] Euclidean distance between endpoints [𝑚]
1 0.0093 0.0056 0.0111
2 0.0013 0.0049 0.0051
3 0.0193 0.0244 0.0311

Table 3.4: Error in final position with random trajectory

3.3.3 Conclusions

The tests highlighted how the odometric estimation algorithm described in
chapter 3.3.1 works but with some issues. The first and more important issue
is the continuous integration of errors over time, which causes the odometric
position estimation algorithm to diverge from the real robot position. In these
tests the effects are minimal, but over a long period of time this problem could
lead to an incorrect localization of the robot. The second aspect to highlight
is the speed of the robot (both linear and angular). As it increases, we obtain
an error on the odometric position estimation algorithm which grows faster as
speed increases, therefore as solution one idea is to keep the speed low.

However, in the perspective of its usage alongside the NAPVIG algorithm,
the results obtained are satisfying and both the error-grow rate and the error
in the final positioning of the robot are acceptable, while for other applications,
it could be necessary to adopt other position estimations methods, such as the
usage of an IMU or a gyroscope, that working together with the odometric
estimation algorithm could provide a better estimated pose of the robot.
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4
Automatic target-locking

For an autonomous mobile robot, the knowledge of the final position it has
to reach inside and environment is crucial. As possible solution, the target
position could be specified directly by hand. This however would limit the
autonomous capabilities of an autonomous mobile robot, requiring an external
system which specifies the target position every time (for example the position
could be provided by an human operator). To overcome this problem and extend
the autonomous capabilities of a robot, it was decided to develop an algorithm
that, by making use of a camera mounted on a robotic arm installed on an UGV,
is able to detect and track a target during the entire motion process of the robot.

4.1 Robotic Manipulator

A robotic manipulator, or robotic arm, is a type of mechanical arm which
is generally programmable which has similar functions to a human arm. As
already mentioned in section 2.1.1, a robotic arm can be found in an industrial
environment, where it is used to perform repetitive tasks with extreme precision
and high speed. Nonetheless, a robotic arm can be used in other circumstances
or can be installed in autonomous robots.

From the mechanical point of view, a robotic arm is composed by a sequence
of rigid bodies (denoted as links) which are connected one to another by mean of
joints (𝑞𝑖). Each joint guarantees to the manipulator a Degree of Freedom (DoF)
and can be essentially of two types:
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• Revolute: allows relative rotation between two consecutive links (𝑞𝑖 = 𝜗𝑖);

• Prismatic: allows relative translation between two consecutive links (𝑞𝑖 =
𝑑𝑖).

The sequence of links and joints is denominated as kinematic chain. A robotic
arm is installed on a base, which is typically fixed to the world, but in recent
applications it is possible to find robotic arm installed even in mobile agents.
The last link of the robotic arm, denominated as end-effector, usually is equipped
with a specific tool which is used to perform a task (eg. solderer, gripper). As
for the other types of autonomous robots, to ensure the correct functioning, a
robotic arm is not only composed of its mechanical structure but also requires
sensors, actuators as well as controllers to work correctly.

4.1.1 Direct Kinematics

As described in section 4.1, from the geometric point of view a robotic ma-
nipulator can be seen as a sequence of links interconnected by joints. It is of
particular interest to determine the pose of the end-effector (with respect to the
base reference frame ℱ𝑏 (𝑂𝑏 − 𝑥𝑏𝑦𝑏𝑧𝑏) as function of its joint values. This process
is called Direct Kinematics (or also Forward Kinematics).

The pose of a rigid body with respect to a reference frame can be described
using the position vector that connects the origin of the reference frame with
the rigid body and the unit vectors of a frame attached to the body itself. The
frame of the end-effector ℱ𝑒 is typically assigned accordingly to the particular
task geometry, and its pose with respect to the base reference frame ℱ𝑏 , can be
expressed by means of an homogeneous transformation matrix:

T𝑏𝑒 (q) =
[︄
n𝑏𝑒 (q) s𝑏𝑒 (q) a𝑏𝑒 (q) p𝑏𝑒 (q)

0 0 0 1

]︄
(4.1)

Where:

• q ∈ R𝑛×1 is the vector of joint variables;

• n𝑏𝑒 (normal), s𝑏𝑒 (sliding), a𝑏𝑒 (approach) are the unit vectors of the frame ℱ𝑒
attached to the end-effector;
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Figure 4.1: Description of the pose of the end-effector frame

• p𝑏𝑒 is the vector representing the position of the end-effector expressed with
respect to ℱ𝑏 .

To determine the direct kinematics of the robotic arm, it is necessary to
determine a closed form expression for n𝑏𝑒 , s𝑏𝑒 , a𝑏𝑒 and p𝑏𝑒 . This can be done
principally in two ways. The first one resorts to a geometric approach, where
the expressions for n𝑏𝑒 , s𝑏𝑒 , a𝑏𝑒 and p𝑏𝑒 are derived from inspection of the robot
and are based on its geometric characteristics. While this method can be fast
for manipulators with low number of joints, for a robot with high number of
joints this operation can become difficult to solve. In these cases, it is preferable
to adopt a less direct solution which is however systematic and general and
exploits the open-chain structure of the robotic arm.

The typical structure of a robotic manipulator is composed of 𝑛 + 1 links
connected by 𝑛 joints, with Link 0 fixed conventionally to the ground (or a base
of a mobile robot). As mentioned before, each joint provides to the structure
a single DoF and connects two consecutive links. By assigning to each link
a reference frame, it is possible to express the coordinate transformation from
frame ℱ𝑖−1 to frame ℱ𝑖 by means of an homogeneous transformation matrix
A𝑖−1
𝑖
(𝑞𝑖), which is function of a single joint variable. Then, it is possible to

determine recursively the coordinate transformation matrix from frame 0 to
frame 𝑛 (after the appropriate frame assignation from Link 0 to Link 𝑛) using
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Figure 4.2: Coordinate transformation in an open kinematic chain

the consecutive product of each homogeneous transformation matrix between
consecutive frames as:

T0
𝑛(𝑞) = A0

1(𝑞1)A1
2(𝑞2)...A𝑛−1

𝑛 (𝑞𝑛) (4.2)

At last, the homogeneous transformation matrix describing the end-effector pose
with respect to the base reference frame can be expressed as:

T𝑏𝑒 (𝑞) = T𝑏0T0
𝑛(𝑞)T𝑛

𝑒 (4.3)

The assignment of the reference frames to each link can be done arbitrarily or can
be done by resorting to systematic procedures that simplify the entire process
(e.g. the usage of Denavit-Hartenberg [8] convention).

Joint space and operational space

Direct kinematics equations allow to determine and express the end-effector
position and orientation with respect to the base reference frame ℱ𝑏 . While for
the position this operation is quite easy, for the orientation part it could be quite
difficult, since the representation through the triplet n𝑏𝑒 , s𝑏𝑒 , a𝑏𝑒 always requires to
satisfy the rotation matrix constraint 𝑅𝑇𝑅 = 𝐼. Instead of resorting to a rotation
matrix, the orientation of the end-effector can be specified through a minimal
set of angles (for example the Euler angles), describing therefore the pose of the
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end-effector as:

x𝑒 =

[︄
p𝑒
𝝓𝑒

]︄
(4.4)

where p𝑒 accounts for the position and 𝝓𝑒 regards the orientation of the end-
effector. The vector x𝑒 is defined in the space in which the manipulator task is
specified and is typically called operational space, while for a robot the joint space

denotes the space in which the joint variables vector q = [𝑞1 . . . 𝑞𝑛], q ∈ R𝑛 is
defined. By taking into account the dependencies of position and orientation
from the joint variables, equation (4.2) can be rewritten as:

x𝑒 = �(q) (4.5)

where �(q) ∈ R𝑚×1 is a vector of function (typically non linear) that allows the
computation of operational space variables starting from joint variables. Again,
the determination of the functions of �(q) is easy for simple cases, but in general
cases with a six-dimensional operational space (𝑚 = 6) this operation is quite
difficult and requires again the calculation of n𝑒 , s𝑒 , a𝑒 (which then can be
converted to a Euler angle representation.

Robot workspace

Referring to the operational space, the workspace of a robot is defined as the
region described by the origin of the end-effector when all the manipulator joints
execute all possible motions. For a robotic manipulator, it is possible to define
two types of workspaces:

• Reachable workspace: is the region that the origin of the end-effector frame
can reach with at least one orientation;

• Dextereous workspace: is the region that the origin of the end-effector frame
can describe with different orientations.

Kinematic redundancy

A robotic manipulator is said to be kinematically redundant when it has a
number of DoFs which is greater than the number of variables necessary to
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express a task (namely the dimension of the operational space). Relatively to
the spaces expressed above, the redundancy is obtained when the dimension of
the operational space is smaller than the dimension of the joint space (𝑚 < 𝑛).

4.1.2 Inverse Kinematics

Direct kinematics allowed to determine a set of equations that describes the
end-effector pose in terms of joint variables. It is now of interest the solution
of the inverse kinematics problem, which consists in the determination of the
appropriate joint variables given an end-effector pose. The solution of this
problem is fundamental since it allows to transform the motion specifications
assigned to the end-effector in the operational space into the corresponding
joint space motions, allowing therefore the execution of the desired motion of
the robot. Differently from direct kinematics, where the determination of a
solution is straightforward, for inverse kinematics finding a solution is quite
difficult for the following reasons:

• Generally, the equations that have to be solved are non linear and not
always it is possible to determine a closed form solution;

• Multiple solutions may exist;

• Infinite solution may exist (for example with a kinematically redundant
robot);

• No solution may exist (given end-effector position does not belong to the
reachable workspace of the manipulator).

Analytical inverse kinematics

As for direct kinematics, one possible solution to the inverse kinematics
problem can be found by geometric inspection of the robotic manipulator. This
approach provides a set of algebraic equations in closed form which solve the
inverse kinematics problem. On the other hand, the application of this approach
is quite difficult in cases where the manipulator presents a high number of joints
(high number of DoFs), therefore it is usage is preferable in cases where the
number of joints is limited (typically a two or three DoF manipulator).
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Numerical inverse kinematics

Another possible solution to inverse kinematics resorts to the usage of a
numerical method. The final goal is to solve the equation:

x𝑑𝑒 = �(q) (4.6)

where x𝑑𝑒 is the desired position of the end-effector and �(q) are the direct kine-
matics equations of the robotic arm where q ∈ R𝑛 is the vector of n-unknowns.
In this thesis there are presented two solution methods for the inverse kinematics
problem.

Numerical IK - Newton method

The first numerical solution method is the Newton method. This method,
starting from an initial guess of the joint variables q0, generates a sequence of
values for q that hopefully converges to a solution q∗: The solution method starts
by considering the first-order Taylor expansion of (4.6) around q𝑘 , which is the
point reached by the joint variable at the k-th iteration.

x𝑑𝑒 = �(q) ≈ �(q𝑘) + 𝐽𝐴(q𝑘)(q − q𝑘) (4.7)

where 𝐽𝐴 =
𝛿�(q𝑘)
𝛿q is a quantity called Analytical Jacobian. The next iteration value,

namely q𝑘+1, can be obtained solving the equality:

x𝑑𝑒 = �(q𝑘) + 𝐽𝐴(q𝑘)(q𝑘+1 − q𝑘) (4.8)

which leads to:
q𝑘+1 = q𝑘 + 𝐽−1

𝐴 (q
𝑘)(x𝑑𝑒 − �(q𝑘)) (4.9)

While Newton method exhibits quadratic convergence when near to a solution
q∗, it is not always possible to guarantee convergence. The choice of the initial
value q0 plays a lead role in the convergence of the algorithm. Moreover, the
solution via Newton method requires the evaluation of the inverse of the Analyt-
ical Jacobian matrix, which can be computed only if 𝑛 = 𝑚, therefore in presence
of a redundant manipulator the method needs to be modified accordingly.

45



4.1. ROBOTIC MANIPULATOR

Numerical IK - Gradient descent method

The second numerical solution method is the gradient descent method. In-
stead of considering the first-order Taylor expansion, this method considers the
following error function:

𝐻(q) = 1
2 ∥x

𝑑
𝑒 − �(q)∥2 (4.10)

and, as updating rule, it considers the direction of the negative gradient as
searching direction. From:

∇q𝐻(q) = −𝐽𝑇𝐴(q)(x
𝑑
𝑒 − �(q)) (4.11)

the updating rule obtained is:

q𝑘+1 = q𝑘 + 𝛼𝐽𝑇𝐴(q
𝑘)(x𝑑𝑒 − �(q)) (4.12)

where 𝛼 > 0 is the stepsize that should be properly tuned in order to guarantee
the condition 𝐻(q𝑘+1) < 𝐻(q𝑘). The usage of the transpose of the Analytical
Jacobian instead of its inverse makes the gradient descent method computation-
ally simpler with respect to the Newton method. Also, it can perform when the
manipulator is not redundant. On the other side, it could happen that gradient
method gets stuck in a point q ∈ 𝑘𝑒𝑟(𝐽𝑇

𝐴
(q)) where the error 𝑒 = x𝑑𝑒 − �(q) is

different from zero.

4.1.3 Controller

In section 2.1.3 it was given a description of the role of the control system
in a robotic setup, indicating how the control unit is responsible for all planning
and control tasks of the robot. The goal of the control unit is to provide to
the actuators of the robot an appropriate command signal 𝑢(𝑡) accordingly to a
reference signal 𝑟(𝑡), which can be assigned both in terms of end-effector position
x𝑑𝑒 or as joint configuration q𝑑. In the present thesis work there is analyzed and
used a simple feedback control strategy by means of a PID controller, however in
literature there exists also different control strategies:

• Feedforward strategies: the reference signal is computed offline and guar-
antees perfect tracking in the ideal case (namely without uncertainties,
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external disturbances and initial errors);

• Hybrid feedforward-feedback.

In a feedback control system, the input signal to the robot is computed by
taking as input the error signal 𝑒(𝑡) = 𝑟(𝑡) − 𝑦(𝑡), where 𝑦(𝑡) is the state of the
variables at time instant t (typically for a robotic manipulator the joint variables
vector q is considered as state of the plant).

Figure 4.3: Generic scheme of a PID controller

PID controller

PID controller is a control structure employed in feedback control systems.
The mathematical structure of a PID controller is reported in equation (4.13):

𝑢(𝑡) = 𝐾𝑃𝑒(𝑡) + 𝐾𝐼
∫ 𝑡

0
𝑒(𝜏)𝑑𝜏 + 𝐾𝐷

𝑑𝑒(𝑡)
𝑑𝑡

(4.13)

where the three terms 𝐾𝑃 , 𝐾𝐼 and 𝐾𝐷 (called respectively proportional, integral

and derivative gain) are parameters that, with an appropriate tuning, allow an
efficient working of the controller. Each one of the three terms accounts for a
specific action over the control process (in table 4.1 is reported the effect obtained
on different parameters of the system as the control gains increase):

• Proportional gain: depends directly on the error signal 𝑒(𝑡). The increase
of the proportional gain causes the augmentation of the reaction speed of
the entire control loop. However, with too high value, this can produce
oscillations and even make the system unstable;
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• Integral gain: sums error over time. Its main contribution is to eliminate
the steady-state error caused by the proportional gain;

• Derivative gain: causes the system to react strongly to the error and
increases the overall response speed. As drawback, an high derivative
gain makes the system oversensitive to noise and could cause instability
of the overall system.

Parameter Rise time Overshoot Settling time Steady-state error Stability
𝐾𝑃 Decrease Increase Small change Decrease Degrade
𝐾𝐼 Decrease Increase Increase Eliminate Degrade
𝐾𝐷 Minor change Decrease Decrease No effect Small change

Table 4.1: Effects of PID gains on system

4.2 Target-locking algorithm

In this section there is presented the procedure that lead to the development
and implementation of the algorithm that allows the localization and following
of a target during the navigation process of a robot, which will be called from now
on as target-locking algorithm. As mentioned in the introduction of the present
chapter, the aim of this algorithm is to extend the autonomous capabilities of
a mobile robot by making it able to detect on its own the destination it as to
reach inside an environment. The target-locking algorithm has been developed
based on the mechanical structure of the robot that will be used later in the
experiments, nonetheless this does not restrict the field of application of it with
other robots. In the perspective of the navigation of the robot, and in particular
of an usage of it alongside the NAPVIG algorithm presented in chapter 3, the
target-locking algorithm will play a key role in the estimation of the position of
the target as well as its following during the navigation of the robot.

4.2.1 Robot description

The robot that had been used for the development of the target-locking
algorithm is a modified version of the "Locobot_wx200" built by Trossen Robotics

(which will be denoted as Locobot from now on). As can be seen from picture
4.4a, the original robot is constituted of a mobile base (the one highlighted in
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red) which can be modeled as a DDR, and a robotic arm, mounted on the top of
the mobile base with a gripper as end-effector. For the purposes of this thesis,
the original robot has been modified in the following parts (for reference in
figure 4.4b are reported the changes made):

• removal of the camera and LiDAR tower (highlighted in magenta);

• positioning of the LiDAR on top of the mobile base (highlighted in green);

• substitution of the arm’s end-effector with the camera (highlighted in blue).

(a) Original Locobot (b) Modified Locobot

Figure 4.4: Modifications made in Locobot

The interest of the target-locking algorithm focuses on the robotic arm of the
Locobot, which is a 5 DoF arm with all revolute joints. The scheme reported in
figure 4.5 shows a simple logical scheme of the arm, where the revolute joints
are indicated as cylinders. There are also reported the reference frames assigned
to all the joints of the arm as well as the reference frame assigned to the camera
ℱ𝑐 , where the red axis accounts for the x-axis, the green one for the y-axis and
the blue one for the z-axis of each frame1.

1Each frame, except for the camera one, rotates together with the link moved by the joint
2The scheme is only representative of the joints and frames of the robotic arm, it does not

take into account the original proportions and dimensions of the arm
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Figure 4.5: Locobot’s arm structure2

At last, to use the same notation adopted in section 4.1.1 for the vector of joint
variables q ∈ R𝑛 , 𝑛 = 5, there is reported in table 4.2 the appropriate conversion
from the name of each joint to the corresponding joint variable.

Joint name Joint variable Associated reference frame
shoulder_joint 𝑞1 ℱ1

upper_arm_joint 𝑞2 ℱ2
forearm_joint 𝑞3 ℱ3

wrist_angle_joint 𝑞4 ℱ4
wrist_rotate_joint 𝑞5 ℱ5

Table 4.2: Joint names, variables and frames

4.2.2 AprilTag

To work correctly, the target-locking algorithm requires an object that acts as
a target for the entire system. For this thesis, it was decided to use an AprilTag
as target. AprilTag is a visual fiducial system which is widely used in robotics
applications and others, such as augmented reality or camera calibration. Tar-
gets can be created with an ordinary printer and using the AprilTag detection
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software it is possible to determine the 3D pose of the tag with respect to the
camera used for the detection [25]. The choice of AprilTag as target was made
for the following reasons:

• since the entire algorithm will be used in the ROS environment, the usage
of AprilTag was convenient since it is possible to use the ROS wrapper of
the AprilTag detection system to easily obtain the estimate the pose of the
tag directly from the camera of the robot;

• the estimation of the tag is fast and it does not affect the speed of the robot.

(a) Tag36h11 (b) TagStandard41h12

Figure 4.6: Examples of AprilTag. The tag format in figure 4.6a will be used as
target

4.2.3 Algorithm concept

The target-locking algorithm makes use of the modified robotic arm mounted
on the the top of the Locobot’s mobile base to obtain the "lock" effect on the target
during the navigation of the robot. The main idea behind the algorithm is to
maintain, when possible, the origin of the target reference frameℱ𝑡 , (𝑂𝑡−𝑥𝑡𝑦𝑡𝑧𝑡)
centered inside the Field of View (FoV) of the camera mounted on the robotic
arm, by positioning it accordingly in the cases where:

1. the robot is moving and the target is fixed in the world;

2. both the robot and the target are moving in the environment.
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(a) Front view of the target’s reference
frame

(b) Lateral view of the target’s refer-
ence frame

Figure 4.7: Representation of the target’s reference frame

From a geometrical point of view, the condition of being centered can be
interpreted as the x-axis of the camera reference frameℱ𝑐 , (𝑂𝑐−𝑥𝑐𝑦𝑐𝑧𝑐)3pointing
directly towards the origin of the target reference frame ℱ𝑡 .

As said in section 4.2.1, the robotic arm is composed of 6 links interconnected
by means of 5 revolute joints which gives to the arm 𝑛 = 5 DoFs. For the target-
locking algorithm the interest lies only in the correct positioning of the camera,
while for the orientation the interest is only in the pitch of the camera. In this
sense, the operational space reduces down to m=4 dimensions, with the Locobot’s
arm being redundant for the scopes of the algorithm (𝑚 < 𝑛, 𝑚 = 4, 𝑛 = 5). The
correct pose has to assume to follow the target depends on the values assumed by
the joints of the arm, therefore it is necessary to evaluate the inverse kinematics
of the robotic arm, which will be examined in depth in the next section. At last,
it is necessary to put down some working assumptions that will simplify the
determination of the inverse kinematics and the final algorithm:

1. the fifth joint of the robotic arm, namely the wrist_rotate_joint, is always
keep fixed to the position 𝑞5 = 0 since the rotation of this joint is meaning-
less for the purposes of the algorithm;

3This frame corresponds to the end-effector frame and is not to be intended as the frame of
the optics of the camera. However, these frames shares the same origin and differs only in the
orientation, therefore the choice of one of them is irrelevant for the algorithm
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2. the camera is always maintained parallel to the ground;

3. the distance of the target from the camera is ignored in the target-locking
algorithm;

4. the orientation of the target is irrelevant, however it is reasonable to keep
it positioned in such a way it is recognizable from the camera.

4.2.4 Inverse kinematics of the Locobot’s robotic arm

In this section there is be presented the procedure that lead to the determina-
tion of the inverse kinematics of the Locobot’s arm. Given the simple mechanical
structure of the arm, it was decided to proceed using an analytical approach
instead of a numerical one. In this way, other than the advantages reported
in section 4.1.2 about using an analytical approach, it had been possible to ap-
ply some simplifications in the determination process by using the assumption
made in the previous section as well as the correct exploitation of the structure
of the arm.

The first simplification is done taking into account the first working assump-
tion made in section 4.2.3. By keeping the wrist_rotate_joint fixed, it is possible
to consider the link between the fourth and fifth joint and the link between the
fifth joint and the camera as an unique link, other than reducing the overall
arm’s structure to a 4 DoF arm. The second and most important simplification is
done considering the movement of the target with respect to the position of the
camera and the relative movements that the robotic arm has to do in order to fol-
low it. Without loss of generality, the determination of the inverse kinematics is
done considering the special motion case where the robot is fixed and the target
can move freely in the world. This however is not restrictive for the motion cases
indicated in section 4.2.3, since the inverse kinematics determined will be appli-
cable for all the motion cases. Also, in the analysis there is only considered the
translation of the target along the axis of its origin frame, neglecting completely
the orientation it can assume. In this perspective, the target can move:

• along its x-axis: in this case the robotic arm, needs to rotate to follow the
target (the movement is reported in figure 4.8);
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• along its y-axis: this movement requires a variation of the height of the
position of the camera to keep the lock on the target (the movement is
reported in figure 4.9).

Figure 4.8: Rotation of the arm

Figure 4.9: Height variation of camera
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This division of the movements accomplished by the robotic arm, united
with its mechanical structure, allows the simplification of the determination of
its inverse kinematics by assigning each movement to specific portions of the
arm. In particular:

• the variation of the height of the camera can be obtained by the combined
movement of the upper_arm, the forearm and the wrist_angle joints. In
this way the inverse kinematics of this block can be determined as the
inverse kinematics of a generic 3R planar arm (height-variation movement);

• the rotation of the camera instead can be dealt with an appropriate rotation
of the shoulder_joint of the Locobot’s arm (rotation movement).

Since the rotation of the arm consist simply in the rotation of the shoul-
der_joint, the determination of the inverse kinematics concentrates only on the
3R planar arm constituted by the upper_arm, forearm and wrist_angle joints.
The inverse kinematics of this portion of the arm is determined starting from a
generic 3R planar arm, shown in figure 4.10, and then, the formulas obtained
are changed suitably for the Locobot’s arm case.

Figure 4.10: Generic 3R planar arm

Direct kinematics of the generic 3R planar arm

The determination of the inverse kinematics of the generic 3R planar arm
starts from the evaluation of its direct kinematics. The arm end-effector’s posi-

55



4.2. TARGET-LOCKING ALGORITHM

tion is expressed through the triplet P𝑒 = [𝑥𝑒 , 𝑦𝑒 , 𝜗], where [𝑥𝑒 , 𝑦𝑒] represents the
position of the end-effector and 𝜗 accounts for the orientation of the end-effector
relatively to the x-axis of the base frame. The joint positions of the robotic arm
can be determined as:

P1 =

[︄
0
0

]︄
, P2 =

[︄
𝐿1 cos (�1)
𝐿1 sin (�1)

]︄
(4.14)

P3 =

[︄
𝐿1 cos (�1) + 𝐿2 cos (�1 + �2)
𝐿1 sin (�1) + 𝐿2 sin (�1 + �2)

]︄
(4.15)

where 𝐿1, 𝐿2 are the length of the first and second link of the arm respectively and
�1, �2 are the joint variables for the first and second joint. The direct kinematics
of the 3R planar arm then are determined as sum of the joint positions, obtaining:

P𝑒 =

⎡⎢⎢⎢⎢⎢⎣
𝑥𝑒

𝑦𝑒

𝜗

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
𝐿1 cos (�1) + 𝐿2 cos (�1 + �2) + 𝐿3 cos (�1 + �2 + �3)
𝐿1 sin (�1) + 𝐿2 sin (�1 + �2) + 𝐿3 sin (�1 + �2 + �3)

�1 + �2 + �3

⎤⎥⎥⎥⎥⎥⎦ (4.16)

where 𝐿3 is the length of the last link of the robotic arm and �3 is the third joint
variable.

Inverse kinematics of the generic 3R planar arm

As mentioned in the introduction of the section, the determination of the
inverse kinematics of the arm is done following an analytical approach instead
of a numerical one. Considering again the generic 3R planar arm, the solution
to the problem starts from the determination of the position of the last joint of
the general 3R planar arm 𝑃3, which is obtained as:

P3 =

[︄
𝑥𝑒 − 𝐿3 cos (𝜗)
𝑦𝑒 − 𝐿3 sin (𝜗)

]︄
(4.17)

P3 can also be obtained from equation (4.14), while the joint angles �1 and �2

can be obtained from the solution of the inverse kinematics of a 2R planar arm
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with P3 as end-effector. The angles 𝛼 and 𝛽 in figure 4.11 are determined as:

𝛼 = arccos

(︄
𝑥2

3 + 𝑦2
3 − 𝐿2

1 − 𝐿2
2

2𝐿1𝐿2

)︄
(4.18)

𝛽 = arcsin
⎛⎜⎜⎝
𝐿2 sin 𝛼√︂
𝑥2

3 + 𝑦2
3

⎞⎟⎟⎠ (4.19)

For a 2R planar arm there are two set of possible solutions. Considering the
second joint of the arm as the elbow joint, the solutions found are found in
the elbow-up or elbow-down configuration. The triplet of joint angles � =

[�1, �2, �3]𝑇 then can be found as:

�𝑎1 = arctan
𝑦3

𝑥3
− 𝛽; �𝑏1 = arctan

𝑦3

𝑥3
+ 𝛽 (4.20)

�𝑎2 = 𝜋 − 𝛼; �𝑏2 = −(𝜋 − 𝛼) (4.21)

�𝑎3 = 𝜗 − �𝑎1 − �𝑎2 ; �𝑏3 = 𝜗 − �𝑏1 − �𝑏2 (4.22)

where (a) represents the elbow-down condition while (b) is the elbow-up con-
dition.

Figure 4.11: Generic 2R planar arm
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Inverse kinematics for the Locobot’s 3R planar arm

The equations determined previously for the inverse kinematics of the generic
3R planar arm needs to be adjusted properly for the 3R planar arm section of
the Locobot’s arm. This has to be done for two main reasons:

1. the model of the Locobot’s arm is slightly different with respect to the
generic 3R planar arm (in particular the difference lies between the fore-
arm_joint of the Locobot’s arm and the joint P2 of the generic 3R planar
arm)

2. in the definition of the inverse kinematics of the generic 3R planar arm
there were omitted the range of the joints as well as their zero position.
For the Locobot’s arm these parameters are taken into account to define the
correct inverse kinematics equations.

Figure 4.12: Representation of the joint limits of the 3R planar arm section of the
Locobot’s arm

In this perspective, in figure 4.12 is reported a lateral view of the Locobot with
the joint limits for the joints4A2,A3,A4 (the fifth joint is not reported since, given
that is always fixed, is useless in the evaluation of the inverse kinematics) as well
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as their position expressed with respect to a fixed reference frame coincident
with the reference frame of the second joint ℱ2 5.

Joint name Joint variable Joint range
upper_arm_joint 𝑞2 [−90◦, 90◦]

forearm_joint 𝑞3 [−90◦, 90◦]
wrist_angle_joint 𝑞4 [−90◦, 90◦]

Table 4.3: Joint variables and limits

Before defining the appropriate inverse kinematics equations of the 3R planar
arm section of the Locobot’s arm, it is necessary to redefine some quantities of
interest that will be used in the equations. For the generic 3R planar arm, the
definition of its inverse kinematics started from the position of its last joint P3.
The same reasoning can be applied for the Locobot’s arm, where the last joint is
identified in the wrist_angle_joint A4(𝑥4, 𝑧4). With this, it is possible to redefine
the angles 𝛼 and 𝛽 of equations (4.18) and (4.19) as:

𝛼 = arccos

(︄
𝑥2

4 + 𝑧2
4 − 𝑅2

2 − 𝑅2
3

2𝑅2𝑅3

)︄
(4.23)

𝛽 = arcsin
⎛⎜⎜⎝
𝑅3 sin 𝛼√︂
𝑥2

4 + 𝑧2
4

⎞⎟⎟⎠ (4.24)

where the lengths of the links of the generic 3R planar arm have been changed
appropriately with the lengths of the Locobot’s arm (the changes made are re-
ported in table 4.4).

Values in generic 3R arm Values for Locobot’s arm
𝐿1 𝑅2
𝐿2 𝑅3
𝐿3 𝑅4

Table 4.4: Parameter conversion for inverse kinematics equations

It is also necessary to redefine equation (4.17) suitably for the Locobot’s arm,

4They are not the precise joint limits but for the target-locking algorithm it was decided to
set them with the values in table 4.3

5The pose of the reference frame ℱ2 is shown in figure4.5
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where the end-effector pose is represented by the camera pose A𝑐(𝑥𝑐 , 𝑧𝑐 , 𝜗), as:

A4 =

[︄
𝑥4

𝑧4

]︄
=

[︄
𝑥𝑐 − 𝑅4 cos(𝜗)
𝑧𝑐 − 𝑅4 sin(𝜗)

]︄
(4.25)

With all the necessary quantities redefined, it is finally possible to give the inverse
kinematics equations of the 3R planar arm section of the Locobot’s arm. For the
target-locking algorithm it was decided to use the elbow-up configuration of the
robotic arm, and, by taking into account also the joint limits of table 4.3, the final
equations of the inverse kinematics of the arm become:

𝑞2 = arctan 𝑧4
𝑥4
− 𝛽 − 𝜋/2 − 𝜋/13 (4.26)

𝑞3 = −(𝜋/2 − 𝛼) + 𝜋/13 (4.27)

𝑞4 = 𝜗 − 𝑞2 − 𝑞3 (4.28)

where the joint variables of the standard 3R planar arm have been substituted
as:

�1 = 𝑞2, �2 = 𝑞3, �3 = 𝑞4 (4.29)

and 𝜋/13 accounts for a correction factor used to solve the problem of the
different arm model.

4.2.5 Algorithm description

In the previous sections there have been given all the tools necessary to
define the target-locking algorithm. The last remaining passage to do in order
to obtain the final algorithm is to put in relation the estimated position of the
target obtained by the camera with the movements the arm needs to do to follow
it. The position of the target is obtained through the camera mounted on the arm.
Recalling that the target is represented by an AprilTag, it is possible to use the
AprilTag detection algorithm to get an estimate of the pose of the target, which is
expressed with respect to the camera frame ℱ𝑐 . For the target-locking algorithm,
the position of the target needs to be expressed into the reference frame of the
shoulder_joint ℱ1 and is denoted as P𝑡𝑎𝑟𝑔𝑒𝑡 = [𝑥𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑦𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑧𝑡𝑎𝑟𝑔𝑒𝑡]𝑇 .

Starting from the rotation movement of the arm, the relation with the position
of the target P𝑡𝑎𝑟𝑔𝑒𝑡 can be found by taking a look at the geometric relation
between the target and the origin of the frame ℱ1 reported in figure 4.13.
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Figure 4.13: Top view of the target-following problem

Considering the vector that connects the origin of the shoulder_frame to
the target, it describes an angle (𝜓) between itself and the x-axis of the shoul-
der_frame and (therefore with the x-axis of the camera), which can be evaluated
as:

𝜓 = arctan(𝑦𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑥𝑡𝑎𝑟𝑔𝑒𝑡) (4.30)

To align the camera to the target it is sufficient to sum the angle 𝜓 to the actual
joint value 𝑞1 of the shoulder_joint, leading to the new joint value 𝑞′1 = 𝑞1 + 𝜓.

On the other hand, the solution to the height-variation movement of the arm
is obtained using the inverse kinematics for the 3R planar arm portion of the
Locobot’s arm determined in the previous section.

To apply correctly the inverse kinematics equations of the 3R planar arm
section it is necessary to define the values of the pose of the camera A𝑐 =

[𝑥𝑐 , 𝑧𝑐 , 𝜗] accordingly to the position of the target P𝑡𝑎𝑟𝑔𝑒𝑡 , so that the "lock"
effect is obtained. The angle 𝜗 is simply put to zero using the second working
assumption presented in section 4.2.3. Instead, for the position of the camera,
the coordinate 𝑧𝑐 is put equal to the coordinate 𝑧𝑡𝑎𝑟𝑔𝑒𝑡 of the target position
minus an offset given by the length of the first link (𝑅1) of the arm, while for
the coordinate 𝑥𝑐 the choice is done so that the coordinate 𝑥4 of the last joint of
the arm A4(𝑥4, 𝑧4) is equal to zero. Taking into account equation (4.17) and the
assumptions made beforehand, the position of the fourth joint of the Locobot’s

61



4.2. TARGET-LOCKING ALGORITHM

arm is expressed as:

A4 =

[︄
𝑥𝑐 − 𝑅4

𝑧𝑐

]︄
=

[︄
𝑥𝑐 − 𝑅4 cos(𝜗)
𝑧𝑐 − 𝑅4 sin(𝜗)

]︄
=

[︄
𝑥𝑐 − 𝑅4

𝑧𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑅1

]︄
=

[︄
0

𝑧𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑅1

]︄
(4.31)

In this way, making use of the inverse kinematics equations defined in (4.23)
and (4.26), it is possible to determine the joint values of the Locobot’s arm. The
iterative repetition of the procedure described in this section allows the arm to
follow correctly the target over time, as will be proven with the results shown in
chapter 5.

Algorithm 1 Target-locking algorithm
Input: joint states, target position
Output: joint reference
while true do
𝑞 = [𝑞1, 𝑞2, 𝑞3, 𝑞4] ←joint states
𝑝 = [𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧] ←target position
{inverse kinematics for rotation}
𝑞′1← 𝑞1 + sin(𝑝𝑦 , 𝑝𝑥)
{inverse kinematics for height-variation}
𝑞′2← arctan 𝑝𝑧

𝑝𝑥
− 𝛽 − 𝜋/2 − 𝜋/13

𝑞′3← −(𝜋/2 − 𝛼) + 𝜋/13
𝑞′4← 𝜗 − 𝑞2 − 𝑞3
[𝑞′1, 𝑞′2, 𝑞′3, 𝑞′4] → joint reference

end while

Boundaries

Before proceeding with the tests it is necessary to put down some limitations
to the movements of the arm. This has to be done first of all to ensure the correct
functioning of the algorithm in all the possible situations, but also it is necessary
to avoid collisions between the arm and the rest of the robot. Considering again
the movements decomposition of the arm, for the rotation of the arm, inside
the simulated environment there are no limits on this movement, while for the
real-world setup it is necessary to put down some restraints. These are dis-
cussed together with other mechanisms adopted for the real-world experiments
in appendix A. For what concerns the height variation of the arm instead, the
limits are put considering the position of the fourth joint A4 and in particular
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only in its z coordinate since, as reported in equation (4.31), the x coordinate has
been put equal to zero. In particular, there are identified two possible scenarios:

• Fully-lowered arm: the lower height limit of the arm (𝑧𝑑𝑜𝑤𝑛 = 0.2𝑐𝑚) has
been chosen so that the camera never collides with Locobot’s base and in
particular with the LiDAR;

• Fully-extended arm: on the other hand, the higher limit (𝑧𝑡𝑜𝑝 = 0.4𝑐𝑚)
has been chosen so that the height reached by the fourth joint of the arm
is always below the sum of the lengths of the links 𝑅2 and 𝑅3.

Hypothesis relaxation

With this setup of the algorithm, where the camera is maintained always par-
allel to the ground, the perfect follow of the target cannot be always guaranteed,
especially in the case where the arm is fully extended and the target is far above
the sight line of the camera. Given that the arm is at it maximum extension pos-
sible, the solution to this problem can only be found modifying the orientation
of the camera without maintaining it parallel to the ground, relaxing therefore
the second working assumption made in section 4.2.3. In this perspective and
with the arm in the fully-extended configuration, the orientation of the camera
depends directly on the position of the fourth joint of the arm 𝑞4, therefore with
the appropriate modifications at the inverse kinematics equation of this joint it
is possible to align again the camera with the target.

The solution of the problem can be found applying the same reasoning made
for the rotation movement of the arm. In this case, the interest is in the position
of the target with respect to the frame of the fourth joint ℱ4, which, given the
fully-extended arm setup, is simply found starting from the position of the target
in the reference frame of the first joint ℱ1 as:

𝑃′𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑃𝑡𝑎𝑟𝑔𝑒𝑡 + [0, 0, 𝑧𝑡𝑜𝑝] = [𝑥𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑦𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑧𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑧𝑡𝑜𝑝] (4.32)

Considering the vector that connects the origin of the reference frameℱ4 with
the target position, the interest lies in the angle 𝜑 formed by this vector and the
x-axis of the fourth joint’s reference frame, which can simply be determined as:

𝜑 = atan2(𝑧𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑧𝑡𝑜𝑝 , 𝑥𝑡𝑎𝑟𝑔𝑒𝑡) (4.33)
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Figure 4.14: Representation of the 𝜑 angle

and therefore, the inverse kinematics equation of the fourth joint reported in
(4.26) can be modified taking into account the angle 𝜑 as:

𝑞4 = 𝜗 − 𝑞2 − 𝑞3 − 𝜑 (4.34)
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5
Results

In this chapter there are presented and discussed the results obtained from
a campaign of simulations and real-world experiments done to validate the
functioning of the target-locking algorithm presented in chapter 4. The major
part of the tests is done with the base of the robot in motion, where the navigation
is obtained using the NAPVIG algorithm presented in chapter 3.

5.1 Simulative validation

In the first section of this chapter there are presented and discussed the results
obtained in a simulated environment provided by Gazebo robot simulator. The
implementation of the target-locking algorithm is done in Python and works
inside a ROS environment in order to meet real time constraints. Also, this choice
has been done so that the target-locking algorithm can work finely alongside the
NAPVIG algorithm.

Parameter Value
Resolution 640*480

Minimum detection distance 28[𝑐𝑚]
Horizontal angular Field of View 70 deg

Vertical angular Field of View 43 deg
Frame rate 30 fps

Table 5.1: Simulated camera settings

The target that has been used in the simulations is represented by an AprilTag
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of size 10[𝑐𝑚] × 10[𝑐𝑚]. The robot that will be used is the modified Locobot

presented in section 4.2.1. For what concerns the camera, it has been simulated
using a Gazebo plugin that allows the simulation of the camera with user-
definable settings. For the purposes of the target-lock algorithm and to meet
the parameters of the camera that will be used in the real world experiments,
it was decided to set the camera using the parameters reported in table 5.1. At
last, considering the robotic arm, the gains of the controllers driving each motor
of it have been tuned using a trial and error approach.The values obtained for
the tuning of the controller gains are reported in table 5.21.

Joint Proportional gain Integrative gain Derivative gain
shoulder_joint 60.0 25.0 3.5

upper_arm_joint 300.0 70.0 1.7
forearm_joint 270.0 65.5 1.5

wrist_angle_joint 250.0 50.0 1.2

Table 5.2: Simulated gains of the PID controllers of the robotic arm

5.1.1 Scenario #1: Free space

For the first simulation scenario the robot is required to reach the target in
a completely free space (for reference consider the snapshot of the experiment
reported in figure 5.1). Considering the global reference frame of the simulation,
the robot starting position is placed at x𝑖 = [−0.5, 0.5], while the target, which
is fixed in the environment, is placed at x 𝑓 = [3.0, 0], with an height of 0.5[𝑚]
from the ground. The target has been placed in such a way it is recognizable
from the camera of the robot directly from the start of the simulation. To avoid
the collision of the robot (and in particular of the camera) with the target, it was
decided to apply an offset to the x coordinate of the target of 𝑥𝑜 𝑓 𝑓 𝑠𝑒𝑡 = 0.4[𝑚] so
that the robot stops its motion before an eventual collision. Moreover, this slight
modification of the target position was necessary since in this way the minimum
detection distance of the camera is respected.

The evaluation of the performances of the target-locking algorithm is done
using the graphs reported in figure 5.4, where there is reported the Cartesian
decomposition of the position of the target 𝑃𝑡𝑎𝑟𝑔𝑒𝑡,𝑐 = [𝑥𝑡𝑎𝑟𝑔𝑒𝑡,𝑐 , 𝑦𝑡𝑎𝑟𝑔𝑒𝑡,𝑐 , 𝑧𝑡𝑎𝑟𝑔𝑒𝑡,𝑐]

1The gains of the fifth joint are not reported since this joint is always locked
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Figure 5.1: Gazebo rendering of scenario #1

Figure 5.2: Representation of the path travelled by the robot in simulation
scenario #1

expressed with respect to the camera frame ℱ𝑐 , (𝑂𝑐 − 𝑥𝑐𝑦𝑐𝑧𝑐). Considering the
graphs in figures 5.4b and 5.4c, it is possible to notice that the position of the
target along that axis have been put in comparison with the corresponding linear
FoV, and in particular:

• the graph in figure 5.4b accounts for the position of the target along the
y-axis of the camera reference frame ℱ𝑐 , and it has been put in comparison
with the horizontal linear FoV of the camera. Recalling the movement
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Figure 5.3: Scheme representing the linear FoV of the camera

decomposition of the robotic arm presented in section 4.2.4, the positioning
along this axis is obtained through the rotation movement of the arm;

• the graph in figure 5.4c instead accounts for the position of the target along
the z-axis of the camera reference frame ℱ𝑐 , which is obtained through the
height variation movement of the arm. The position along the z-axis has
been put in comparison with the vertical linear FoV of the camera.

Both horizontal and vertical linear FoVs are obtained considering the position
of the target along the x-axis of the camera, which is reported in figure 5.4a. This
coordinate lies on the optical axis of the camera, and by putting it into relation
with the angular FoV of the camera, it is possible to determine the corresponding
linear FoV at that coordinate (for reference take a look at the scheme in figure
5.3).

As can be noticed, in both cases the position of the target is centered inside
the linear FoV of the camera, which indicates that the target-locking algorithm
is working properly. To better understand what happens to the position of the
target along the y and z-axis and to see the action of the target-locking algorithm,
there is reported in figures 5.5a and 5.5b a zoom out of the graphs in figures 5.4b
and 5.4c.

Considering the position of the target along the y-axis of the camera frame,
reported in figure 5.5a, it can be noticed the presence of some spikes in the graph.
These can be justified by taking a look at the path followed by the mobile base
of the robot during the navigation, reported in figure 5.2, as well as the graph
of the joint state of the first joint of the robotic arm presented in figure 5.6a.
During the navigation, the robot does not follow a perfect linear trajectory but
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(a) Target position along x-axis of frame ℱ𝑐

(b) Target position along y-axis of frame ℱ𝑐 inside horizontal linear FoV of the camera

(c) Target position along z-axis of frame ℱ𝑐 inside vertical linear FoV of the camera

Figure 5.4: Position of the target expressed in the camera frame ℱ𝑐 for simulation
scenario #1
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steers in order to reach the target. This steering maneuver causes the slippage
of the target from the center of the horizontal linear FoV of the camera. To solve
this issue, the shoulder joint of the arm rotates properly following the reference
signal provided by the target-locking algorithm, restoring the perfect alignment
of the target inside the horizontal linear FoV of the camera.

On the other hand, the height variation movement of the arm maintains the
arm fixed during most of the simulation. The only movement performed is near
to the end of the simulation, where the perspective of the target with respect
to the camera changes. The presence here of little spikes has to be imputed
to an imperfection of the simulated model of the robot, which causes some
oscillations of the mobile base during the movement and therefore makes its

(a) Target position along y-axis of frame ℱ𝑐

(b) Target position along z-axis of frame ℱ𝑐

Figure 5.5: Zoom out of the position of the target expressed in the camera frame
ℱ𝑐 for for simulation scenario #1
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robotic arm oscillate too. Considering instead the offset of the position of the
target with the center of the vertical linear FoV of the camera, it can be justified
considering the graphs reporting the joint states of the 3R planar arm portion
of the robotic arm, with particular attention to the ones in figures 5.6c and 5.6d.
From what can be noticed, the third and fourth joint of the arm do not follow
perfectly the reference signal provided by the target locking algorithm with the
presence of a little steady-state error which persists over time. This causes a
misplacement of the arm and therefore of the camera, which produces the error
of the target position along the z-axis. The solution to this problem could be
found by enhancing the action of the PID controllers of these joints (in particular
acting on the integral gain of the controller), however it was decided to leave
the gains at the values reported in table 5.2 since with higher gains the arm
started to move in an uncontrolled manner, symptom of an unstable controller.
Moreover, this misplacement of the camera happens at high distances from the
target while at closer distance the arm tends to align perfectly.
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(a) Shoulder joint (𝑞1)

(b) Upper_arm joint (𝑞2)

(c) Forearm joint (𝑞3)

(d) Wrist_angle joint (𝑞4)

Figure 5.6: Detail of reference signals and joint states for simulation scenario #1
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Figure 5.7: Gazebo rendering of scenario #2

5.1.2 Scenario #2: Cluttered environment

In the second simulation scenario, the idea is to put the robot in a more
complicated environment, presented in figure 5.7, constituted by a closed box
filled with columns of radius 0.2[𝑚] and height 0.3[𝑚]. With respect to the
global reference of the simulated environment, the target is placed at the final
position x 𝑓 = [1.6,−0.16]𝑇 with an height from the ground of 0.5[𝑚], so that
the columns do not obstruct the sight line with the target. As happened in
the first simulation scenario, the target is always visible from the camera of the
robot. Also, it has been considered again the offset 𝑥𝑜 𝑓 𝑓 𝑠𝑒𝑡 = 0.4[𝑚] to avoid
the collision of the camera with the target. On the other hand, the robot in this
scenario starts from the position x𝑖 = [−2,−1]𝑇 expressed with respect to the
global reference frame of the simulation.

The evaluation of the performances of the target-locking algorithm is done
using the same approach adopted for the first simulation scenario and takes into
account the Cartesian decomposition of the position of the target expressed in
the camera reference frame ℱ𝑐 . Starting from the graphs presented in figures
5.10b and 5.10c, it can be noticed that the position of the target along both y and
z-axis is always inside of the horizontal and vertical linear FoVs of the camera
respectively, with a nearly perfect alignment inside of them. As in 5.1.1, the linear
FoV in both direction has been obtained starting from the position of the target
along the x-axis of the camera frame, whose evolution is reported in figure 5.10a.
In this case however, differently from the first simulation scenario, the position
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Figure 5.8: Representation of the path travelled by the robot in simulation
scenario #2

of the target, and in particular the one along the y-axis of the camera reference
frame, presents more perturbations in its evolution. This can be appreciated by
taking a look at the zoom out of the position of the target along the y and z-axis
of the camera reference frame presented in figures 5.9a and 5.9b.

During the navigation of the robot, as shown in figure 5.8, it can be noticed
how the mobile base needs to turn multiple times in order to avoid the obstacles
and reach the target. With the same considerations made in the first simulation,
during the rotation of the mobile base of the Locobot, the target starts slipping
from the center of the horizontal linear FoV of the camera. The action of the
target-locking algorithm corrects this misalignment, bringing again the target
inside the center of the horizontal linear FoV of the camera. As proof of this, in
the graph reported in figure 5.11a it is possible to notice how the shoulder joint
rotates properly following the reference signal provided by the target-locking
algorithm.
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Instead, as in the first simulation, the height of the target is fixed, therefore
the height-variation movement is done only in relation to a perspective change
of the target with respect to the camera. The target-locking algorithm works
correctly when keeping the arm fixed and when dealing with the perspective
change during the motion. As in the first scenario, at the start of the simulation
the alignment of the target with the camera is not perfect. This is caused again by
the presence of a little steady-state error between the reference signal provided
to each joint and the actual joint states (for reference take a look at the graphs
reported in figure 5.11 and in particular the ones for the third and fourth joint in
figures 5.11c and 5.11d), but, as for the first simulation scenario, it was decided to
leave unaffected the gains of each controller to avoid uncontrolled movements
of the arm, considering the results obtained acceptable for the target-locking
algorithm purpose.

(a) Target position along y-axis of frame ℱ𝑐

(b) Target position along z-axis of frame ℱ𝑐

Figure 5.9: Zoom out of the position of the target expressed in the camera frame
ℱ𝑐 for simulation scenario #2
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(a) Target position along x-axis of frame ℱ𝑐

(b) Target position along y-axis of frame ℱ𝑐 inside horizontal linear FoV of the camera

(c) Target position along z-axis of frame ℱ𝑐 inside vertical linear FoV of the camera

Figure 5.10: Position of the target expressed in the camera frameℱ𝑐 for simulation
scenario #2
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(a) Shoulder joint (𝑞1)

(b) Upper_arm joint (𝑞2)

(c) Forearm joint (𝑞3)

(d) Wrist_angle joint (𝑞4)

Figure 5.11: Detail of reference signals and joint states for simulation scenario
#2
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5.1.3 Conclusions

In this section there were presented the results obtained in a simulated envi-
ronment to test the target-locking algorithm. These results are quite satisfactory
and prove that the algorithm works correctly maintaining when possible the tar-
get centered inside both horizontal and vertical linear FoV of the camera. With
these tests it was only possible to evaluate the performances of the algorithm
in relation to a restrict number of motion cases, in particular when considering
the height-variation movement of the arm. Instead, the rotation movement of
the arm was tested properly and the results obtained prove the efficiency of the
target-locking algorithm.

5.2 Experimental validation

The results obtained in the simulations are quite satisfactory and constitute a
starting point for the real-world experiments. However, as mentioned in section
5.1.3, in the simulated environment it was only possible to perform only a part
of the motion cases introduced in section 4.2.3, while in a real-world scenario as
will be shown it was possible to perform experiments that included all of these
motion cases.

In the simulated experiments, the implementation of the algorithm was quite
straight-forward and did not required any precaution or special gimmick in
order for it to work properly. The same thing cannot be said for the real-world
experiments, where it was necessary to adopt some measures in order for the
target-locking algorithm to work properly avoiding any damaging situation to
the robot structure. All the measures adopted are presented in the appendix A.

As in the simulations, for the navigation inside the environment it was de-
cided to use the NAPVIG algorithm of chapter 3, while the target is again

Parameter Value
Resolution 640*480

Minimum detection distance 28[𝑐𝑚]
Horizontal angular Field of View 70 deg

Vertical angular Field of View 43 deg
Frame rate 60 fps

Table 5.3: Real-world camera settings
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Joint Proportional gain Integrative gain Derivative gain
shoulder_joint 700.0 55.0 0.0

upper_arm_joint 400.0 55.0 5.0
forearm_joint 550.5 55.5 3.0

wrist_angle_joint 459.0 70.0 3.0

Table 5.4: Gains of the PID controllers of the robotic arm used during the
experiments

represented by an AprilTag of size 10[𝑐𝑚] × 10[𝑐𝑚]. The camera that has been
used in the experiments mounted as end-effector of the Locobot’s robotic arm is
an Intel®RealSenseTM D435, whose main working characteristics are reported
in table 5.3. Moreover, it was decided to reduce at the minimum possible the
exposure of the camera in order to increase the performance of the target-locking
algorithm while maintaining the target visible from the target.

Instead, for what concerns the controllers of each motor of the robotic arm,
their gains have been tuned again using a trial and error process which led to
the values indicated in table 5.4.

5.2.1 Scenario #1: Standing robot

In the simulated experiments there were only possible to test the perfor-
mances of the target-locking algorithm about only the rotation movement of
the arm, while for the other movement regarding its variation in height it was
only possible to prove that the target-locking algorithm keeps always aligned
the camera with the target along this axis.

Figure 5.12: Snapshot of the experiment #1
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In the real-world setup, it is possible to change the position of the target
while keeping the robot fixed, and with that it is possible to test the efficiency
of the target-locking algorithm in both the movement direction of the target.
The first real-world scenario is identical to the one used in the determination
of the inverse kinematics of the robotic arm and will be used as proof of the
effectiveness of the target-locking algorithm in the real-world setup. The robot
is kept fixed in its startup position x𝑖 = [0, 0]𝑇 which is expressed with respect to
its body reference frame ℱ𝑏 . For what concerns the target, it has been placed at
a distance of about 2[𝑚] from the camera of the robot. The initial and the final
position of the target are the same, while the movements done by it during the
experiments are completely random and do not follow a specific path. The detail
of the path followed by the target is reported in figure 5.13, while the Cartesian
decomposition of the path followed is reported in figure 5.14. The path travelled
by the target is expressed with respect to the base frame of the robot ℱ𝑏 . In this
test, the target is always visible from the camera and the movements that have
been done are gentle, without any rapid change in the movement direction of
the target.

Considering the position of the target inside both horizontal and vertical
linear FoV of the camera, reported respectively in figures 5.15b and 5.15c, it can
be noticed that the target never leaves the FoV of the camera, indicating that
the target-locking algorithm is working properly in the following action of the
target.

For what concerns the rotation movement of the arm, the action of the shoul-
der joint, reported in figure 5.16a, allows the correct following of the target. With
respect to the horizontal linear FoV of the camera, the target is nearly centered
inside it during the overall simulation, and never reaches the horizontal linear
FoV limit.

Instead, in the height variation movement of the arm there has to be done
different considerations. Inside the time slot around 𝑡1 = 39[𝑠] and 𝑡2 = 45[𝑠],
the target reaches dangerously the limit of the vertical linear FoV, however the
action of the target-locking algorithm prevents the losing of it. Recalling that
the height variation movement is obtained using the 3R planar arm portion of
the Locobot’s arm, to evaluate why this is happening it is necessary to take a look
at the graphs in figures 5.16b, 5.16c and 5.16d. As can be noticed, the reaction
of the motors driving the upper_arm and the forearm joint, with respect to the
reference signal provided by the target-locking algorithm, is slightly slow when
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Figure 5.13: Detail of the path traveled by the target during the experiment #1

compared to the other graphs. This effect, united to the way the arm moves
when performing the height variation movement, causes the target to reach the
border of the vertical linear FoV. Increasing the effect of the control action could
fix this problem by making the arm faster, however since during the experiment
the target never left the vertical linear FoV of the camera, it was decided to leave
the gains of the controllers unmodified.

On the other hand, considering the rest of the experiment, it is possible to
notice one thing. Both the upper_arm joint and the forearm joint are fixed
during the major part of it, which indicates that the arm is positioned in the
fully-extended configuration defined in section 4.2.5. During these time slots
however the target is still followed by the camera, and this result is possible
by the motion of the wrist_angle joint, which in fact continues to move even
when the arm is fully extended. This result can be used to prove the hypothesis
relaxation made at the end of section 4.2.5.

At last, as can be noticed in figure 5.15c, at the end of the experiment the
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(a) Path travelled by the target along x-axis

(b) Path travelled by the target along y-axis

(c) Path travelled by the target along z-axis

Figure 5.14: Cartesian decomposition of the path travelled by the target in the
experiment #1

position of the target along the z-axis is not perfectly zero. This problem is not
due to an issue of the target-locking algorithm but it has to be imputed to the
mechanical drift of the motor, which may cause a little misplacement in the joint
position. However, for the purposes of the target-locking algorithm, this error
can be considered acceptable.
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(a) Target position along x-axis of frame ℱ𝑐

(b) Target position along y-axis of frame ℱ𝑐 inside horizontal linear FoV of the camera

(c) Target position along z-axis of frame ℱ𝑐 inside vertical linear FoV of the camera

Figure 5.15: Position of the target expressed in the camera frame ℱ𝑐 for experi-
ment #1
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(a) Shoulder joint (𝑞1)

(b) Upper_arm joint (𝑞2)

(c) Forearm joint (𝑞3)

(d) Wrist_angle joint (𝑞4)

Figure 5.16: Detail of reference signals and joint states for experiment #1
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5.2.2 Scenario #2: Target and robot moving in cluttered envi-
ronment

The last experiment performed in the real world was done considering the
case where both the target and the robot are moving in the environment. With
respect to the experiments done so far, this one is more sophisticated and, to
simplify the analysis of the results obtained, it has been divided into two phases:

• in the first phase the robot is required to reach the target while navigating
inside a cluttered dynamic environment using the NAPVIG algorithm.
During this phase the target is fixed and it is positioned in such a way it is
always detectable by the camera of the robot. The target is mounted below
a quadcopter;

• in the second phase of the experiment the quadcopter, and therefore the
target, starts moving inside the environment following a user-defined tra-
jectory. This requires the Locobot to move again inside the cluttered envi-
ronment in order to follow it.

The detail of what happens during each phase will be described later when
analyzing the results obtained. In figure 5.19 there are reported some snapshots

Figure 5.17: Representation of the Vicon environment
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of the laboratory environment in which the experiment took place. To get a
precise estimate of the path travelled by the Locobot and the quadcopter, it was
decided to adopt the Vicon motion capture system installed in the laboratory.

The Vicon system is made of ten infrared cameras that, working together,
allows the tracking of the robot. Their displacement inside the laboratory is
shown in figure 5.17. The detection of the movement is made by making use of
four reflector points placed on the robot in an asymmetrical configuration. In
figure 5.18 there is reported the detail of the path followed by the quadcopter
in the second phase of the experiment, expressed in the reference frame of the
Vicon, where there have been put in evidence the positions where it was decided
to make it stop. Instead, the snapshots of the path followed by the Locobot during
the experiments, expressed in the reference frame of the Vicon, are presented in
figures 5.20 and 5.22.

Figure 5.18: Path travelled by the quadcopter during the second phase of the
experiment #2
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Figure 5.19: Snapshots of real world experiment #2. In red there are reported
the positions in which the quadcopter will stand during the second phase of the
experiment. The circle in red on the first picture instead represents the dynamic
obstacle
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Experiment #2 - phase #1

The first phase of the experiment lasts for about 110[𝑠] from the start of
it, which corresponds approximately with the time instant in which the robot
reaches the target. During this phase, the target is fixed inside the environment
and the robot needs to find a suitable path to reach it inside a cluttered dynamic
environment. Considering the snapshots of the experiment in figure 5.19, the
area highlighted with the red circle is closed at the start of the experiment and
opens during the first phase. This provides to the robot a suitable path that it
can travel to reach the target. The path followed by the robot during this phase
is presented in figure 5.20.

In this phase, the target-locking algorithm is able to maintain the lock on
the target during the navigation process in most of the cases. Starting from the
position of the target inside the vertical linear FoV of the camera, reported in
figure 5.21c, it can be noticed that the target remains centered for all the duration
of this phase of the experiment. On the other hand, considering the position of
the target inside the horizontal linear FoV presented in figure 5.21b, what can
be noticed is that the target is continuously slipping away from the center of
the FoV, while the action of the target-locking algorithm tries to bring it back
again to the center of the horizontal linear FoV. The slipping is due to the fast
rotations performed by the mobile base of the Locobot, which is turning in order
to find a suitable path to reach the target and to move away from situations
where the navigation would lead to closed roads. In figures 5.21b and 5.21c,
there can be noticed the presence of some areas highlighted in red. These
correspond to the time slots in which the target is not directly visible from the
camera. As mentioned before, the rotation of the mobile base requires the action
of the target-locking algorithm to maintain the target centered in the FoV of the
camera, and in particular for the rotation movement it requires the rotation of
the shoulder joint of its robotic arm. In some cases, it may happen that this joint
reaches its rotation limit, making therefore unable the following of the target. To
solve this problem, the realigning mechanism presented in appendix A performs
an appropriate rotation in order to remove the shoulder joint from the "stuck"
condition, allowing again the following of the target during the navigation. As
proof of this, by taking a look at graph 5.23a, it can be noticed that the shoulder
joint, where it reaches its limit, performs a rotation in the opposite direction to
remove from the stuck condition.
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(a) Path travelled before the obstacle removal, which is represented in green

(b) Path travelled after the obstacle removal. The path in blue represents the path
travelled before the obstacle removal

Figure 5.20: Path travelled by the Locobot during the first phase of the experiment
#2
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5.2. EXPERIMENTAL VALIDATION

(a) Target position along x-axis of frame ℱ𝑐

(b) Target position along y-axis of frame ℱ𝑐 inside horizontal linear FoV of the camera

(c) Target position along z-axis of frame ℱ𝑐 inside vertical linear FoV of the camera

Figure 5.21: Position of the target expressed in the camera frame ℱ𝑐 for experi-
ment #2
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Experiment #2 - phase #2

The second phase of the experiment starts after the Locobot reaches the target
and spans from the time instant of 𝑡0 = 110[𝑠] until the end of the experiment.
At that time instant, the quadcopter departs from its initial position 𝑝1 and
starts following the trajectory presented in figure 5.18. During the transition
from the position 𝑝1 to the position 𝑝2, the Locobot continues to detect correctly
the target and follows it. Instead, in the transition from the position 𝑝2 to the
position 𝑝4, the target is occluded to the sight of the Locobot, requiring therefore
an exploration of the map to find it again and reach it. The detail of the path
followed by the robot in the second phase is reported in figure 5.22 and its a
continuation of the path obtained in the first phase of the experiment.

In this phase, while the target is still visible, the performances of the target-
locking algorithm are still comparable to the ones obtained for the first phase of
the experiment, with the target being correctly centered in both horizontal and
linear FoVs of the camera. What is more interesting to analyze in this phase is the
time period which spans from 𝑡1 = 142[𝑠] until 𝑡2 = 210[𝑠], which corresponds
to the period in which the target is occluded to the camera. During this time slot,
the mobile base of the Locobot performs the exploration of the map, searching
for the target. To help this search, instead of keeping the arm fixed in the last
position reached, the effect of the periscope mechanism described in appendix
A makes the shoulder joint of the robot swing back and forth, increasing the
possibility of the detecting the target during the navigation. At the time instant
𝑡2, the camera gets again the lock on the target and the mobile base starts to
reach it. Again, the target-locking algorithm with its action maintains the target
centered in the FoV of the camera, until the end of the experiment where the
Locobot reaches the target.

5.2.3 Conclusions

The results obtained prove that the target-locking algorithm works correctly
in the real-world setup. The discussion of the results shows that the approach is
effective and is able to deal even in fast-varying situations. The support provided
by the mechanisms described in appendix A is fundamental, especially in the
last experiment, and drives the robot even further in the direction of the fully
autonomy.
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(a) Path travelled to follow the quadcopter from position 𝑝1 to position 𝑝2

(b) Path travelled in the environment exploration between position 𝑝2 and position 𝑝4

Figure 5.22: Path travelled by the Locobot during the second phase of the exper-
iment #2
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(a) Shoulder joint (𝑞1)

(b) Upper_arm joint (𝑞2)

(c) Forearm joint (𝑞3)

(d) Wrist_angle joint (𝑞4)

Figure 5.23: Detail of reference signals and joint states for experiment #2
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6
Conclusions and Future Works

In this thesis, it has been presented an algorithm that allows the constant fol-
lowing of a target using a camera mounted on a robotic arm. The performances
obtained for the target-locking algorithm in both the simulated and real-world
experiments are quite satisfactory.

Starting from the simulated experiments, the target-locking algorithm re-
sponded well when dealing with the turns of the mobile robots, providing the
appropriate driving signal to the shoulder joint of the arm in order to keep
always in sight the target. On the other hand, considering the height variation
movement of the arm, the algorithm was able to maintain it in a proper con-
figuration during all the navigation process of the mobile base. Moreover, the
problems related to the modeling allowed to prove that the algorithm works
well even in situations where external disturbances are added and consequently
rejected.

For what concerns the real-world experiments, the results were as satisfac-
tory as the ones obtained in the simulations. In case of standing robot, the
following of the target has been proven to be quite easy, with the robotic arm
responding correctly to the inputs provided by the target-locking algorithm
over time. Considering instead the results obtained in the last experiment, the
following of the target during the navigation proves to be more complicated,
especially when dealing with the fast rotations of the mobile base of the Locobot.
Even in this cases however, the action of the target-locking algorithm works
properly when dealing with the fast variation of the movement direction, with
the major limit residing in the action of the motors driving the robotic arm. Also,
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the aid provided by the support mechanisms presented in appendix A allows
the correct detection and search of the target during the navigation, and in this
sense, gives a huge contribute when perceiving the fully autonomy of the robot.

The target-locking algorithm has been developed for the solely use with
robotic manipulators which presents the same mechanical structure as the one
depicted in section 4.2.1. With the appropriate modifications however it is
possible to implement it also in with different typologies of robotic manipulators,
with the tricky part resting in the determination of a proper inverse kinematics
procedure for the arm chosen. Nonetheless, it is still possible to exploit the
structure of the different arm in order to find some expedients that could simplify
the entire process. In the perspective of enhancing the autonomous capabilities
of the robot, a possible future work related to this project may concern the usage
of a different target instead of using an AprilTag. By making use of appropriate
machine learning algorithm, it could be possible to make the robot follow a
different object or even a person as final target to approach.
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A
Support mechanisms for the

target-locking algorithm

The determination procedure of the target-locking algorithm presented in
chapter 4 has been done in a complete ideal scenario, where the joints of the
arm nearly completely free to move and where it has been ignored the presence
of cables connecting the motors of the arm or the camera. In the real-world
scenario however, it is impossible to ignore these factors. In the following there
are presented some mechanisms that have been implemented alongside the
basic target-locking algorithm in order to avoid issues that may arise in the real
world.

A.1 Target acquisition

The acquisition of the target is done by the camera mounted on the arm and,
as mentioned in section, 4.2, the estimate of the pose of the target is obtained
using the AprilTag detection algorithm. The obtained estimate is then used in
the evaluation of the proper joint values that the arm has to assume in order to
follow the target. To get a faster execution of the target-locking algorithm, it was
decided to store the estimated pose each time a new estimate arrives, and it was
done for the following reasons:

• the rate of acquisition of the target position is different from the rate at
which the target-locking algorithm works, therefore by keeping always in
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A.2. RAPID TURN MECHANISM

memory the last estimated position of the target allows to speed up the
entire following mechanism;

• in the real-world scenario it may happen that a fast rotation of the base
causes the exiting of the target from the camera FoV with a consequential
loss of it. In these cases, the knowledge of the last estimated position
allows the target-locking algorithm to realign correctly the arm with the
target even in cases where the target is temporarily lost.

A.2 Rapid turn mechanism

In the determination of the target-locking algorithm there were only pre-
sented the joint limit regarding the upper_arm, forearm and wrist_angle, while
it was ignored on purpose the limit about the shoulder joint. In an ideal scenario,
this joint could rotate forever without any restraint, while in the real-world sce-
nario this is impossible due to the presence of cables connecting the motors of
the arm to the controller which drives them. In this sense, it was necessary to
introduce an operative limit for the shoulder joint, which spans in the range
[−190◦, 190◦]. This however puts a restrain on the target-locking algorithm. In
the ideal case, the complete rotation of the base of the robot does not limits the
rotation of the shoulder joint of the arm, with it being able to follow the target
infinitely. In the real world scenario instead, when the shoulder joint is at its
limit, it may happen that the rotation of the base of the robot makes the camera
lose the target. In these cases, it was decided to implement a mechanism that
performs a 360◦ rotation in the direction opposite to the limit reached by the
shoulder joint. During the perform the rotation, the 3R planar arm section is
put in a safe position in order to avoid collisions with the base of the robot. The
idea in performing this rotation is to put the arm again in a situation where it
can freely rotate to follow the target. After the rotation, it could happen that
the target is still not visible from the camera, however, the knowledge of the last
estimated position of the target allows the target-locking algorithm to perform
the correct motion to align correctly the camera with the target.
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APPENDIX A. SUPPORT MECHANISMS FOR THE TARGET-LOCKING ALGORITHM

A.3 Periscope mechanism

In some cases, it may happen that the target is not directly visible from the
start or it may happen that a quick change in its position causes the arm to lose
it forever. To push even further the robot towards the fully autonomy, it was
decided to develop a simple mechanism that, after fixing the arm in the fully-

extended configuration, starts rotating the shoulder joint of the arm in the range
[−90◦, 90◦], acting in a way similar to a submarine’s periscope. In this way, the
arm starts searching in the surroundings of the robot for the target, and if it is
found, it locks on it with the effect of the target-locking algorithm.
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