UNIVERSITA DEGLI STUDI DI PADOVA
DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE

CORSO DI LAUREA MAGISTRALE IN INGEGNERIA DELL’AUTOMAZIONE

Distributed Localization of
a Camera Network in SE(3)

Relatore

PROF. ANGELO CENEDESE Laureanda

GIULIA MICHIELETTO

Correlatore matr. 1056309
PROF. SIMONE MILANI

ANNO AccADEMICO 2013/2014

Non c’é piacere nel successo,
se non lo dividi con qualcuno.
I fantastici 4

CONTENTS

. Introduction 17
1.1. Camera systems e 18
1.2. State of the art about localization problem 19
1.3. Contributions and structure of the thesis. 20

. Mathematical preliminaries 23
2.1. Elements of graph theory 24
2.2. Elements of camera kinematics Lo oL 26

2.2.1. Geometry of SO(3) 27
222, Geometry of SE(3) 29
2.3. Calibration algorithms 29
2.3.1. 8-points algorithmo oo 30
2.3.2. Bouguet’s camera calibration toolbox 31

. Image-based localization 33
3.1. Problem statement o 34
3.2. Centralized approach oo 34
3.3. Distributed approach oo oo 35

3.3.1. Average consensus algorithm 36
3.3.2. Riemannian consensus algorithm 36

. Proposed algorithm 39
4.1. Inputs and Outputs L 40
4.2. Initialization Lo 42

4.2.1. Frobenius norm methodo 0oL, 42
4.2.2. Spanning tree methodo oL 43
4.2.3. Multi spanning trees method 44
4.2.4. Multi spanning trees method with virtual camera 46
4.3, SEePS . . o 48
4.3.1. Estimation of rotations 0oL 48
4.3.2. Estimation of translations o000 49
4.3.3. Complete estimation, 50

. Frequency domain technique 51
5.1. Fourier transform oL 52
5.2. Localization problem 53

5.2.1. Problem statement L. 54
5.2.2. Estimation of rotation matrix 94
5.2.3. Estimation of translation vector 56

. Validation 59

6.1. Analyticresults L 60
6.1.1. Casestudy 62

6.2. Simulations 67

6.2.1. Initialization methods comparison: SST vs MST 68

6.2.2. Initialization methods comparison: SST vs MSTVC 70

6.2.3. Initialization methods comparison: MST vs MSTVC 73

6.2.4. Algorithm implementation: different initialization methods 74

6.2.5. Algorithm implementation: noise effect 7

6.2.6. Algorithm implementation: additional communication links 81

6.2.7. Algorithm implementation: step-size setting 87

6.3. Experimental results on a real scenario 90
6.3.1. Experimental results: convergence 92

6.3.2. Experimental results: noise effect 95

6.3.3. Experimental results: additional links 99

7. Conclusions 105
7.1. Summary of results 106
7.2. Future works e 106

A. Pinhole camera model 109
B. Rotation representations 113
Bibliography 115

Li1sT OF FIGURES

2.1.
2.2.
2.3.
2.4.
2.5.
2.6.
2.7.

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.

6.1.
6.2.
6.3.
6.4.

6.5.

6.6.

6.7.

6.8.

6.9.

6.10.
6.11.
6.12.
6.13.
6.14.

6.15.

6.16.

6.17.

Graph based network example L. 24
Pathexample L 25
Cycle example 25
Subgraph example 25
Spanning tree example 26
Relationship between relative and absolute poses 26
Graphical representations of the action of exponential and logarithm maps

on SO(3) . o o e 28
Example of single spanning tree initialization method 43
Graph based network Lo 45
Paths from node 1 to any other node of the network 45
Graph based network with artificial node 47
Spanning trees 47
Schematic representation of algorithm proposed 50

Graphical representations of Riemannian and Frobenius distances on SO(2) ~

T o 60
2D network L L 62
Implementation of Tron-Vidal algorithm on 2D network 63

Comparison between the results obtained by the analytic computation
and by the implementation of Tron-Vidal algorithm on 2D network 65
Comparison of the trends of the cost function in the analytic computation
and during the implementation of Tron-Vidal algorithm on 2D network . 66
Comparison of the trends of the mean error on rotations in the analytic
computation and during the implementation of Tron-Vidal algorithm on
2D network 66
Comparison of the trends of the errors on rotations in the analytic com-
putation and during the implementation of Tron-Vidal algorithm on 2D

network 67
All possible camera poses calculated through MST method 69
Comparison of SST and MST results 70
3D camera network with artificial nodeo 71
Spanning trees - MSTVC strategy 72
Comparison of SST and MSTVC results 72
Comparison of MST and MSTVC results 73
Comparison of the final results achieved by Tron-Vidal algorithm initial-

ized through SST and MST methods 74
Comparison of the final results achieved by Tron-Vidal algorithm initial-

ized through SST and MSTVC methods 75
Comparison of the final results achieved by Tron-Vidal algorithm initial-

ized through MST and MSTVC methods 7
Effect of unbalanced noise distribution on the results of Tron-Vidal algo-

rithm (250 iterations) 78

6.18.

6.19.

6.20.
6.21.

6.22.

6.23.

6.24.

6.25.
6.26.

6.27.

6.28.

6.29.

6.30.

6.31.

6.32.

6.33.

6.34.

6.35.

6.36.

6.37.

6.38.

6.39.

6.40.

Effect of unbalanced noise distribution on the results of Tron-Vidal algo-
rithm (400 iterations)
Effect of unbalanced noise distribution on the trend of the cost function
during the implementation of Tron-Vidal algorithm (400 iterations)
3D camera network with additional communication links
Comparison between the results obtained applying Tron-Vidal algorithm
to the network with and without additional links
Comparison of the trends of the cost function during the implementation
of Tron-Vidal algorithm on the network with and without additional links
Sub-networks identified in the camera network with additional links
Spanning trees - right and left sub-networks
Results obtained applying Tron-Vidal algorithm to different sub-networks
Comparison between the results obtained applying Tron-Vidal algorithm
on the network with additional links implementing or not the sub-networks
strategy
Comparison between the results obtained applying Tron-Vidal algorithm
on the network with and without additional links but implementing the
sub-networks strategyo Lo
Trend of cost function during the implementation of Tron-Vidal algorithm
with three different values of the step-size
Trend of cost function during the implementation of Tron-Vidal algorithm
with e € [0.01,0.05)
Trend of cost function during the implementation of Tron-Vidal algorithm
with e=0.02
Trend of mean error on rotations when €=0.02 and ¢e=0.01.
Experimental camera network layout (top view)
Results obtained applying the Tron-Vidal algorithm to the experimental
network choosing the node 1 as reference (1000 iterations)
Trend of translation part of cost function during the implementation of
the Tron-Vidal algorithm on the experimental network choosing the node
1 as reference (1000 iterations)
Results obtained applying the Tron-Vidal algorithm to the experimental
network choosing the node 1 as reference (1000 iterations for translation
estimates)
Results obtained applying the Tron-Vidal algorithm to the experimental
network choosing the node 5 as reference
Spanning trees - different roots oL

Effect of unbalanced noise distribution on the results of Tron-Vidal algo-

83
84
84
85

rithm applied to the experimental network choosing the node 1 as reference 96

Effect of unbalanced noise distribution on the trend of translation part of
the cost function during the implementation of Tron-Vidal algorithm on
the experimental network oL

Effect of unbalanced noise distribution on the results of Tron-Vidal algo-

rithm applied to the experimental network choosing the node 5 as reference 98

6.41.

6.42.

6.43.

6.44.
6.45.

6.46.

A.l.

Comparison between the results obtained applying Tron-Vidal algorithm
on the experimental network with and without the additional link 99
Comparison of the trends of the rotational part of the cost function during
the implementation of Tron-Vidal algorithm on the experimental network
with and without the additional link 100
Comparison of the trends of the translational part the cost function during
the implementation of Tron-Vidal algorithm on the experimental network
with and without the additional link 101
Results obtained applying Tron-Vidal algorithm to different sub-networks 102
Comparison between the results obtained applying Tron-Vidal algorithm
to the experimental network with the additional link implementing or not
the sub-networks strategy oL 103
Comparison between the results obtained applying Tron-Vidal algorithm
to the experimental network with and without the additional link but
implementing the sub-networks strategy 103

Pinhole camera model 109

LisT OF TABLES

6.1.

6.2.

6.3.

6.4.

6.5.

6.6.

6.7.

6.8.

6.9.

6.10.

6.11.

6.12.

6.13.

6.14.

6.15.

6.16.

6.17.

6.18.

6.19.

Errors on rotations obtained implementing the Tron-Vidal algorithm on
2D network oL L 64
Errors on rotations obtained though the analytical computation and im-

plementing the Tron-Vidal algorithm on 2D network 67
Errors on rotations and translations obtained applying SST and MST
methods 70
Errors on rotations and translations obtained applying SST and MSTVC
methodso 72
Errors on rotations and translations obtained applying MST and MSTVC
methods 74
Mean errors on rotations and translations obtained applying Tron-Vidal
algorithm initialized though SST and MST methods 75
Mean errors on rotations and translations obtained applying Tron-Vidal
algorithm initialized through SST and MSTVC methods 76
Mean errors on rotations and translations obtained applying Tron-Vidal
algorithm initialized with MST and MSTVC methods 76

Errors on rotations and translations obtained applying Tron-Vidal algo-
rithm in presence of unbalanced noise distribution (250 iterations) 79
Errors on rotations and translations obtained applying Tron-Vidal algo-
rithm in presence of unbalanced noise distribution (400 iterations) 80
Mean errors on rotations and translations obtained applying Tron-Vidal
algorithm to the network with and without additional communication links 82
Mean errors on rotations and translations obtained applying Tron-Vidal
algorithm implementing or not the sub-networks strategy 86
Mean errors on rotations and translations obtained applying Tron-Vidal
algorithm on the network with and without additional links but imple-
menting the sub-networks strategy 0. 87
Errors on rotations and translations obtained applying Tron-Vidal algo-
rithm to the experimental network choosing the node 1 as reference (1000
iterations) 93
Errors on rotations and translations obtained applying Tron-Vidal algo-
rithm to the experimental network choosing the node 1 as reference (10000
iterations for translations estimate) Lo L. 94
Errors on rotations and translations obtained applying Tron-Vidal algo-
rithm to the experimental network choosing the node 5 as reference. . . . 95
Errors on rotations and translations obtained applying Tron-Vidal algo-
rithm to the experimental network in presence of unbalanced noise distri-
bution choosing the node 1 as reference 97
Errors on rotations and translations obtained applying Tron-Vidal algo-
rithm to the experimental network in presence of unbalanced noise distri-
bution choosing the node 5 as reference 98
Mean errors on rotations and translations obtained applying Tron-Vidal
algorithm to the experimental network with and without the additional link100

11

6.20. Mean errors on rotations and translations obtained applying Tron-Vidal
algorithm to the experimental network with the additional link imple-
menting or not the sub-networks strategy

6.21. Mean errors on rotations and translations obtained applying Tron-Vidal
algorithm to the experimental network with and without the additional
link but implementing the sub-networks strategy

12

ABSTRACT

In last decades, sensor networks have established themselves among the priority targets
of research in the field of control theory. Indeed, several algorithms concerning these
structures have been recently developed.

Camera systems are probably the most common type of sensor networks. They con-
stitute a rich information sensing modality whose potential applications are numerous
in civil, industrial and military context. However, their effectiveness greatly relies on
the ability of each device to calibrate itself with respect to the other ones in the network
(relative pose) and to a fixed absolute reference system (absolute pose). For this reason,
the localization problem, i.e. the determination of the absolute rotation matrix and
translation vector of each camera, still engenders great attention.

Main objective of this work is to tackle the aforementioned problem analyzing and
improving the algorithm developed by Tron and Vidal [1]. The authors consider the
estimation of the poses for a camera network and they converge to an optimal solution
starting from noisy measurements of the relative poses. The method proposed is an
iterative procedure based on the minimization of a suitable cost functional through a
distributed strategy. The basic idea to reach the solution is to use the framework of
consensus algorithms, but alternating a Riemannian gradient descent on the space of
rotations and a Euclidean gradient descent on the space of translations.

The performance of the algorithm proposed in [1] is evaluated using synthetic and real
data. More specifically, the analysis focuses on the examination of the results in terms
of reliability and optimality of the solution found.

13

ABSTRACT

Negli ultimi decenni, le reti di sensori si sono affermate tra i principali oggetti di ricerca
nel campo della teoria del controllo. Diversi algoritmi riguardanti queste strutture sono
stati recentemente sviluppati.

I sistemi di videocamere sono probabilmente il pitt comune tipo di reti di sensori. Essi
costituiscono una ricca modalita di rilevamento dati le cui potenziali applicazioni sono
numerose in ambito civile, industriale e militare. La loro efficacia, tuttavia, dipende in
gran parte dalla capacita di ciascun dispositivo di calibrare se stesso rispetto agli altri
elementi della rete (posa relativa) e ad un sistema di riferimento assoluto e fisso (posa as-
soluta). Per questo motivo, desta ancora molto interesse il problema della localizzazione,
consistente nella determinazione della matrice di rotazione e del vettore di traslazione
assoluti di ogni videocamera.

L’obiettivo principale di questo lavoro € quello di affrontare la suddetta questione anal-
izzando e migliorando ’algoritmo sviluppato da Tron e Vidal [1]. Gli autori considerano
il problema della stima delle pose per una rete di videocamere e convergono ad una
soluzione ottimale a partire da misure rumorose delle pose relative. Il metodo proposto
& una procedura iterativa basata sulla minimizzazione di un adeguato funzionale costo
mediante una strategia distribuita. L’idea di base per raggiungere la soluzione & quella di
utilizzare il framework degli algoritmi di consenso, ma alternando una discesa gradiente
Riemanniana sullo spazio delle rotazioni e una discesa gradiente Euclidea sullo spazio
delle traslazioni.

Le prestazioni dell’algoritmo proposto in [1] sono valutate utilizzando dei dati sin-
tetici e reali. Nello specifico, ’analisi si concentra sull’esame dei risultati in termini di
affidabilita e ottimalita della soluzione trovata.

15

INTRODUCTION

In 20th century sensor networks have established themselves among the priority targets
of research in the field of control theory. These systems are usually composed by multiple
interactive elements, named agents or nodes, placed throughout an environment of inter-
est. Fach of these devices can exchange information with its neighbors or with the whole
network using various communication protocols (e.g. synchronous, broadcast, symmetric
gossip, asymmetric gossip protocols in both their deterministic and randomized version)
in order to achieve a common goal.

One of the principal aim of a multi-agents systems is to monitor phenomena of interest,
to detect events and to control the environment according to the changes of information
gained by every node. The strength of this type of systems resides in the interaction
among agents which yields the emergence of complex collective behaviors enacted via
simple local Tules.

Therefore, sensor networks have recently emerged as a dominant technology in a wide
range of application fields, from the civil and military context to the social and biological
one. It is worth of notice that, even if the devices used in various applications can be
quite different, all multi-agents systems share some common features, as scalability and
cooperation. To model and design these properties, a distributed approach is required in
place of a centralized one. Indeed, the presence of a central unit that is linked with all
sensors in the network entails an easy design for the topology but a more rigid approach
to tackle scalability issues, while the choice of a distributed paradigm can avoid problems
concerning scalability and robustness to failures of both nodes and network. This allows

the reduction of communication time favoring the goal achievement more quickly [2].

Contents
1.1. Camera systems it vttt ittt 18
1.2. State of the art about localization problem 19
1.3. Contributions and structure of the thesis 20

17

1. Introduction

Camera systems

Camera systems are probably the most common type of sensor networks. They can

be defined as large collections of well-coordinated cameras. Specifically, these systems
might include devices of different types (RGB cameras, Time-of-Flight or structured light
depth sensors) and different motion capabilities (fixed lens or pan-tilt-zoom /PTZ).

A fixed-lens camera is a low-cost camera with a fixed field of view. A PTZ device is
capable of remotely controlling its own direction and zoom once installed, it can rotate,
tilt and run enlargements or reductions of observed area or object. A RGB camera is
the vision device traditionally used for the acquisition of color images. It acquires the
three basic color components (red, green and blue) on three different wires, thereafter
the signals are combined in order to assign a color to each pixel of the image.

Stereo vision systems have been widely refined in last years bringing satisfactory re-
sults, however they can not manage all situations; in particular, they are not able to
provide a reliable depth information whenever visual cues can be scarcely found (flat
untextured regions).

For this reason, a new type of systems has recently emerged in computer vision where
high quality depth information is required. These are based on heterogeneous archi-
tectures, made of standard cameras and ToF sensors [3]. These last ones determine
distances measuring the traveling time of an infrared impulse from the emitter of the
ToF device to the object and back. The fusion of ToF and stereo data allows to obtain
an improved 3D geometry as this solution combines the best features of both subsys-
tems, such as high resolution, elevated accuracy and robustness with respect to scene
peculiarities.

Technological progress in sensor design, computing and communications are leading
to the development of new applications that will transform traditional vision systems
into pervading smart camera networks. This technology has become ubiquitous in a
variety of real-world applications including security and surveillance of industrial or civil
areas, perimeter patrolling, intrusion detection and tracking, vehicle tracking, mapping
and reconstruction of environments (e.g. search and rescue in critic scenarios, dynamic
3D reconstruction).

However, the critical issues related to the camera systems are several. Typical prob-
lems to solve are localization/calibration of the devices, data registration, alignment and
association, high accuracy images acquisition, structure from motion (SfM). For many of
them, interesting solutions have been proposed and tested obtaining satisfactory results;
nevertheless the research of new strategies continues in order to improve the system
performances.

This work addresses the localization problem, i.e. the determination of the position
and orientation in the three-dimensional space of each device, as it represents the critical
first step in any camera network deployment !.

1Generally, the wording localization problem refers to the determination of the agent positions of a sensor
network in the environment. Referring to camera system, the expression calibration/registration
problem is more precise to indicate the issue of computing the rotation matrix and translation vector
for each device of the network. Nevertheless, in this work the term localization problem is always
used.

18

1. Introduction

State of the art about localization problem

Manually measuring the pose of all cameras in the network and calibrating the whole
system is a very tedious and time consuming task. Moreover, when scaling with the
number of cameras or the complexity of the environment, this activity may become
extremely difficult and practically unfeasible.

For these reasons a wide research work has been carried out on methods to solve cal-
ibration task automatically by exploiting information supplied by the agents. Various
approaches have been adopted according to the assumptions made about the dimension
of the ambient space (planar versus tridimensional), type of algorithm (centralized ver-
sus distributed), kind of measurements (e.g. distances, angles of arrival) and special
assumptions about the environment and the deployment of the cameras.

In some cases, special nodes (called beacons or anchors), whose positions are known,
are introduced in the network. Many algorithms tackle the localization problem exploit-
ing the knowledge of the distances between all nodes of the networks and the anchors.
In particular, Aspnes et al. [4] have provided a theoretical foundation of the issue indi-
cating conditions for uniqueness in localization of networks with beacons and distance
measurements.

As far as distance information exploitation is concerned, Mantzel et al. [5] have pro-
posed an iterative technique for estimating the camera network positions and orienta-
tions based on the well-known concept of triangulation. Their Distributed Alternating
Localization-Triangulation (DALT) algorithm is easily distributable imposing that each
camera localizes itself using triangulated points and then collaborates with other nearby
devices to triangulate other common points.

Nonetheless, other types of information can be used to solve the aforementioned prob-
lem. Inspired by the work of Rong and Sichitiu [6] and based on some key kinematic
relationships, Bullo et al. [7] have proposed a localization and orientation approach based
on angle-of-arrival sensing between neighboring nodes in the 2D case. Moreover, the au-
thors have also explored necessary and sufficient conditions for a noiseless network to be
calibrated in the 3D case. The main assumption of this work is that nodes do not have
the ability to perform measurements expressed in a common reference frame.

Another interesting distributed solution to the localization problem has been proposed
by Devarajan et al. [8]. Their work rests on a set of uncalibrated cameras in which
communication occurs only among cameras that share on their image planes some of the
scene points. Initially each camera independently forms a neighborhood cluster on which
the local calibration takes place. Then the algorithm proceeds incrementally: calibrated
nodes and scene points are incrementally merged into a common coordinate frame.

Finally, if a dynamic environment is considered, Funiak et al. [9] have demonstrated
that a camera network can be automatically calibrated by tracking a moving object.
Their main idea is to address the camera network calibration task by solving a simulta-
neous localization and tracking (SLAT) problem, where both the trajectory of the object
and the poses of the cameras are estimated.

19

1. Introduction

Contributions and structure of the thesis

In this thesis, a distributed method for automatically solving the calibration task is
presented. Although traditional large scale systems are characterized by a centralized
architecture, the problem is here addressed in a distributed manner by assuming that
any camera in the network has its own reference frame and does not have any knowledge
about the position of the other ones.

More specifically, the problem of reconstruction of the absolute poses is solved starting
from the solution proposed by Tron and Vidal [1].

Their algorithm is based on the minimization of a suitable cost functional on SE(3)",
i.e. the group of rigid body transformations of N agents, through a distributed strategy.
It is an iterative procedure characterized by the alternation between Euclidean and
Riemannian gradient descents.

In detail, Tron and Vidal represent the pose of each camera i as a couple g; = (R;,T;) €
SE(3) consisting in a rotation matrix and a translation vector, and the relative change
of coordinates from device i to device j as gij = g; ' 0 g; = (Rij, Tij) € SE(3), where
R;; = RiTRj and T;; = R;‘F(T] — T;). Hence the absolute pose of one camera can be
obtained from the pose of another one applying the composition operation g; = g; 0 g;; .

Starting from these definitions, a network is said to be localized if there is a set of
relative transformations {(R;j,Tj;)} such that, when the reference frame of the first
node is fixed to (R;,T1), the other absolute poses (R;,T;) are uniquely determined.
Therefore, the aim is to compute a set of relative transformations {g;;} that satisfy the
proprieties stated and that, at the same time, are as close as possible to the relative
noisy measurements g;; required as inputs by the algorithm.

The strategy proposed by Tron and Vidal is set up on least squares minimization
criterion. Since the quantities considered are non-Fuclidean, it exploits a measure in
SE(3). Given a network of N nodes on edge set £, a functional cost is introduced as

e({R} AT} AN} =5 X o979, 0i))
(i,9)e€
> (déoe (R Ry, Rij) + || R (T — Ti) — Nt |°)
(i,5)€€
= or({Ri}) + er({Ri} {Ti} {\is}).

N = N

In words, the cost ¢ is the sum of two terms: g involving only the rotational part R;
of the absolute pose g; and @7 involving all the variables, including the unknown scale
factors \;; that are responsible for an undesired side-effect and have to be positive.

In summary, an optimal localization is found by solving the non-linear program

min R AT, (s
{RIAT N} 90({ } { } { J})
subject to A\;; > 1 V(i,j) €&

The basic idea to reach the solution is to use the framework of consensus algorithms,
but alternating a Riemannian gradient descent on the space of rotations (¢ minimiza-
tion) and a Euclidean gradient descent (¢7 minimization).

20

1. Introduction

The scenario is indeed particularly challenging when dealing with 2 or 3 degrees of free-
dom in the space of rotations (e.g. pan-tilt or full pan-tilt-zoom relative displacements)
since the optimization functional presents multiple local minima; conversely, when re-
ducing to a 1 degree of freedom problem (e.g. pan movement only) the distributed
algorithm converge to the centralized solution that can be found analytically.

The aim of this work is to observe and improve the results achieved implementing the
Tron-Vidal algorithm on an uncalibrated camera system. For this reason, new initial-
ization strategies are proposed in order to overcome the disadvantages of the original
procedure. Moreover, the performance of the algorithm is evaluated in particular situa-
tions considering the goodness of the solution reached in terms of errors with respect to
the real poses. The analysis is conducted first considering a synthetic setups and then
testing the results on a real camera network made up of PTZ and fixed devices. It is
important to point out that much of the work carried out is an extension of what has
been studied by M. Michelan, G. Baggio and S. Patron [10].

After this introductory chapter, the thesis is organized in six chapters. Chapter 2 is
devoted to the introduction of some mathematical notions useful to better understand
the proposed strategy. In Chapter 3, the localization problem is formulated in a for-
mal manner, and the two possible approaches known in the literature to tackle it are
illustrated. Chapter 4 is dedicated to the complete description of the algorithm whose
performances are analyzed in the following chapters; particular attention is given to the
possible initialization strategies. Chapter 5 constitutes an aside since it presents an-
other algorithm. It illustrates the original calibration method proposed by Cortelazzo et
al. [11] and based on the frequency approach. The decision to include this dissertation
is justified by the fact that the initial idea was to mix the Tron-Vidal and Cortelazzo
procedures in order to get results very close to the real poses, however it has not been
possible to pursue this idea because of the problems about the code in frequency domain.
In Chapter 6, a deeper analysis is made about the implementation of the Tron-Vidal al-
gorithm. Finally, Chapter 7 summarizes the main conclusions reached at the end of all
the work done proposing several ideas to develop in the future.

In conclusion, it is necessary to underline the presence of two appendices: one ded-
icated to the presentation of the pinhole camera model and one describing some for-
malisms available in the literature for the representation of rotations in three-dimensional
space.

21

MATHEMATICAL PRELIMINARIES

This chapter is dedicated to the introduction of some useful notions to better understand
the task to be solved, i.e. the localization problem. First, some definitions concerning
graph theory are given as a necessary tool to model the issues related to sensor networks.
Then, the attention is focused on the camera kinematics, recalling the main properties
of matriz groups SO(3) and SE(3) which correspond to the spaces of rotations and rigid
body transformations respectively. Finally, a few calibration algorithms are presented.
These techniques are known in the literature for the determination of the extrinsic and
intrinsic parameters of a camera, typically relying on the knowledge of the coordinates of
some points of the scene before and after the projection on the image plane. In our setup
these are taken as the first step to retrieve calibration/localization information from the
image planes.

Contents
2.1. Elements of graph theory. 24
2.2. Elements of camera kinematics 26
2.2.1. Geometry of SO(3) 27
2.2.2. Geometry of SE(3). 29
2.3. Calibration algorithms, 29
2.3.1. 8-points algorithmo oL 30
2.3.2. Bouguet’s camera calibration toolbox 31

23

2. Mathematical preliminaries

Elements of graph theory

A multi-agents system can be represented with a network made up of N nodes organized
into an undirected graph G.

Node 2

Node 1

Node N

Figure 2.1.: Graph based network example

A graph G is an ordered pair (V, &), where V = {1,2,..., N} is the set of vertices and
E CV x V is the set of edges. More specifically, the vertices of the graph correspond to
the nodes of the network, while the pair (i, j) belongs to the set £ if and only if the node
1 can communicate with the node j and viceversa. A graph which shows this symmetry
property in the communication protocol among its nodes is referred as undirected or
non-oriented: the pairs of vertices that represent the edges are not ordered. Otherwise,
the graph is called directed or oriented. Moreover, a graph is named complete if each
pair of vertices has an edge that connects them.

In mathematics and computer science, there exist different manners to represent a
graph made up of N nodes. The most used method is its adjacency matriz: A € RN*N
such that
1 if (¢,5) €€,

Al =
|]] 0 otherwise.

It is easy to verify that the adjacency matrix is symmetric in those cases where the
associated graph is indirect. On the contrary if the graph is directed the matrix does
not enjoy this property. Moreover, the elements on the main diagonal of A are equal to
one only in the case where the graph presents self loops, i.e. there are edges that connect
a vertex to itself.

Concerning nodes, it is important to define the neighbors of a node i as the set N; of
vertices which are connected with ¢ in the graph:

N;={jeV:(ij)c&}. (2.1)

In particular, V; is a subset of V and its cardinality coincides with the degree of the
node i, deg(7), i.e. the number of edges outgoing from node 1.
Finally, other worthwhile elements of graph theory are the following ones:

- A path | from node i to node j in G is defined as a sequence of nodes starting
with ¢ and ending in j such that there exists an edge in £ between consecutive

24

2. Mathematical preliminaries

nodes. Formally, | = {vi,...,v.}, v € V, v1 = 4, vy = J, (Vm,Um+1) € &,
m={1,...,n—1} [1].

A path is referred as simple if all the vertices of the path are distinct.

A graph is defined as connected if there is a path from any node to any other node
in the graph.

Path |

Node i

Node j

Figure 2.2.: Path example

- A cycle is a path from node i to itself without repeated nodes, except for the initial
one and the final one [1].

A cycle is referred as simple if all the nodes composing it are distinct (except for
the initial one and the final one).

An acyclic graph is a graph with no cycles.

Cycle

Node i

Figure 2.3.: Cycle example

- A subgraph of G = (V,€) is a graph whose vertex set is a subset of that of G, and
whose adjacency relation is a subset of that of G restricted to this subset. In other
words, it is a graph G’ = (V',&’) such that V' CV and £ C £.

\

_ Subgraph

Figure 2.4.: Subgraph example

25

2. Mathematical preliminaries

- A tree is a connected and acyclic graph.

A spanning tree of G = (V,) is the subgraph such that it is a tree and V' =V,
i.e. it includes all nodes of G.

___ Spanning tree

Figure 2.5.: Spanning tree example

Elements of camera kinematics

The position and orientation of each device in a camera system can be expressed with
respect to others in the network (relative pose) and/or to a fixed absolute reference sys-
tem (absolute pose).

4 gf/‘:(R//, T:‘/)

¢
camera

g=(R;, T} l
camera
J

0 g=(R;, T))
world frame

Figure 2.6.: Relationship between relative and absolute poses

The absolute pose is generally represented as the ordered couple g = (R, T), where R
is a matrix that indicates the rotation and T is a vector which refers to the translation.
In particular, both R and T are expressed with reference to the same fixed world frame.

It is important to underline that the rotation matrix R belongs to the special orthog-
onal group which is defined as

SO@3) = {R e R : RTR = I, det(R) = +1}. (2.2)

26

2. Mathematical preliminaries

More specifically, SO(3) is a subgroup of orthogonal group O(3) that is the group of
matrices in which the inner product is preserved or, equivalently, it is the group of 3 x 3
orthogonal matrices.

In addiction, the translation vector T is simply set in R3.

Therefore, the camera pose g is an element of the group of rigid body transformations
that is called the special Fuclidean group and is defined as

SE®3) ={g=(R,T): Re SO@), T € R*}. (2.3)

It is worth of notice that both SE(3) and SO(3) are Lie groups, i.e. algebraic groups
characterized by a unique identity element and two group operations (multiplication and
inversion) [10].

The absolute pose of a camera within a network can be related to the poses of the
other network devices, using the relative poses expressions.

More formally, the absolute pose g; = (R;, T;) of camera i is linked to the absolute pose
gj = (Rj,Tj) of camera j, its neighbor in the network, by the operation of composition
gicg; = (RiR;, RiT; +T;). As a consequence, it is possible to define the relative change
of coordinates g;; = (Rij, Tij) = g; * 0 g; € SE(3), where

Ri; = R'R;, (2.4)
Ty = R} (Tj = T)). (2.5)
Hence, the absolute pose of camera j can be obtained from the pose of the i-th one
as gj = g © g;j; more explicitly:
Rj = R;Ryj,
T = RiT;; + 1.

It is interesting to note that the relative transformations are invariant to the choice
of a global reference frame.

2.2.1 | Geometry of SO(3)

As just illustrated, a rotation in tridimensional space can be represented by a matrix
which belongs to the special orthogonal group SO(3), defined in Equation (2.2).
Given any R € SO(3), it is possible to identified the tangent space at R. It is expressed
as
Tr(SO(3)) ={Rv:Vv €s0(3)}, (2.8)

where 50(3) is the Lie algebra ! of SO(3), i.e. the space of skew-symmetric matrices

s0(3) = {ve RS v = v}, (2.9)

where v denotes the matrix generating the cross product by v € R3, in other words
Ju=vxuVvucR3[1].

LA Lie algebra is a vector space g over a field F' with an operation (Lie bracket) [-,-] : g X g — g which
is bilinear and skew symmetric and satisfies the Jacobi identity.

27

2. Mathematical preliminaries

A possible choice of metric in rotations group is given by the Riemannian metric
(Ri, R;) = trace {RI R;}, Ri, R; € Tr(SO(3)). (2.10)

The Riemannian metric is a continuous collection of inner products in the tangent
space at each point [1] and it can be employed to measure the length of curves between
two points of the group SO(3). Curves with minimum length are referred as geodesics,
while their lengths define the Riemannian or geodesic distance between the two points:

1
d4(Ri, By) = 5 llog(RT Ry}
1
= —trace {log(RTR;)*}, Ri,R; € SO(3), (2.11)

where log(-) is the matrix logarithm and ||-|| denotes the Frobenius norm 2.

Another possible choice of metric in SO(3) is the Frobenius or chordal metric, through
which the distance between two points is given by

d%(Ri, R;) = |R; — Rj||l%, Ri,R; € SO(3). (2.12)

If the considered points are sufficiently close to each other then the chordal distance
is similar to the geodesic one [10].

In an optimization procedure on SO(3), two essential concepts are the ezponential
map and the logarithm map at a point in special orthogonal group.

Figure 2.7.: Graphical representations of the action of exponential and logarithm maps on

SO(3)

The exponential map at a point R € SO(3), expr(A) : Tr(SO(3)) — SO(3), is a
diffeomorphism that associates to each point A in a neighborhood of the origin of the
tangent space Tr(SO(3)) a point S on the (unique) geodesic passing through R in the
direction A. The logarithm map logr(S) : SO(3) — Tr(SO(3)) is the inverse of the
exponential map. As consequence, the parallel transport method can be used to express
these mappings at a generic point of rotations group:

2The Frobenius norm is the matrix norm of an m x n matrix A defined as the square root of the sum

of the absolute squares of its elements, i.e. ||[Allr = /> 7", Z;:I lai;)?.

28

2. Mathematical preliminaries

expr(A) = Rexp(RTA), (2.13)
logr(S) = Rlog(RTS). (2.14)

An intuitive idea of the actions of the exponential map and logarithmic map is illus-
trated in Figure 2.7.

The definition of the updates in an iterative optimization algorithm acting on SO(3)
is based on the calculation of the gradient following a gradient descent procedure.

Given a smooth function f: SO(3) — R, the Riemannian gradient gradpf is defined
as

gradpf = fr — RfER, (2.15)
of

where fr = gg is the Euclidean derivative of the function f with respect to the matrix
R. The Riemannian gradient can be rewritten considering the geodesic distance between
two points R;, R; € SO(3):

gradp di(R;, Rj) = —R;log(R} R;) € Tr(SO(3)). (2.16)

2.2.2 | Geometry of SE(3)

The pose of a camera includes not only the rotation matrix R € SO(3) but also the trans-
lation vector T' € R3; therefore it is defined in the group of rigid body transformations
SE(3) as in Equation (2.3).

The special Euclidean group SE(3) is a subgroup of F(3) that indicates the symmetry
group of three-dimensional Euclidean space.

Unfortunately, unlike SO(3), a natural (bi-invariant) Riemannian metric can not be
defined on the special Euclidean group hence its structure is discarded considering SE(3)
as the Cartesian product SO(3) x R3.

Using this strategy, the distance between the poses g; = (R;,T;) and g; = (R;,Tj) of
two different cameras can be computed as

dy 7(9i- 95) = dip(Ri, By) + || T; = Ty (2.17)
if the Riemannian metric is considered, or
d; p(9i:9j) = A5 (R, Ry) + ||T; — Ty (2.18)

if the Frobenius one is preferred. In both cases, the gradient on SO(3) x R? is evaluated
by considering separately the rotation and translation components.

Calibration algorithms

The calibration is the process of estimating both the intrinsic and extrinsic parameters of
a camera modeled as an ideal pinhole device. The principal elements of the pinhole model

29

2. Mathematical preliminaries

are a plane (image plane) and a point (optical center): any point Q of the 3D space
is projected (q) on the image plane through the optical center, consequently passing
from a three-dimensional space to a two-dimensional space, as illustrated in Appendix
A. Therefore, the calibration is a necessary step in computer vision in order to extract
correct information about 3D points from 2D images.

Various procedures are available in the literature, each of which has specific advantages
and disadvantages. The following subsections describe two specific techniques, which can
be adopted in the initialization of the algorithm implemented by Tron and Vidal that
will be analyzed in the next chapters.

2.3.1 8-points algorithm

Given two cameras ¢ and j with intersecting fields of view, one of the best known
techniques to estimate the devices parameters is the 8-points algorithm. It is a method
introduced by Christopher Longuet-Higgins in 1981 which exploits the correspondence
between points belonging to different image planes, that are the projections of the same
3D point through the focal centers of the two cameras (feature points).

More specifically, let us consider a pair of cameras ¢ and j, with relative unknown
position R;; and T;; (rotation and translation respectively) and be q; the point seen by
i-th device and q; the point seen by j-th device.

The 2D points q; and q; are related by

pidi = pjRija; + Tiy, (2.19)

where p; and p; are the depths of the 3D point Q with respect to the i-th and j-th
camera respectively.

Moreover, as known from computer vision, the corresponding points satisfy the epipo-
lar constraint 2 expressed by the relation

qiTTi#Rijqi = 0, (2.20)

where TZJ]- is an orthogonal matrix, i.e. Té‘Tw = 0, and TéRij is referred as essential
matriz from which one can compute the normalized relative translation vector ¢;; =
Ti;/||Ti;|| and the relative rotation matrix R;;.

More generally, the 8-points algorithm is a frequently cited strategy to compute the
fundamental matriz, in place of the essential one, exploiting a set of eight or more point
matches. The fundamental matrix contains information also on the intrinsic parameters
of the camera as well as on the relative pose (see Appendix A).

The advantage of the 8-points algorithm is the simplicity of implementation [12], how-
ever it does not work properly when the feature points extracted from the images assume
certain degenerate configurations, called critical surfaces [10].

3The epipolar constraint between two cameras refers to the fact that, given a point qi on the first
image plane, the corresponding one q2 on the second image plane must lie on the epipolar line. The
epipolar line is the straight line of intersection between the image plane and the epipolar plane. The
epipolar plane is the plane defined by the centers of the cameras and the 3D point Q of which q1
and q2 are the projections.

30

2. Mathematical preliminaries

2.3.2 | Bouguet’s camera calibration toolbox

Another possible solution to estimate camera parameters is to exploit one of the toolbox
available in Matlab. In [10] the problem is addressed employing the Bouguet’s camera
calibration toolbox, a specific tool designed for working with chessboard’s images, widely
used in computer vision.

In detail, using the functions provided by the toolbox, the computation of the cameras
parameters is performed in two steps. First the calibration matriz, i.e. the matrix of
intrinsic parameters, is computed for each device using a set of a dozen images of the
same chessboard captured in different position by the same camera. Then, the extrinsic
parameters of each camera are determined with respect to the chessboard reference
frame.

The previously obtained results can be combined in order to recover some initial
estimates of the relative rotation and translation for each pair of cameras able to com-
municate, as required as input in the algorithm developed by Tron and Vidal.

The advantages of this particular strategy are that it requires only a plane, the po-
sitions/orientations are not to be known, a good code is available online. On the other
hand, the main disadvantage is the need of the definition of the correspondences between
3D and 2D spaces.

31

IMAGE-BASED LOCALIZATION

In this chapter, the localization problem for a camera network is formally stated. To
find a solution, two distinct approaches can be followed: a centralized or a distributed
strategy. The first one involves the presence of a central unit capable of communicating
with all nodes, i.e. cameras that constitute the network. In the second case, the problem
is tackled by exploiting only the interactions between the agents, which are assumed to
be able to exchange information between them.

Contents
3.1. Problem statement 0000, 34
3.2. Centralized approach 0000, 34
3.3. Distributed approach 000000 35
3.3.1. Average consensus algorithm 36
3.3.2. Riemannian consensus algorithm 36

33

3. Image-based localization

Problem statement

Let us consider a camera network composed by N devices displaced in a certain limited
environment. The network can be identified with an undirected graph G whose nodes
correspond to the cameras that may differ by type. This graph has an edge from node
1 to node j only if the fields of view of the camera 7 and j are partially overlapped.
Using this convention, the adjacency matrix gives information about which elements of
the network share part of the scene view.

The solution of the localization problem for a camera network is to recover the absolute
pose of each device, namely its rotation matrix R and translation vector 7', i.e. the
extrinsic parameters.

As far as translation is concerned, it is necessary to identify the three components of
the vector T € R3. While, in geometry various formalisms exist to express a rotation
in three dimensions, as described in Appendix B. Nevertheless, whatever the formalism
adopted, the parameters that describe a rotation in 3D space are always three. Therefore
the problem of localization for a camera network coincides with the determination of the
six parameters in total (problem with six degrees of freedom) for each device.

At this point, since absolute poses are linked to relative ones, it is possible to give a
formal definition of localized network:

Definition 1. A network of N agents is said to be localized (localized network) if there is
a set of relative transformations {gi; = (Ri;, Ti;)} between node i and node j such that,
when the reference frame of the first node is fixed to g1 = (Ry1,T1), all the other absolute
poses g; = (R;, T;), i = 2... N are uniquely determined.

This definition translates in graph theory language: for any path [from node 1 to
node 14, there is g; = g; o g1, regardless of the chosen path [1].

The set of relative transformations {g;;} that satisfy the consistency constraints given
in Definition 1 can be found following one of the approaches described in the next
paragraphs.

Centralized approach

Traditional large scale systems are characterized by a centralized architecture [2]. In this
scenario, all nodes in the network send the information gathered in the environment to
a central unit, which elaborates it in order to produce the required results.

Solving the camera localization problem via centralized approach implies that the
various devices dispatch the images acquired to the central unit so that it can process
them and estimate the pose of each agent, generally through the optimization of a
suitable cost function.

In literature, solutions exist that are classified into linear and non-linear methods.
The main advantage of the linear strategies is their computational efficiency, however
these methods suffer from lack of accuracy and robustness. On the contrary, the results
achieved through non-linear approaches are more accurate and robust but the compu-
tational burden is noteworthy and initial estimates are required [13].

34

3. Image-based localization

Pursuant to the classical approach, the pose estimation issue can be formulated as a
nonlinear least-squares problem whose goal is to iteratively find the pose of each device
in the network such that the sum of the square distances between the solutions and
the initial noisy measurements is the smallest. In other words, it is necessary to mini-
mize a certain error metric. The issue can be solved exploiting nonlinear optimization
algorithms.

The most popular techniques that are generally employed are the Gauss-Newton
method and the Levenberg-Marquardt method. The former operates by iteratively
linearizing the error equation around the current solution approximated by first-order
Taylor series expansion (in the beginning, the current solution coincides with the noisy
measurement) and then solving the linearized system for the next approximate solu-
tion. The latter can be considered as a compromise between the steepest descent ' and
the Gauss-Newton method as it behaves differently depending on the gap between the
current solution and the correct one [14].

It is important to underline that, in both cases, there is no guarantee that the algo-
rithm converges or it will converge to a correct solution, since the chosen cost function
may not be convex and therefore it can present more local minima. Specifically, the
Gauss-Newton method should quickly converge to the correct solution but only if the
initial approximate one is close enough to it. On the contrary, when the current solution
is not good (it is far from the correct one) and/or the linear system is illconditioned, the
algorithm may converge slowly or even fail [14].

Finally, it is worth noting that the localization issue for a camera network is often
considered within a large framework: the bundle adjustment, i.e. the problem of refining
a visual reconstruction to produce jointly optimal 3D structure and viewing parameters
(camera pose and/or calibration) estimates [15]. Classically, bundle adjustment can also
be formulated as a nonlinear least squares problem.

Distributed approach

The distributed algorithms do not require the presence of a central unit to which all the
devices in the network are linked. Indeed this approach differs from the centralized one
since the nodes are able to elaborate and share information with their local neighbors.
This property can be exploited to estimate a certain quantity as it happens in the
consensus procedures.

In particular, a generalization of the classical consensus algorithm is the essential idea
of the method proposed by Tron and Vidal in [1] to estimate the absolute poses for a
camera network. In the next chapter the algorithm is described in detail, while here the
attention is focused on the consensus strategy.

'The steepest descent method, also known as gradient descent method, is a first-order optimization
algorithm: to find a local minimum of a function, the procedure involves that one iteratively takes
steps proportional to the opposite of the gradient (or of the approximate gradient) of the function at
the current point.

35

3. Image-based localization

3.3.1| Average consensus algorithm

Let us consider a network made up of N agents, each of which is capable of communi-
cating only with its neighbors. A scalar state x;(0) € R is initially associated to each
node i € {1,2,..., N} in the network.

A distributed consensus algorithm relies on an iterative protocol followed by each agent
in the network to update its state until all nodes are in a consensus configuration, i.e.
zi(T) =aVie{l,2,...,N}, where « is referred as the collective decision or consensus
value of the network reached after T iterations [1].

In particular case of average consensus, the collective decision «a coincides with the
arithmetic mean of the initial states, that is

1
a=7I= NZ:EZ(O) (3.1)
=1
The protocol for iteratively reaching the average consensus value is given by

zi(t+1) = zi(t) +e Y (x(t) — m(t)), (3.2)

JEN;

where z;(t) denotes the state associated to i-th node during the ¢-th iteration, NNV; rep-
resents the set of nodes which are connected with ¢ in the network (see Equation (2.1))
and ¢ is a design parameter called step-size.

As far as this last parameter is concerned, it can be demonstrated that if the graph
associated with the network is connected and ¢ is less than the inverse of the maximum
degree of the graph, Ag = max; deg(i), then the nodes converge to the mean Zz, i.e.
limy—y oo zi(t) = = [16].

It can be shown that Equation (3.2) is a gradient descent step that minimizes the cost

functi
unction)

o(r1,22,...,TN) = = Z (zi —)%, (3.3)
(i,)€€
where (7, j) € £ implies that the sum is taken only on the terms ¢,j € V (set of nodes/
agents in the network) such that (i,5) € & (set of edges/ links between the nodes).
Furthermore, the global minimum of the convex function (3.3) is attained when all
states are in consensus configuration.

3.3.2| Riemannian consensus algorithm

The average consensus algorithm can be naturally extended to the case of Riemannian
manifolds as SO(3). This procedure is referred as Riemannian consensus [17].

Let (M, (-,-)) be a Riemannian manifold with metric (-,-) and let ¢ : M — R be a
smooth function defined on M. Considering an initial point x¢g € M, it is possible to
define a (steepest) gradient descent procedure along the geodesic, such that

z(t + 1) = expyy (—egrad, (z(t))), z(0) = xo. (3.4)

Practically, at each iteration ¢, a new estimate x(¢ + 1) is calculated starting from the

36

3. Image-based localization

current one, z(t), and moving in the opposite direction of the gradient with a step-size
¢ arbitrarily chosen (small enough).

These concepts can be applied considering M = SO(3). In this case, the function
cost (3.3) takes the form

(i,5)€€

N

o(r1,z2,...,2N) =

where the Riemannian distance substitutes the Euclidean one. Moreover, the consensus
value is obtained updating all nodes states via (3.4).

37

PROPOSED ALGORITHM

In this chapter, a solution to the localization problem is given. The algorithm proposed
is derived from the work of Tron and Vidal [1]. The authors have solved the problem
of finding a consistent localization for a N cameras network by defining a suitable cost
function and showing how it can be minimized on the space of rigid body transformations
i a distributed manner. Their strategy is based on the generalization of the existing
consensus procedure starting from noisy and inconsistent measurements, and takes ad-
vantage of the intrinsic non-Euclidean structure of the space of camera poses. Fxploiting
the structure of the algorithm described in [1], the interest here is focused mainly on
the initialization phase: new approaches are proposed with the purpose of improving the
whole procedure performances.

Contents
4.1. Imputsand Outputs o, 40
4.2. Initialization 0 0 o oo, 42
4.2.1. Frobenius norm method 42
4.2.2. Spanning tree method L0000 43
4.2.3. Multi spanning trees method 44
4.2.4. Multi spanning trees method with virtual camera 46
4.3, Steps . ¢ o e 48
4.3.1. Estimation of rotations 48
4.3.2. Estimation of translations L. 49
4.3.3. Complete estimation 0L 50

39

4. Proposed algorithm

YRl Inputs and Outputs

The inputs required by the algorithm presented in [1] are some initial noisy measure-
ments g;; = (Rij, tij) of the relative poses g;; = (R;;, T;;) between each pair of cameras of
the network with intersecting fields of view. The strategies introduced in Chapter 2 (cal-
ibration algorithms, Section 2.3) are two possible ways to recover some initial estimates
of the relative rotation R;; and relative translation #;; = T;/||T;;|, up to a normalizing
constant, between two cameras of the network with partially overlapping fields of view.

The outputs of the algorithm are, instead, the absolute poses g; = (R;,T;) of all the
devices that form the network, referred to the same world frame system.

As a consequence, according to the definition of localized network given in Chapter
3, the goal of the algorithm proposed by Tron and Vidal is to find a set of relative
transformations {g;;} that satisfy the consistency constraints cited in the Definition 1
and that, at the same time, are as close as possible to the initial estimates g;;.

To tackle the problem, a natural criterion suggested by the authors of [1] is a least
squares approach minimizing the sum of square distances. However, since the quantities
of interest are non-Euclidean, the distance to be considered is that defined by (2.17).
It is important to remark that the distance dg r(-,-) on SE(3) has been determined by
decomposing the space of rigid body transformations in the Cartesian product SO(3) x
R3, in which SO(3) is endowed with Riemannian metric. For this reason, considering
the least squares criterion and being g;; = (R;j, Tj;) and g;; = (Rij, Tij), a natural choice
for the cost function to minimize is the following one:

1 _
p=35 > d2 (g, Gi)
(i,5)€€
1 _ 5
=5 > (d(Ry, Ryj) +||T; = Ty ||*)- (4.1)
(i,9)€€

The purpose of the algorithm is to minimize ¢ but the consistency constraints given in
the definition of localized network (Definition 1) have to be satisfied. It is worth of notice
that these constraints are not distributed although they involve the entire network.

Therefore, in [1] the authors suggest to reparametrize each relative transformation
gi; with the absolute ones g; and g;: in doing so, the consistency constraints are auto-
matically satisfied even though it requires that communication is only possible between
neighboring nodes. This approach is endorsed by the equivalence expressed by the fol-
lowing proposition [10]:

Proposition 1. The following are equivalent:
1. The network is localized.
2. For any cycle l, the transformation along the cycle is g = (I,0).
3. There ezists a set of absolute poses g; = (R;,T;) such that g;; = gi_l °gj.

The proof of the proposition is not given here but it is available in [18]. Nonetheless, as
stated in [10], it is immediate to realize that, given the absolute poses g;, one can compute

40

4. Proposed algorithm

consistent relative transformations g;;; conversely, if the relative transformations are
given, there exists a set of g; such that each g;; factorizes as g; Lo gj-

Adopting the proposed formulation of the problem, a new challenge emerges: the
translation vectors can be estimated only within a scale factor. Thereby, it is necessary
to add others unknown quantities as new variables, i.e. the scale factors \;; such that
Tij =)\ijfz-j, where the vectors fij represent the normalized translations.

As a consequence, the cost function (4.1) has to be rewritten as

PURN AT D) = 5 Y & alor05.91)

(i,5)€E
- % (‘;g(dQR(R?Rﬁ Rij) + | R (T — T0) — Mgtz |1?)
= or({Ri}) + er({Ri} {Ti}, {Nij}) (4.2)

The cost ¢ is the sum of two terms: ¢p involving only the rotational part R; of the
absolute pose g; and @7 involving all the variables.

As far as the unknown scale factor {\;;} is concerned, it has to be positive and it is
responsible for an undesired side-effect. In fact, if the trivial solution T; =T}, Vi,j € V
and \j; = 0, V (¢,7) € & is substituted in (4.2), then the global minimum @7 = 0 is
achieved regardless of the value of the rotations. Hence, if any constraints on 7; or \;;
are imposed, then the minimization of the cost function (4.2) leads to solutions that are
not meaningful (e.g., all the translations collapsed to the same point) [10].

To settle both the questions, in [1] Tron and Vidal suggest to constraint the minimum
scale, i.e., A\;j > 1 V(i,j) € €. The authors underline that this constraint is global
because it involves all the nodes in the network; however, each node can enforce it
separately, hence making it distributed.

In summary, the problem to tackle can be rewritten as the non-linear program

min R AT, D

subject to Aj; > 1 V(i,j) € & (4.3)

In order to find a distributed and optimal solution for (4.3), two simpler subproblems
can be considered. First, an initial set of rotations has to be determined by optimizing
wr only and ignoring the translational component. Next, assuming the rotations are
fixed, an initial set of translations and scales has to be computed by optimizing ¢ only.
The final step (that can be neglected) involves the minimization of ¢ over all variables.

There are many reasons to pursue a multi-step solution [1]:

e the simpler subproblems can actually correspond to real localization problems;

e by breaking the analysis into two parts, one can gain a better understanding of
what the issues are in the solutions;

e minimizing the functions ¢ and @7 is easier than minimizing ¢, above all because
the complete cost function has multiple local minima so it is difficult to achieve
the correct one starting from a random configuration.

41

4. Proposed algorithm

In the next paragraphs the iterative procedure implemented to find the solution of
the problem (4.3) is described in detail: four steps are considered, i.e. initialization,
estimation of rotations, estimation of translations and complete estimation/refinement.
In particular, since in this work new methods to initialize the procedure are presented,
the follow section is entirely dedicated to this issue.

4.2 Initialization

The first step of the procedure proposed by Tron and Vidal consists, as usual, in the
initialization. In this specific case, the optimization algorithm works on absolute trans-
formations while the initial noisy measurements are relative poses: it is necessary to
determine the rotation matrix R;(0) and the translation vector 7;(0) at zero-th iteration
for each camera 7 which composes the network.

Since at the beginning the localization of the network is totally unknown, the initial
set of values is arbitrary, however the basic idea is to determine it close enough to the
optimal solution. In effect, the component of the cost function relative to the rotations
R is minimized through a Riemannian gradient descent: it is a non-linear optimization
strategy that leads to one of the possible local minima of the function, which may not
correspond to a correct. localization, even when the initial measures are without noise
(this can be easily verified empirically as suggested in [1]).

4.2.1 Frobenius norm method

In [1] a completely distributed approach, supported by simulation results, is presented.

Regarding the initial translations, the authors observe that they can prove the ex-
istence of the solution but not its uniqueness. To solve the translational ambiguity
connected with the choice of a global world frame, they suggest to impose the initial
average of the translations to be zero, e.g. by simply setting 7;(0) = 0 Vi € V.

As far as rotations are concerned, it is suggested to minimize a modified cost function
¢'p. Using the Frobenius metric on SO(3) to define the rotational component of the cost
function, @g can be replaced by

1 o1 -
Yr=15 > dr(R RjRij) =2 > [IRj— RiRijll7. (4.4)
2 - 2 -
(’L,j)eg (la.])eg

Thanks to this substitution, the calculation of the update equation for the rotations of
a certain node k is simpler because the Euclidean formula can be used in the computation
of the gradient:

¢ . y
one = 2 (Be—Rilt) + > (Re — Riltly). (4.5)
ko (ki)ee (i R)EE

In summary, in [1] the authors argue that
- it is experimentally proved that the function ¢/, is easier to minimize than ¢pg;

- the results found in this way are extremely close to the ground truth;

42

4. Proposed algorithm

- the function (4.4) is convex;

and, consequently, they conjecture that the function ¢/, does not have local minima but
only one global minimum that is reached at the end of its minimization procedure.
However, this conjecture seems to be contradicted. Although it is not possible to
prove it analytically, there are empirically demonstrated cases in which the particular
symmetry in the displacement of cameras in the network and/or the communication
protocol adopted and/or the distribution of errors do not allow to converge to a solution.
Therefore, in this work the attention is focused on alternative initialization approaches.

4.2.2| Spanning tree method

An initialization strategy briefly cited in [1] but widely discussed in [10] is the spanning
three method. In this procedure, there are three steps to follow:

1. Choose any node as a reference (e.g. node 1) and find a spanning tree that provides
the paths I; from node 1 to any other node ¢ in the network.

2. Set Ry(0) = I and set R;(0) = R;(0)Rj; for all i € V, where j is the parent node
of 4 in the designed spanning tree.

3. Set T1(0) = 0 and set T;(0) = R;(0)T}; + T;(0) for all i € V, where j is the parent
node of ¢ in the designed spanning tree.

As underlined in [10], it is important to observe that, intuitively, the relative trans-
formation errors are composed and the imprecision increases by growing the distance of
the i-th node from the reference node (root); thus it is advisable to create a spanning
tree as balanced as possible.

To better understand the method proposed, an example is given. Let us consider
a network made up of six cameras, represented by the graph reported in Figure 4.1
(a). It is a particular topological case since each device can communicate only with its
neighbors: the graph associated to the network is circulant !.

Camera 1 Camera 2
Camera 6 Camera 3
Camera 4 °
Camera 5
(a) Graph based network (b) Spanning tree

Figure 4.1.: Example of single spanning tree initialization method

YA circulant graph is an undirected graph that has a cyclic group of symmetries, i.e the i-th vertex is
adjacent to the (i + j)-th and (i — j)-th vertices for each j in a list [.

43

4. Proposed algorithm

The Figure 4.1 (b) shows a possible construction of the spanning tree for the graph
analyzed: it has the node 1 as root (so this node is chosen as reference) and two branches
constituted by three and two nodes respectively. Evaluating this configuration, the initial
values for rotations and translations are:

e Ry(0) =TI and Ty (0) = 0;

e Ry(0) = R1(0)R12 and T5(0) = Ry(0)T12 + T1(0);
e R3(0) = Ry(0)Ra3 and T3(0) = Ry(0)Th3 + T»(0);
e R4(0) = R3(0)Rsy and T4(0) = R3(0)T34 + T3(0);
e R5(0) = Rg(0)Rgs and T5(0) = Rg(0)Tgs + T6(0);
e Rg(0) = R1(0)Ry6 and Ty(0) = Ry (0)T16 + T1(0).

The initialization method based on the construction of a spanning tree has the advan-
tage of being robust and fast. Nevertheless it has also some disadvantages.

First of all, it could appear partially distributed; in fact the reference node must be
chosen manually and this operation can fail. Secondly, the initial set of translations is
computed without considering the scale factors A;;. However these variables should be
set in a reasonable manner and on the basis of the information a priori known about
the environment in which the camera network is located. For example, in a perimeter
surveillance framework, it is reasonable to assume \;; = 1 V(i,j) € £ given that the
cameras are probably almost equidistant, in this way it is possible to obtain the whole
estimation except only for a scale factor A [10].

4.2.3 | Multi spanning trees method

An alternative solution for the initialization step is to use a strategy based on the con-
struction of multiple spanning trees.

This approach relies on two important assumptions. The main one concerns the noisy
measurements of the relative poses of the cameras in the network. Indeed, in general
gij is different from gj‘il for all (i,7) € £. The second one is the need of knowing the
absolute pose of one device (e.g. camera 1) in the network in order to set the reference
frame.

Under these hypothesis, the first step of the procedure is the determination of all the
possible different paths that connect the reference node to any other node in the graph
associated with the network.

Analyzing a certain path P that links reference node 1 to the generic one i, it can be
shown that it is possible to identify 2"* initial absolute poses for the camera i, where n;
is the number of edges that separate 1 from ¢ in the chosen path. In fact, for each edge
of the path, the pose of the previous node, p, can be exploited to compute the pose of
the next one, s, in two ways: either using g, or using gs_pl. As consequence, applying
the same reasoning for all the m paths from node 1 to node 1, it is feasible to individuate
Y ope 2™ initial absolute poses for the camera i.

To clarify the various steps of the procedure described, it is useful to give an example.

44

4. Proposed algorithm

Let us consider the network of four cameras, whose associated graph is displayed in
Figure 4.2. Also in this case, a circulant graph is evaluated.

Camera 1

\

Camera 4 Camera 2

Camera 3

Figure 4.2.: Graph based network

All possible paths that link node 1 to any other node of the network are reported in
Figures 4.3 (a), (b) and (c). Observing them, there are

e 2! + 23 = 10 initial poses for the camera 2,
e 22 4+ 22 = 8 initial poses for the camera 3,

e 23 + 2! = 10 initial poses for the camera 4.

o 2
\@
3)

(a) Paths from 1 to 2

2)

O
3 * 3

(b) Paths from 1 to 3 (c) Paths from 1 to 4

Figure 4.3.: Paths from node 1 to any other node of the network

The last step of the initialization procedure is to compute the average of the initial
poses so obtained.

The multi spanning trees method has the great advantage of consistently reducing the
uncertainty of the initial poses with respect to the strategy based on the construction
of a single spanning tree. However, the scale factor issue is not solved and once again
one of the cameras of the network, whose pose has to be known, maintains a privileged
role being chosen as the reference node at the beginning of the procedure. Moreover,
the multi spanning trees method is not fast as that illustrated in 4.2.2.

45

4. Proposed algorithm

The slowness of the procedure is essentially caused by the fact that the determina-
tion of multiple spanning trees requires a certain computational burden that increases
proportionally to the number of possible configurations, which is in turn proportional
to the number of devices in the network. Furthermore, the execution speed is penalized
by the fact that the average of the rotations is not arithmetically calculated as for the
translations. Since the rotational matrices belong to the group SO(3), the result of the
average operation is constrained to be again an orthogonal matrix.

To solve the aforementioned issue, it is advisable to reason as in [19]. In this article, the
search of the mean of a certain number of rotational matrices is tackled as a minimization
problem: given N rotations R;, it is necessary to find the rotation R in correspondence
to which a specific cost function takes the minimum value. It is reasonable to choose as
the function to minimize as the sum of the squares of the distances between the different
values R; and R, i.e. to operate once again according to the least squares criterion.

Exploiting the geodesic metric (2.11), the cost function can be expressed by

C(R) = i d%(R, R;). (4.6)

i=1

The minimization of (4.6) is known in literature as the Karcher mean of the rotations.
In [20] a convergent algorithm to find this mean is presented: the main idea is computing
the average in the tangent space and then projecting back onto the manifold SO(3) via
the exponential map.

Algorithm 1 Computing the rotation mean
1: Set R := Ry. Choose a tolerance € > 0.
2: loop

Compute r = % SN log(RTR;)

4 if ||r|| < € then

5 return R

6: end if

7

8

@

Update R = exp(r)

: end loop

Implementing the Algorithm 1 for each device i of the network, an initial set of rota-
tions {R;(0)} can be obtained. On the other hand, as far as translations are concerned,
the simple arithmetical mean has to be computed for every camera in order to draw the
initial values T;(0), Vi € V.

4.2.4| Multi spanning trees method with virtual camera

To overcome the problems related to the choice of the reference node, it is useful to
proceed by opting for a multi spanning trees method that differs from the strategy
described in the previous paragraph as it includes an additional artificial node in the
network, referred as virtual camera.

The peculiarity of this node is that it is able to communicate with all other devices
in the network. In other words the knowledge the relative poses between the virtual

46

4. Proposed algorithm

camera and all the other ones present in the network is available. In graph theory, this
assumption translates into the inclusion of a node having an edge that links it to every
other node in the graph, i.e. the virtual camera is represented by a vertex adjacent to
every other vertex in the graph. This request is key in the procedure considered here
since it is based on the construction of different spanning trees, all with the same root,
namely the virtual camera.

In practice, the decision of maintaining the same root results in fixing a certain ref-
erence system against which the poses are absolute certain, which is why the position
of the artificial node is not entirely irrelevant because it determines the location of the
observer in the scene.

An example is useful to clarify this. Let us reconsider the graph in Figure 4.1 (a): the
first thing to do is to insert the artificial node in the network, as shown in Figure 4.4.

Camera 1 Camera 2

Camera 6 Camera 3

Camera 4

Camera 5

Figure 4.4.: Graph based network with artificial node

Then, it is necessary to build various spanning trees: it is important setting always
the virtual camera as the root. Figure 4.5 shows a few possible solutions. It is worth
noticing that the considered trees are perfectly balanced: this choice is motivated by the
previous observation about the propagation of the errors.

Figure 4.5.: Spanning trees

47

4. Proposed algorithm

The initialization is concluded by computing the average of the values of the rotations
and translations obtained by building the various spanning trees. To calculate the means,
it is necessary to proceed as illustrated in Section 4.2.3.

The multi spanning trees method which involves the introduction of a virtual camera
is not much faster than the strategy based on the construction of multiple spanning
trees without the addition of the artificial node. The motivation is the fact that the
greater computational load is represented by the the construction of the trees and by
the calculation of the averages. Nevertheless, the method presented in this paragraph
has the advantage of being fully distributed: no camera is chosen as the reference, as
the point of view of the observer is a priori imposed.

Steps

The main steps of the algorithm proposed by Tron and Vidal are the separate estimations

of the absolute rotation and translation for each device in the network. The procedure
also includes a final step in which the cost function ¢ is optimized with respect to all
the variables of the localization problem.

The algorithm thus consists in three distinct cycles for, whose number of iterations
may be different. In particular, the last step is generally performed a smaller number of
times, if not completely ignored since it often leads to worsening the estimates obtained
previously.

4.3.1 Estimation of rotations

The first subproblem to be tackled is the estimation of the rotational part R; of the
absolute pose g;. In [1] the authors propose a distributed and iterative procedure that
uses the framework of consensus algorithm as the key idea. The principal innovation
is the need to replace the Euclidean gradient descent with the Riemannian gradient
descent, relative to the space of rotations.

The proposed algorithm proceeds iteratively in two steps until convergence.

Given the functional
1 .
@R({RZ}) = 9 Z d%%(RzTRj’Rij)a (47)
(i,9)€€

1. Each node k of the network computes the Riemannian gradient of ¢ with respect
to its rotation Rj. This operation can be carried out using (2.16) as

gradg, wr = — Ry Z [log(RfRZRﬁ-) + log(R{RiRg,;)]. (4.8)
(k)€€

In [1] the authors emphasize the fact that the computation of gradpg, pr involves
a sum over nodes ¢, which are neighbors of node k only. Therefore a distributed
approach can be enacted. Moreover, it is worth of notice that the result of (4.8) is
a vector that belongs to the tangent space of Ry.

48

4. Proposed algorithm

2. Each node k of the network needs to update its rotation moving along the geodesic
defined by (4.8). Specifically, if Ry(t) denotes the estimate of Ry at the ¢-th
iteration, then Ry (t+1) is determined by moving along the geodesic in the direction
—gradp, ;) with a properly chosen step-size €.

The update equation can be written as
Ri(t+1) = eXka(t)(—g grade(t)LpR). (4.9)

The number of iterations to execute must be fixed a priori. It needs to be not too high
to avoid slowing down the algorithm but it also needs to be not too low otherwise the
final estimates are not enough precise (the cost function does not reach a value enough
close to the minimum).

4.3.2 Estimation of translations

The second subproblem to solve is the estimation of the translational part T; of the
absolute pose g;. The issue can be tackled by using an approach similar to that presented
for the rotations, i.e. minimizing the cost function @1 using projected gradient descent.

The component @7 of the original cost function involves all the variables of the local-
ization problem:

(R AT Dl = 5 3 IRF(T; = T0) = M. (4.10)
(i,)€€

For this reason, the rotations { R;} are assumed fixed in order to reduce the complexity
of the problem. The still unknown variables are {T;} and {\;;}.
First, the gradient of o7 is computed with respect to T} for each node k of the network
as 5
T ~ ~
L > [2(Tk = T) + MeiRilrs — Aix Ritin]. (4.11)
0Ty, ,
(k)€
Then, similarly, it is determined with respect to \j; for each edge (I, k) of the network
as
der

T =\ — (T) — T T Rytyy. 4.12
D i — (T — Tk)" Rytp (4.12)

Finally, the descent gradient is exploited in the calculation of the update equations
of both translation and scale factors. Concerning the latter ones, it is important to pay
attention to the constraint imposed on the scale factors: \j; > 1V(4,5) € £.

As a consequence, the updating equations are

oot

Tk(t + 1) = Tk(t) - €8Tk(t), (413)
Ae(t + 1) = max {1, Ai(t) — € a‘zi@) } : (4.14)

The parameter € indicates the step-size that can be chosen in an appropriate manner
to guarantee the convergence of the procedure to the global minimum. Analogously, it

49

4. Proposed algorithm

is necessary to set the number of the iterations following the same reasoning carried out
for the rotation estimates.

4.3.3| Complete estimation

The final step of the algorithm proposed by Tron and Vidal provides for the minimization
of the original cost function ¢.

The procedure to follow is a combination of the methods illustrated in the previous
paragraphs. In fact, it is necessary to:

1. Find a consistent set of rotations by minimizing ¢p.

2. Find a consistent set of translations and scale factors though the optimization of
w1, while the rotations are kept fixed.

3. Minimize ¢ in order to refine all the previous estimates.

It is fundamental to observe that if the function to minimize is ¢ then the gradient
with respect to Ry, is different from the one in (4.8). In fact, it contains an additional
term coming from ¢, i.e.

gradp, ¢ = gradp, pr+

+ > Ail(Ty — Tt — Rita(T; — Ti) " Ry). (4.15)
(k)€€

The updates then follow the gradient as before.
To summarize, the Figure 4.6 shows the entire structure of the proposed algorithm
remarking the inputs and the outputs of the various optimization steps.

Initial noisy
estimates

v
y 1% step

Initialization » Riemannian
gradient

descent of ¢,

(R}
Y

2" step
Projected
gradient
descent of ¢

{t. Ay}

3rstep

Combined (R}
gradient

descent of ¢

Figure 4.6.: Schematic representation of algorithm proposed

50

FREQUENCY DOMAIN TECHNIQUE

This chapter is devoted to the presentation of an original approach for reconstructing the
relative poses in a camera network. This technique operates in frequency domain exploit-
ing the Fourier transform properties [21]. The algorithm has been proposed by Cortelazzo
et al. in 2002 [11]: the camera system localization problem is tackled by decoupling the
estimate of the rotation parameters from the estimate of the translation ones. This op-
eration is made possible by exploiting the frequency domain, as demonstrated by the first
part of the chapter in which the main properties of the Fourier transform are introduced.
In the second part, the solution to the localization problem is minutely described.

The decision to dedicate an entire chapter to this method is justified by the fact that
the initial idea of this thesis work was to merge the algorithm proposed by Cortelazzo et
al. with the one conceived by Tron and Vidal. More specifically, the strategy operating in
frequency provides as output a set of relative poses. These can be used as inputs in the
iterative procedure described in Chapter 4 instead of results arising from the calibration
algorithms. The belief is that the algorithm in [11] produces more reliable estimates im-
proving also the accuracy of the Tron-Vidal method and reducing the number of iterations
to make the execution more faster. Truthfully, many problems have appeared concerning
the code in frequency domain, therefore it has not be possible to validate the theoretical
results through the simulations on real or synthetic camera network. For this reason this
combined solution is at the forefront of future work.

Contents
5.1. Fourier transform 00000, 52
5.2. Localization problem 53
5.2.1. Problem statement L o Lo 54
5.2.2. Estimation of rotation matrix 54
5.2.3. Estimation of translation vector 56

o1

5. Frequency domain technique

Fourier transform

A continuous time signal z(t), ¢ € R can be identified through its Fourier transform
(FT), which is itself a complex function of a real variable, defined as

X:R—C, X(k)=F]z(t) = /+OO z(t)e 92k gt (5.1)
—0o0
where the variable denoted by k has the meaning of frequency, the inverse of time.

The Fourier transformation can be inverted allowing to unambiguously determine the
original signal z from its transform X as they are tied by the following relation (inverse
Fourier transform equation)

+o00
x(t) = X (k)ed ™M dk. (5.2)
—0o0

The knowledge of the Fourier transformation (5.1) of a signal is equivalent to the
knowledge of the signal itself so it can be seen as an alternative manner to represent the
signal preserving its characteristics [22].

The Fourier transform has many properties that provide with a significant amount of
insight into the transform and into the relationship between the time-domain and the
frequency-domain description of the signal [23].

The following list itemizes only the principal ones, useful to better understand the
algorithm presented in the next section. In particular, let us denote the signals as z(t)
and y(t), while their FT are referred as X'(k) and Y(k) respectively.

e (Linearity) Given a signal ax(t) 4+ by(t) with a,b € R, its Fourier transform is
expressed as
aX (k) + bY(k), (5.3)

as it can be derived by applying the definition (5.1). The linearity property is
easily extended to a linear combination of an arbitrary number of signals [23].

e (Time Shifting) If the signal z(t) is time shifted by a quantity to € R, i.e. z(t—to),
then its F'T becomes
X (k)eI2mkto, (5.4)

This fact can be proved replacing ¢ by t — ¢y in the equation (5.1) and considering
the properties of the integral calculus. One consequence of the time-shift property
is that the magnitude of the Fourier transform for a time-shifted signal is not
altered [23].

o (Scaling) Let us consider the signal x(at), where a is a not null real constant. Its

Le(t) 9

This property follows directly from the definition (5.1).

Fourier transform is

e (Convolution) The convolution operation between two signals is expressed as (x *
Y)(t) = [T a(r)y(t — 7)dr = [T x(t — T)y(r)dT. Passing to frequency domain,

52

5. Frequency domain technique

it results

X(R)V(k), (5.6)
i.e. the Fourier transform maps the convolution of two signals into the product of
their FTs.

e (Product) Analyzing the previous property, it is easy to verify that the Fourier
transform of the product of two signal, x(t)y(¢), is the convolution result

(X« Y)(k). (5.7)

Because of duality between the time and frequency domain, the convolution in
time domain corresponds to a multiplication in frequency domain and viceversa.

The Fourier transform is a very powerful tool to analyze and process images, converting
the data from the spatial to the frequency domain.

In general, the mathematical representation of an image is a function of two spatial
variables, i.e. f(x,y). Consequently its Fourier transform is not unidimensional but the
frequency variable k is replaced by the frequency vector k.

More specifically, the value of the function f at a given point is the image intensity at
that point (spatial domain), whereas its transform may be considered a representation of
the signal associated with the rate of change of luminance in the image itself (frequency
domain). As the value of the spatial frequency increases, the Fourier transform denotes
the level of visual details contained in the image. As an example, the transform of a
blurred image is mainly localized at low frequencies, while the transform of an image
with minute details presents significant values at high frequencies [24].

In summary, it is important to emphasize that the Fourier transform of an image
contains the same information of the image itself: the two domains differ only in the
way in which information is represented.

Localization problem

The properties of the Fourier transform listed in previous paragraph are the key ele-
ments of the algorithm proposed by Cortelazzo et al. [11] in order to solve the problem
of reconstruction of the relative poses for a camera network. The authors adopt a fre-
quency approach that allows decoupling the estimate of the rotation parameters from
the estimate of the translation parameters. In [11] the efficiency of the algorithm is
clearly confirmed by the results of extensive testing.

The procedure operating in frequency domain is based on three steps. The first two
steps are dedicated to the estimation of the rotation parameters exploiting a convenient
representation and the projection of the magnitude of the Fourier transform. The last
step is necessary for the recovery of the translational part of the pose that occurs using
a standard phase correlation technique after the compensation for rotation in one of two
views.

As it was underlined in the introduction, the initial idea of this work was to take
advantages of the results reached by this original method using them as inputs for the

93

5. Frequency domain technique

Tron-Vidal algorithm with the purpose of achieving a more accurate estimate of the
camera absolute poses. The Cortelazzo procedure, in fact, offers many advantages.

First of all, it is a featureless algorithm which exploits the information about the
geometric regularity captured by Fourier transform without the need of knowing the
correspondence between two views. Then, it allows to split a 6-parameters problem into
two separate 3-parameters problems and to converge to a global solution. Finally, it can
operate automatically requiring the common region between adjacent views as inputs:
this information can be obtained simply following a preassigned taking procedure.

5.2.1 Problem statement

Let s1(x) and s2(x), x = [m Yy z}T € R3, be the two maximally overlapping portions of
range data sets relative to the free-form surface of a 3D rigid object. The two surfaces,
supposed to be known a priori from the adopted 3D scanning procedure, are related
through a rigid rototranslational motion as

59(x) = s1(R7'x = T), (5.8)

ie. s1(x) is rotated according to the matrix R € SO(3) and then the result of this
operation is translated by the vector T' € R? obtaining s2(x).

In order to avoid the mathematical difficulties about the Fourier domain, the two com-
mon regions s;(x) and sa(x) are convolved with a suitable Gaussian kernel obtaining the
3D companion solids /1 (x) and l2(x) that ideally maintain the same spatial information as
the corresponding 3D surfaces. For example, defining the kernel h(x) = eolxl* 5 eR,
a small solid wighted region is created around surface data so that the weight decreases
proportionally to the distance from the surface itself.

Passing to the frequency domain, the Fourier transformation of the relationship be-
tween [1(x) and lo(x) = l;(R™'x — T) yields

Lo(k) = L£1(R'k)e 2k BT (5.9)
where |La(k)| = |£1(R7'K)]|. (5.10)

It worth of notice that the estimation of the rotational part can be decoupled from
the estimation of the translation part because it conditions only the magnitude of the
Fourier transformation according to the shift property. In this way , it is possible to
estimate R and then T, simplifying the original problem involving six parameters into
two 3-parameters problems.

5.2.2 Estimation of rotation matrix

The first two steps of the procedure suggested in [11] are employed to estimate to ro-
tation parameters. The formalism adopted to express R € SO(3) is the equivalent axis
representation: the 3D rotation is described as a single rotation of amplitude ¢ around a
single axis having the direction individuated by the unit vector w = [wz Wy wz] ! € R3,
|lw|| = 1. More details about this representation are available in Appendix B, however

o4

5. Frequency domain technique

it imposes R = ¥, Q = Q(w).

The first step of algorithm in [11] coincides with the estimation of the rotation axis
exploiting the relationship between the Fourier transform magnitudes. In fact, it is easy
to prove that the direction given by the vector w belongs to the locus A(k) = 0, where

A(k)

|| r£2<k>r‘ _|16m)] LR 1K) (5.11)

1 Li(0) L2(0) || £1(0) L£1(0)
As consequence, to find the rotation axis it is necessary to

1. express the difference function A(kg,ky,k.) in spherical coordinate system as

AS(kpak¢7k6)§

2. determine the radial projection of Ag(k,, ke, kp), i.e. identifying the function
Pk, ko) = fooo As(kp, ky, ko) dkp;

3. minimize the quantity P(ky,kg) (e.g. through a simulated annealing method) in

A

order to obtain the angular coordinates estimate (¢, 6);

. . T
4. compute the estimate of the vector w as © = {cos psinf singsinf cos 0} .

It is worth noticing that the use of the radial projection simplifies the search in R? for
a line of the locus A(k) = 0 into the minimization over R? of a surface [11].

The second step of the procedure is the estimation of the rotation angle.

To start, it is convenient to define a new coordinate system (u,v,w) with an axis in

direction of @, i.e.

ky —sing —cos 6 cos ¢ sin 0 cos %)
u= |v| =0T ky|, where C=| cos¢p — cosfsing sinfsing| . (5.12)
w k. 0 sind cos

Using the notation |£,(u)| = |£,(Cu)|, n = 1,2, the relationship (5.10) about the
Fourier transform magnitudes can be rewritten as

|L2(u)| = |L1(CTIR™ Cu)| = |L1(Ru(¥)u)], (5.13)

or more explicitly, as

U costy siny 0| |[u r(1) U
Lo v =Ly —siny cosy 0| |w =L l)] v) (5.14)
0 0 1 w

It is important to observe that the matrix R, (1)) belongs to the group SO(3), as it is
a rotation matrix. Analogously, the submatrix r(y) € SO(2).

To determine the rotation angle v, it possible to proceed similarly to what previously
done, projecting the Fourier transform magnitudes along the w-axis

foo
pn(u,v) :/ |La(u,v,w)|dw, n=1,2. (5.15)

—00

95

5. Frequency domain technique

This operation allows to reduce the problem to a planar rotation estimation. Further-
more, the projection can be used again to cut down the dimensionality of the issue. In
fact, defining the polar reference system (7, v) related to the system (u,v), it is possible
to express the quantity pp(u,v) as pn(r,v) = pp(rcosv,rsinv), n = 1,2 and then to
compute the 1D radial projections

falv) = /Oooﬁn(r, vydr, n=12 (5.16)
such that fo(v) = fi(v —). (5.17)

The original 2D problem of estimating the rotation angle 1 is turned into the problem
of estimating a 1D translation shift (of value 1) and this issue can be solved by a
1D phase correlation technique [11]. This method is based on the Fourier transform,
therefore, because of its Hermitian symmetry, the estimates 1/3 and @ZAJ + 7 are both valid
solutions.

The value 1& is computed analyzing the phase correlation function ¢(v). This last
one is derived considering the relationship (5.17) in the frequency domain, Fy(k,) =
Fi(k,)e 72" % and then computing the inverse Fourier transform of the normalized
product, i.e.

q(v) =F []Fl(kV)FQ(kV)J
_ f_l[e—jQWku¢]

= 8(v —). (5.18)

The ambiguity on the correct rotation matrix is removed in the last step of Cortelazzo
algorithm.

5.2.3 Estimation of translation vector

Before proceeding with the estimate of the translation vector, it is necessary to under-
stand which of the possible candidates]:21 — ™ and]:22 — 0+ for the rotation
estimate is the correct one.

Let us first assume that the estimate of rotation axis and angle are not biased by any
errors (Q =Qand ¢y = 1) so that R1 = R and consider the two new signals

di(x) =L(Rix) =L(R'Rx —T) =l1(x—T), (5.19)
dy(x) = lp(Rox) = [} (R Rox — T (5.20)
= I (e” WMy —T) = 11 (™" x — T). (5.21)

It can be observed that the first signal coincides with /1 (x) translated by T, while the
second one is a version of /;(x) modified through the translation 7' but also through a
reflection, i.e. a rotation of .

The authors of [11] suggest to use a phase correlation type algorithm for estimating
the shift T as well as for solving the disambiguation problem.

56

5. Frequency domain technique

Similarly to the second step, it is necessary to define the normalized ratios

_ LK)Di(k) jomer _ Li(k)Dy(k)
®y(k) = m = 2T and By(k) = m (5.22)

where D,,(k) = F[d,(x)], n = 1,2, and then to evaluate their inverse Fourier transforms.
It is important to note that

¢1(x) = F 1@ (k)] = d(x — T), (5.23)

while ¢o(x) = F~[®2(k)] is not an impulsive function. As a consequence, the location
of the peak of ¢;(x) suggests the estimate of the translation vector T, moreover the
comparison between ¢1(x) and ¢2(x) clarifies which is the correct rotation matrix.

In summary, it is necessary to underline that this last step is based on the hypothesis
of absence of noise in order to simplify the computation. In real situations the estimation
of rotation parameters are inevitably affected by uncertainty, furthermore if the errors
are not too large then the discrimination criterion is still valid. In any way, it is possible
to conclude that the most critical part of the algorithm is the estimate of the rotation
matrix and the error on R is proportional to the error on translation vector subsequently
estimated [11].

o7

VALIDATION

This chapter is devoted to the validation of the algorithm previously proposed. First
of all, some analytic results are derived concerning the optimization of the part of the
cost function related to rotations. It is important to put in evidence that the reasoning is
conducted in a 2D scenario because it is not possible to find an analytic formulation of the
problem in the three-dimensional case. Considering a determined case study, the results
analytically obtained are compared with the solution reached through the tmplementation
of the algorithm. This approach allows to gain better insights in the iterative procedure
and to asses its validity and correctness in a simplified scenario. In the second part of
the chapter, the performances of the whole algorithm described in Chapter 4 are tested
simulating different setups in Matlab environment. Particular attention is devoted to
the analysis of the differences that arise from the use of various initialization strategies.
Finally, in the last part of the chapter a real setup is evaluated.

Contents
6.1. Analyticresults e e 60
6.1.1. Casestudy 62
6.2. Simulations L L e 67
6.2.1. Initialization methods comparison: SST vs MST 68
6.2.2. Initialization methods comparison: SST vs MSTVC 70
6.2.3. Initialization methods comparison: MST vs MSTVC 73
6.2.4. Algorithm implementation: different initialization methods 74
6.2.5. Algorithm implementation: noise effect 7
6.2.6. Algorithm implementation: additional communication links 81
6.2.7. Algorithm implementation: step-size setting 87
6.3. Experimental results on a real scenario 90
6.3.1. Experimental results: convergence 92
6.3.2. Experimental results: noise effect 95
6.3.3. Experimental results: additional links 99

99

6. Validation

Analytic results

The analysis of the algorithm proposed in Chapter 4 is particularly interesting when
the degree of freedom of the localization problem is reduced to 1, i.e. a 2D scenario is
considered. In this case, the optimization of the rotational part of the cost function has
a nice analytic formulation. It is also worth noticing that in the two-dimensional case
the function ¢gr converges to the same solution obtained with a centralized approach;
meanwhile, when dealing with 2 or 3 degrees of freedom in the space of rotations, the
optimization functional presents multiple local minima: for these reasons, only in 2D
space the minimum can be found analytically.

Using the notations introduced in Chapter 2 about the Riemannian metric, the func-
tion g for a N cameras network can be rewritten in a more explicit form:

1Y 5
pr=752 > dr(R/R; ki)
=1 (ig)ee

N
= 7% Z Z trace {logz(RjTRiRij)} . (6.1)

=1 (i,j)€€

It is a well-known fact that SO(2) = {R € R?*2: RTR = I, det(R) = +1}, the Lie
group of rotations in 2D space, is isomorphic to the circle group T = {z € C: |z| = 1},
ie. SO(2) ~ T [10]. Indeed, denoting with § € [—m,) the angle of rotation, there exists
the following biunivocal correspondence

TSz it [COSQ sin 0

_sind cos 9] = Ry € SO(2). (6.2)

Exploiting this isomorphism existing in 2D case, it is immediate to realize that the
geodesic distance between Ry, , Rg, € SO(2) coincides with the length of the arc that
links the points z; = /%1, 2z = €792 € T set on the unit circle. Whereas, the Frobenius
distance is represented by their chordal distance. A graphical interpretation of these
relations is presented in Figure 6.1.

Figure 6.1.: Graphical representations of Riemannian and Frobenius distances on SO(2) ~ T

60

6. Validation

After these premises, it is natural to introduce 6; as the angle of rotation given by the
unknown matrix R; € SO(2) and ;; as the angle of rotation of the noisy measurement
given by RZ] Hence, a single term of the cost functional (6.1) can be written as

1 -
f(0:,6;) = — g trace {10g2(RTRiRij)}
1 cos(f; — 9 sin(6; — 6,) cosBii sin b
= —7t 1 K3 7 Z;? J’]
2 Tace{ og ([— sin(6; — 9 cos(6; — Oj)] l— sinf;; cos l%]) }
= _ltrace {log ([cos(6 —0; + 913) sin(6; — 0; + 9:”)) }
2

— sm 9 — 9 + 911) COS(QZ' — 9]' + 923)
- 12
L (6 — 0; + 0ij) 5\
-t =(0;, —0; +0;;)°. .
5 race{[_(ei_9j+9ij) 0 (i+ 0i5) (6.3)

The very simple form assumed by f(6;,6;) is obtained observing that the principal

logarithm of a matrix Ry € SO(2) has a close-form expression, i.e.

0 6

log Ry = l_e 0

] , 0e[-mm). (6.4)

As a consequence, the summation (6.1) can be expressed as a function of the angles
of rotation

N
=52 > (6i—0;+6;)? (6.5)

i=1 (i,j)e€

[\3\»—!

)
=1

and the problem to tackle turns into minimizing the convex function (6.5) with the only

ST 1(0:,65)
J)EE

l\')M—t

constraint ¢; € [—m,7), i. e.

Z > f(6:,65). (6.6)

96[71'# 1()ee

To compute the global minimum (that corresponds to the local one), it is necessary
to calculate the gradient and the Hessian of ¢g:

)
Vier= 28— S (0= 0;+0;) — S (6, — 6: +0;), (6.7)
00; 2
(Z7J)Eg 1,])65

2deg(i) if i=}j
[H,,)ij = gg)g ={ -9 if i#jand(i,j) €& (6.8)
0 otherwise
It results that H,, = 2L, i.e. the Hessian is twice the Laplacian matriz of the graph
G associated to the network. The matrix L is one of the possible representation of G
and it is positive semi-definite, as its eigenvalues are real and non-negative.

Therefore, the minimum can be found by imposing the gradient V;pr equal to zero
for all i € V, i.e. by solving the system of linear equations

Vier=0,¥ieV =— 2L0=0, (6.9)

61

6. Validation

where 8 € RY is the column vector of the angles 6;, while 6 € RY is the one in which
the quantities > ; jjee 0j; — 2 oGij)eE 0;; are stacked.
From linear equations theory, it is possible to demonstrate that if § C I m(L) then

the Equation (6.9) always admits solutions. In this case, there are infinitely ones
parametrized by

1 .- 1
0" = 5LTa +5(I - L'L)x, (6.10)

where LT denotes the pseudoinverse of the matrix L, x € RN and (I — LTL)x € ker(L).

To conclude, it is essential to underline that 8* = %LTé represents the minimum norm
solution but it is not always the best solution as it can be verified from the analysis
of the following case study. The same considerations apply when considering the full
R € SO(3) matrix but with only one degree of freedom 6.

6.1.1| Case study

Let us consider a 2D scenario with four cameras. Figure 6.2 displays the configuration
of the network: the green triangles represent the cameras, while the blue lines identify
the communication links between the devices.

Camera 3

y—axis [m]
S

< Camera4d Camera2 >

Camera 1

Figure 6.2.: 2D network

It can be observed that each element of the network is capable of exchanging informa-
tion only with its neighbors, so the system is associated to a circulant graph. Moreover,
the devices are placed with a particular symmetry as they are at the corners of a rhom-
bus. Specifically, each camera is oriented in order to form angles of 90 degrees with its
neighbors: the rotations have been defined to occur only on the xy plane and they can
be identified by a unique angle, as suggested in the previous paragraph.

62

6. Validation

More specifically,

B [cos(0°) sin(0°) |10

= | —sin(0°) cos(Oo)] B [0 1] (6.11)
(
(

B [cos(—90°) sin(—90°) 10 —1
= | —sin(—90°) cos —900)] B [] (6.12)

_ _cos(—ISOO) sin(—180°)| (-1 O

1= | sin(-130%) cos<—180°>][o —1] (6.13)
_-cos(—270°) sin(—270°)| |0 1

= | sin(-270) cos<—270°>1_ l—1 o] (6.14)

Exploiting the relationships defined in Chapter 2 concerning the kinematics of the
cameras, it is possible to determine the relative poses of the devices from the absolute
ones that are manually imposed. In addition, thanks to the Matlab functionalities, the
calculated relative poses can be made noisy by adding Gaussian noise with a certain
variance to the relative angles. In this way, the relative noisy poses required as inputs
in the algorithm described by Tron and Vidal are available.

It is therefore possible to implement the algorithm described in Chapter 4. The
initialization is fulfilled by building a single spanning tree having node 1 as the root and
two unbalanced branches made up of nodes 2-3 and node 4 respectively. The choice of
using this method, based on the construction of a single spanning tree, is justified by the
fact that it is the fastest strategy, moreover the purpose of the analysis is independent
of the strategy used for the calculation of the initial absolute poses.

Real poses
A |nitial estimates
A Final estimates

Camera 3

Camera 4 Camera2 =

y—axis [m]
N

x—axis [m]

Figure 6.3.: Implementation of Tron-Vidal algorithm on 2D network

63

6. Validation

Figure 6.3 shows the result achieved by implementing the algorithm discussed earlier
for the part related to rotation estimates, thus ignoring the translations and the scale
factors which remain unaffected throughout the simulation. In order to get an accurate
solution, the number of iterations to be performed is set to 1200, while the step-size ¢ is
fixed to 0.01.

Indeed, the visual information provided by Figure 6.3 not is particularly meaningful:
the initial, final and real poses slightly deviate as the generation of noisy poses has been
obtained by considering a variance of only five degrees on the real relative angles.

In order to provide a measure of the effectiveness of the algorithm is useful to introduce
the mean error on rotations, eég. This performance index is defined as

1)
€r = NZHRi — Ri|lF, (6.15)
i=1

where N is the number of cameras in the network, R; denotes the real rotation of the
i-th camera and }A%l indicates the final estimated rotation of the i-th camera.

Similarly, the error can be evaluated individually for each camera rotation consider-
ing the Frobenius norm of the difference between the real measurement and the final
estimate, i.e.

er; = ||Ri — Ril|F. (6.16)

The performances of the algorithm in terms of errors are illustrated in Table 6.1: it
can be highlighted a small improvement on er at the end of the execution.

€R €R, €R, €R; €R4
Initial estimates 0.185 0 0.440 0.275 0.025
Final estimates 0.173 0.213 0.295 0.054 0.128

Table 6.1.: Errors on rotations obtained implementing the Tron-Vidal algorithm on 2D network

The most significant result of ongoing analysis is the value assumed by the cost func-
tion at the end of the iterative procedure: ¢p is monotonically decreasing towards the
convergence value 0.085 as shown in Figure 6.5.

It can also be followed the analytical reasoning exposed in the previous paragraph: to
do so, it is necessary to define the values of the Laplacian matrix L and the vector 6.

Explicitly,
2 -1 0 -1 041 + 021 — 019 — 014
-1 2 -1 0 ~ §12 + 9~32 - 9~21 - 523
L= and 0= |- ~ ~ .
0o -1 2 -1 B3 + €43 — U332 — O34
-1 0 -1 2 014 + 034 — 041 — 043

It is useful to note that all the noisy relative angles éij have a value of approximately
ninety degrees, the angles 04; and 014 except since it is necessary to add +360° and —360°
respectively because going along the network a full circle clockwise or counterclockwise
is executed.

64

6. Validation

The optimal estimation is obtained by applying the formula (6.10), after converting
the measures of the angles from degrees to radiants. It results

2.386 9,386 0 0
0.871 —92.386 —1.515 —86.810

0* — _ d 9* — d 1
o871 T | —2.386 _3.957| ¢ T _186.605| 48 (617)
_2387| |-2.3%6 4773 _973.467

The vector 8* is the sum of two components: the first one is the minimum norm
solution, while the second term is a vector that belongs to the kernel of L and is chosen
to reset the error on the rotation of the first camera.

Figure 6.4 reports the graphical comparison between the poses analytically computed
and those estimated through the application of Tron-Vidal algorithm. Also in this case,
the information given is not so significant as the results gained with two methods are
very close.

Real poses
A Tron-Vidal estimates
Analytic results

Camera 3

y—axis [m]
n

Camera 4 Camera 2

x—axis [m]

Figure 6.4.: Comparison between the results obtained by the analytic computation and by the
implementation of Tron-Vidal algorithm on 2D network

Evaluating the cost function in correspondence to the solution (6.17) found, it is easy
to verify that the analytical minimum value assumed by g is equal to the convergence
value achieved by applying the algorithm illustrated in Chapter 4, i.e. ¢r =0.085 (Figure
6.5). Approximately after 900 iterations of the Tron-Vidal algorithm the value of the
cost function falls to a minimum, which coincides with the analytical value.

Nevertheless the errors er are different in the two cases, in the sense that the an-
alytical calculation allows to obtain a final mean error that is smaller with respect to
the algorithm as illustrated by Figure 6.6. Truthfully, this behavior is justified by the

65

6. Validation

fact that the errors on rotations are evaluated considering the Frobenius norm and the
minimizing cost function heeds a measure of error based on the Riemannian metric.

Cost function
0.24 T T T
Tron-Vidal algorithm
Analytic result

0.22

0.2f

0.18

0.16

Value

0.141

0.121

0.1r

0.08 i i i i i
0 200 400 600 800 1000 1200

iterations

Figure 6.5.: Comparison of the trends of the cost function in the analytic computation and
during the implementation of Tron-Vidal algorithm on 2D network

Mean error on rotations
0.2 T T T "
Tron-Vidal algorithm
Analytic result

0.16 J

Value
o
=
N
L

0.121 J

0.08 i i i i i
0 200 400 600 800 1000 1200

iterations

Figure 6.6.: Comparison of the trends of the mean error on rotations in the analytic computa-
tion and during the implementation of Tron-Vidal algorithm on 2D network

However, evaluating the error on the rotation of each camera the situation is different
as indicated by Figures 6.7. It is above all interesting to observe the behavior of ep, .
In the analytical case it is always null due to the choice of the additional term in the
minimum norm solution; unfortunately, in the iterative solution the error grows from
zero to 0.213 because of the initialization strategy. Moreover the error on Ry follows
an unusual behavior and is probably due to the corrective terms added on the relative
angles 941 and §14.

All the numerical values of the errors are illustrated in Table 6.2: for the algorithm
implementation, only the final ones are reported.

66

6. Validation

0.25

0.2r

Value

0.1r

005/

Error on R1

Tron-Vidal algorithm|
Analytic result

i i i i i
200 400 600 800 1000 1200
iterations

(a) Error on Ry

Value

0.25[

0.21

0.15

0.1r

Error on R2

Tron-Vidal algorithm|
Analytic result i

I
200

i i i i
400 600 800 1000 1200
iterations

(b) Error on R,

Error on R3 Error on R4
0.3 T T T 0.16 T T T
Tron-Vidal algorithm| Tron-Vidal algorithm|
Analytic result 014l Analytic result i
0.25 4
\ 0.12
\
\
02f \ 01
\
] \ g
= = 0.08
> >
0.15[0.06}
0.04 /
0.1 //
002} /
“‘\/'
0.05 i i i i i 0 i i i i i
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200

iterations # iterations

(c) Error on R3 (d) Error on Ry

Figure 6.7.: Comparison of the trends of the errors on rotations in the analytic computation
and during the implementation of Tron-Vidal algorithm on 2D network

€R €R, €R, €R; €R4
Tron-Vidal algorithm | 0.173 | 0.213 0.295 0.054 0.128
Analytic results 0.082 0 0.079 0.163 0.086

Table 6.2.: Errors on rotations obtained though the analytical computation and implementing
the Tron-Vidal algorithm on 2D network

Simulations

In this section, some simulations are carried out on different synthetic setups created

in Matlab environment. The goal is to evaluate the performances of the algorithm
introduced in Chapter 4. More specifically, the analysis focuses on the optimality of the
found results.

For this reason, two performance metrics are considered: the mean error eg on ro-
tations and the mean error er on translations. The first one has been defined in the

previous paragraph, the second one is expressed in analogous manner:

1 X .
er = —=Y_ITi = T;|. (6.18)
N =1

67

6. Validation

In addition to the mean errors, it is also interesting to analyze the errors on the various
poses singularly considered. For rotations, these indices have already been determined
as the Frobenius norm of the difference between the real measurements and the final
estimates. Concerning the translations, the error on 7;, 7 € V is stated as

er, = |, — 1. (6.19)

As far as the scale factors {)\;;} are concerned, paper [1] does not give any useful
information about how to treat these parameters. Following the approach suggested
in [10], in all the simulations the quantities A;; are initialized to 1 for all (i,7) € £ and
then all the results are scaled by a factor A=5 to be plotted. This choice enables to
overtake the problem of scale ambiguity by assuming that all cameras are equidistant
from the observed scene.

The analysis begins with an assessment of the performances of the different initializa-
tion methods. More specifically, a comparison is performed between

1. single spanning tree method (SST) and multi spanning trees method (MST) (6.2.1);

2. single spanning tree method (SST) and multi spanning trees method with virtual

camera (MSTVC) (6.2.2);

3. multi spanning trees method (MST) and multi spanning trees method with virtual
camera (MSTVC) (6.2.3).

Then, the simulations are carried out to evaluate the performance of the entire iterative
procedure presented in Chapter 4. The aim is to observe the algorithm robustness with
respect to different conditions:

- the algorithm is initialized with a single spanning tree method or with one of the
multi spanning trees strategies (6.2.4);

- the initial noisy relative poses have very different levels of uncertainty; (e.g. the
relative pose between camera 1 and 2 is very noisy, while the others are less
noisy)(6.2.5);

- the network has a topology more complex than those considered so far, i.e. the
associated graph is not circulant because the devices can communicate also with
nodes that are not their neighbors (6.2.6);

- the value of step-size ¢ varies in a certain range (6.2.7).

6.2.1| Initialization methods comparison: SST vs MST

In this paragraph, the goal is to evaluate the performances of SST method and MST
method applied to the same network.

Let us consider the camera system introduced in the previous case study (see Figure
6.2), with the same agents displacement and communication links; however a 3D space
is now considered where the rotations still occur in a single plane, while the translations
are free to move in three dimensions.

68

6. Validation

Both initialization algorithms require the knowledge of the noisy relative poses. In
Matlab environment, these ones can be computed starting from the absolute poses (man-
ually imposed) to which Gaussian noise is added. In this simulation, the variance is
imposed to 2 degree for the rotations; instead, it is set equal to 0.1 meters for the trans-
lations. It is important to emphasize that the noisy relative poses are generated in order
to satisfy the assumption required by the MST method, i.e. §;; # gj;.l, Vi, je.

The primary step in both the procedures is the construction of the spanning trees. In
all the cases node 1 is chosen as root: in this way, the position of the observer coincides
with camera 1 for both the initialization strategies. In the SST case, the resulting tree
has two unbalanced branches: the left one is formed by nodes 2 and 3, while the right
includes only the node 4. Concerning the MST method, it is useful to refer to Figure
4.3 since the network considered has the same topology as that in the example given in
Chapter 4. Figure 6.8 shows all the absolute poses calculated for the various cameras
in the network, as well as the results obtained by averaging them. It is important
to remember that the mean of the translations is arithmetically calculated, while the
computation of the rotation one is performed according to Algorithm 1.

Real poses
A Possible poses camera 2
Possible poses camera 3
Possible poses camera 4
Poses after averaging

> >

Camera 3

y—axis [m]
SN

x—axis [m]

Figure 6.8.: All possible camera poses calculated through MST method

Figure 6.9 displays the results obtained with the two different initialization methods:
it can be observed that the estimated poses are pretty similar in the two cases and they
are also very close to the real ones according to the errors reported in Table 6.3.

The multi spanning trees procedure allows to obtain the best estimates regarding both
rotations and translations, in fact the mean errors e and ep are smaller than in the
SST case.

69

6. Validation

Real poses
A SST - Estimated poses
A MST - Estimated poses

Camera 3

y—axis [m]
D

x—axis [m]

Figure 6.9.: Comparison of SST and MST results

’ €Rr ‘ €R, €R, €R; C€R, ‘ er ‘ e, €em, ery @7y
SST method [0.063| 0 0.097 0.101 0.053]0.170| 0 0.172 0.224 0.285
MST method [0.029| 0 0.036 0.037 0.043|0.118| 0 0.210 0.161 0.100

Table 6.3.: Errors on rotations and translations obtained applying SST and MST methods

Table 6.3 also shows the values of the errors calculated on the poses of the single cam-
eras. It can be noted that in the SST case the error on rotations increases moving away
from the root. This behavior does not emerge by assessing the errors on translations:
a possible explanation lies in the definition of noisy relative poses whose uncertainty is
generated in Gaussian manner. Finally, it is necessary to emphasize that the error on
the pose of the camera 1 is always null since it is chosen as reference in both the initial-
ization strategies. As far as the SST method is concerned, it is necessary to underline
that camera 1 has a particular orientation and position that coincide with the initial
conditions imposed for the root of the spanning trees, while in MST case, its absolute
pose is assumed to be known.

6.2.2 | Initialization methods comparison: SST vs MSTVC

In this paragraph, the SST strategy is compared with the MSTVC one: the scenario
considered is different from that of the previous comparison because of the introduction
of a virtual camera in the network that defines a new position for the observer in the

70

6. Validation

scene.

Let us consider again a network similar to that of Figure 6.2. In Figure 6.10 the real
cameras are represented by green triangles, whereas the blue lines define the communi-
cation pattern. The yellow triangle represents the virtual camera that is placed outside
the network in the lower left corner. The magenta lines indicate the characteristic prop-
erty of the additional artificial node: the capacity of communicating with all the other
devices in the network. This feature of the virtual camera corresponds to the knowledge
of the relative poses between it and all the other agents. It is worth of notice the posi-
tions of the real cameras in the environment: they are translated with respect to Figure
6.2. Specifically, the particular position of the camera 1 is now occupied by the virtual
camera.

Camera 3

y—axis [m]

Figure 6.10.: 3D camera network with artificial node

As the SST strategy, the MSTVC method requires the noisy relative poses between
the real cameras as inputs, in addition it also needs those between the artificial and the
real devices. The former are determined as described in the previous paragraph, keeping
the same values of the variances; the latter are calculated using the pose of the virtual
camera without addicting noise.

The basic step of the construction of spanning trees is carried out in a different manner
for the two methods. In the SST case, the configuration is the same as described in the
previous comparison: the node 1 is chosen as root, while the nodes 2 and 3 constitute
the left branch and the node 4 represents the right branch. The method MSTVC ex-
pects to build more trees possibly balanced having all the artificial node as root. The
configurations considered in this case are those in Figure 6.11.

The absolute poses estimated at the end of both initialization procedures are shown
in Figure 6.12. It can be observed that the results achieved through the SST method are
more satisfying. This fact is partially confirmed by the numerical values of the errors
reported in Table 6.4.

71

6. Validation

$3538388

Figure 6.11.: Spanning trees - MSTVC strategy

Virtual camera

A Real poses
A SST - Estimated poses
A MSTVC - Estimated poses
9
sl A Camera 3 |
7 - -
6 - -
—
E st : . A
‘2 Cal ra2
3
I 4| i
>
3r] B
2 - -
1 - -
O Il Il
-3 -2 -1 0 1 2 3 4 5

x—axis [m]

Figure 6.12.: Comparison of SST and MSTVC results

‘ €R ‘ €Ry €Ry CR3 CRy ‘ er ‘ e e, €T3 e
SST method |0.061| 0 0.056 0.103 0.084 |1.270|1.414 0.954 1.209 1.501
MSTVC method | 0.051 | 0.058 0.030 0.062 0.056 | 1.590 | 1.577 1.668 1.429 1.687

Table 6.4.: Errors on rotations and translations obtained applying SST and MSTVC methods

The low resolution of Figure 6.12 does not permit to grasp the small improvement in
the estimation of rotations relative to MSTVC method. As far as the translations are
concerned, the initialization based on the construction of a single spanning tree leads
to a lower mean error. Nevertheless, it is important to emphasize that the MSTVC
strategy allows to uniformly distribute the uncertainty as clearly revealed by the errors
on the single 7;. Finally, it is interesting to note that epr,, unlike ep,, continues to be
null in the SST case.

72

6. Validation

This effect is explained by considering that camera 1 is chosen as a root in the span-
ning tree but is shifted in position with respect to the zero of the plan (virtual camera
position), so the initialization specified by the method obviously involves an error. This
observation also explains the overall error increment on translations with respect to the
previous paragraph.

6.2.3 | Initialization methods comparison: MST vs MSTVC

In the last comparison on the initialization methods the attention is focused on the
performance obtained by using or not the artificial node in the MST approach.

Let us still consider the network in Figure 6.10 in which all the real cameras com-
municate with the virtual one. The estimated poses through the MST and MSTVC
methods are shown in Figure 6.13. It is worth underlining that the variances used in the
calculation of relative poses are equal to those of the previous cases, while the spanning
trees considered are those of Figure 4.3 for the MST approach and of Figure 6.11 for the
MSTVC strategy.

Virtual camera

Real poses

MST - Estimated poses
MSTVC - Estimated poses

> >

10

ol \ \ \ A]

Camera 3

y—axis [m]
)]

Figure 6.13.: Comparison of MST and MSTVC results

The obtained results are consistent with the observations previously made: visibly the
addiction of a virtual node implies additional error. Table 6.5 confirms this fact.

Both the estimates of the rotations and translations are best in the MST case. How-
ever, it is important to emphasize that er, and ey are null using the MST strategy
only because the node 1 is chosen as a reference and its absolute pose is assumed to be
known.

73

6. Validation

‘ eR ‘ €R; €Rs €Rs €R, ‘ er ‘ ern @7y ery @1y
MST method 0.086 0 0.146 0.100 0.097 | 0.572 0 0.658 1.035 0.594
MSTVC method | 0.096 | 0.077 0.157 0.043 0.107 | 1.615| 1.561 1.753 1.378 1.765

Table 6.5.: Errors on rotations and translations obtained applying MST and MSTVC methods

6.2.4 | Algorithm implementation: different initialization methods

After having assessed the results obtained by the different initialization methods, the
attention here is on the analysis of the final poses estimates which are computed at the
end of the whole procedure described in Chapter 4. More specifically, the aim is to
compare the final mean errors among them and in relation to the initial ones for the
different initialization strategies. Considering the networks of Sections 6.2.1, 6.2.2 and
6.2.3, the analysis is carried out according to the order of the preceding paragraphs.

Therefore, the plot of Figure 6.14 provides a graphical comparison between the final
estimates found after the application of the Tron-Vidal algorithm initialized through the
SST and MST methods. In particular, the number of iterations for the computation of
rotations and translations estimate is set to 250 in both the cases, while the last step
of estimates refinement is avoided as it has been empirically proved that it does not
improve the results already obtained. The step-size parameter ¢ is fixed to 0.01.

Real poses
A SST and Tron-Vidal
A MST and Tron-Vidal

Camera 3

y—axis [m]
S

Camera 1

x—axis [m]

Figure 6.14.: Comparison of the final results achieved by Tron-Vidal algorithm initialized
through SST and MST methods

74

6. Validation

The poses calculated in the two cases are very close to each other and to the real
ones. Greater insight on the results is provided by Table 6.6. It reports the final mean
error and the initial ones in order to evaluate which case seems to be more effective. It
is easy to verify that the final mean errors are smaller when the Tron-Vidal algorithm
is initialized by the MST procedure, although er does not improve with respect to the
initial value and er increases. On the other hand, in the case of SST initialization, the
mean error decreases for rotations but increases for the translations.

SST and Tron-Vidal initial estimates 0.063 0.170
final estimates 0.059 0.193
MST and Tron-Vidal initial estimates 0.029 0.118
final estimates 0.029 0.127

Table 6.6.: Mean errors on rotations and translations obtained applying Tron-Vidal algorithm
initialized though SST and MST methods

Figure 6.15 compares the final estimates attained by implementing the iterative pro-
cedure outlined in Chapter 4 starting from the poses computed though the SST and
MSTVC methods. The network considered is that of Figure 6.10 and the number of
iterations performed by Tron-Vidal algorithm is equal to the previous case (250), as well
as the value of ¢ (0.01).

Virtual camera

Real poses

SST and Tron-Vidal
MSTVC and Tron-Vidal

9 T T T T T T T T

> >

Camerg 3
A

y—axis [m]

-3 -2 -1 0 1 2 3 4
x—axis [m]

Figure 6.15.: Comparison of the final results achieved by Tron-Vidal algorithm initialized
through SST and MSTVC methods

75

6. Validation

Observing the plot, it is easy to understand that once again the initialization strategy
based on multiple spanning trees allows to obtain the best final estimates.

This fact is confirmed by the values of the mean errors in Table 6.7. The mean error
on rotations remains almost unchanged in both the cases and it is lower after the initial-
ization with the MSTVC method. The main difference is related to translations: when
the algorithm is initialized though the SST strategy the estimates of the translations im-
proves but the value of er remains high; on the contrary, it decreases substantially when
the multi spanning trees approach is employed. Probably, this behavior is due to the
fact that the method based on multi spanning trees initially distributes the uncertainty
in a uniform manner. Therefore in the course of the algorithm the errors on the single
poses are mitigated. Moreover, a not negligible factor is the position of the observer set
in the virtual camera and not in the camera 1 as previously.

€eR er
SST and Tron-Vidal initial estimates 0.061 1.270
final estimates 0.061 1.256
MSTVC and Tron-Vidal initial estimates 0.051 1.590
final estimates 0.051 0.673

Table 6.7.: Mean errors on rotations and translations obtained applying Tron-Vidal algorithm
initialized through SST and MSTVC methods

Finally, the analysis focuses on the comparison of the final estimates which are ob-
tained when the algorithm proposed by Tron and Vidal is initialized through the MST
and MSTVC methods.

The results are depicted in Figure 6.16: keeping the step-size fixed to 0.01 and per-
forming 250 iterations for both the estimation of rotations and translations, the best
poses seem to be achieved with the strategy that exploits the virtual camera.

Truthfully, Table 6.8 shows that the final mean errors are very similar using the two
different initialization methods. Nevertheless, the greater improvement is obtained in
the estimation of translations when the algorithm is initialized through the MSTVC
strategy: the value of er decreases from 1.615 to 0.575.

MST and Tron-Vidal initial estimates 0.086 0.572
final estimates 0.086 0.621

MSTVC and Tron-Vidal initial estimates 0.096 1.615
final estimates 0.081 0.575

Table 6.8.: Mean errors on rotations and translations obtained applying Tron-Vidal algorithm
initialized with MST and MSTVC methods

In conclusion, it is possible to affirm that the algorithm presented in Chapter 4 seems

to have better results when initialized through the multi spanning trees method with
the introduction of the virtual camera as reference.

76

6. Validation

Virtual camera

Real poses

MST and Tron-Vidal
MSTVC and Tron-Vidal

> >

10

y—axis [m]
(6]

Figure 6.16.: Comparison of the final results achieved by Tron-Vidal algorithm initialized
through MST and MSTVC methods

However, it is necessary to make some clarifications about the errors reported in Tables
6.6, 6.7 and 6.8. The values are different in each comparison even if the initialization
method is the same: the considered achievements, in fact, are different because of the
noise distribution and virtual node presence. Furthermore, the numerical results are
related to a single simulation although they are consistent with a high number of tests.

6.2.5 | Algorithm implementation: noise effect

In this paragraph, it is assumed that one of the initial relative poses in input to the
procedure described in Chapter 4 is affected by higher uncertainty than the others. The
purpose is to evaluate how this affects the results obtained at the end of the Tron-Vidal
algorithm. In particular, the focus is centered on the differences between the poses
estimated after the initialization phase and the final ones achieved varying the number
of iterations performed by the estimation procedure.

It is important to emphasize that the algorithm is initialized with the MSTVC method
as the results gained by the previous analysis seems to show that this is the best approach
in terms of mean error on rotations and translations.

Let us consider the network displayed in Figure 6.10. The initial relative poses between
the cameras are generated in Matlab environment starting from the real ones, manually
imposed, through the addition of Gaussian noise. However, the variance on rotations is
set to 2 degrees and that on translations is fixed to 0.1 meters for all the poses except for

7

6. Validation

g12 and go1. Indeed, it is presumed that the initial relative poses between the cameras 1
and 2 and viceversa are more noisy than the others: the measurements of the variances
are quintupled. It is predictable that these initial conditions lead to a less accurate
estimate of the absolute pose for the devices 1 and 2. This intuition is confirmed by the
following plots (Figures 6.17 and 6.18).

Virtual camera
Real poses
Initial poses
Final poses

> >

y—axis [m]

x—axis [m]

Figure 6.17.: Effect of unbalanced noise distribution on the results of Tron-Vidal algorithm
(250 iterations)

Figure 6.17 presents the results achieved after the initialization procedure based on
the construction of multiple spanning trees with the virtual camera as reference, but also
the poses estimated at the end of the algorithm execution. The number of performed
iterations is set to 250 for both the rotation and the translation part. Once again, the
last step of the optimization on the whole pose is neglected and the step-size is set to
0.01.

It is easy to notice that the initial poses represented by blue triangles differ from
the real ones (green triangles) more or less equally for all the cameras. The situation
changes for the final estimates (red triangles): the errors on the poses are greater in
correspondence to the devices 1 and 2. To quantitatively evaluate this change, it is
useful to refer to Table 6.9.

The mean errors eg and er decrease by implementing the algorithm, however, consid-
ering the errors on the pose of each camera, the information derived from Figure 6.17
is confirmed. In fact, the errors on 77, T> have an order of magnitude similar to all the
others at the end of the initialization step, while they are grater than the mean value in
relation to the final estimates. The same behavior is partially shown by the errors on

78

6. Validation

R; and R», in particular epr, increases after the application of Tron-Vidal algorithm.

These observations are justified by the fact that the MSTVC method is based on the
average of the absolute poses obtained by building multiple spanning trees having the
same root: the uncertainty is distributed in a uniform manner across all the nodes in
the network, above all for the translations. Instead, the next steps of the Tron-Vidal
algorithm involve again the initial noisy measures, therefore the estimates of the poses
of the cameras 3 and 4 generally improve than those of the cameras 1 and 2.

‘ €R ‘ @R, ©R, €Ry CRy ’ er ‘ er, e er; eny
Initial poses | 0.125| 0.137 0.269 0.041 0.052|1.559|1.551 1.493 1.472 1.723
Final poses | 0.112 | 0.164 0.197 0.049 0.041|0.537 | 0.711 0.802 0.427 0.206

Table 6.9.: Errors on rotations and translations obtained applying Tron-Vidal algorithm in
presence of unbalanced noise distribution (250 iterations)

Remarkably, the highlighted differences about the behavior of the estimates are ac-
centuated when the number of iterations performed by the Tron-Vidal algorithm grows.
Figure 6.18 displays the results that are achieved when it is increased to 400 for both
rotations and translations: the red triangles of the final estimates of the cameras 1 and
2 are very distant from the green ones that represent the real poses. On the contrary,
the initial estimates (blue triangles) are all equally far.

Virtual camera
Real poses

A |nitial poses

A Final poses

y—axis [m]

x—axis [m]

Figure 6.18.: Effect of unbalanced noise distribution on the results of Tron-Vidal algorithm
(400 iterations)

79

6. Validation

These observations are confirmed again by the values of the errors reported in Table
6.10. Especially concerning the translations, the difference in the distribution of the
uncertainty between the initial and final poses becomes greater: the errors on the poses
of the cameras 1 and 2 become more substantial in relation to the ones of the others
devices.

In particular, a high number of iterations entails a deterioration of the estimates of all
poses: the mean errors increase compared to the ones of the previous case. The reason
is that the final estimates are now more influenced by the noisy initial measures.

‘ ER ‘ eRl eR2 €R3 6R4 ‘ er ‘ eT1 eT2 €T3 6T4

Initial poses | 0.125 | 0.137 0.269 0.041 0.052|1.559| 1.551 1.493 1.472 1.723
Final poses | 0.125| 0.170 0.202 0.065 0.060 | 0.969 | 1.184 1.371 0.750 0.572

Table 6.10.: Errors on rotations and translations obtained applying Tron-Vidal algorithm in
presence of unbalanced noise distribution (400 iterations)

It is interesting to evaluate the trend of the cost function which regulates the algorithm
convergence in the second case considered, i.e. when the number of iterations is set
to 400. Although the resolution of Figure 6.19 is rather low, thanks to the Matlab
functionalities, it is possible to analyze the values of the two components pr and 7.

The rotation part constantly decreases even if in the last iterations the trend seems
to become steeper. The behavior of translation part is much more interesting and less
intuitive: the function decreases to the minimum value but then grows of a few cents
confirming the observations about the errors.

Cost function
1.4 T

Cost function
Cost function - rotation part
Cost function - translation part|

1.2}

Value

0 i i i i i i i
0 50 100 150 200 250 300 350 400

iterations

Figure 6.19.: Effect of unbalanced noise distribution on the trend of the cost function during
the implementation of Tron-Vidal algorithm (400 iterations)

80

6. Validation

6.2.6 | Algorithm implementation: additional communication links

In this paragraph, the simulations are carried out considering a more complex network
topology: the aim is to analyze how the results of Tron-Vidal algorithm change when
additional communication links are inserted in the configuration of Figure 6.10.

Let us consider the network displayed in Figure 6.20. The arrangement of the real
and artificial cameras are unchanged from the figure cited above; nonetheless, the nodes
1 and 3 are now connected by a blue line, similarly 2 and 4: these devices therefore are
considered able to communicate between them.

y—axis [m]

x—axis [m]

Figure 6.20.: 3D camera network with additional communication links

The communication pattern is different if compared to the previous cases: conse-
quently also the graph associated to the network and the corresponding adjacency ma-
trix differ. Previously, the agents were capable of exchanging information only with their
neighbors, while now each camera interacts with all the other ones.

In graph theory, the considered network translates into a complete graph represented
by an adjacency matrix having all unitary elements except for the zeros on the main
diagonal (no self-loops).

Figure 6.21 shows the comparison between the results that are obtained by applying
the algorithm described in Chapter 4 to this new configuration and to the standard one
without the links between the cameras 1 and 3, 2 and 4.

It is worth noticing that the initialization is done with the MSTVC method, in par-
ticular the spanning trees considered are those of Figure 6.11. Moreover, the number
of iterations to be performed is set to 250 for the estimation of the rotations, 250 for
estimating the translations and 0 for the final refinement of the complete estimate. In
closing, the value attributed to the step-size is e=0.01.

In general, it is easy to verify that the final estimates of the camera poses deviate
significantly more from the real ones if additional links are considered.

81

6. Validation

Virtual camera
Real poses
A Final estimates considering additional links

Final estimates without considering additional links

8| A A

y—axis [m]

x—axis [m]

Figure 6.21.: Comparison between the results obtained applying Tron-Vidal algorithm to the

network with and without additional links

This observation is confirmed by the values of the mean errors on rotations and trans-

lations accessible in Table 6.11.

The errors er and ér increase their value when the Tron-Vidal algorithm is imple-

mented on the configuration of Figure 6.20 rather than on that of Figure 6.10.

€eR er
Final poses considering additional links 0.074 0.874
Final poses without considering additional links | 0.069 0.702

Table 6.11.: Mean errors on rotations and translations obtained applying Tron-Vidal algorithm
to the network with and without additional communication links

These observation are endorsed by the analysis of the trend of the cost function during

the implementation of Tron-Vidal algorithm on the different network configurations.

Figures 6.22 (a) and (b) show the differences in the trend of ¢ (green line) expressed

as the sum of its rotation (red line) and translation part (blue line). It is interesting to

observe that the initial value assumed by the function cost is not the same in the two

plots, moreover the decrease of wr is evidently different: for these reasons the minimum

achieved by ¢ is 0.010 in Figure (a) and 0.033 in (b).

To improve the results in the case of a topology like that of Figure 6.20, it is possible

to proceed as follows.

82

6. Validation

Cost function
T

T
Cost function
Cost function - rotation part |
Cost function - translation part

Value

100 150 200 250
iterations

(a) Network without additional links

Cost function
T

1.4

T
Cost function

Cost function - rotation part
Cost function - translation part|

1.2

Value

0 50 100 150 200 250
iterations

(b) Network with additional links

Figure 6.22.: Comparison of the trends of the cost function during the implementation of Tron-
Vidal algorithm on the network with and without additional links

Initially, it is convenient to divide the network into subgraphs:

e ignoring the link that connects the nodes 2 and 4, it is possible to evaluate the
sub-networks formed by the cameras 1-2-3 and 1-3-4, respectively denominated the
right sub-network and the left sub-network;

e similarly, the upper sub-network and the lower sub-network are identified neglecting
the link between the cameras 1 and 3, therefore the former is composed by the
nodes 2-3-4 and the latter is made of the nodes 1-2-4;

e finally, the external sub-network is considered: it coincides with the standard con-
figuration without any additional links.

The idea is to implement the Tron-Vidal algorithm separately on the subgraphs in
order to reduce the symmetry of the system and then to average the absolute poses
derived for the devices.

83

6. Validation

Let us consider then the situation illustrated in Figure 6.23, where the dashed lines
indicate the subgraphs just defined. It is worth highlighting that the virtual camera is
assumed present in all the cases.

y—axis [m]

0 i i
4 5

x—axis [m]

Figure 6.23.: Sub-networks identified in the camera network with additional links

The application of the algorithm described in the Chapter 4 on the subgraphs is
performed using the MSTVC method in the initialization phase. The spanning trees
constructed are different than those shown in Figure 6.11, except for the external sub-
network. For the right and left sub-networks the configurations considered are shown
in Figures 6.24 (a) and (b). As far as the upper and lower subnetworks are concerned,
the initialization phase proceeds in the analogous manner so the spanning trees are not

nght sub-network

) Left sub-network

reported.

Figure 6.24.: Spanning trees - right and left sub-networks

84

6. Validation

Subsequently, the final estimate of the poses is determined through the application of
the iterative procedure described by Tron and Vidal.

The value of the step-size is maintained equal to 0.01, whereas the number of iterations
is reduced to 150 for both the part of the rotations and that of the translations. This
choice is the consequence of some numerical problems tied to Matlab functionalities but
it does not determinatively affect the value assumed by the cost function whose greater
decrease occurs in the first tens of iterations.

Finally, the final poses of the cameras obtained from the implementation of the algo-
rithm on the sub-networks are averaged in order to get a better and unique result for the
entire network. Figure 6.25 shows the results achieved for each subgraph and computing
the mean of the poses estimated in the different cases.

Virtual camera

Real poses

External sub—network
A Right sub-network
A | eft sub-network

Upper sub—network
A [ower sub-network
A Mean network

y—axis [m]

x—axis [m]

Figure 6.25.: Results obtained applying Tron-Vidal algorithm to different sub-networks

Focusing on the first and last row of Table 6.12 of the mean errors, it can be observed
an improvement on the estimation of the translations. Similarly, the mean error on
rotations slightly decreases. It is also worth underlining that the errors committed when
the external sub-network is evaluated are practically the same of the case in which
the additional communication links are not considered even if the number of iteration
performed are different.

Figure 6.26 confirms what has been observed: it demonstrates that the estimates
obtained by following the strategy illustrated are better than those obtained by simply
considering the whole network with all the additional links.

85

6. Validation

€R er
Complete network 0.074 0.874
External sub-network 0.069 0.701
Right sub-network 0.107 1.134
Left sub-network 0.049 0.873
Upper sub-network 0.075 1.262
Lower sub-network 0.064 1.075
Complete averaging network | 0.072 0.594

Table 6.12.: Mean errors on rotations and translations obtained applying Tron-Vidal algorithm
implementing or not the sub-networks strategy

Virtual camera

Real poses

Final estimates considering additional links
Final estimates considering additional links
but averaging the sub—networks results

> >

A

y—axis [m]

x—axis [m]

Figure 6.26.: Comparison between the results obtained applying Tron-Vidal algorithm on the
network with additional links implementing or not the sub-networks strategy

In conclusion, it is interesting to analyze how the results vary considering the ad-
ditional links and adopting the sub-networks strategy respect to the case where the
communications protocol is the original one where each camera only exchanges informa-
tion with its neighbors. Looking at Figure 6.27, it is not immediate to draw conclusions
about the question, it is more convenient to consider the numerical values of the mean
errors available in Table 6.13.

Thanks to the procedure described, a more complex communication pattern entails
smaller mean error on translations. While, the error ép is slightly higher than in the
case in which the additional communication links are not considered.

86

6. Validation

Virtual camera
Real poses
A Final estimates considering additional links
but averaging the sub—networks results
Final estimates without considering additional links

y—axis [m]

x—axis [m]

Figure 6.27.: Comparison between the results obtained applying Tron-Vidal algorithm on the
network with and without additional links but implementing the sub-networks
strategy

Final estimates considering additional links
0.072 0.594

but averaging the sub-networks results
Final estimates without considering additional links | 0.069 0.702

Table 6.13.: Mean errors on rotations and translations obtained applying Tron-Vidal algo-
rithm on the network with and without additional links but implementing the
sub-networks strategy

Consequently, the conclusion that can be drawn is that a greater exchange of infor-
mation does not correspond to a better estimate of the poses even exploiting a strategy
based on subgraphs. This fact can be explained by highlighting that the links added
are noisy anyway. This issue is in any case an open problem to be analyzed in a more
formal way with respect to the topology graph of the communication links.

6.2.7 Algorithm implementation: step-size setting

Until now, the value of parameter € has always been kept equal to 0.01. It is fair to
question whether it has been a reasonable choice. For this purpose, in this paragraph
the analysis focuses on how the trend of the cost function ¢ changes when the step-size
varies.

87

6. Validation

In the following, let us consider the network in Figure 6.10 in which the virtual camera
can communicate with all the other devices while every real camera exchanges informa-
tion only with its neighbors.

The Tron-Vidal algorithm is always implemented considering 250 iterations for both
the estimation of rotations and translations, whereas the final complete refinement is
still neglected. Moreover, the initialization strategy chosen is the MSTVC method: the
spanning trees built are those of Figure 6.11.

Figure 6.28 shows the trend of the cost function for three values of the parameter not
too far between them, i.e. £=0.05, 0.01, 0.005.

It is easy to observe that at the begin the descent of ¢ is less rapid when the value
of the step-size is the smaller than the one considered in the previous simulations, i.e.
€=0.005. However, the minimum reached by the cost function at the end of the iterations
is the same when e= 0.01 and it halves its value.

Finally, the behavior in correspondence of £=0.05 is very curious and suggests the
existence of a critical value for the step-size included in the range [0.01,0.05] beyond
which it is no longer possible to find a consistent solution causing the divergence of the
cost function.

Cost function
5 T T T
eps=0.05
eps=0.01
ar esp=0.005 [
3l 1
2 - -
Q
=
T
>
1k 1
ol
_1 L -
_2 1 1 1 i
0 50 100 150 200 250
iterations

Figure 6.28.: Trend of cost function during the implementation of Tron-Vidal algorithm with
three different values of the step-size

Observing Figure 6.29, it is possible to realize that the critical value is much close to
0.01. In fact, the plot shows the trends of the cost function for values of the step-size
between 0.01 and 0.05: the case £=0.01 is the only one in which ¢ converges.

To better understand the behavior of the algorithm for the values of the step-size
higher than 0.01, let us consider a specific case: £=0.02.

Analyzing the trend of the black line in Figure 6.29, it is worth noticing that the initial
value of the cost function is 1.519. Then, the value of ¢ grows up until its maximum
(2.019) reached at the 172-th iteration. Finally, after approximately 210 iterations, the
cost function begins to decrease rapidly to the final value ¢ = —9.489.

It is important to point out that a very similar behavior is also observed for the trends
relating to the other values of € considered in Figure 6.29 although the diverging trend

88

6. Validation

begins after a number of iterations inversely proportional to the value of the step-size
suggesting a relation between the two quantities, probably also influenced by numerical
issues of Matlab.

Cost function
5 T T

eps=0.05
eps=0.04
4+ eps=0.03 [
7 eps=0.02
eps=0.01
3r i
2r 4
[}
>
<
>
1t 4
ol
1k A
_2 1 1 1 1
0 50 100 150 200 250

iterations

Figure 6.29.: Trend of cost function during the implementation of Tron-Vidal algorithm with
e €[0.01,0.05]

Figure 6.30 displays in detail the composition of ¢ (green line) as the sum of pr (red
line) and ¢ (blue line). The divergence is related to the part of the cost function relative
to rotations: while the blue line remains almost constant after the initial growth, the
red line drops sharply after 210 iterations.

Cost function
5 T T
Cost function
Cost function - rotation part
Cost function — translation part|

Value

-1 . B

i i
0 50 100 150 200 250
iterations

Figure 6.30.: Trend of cost function during the implementation of Tron-Vidal algorithm with
€=0.02

It is therefore interesting to observe the evolution of the mean error on rotations.
Figure 6.31 reports the trend of ep when €=0.02 and ¢=0.01.

When the step-size has the higher value, the error diverges consistently with the
previous observations. Similarly, when e= 0.01, the trend is convergent towards a value

89

6. Validation

close to zero according to the optimization strategy of the Tron-Vidal algorithm based

on least-squares criterion.

0.9

0.81

0.7f

0.6

Value

0.4r

0.3F

0.2f

0.1r

Mean error on rotations
T T

0.5r

eps=0.02
eps=0.01

0 50

i i
100 150
iterations

200 250

Figure 6.31.: Trend of mean error on rotations when £=0.02 and £=0.01

More explicitly, the rotation matrices estimated at the end of the iterative procedure
with e= 0.02 (left) and €=0.01 (right) are

[0.509
—0.038
| —0.053

[—0.077
0.087
| 0.549

[—0.513
0.058
| 0.072

[0.097
—0.100
| —0.552

fu =

~0.071 —0.072]
0.471 0.087 |, Ry =
0.077 0.548 |
~0.064 —0.509]
0.470 0.044 |, Ry=
0.077 0.049 |
~0.053 0.057]
0.469 —0.085|, Ry =
0.076 —0.547]
—0.056 0.507 |
0.478 —0.046 , Ry =
0.063 —0.030]

[0.999 —0.033
0.03 0.999

10.014 —0.011

[—0.024 —0.019
0.010 0.999
| 0.999 —0.011
[—0.999 0.003
0.004 1.000
| 0.014 —0.009
[0.060 —0.007
—0.034 0.999
| —0.998 —0.034

—0.015
0.011 |,
0.999

—0.999]
—0.019] ,
—0.023]

—0.014]
—0.009] ,
—0.999

0.998
0.009
0.060

When €=0.02, the final estimated matrices are very different than the real ones: the

diagonals have values that differ significantly from 1.

In conclusion, it can be stated that setting € equal to 0.01 prevents strange behaviors

in the algorithm implementation.

Experimental results on a real scenario

In this last section, the results obtained through the analysis on synthetic data are

compared with those achieved by implementing the algorithm described in the Chapter

90

6. Validation

4 on a real network, specifically the considered experimental setup is the one described
in [10]. Figure 6.32 shows the layout of the system: it is composed by four PTZ devices
and two fixed cameras. Each agent shares its field of view with its neighbors, so the
network topology is represented by a circulant graph. In the figure, it is also reported
the set of images used for the initial calibration through Bouguet’s toolbox of Matlab.
For more details on the images acquisition and calibration phases it is recommended to
consult the paper [10].

To proceed with the analysis, it is simply assumed that the noisy relative poses between
the different cameras are available. Nevertheless, it is important to report that the
authors of [10] underline that they have experimentally noted that the initial estimates
of normalized translations are more error prone than the same estimates of rotations.

‘ PTZ cameras

O fixed cameras

y [meter]

Figure 6.32.: Experimental camera network layout (top view)

In the following paragraphs, the Tron-Vidal algorithm is executed in standard condi-
tions, in the case in which a relative pose (e.g. g12 and/or go1) in input is more noisy
than the other ones and finally considering one of the additional links existing between
the cameras but not shown in Figure 6.32.

In all the considered situations, the initialization is performed by applying the method
of the single spanning tree. This choice is justified by the inability to place in the scene
a virtual camera having the field of view overlapping with all the other devices in the
network. In addition, the MST method is not used as the calculation of the poses
becomes too expensive: since the network is formed by six cameras associated with a
circulant graph, it would be necessary to determine more than one hundred poses.

As far as the another design parameters are concerned, it is worth emphasizing that
the step-size € is always kept equal to 0.001. This value represents a trade-off between
the number of iterations performed by the algorithm and the final value reached by the
cost function. Experimentally it is possible to observe that increasing the number of

91

6. Validation

iterations means having to reduce the step-size due to Matlab numerical problems: the
descent of the cost function becomes slower but the high number of iterations allows to
reach a sufficiently small value.

Concerning the scale factors, the strategy used is that of the previous simulations: the
Ai; are initially set to 1 for all (¢,) € £ and then all the results are scaled by a unique
factor A=3.5.

The analysis focuses on the goodness of the estimates of the camera poses, evaluated
in terms of mean errors but also errors on the rotation and translation of each device.
These performance metrics are just been defined, however it is necessary to highlight
that in subsequent tests the reference system is always placed in order to coincide exactly
with that of the camera chosen as root in the initialization spanning tree. For this reason,
the error on the absolute pose of the reference node is always null.

6.3.1 | Experimental results: convergence

To start, let us consider the results obtained applying the iterative procedure described
in Chapter 4 on the experimental network in standard conditions. The attention is
focused on the effects of the reference system choice.

Figure 6.33 displays the results of the implementation of the Tron-Vidal algorithm
on the experimental network choosing the camera 1 as reference, i.e. building an ini-
tialization spanning tree in which the node 1 is the root and there are two unbalanced
branches, the left is formed by the nodes 2, 3, 4 while the right includes the nodes
5, 6. The number of iterations performed by the procedure is imposed equal to 1000
for both rotations and translations estimate, whereas the final complete refinement is
disregarded.

Real poses
A |nitial estimates
A Final estimates

o o
4 ?
" e &
y
T —

4 6 8 10

x—axis [m]

Figure 6.33.: Results obtained applying the Tron-Vidal algorithm to the experimental network
choosing the node 1 as reference (1000 iterations)

92

6. Validation

From Table 6.14 of the errors and from Figure 6.34 that shows the trend of the
translation part of the cost function, it is possible to guess that the number of iterations
set for the estimate of the translations is not sufficiently high.

Although it is five times higher than the value chosen in the previous paragraphs, the
mean error ep does not decrease during the performance of the algorithm and the trend
of 7 is not yet sufficiently flat after 1000 iterations, i.e the value reached is not enough
close to the minimum.

’ ‘ €R ‘ €Ri €R; €R3 €Ry ©ERs ©Rs ‘
Initial poses | 0.145| 0 0.072 0.281 0.265 0.187 0.063
Final poses | 0.123|0.023 0.051 0.210 0.130 0.149 0.114

’ ‘ er ‘ en er, €Ty ery e1s ETs ‘
Initial poses | 0.632 | 0 0.783 0.226 0.548 2.022 0.215
Final poses | 0.685 | 0.058 0.817 0.610 0.724 1.688 0.215

Table 6.14.: Errors on rotations and translations obtained applying Tron-Vidal algorithm to
the experimental network choosing the node 1 as reference (1000 iterations)

Cost function - translation part
0.9 T T

0.7 1

0.6 4

Value
o
(8]
I

0.4F B

0.2 1

0.1 i i i T
0 200 400 600 800 1000

iterations

Figure 6.34.: Trend of translation part of cost function during the implementation of the Tron-
Vidal algorithm on the experimental network choosing the node 1 as reference
(1000 iterations)

For these reasons, Figure 6.35 shows the improvement that is achieved when the
number of iterations relative to translations increased by an order of magnitude (10000).
For the rotations, this change is not possible because of the numerical limits imposed by
Matlab, besides it is not necessary in terms of trend of cost function.

Evaluating Tables 6.14 and 6.15, it is possible to note that, with respect to the initial
poses, the nodes closer to the root (2 and 6) have generally smaller errors in agreement
with the theory. Truthfully, er, does not reflect this behavior. Similarly, the furthest
nodes (4 and 5) should have greater errors but this is not apparent.

93

6. Validation

These observations are justified by the fact that the considered setup is real, therefore,
the noise on the relative measures is not evenly distributed.

Real poses
A |nitial estimates
A Final estimates

e N

x—axis [m]

Figure 6.35.: Results obtained applying the Tron-Vidal algorithm to the experimental network
choosing the node 1 as reference (1000 iterations for translation estimates)

‘ ‘ €R ’ €Ry €Ry €R3 €R, €R; €Ry ‘
Initial poses |0.145| 0 0.072 0.281 0.265 0.187 0.063
Final poses | 0.123]0.023 0.051 0.210 0.130 0.149 0.114

’ ‘ éT ‘ €Ty €Ty €Ty €Ty €Tx €Ts ‘
Initial poses | 0.632 0 0.783 0.226 0.548 2.022 0.215
Final poses | 0.481 | 0.037 0.822 0.256 0.610 1.043 0.117

Table 6.15.: Errors on rotations and translations obtained applying Tron-Vidal algorithm to
the experimental network choosing the node 1 as reference (10000 iterations for
translations estimate)

Since the distribution of noise on initial relative poses is not uniform, it is easy to
verify that the errors can be very different if the Tron-Vidal algorithm is applied to the
real network in standard conditions but choosing a different camera as reference.

Figure 6.36 shows the estimated poses when the initialization spanning tree has the
node 5 as root. The simulation is performed keeping unaltered the numbers of iterations
compared to the previous case.

The error values available in Table 6.16 confirm the information that can be derived
from the plot: the initial estimates are far from the real ones, however, at the end of the
iterative procedure, the results obtained are quite satisfactory but not better than the
case in which the observer position is in correspondence with the camera 1.

94

6. Validation

Real poses
A |nitial estimates
A Final estimates

y—axis [m]
N w
|

0 \
S
_5‘5‘ S‘?) L H A
"\
5 \ \ \ \ \ \ \
-2 0 2 4 6 8 10
x—axis [m]

Figure 6.36.: Results obtained applying the Tron-Vidal algorithm to the experimental network
choosing the node 5 as reference

‘ ‘ €R ‘ €rR; €R, €R3 €R, €ER; €Rg ‘
Initial poses | 1.447 | 2.495 1.232 0.238 2.167 0 2.548
Final poses | 0.177 | 0.151 0.161 0.283 0.213 0.023 0.228

’ ‘ éT ‘ €Ty €T, €T3 €Ty €Ty €Ts ‘
Initial poses | 2.778 | 4.374 5.045 3.169 2.155 0 1.922
Final poses |0.994 | 1.306 1.029 1.250 1.029 0.265 1.086

Table 6.16.: Errors on rotations and translations obtained applying Tron-Vidal algorithm to
the experimental network choosing the node 5 as reference

6.3.2 Experimental results: noise effect

In this paragraph the aim is to analyze the results of the application of the algorithm
proposed by Tron and Vidal when one of the relative poses required as inputs has greater
uncertainty than the others.

A Gaussian noise with variance of 2 degrees for rotations and 0.1 meters for the
translations is added to the just noisy poses g1o and go1. Consequently, it is interesting
to evaluate the estimates calculated when the reference is placed in correspondence with
the cameras 1 and 5.

This choice is justified considering the spanning trees built in the initialization phase.
The Figures 6.37 (a) and (b) show that the much noisy edge between 1 and 2 is located
in distinct and significant positions when the roots are the nodes 1 e 5, respectively.

95

6. Validation

(a) Node 1 as root (b) Node 5 as root
Figure 6.37.: Spanning trees - different roots
Figure 6.38 exhibits the initial and final estimates when the reference system is that

of the camera 1. The number of iterations is fixed to 1000 for the rotations estimate and
to 10000 for the translations one.

Real poses
A |nitial estimates
A Final estimates

y—axis [m]

x—axis [m]

Figure 6.38.: Effect of unbalanced noise distribution on the results of Tron-Vidal algorithm
applied to the experimental network choosing the node 1 as reference

Examining the results obtained at the end of the iterative procedure (red triangles),
it is easy to verify that the worse estimates are those of the devices in the lower part
of the plot, i.e. cameras 2, 3 and 4. The errors on the translations of these devices
are the highest, as can be seen in Table 6.17. Concerning the rotations, the behavior is
less evident. The highest error is that on the camera 5 but this fact can be justified by
observing that it is one of the fixed devices whose resolution is lower respect to the PTZ
cameras. It is also important to focus on the fact that, while ég decreases, the mean
error on translations grows considerably by applying the Tron-Vidal algorithm.

Remembering that the translations are more prone to errors, it is convenient to analyze
the behavior of the translation component in the cost function.

96

6. Validation

‘ ‘ eR ‘ R, €R, €Rs €R,4 €Rs €Rg ‘
Initial poses | 0.145 0 0.072 0.281 0.265 0.187 0.063
Final poses | 0.125 | 0.084 0.094 0.135 0.122 0.212 0.100

’ ‘ er ‘ eny €Ty €Ty €T, eTs ETs ‘
Initial poses | 0.632 0 0.783 0.226 0.548 2.022 0.215
Final poses | 2.177|0.357 3.741 2.842 3.439 1.984 0.697

Table 6.17.: Errors on rotations and translations obtained applying Tron-Vidal algorithm to
the experimental network in presence of unbalanced noise distribution choosing
the node 1 as reference

Figure 6.39 (a) reveals that the behavior of ¢r is identical to that observed in the
synthetic setup analysis. Adding uncertainty to the relative pose between two cameras,
the function rapidly decreases but then, after reaching the minimum, slightly increases.

Cost function - translation part
T T

15

Value

0.5

i i i i
0 2000 4000 6000 8000 10000
iterations

(a) Node 1 as reference

Cost function - translation part
T T

1.8

161

14

Value

i i i i
0 2000 4000 6000 8000 10000
iterations

(b) Node 5 as reference
Figure 6.39.: Effect of unbalanced noise distribution on the trend of translation part of the cost

function during the implementation of Tron-Vidal algorithm on the experimental
network

97

6. Validation

A similar behavior, although less accentuated, is also encountered in the case in which
the observer position coincides with that of the camera 5. The trend of ¢ in Figure
6.39(b) exhibits a small growth in the past iterations. This issue requires a more profound
analysis in the future development of this work.

Table 6.18 of errors demonstrates that, in opposition to the previous case, both eg
and ep decrease for the final poses; nevertheless their values are greater than in the case
without additional noise.

‘ ‘ €R ’ €rRy €R, €R3 €R, €ER; ERg ‘
Initial poses | 1.447{2.495 1.231 0.238 2.167 0 2.548
Final poses | 0.183 | 0.139 0.195 0.286 0.220 0.031 0.224

’ ‘ er ‘ ern er, ery er, ery €Ty ‘
Initial poses | 2.778 | 4.374 5.045 3.169 2.155 0 1.922
Final poses | 1.419 | 1.536 2.029 1.654 1.680 0.341 1.278

Table 6.18.: Errors on rotations and translations obtained applying Tron-Vidal algorithm to
the experimental network in presence of unbalanced noise distribution choosing
the node 5 as reference

Moreover, observing Figure 6.40, it occurs that the worst initial poses are those of the
devices 1 and 2 above all concerning the translations. In particular, the error ey, remains
much high even after the implementation of the Tron-Vidal algorithm. Instead, the final
errors on the camera 1 are not so large probably because of its particular position in the
network and with respect to the object observed.

Real poses
A |nitial estimates
A Final estimates

y—axis [m]

x—axis [m]

Figure 6.40.: Effect of unbalanced noise distribution on the results of Tron-Vidal algorithm
applied to the experimental network choosing the node 5 as reference

98

6. Validation

In conclusion, it is possible to say that the tests on real and synthetic data bring
similar considerations with respect to the performance of the translation part of the cost
function, whereas the results about the poses and relating errors are different. This ob-
servation is justified by the fact that the uncertainty on real measurements is unevenly,
differently from what happens in the previous simulations.

6.3.3 Experimental results: additional links

To conclude this chapter on the validation of the proposed algorithm, the analysis focuses
on the effect of the addition of a communication link in the real camera network.

As already pointed out, the experimental layout of Figure 6.32 is such that every
device is able to communicate only with its neighbors, by associating the network to
a circulant graph. Truthfully, some existing links have been omitted because of the
difficulties encountered in the calibration of the cameras involved.

In this section, a more complex topology is analyzed, considering the fact that the
fields of view of the cameras 4 and 6 overlap since in the structure (gray polygon) there
is an open path not shown in Figure 6.32.

Evaluating a synthetic setup, it has been observed that the presence of additional
communication links results in a deterioration of the estimates of the absolute poses of
the cameras in the network (Figure 6.21 and Table 6.11). Similarly, in the real case a
more complex communication pattern does not allow to improve the results achieved at
the end of the implementation of the Tron-Vidal algorithm.

Real poses
A Final estimates considering additional link
Final estimates without considering additional link

y—axis [m]
w
A

1)
RRE
_20\ / 71? % @i\(
2 \ \ \ \ \
-2 0 2 4 6 8 10
x—axis [m]

Figure 6.41.: Comparison between the results obtained applying Tron-Vidal algorithm on the
experimental network with and without the additional link

Let us consider the Figure 6.41 obtained by implementing the iterative procedure
described in Chapter 4 on the experimental network choosing the system of camera 4

99

6. Validation

as reference and imposing 1000 iterations for the estimation of rotations and 10000 for
that of translations.

In the plot the absolute poses estimated without considering the link between the
cameras 4 and 6 are represented by orange triangles which seem to be located close to the
green one (real poses) in half of the cases. For devices 1, 2 and 4 the best reconstruction
seems to be that obtained by considering the more complex communication pattern.

A clear picture of the situation can be gained by assessing errors in numerical terms.
Table 6.19 proves that the mean errors on rotations and translations are greater when
the new additional link is considered, even if the difference is very small respect to the
values assumes by er and epr when the simpler topology is evaluated. This behavior is
analogous to that highlighted in synthetic data analysis.

Final poses considering additional links 0.102 0.574

Final poses without considering additional links | 0.098 0.559

Table 6.19.: Mean errors on rotations and translations obtained applying Tron-Vidal algorithm
to the experimental network with and without the additional link

Likewise the synthetic case, it is interesting to observe the trends of the cost function
by comparing the two network topologies. Figures 6.42 and 6.43 illustrate the behavior
of the rotational component and the translational component of ¢ in correspondence to
the presence (black line) or not (orange line) of the additional link.

Cost function - rotation part

0.08 T :
Considering additional link
Without considering additional link
0.07
0.06 [
0.05
3]
=
<
>

0.041

0.031

0.02

0.01 i i i i
0 200 400 600 800 1000

iterations
Figure 6.42.: Comparison of the trends of the rotational part of the cost function during the

implementation of Tron-Vidal algorithm on the experimental network with and
without the additional link

100

6. Validation

Cost function - translation part
1.4 T

Considering additional link
Without considering additional link
1.2+ B

Value

0 2000 4000 6000 8000 10000
iterations

Figure 6.43.: Comparison of the trends of the translational part the cost function during the
implementation of Tron-Vidal algorithm on the experimental network with and
without the additional link

It is worth of notice that the trend represented by black line is worse for both g
and 7. When a more complex communication pattern is considered the descent of the
cost function becomes less pronounced. Furthermore, the rotational component has an
unexpected curvature in the last iterations.

These observations are consistent with those made in the case of the synthetic data
analysis: the introduction of extra links in the network results in a slowdown in the
achievement of the minimum of the cost function.

In order to improve the results achieved when the additional link is considered, a
strategy based on the identification of sub-networks is follow, as in the synthetic case.

The first step is dividing the network into three subgraph:

- the external sub-network coincides with the original topology without considering
the information exchange between the nodes 4 and 6;

- the left sub-network is composed by the nodes 1, 2 , 3, 4 and 6, ignoring the
presence of the node 5 and its communication properties;

- the right sub-network is made only of the nodes 4, 5 and 6 in order to pinpoint
a complete subgraph in which every device is capable of interacting with all the
others.

The main idea is to apply the Tron-Vidal algorithm to the different sub-networks
choosing always the node 4 as reference and then to average the results obtained with
the purpose of determining a unique set of absolute poses for the all devices in the
network.

Figure 6.44 displays the results achieved by applying this strategy. It is important to
emphasize that the number of iterations has been considerably lowered due to numerical
problems related to the management of the orthogonal matrices in Matlab: for the
estimation of rotations it is been fixed to 500, while the iterations for the translations
estimation are 5000.

101

6. Validation

Furthermore, it is worth to highlight that the spanning trees built in the initialization
phase are balanced for left and right subnetworks. Maintaining the node 4 as the root,
in the first case the branches are formed by the nodes 2-3 and 5-6, in the second case

the left branch is constituted by the node 5 while the right branch coincides with the
node 6.

Real poses
External sub—network
Left sub—network

A Right sub—network

6 A Mean network

] IR SRt @d 9
T 4
2 3 <
£ 2 e s 7

1

A &y
2 & 1

0

2\ \ \

-2 0 2 4 6 8 10

x—axis [m]

Figure 6.44.: Results obtained applying Tron-Vidal algorithm to different sub-networks

Observing the first and last rows of Table 6.20 relative to the mean errors committed
in the implementation of the procedure based on the sub-networks, it is easy to verify
that the er decreases contrary to ep. This fact does not reflect the assertions done in
the synthetic data analysis, but now the attention is focused on an experimental net-
work in which it was pointed out several times that the translations are more error prone.

€R er
Complete network 0.102 0.574
External sub-network 0.098 0.598
Left sub-network 0.078 0.415
Right sub-network 0.113 1.415
Complete averaging network | 0.097 0.697

Table 6.20.: Mean errors on rotations and translations obtained applying Tron-Vidal algorithm
to the experimental network with the additional link implementing or not the sub-
networks strategy

The deterioration in the estimation of the translations related to the application of

the proposed strategy is evident in Figure 6.45 where it is not possible to appreciate an
improvement with respect to rotations.

102

6. Validation

Real poses

A Final estimates considering additional link
A Final estimates considering additional link
but averaging the sub—networks results
6
5

y—axis [m]
w

=

e
x
=

P

x—axis [m]

Figure 6.45.: Comparison between the results obtained applying Tron-Vidal algorithm to the
experimental network with the additional link implementing or not the sub-
networks strategy

Finally, Figure 6.46 and Table 6.21 show, as done in the synthetic data analysis, the
comparison between the results obtained without considering the additional link and
evaluating a more complex communication pattern but using the method of splitting
the network into subgraphs.

Real poses
A Final estimates considering additional link
but averaging the sub—networks results
Final estimates without considering additional link

&
44

y—axis [m]

[N

Q>
==
b

o

3

2 \ \
-2 0 2 4 6 8 10

x—axis [m]

Figure 6.46.: Comparison between the results obtained applying Tron-Vidal algorithm to the
experimental network with and without the additional link but implementing the
sub-networks strategy

103

6. Validation

The criticality of the translations estimate remains obvious: concerning the easiest
network topology the error er is always lower. The rotations estimation very slightly
improves when the sub-networks strategy is implemented on a more complex communi-
cation layout.

Final estimates considering additional links
0.097 0.697

but averaging the sub-networks results

Final estimates without considering additional links | 0.098 0.559

Table 6.21.: Mean errors on rotations and translations obtained applying Tron-Vidal algorithm
to the experimental network with and without the additional link but implementing
the sub-networks strategy

In conclusion, it can be said that what has been observed in the simulations carried
out on synthetic setups does not exactly correspond to the results gained by the tests
on real network. Nevertheless, it is fair to point out that the main issue is the estimate
of translations, probably also because these are linked to the scale factors.

104

CONCLUSIONS

This final chapter summarizes the work done by focusing the attention on the main
observations that can be drawn from the analysis of the obtained results. The profound
study of the algorithm proposed by Tron and Vidal in [1] and described in Chapter /
allows to achieve some interesting conclusions. At the same time, the criticalities about
the procedure are several as well as the issues still open above all concerning the choice
of the design parameters. To this end, an entire section is devoted to the ideas to develop
in future works.

Contents
7.1. Summary ofresults 00 .. 106
7.2. Future works i i i i i i i i e e e e e e e e e e e e e e 106

105

7. Conclusions

Summary of results

The purpose of this work is solving the localization problem for a camera system, i.e. the
estimate of the rotation matrix and the translation vector of each device expressed in
an absolute and fixed reference system. The problem is tackled exploiting the algorithm
proposed by Tron and Vidal based on the minimization of a suitable cost functional in
SE(3) in a distributed manner. In particular, the analysis of this iterative procedure is
the core of the thesis itself.

In the opening chapters, the operating context is described in detail by providing the
mathematical concepts needed to understand the issue and by clearly formulating the
problem to be solved. In Chapter 4, the algorithm object of analysis is meticulously
illustrated, in particular new initialization strategies are proposed. The main innovation
consists in the fact that the single spanning tree method is replaced by two approaches
based on the construction of multiple spanning trees, whose results are averaged in order
to minimize and uniformly distribute the errors on initial estimates.

Chapter 6 is entirely devoted to the validation of the proposed algorithm considering
some measures of error as performance metrics. The conclusions that can be drawn are
several and interesting.

Firstly, the MSTVC initialization method seems to be capable of providing the best
final estimates: the initial distribution of the uncertainty allows to compensate for errors
during the iterative procedure. Moreover, the presence of a virtual camera overcomes
the question of choosing and giving priority to a node of the network as reference: the
position of the scene observer is set a priori in reliable manner. This initialization
strategy still has some disadvantages, the main one is undoubtedly the computational
load due to the need of calculating the average of the rotation that is not an analytical
operation.

Tests conducted on simulative and experimental scenarios support the study also in
the case of additional communication links and unbalanced noise distribution. More
specifically, the comparison between the real and synthetic setups suggests that the
error which affects the initial relative pose is a determining factor on the estimate of
the final poses. Similarly, the choice of the value to be imposed to the step-size and the
number of iterations to be performed are crucial for the convergence of the procedure.

In conclusion, it can be stated that the major difficulty in the localization problem
for a camera system is the impossibility of separating the estimation of rotations from
that of the translations. In particular, this last one is more problematic because of the
dependence on the scale factors in the cost functional.

Future works

Since the camera networks are emerging on a large scale in the context of control sys-

tems, there are numerous possible future works aimed at optimizing the solution of the
localization problem that is the key step of almost all the applications.

On the top of the list of ideas to develop there is certainly the resolution of the issues
about the method that estimates the poses in the domain of Fourier transform, in order

106

7. Conclusions

to validate the hypothesis that the combination of the algorithms proposed in [1] and [11]
allows to obtain better results in terms of absolute poses. More specifically, it would be
interesting to mix not only the results but also the strategies operating in the spatial
and frequency domains, creating an hybrid procedure.

As far as the Tron-Vidal algorithm is concerned, a more deeper analysis should be
carried out with regard to the design parameters by studying in detail the role of the
step-size and its relations with the number of iterations to perform.

In addition, more attention could be devoted to the initialization phase. In relation
to MSTVC strategy, one could consider alternative methods for calculating the average
of a set of rotations based on metrics different from the Riemannian one [19], as well as
different virtual camera positions. In the future, then, it is necessary to find a manner to
initialize the scale factors A;; trying to estimate the real distances between the devices
on the network and the observed scene. The literature is rather lacking on this issue but
the work suggests the importance of these parameters.

The validation of the algorithm illustrated in Chapter 4 may continue in several ways:

- analyzing the behavior of the translation part of the cost function by deriving an
analytical formulation in a 2D scenario, as done for pg;

- generating the initial relative poses in Matlab environment with other types of
additive noise different from the Gaussian one or studying how the final results
change according to the variation of the variances initially imposed on the relative
rotations and translations;

- considering more complex topologies in both synthetic and real case, evaluating
more articulated communication patterns or real layouts afflicted by occlusions
and low resolution.

107

PINHOLE CAMERA MODEL

The most common geometric model of a camera is the pinhole model. It describes the
mathematical relationships that link the 3D coordinates of a point in the scene space to
the 2D coordinates of its projection on the acquired image of an ideal pinhole camera,
i.e. a camera whose aperture is described as a point and no lenses are used to focus the
light.

world frame

camera frame

Figure A.1.: Pinhole camera model

The basic elements of the model (see Figure A.1) are:

e The 3D orthogonal coordinate system (world frame) whose origin is localized in the
point O and whose axes are not named for the sake of simplicity in the notation.

e The 3D orthogonal coordinate system (camera frame) whose origin C is also the
center or focus of projection of the camera. The three axes of this coordinate
system are referred to as x, y, z. In particular, the z-axis is named optical or
principal azis, as it is pointed in the viewing direction of the camera.

e The image plane 7, i.e. the 3D plane parallel to axes x and y that contains the 3D
points’ projected images. It is located at distance f (focal length) from the origin
C in the direction of the optical axis.

e The 3D point Q that is displaced in the scene space at coordinates (X, Yo, Zo)
with respect to the world frame, whereas its coordinates relative to axes z, y, z
are (X, Y, 7).

e The 2D point q that is the projection of the 3D point Q onto the image plane 7.

109

A. Pinhole camera model

e The 2D orthogonal coordinate system in the image plane, whose origin is placed
at the intersection with the optical axes. The coordinates of the point q relative
to this coordinate system are (u, v).

As far as the pinhole camera model is concerned, in the literature there are two main
problems to be solved:

1. determining the relationship that links the 3D point Q coordinates in the world
frame and the analogous ones in camera frame;

2. determining the relationship that links the coordinates relative to camera system
of the 3D point Q and the coordinates of its projection onto the image plane, i.e.
the 2D point q.

The solution of the first problem coincides with the determination of the expression
of a rototranslation that links the coordinates (Xo, Yy, Zp) and (X, Y, Z), i.e. the
calculation of the rotation matrix R and the translation vector T' that appear in the
following equality:

X X,
V| =R|Yy|+T with (R,T) € SE(3). (A1)
Z Zo

The second problem, instead, requires to solve the projection equations:

X
U:f?,

Y
v= fE (A.3)

(A.2)

It is worth of notice that, combining the previous equations, the transformation be-
tween (X, Yo, Zp) and (u, v) can be determined through the introduction of the homo-
geneous coordinates and the scale factor . Indeed, it is possible to write the following
chain of relationships where the homogeneous coordinates are introduced both for the
2D point and the 3D point:

’ u X f 0 0] [Xx f 00 0
0 0 1] [Z 0 010

The last matrix in (A.4) can be expressed as the product of two ones:

f 00
o intrinsic parameters matriz (calibration matriz): K = [0 f 0f;
0 0 1
1 000
o standard projection matriz: IIp= [0 1 0 0].
0010

110

A. Pinhole camera model

Generally, the matrix K presents a more complex structure:

Se Sp O] [f 0 0
K=KK;=|0 S, O,/ |0 f 0 (A.5)
0 0 1][0 01

where S, and Sy (horizontal and wertical scaling) convert the real distances in terms of
pixels, Sp is the skew coefficient between the axes « and y, O, and Oy (horizontal and
vertical offset) represent the center point of the image plane.

As a consequence, the combination of the equations (A.1) and (A.4) allows to reach
the following conclusion:

X Xo Xo
u
Y T] | vt Y,
Alv| = KT — k1, | B Ol = KIyg | V], (A.6)
. Z 0 1|12 Zo
1 1 1

where g is referred as extrinsic parameters matriz.

Usually, the task of calculation the camera matriz P = Kllyg is known as calibration
problem: it is necessary to determine the six intrinsic parameters (S;, Sy, Sp, Oz, Oy
and f) and the six extrinsic ones (three parameters for the rotation and three for the
translation).

However, two other important matrices in pinhole model are the essential matriz and
the fundamental matriz.

Given a pair of pinhole camera i and j, the essential matrix F is the 3 x 3 matrix
that links the 2D points q; and qj seen by the i-th and j-th devices respectively. More
explicitly

ai’ Eq; = 0. (A7)

The matrix E can also be expressed in relation to the fundamental matrix F' that de-
scribes the correspondence between the pair of cameras in more general and fundamental
terms of projective geometry. Indeed, it results

E = K}'FK;, (A.8)

where K; and K are the intrinsic calibration matrices of the two devices involved.

111

ROTATION REPRESENTATIONS

In geometry various formalisms exist to express a rotation in three dimensions. The
Euler’s rotation theorem states that any displacement of a rigid body such that a point
on it remains fixed (or a three-dimensional coordinate system with the fixed origin) is
equivalent to a single rotation about some axis. As a consequence, the composition of
two rotations is also a rotation, but above all a rotation may be uniquely described by a
minimum of three real parameters. Nevertheless, many of the rotations representations
known in literature involve more than the necessary minimum of three parameters,
although the degrees of freedom are always at most three.

Rotation matrix In linear algebra, a rotation in three-dimensional Euclidean space is
usually indicated using a rotation matrix, i.e. an element of the special orthogonal group
SO(3). This group includes all the 3 x 3 orthogonal matrices having unit determinant.
Therefore, a rotation matrix R € R3*3 is such that RRT = I and detR = +1: these two
properties assure that the orientation and the length are preserved in the transformation,
according to the definition of rotation.

Axis-angle representation Another interesting notion is the so-called azis-angle rep-
resentation or equivalent axis representation, where a 3D rotation is expressed as a
single rotation 1 about an axis having the direction defined by the unit vector w =

T
Wr Wy wz} € R?, ||w|| = 1. More explicitly R = e*¥, where

0 —Wy Wy
Q=Qw)=| w. 0 —wz| €50(3) (B.1)
—Wy Wy 0
is a skew-symmetric matrix associated to w that belongs to s0(3) = {S e R33 . 8T = —S}.

However, it is worth highlighting that this representation is not unique since choosing

w' = —w and ¢’ = 21 — 9 gives the same rotation as w and ¢ [11].

Angle representation Finally, according to Euler’s rotation theorem, any rotation may
be described by a sequence of rotations about some fixed axes using three angles (a, 3,
7v), called Euler angles. More explicitly,

- the angle a refers to a counterclockwise rotation about z-axis (yaw)

cosaa —sina 0
R.(a) = |sina cosa 0]; (B.2)
0 0 1

113

B. Rotation representations

- the angle § indicates a counterclockwise rotation about the y-axis (pitch)

cosB 0 sinpg
R,B)=| 0 1 0 |; (B.3)
sin8 0 cospf

- the angle v adverts to a counterclockwise rotation about the x-axis (roll)

1 0 0
Ry(y) = |0 cosy —siny|. (B.4)
0 siny cosvy

Therefore, a rotation matrix can be expressed as the product of the previous three

matrices in a certain order, e.g.

R(ov, 3,7) = Ra(0)Ry(B)Ra(7) (B.5)
cosacos B cosasinfGsiny —sinacosy cosasin 8 cosy + sin asin vy
= [sinacosf sinasinfsiny + cosacos?y sinasin fcosy — cosasiny
—sin cos 3 sin 7y cos 3 cosy

114

BIBLIOGRAPHY

1]

[5]

[11]

R. Tron and R. Vidal, “Distributed image-based 3D localization of camera sensor
networks,” in Decision and Control, 2009 held jointly with the 2009 28th Chinese
Control Conference. CDC/CCC 2009. Proceedings of the 48th IEEE Conference on,
Dec. 2009, pp. 901-908.

G. Bianchin, M. Luvisotto, and G. Michieletto, “Fault detection in sensor networks
via cluster-based consensus,” unpublished.

C. Dal Mutto, P. Zanuttigh, and G. M. Cortelazzo, “A probabilistic approach to
tof and stereo data fusion,” in 3DPVT, May 2010.

J. Aspnes, T. Eren, D. Goldenberg, A. S. Morse, W. Whiteley, Y. R. Yang, B. D. O.
Anderson, and P. Belhumeur, “A theory of network localization,” IEEE Transac-
tions on Mobile Computing, vol. 5, no. 12, Dec. 2006, pp. 1663-1678.

W. E. Mantzel, H. Choi, and R. G. Baraniuk, “Distributed camera network lo-
calization,” in Signals, Systems and Computers, 2004. Conference Record of the
Thirty-Eighth Asilomar Conference on, Nov. 2004, pp. 1381 — 1386.

P. Rong and M. Sichitiu, “Angle of arrival localization for wireless sensor networks.”
in Sensor and Ad Hoc Communications and Networks, 2006. SECON ’06. 2006 3rd
Annual IEEE Communications Society on, 2006, pp. 374 — 382.

G. Piovan, I. Shames, B. Fidanc, F. Bullo, and B. D. O. Anderson, “On frame and
orientation localization for relative sensing networks,” Dec. 2008, pp. 2326 — 2331.

D. Devarajan and R. J. Radke, “Distributed metric calibration of large camera
networks,” in in Proc. 1st Workshop on Broadband Advanced Sensor Networks, 2004.

S. Funiak, C. Guestrin, M. Paskin, and R. Sukthankar, “Distributed localization
of networked cameras,” in Information Processing in Sensor Networks, 2006. IPSN
2006. The Fifth International Conference on, Apr. 2006, pp. 34 — 42.

G. Baggio, M. Michielan, and S. Patron, “Distributed image-based localization of
camera networks: a comparative analysis of different communication protocols,”
unpublished.

L. Lucchese, G. Doretto, and G. M. Cortelazzo, “A frequency domain technique for
range data registration,” Pattern Analysis and Machine Intelligence IEEE Trans-
actions on, vol. 24, no. 11, pp. 1468-1484, Nov. 2002.

R. I. Hartley, “In defense of the eight-point algorithm,” Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on, vol. 19, no. 6, pp. 580-593, Jun. 1997.

Q. Ji, M. S. Costa, R. M. Haralick, and L. G. Shapiro, “A robust linear least-squares
estimation of camera exterior orientation using multiple geometric features,” ISPRS
Journal of Photogrammetry & Remote Sensing, vol. 55, no. 2, pp. 75-93, 2000.

115

BIBLIOGRAPHY

[14]

[18]

[19]

[20]

[21]

[22]

23]

[24]

C. P. Lu, “Fast and globally convergent pose estimation from video images,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 22, no. 6, pp. 610-
622, Jun. 2000.

B. Triggs, P. Mclauchlan, R. Hartley, and A. Fitzgibbon, “Bundle adjustment 4AS
a modern synthesis,” in Vision Algorithms: Theory and Practice, LNCS, 2000, pp.
298-375.

R. Olfati-Saber, J. Fax, and R. Murray, “Consensus and cooperation in networked
multi-agent systems,” in Proceedings of the IEEE, vol. 95, no. 1, Jan. 2007, pp.
215-233.

R. Tron, B. Afsari, and R.Vidal, “Riemannian consensus for manifolds with bounded
curvature,” Automatic Control, IEEE Transactions on, vol. 58, no. 4, pp. 921-934,
Apr. 2013.

R. Tron and R. Vidal, “Distributed image-based 3D localization of camera sensor
networks,” Tech. Rep., Johns Hopkins University, 2009.

R. Hartley, J. Trumpf, Y. Dai, and H. Li, “Rotation averaging,” International
Journal of Computer Vision, vol. 103, no. 3, pp. 267-305, Jul. 2013.

J. H. Manton, “A globally convergent numerical algorithm for computing the cen-

Y

tre of mass on compact lie groups,” in Control, Automation, Robotics and Vision
Conference, 2004. ICARCYV 2004 8th, vol. 3, Dec. 2004, pp. 2211 — 2216.

M. Andreetto, L. Lucchese, and G. M. Cortelazzo, “Frequency domain registration
of computer tomography data,” in Second International Symposium on 3D Data
Processing Visualization and Transmission (3DPVT04), Sep. 2004, pp. 550-557.

N. Benvenuto and M. Zorzi, Principles of Communications Networks and Systems.
John Wiley & Sons Ltd, 2011.

V. A. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals € Systems (2Nd Ed.).
Prentice-Hall, Inc.2, 1996.

A. C. Benedetto, “Gestione immagini,” unpublished.

116

