UNIVERSITY OF PADUA

DEPARTMENT OF MATHEMATICS

MASTER THESIS IN DATA SCIENCE

BiN PACKING THROUGH

MACHINE LEARNING

SUPERVISOR MaSTER CANDIDATE
PROFESSOR FRANCESCO RINALDI PierrAoLO D’ODORICO
UNIVERSITY OF PADUA

CO-SUPERVISOR
GI1aNLUCA EMIRENI

SENIOR DATA SCIENTIST, HORSA GROUP

ACADEMIC YEAR

2021-2022

ii

DEDICATED TO MY FAMILY, FRIENDS, AND ALL THE PEOPLE WHO PUSH ME
TO BE BETTER EVERYDAY.

iv

Abstract

In this thesis project we propose a wide range of Machine Learning techniques
for dealing with the Bin Packing problem. The business domain is transportation
optimization, a popular application field of Operational Research methods. The
work is inspired by a real project by the consulting firm Horsa Group. The aim is
to inspect the business problem from a mathematical point of view and to focus
on different state-of-the-art techniques involving Machine Learning.

The objective is to give an overview of the different possible approaches for
further developments and compare the pros and cons of possible solutions. We
will also compare the performances of those techniques on generated example
data and real-world data.

The final goal is to reduce the costs of the shipping process by increasing effi-
ciency. The focus will be on how the shipping pallets are composed, packing the
items with an efficient and scalable framework.

The road map consists in defining in a formal way the Operational Research
problem and the business problem, to compare classical approaches with some
of the methods that nowadays are more and more popular and involve Machine
Learning techniques. Some of those approaches involve Deep Reinforcement
Learning and Graph Neural Networks.

Finally, we will inspect a wide range of possibilities for making the bin packing
process more efficient, simulating different real case scenarios. The aim is to give
a clear overview of future developments in Bin Packing Optimization algorithms.
Those developments can make the company’s shipping software scalable and well-
performing, with more efficient use of resources.

vi

Contents

ABSTRACT v
LIST OF FIGURES ix
LISTING OF ACRONYMS xi
1 INTRODUCTION I
1.1 BusinessProblem 2

1.2 Complexity Problems 4

1.3 Machine Learning contribution 7

1.4 ThesisObjective L. 8

2 BACKGROUND II
2.1 Operational Research definition 12
2.1.1 Optimization Problems 13

2.1.2 Optimization Problems formalizations 14

2.2 Machine Learning keyideas 14
2.2.1 Supervised Learning L. Is

2.2.2 Markov Decision Process 16

2.2.3 ReinforcementLearning 18

2.2.4 Reinforcement LearningforCO 19

2.3 Bin packing formalizationo 000 20

3 APPROACHES FOR SOLVING BIN PACKING 23
3.1 Classic approaches for solvingbpp 23
3.1.1 Classicalgorithms 24

3.1.2 Bin Completion algorithm 25

3.1.3 Branchand Bound algorithm 28

3.1.4 Branchand Cutalgorithm 31

3.1.5 Or-Toolssuite 33

3.2 MLapproach currentstate 34

3.2.1 Imitation Learning Approach
3.2.2 Reinforcement Learning Approach

4 MACHINE LEARNING FOR MILP PROBLEMS
4.1 Imitation Learning through GCNN.

4.1.1 Background .

......................

4.1.2 Graph Convolutional Neural Networks

4.1.3 Methodology

4.1.4 Imitation learningwith GCNN
4.2 BPP with Reinforcement Learning

4.2.1 Background .

4.2.2 Packing configurationtree
4.2.3 GATattentionlayer
4.2.4 Markov Decision Process Formulation

5 EXPERIMENTS

5.1 GCNN experimentson MILP

s.1.1 Ecole project .

......................

s.1.2 Training with GCNN Imitation Learning

5.1.3 Results

5.2 RL3D-BPPexperiments
s.2.1 ORToolsresults

5.2.2 3D-BPP results
6 CONCLUSION

REFERENCES

viii

39
39
40
41
45

50
51
53
55

61
62

64
68
71
72
74

79

81

I.1
1.2
1.3
1.4

2.1
2.2

3.1
3.2
3.3

Listing of figures

Description of the business problem.
Business problem in thisthesis.
Big-O complexity comparison.
Pvs NP classdiagram.

Markov Decision Process scheme.
RL for Constrained Optimization scheme.

Bin Completion visualization.
Branch and Bound visualization.
Branch and Cut visualization.

Directed and undirected graphs.o
CNNvsGNNinimages.
CNNvsGCNN. o e
B&B states representation. L
Encoding B&B in GCNN and training.
Probability distribution over candidate nodes.
PCT expansion illustrated using a 2D example.

The agent—environment interaction in a Markov decision process.

Batch calculation for PCT.

Companies selling OR through Machine Learning products.

Trainingcurve. oo oL oL
Trainingcurve. oo o 0oL
Results with 1000 sample training.
Results with 1000 sample training2.
Training curve of a branching environment on randomly gener-
ated instances reported in the paper.o L.
OR Toolssolution.,

% of bins saturated overepisodes.

ix

N O\ A~ W

19
26
30
32

70
72
74

5.9 Performance comparisons in a discrete solutions space.
5.10 Performance comparisons in a continuous domain.

s.11 Online 3D-BPP has widely practical applications in logistics, man-

ufacture, warehousing and other fields.

76
77

77

Listing of acronyms

MILP Mixed Integer Linear Programming
NP-hard Non-deterministic Polynomial-time hard
RD Research and Development

LP Linear Program

OR Operation Research

ML.......... Machine Learning

DL Deep Learning

RL Reinforcement Learning
CO.......... Constrained Optimization

GCNN Graph Convolutional Neural Network
PCT Packing Configuration Tree

MLP Multi Layer Perceptron

GAT Graph Attention Layer

Xi

Xii

Introduction

The problem analyzed in this master thesis belongs to the context of Transporta-
tion Optimization. Different size items need to be stored in shipping pallets of a
fixed dimension. For this reason, we consider the Bin Packing problem, which is
a classical Operation Research problem suitable for this type of decision.

Bin Packing problem is an optimization problem, in which items of different
sizes must be packed into a finite number of bins or containers, each of a fixed
given capacity, in a way that minimizes the number of bins used.

The problem has many applications, such as filling up containers, loading
trucks with weight capacity constraints, and creating file backups in media and
technology mapping. There are many variations of this problem, such as 2D
packing, linear packing, packing by weight, packing by cost, and a lot of other

applications.

Before diving into the mathematical formalization we need to focus on some
basic concepts about computational complexity theory and the NP-hardness of
algorithms. Then we need to understand the basics of general Mixed Integer Lin-

ear Programming problems, which from now on we will shorten to MILP.

I

After the formal problem definition, we need to describe the Operational Re-
search field from a decision-making point of view and its intersection with Ma-
chine Learning techniques. Those intersections are becoming so popular in aca-

demic research and corporate research nowadays.

1.1 BUSINESS PROBLEM

Optimizing the shipping process between constraints and costs is a fundamental
aspect of sustainable supply chain optimization. And it is a crucial element in
preserving the competitiveness of a company. In this optimization process, one
aspect is often overlooked: the management of the shipping or transportation
supply chain.

The costs of the shipping activity represent a non-negligible part of the costs
of the entire supply chain. To exclude this phase from the optimization process
can strongly affect good margins.

The management of the shipping activity is very complex because it must take
into account multiple constraints while keeping costs under control. However, in

many companies, the management of shipping transportation is:

* Itis based on formal and fixed rules;
e Ttreliesona single person experience;

* It requires a strong manual work.

Those critical issues do not allow complete optimization of the shipping pro-
cess.

Starting from the list of items to be shipped, their characteristics, and the
shipping constraints the goal is to optimize in an efficient and scalable way the
optimal number of shipping units and their composition. And also the optimal
composition of the loaded trucks in terms of saturation, combined with the opti-

mization of the shipping routes. The result can be more shipping units with the

2

same number of trucks loaded or the same number of shipping units with fewer

trucks loaded.

From a practical point of view, we need to split the process into two different
steps, as reported in Figure 1.1. The first one takes into account a list of items
with some physical characteristics and the final destination labels. The goal of
the first step is to create optimized shipping units containing items all directed to
a unique final destination. With this constraint, we can consider every shipping
unit as a unified group of items that can be moved conveniently. The second step
takes into account the shipping units and loads trucks in an optimized way, taking

into account space constraints and routes.

ltems List

Shipping Units Loaded Trucks

Figure 1.1: Description of the business problem.

Some of the key constraints of this business problem are related to practical
constraints in the real world scenario. We need to take them into account for
creating a custom-made optimized process. We enumerate some of the most im-

portant ones:

* The shipping unitincludes all constraints related to product characteristics;

* Warehouse picking rules (if any) need also to be included;

* Includes all the dimensional constraints of the means of transport and de-
liver;

* Includes logistical constraints related to the different types of vehicles and

shipping areas;

* Includes the optimization of routes according to the customers to be reached.

As a result of this whole optimization process, we will reduce planning and
preparation time for shipment. It’s also important to ensure greater security and

accuracy in adhering to shipping standards.

In this thesis project the main focus is on the bin packing process in the first
step of the optimization, as described in Figure 1.2. The goal is to inspect several
methods for creating the shipping units in an efficient and scalable way, taking

into account all the given constraints.

ltems List

- e]]
D %:ﬁ': D s ;—'D;D';

Shipping Units

Figure 1.2: Business problem in this thesis.

1.2 COMPLEXITY PROBLEMS

The bin packing business problem has some computational complexity issues
that need to be introduced. The bin packing optimization is a computational
problem solvable by applying mathematical steps. Computational complexity
theory classifies computational problems in classes, according to the resources

used for finding the solution, that can be measured in time and storage. The goal

4

of computational complexity theory is to quantify the algorithms’ computational

complexity.

The complexity of an algorithm is often expressed using Big-O notation. Itis
a standard mathematical notation that shows the efficiency of an algorithm in the
worst-case scenario relative to its input size. Big-O notation captures the time or
space complexity upper bound to show how much an algorithm would require

in the worst-case scenario as the input size grows.

f(n) = O(inputSize)

Given an input size and a c constant, we can give some examples of time com-
plexity. Given a list of 1 elements, we want to extract the first element of the list
the time would be constant and the notation would be O(1).

If we want to extract a specific item in a list of 7 elements, we can not know
the number of items to check for finding the right one. The worst-case scenario
is that the item we are looking for is in the final position of the list. In this case,
the notation would be O(n), because the worst case is to check every element in
the n elements list.

The bin packing problem belongs to the class of combinatorial optimization
problems, and this specific class of problems belongs to a particular complexity
class called NP-hard. But for understanding what it means we need to define the

context.

We call P the class of problems with polynomial time complexity O(n°), and
we can see the comparison with other complexities in Figure 1.3. The class P con-
sists of all those decision problems that can be solved on a deterministic sequential
machine in an amount of time thatis polynomial in the size of the input. The class
NP consists of all those decision problems whose solutions can be verified in poly-

nomial time. This means that we do not know if finding the solution requires a

polynomial time. But given a possible solution, we can verify if it is a solution in
polynomial time.

NP-hard (non-deterministic polynomial-time hard) problems are the ones
that can be informally defined as "at least as hard as the hardest problems in NP

problems space” as shown in Figure 1.4.

O(n!) O(c") o(n)
Running
Time
Complexity
in terms of
Big-O O(nolgn)
O(f(n))
O(n)
— O(logn)
Input Sizen | >

Figure 1.3: Big-O complexity comparison.

Bin packing problem belongs to the NP-hard class because the problem com-
plexity grows exponentially with the problem size, since the number of possible
partitions is higher than (%)% . This implies there is no efficient algorithm to find

an optimal solution for every instance of bin packing problem.

Throughout the search for the best possible solutions for NP-hard problems,
a wide variety of solution procedures have been proposed, however, there is no
unique efficient algorithm capable of finding the best solution for all possible in-
stances of a problem.

Bin packing problems has a significant number of applications in the industry,

so it has been widely studied, and multiple algorithms have been developed to

6

solve it. The solutions range varies from approximate and exact algorithms to

metaheuristics, but nowadays there is so much more work to be done.

NP

EASY TO CHECK
HARD TO SOLVE

P

EASY TO SOLVE

Figure 1.4: P vs NP class diagram.

1.3 MACHINE LEARNING CONTRIBUTION

How is it possible to solve NP-hard problems in practical time? Every classic NP-
hard problem has a rich set of techniques researchers have developed for more
efficient solving. The techniques also depend on the structure of the problem.
In addition to the problem structure, an expert will know how to refine algo-
rithm parameters to different behaviors of the optimization process in the specific

application domain. This extends the knowledge with unwritten intuition.

The focus of this thesis work is on combinatorial optimization algorithms
that automatically perform learning on a chosen distribution of problems, with a
deeper dive into learning bin packing problems. Incorporating machine learning
components [1] in the algorithm can help in making processes more efficient and
scalable in a real-world scenario.

Machine learning in an optimization context focuses on performing a task

based on learning some finite data. Without the need for an explicit mathemat-

7

ical formulation. This is useful especially when the true data distribution is not
known analytically.

There are two main reasons for inspecting machine learning techniques on
combinatorial optimization problems. In the first place, the researcher assumes
expert knowledge about the optimization algorithm and replaces some heavy ex-
act computations with a fast approximation. Learning can be used to build such
approximations without the need to derive new explicit algorithms, but to use
data to train a model in a supervised learning way. The second reason is that a
single expert knowledge may not be sufficient because he can make only a few
selected decisions related to personal experience. With machine learning, we can
expand the space of these decisions and learn the best-performing policy.

Using machine learning to tackle the bin packing problem, we need to decom-
pose the problem into smaller and simpler learning tasks. For this reason, even if
the result is an approximation of the exact solution, we would have a lot of time

and scalability advantages.

1.4 THESs1S OBJECTIVE

In this thesis we have a set of objectives to achieve, that range from academic re-
search topics to business application scenarios. The goal is to give a complete
overview of the different techniques for solving MILP problems and in particu-
lar Bin Packing problem. This is important because the academic research about
those topics runs on a parallel track if compared to Research and Development
(R&D) in tech companies. The majority of enterprise solutions are not open
source because they are part of proprietary software. For this reason, it is hard
to inspect which are the state-of-the-art solutions and how fast the technology is

growing in the operational research using the machine learning techniques.

Operational research (which from now on we will shorten to OR) and ma-

chine learning (ML) can be seen as completely different fields. OR is a field of

8

problem-solving and decision-making that is useful in the management of orga-
nizations. The objective is to break down problems into basic components and
then solve them in defined steps by mathematical analysis. And is more focused
on solving a specific and not generalized problem. The basic components that
drive the solution are related to a specific task and custom created to solve it. ML
is also tightly related to optimization because most ML problems are formulated
as the minimization of a certain loss function. During the training of the model,
an optimization algorithm minimizes the loss on the training set.

But there is an important difference: the ultimate goal of ML is to minimize
the loss on unseen data. And not optimizing a specific task. We can simplify by
saying that ML is an optimization problem with the goal of generalization. The
objective of this work is to find a balance for exploiting the strengths of both OR
and ML fields, and to create a unique solution for optimizing the bin packing

problem.

This thesis research wants to give a clear overview of the open-source materials
and applications that are available nowadays for dealing with MILP optimization
using machine learning techniques. Before starting this research work the sources
of information and materials about this topic were not unified in a complete work,
but they were scattered across papers and works about specific applications with
a not clear context. This work will be a complete survey on the state of the art
academic techniques and can be useful for future improvements and business ex-
periments. This thesis can be seen in the first place as a starting point for a better

understanding of the topic.

The objective from a business point of view is to define the business problem
and the increase of performances using joint OR and ML methods, comparing
the performances given by the classical OR exact solution frameworks. For mak-
ing this possible we need in the first place to formalize the problem from a math-

ematical point of view. Then we need to use sample data for testing different

9

solution performances.

The final experiments have not the objective of creating a full pipeline for
solving the business problem from end to end, but they can compare different
possible approaches instead. The final objective is to measure the performances

of the different bin packing techniques based on three metrics:

* Time required for solution;
* Mean percentage of the bins filled;

* Number of bins used for packing all the items required.

The objective is to find more scalable options that can be suitable for future

improvements of the Horsa Group algorithmic framework.

I0

Background

In this section we will introduce the background of the thesis project, defining
from a formal point of view all the key points that define the basis for the com-
plete work. The roadmap is to define in the first place the business problem, and
then operational research, machine learning, Markov Chain concepts, and the
bin packing formalization.

We start by describing business problems and the real-world data. Then we
will focus on some specific features and solutions for trying methods for optimiz-
ing the shipping process. The data consists of a table where single item orders are

contained in rows, and the features, for each order, are:

* Client code;

Final client destination;

* Jtem;

Item weight;

Item volume;

Item x,y,h dimensions.

II

We have also a pallet dimension, that can be chosen by the user. We consider
the pallet as a bin. A pallet can contain only items that will be delivered to the
same final client destination, for making the routing easier. Most of the clients
are just intermediaries that will deliver again the items to the final clients, and

they prefer to not have a pallet that contains boxes for multiple clients inside.

We take into account some items and bins. We want to pack items into bins in
an efficient way. Then we will take the loaded pallets to store them in trucks, but
this is the next step. The interesting thing is that we can consider both pallets and
trucks as bins, in this way the pallet optimization part can be seen as a base version
of the truck optimization algorithm. Using this trick we can consider the truck
optimization as a generalization of the pallet optimization problem that considers
spatial distances in delivery. But this part will not be covered in this master thesis

work.

2.1 OPERATIONAL RESEARCH DEFINITION

From now on we will use the terms Operations Research and Operational Re-
search to refer to OR. Operations research is concerned with finding optimal so-
lutions to decision-making problems. In the late nineteenth century, researchers
began to explore the application of mathematical and scientific analysis to the pro-
duction of goods and services [2]. The field was accelerated during the industrial
revolution when companies began to subdivide their management into depart-
ments responsible for distinct aspects of overall decisions. The main idea is that,
if management, organization, planning, or decision-making is a logical process, it
can be expressed in terms of mathematical symbols and relationships. This desire
to be able to better model and understand business decisions sparked the devel-
opment of several concepts used today, such as linear programming, dynamic

programming, and queuing theory.

12

2.1.1 OPTIMIZATION PROBLEMS

An optimization problem is a problem of finding the best solution from all fea-
sible solutions. It’s a popular problem in mathematics, computer science, and

economics. Optimization problems can be divided into two different categories.

* Continuous optimization consists in finding the minimum or maximum
value of a function of one or many real variables, subject to constraints. The
constraints usually take the form of equations or inequalities. An example

could be:

mingepn ¢l subjectto Az = bandx > 0

* Discrete optimization consists in finding the minimum or maximum dis-
crete value of a function of one or many variables, subject to constraints.
An example could be a optimization problem with integer value condition:

min,epn ¢l subjectto Az = b,z > 0andx € Z"

Constraint optimization is the name given to identifying feasible solutions
out of a set of candidates, where the problem can be modeled in terms of arbitrary
constraints. It’s also known as constraint programming.

The subtle difference is that constraint programming is based on constraints
and variables, which means finding feasible solutions. Optimization instead fo-
cuses on the objective function, of finding an optimal solution among all the fea-
sible ones.

Constraint programming problems may not even have an objective function,
and the goal may simply be to find a very large set of possible solutions, to find
a more manageable subset by adding constraints to the problem. The combina-
tion of constraint programming and optimization has been successfully applied
in planning, scheduling, and numerous other domains with heterogeneous con-

straints.

13

2.1.2 OPTIMIZATION PROBLEMS FORMALIZATIONS

We can simply define a linear programming optimization problem with the fol-
lowing configuration: decision variables, function to minimize or maximize, and
constraints related to variables.

An example is finding integer values for the variables 2, v, z and k with k > 2
such that xk 4+ yk —zk is minimal.

From a formal point of view we can write:

Maximize ciz1+ -+ ¢y,
Subject to
ap 121+ - Farpr, < by

Am, 171 + -+ Amndn S bm

r12>0,...,2, >0

Where m,n € N, cj,b; and a;, j are constants, x; are the decision variables

andi=1,....m;j3=1,...,n.

Such problems are called linear optimization problems or linear programs
(LP) since all functions involved are linear. Special interest in this problem class
stems from the fact that the linear programming paradigm can serve as the formal
model for several economic resource allocation problems. And for this reason,

they are so well studied in an industry context.

2.2 MACHINE LEARNING KEY IDEAS

Nowadays, for dealing with complex integer linear programming problems re-
searchers are looking for approximate Machine Learning solutions to the prob-

lem.

14

We need to define the basics of the ML approach[1], which consists in learn-
ing to operate on data, without defining a specific function for mapping inputs
to outputs. This operation can be done by learning the policies on a subset of
data, called train set, and then testing the process on unseen data, called test data.

In this way, we can quantify the generalization capacity using some defined
metrics calculated on the unseen set of data. We can divide ML into three sub-
classes: supervised learning, unsupervised learning, and reinforcement learning.
In this thesis, we will focus on two of them, supervised learning and reinforce-

ment learning (RL).

2.2.1 SUPERVISED LEARNING

In supervised learning setting a set of input, features-target pairs are provided and
the task is to find a function that for every input has a predicted output as close
as possible to the provided target. Finding such a function is called learning and
is solved through an optimization problem over a family of functions. The loss
function measures the discrepancy between the output and the target. The loss
function can be chosen depending on the task (regression, classification, etc.) and

on the optimization methods.

From a mathematical point of view let X and Y, following a joint probability
distribution P, be random variables representing the input features and the target.
Let [be the per sample loss function to minimize, and let { fy|¢ € R, } be the
family of machine learning models, parametric in this case, to optimize over.

The supervised learning problem is framed as:
minEx ypl (Y, fo(X)) (2.1)
fcRp

For instance, fy could be a linear model with weights 6 that we wish to learn,
and loss function | is task-dependent. The probability distribution is unknown

and inaccessible, for this reason, it is approximated by the empirical probability

IS

distribution over a finite dataset Dyrqin, = (24, y;); solving the following opti-

mization problem:

_ 1
min Y =l (y, fo(x)) (2.2)
eRe | train ‘
(Iay) 6Dtra\in

Because the true probability distribution remains unknown, we estimate the
generalization error by evaluating the trained model on a separate test dataset

Dest with the following formula:

>t e fote) ()

(xay)EDtest

Selecting the best among various trained models cannot be done on the test
set. Selection is a form of optimization, and doing so on the test set would bias
the estimator in minimizing the loss function. This is a common mistake to be
avoided. To perform model selection, a validation dataset D, ;4 is used to esti-

mate the generalization error of different ML models is necessary.

Model selection can be done based on the estimates, and the final unbiased
generalization error of the selected model can be computed on the test set. The
validation set is therefore often used to select the effective capacity of the model.

For example, we can increase performances by changing the amount of train-
ing, the number of parameters ¢, and the amount of regularization imposed on
the model. Regularization refers to the techniques that are used in ML models to
minimize the loss function and prevent overfitting (learning well but not general-

izing) or underfitting (generalizing well but with low learning).

2.2.2 MARKOV DECISION PROCESS

Before introducing RL we need to define Markov Decision Processes (Fig. 2.1).
A Markov Decision Process (MDP) is described by a tuple (.S, A, P,) where:

16

S': a set of states related to environment and agent

A: aset of actions the agent can take

P: a state-transition probability which is the probability of moving from
state s; € S tostate s;11 € S under the action a € A(s;), where A(s) is
the set of possible actions to be taken in state s

7: the reward function corresponding to a certain action feedback. This
function maps the tuple of consequential states (S¢;8t41) toa correspon-
dent reward as a feedback for agent a for the state transition.

More formally we can describe the environment as a transition probability for

state-transition (2.4) and for transition-reward (2.5).

Py (Si41,51) = P (8141 | 51,a) (2.4)

P(St+1;7”t+1 \ Staat) (2.5)

Agent

m(als)

State Reward Action
Si+1 Ritq Ay

| Environment
p(s',rla,s)

Figure 2.1: Markov Decision Process scheme: the agent takes action A; on state .S; and receives a feed-
back. The following state is St+1 and a reward 7" is given. And this process can be iterated t times.

With MDP we are able to model the steps needed to reach the final state, and

to compose an episode in which the pairs action-states compose a trajectory in

7

a dynamic environment. This learning from experience through trial and error,

maximizing a reward function, is the key idea of Reinforcement Learning.

2.2.3 REINFORCEMENT LEARNING

The goal of RL is to train the agent to maximize the expected sum of future re-
wards. The dynamics of the environment, based on MDP, need not be known
by the agent and are learned through exploration vs exploitation dilemma. This
means choosing between exploring new states for refining the knowledge search-
ing for possible long-term improvements, or exploiting the best-known scenario
learned so far.

For finding the optimal policy we first need to define what a policy is. A policy
7 is a density function (2.6) mapping for each state the probabilities of taking
different actions a. A policy can be stochastic as shown in this Equation (2.6),
or it can be deterministic with a binary output (probability 1 just for one of the

possible actions).

m:SxA—[0,1],7(s,a) = P(a|s) (2.6)

A policy is optimal when it maximizes the expected cumulative reward. The
cumulative reward is called return and it is defined with a weighted sum of rewards

over states (2.7).

Gy = Z)\iRt+1+i (2.7)
i=0

The return is weighted by A € [0, 1], the so called discount rate. The pres-
ence of discounting is essential for two reasons. The first it is because with A the
sequence [?; is bounded, in order to get the sum in Equation (2.7) convergent.
The second is the intuitive meaning of penalizing future rewards for the benefit

of present reward. We need to find a A value representing the trade-oft between

18

assuring convergence (A < 1) and caring about future rewards (A > 0).

2.2.4 REINFORCEMENT LEARNING FOR CO

Reinforcement learning algorithms depend on the functions that take as input
the states of MDP and outputs the actions’ values or actions. States represent
some information about the problem. For this reason, encoding problem states
into numbers, they can be suitable for solving CO problems including techniques
such as recurrent neural networks, graph neural networks, attention-based net-
works, and multi-layer perceptrons [3]. We can show (Fig. 2.2) an overview of a

possible pipeline for solving CO problem with RL.

RL Algorthm MDP
@ .

Tl
Agent

K IStates/Rewards Actions
Problem

&N

Figure 2.2: Using RL and formulating MDP for solving CO overview example. States are encoded with a
neural network model. The agent is driven by an RL algorithm (a Tree Search in this example) and makes

decisions that move the environment to the next state.

A CO problem is first formulated in terms of MDP defining the states, the
actions, and the rewards. Then is defined an encoder of the states represented
by a parametric function that encodes the input states and outputs a numerical

vector. The vector contains Q-values or probabilities of each action.

After the formulation of the problem we can display the key steps for solving
the CO problem through RL:

19

1. Run RL algorithm that determines how the agent learns the parameters of
the encoder and makes the decisions for a given MDP.

2. After the agent has selected an action, the environment moves to a new state
and the agent receives a reward for the action it has made.

3. Once the parameters of the model have been trained, the agent is capable of
searching the solutions for unseen instances of the problem.

2.3 BIN PACKING FORMALIZATION

In this chapter we start describing in a formal way the problem of storing items
into pallets. So we need to describe variables, constraints and the function to
minimize. For making the formalization suitable for generalization, we will call

items the objects to store, and bins the pallets.

Problem formalization:

1 = item, I = total sum of items
j =Dbin, J = total sum of bins
W = max weight of bin, w; = weight of item ¢

V' = max volume of bin, v; = volume of item ¢

Variables:

(2.8)

0 : otherwise

o 1 : itemiis packed in bin i
x[z,a]{ d :

) 1 : binjcontains at least 1 item
ylil =

0 : otherwise

20

Constraints:

Every item is stored in exactly one bin:
J—1
E x;j = 1fort=0,...,1 -1 (2.10)
j=0

Total weight in each bin can’t exceed bin max weight capacity, only if bin is used:

I-1
ZwixijSWyjforjzo,...,J—l (Z.II)
1=0

Total volume in each bin can’t exceed bin max volume capacity, only if bin is used:

-1
ZvixijSVyjforjz(),...,J—l (2,.12)
1=0

Objective function:

Total number of bins used:

J-1
minz Yj (2.13)
=0

In the following chapters we will describe different techniques for dealing
with Bin Packing problem, and MILP problems in general, using Machine Learn-
ing tools. The goal is to inspect open source state of the art techniques searching
for possible scalable solutions to the business problem. We will also compare pros

and cons from a theoretical point of view based on industry needs.

21

22

Approaches for solving bin packing

In this chapter, we want to highlight how bin packing problem, and MILP prob-
lems in general, are solved nowadays in industry and academy. Comparing the
classical approach for finding the exact solution to the minimization problem,
with ML-based ones. The chapter will focus on the theoretical side of approaches.
The final goal is to give an overview on possible paths for solving bin packing prob-

lem, from simpler algorithms to more complicated ones.

3.1 CLASSIC APPROACHES FOR SOLVING BPP

Solving bin packing problem seems easy thinking about a small number of items
and bins. In this section we will focus on some classical algorithms for solving bin
packing problem, without using ML. So we will start form basics and then we
will describe branch and bound algorithm, that is a general technique for solving

combinatorial optimization problems widely used for bin packing problems.

23

3.1.1 (CLASSIC ALGORITHMS

Before starting with classic algorithms for bin packing we define the lower bound
concept, that is simply the minimum number of bins required for storing all the
items. We can define it as the sum of weights of all items divided by the maximum

weight that a bin can hold, rounded up to a whole number.
L= {Z wi/WW (3.1)
i=1

The lower bound represents the best packing possible, if all other constraints
were respected (3.1). It can be also seen as a benchmark for evaluating packing per-
formances of different algorithms. From now on we will inspect different packing

algorithms.

First-fit is a simple algorithm for bin packing, that can be used also in a con-
text where items are available one at a time. That is a common situation and it’s
called online bin packing. First-fit bin packing takes as input a list of items of
different sizes. Its output is a packing a partition of the items into bins of fixed
capacity. Ideally, we would like to use as few bins as possible, but minimizing the
number of bins would became an NP-hard problem. The first-fit algorithm idea

is the following:

Algorithm 3.1 First-fit pseudocode

Take a bin, which is initially empty
Take first item, find the first bin into which the item can fit
if such a bin is found:
The item is placed inside it
else
New bin is opened and the item is placed inside it
end if All items are inside bins

24

The First-fit Decrease works in a similar way if compared to the previous al-
gorithm. The main difference is that we need all the items list before starting with
the algorithm. The idea is to order items from largest to smallest, and start pack-
ing the largest item first. With this procedure is easier to saturate bins, because
the smaller ones are placed in small spaces when bins are almost completed. For
this reason the empty spaces in final bin configuration are smaller. It’s important

to recall that we are not yet minimizing the number of bins.

Algorithm 3.2 First-fit Decrease pseudocode

Take a bin, which is initially empty
Order the items from largest to smallest
Take largest item, find the first bin into which the item can fit
if such a bin is found:
The item is placed inside it
else
New bin is opened and the item is placed inside it
end if All items are inside bins

The Full Bin Packing is a different technique to produce an optimal solu-
tion, using the least possible number of bins. It works by matching object trying
to reach bin dimensions. With the goal to fill as many bins as possible after the
matching is completed. We will inspect a powerful Full Bin Packing technique
in detail in Chapter 3.1.2, called Bin Completion Algorithm [4] by Richard E.
Korf.

3.1.2 BIN COMPLETION ALGORITHM

Richard E. Korf presented a new algorithm for optimal bin packing, called Bin
Completion. Rather than considering the different bins that each number can
be placed into, he considered the different ways in which each bin can be packed.
The most famous existing algorithm for full bin packing is due to Martello and

Toth [5], presented in 1990. Bin Completion, published in 2002, searches a dif-

25

ferent problem space instead. Rather than considering each element in turn, and
deciding which bin to place it in, we consider each bin in turn, and consider the
feasible sets of elements that could be used to complete that bin. In this way the

algorithm runs faster and has a simpler structure.

We sort the elements in decreasing order of size, and consider the bins con-
taining each element in turn, enumerating all the undominated completions of
that bin, and branching if there are more than one. In other words, we first com-
plete the bin containing the largest element, then complete the bin containing the

second largest element, etc.

Bin Completion Visualization

Items: { 100, 98, 96, 93, 91, 87, ..., 15, 14, 10, 8, 6, 5, 4, 3, 1}
Bin capacity: 100

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6
100 98+1 96+3 or 96+4 | 93+3 or 93+5 91+ 87 +
! l l or 93+6 {3, 5, 8,3+5} | {3, 5, 10, 3+5, 10+3}
‘! « ! 96+4 l l 1
e | i 7 i) 93+6 9148 87+10+3
— LYy l l
\ L“ gl

Figure 3.1: Bin Completion visualization.

We need also to estimate the wasted space for being able to verify optimality of
the solution. And we need to calculate it with a slightly better approach than the
obvious one in Equation 3.1. This estimated wasted-space calculation proceeds
considering the elements in decreasing order of size. Given an element x, the
residual capacity r of the bin containing x is 7 = ¢ — x where cis the bin capacity.
Then we consider the sum s of all elements less than or equal to 7, which have not

already been assigned to a previous bin.

26

There are three possible cases:

* The first is that 7 = s: no waste and no carry over to the next bin;

* If s < r,thenrsisadded to the estimated waste, a no carry over to the next
bin;

* If r < s, then there is no waste added, and s — r is carried over to the next

bin.

Once the estimated waste is computed, it is added to the sum of the elements,

which is divided by the bin capacity, and then rounded up.

In the first place we compute the best-fit decreasing BFD solution. Next, we
compute a lower bound on the entire problem using the wasted-space bound de-
scribed above. If the lower bound equals the number of bins in the BFD solution,
it is returned as the optimal solution.

Otherwise we initialize the best solution so far to the BFD solution, and start
a branch-and-bound search for strictly better solutions. Branch and Bound pro-
cedure is described in Chapter 3.1.3. Once a partial solution uses as many bins
as the best complete solution found so far, we prune that branch of the search,

making the search more efficient.

Now we have an overview of the possible bin packing solutions. We summa-

rize pros and cons of different approaches:

* First-fitis quick and easy to perform but does not usually lead to an optimal
solution;

* First-fit decrease is gives usually better solution than First-fit, but the prob-
lem remains that it not always get an optimal solution;

* Full Bin Packing usually gets a better solution compared to previous ones,
but it can be difficult to perform, if numbers awkward.

27

Algorithm 3.3 Bin Completion pseudocode

Consider the elements in decreasing order of size
while One or more items are outside of bins
Take largest item
Generate the undominated completions of the bin containing the chosen
item
if There are no completions or only one completion:
Complete the bin
else
There is more than one undominated completion
Order them in decreasing order of total sum
Consider largest, with less elements in case of a tie
end if

end while All items are inside bins

For solving the problems described in previous algorithms nowadays more
powerful and general ways for solving BPP, and MILP problems in general, are
developed. We will now inspect some classic algorithms for MILP problems such

as Branch and Bound and Branch and Cut.

3.1.3 BRANCH AND BOUND ALGORITHM

Branch and Bound algorithm [6] is used to find the optimal solution for given
an NP-Hard optimization problems. B&B algorithm explores the entire search
space of possible solutions and provides an optimal solution. Branch and bound
algorithm consist of step wise enumeration of possible candidate solutions by ex-
ploring the entire search space, building a rooted decision tree. The root node
represents the entire search space, and each child node is a partial solution and
part of the solution set. Consider a general combinatorial optimization problem

like the following:

z=max{f(z):x €S}

2.8

B&B is a divide and conquer strategy, which decomposes the problem into
sub-problems over a tree structure, which is referred to as branch-and-bound tree

[7]. The decomposition works based on a simple idea: If S is decomposed into

Stand S? such that S = ST U S?, and we define sub-problems:

M =max {f(z) :x € S}, for k=1,2

then 2z = mkax 2.

Each sub-problem represents a node on the tree. The process of dividing a
node sub-problem into smaller sub-problems is called branching and sub-problems
S' and S? are called branches created at node S. Sub-problem S is further
branched into smaller sub-problems and so on. In this way, we can find the best
and optimal solution fast. It is crucial to define an upper and lower bound for
bins used. We can find an upper bound by using any local optimization method
or by picking any point in the search space. We can easily obtain a lower bound

for bin packing as described in Eq 3.1.

The general rule is that we want to partition the solution set into smaller sub-
sets of solution, as shown in Figure 3.2. Then we construct a rooted decision tree
and finally we choose the best possible subset. The subset is represented by anode

and at each level we want to to find the best possible solution set.

There are two important phases of B&B algorithm: the first is the search
phase, in which the algorithm has not yet found an optimal solution z*. The
second is the verification phase, in which the incumbent solution is optimal, but
there are still unexplored sub-problems in the tree that cannot be pruned. Note
that the incumbent solution cannot be proven optimal until no unexplored sub-
problems remain. It’s important to note that the delineation between the search

phase and the verification phase is not known until the algorithm terminates. In

29

Algorithm 3.4 Branch-and-Bound(X,f) pseudocode

Set L = X and initialize
while L # o:
Select a sub-problem S from L to explore
if Asolution?’ € {z € S| f(x) < f(Z)} can be found:
Setz = 2/
end if
it S cannot be pruned:
Partition S into S, S, ..., S,
Insert S1, 59, ..., .S, into L
end if
Remove S from L
end while
Return

Direction of minimization

Branch-and-Bound

oo
Of O
O 000 O ©
N 0000

Each node in branch-and-bound is a new MIP

Figure 3.2: Branch and Bound visualization.

a slight abuse of terminology, a problem P is said to be solved if the B&B algo-

rithm has completed the verification phase. In this case, the algorithm is said to

have produced a certificate of optimality.

30

Branch and bound is a very useful technique for searching a solution but the
problem is that in worst case, we need to fully calculate the entire tree. The prob-
lem, as we said in previous chapters, are typically exponential in terms of time
complexity and this is a problem especially in the worst case scenario. At best, we
only need to fully calculate one path through the tree and prune the rest of it. For
this reason in Chapter 4.1 we will inspect methods for using ML to choose the

best branching based on past data.

3.1.4 BRANCH AND CUT ALGORITHM

The Branch and Cut algorithm is an optimization algorithm used to optimize
integer linear programming. It combines two optimization algorithms: Branch
and Bound and cutting planes. With this intuition we are able to utilize the re-
sults from each method in order to create the most optimal solution. In order to
understand the idea behind this method we need to explain what cutting planes

method is.

The idea behind the cutting plane method is to solve a sequence of linear re-
laxations that approximate better and better the convex hull of the feasible region
around the optimal solution. The cutting plane method is commonly used for
solving MILP problems and finding integer solutions. Suppose that we want to

solve the integer linear programming problem F:

maxclz (Pr)
recX
X={2zeR"| Az <b,x >0,z; € Zforeveryi € I}

We start with the linear relaxation max {CT:C | Az < b, x > 0}, and we solve
it letting 2 be a basic optimal solution. If z* € X, then 2" is an optimal solu-

tion for (Pr). Otherwise find an inequality that is valid for X and cuts off the x*

31

solution and add this inequality to the current linear relaxation. The process can
be repeated with the new linear relaxation. This cutting process is repeated until

the optimal solution found is also an integer solution.

Direction of minimization

Y2
T Optimal solutiong
)

A Y-

—e
oo
we
e

0 Y1

Figure 3.3: Branch and Cut visualization.

The Branch and Cut procedure (Fig. 3.3) consists of performing branches
and applying cuts at the nodes of the tree. First, the tree is initialized to contain
the root node as the only active node that represents the entire problem, ignoring
all of the explicit integrality requirements. The interest is to keep the problem
size reasonable, so not all cuts are applied to the model immediately. If possible,
an incumbent solution is established at this point for later use in the algorithm.

When processing a node, the algorithms starts by solving the continuous re-
laxation of its subproblem, it means the subproblem without integrality constraints.
If the solution violates any cuts, those are added to the node problem. This pro-
cedure is iterated until no more violated cuts are detected by the algorithm. If
at any point in the addition of cuts the node becomes infeasible, the node is re-
moved from the tree. Otherwise, we check if the solution of the node-problem
satisfies the integrality constraints. If the objective value is better than that of the

current incumbent, the solution of the node-problem is used as the new incum-

32

bent. The branch, when it occurs, is performed on a variable where the value of
the present solution violates its integrality requirement. This practice results in
two new nodes being added to the tree for later processing.

In commercial sovers it’s possible to set to terminate the Branch and Cut pro-
cedure sooner than a completed proof of optimality. For example, a user can set
a time limit or a limit on the number of nodes to be processed. This time limit is
convinient because, in some cases, investing a lot of resources for a slightly better

result is not worth it.

3.1.5 OR-TOOLS SUITE

SCIP solver is currently one of the fastest non-commercial solvers for mixed in-
teger programming (MIP) and mixed integer nonlinear programming (MINLP).
It is also a framework for constraint integer programming and branching algo-
rithms. Itallows for total control of the solution process and the access of detailed
information about the solver. SCIP is implemented as C callable library and pro-
vides C++ wrapper classes for user plugins. For this reason it’s widely used by

companies as a solver for building fast and scalable optimization packages.

OR-Tools, developed by Google Al is the leading open source software suite
for optimization, tuned for dealing with problems in vehicle routing, flows, in-
teger and linear programming, and constraint programming. With Or-Tools an
optimization problem properly defined by mathematical equations, can be solved
using different programming languages. We will use this solver as a baseline for
dealing with optimization problems in Chapter 5.2, and comparing results with

techniques involving ML approaches.

There are also different non open source solutions made by commercial com-
petitors, for example Gurobi or CPLEX by IBM. But we will not focus on those
solutions because of monetary barriers for using those solvers. And we will focus

mainly on open source solutions.

33

3.2 ML APPROACH CURRENT STATE

It is common to repeatedly solve similar NP-hard Combinatorial Optimization
problems in real-world scenarios. Classical mathematical solvers processes each
new problem independently and retains no memory of the past. We know that
there exist strong statistical similarities between each of those sequentially solved
problems, which could potentially be exploited to solve future problems more ef-
ficiently. This is the idea behind solving MILP problems using machine learning.

Currently there are two growing lines of machine learning research on this field:

* ML approaches, where CO solvers are entirely replaced by an ML model
trained to produce approximated solutions;

* Joint approaches, where hand designed decision criteria are replaced by ma-
chine learning models trained to optimize a particular metric of the solver.
This second approach is attractive because of the exact solving.

On the other hand there are also several technical obstacles in studying and

applying those approaches to MILP problems. Those problems are the following:

1. Reproducibility, that is currently a major issue. The benchmarks are dif-
ferent in majority of different research papers. A solution can be to adopt
standard feature sets, problem benchmarks and evaluation metrics for being
able to compare different approaches to the same problems.

2. Barrier to entry to the field. This happens because the modern exact solvers
are complex and not specifically designed for customization through ML.
So implementing a new research idea requires low-level solver code, that
is hard even for OR experts. And, on the other hand, abstracting away a
proper MDP formulation using is no trivial task for OR experts, because it
requires a clear understanding of statistical learning concepts.

3. Experts in both OR and ML are rare. ML experts typically employ very
simplified CO solvers, while OR experts typically employ basic ML models
and algorithms missing potential improvements.

34

The solutions that we will inspect apply approaches used for solving general
MILP problems, that are useful for dealing with the classical bin packing problem.
The major issue is that the majority of those solutions are based on very compli-
cated Deep Reinforcement Learning policies, and are custom made for big players
in industry and big tech companies. The result is that the majority for real world
solutions for those reason are not open source.

In addition to this issue, research papers are focused on benchmarks and met-
rics calculated on randomly generated or custom created datasets. And we can
not find real world examples of this type of applications in literature. This hap-
pens because research papers methods need a custom made dataset with a specific
structure, depending on the different approach chosen for learning to solve MILP
problems.

In next subsections we will explore different ideas from a theoretical point of
view, and in chapter 4 we’ll inspect deeply the theoretical details of implementa-

tions.

3.2.1 IMITATION LEARNING APPROACH

The idea behind the imitation learning approach is to find statistical rules and
patterns during optimization process and train a model for learning the rules and
speed up the process. The state of the art methods involve Graph Convolutional

Neural Networks for learning B&B variable selection policies.

The whole work is described in a paper by Gasse, Ferroni and Lodi called
Exact Combinatorial Optimization with Graph Convolutional Neural Networks

[8]. The practical pros of this technique are the following:

* Learn directly from an expert branching rule;
* Small B&B trees, it means efficiency;

* Generalize on set of instances bigger than train set;

35

* Fast training compared to Reinforcement Learning techniques.

We will explain later the why those pros are possible. We will look the so called
”Learning to Branch” in detail in Chapter 4.1. The main idea remains to learn
which B&B splits are the best ones for reaching the optimal solution quickly.

Now we summarize the cons of this technique:

* We need a new training for every MILP problem;
* Hard to deal learn from unstructured data;

* We need training samples for learning.

Despite of those cons, for industry applications Learning to Branch with imi-
tation learning is the best industry approach for optimizing MILP problems in a
scalable way. Training on instances it’s not a problem because we have historical
data and the packing procedure for the client maintain the same constraints and
rules in time. And in industry it’s easy to collect data for repeated tasks such as

daily bin packing into pallets.

From a practical point of view, running strong branching at every node is pro-
hibitive, and modern B&B solvers instead rely on hybrid branching which com-
putes strong branching scores only at the beginning of the solving process and
gradually switches to simpler heuristics. But learning how to branch from histor-
ical data is and approach that can improve a lot the branching strategy creating a

whole new set of possibilities.

3.2.2 REINFORCEMENT LEARNING APPROACH

Reinforcement Learning approach is based on the idea of automating the search

of the optimization heuristics by training an agentin a supervised or self-supervised

36

manner. In order to apply RL to CO, we need to think at the problem as a sequen-
tial decision-making process, where the agent interacts with the environment by

performing a sequence of actions in order to find a solution.

One of the first attempts to solve a variant of Bin Packing Problem with mod-
ern reinforcement learning was described in the paper ”Solving a New 3D BPP
with Deep RL Method” by Hu and Zhang, published in 2017 [9]. The authors
have proposed a new, more realistic formulation of the problem. In the Chapter
4.2 we will inspect deeply the use of RL for Bin Packing. We can summarize the

pros of this approach, that are the following:

* Natural Markov Decision Process formulation;

* No need of expert examples for training;

* A deeper research in the field of RL for optimization.

Despite this technique has a lot of interesting advantages, there are also some
cons due to real world perspective of the problem. In fact the issues are related to

the training of RL models, that it is very costly in terms of computational power

and training time. Here are the cons:
* Randomly initialized policies perform poorly;
* Slow early in training;

* Large Markow Decision Process involved.

We presented the two possible approaches that nowadays are available for op-
timizing MILP problems through ML. In the next chapters we will focus deeper

on them and finally perform some experiments on data for comparison.

37

38

Machine learning for MILP problems

In this chapter we will focus on the two main approaches for Bin Packing, and

MILP problems through Machine Learning in general:

* Imitation Learning through Graph Convolutional Neural Networks

* Reinforcement Learning in Bin Packing Problem

Now in the following sections we start focusing on those topics.

4.1 IMITATION LEARNING THROUGH GCNN

The paper "Exact Combinatorial Optimization with Graph Convolutional Neu-
ral Networks” by Gasse et al. [8] propose a interesting new approach for learning
branching rules in MILP problems optimization. The reason is that optimization
problems are typically solved by the branch-and-bound algorithm. The work pro-
poses a new Graph Convolutional Neural Network (GCNN) model for learning
branch-and-bound variable selection policies. This is possible creating a custom
designed graph representation for encoding the variables and constraints. Train-

ing the model via imitation learning from the strong branching expert rule, it

39

is able to generalize to new instances. The result will be to improve the perfor-

mances of the classic B&B solver.

4.1.1 BACKGROUND

We start with some background on the main idea behind the approach. Most
combinatorial optimization problems can be formulated as MILPs, and the ma-
jority of them is solved through branch-and-bound algorithm. As we explained
in Chapter 3.1.3, branch-and-bound recursively partitions the solution space into
a search tree, and computes relaxation bounds along the way to prune sub-trees
that do not contain an optimal solution. This is a sequential decision-making

process. Other decisions to be made are the following:

* Node Selection;

* Variable selection.

In many contexts it is common to repeatedly solve combinatorial optimiza-
tion problems with a similar problem and solution structure. For example day-
to-day production planning and sizing problems, or also packing items into pal-
lets referring at our business case. This happens because every day new items are
ready to be packed into pallets for shipping, and the day-to-day loading is similar

form one day to the other.

Since solutions for similar problems have not so different behaviour, it is ap-
pealing to use statistical learning for inspecting similarities among them. This is
possible when we deal with a specific class of problems. However, this line of
work has two challenges to deal with. First, it is not obvious how to encode the
state of a MILP B&B decision process, due to the fact both search trees and inte-
ger linear programs can have a variable structure and size. Second, it is not clear

how to create a model architecture that leads to rules which can generalize. We

40

need to be able to generalize at least to a similar number of instances, but also
ideally to instances larger than seen during training.

For addressing both the above challenges we can use Graph Convolutional
Neural Networks, that we will explain later on. We can focus on variable selection,
also known as the branching problem, which lies at the core of the B&B paradigm.
The idea is to adopt an imitation learning strategy to learn a fast approximation
of strong branching. Strong branching is a high-quality and expensive branching
rule. The following keypoints are the two reasons why GCNN are very useful

when dealing with this learning approach:

1. First, we propose to encode the branching policies into a GCNN. This spe-
cific structure allows us to exploit the natural bipartite graph representation
of MILP problems composed by variables and constraints.

2. Secondly we will approximate strong branching decisions by using behav-
ioral cloning with a cross-entropy loss, a less difficult task than predicting
strong branching scores.

We will also evaluate this approach on different NP-hard problems, for in-
specting if this approach can offer a substantial improvement over traditional

branching rules, and if it is able to generalize well outside training instances.

4.1.2 GRAPH CONVOLUTIONAL NEURAL NETWORKS

For understanding Graph Convolutional Neural Network we need to get familiar
with Graph Neural Network idea. The basic graph theory is developed over the
idea of encoding data in nodes and edges, that connect nodes based on a specific
and defined characteristic defined in advance. Nowadays, a lot of information are
represented in graphs. An example are document citation networks: document
A has cited document B, so we have a direct edge form A to B. Another example
is social media networks. For example friendship on Facebook connects two ac-

counts, the nodes, through an undirected edge representing the friendship (Fig.

4.1).

41

Directed Graph Undirected Graph

Figure 4.1: Directed and undirected graphs.

But how can graphs be used for training a Neural Network? And which are
the advantages of this application?

Early variants of Neural Networks can only be implemented using regular or
Euclidean data, while a lot of data in the real world have underlying graph struc-
tures which are non-Euclidean. We can deal with non-regularity of data struc-
tures using Graph Neural Networks. For this specific reason the past few years,

different variants of Graph Neural Networks are being developed.

How can those graphs be shaped into features to be fed into the Neural Net-
works? We can have different options for feeding a neural network with Graph

data:

1. Adjacency matrix A of a N node graph: createa N X N matrix filled with
1 if the nodes in the intersection are connected, and 0 otherwise.

2. Node attributes matrix X: it represents the features or attributes of each
node. If there are /N nodes and the size of node attributes is F’, then the
shape of this matrixis N x F".

3. Edge attributes matrix £: useful when edges have its own attributes. If the

42

size of edge attributes is S and the number of edges available is 7., the shape
of this matrixisn, X S.

The classic method to perform image classification is using Convolutional
Neural Networks. An example are the images of digits that are represented in
pixels and the Convolutional Neural Network would run sliding kernels across
the images for learning the behaviour of the adjacent pixels. Images can also be
seen as a graph, where each node represents a pixel and the node feature represents
the pixel color value. Edge feature represents the Euclidean distance between each
pixel, and the closer 2 pixels are to each other, the larger the edge values. We can see
the example in Figure 4.2. This idea makes it possible a non-uniform connection

among pixels, because the node connections are dynamic.

CNN

Figure 4.2: CNN vs GNN in images.

Summarizing, Convolutional Neural Network work only on data with regu-
lar structure, like images (2-dimensional) and text (1-dimensional). Graph Neu-
ral Networks are a generalization for working on data in non-Euclidean domain.
Graph Neural Networks for this reason are becoming the solution that enables

us to capture rich features from the complex relationships among the data.

43

Now that Graph Neural Networks main ideas are defined, we need to add the
concept of convolution. In this way we can better understand how the learning
of B&B decisions is performed and why branching policies are efficiently encoded
ina GCNN.

The idea behind convolutions is to have filters that act as a sliding window
across the whole image. Those filters enable CNNss to learn features from neigh-
boring cells, using weight sharing through the filter. GCCNs perform a similar
operations but in this scenario the model learns the features by inspecting neigh-
boring nodes instead of pixels, as shown in Figure 4.4. We can see GCNNs as the
generalized version of CNNs where the numbers of nodes connections vary and

the nodes are not ordered.

A XX T
XTXIXT W

|><|><|)<[—)

Figure 4.3: CNN vs GCNN.

But how a Graph Convolution works from a mathematical point of view?
The original idea was inspired by signal propagation along nodes. Spectral GCNs
make use of the Eigen-decomposition of graph Laplacian matrix to implement
this method of information propagation: this is useful for understanding the
graph structure. In Fast Approximation method, used for propagating signal
along the nodes, we are not going to use matrix Eigen-decomposition explicitly.

In this forward propagation approach we will take into account the Adja-

cency Matrix A in addition to the node features. The insertion of A in the for-

44

ward pass equation enables the model to learn the feature representations based
on nodes connectivity. For simplicity we are omitting the bias b that is present in
every Neural Network forward propagation. The resulting GCNN can be seen
as the first-order approximation of Spectral Graph Convolution in the form of
a message passing network where the information is propagated along the neigh-
boring nodes within the graph. In the Equation 4.1, A* is the normalized version
of A that does take in account the node self-loop for including the node features

itself. The graph forward pass equation will then be:

H'' = o(W'H'AY) (4.1)

The result is that for every GCNN layer a node takes information from the
neighbours. And in the case of a two layers the node information is spread at two

nodes distance along the graph.

4.1.3 METHODOLOGY

We need to inspect how those concepts are useful when dealing with learning to
branch in B&B algorithm. A mixed-integer linear program is an optimization

problem of the form:

arg min {CTX |Ax<b, 1<x<u, x€Z’'xR'7"} (4.2)

Where the size of a MILP is typically measured by the number of m rows
and 1 columns of the constraint matrix. Now we will describe the terms of the

equation 4.2 for a better understanding:

* ¢ € R, is called the objective coefficient vector;
e A € R™*" the constraint coefficient matrix;

* b € R™ the constraint right-hand-side vector;

45

* [,u € R" are respectively the lower and upper variable bound vectors;

* p < nis the number of integer variables.

The simplest formulation of B&B algorithm repeatedly performs this binary
decomposition, giving rise to a search tree. The solving process stops whenever
both the upper and lower bounds are equal or when the feasible regions do not
decompose anymore, thereby providing a certificate of optimality or infeasibility,
respectively. A key step in the B&B algorithm is selecting a fractional variable to
branch on in, which can have a very significant impact on the size of the resulting
search tree, as shown in Figure 4.4. The branching strategy consistently resulting
in the smallest BB trees is strong branching that consist in computing the expected
bound improvement for each candidate variable before branching. It requires
the solution of two LPs for every candidate, and for this reason is very expensive.
Modern B&B solvers, for dealing with this complexity problem, rely on hybrid
branching instead: it computes strong branching scores only at the beginning of
the solving process and gradually switches to simpler heuristics. We can notice
how the variable selection in B&B tree can be seen as a Markov Decision Process
(Fig. 4.4). We can consider the solver to be the environment, and the brancher
the agent.

At the decision number ¢ the solver is in a state s;, which comprises the B&B

tree with information about:

* All past branching decisions;

The best integer solution found so far;

The LP solution of each node;

Currently focused leaf node;

Any other useful solver statistics.

46

St

z7 <0 z7 > 1
z; <2 z1 >3
A(st) = {1,3,4} \
at=4

Figure 4.4: B&B variable selection as a Markov decision process. On the left, a state s; comprised of the
branch-and-bound tree, with a leaf node chosen by the solver to be expanded next (in pink). On the right,
a new state Sy 1 resulting from branching on the variable a; = 4.

The brancher selects a variable atamong all the possible ones A(s;) C {1, ..., p}
at the currently focused node, according to a policy 7(a; | s;) (Eq. 4.3). The
solver in turn extends the B&B tree, solves the two child LP relaxations, runs
any internal heuristic, prunes the tree if warranted, and finally selects the next
leaf node to split. Then in a new state s;,1, and the brancher is called again to
take the next branching decision. This process continues until there are no leaf
node left for branching. As a Markov decision process, B&B is episodic, where
each episode amounts to solving a single instance. The probability of a trajectory
T = (S0, ...,s7) € T then depends on both the branching policy 7 and the
remaining components of the solver (Eq. 4.3). A natural approach to find good
branching policies is RL with a carefully designed reward function. But we will

adopt an imitation learning scheme, for the reasons shown in Chapter 3.1.2.

T_
pr(r)=p(so) [[D m(als)p(sii|sia) (4-3)
acA(sy)

—_

t=0

47

4.1.4 IMITATION LEARNING WITH GCNN

We train by behavioral cloning using the strong branching rule, which suffers a
high computational cost but usually produces the smallest B&B trees. The main
difference comparing this approach to RL is that we need to first run the expert
on a collection of training instances of interest. Than we need to collect the data
in a record a dataset of expert state-action pairs D = {(s;, a}) }zj\il Finally we

learn our policy by minimizing the cross-entropy loss (Eq. 4.4).

LO)=-5 > logmy(a®|s) (4-4)

(s,a*)eD

Here comes the state encoding part. The right side of Figure 4.5 provides an
overview of our architecture. The idea is to represent the MILP problem as a
bipartite graph made by constraints ¢ and varibles v, as shown on the left side of
the Figure 4.5. An edge (i,j) € E connects a constraint node ¢ and a variable
node j if the latter is involved in the former, thatis if A;; # 0.

final
embedding
+ softmax

v v /V2 m(x)
nXd n X 64 ” nx1

initial C-side V-side
embedding convolution convolution

€11

€12

€23

/i
/
N

Figure 4.5: Encoding B&B in GCNN and training.

We encode the state s; of the B&B process at time ¢ as a bipartite graph with
node and edge features (G, C, E, V') we described previously. On one side of the
graph are nodes corresponding to the constraints in the MILP, one per row in the

mxc

current node’s LP relaxation, with C' € R their feature matrix. On the other

48

side are nodes corresponding to the variables in the MILP with V' € R4 their

RanXe

feature matrix. F/ € represents the sparse tensor of edge features.

The intuition in this case is that the graph structure is the same for all LPs
in the B&B tree, which reduces the cost of feature extraction. We note that this
is really only a subset of the solver state, which technically turns the process into
a partially-observable Markov decision process. From the learning point on view
we share the general idea behind the Paper [8], because inspecting it deeply would
require an entire chapter. For more information we can see the supplemantal

materials of the paper itself.

0.2 <—.\eOO

€1, o

0.1 <——<: r— e
(S} 1/@
0.7 — :F
S
m(als) s

Figure 4.6: Probability distribution over candidate nodes.

The model takes as input our bipartite state representation s; = (G, C, E, V)
and performs a single graph convolution, in the form of two interleaved half-
convolutions. Following the graph-convolution layer (Fig. 4.5), we obtain a bi-
partite graph with the same topology as the input, but with potentially different
node features, so that each node now contains information from its neighbors.
We obtain our policy by discarding the constraint nodes and applying a final 2-
layer perceptron on variable nodes, combined with a softmax activation to pro-

duce a probability distribution over the candidate branching variables (Fig. 4.6).

49

Those are the non-fixed LP variables, that are represented by the leaf nodes of the

tree.

In the literature of GCNN, it is common to normalize each convolution op-
eration by the number of neighbours. This might result in a loss of expressive-
ness, as the model then becomes unable to perform a simple counting operation
(e.g., in how many constraints does a variable appears). This learning to branch
technique uses un-normalized convolutions instead. However, this introduces
a weight initialization issue. Indeed, weight initialization in standard CNN:ss re-
lies on the number of input units to normalize the initial weights, which in a
GCNN is unknown beforehand and depends on the dataset and we don’t know
it in advance. To overcome this issue, a simple affine transformation is adopted.
x < (x — [3)/o, which we call a pre-norm layer, applied right after the sum op-
eration. [3 is the empirical mean and o is the empirical standard deviation of z on
the training dataset, and fixed once and for all before the actual training. This is
possible and useful because bipartite MILP graphs that we are dealing with have

a limited number of nodes, if we compare them to other type of graphs.

4.2 BPP wiTH REINFORCEMENT LEARNING

Before describing the actual method, we give an overview about the scientific re-
search on the topic "Reinforcement Learning for BPP”. One of the first attempts
to solve a variant of Bin Packing Problem with modern reinforcement learning
was by Hu et al., in 2017 [9]. The authors have proposed a new, more realistic
formulation of the problem, where the bin with the least surface area that could
pack all 3D items is determined. The state space, .S, is denoted by a set of sizes
(height, width, and length) of the items that need to be packed. The second ap-
proach is the one proposed by Bello et al. in 2017, which utilizes the Pointer Net-
work, is used to output the sequence of actions, A, that represent the sequence

of items to pack. In this approach the Reward R, is calculated as the value of the

50

surface area of packed items. The more surface is used, the better the algorithm is

packing items.

In all RL approaches, the baseline is provided by the known heuristic. The
improvement over the heuristic and no learned item selection was the valuation
metric. Most of Reinforcement Learning 3D Bin Packing methods usually solve
the problem with limited resolution spatial discretization. The other problem
is that they cannot deal with complex practical constraints well. Those can for
example be packing stability or specific packing preferences. The paper "Learning
efficient 3D BPP on Packing Configuration Trees” by Zhao & Yu [10] propose a
new hierarchical representation called Packing Configuration Tree (PCT).

PCT is a description of the state and action supported by bin packing, and
the packing policy can be learned using Reinforcement Learning. The idea is to
have a size of the packing action space that is proportional to the number of leaf

nodes, that are the possible candidate placements.

4.2.1 BACKGROUND

Learning based approaches for MILP usually perform better than heuristic meth-
ods. However, the learning is hard to converge with a large action space, which
has greatly limited the applicability of those methods in real world scenario.
PCT can be imagined as a dynamically growing tree where the internal nodes
describe the space configurations of packed items. Leaf nodes instead are the pack-
able placements of the current item that needs to be packed. The idea is to extract
state features from PCT using graph attention networks, called GAN, which en-
codes the spatial relationships between nodes. The state feature is the input into
the actor and critic networks of the DRL model (Chapter 2.2.4). The trained
actor network is able to weight the leaf nodes and to give as output the bin place-

ment.

RL modellearns a discriminant function for the candidate placements, result-

SI

ing in an effective and robust packing policy if compared to the heuristic methods.

Practical constraints as in the majority of literature for 3D-BPP are the ones
by Martello et al. [11] that only considers the basic non-overlapping following

two constraints:

pisi <pi+ST(1—ef)) i#jijelde{zy.z} (43)

0<pl<8?—s! ieZ,de{ry, 2} (4.6)

Where p; means the front-left-bottom coordinate of item ¢ and d the coordi-
nate axis, €;; takes value 1 otherwise 0 if item 7 precedes item j along d. The idea
is to start packing from the front-left-bottom corner of the bin, and than expand
the tree according to the new corners created in the bin. With this simple trick
we are able to grow a decision tree, the so called PCT (Fig. 4.9). This structure
encodes the position of the bins and is very useful for packing, especially since this

set of decisions can be learnt by a RL algorithm.

Bin Empty space Packed item Packed node
o Candidate position (O Placement node |:| Current item (O Current node
z
i 1
3 [o]] 0 0] o[z
° X PN PN PN
0-® £ E 2.2 B [] D ®
9 7 1 d DRON
SN ofe) S N N 00O

Initial Configuration

t=0 t=1 t=2 t=3 T

Figure 4.7: PCT expansion illustrated using a 2D example. A new item introduces a series of empty spaces
and new possible placements: the left-bottom corner of the empty space.

52

4.2.2 PACKING CONFIGURATION TREE

In this chapter we start describing the features of the Packing Configuration Tree.
Every time a rectangular item 1 is added to a given packing, has position (p?-, p¥, p;.)

at time step .

The single packing introduces a series of new candidate positions where fu-
ture items can be accommodated (Fig. 4.9). We can combine the position with
the item orientation 0 € O for 1y based on existing positions, so we can get the
candidate placements with different position and orientations for each single ob-
ject. This is a very useful feature with objects that have constraints on orientation
packing, such as fragile boxes. We can see the packing process can be seen as a
placement node being replaced by a packed item node. Every time it happens,
new candidate placement nodes are generated as children. We can think about
this process in 2, and expand later the same way of thinking in 3D real world
scenario. As the packing time step ¢ goes on, these nodes are updated iteration

after iteration. Finally a dynamic packing configuration tree is formed, and we

callit T'.

We need in the first place to define the main vectors for performing the PCT

expansion:

* n is the new rectangular item to pack, has a defined position at time step ¢;

* Internalnodeset B; € T} isavector thatrepresents the space configurations
of packed items;

* Leaf node set L; € T} represents the packable candidate placements.
During the procedure, leaf nodes that are no longer feasible due to other
packed items that cover the spot, will be removed from the vector L;. When there

is no packable leaf node that makes n; satisty the constraints of placement, tree

growth stops.

53

The main idea is to promote this problem for practical demands in real-world
scenario, because other similar techniques are much arder to use in a company
context. 3D-BPP is able to satisfy more complex practical constraints compared

to other RL based techniques.

Talking about the packing policy over Ly, it is defined as w(L; | T3, ny).
Those are the probabilities of selecting leaf nodes from L; given T; and n; as a
state. The aim is to find the best leaf node selection policy through RL. In this
way we can expand the PCT with the best constraints and be able to append the

higher number of items possible.

The performance of online 3D-BPP policies has a strong relationship with the
choice of leaf node expansion schemes. We need to incrementally calculate new
candidate placements, that are iteratively introduced by the just placed item 7.
The problem is that designing an expansion scheme from scratch is not simple.

So the idea is to take in account some placement rules from classic packing
problems that have been proposed in scientific literature. Some of them are ”Cor-
ner Point” concept by Martello et al. in 2000 [12] and "Extreme Point” by Crainic
etal. [13]. The hard task is encoding three different descriptor vectors. The raw
space configuration nodes By,L; and 1 are presented by descriptors in different
formats. The idea is to use three independent node-wise Multi-Layer Perceptron
(MLP) blocks for projecting these indipendent descriptors into homogeneous fea-

tures in the nodes of the tree 4.7.

h = {4, (By), ¢, (L), g, (ne)} € R (4.7)

dy, is the dimension of each node feature and ¢y is a Multi Layer Perceptron
block with its parameters 6.

The feature number N should be (| B; | + | L; | +1), which is also a
variable. The GAT layer is used to transform h into high-level node features.

54

4.2.3 GAT ATTENTION LAYER

For making features comparable we use the very famous Scaled Dot-Product At-
tention by Vaswani et al. [14]. This strong idea makes possible to apply an at-
tention framework to each node for calculating the relative weight of one node
respect to another. These relation weights are normalized and used to compute
the linear combination of features h. The feature of node i embedded by the
GAT layer that can be represented by the following Formula 4.8, that is not so

easy to understand.

WV h; (4.8)

GAT (izl) = WY i\[: softmax

J=1

dixd K dixd Vv d,xd O dp, Xd,

Where W@ € R&xdn WK ¢ RIxdn WV ¢ RI*dh gnd WO € RInX
are projection matrices. The dj, and d,, dimensions are the ones of projected fea-
tures. The softmax operation normalizes the relation weight between node ¢ and

node j.

Given the node features h, we need to decide the leaf node indices for accom-
modating the current item 7. Since the leaf nodes vary as the PCT keeps grow-
ing, we use a pointer mechanism (Vinyals et al. [15]). This method can be seen
as a context-based attention over variable inputs to select a leaf node from L; for
packing the n; item.

We still adopt Scaled Dot-Product Attention [14] for calculating pointers.
An important part is that the global context feature h is aggregated by a simple
mean operation on /i: h = + SN b

The global feature his projected to a query ¢ by matrix W€ and the leaf node
features iy, are utilized to calculate a set of keys k7, by Wk,

55

4.2.4 MARKOV DECISION PROCESS FORMULATION

For understanding how the agentlearnsin this RL framework we need to focus on
the MDP formulation. As we saw in Chapter 2.2.2, the MDP consists in a frame-
work composed by states, actions, transitions probabilities and a reward function
that the agent tries to maximize.

The online 3D-BPP decision at time step ¢ depends on the tuple (7}, n). It
means the decision is based on the tree structure, containing all the information
about nodes, and the added item to pack. The decision can be formulated as
Markov Decision Process, which is constructed with state S, action A, transition

P, and reward R. We solve this MDP with Deep Reinforcement Learning agent.

'J Agent ||
state reward action
SI R; AI
_ RHI (
*h‘; Environment]4

Figure 4.8: The agent-environment interaction in a Markov decision process.

The model is formulated as follows:

* State: The state s; at time step ? is represented as s; = (7}, n;), where T}
consists of the internal nodes B; and the leaf nodes L;. It’s important to no-
tice that each internal node b € B, is composed by a spatial configuration
of sizes (s7, s}, s;7) and coordinates (p}, pi, p;) that describe the specific
packed item. The current item n; has a size defined by a tuple (s, s¥, s7).
As we shown before, extra properties will be appended to b and n; for spe-
cific packing preferences, some examples can be density or item category.
The descriptor for leaf node ! € L; isa placement vector of sizes (57, s¥, s7)

and position coordinates (p”, p, p*). Those coordinates indicate the sizes

56

of n; along each dimension after packing the item starting from o € O,
that is the previously defined corner. Only the packable leat nodes which
satisfy placement constraints are provided, the other are removed from L,
vector.

* Action: The action a; € A is the index of the selected leaf node [, denoted
as a; = index(l). It means that basically the action to perform is the leaf
where the item will be packed. For this reason the action space A has the
same size as Lt. This choice is different from existing works, because our
action space depends only on the leaf node expansion scheme and the al-
ready packed items B;. An interesting outcome of this packing trick is that
the method can be used to solve online 3D-BPP with continuous solution
space, that is not a trivial task.

* Transition: The transition P (41 | s¢) isjointly determined by the learned
policy 7 and the probability distribution of sampling items. The data se-
quences that we will describe in the Chapter 3.1 are generated from an item
set I in a uniform distribution, for testing the method.

* Reward: Our reward function R is defined as ; = ¢, w; once n; is in-
serted into PCT as an internal node successtully. Otherwise 7, = 0 and the
packing episode ends. The value ¢, is a constant and w; corresponds to the
weight of item ;. The choice of w; depends on the customized needs, and
can be decided depending on the task needs. For simplicity and clarity we
will set w; as the volume occupancy v; of the item n;, defined by the multi-
plication of the dimensions v; = si.s¥ s> . This point is useful because we
can add to the problem different weights based on the needs of the specific
business task.

Now that we have a clear view on the MDP, we can focus on the training
method. A DRL agent seeks for a policy 7(a; | s;) to maximize the accumulated
discounted reward. The actual training, as we mentioned before, is a mix of tech-
niques and state-of-the-art methods that now we try to describe in a simple and

understandable way.

57

OO Packed / Placement / Current / Dummy node
— Tree edge —> Relation ==:> Projection

bO

3O o6

(a) (b)

Figure 4.9: Visualization of batch calculation for PCT, in this way the process can be speeded up.

Our DRL agent is trained with the ACKTR method (Wu et al. 2017 [16]).
According to this method the actor weighs the leaf nodes L, and outputs the pol-
icy distribution 7 (L |T}, nt) we need for choosing the PCT leaf where the item
will be packed. The critic maps the global context h into a state value prediction.
In this way we try to increase the predicted value. This is possible predicting how
much accumulated discount reward the agent can get from ¢, and this estimation
helps the training of the actor. The action a; is sampled from the distribution
mo(Ly | T}, ny) for training, and we take the argmax of the policy for the test.

From a computational point of view there are some interesting tricks per-
formed by ACKTR. The technique consists in running multiple parallel pro-
cesses for gathering training samples. The node number N of each sample varies
with the time step ¢ and the packing sequence of each process. For performing
a batch calcuation, the trick is to full-fill the PCT to a fixed length with dummy
nodes, as illustrated by Figure 4.9 (a). These redundant nodes are eliminated by
the Masked Attention described before, during the feature calculation of GAT.
But they help because during the calculation we have a fixed length PCT. The
aggregation of 1 only happens on the nodes that are eligible. For preserving node
spatial relations among the nodes, the single state s; is embedded by GAT as a

tully connected graph. An example it’s shown in Figure 4.9 (b).

58

In conclusion, with this parallel process trick and using fixed length PCT we
can speed up the training process. This is important because, as we explained in
previous chapters, with RL techniques the training phase is very expensive and

time consuming.

59

60

Experiments

In this chapter we will run some experiments on MILP problems, taking into
account the different challenges we highlighted in this thesis work. Since we de-
scribed two main method for learning to solve MILP problems, we will show
some results applying those techniques in a real world scenario. The main focus
will be the time spent for finding a solution, that s the initial business problem we
are trying to solve, due to the exponential growth in complexity in MILP classic

algorithms.

As mentioned before, one of the major issues in the learning Operational Re-
search field is that the majority of developments are made by industry and we
have no access to open source code. This happens because those techniques are
highly valuable in a business scenario, so the companies use this technology as an
competitive advantage against competitors. Some examples are famous solvers as
AWS Amazon Bin Packing solver through Reinforcement Learning, IBM solvers
or Gurobi. The last mentioned one is a company with a vertical business model
focusing on mathematical optimization. This is a limitation for experiments in

the final part of this thesis work, because we want to focus on open source tools.

61

On the other hand, it means that the topics covered in this thesis are highly valu-
able from a business point of view. We can consider this work as a survey on the

state-of-the-art MILP and BPP solvers through Machine Learning.

GUROBI

OPTIMIZATION

amazon

webservices

) ||
o

—

>X i

Figure 5.1: Companies selling OR through Machine Learning products.

In the next subsections we will see how the different ML techniques give bet-
ter results than classic optimization algorithms in a MILP context. We will exe-
cute GCNN Imitation Learning (Section 5.1) on a randomly generated classical
MILP problem. We will compare the solution to classical Branch and Bound in-
stances. Then we will try to compare a classical Bin Packing problem solved with

SCIP open source library to a Reinforcement Learning approach (Section s.2).

In this way we will test the best open source libraries available from a practi-
cal point of view. As we said those are not libraries designed for business cases,
because they are developed for academic testing purposes. But, as we will see, the
results are anyway able to outperform classical MILP solvers in terms of time re-

quired for solution.

5.1 GCNN EXPERIMENTS ON MILP

In this section we will describe how we tested the Imitation Learning through
GCNN algorithm on a MILP problem. We will describe in the first place Ecole
[17], the library that made possible the experiments. And we will inspect how it

62

works according to the theoretical part. Sadly, after contacting the main contrib-
utor to the open source project, I discovered that the library is no longer main-
tained. But, anyway, we can start from the code for developing our experiments

on a MILP problem. Than we will give some considerations on the results.

5.1.1 ECOLE PROJECT

Ecole is a library to simplify Machine Learning research for Combinatorial Op-
timization. Ecole exposes several key decision tasks in general purpose combi-
natorial optimization solvers. The mission is making the library a standardized
platform that will lower the bar of entry and accelerate innovation in the field.
Because as we said the problem of this Machine Learning applications on MILP
are the high entry barriers in terms of coding very complex networks and data
structures for encoding data. The goal of Ecole project is to gain interest through
a unified ML-compatible API for MILP problem solving, that will help attract

interest from both the traditional ML and OR communities.

For describing Ecole characteristics we need to start form the modularity con-
cept. For example a branching environment s defined with a node bipartite graph
observation and the negative number of new nodes created as a reward. But we
can also create new strategies according to new future improvements. From a
scalability point of view, Ecole is designed to add as little overhead as possible on
top of the solver. And it allows straightforward parallelism in Python with mul-

tithreading.

The Ecole core is also written in C++ for interacting directly with the low-
level solver API. This makes the library extremely efficient and comparable to
SCIP in terms of low-level coding. Coding in C++ is an example of high bar-
rier in developing those systems from scratch. The library provides a thin Python
APIreturning Numpy arrays for being able to interface directly with ML libraries

such as torch.

63

Ecole supports also the already mentioned state-of-the-art open-source solver
SCIP as a back-end for performing all the non-learned tasks. In addition, the li-
brary also provides out-of-the box instance generators for classical CO problems.
The generated instances can be saved to disk, or passed directly to Ecole environ-
ments from memory. Since the generation of BPP problem is not implemented,
we will choose a generic MILP problem for testing the performances in this sec-
tion of the thesis. Then we will focus on BPP in the Section 5.2 with the specific
3D-BPP algorithm.

5.1.2 TRAINING WITH GCNN IMITATION LEARNING

The library supports two control tasks. The first is related to hyperparameter tun-
ing for selecting the best solver hyperparameters. The second is variable selection,
related to deciding sequentially on the next variable to branch on during the con-
struction of the branch-and-bound tree. We will compare the results to an empty
baseline environment that can be used to benchmark against the solver, that is

basically an optimized SCIP solver with no learning.

In our experiments we will reproduce a simplified version of the paper of
Gasse et al. 2019 [8] on learning to branch with pytorch using Ecole library in ad-
dition. We collect strong branching examples on randomly generated maximum
set covering instances, then we will train a bipartite GCNN with state encodings
to imitate the expert by classification The idea is to predict the probabilities of the
next B&B node to branch on. And than use the higher probability node for the

next branching step.

The biggest difference with the original paper experiment is that we collected
only n = 1.000 training examples of expert decisions for training, to keep the
time needed reasonable according to our laptop pc hardware. Even with free
cloud GPUs working with more instances were hard to manage. Asa consequence,

the resulting policy is a bit undertrained if compared to the n = 100.000 training

64

samples considered for training in the paper experiment. Despite of this compu-
tational problem, as we will see, the results are able to show some improvements
to default SCIP solver.

The explore-then-strong-branch described in the paper is not implemented
by default in Ecole. For being able to diversify the states in which we collect exam-
ples of strong branching behavior, we follow a weak but cheap expert that is the
pseudocost branching. And only occasionally we call the strong branching. This
can be implemented in Ecole by creating a custom observation function, which
will randomly compute and return the cheap pseudocost scores or the expensive

strong branching scores. This operation can be written directly in Python lan-

guagec.

We can now create the environment with the chosen correct parameters. We
used 1h time limit for computing and a sampling of 5% from expert. Our environ-
ment will return the node bipartite graph representation of branch-and-bound
states used in used in the paper with the custom Ecole function. As we described
in Chapter 4.1, on one side of that bipartite graph nodes represent the variables
of the problem. On the other side of the bipartite graph, the nodes represent
the constraints of the problem, with a vector encoding features of that constraint.
An edge links a variable and a constraint node if the variable participates in that

constraint.

Now we loop over the instances, following the strong branching expert 5%
of the time and saving its decision, until enough samples are collected. We select
only the decision of strong branching expert among the other ones, for capturing
samples at different stages of the B&B tree. This is the reason of mixing cheap

pseudocost and expensive strong branching scores.

The next step is to train a GNN classifier on these collected samples to predict

similar choices to strong branching. We will first define pytorch geometric data

65

classes to handle the bipartite graph data. We can then prepare the data loaders,
for looping through data and train the GCNN. Next we need to define our graph
neural network architecture. We start with linear embedding layers, with a com-
mon dimension feature output of lenght = 64. Then we perform the two half
convolutions described in the Paper [8]. Then we create a final Multi Layer Per-
ceptron on the variable features for predicting probabilities over candidate nodes.

With this model we are finally able to predict a probability distribution.

With randomly initialized weights, we notice that before training the model,
the initial distributions tend to be close to uniform. Now we need to define two
functions: one for training the model on a whole epoch and compute metrics,
and one for padding tensors when doing predictions on a batch of graphs of po-
tentially different number of variables. After this operations, we can actually train

the model.

We trained the model twice. In a first place with n = 100 expert samples and
than with an = 1000 expert samples. The entire process of generating samples

and training with 1000 samples took several hours of computing.

n_samples = 100
Loss over epochs Accuracy over epochs

4251 \ 074

4.00 A
0.6

I
0.5 A

0.4 1

3.75 A

3.50 4

3.25 A

3.00 A 03 4

2.75 1 —— Train —— Train
Validation 0.2 1 Validation
250 1 : : , , i i , i : : i
0 10 20 30 40 50 0 10 20 30 40 50
Epochs Epochs

Figure 5.2: Training curve with 100 instances.

66

In a first place we trained for 50 epochs on generated data with a test set com-
posed of n = 100 sampled items. As we can see from the learning curves in
Figure 5.2 the training doesn’t perform so good in terms of loss function. The
main issue is that the validation loss starts to grow instead of decreasing. This
means that the model is not able to generalize to validation set on the basis of the
data in training set. Anyway the accuracy seems to grow over time, especially on
validation test. We need to be careful about this results because we are training
with a very little number of samples and the results can be biased. For this reason

the next experiment takes into account 1000 samples.

n_samples = 1000

Loss over epochs Accuracy over epochs
4.0 1 - 0.55 A -
—— Train —— Train
Validation Validation
3.8 1
0.50
3.6
0.45 A
3.4 A
o S
3.2 1 0.40
3.0 ‘
0.35 4
2.8 1 !
T T T T T T T T T T T T
0 10 20 30 40 50 0 10 20 30 40 50
Epochs Epochs

Figure 5.3: Training curve with 1000 instances.

The result in Figure 5.3, despite of a better loss function behaviour on the
validation set, seems to have a bad accuracy. If compared to the training with 100
samples. But we are sure that, with more and more epochs, the results of the big-
ger number of samples would be so much better than the smaller one. In the next
subsection we will see how, increasing the number of samples, we outperform the

non learned policy.

67

5.1.3 RESULTS

Number of nodes created - 500 constraints - training of 1000 samples

200 135 - scip
185 - GCNN

166

154 153
150

57

93

N. of tree nodes
5

7 8 9 10
Test Instance

Time spent for branching - training of 1000 samples

8

9 10 1n
Test Instance

Figure 5.4: Results with 1000 sample training and the same number of constraints in test set, on 20 different
instances.

Finally, we can evaluate the performance of the model. We first define appro-
priate environments. For benchmarking purposes, we include a trivial environ-
ment that merely runs SCIP. In Figure 5.4 and Figure 5.5 we have the results. We
decided to encode a MILP problem with in a matrix with 1000 samples and 500
constraints. In this way we can encode the problem in a bipartite graph and run
two branching experiments. The first one takes into account a train set and a test
set with a equal number of constraints. But, as we reported, this imitation learn-

ing method is able to generalize on a higher number of constraints and samples

68

on the test set. For this reason the second experiment is performed with a higher

number of constraints with respect to the train set ones.

Number of nodes created - 600 constraints, bigger than training
399 - P

N. of tree nodes

Test Instance

Time spent for branching - 600 constraints, bigger than training
10 10

Time

Test Instance

Figure 5.5: Results with 1000 sample training and increased number of constraints in test set w.r.t. train,
on 20 different instances.

Looking at the results of the first experiments in Figure 5.4, we see that the
trees size created for finding the best solution are bigger than the classical no learn-
ing SCIP environment. This seems strange because this learning method would
be able to learn to create smaller trees and speed up the process. But happens that
with such a small training the trees generated are much bigger. But looking at
Figure 5.6, reported in the Paper [17], we can see that B&B trees with 100.000

training samples and a 10.000 epochs training are getting smaller and smaller. So

69

in our case the problem is the computational power for running the experiments.
The good news in that, despite of bigger trees, the time graph over test instances
gives pretty good results. In fact the GCNN learned policy gives a quicker result
in test instances. This means that with this technique we can speed up the process

even with a relatively small number of training samples.

The second experiment is interesting because, even if the number of test con-
straints became bigger than the train ones, the results are stable in terms of time
spent for branching. That is what matters in a real case business scenario. We
can see the results in Figure 5.5. We are sure that with a longer training we would
reach results that can be better and better. The reason is also that in learning
curves in Figure 5.3 there is so much space for improvement with a higher num-

ber of epochs.

In next section we will also take a look to some experiments on RL policy

called 3D-BPP. Before giving general conclusions in the Conclusions [6].

1.05

B&B tree size (normalized)

0.85
0 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

Epoch

Figure 5.6: Training curve of a branching environment on randomly generated instances reported in the
paper, with 100.000 training samples. This is the normalized performance on validation instances, the it is
lower the more the GCNN is learning to branch. .

70

5.2 RL 3D-BPP EXPERIMENTS

The 3D-BPP Reinforcement Learning framework has no libraries to support ex-
periments on data. For this reason we inspected the source code of the paper
experiments to make possible recreate the framework used for training the model.
And we will try to compare the packing behaviour to the OR-Tools Suite by
Google, that rely on SCIP.

The idea, as described in Chapter 4.2, is to enhance the practical applicabil-
ity of 3D bin packing problem via learning on a packing configuration tree. The
training is performed through a complex DRL model containing GAT mecha-
nisms. But, despite the complexity of the training, the resultin a business context
would be to easily deal with practical constraints and well-performing in terms of

time.

From the GitHub repository we inspected we found some keyponts that are

useful for describing the experiments we will perform:
* Bin size and item sizes can be set arbitrarily;
* It’s provided an environment for running 3D-BPP scripts on data;

* We can have a stable RL training that is very time and computational cost
consuming ;

* We can start from pre-trained network weights for better performances on
similar data.

The original dataset consists of 3000 trajectories, each with 150 items. A tra-
jectory is a sequence of packed items in a bin that represents the packing tree we
want to learn to build with Reinforcement Learning. Every item is a tuple of
length 3 or 4, the first three numbers of the item represent the size of the item,
the fourth number, if any, represents the density or the weight of the item. The

pretrained models are trained on (10, 10, 10) dimension bins.

71

5.2.1 OR ToOOLS RESULTS

For solving classical Bin Packing with classical MILP solvers, as we said in chapter
3.1.5, we used OR Tools library by Google. We collected some real world data in
the same structure of the 3D-BPP data experiments. We have a tuple composed

by the x,y,z dimensions of the item and the item weight.

OR Tools solution at increasing n. of items

Item vs Mean % Occupied

60
55
50
o B
L1
2 40
o
& 35
3
5
0
0 100 200 300 400 500
Item vs Time for opt solution
140
120
100
8 80
1=
S
5 60

20

0 100 200 300 00 500
Item vs Bins Used

25

20

15

Bins Used

10

100 200 300 400 500

=

Figure 5.7: OR Tools solution at increasing number of instances. We took into account % of bin occupied,
time for computing the solution and number of total bins used.

72

We encoded the constraints and instances in OR Toolslibrary grammar. Than
we created some custom functions for looping over different sets of items for in-

specting the following metrics:

* Mean percentage of the single bin occupied;
* Time for finding the solution;

* Number of bins used.

It’s interesting, as we can see in Figure 5.7, that those metrics have a com-
pletely different behaviour increasing the number of bins to pack. The mean per-
centage of bin occupied follows a curve that tends to stabilize at 60% of bin oc-
cupation. The number of bins used is linear with respect to the number of items
to pack instead. The most important thing remains the time. In fact the whole
point of this thesis work is the exponential time growth in solving BPP with clas-
sical MILP solvers.

As we can see in the image, in a real world scenario with thousands of items,
it’s hard to find solution with classical SCIP solvers. For packing 500 items it took
140 seconds. If we increase the number of items we can spend several hours for
getting a solution. This is the reason why other solutions as the ones mentioned
in this thesis are fundamental if we want to scale the dimension of items we want
to pack. In a business context having to wait hours for the solution is something
that is not a possibility. For this reason the idea of the PCT, that takes one item

at time, gives better results.

In the next subsection we will finally inspect some practical solutions to the ex-
ponential time complexity. We will show some results from our experiments, and
also from literature ones. Including some literature results is necessary because

some results are not reachable without custom code and expensive hardware.

73

5.2.2 3D-BPP RESULTS

In this subsection we will show some results of 3D-BPP packing. In the first place
we show some results from our simple experiments on data. Those are the experi-
ments we were able to perform with the scripts provided by the paper repository.
Than we will discuss some results from the paper, for having a more wide view on

how those 3D-BPP perform if compared to classical MILP solvers.

Before describing the graphs we need to make a distinction between two terms
that seems similar, but they are not. In fact, when training RL algorithms we have
to refer to episodes, instead of classical learning epochs. One epoch, in neural
network terms, is one forward pass and one backward pass of all the training ex-
amples. One episode is a sequence of RL states, actions and rewards which ends
with terminal state. For example, playing an entire card game can be considered as
one episode, the terminal state being reached when one player loses/wins/draws.
This is important because the RL model learns only once the game is finished, ad

a reward is given.

% of Bin Saturation

% of Bin Saturation with 100 episodes (no pretrain) % of Bin Saturation with 100 episodes (pretrained)
051 0.830
0.825
050
0.820
049
0815
048 0.810
047 0.805
046 0.800
0795
045
0 20 40 60 80 100 0 20 40 60 80 100
Episode Episode

Figure 5.8: % of bins saturated over episodes, with pre-training and without pre training.

As we can see from the Figure 5.8 we performed the experiment twice. The

first time, on the left, without using pre-trained weights. For this reason the re-

74

sults in terms of % of bin saturation are not so good, arriving at 50% at episode
number 100. The things change when starting from pre-trained weights. In fact
we reach a higher percentage of bin saturation of 83%. The mostinteresting thing
of this method is that, after the RL training, the time spent for packing the items

with PCT technique is linear.

Talking about paper result, the 3D-BPP method surpasses all other 3D-BPP
algorithms. The surprising thing is that, due to the PCT implementation, is the
first learning-based method that solves 3D-BPP with continuous solution space.
They tried also to incorporate various practical constraints.

In the paper experiments 3 different settings are used, for both discrete and

continuous solution space:

* Setting 1: The stability of the B; is checked when n; is placed. Only two

horizontal orientations (|O| = 2);

* Setting 2: The arbitrary orientation (|O| = 6) is allowed here. This is the
most common setting in 3D-BPP literature;

* Setting 3: Each item 7; has an additional density property sampled from
(0, 1] uniformly. This information is appended into the descriptors of B,
and n;.

The three existing schemes are the ones which have proven to be both efficient
and effective: Corner Point (CP), Extreme Point (EP), and Empty Maximal Space
(EMS). They extended these classical schemes to the PCT model.

We can see in Figure 5.9 that although PCT grows under the guidance of
heuristics, the combinations of PCT with EMS and EV learn eftective policies
and outperform all baselines by a large margin regarding all settings. It is interest-
ing to notice that policies guided by EMS and EV even exceed the performance of
the full coordinate space FC which is expected to be the optimal one. This result

makes us notice that a good leaf node expansion scheme reduces the complexity

75

of the problem and helps DRL agents learn better performance, even if simplifies

some aspects reducing variability.

‘ Setting 1 Setting 2 Setting 3
Method Uti. Var. Num. Gap | Uti. Var. Num. Gap | Uti. Var Num. Gap
Random 36.7% 10.3 14.9 51.7%|38.6% 8.3 15.7 55.1%|36.8% 10.6 14.9 51.4%
BR 49.0% 10.8 19.6 35.5%|56.7% 6.6 22.6 34.1%|48.9% 10.7 19.5 35.4%
§ Haet al. 52.1% 20.1 20.6 31.4%|59.9% 10.4 23.8 30.3%|51.9% 20.2 20.6 31.4%
' LSAH 52.5% 12.2 20.8 30.9%|65.0% 6.1 25.6 24.4%|52.4% 12.2 20.7 30.8%
© Wang & Hauser | 57.6% 11.5 24.1 24.2%(66.1% 8.4 25.9 23.1%|56.5% 11.2 22.3 25.4%
T MACS 57.7% 10.5 22.6 24.1%|50.8% 8.8 20.1 40.9% |57.7% 10.6 22.6 23.8%
DBL 60.5% 8.8 23.8 204%|70.6% 7.9 27.8 17.9%|60.5% 8.9 23.8 20.1%
Zhao et al. 70.9% 6.2 275 6.7%|70.3% 4.3 274 18.3%|59.6% 5.4 23.1 21.3%
3 PCT & CP 69.4% 54 26.7 87%|81.8% 20 31.3 4.9%|695% 54 267 82%
§ PCT & EP 71.9% 6.6 278 54%|781% 3.8 30.3 9.2%|722% 58 279 4.6%
& PCT & FC 724% 4.7 280 4.7%|76.9% 3.3 29.7 10.6%|69.8% 53 271 7.8%
.5 PCT & EMS 75.8% 44 293 0.3%|86.0% 1.9 33.0 00%|755% 4.7 292 0.3%
g PCT & EV 760% 42 294 00% 85.3% 2.1 328 0.8%|75.7% 4.6 292 0.0%
3 PCT & EVF 75.7% 4.8 29.2 04%|80.5% 2.9 31.0 6.4%|73.5% 4.6 284 2.9%
PCT&EV/GS |75.8% 4.7 202 03%|84.8% 2.1 326 14%|75.5% 4.8 29.1 0.3%
Random & EV |45.7% 13.5 18.4 39.9%|51.0% 8.3 20.4 40.7%|45.1% 12.5 18.1 40.4%

"https://github.com/alexfrom0815/0nline—3D-BPP-PCT

Figure 5.9: Performance comparisons in a discrete solutions space.

They also performed a continuous domain experiment and this is very inter-
esting from a future development point of view. They found that some heuristic
methods also have the potential to work in the continuous domain. They set
these heuristic methods as baselines for banchmarking. As we can see form the
Figure 5.10, the 3D-BPP with PCT problem and outperforms the performance
of all other methods again. This specific PCT work is very interesting because it
seems to be the first that deploys the learning-based method on solving 3D-BPP

with continuous solution space successfully.

In the final Figure 5.11 we can see how this 3D-BPP solution can be auto-
mated in a industry domain. Obviously this is a next level automation, but it’s
possible to implement in a real case scenario. After commenting those results, we

can finally try to get some conclusions from this thesis work.

76

Setting 1 Setting 2 Setting 3
Method Uti. Var. Num. Gap | Uti. Var. Num. Gap | Uti. Var Num. Gap

5 BR 409% 7.4 16.1 37.5%|45.3% 5.2 17.8 31.7%|409% 7.3 16.1 38.6%
© Haetal 43.9% 142 172 32.9%|46.1% 6.8 18.1 30.5%|43.9% 142 17.2 34.1%
T LSAH 48.3% 12.1 18.7 26.1%|58.7% 4.6 22.8 11.5%|48.4% 12.2 188 27.3%

GD 56% — 22 914%| 75% — 2.9 887%| 52% — 21 92.2%
é PCT & EMS | 65.3% 4.4 249 0.2%|663% 23 270 0.0% (66.6% 33 253 0.0%
A PCT&EV |654% 33 250 0.0% 65.0% 26 264 2.0%|658% 3.6 251 2.7%

Figure 5.10: Performance comparisons in a continuous domain.

RGB image Depth image

RGBD sensor Lookahead sensor

Robot agent

Conveyor belt

Packing area

(@ (®)

Figure 5.11: Online 3D-BPP has widely practical applications in logistics, manufacture, warehousing and
other fields. This is a visualization from the additional materials of original paper.

77

78

Conclusion

In this master thesis I focused on some cutting edge research topics. Those can be
also useful in a real business scenario, if engineered with a proper R&D team or
using third-part solutions that are not free to access. We proceed by giving some

final thoughts about the value this thesis work can provide.

Using mathematical techniques and the modern hardware tools, a lot of time
and inefficiency costs can be cut in industry. This will be one of the challenges
of the next decades, even if it’s not as mind blowing as neural networks painting

pictures or applications like that.

We can see this research work as a survey for starting to inspect different ap-
proaches for tackling BPP or MILP problems in general through ML techniques.
With the aim that OR and ML experts will start making more and more cooper-
ation for solving the issues about practical applications and benchmarking of al-
gorithms. For having a fast growing development on the field, especially in open
source projects. We hope that will be created open source libraries for making

experiments more accessible in the future.

79

The topics covered, as GCNN or RL framework, are very valuable from a
scientific point of view. I hope this work is able to simplify those concepts and

give some practical ideas of application, which are very fascinating.

The experiments give better performances in terms of time spent if compared
to classical solvers. Those inspected developments can improve the companies
shipping software making it more scalable and well-performing. A practical idea
for the business side is to invest in some non-free software, making the improve-

ments possible in the short term.

In conclusion, leaving aside the business purposes and focusing on the re-
search questions, I hope some future students or researchers will be able to inspect
deeply those topics. This thesis work can be seen as a starting point for making a

further step in the Operational Research with Machine Learning field.

8o

References

[1] Y. Bengio, A. Lodi, and A. Prouvost, “Machine learning for combinato-
rial optimization: a methodological tour d’horizon,” European Journal of

Operational Research, vol. 290, no. 2, pp. 405-421, 2021.

[2] H. Larnder, “Or forum—the origin of operational research,” Operations

Research, vol. 32, no. 2, pp. 465—476, 1984.

[3] N. Mazyavkina, S. Sviridov, S. Ivanov, and E. Burnaev, “Reinforcement
learning for combinatorial optimization: A survey,” Computers & Opera-

tions Research, vol. 134, p. 105400, 202.1.

[4] R.E.Korf, “A new algorithm for optimal bin packing,” in Aaai/laai, 2002,
pp- 731-736.

[s] S.Martello and P. Toth, “Bin-packing problem,” Knapsack problems: Al-

gorithms and computer implementations, pp. 221-245, 1990.

[6] D. R. Morrison, S. H. Jacobson, J. J. Sauppe, and E. C. Sewell,
“Branch-and-bound algorithms: A survey of recent advances in searching,
branching, and pruning,” Discrete Optimization, vol. 19, pp. 79-102,
2016. [Online]. Available: https://www.sciencedirect.com/science/

article/pii/S1572528616000062

[7] S.1. Gassand C. M. Harris, “Encyclopedia of operations research and man-

agement science,” Journal of the Operational Research Society, vol. 48, no. 7,

Pp- 759-760, 1997.

81

https://www.sciencedirect.com/science/article/pii/S1572528616000062
https://www.sciencedirect.com/science/article/pii/S1572528616000062

[8]

[x0]

[13]

[14]

[15]

M. Gasse, D. Chételat, N. Ferroni, L. Charlin, and A. Lodi, “Exact com-
binatorial optimization with graph convolutional neural networks,” Ad-

vances in Neural Information Processing Systems, vol. 32, 2019.

H. Hu, X. Zhang, X. Yan, L. Wang, and Y. Xu, “Solving a new 3d bin pack-
ing problem with deep reinforcement learning method,” arXiv preprint

arXiv:r1708.05 930, 2017.

H. Zhao, Y. Yu, and K. Xu, “Learning efficient online 3d bin packing on
packing configuration trees,” in International Conference on Learning Rep-

resentations, 202.1.

S. Martello, D. Pisinger, and D. Vigo, “The three-dimensional bin packing

problem,” Operations research, vol. 48, no. 2, pp. 256—267, 2000.

S. Martello, M. Monaci, and D. Vigo, “An exact approach to the strip-
packing problem,” INFORMS journal on Computing, vol. 15, no. 3, pp.

310—319, 2003.

T. G. Crainic, G. Perboli, and R. Tadei, “Extreme point-based heuristics
for three-dimensional bin packing,” Informs Journal on computing, vol. 20,

no. 3, pp. 368—384, 2008.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neu-

ral information processing systems, vol. 30, 2017.

O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” Advances in

neural information processing systems, vol. 28, 2015.

[16] Y. Wu, E. Mansimov, R. B. Grosse, S. Liao, and J. Ba, “Scalable trust-region

method for deep reinforcement learning using kronecker-factored approx-

imation,” Advances in neural information processing systems, vol. 30, 2017.

82

[17] A. Prouvost, J. Dumouchelle, L. Scavuzzo, M. Gasse, D. Chételat, and
A. Lodi, “Ecole: A gym-like library for machine learning in combinatorial

optimization solvers,” arXiv preprint arXiv:2011.06069, 2020.

83

	Abstract
	List of figures
	Listing of acronyms
	Introduction
	Business Problem
	Complexity Problems
	Machine Learning contribution
	Thesis Objective

	Background
	Operational Research definition
	Optimization Problems
	Optimization Problems formalizations

	Machine Learning key ideas
	Supervised Learning
	Markov Decision Process
	Reinforcement Learning
	Reinforcement Learning for CO

	Bin packing formalization

	Approaches for solving bin packing
	Classic approaches for solving bpp
	Classic algorithms
	Bin Completion algorithm
	Branch and Bound algorithm
	Branch and Cut algorithm
	Or-Tools suite

	ML approach current state
	Imitation Learning Approach
	Reinforcement Learning Approach

	Machine learning for MILP problems
	Imitation Learning through GCNN
	Background
	Graph Convolutional Neural Networks
	Methodology
	Imitation learning with GCNN

	BPP with Reinforcement Learning
	Background
	Packing configuration tree
	GAT attention layer
	Markov Decision Process Formulation

	Experiments
	GCNN experiments on MILP
	Ecole project
	Training with GCNN Imitation Learning
	Results

	RL 3D-BPP experiments
	OR Tools results
	3D-BPP results

	Conclusion
	References

