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Abstract

Recent neuroscientific literature has shown that the use of brain-controlled

robotic exoskeletons in walking rehabilitation induces neuroplasticity modi-

fications, possibly leading to a higher likelihood of recovery and maintenance

of lost motor functions due to a neural lesion, with respect to traditional re-

habilitation. However, the gait decoding from brain signals remains an open

challenge.

The aim of this work is to implement and validate a deep learning model

for online gait decoding that exploits Electroencephalography (EEG) infor-

mation to predict the intention of initiating a step, which could be used to

trigger the assistance of a lower-limb exoskeleton. In particular, the model

exploits a Gated Recurrent Units (GRU) deep neural network to handle the

time-dependent features which were identified by analysing the neural cor-

relates preceding the step onset (i.e., Movement-Related Cortical Potentials

(MRCP)). The network was evaluated on a pre-recorded dataset of 11 healthy

subjects walking on a treadmill. The network’s architecture (e.g., number of

GRU units) was optimized through grid search. In addition, to deal with the

data scarcity problem of neurophysiological applications, I proposed a data

augmentation procedure to increase the dataset available to train the model

of each subject. With the proposed approach, the model achieved an average

accuracy in detecting the step onset of 89.7± 7.7% with just the 15% of the



ii

dataset for each subject (⇠70 steps), and up to 97.8± 1.3% with the whole

dataset (⇠440 steps).

This thesis support the use of a memory-based deep learning model to de-

code walking activity from non-invasive brain recordings. In future works,

this model will be exploited in real time as a more e↵ective input for devices

restoring locomotion in impaired people, such as robotic exoskeletons.
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1 | Background

Scientific and technological progress is bringing us a fast-moving world where

new scenarios are opening up every day. New applications are replacing pre-

vious ones or making feasible what seemed impossible only a few years ago.

In the healthcare field [1], new technologies now embrace all areas and of-

fer unexpected possibilities, supporting the figure of the doctor and allowing

unprecedented home-care services.

In recent decades there has been a shift in the medical vision regarding re-

habilitation: it has gone from a passive vision of the patient in which it is

considered the object of intervention, to an active vision in which the patient

becomes the protagonist of his own rehabilitation process.

In this perspective we talk about neurological rehabilitation, since, giving an

active role to the patient means going to stimulate the process of neuroplas-

ticity [2, 3, 4], the ability that the human brain has to reorganize itself in

conditions of peripheral stimulation and learning through repeated stimuli in

order to restore the injured part.

The scientific community’s growing interest in the field of rehabilitation and

healthcare is fuelled by the aim of improving the independence and quality

of life of people with motor, sensory or cognitive deficits. Many of the stud-

ies in the literature focus on the rehabilitation of patients with degenerative

diseases such as Parkinson’s [5] or multiple sclerosis [6] or traumatic injuries
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such as strokes [7], amputations [8] or spinal cord injuries [9].

We are witnessing increasingly promising results in assisted rehabilitation

through the use of robotic devices, results that highlight the opportunity to

contribute to the restoration of basic motor functions of people with mo-

tor deficits and which clearly were achieved after numerous unsuccessful at-

tempts. However, what has emerged from the most recent reviews of robot-

assisted rehabilitation is that this approach has the ability to increase the

likelihood of recovery, maintenance, and optimization of the neural connec-

tions involved in a patient with respect to traditional methods [10, 11].

With the consolidation of research in the field of intelligent robotics and the

idea of being able to improve the precision and results achievable in the field

of healthcare, neurorobotics [12] was born.

Neurorobotics is a vibrant, active interdisciplinary field of neuroscience and

engineering, in which knowledge of the human brain is combined with robotics

and Artificial Intelligence (AI) [13]. A neurorobot refers to all those robotic

devices that can interact with or emulate the nervous system of humans (or

other animals). Neurorobotics can be considered interdisciplinary as we see

it intersect from purely industrial disciplines (robotic arms) to others related

to health (rehabilitation, surgery) or to entertainment applications (painting,

video games).

Despite the numerous fields in which we see neurorobotics involved, the focus

of this thesis work will be on devices capable of assisting walking movement.

The main features of the neurorobots belonging to the walking assistance

category are the ability to allow the patient to physically (or virtually) nav-

igate the environment, either indoor or outdoor, and the capability to par-

tially (lower-limb exoskeleton, leg prostheses) or totally support (powered

wheelchair) their weight to alleviate fatigue due to possible disorders.
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Among the many solutions for restoring natural gait are less invasive

robotic exoskeletons used under the guidance of a licensed physiotherapist

[14, 15, 16]. Lower limb exoskeletons can be categorised, according to [17],

into three categories:

• assistance exoskeletons, are those that help users to complete daily

activities that they are no longer able to do.

• rehabilitation exoskeletons, are designed to restore skills so that pa-

tients can live without the device. The goal of these exoskeletons is

to help ”when needed,” to stimulate neuroplasticity through decreasing

assistance gradually as the user improves.

• augmentation exoskeletons, are designed to increase the capabilities of

generally healthy individuals, to provide support for tasks that would

require above-average muscle strength.

In this thesis, I will focus mainly on the application of exoskeletons as re-

habilitation devices, but the work can also be generalised to assistive or

capacity-enhancing devices. Thus, for what concern the use of exoskeletons

in rehabilitation, what emerges from the literature is the passive role that

the patient assumes during the therapy process which decreases the neuro-

muscular activity and energy consumption, reducing rehabilitation e�cacy

[18]. On the contrary, to make rehabilitation a process through which the

body is stimulated more at the muscular and neural level, we find rehabil-

itation devices based on Brain Computer Interface (BCI) [19, 20]. A BCI

can be described as a direct communication channel between the brain and

an external device without the involvement of motor processes. It therefore

becomes clear that BCIs can be a valid means through which it is possible to

have stimulation to restore the compromised functional capacity of damaged
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neuronal connections. An approach based on this type of technology would

make it possible to make the patient’s role more active during the rehabili-

tation process, thus increasing its e↵ectiveness [21, 22].

The work conducted in this thesis lies in the area of gait rehabilitation using

BCI.



2 | Introduction

2.1 Brain Computer Interface

Thanks to the miniaturisation of increasingly powerful and low-cost computer

equipment, and, given the ever-increasing need to help people with disabili-

ties, we have seen the rise of the first Human Machine Interface (HMI).

As the term implies, when we talk about HMI, we can imagine a communica-

tion channel between a person and a machine. For the sake of completeness,

there are many types of HMI, but when communication is established be-

tween the brain and a computer, this type of interface is known as Brain

Computer Interface.

The term BCI refers to a system capable of measuring the activity of

the brain and translating it into instructions for various types of peripheral

devices (communication systems, wheelchairs, prostheses and orthoses, etc.),

creating a communication channel that disregards the normal neuromuscular

outputs of the central nervous system [23, 24, 25]. The potential of such a

system has been the focus of research over the last few decades.

The possibilities provided by BCIs to measure, process and decode brain

activity to interpret neuronal signals can be seen as a way to bypass damaged

neural and/or motor structures, making it possible to develop equipment that

can improve the living conditions of patients su↵ering from Amyotrophic
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Lateral Sclerosis (ALS), Spinal Cord Injury (SCI), stroke, and other forms

of paralysis [26].

From a conceptual point of view, we can think of a generic BCI as a closed-

loop system consisting of three blocks [27], Figure 2.1:

Figure 2.1 BCI schema.

1. Signal acquisition block, in which the brain signals are acquired by

using either invasive or non-invasive methods.

2. Processing block, where measured brain signals are pre-processed mainly

to remove movement artefacts, features are extracted and finally the

signal is classified, thus generating input for external peripherals.
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3. Feedback block, which closes the loop by informing the subject on

her/his current mental state.

2.1.1 Signal acquisition in BCI

The first categorization of BCI systems can be obtained by analysing the

technology for the acquisition of brain signals. In particular, we can identify

two macro-categories [28]:

• Invasive systems;

• Non-invasive systems.

Invasive systems involve implanting the electrodes directly into the brain.

This type of technology allows the highest signal quality, but on the other

hand, the implantation procedure itself has significant risks.

A subcategory of the above-mentioned BCIs is semi-invasive BCIs. It is

based on Electrocorticographic (ECoG) recording, which uses electrodes im-

planted subdurally on the surface of the brain to measure electrical signals

in the brain cortex [29]. Although being less invasive, also this type of BCIs

requires a craniotomy, with all the correlated risks.

On the other hand, non-invasive BCI systems are the protagonists of most

scientific experiments since they do not require any surgical intervention, and

thus not involving any risk situation for the patient himself. Non-invasive

BCIs can rely on di↵erent types of signal acquisition techniques [30, 31],

including:

• Magnetoencephalography (MEG), measures the magnetic field caused

by the currents in the brain.
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• Positron Emission Tomography (PET), is a nuclear imaging technique

used in medicine to observe di↵erent processes, such as blood flow,

metabolism, neurotransmitters, happening in the body.

• Functional Magnetic Resonance Imaging (fMRI), is a functional neu-

roimaging procedure using MRI technology that measures brain activ-

ity by detecting changes associated with blood flow.

• Near-Infrared Spectroscopy (fNIRS), brain activity is measured through

hemodynamic responses associated with neuron behaviour.

• EEG, provides the recording of electrical activity of the brain from the

surface of the scalp.

Of those just mentioned, one in particular takes its place in the work to be

presented in the next chapters of this thesis, we refer to non-invasive BCI

based on EEG.

EEG, as mentioned above, is a non-invasive technique that evaluates the

electrophysiological activity of the brain by measuring potentials on the scalp

[32, 33]. In particular, the EEG represents the electrical activity of pyramidal

neurons in the cerebral cortex, which, due to their synchronisation, arrange-

ment and proximity to the scalp, give rise to electrical fields that e↵ectively

add up and are thus detectable at the surface. Despite the low amplitude of

this type of signal and high sensitivity to noise, EEG remains by far the most

popular neuroimaging modality in BCI, as it o↵ers good temporal resolution,

good system portability, relatively low cost, and ease and safety of use [34].

A distinction that needs to be made is between an EEG recorded without

external stimuli, called spontaneous EEG, and EEG recorded as a response

to external stimuli, called Event-Related Potential (ERP) [35, 36]. There

are two fundamental parameters to describe the EEG signal, the amplitude
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and the frequency of the oscillations. Typical amplitudes are of the order of

50-200 µV for spontaneous EEG and a few µV for ERP.

From a spectral point of view, the EEG signal occupies a frequency range be-

tween 0.1 Hz and 100 Hz. Within this range we can then identify sub-bands

of interest because they are related to physiological states (sleep, relaxation,

attention, concentration etc) or pathological states (epilepsy, tumours, coma

etc), Figure 2.2. Five main EEG rhythms can be identified [37]:

• Delta rhythms (0.1 - 4 Hz): In adults, delta waves are associated with

states of deep sleep, while a large delta band activity in the waking

state is considered pathological. In children, the amplitude of delta

waves decreases with increasing age.

• Theta rhythms (4 - 8 Hz): Like delta rhythms, theta waves are also

more prevalent in children, while in adults they are associated with

states of sleep or meditation. In some adults the theta rhythm is also

associated with emotional stress, particularly frustration, for example

immediately after the sudden removal of a pleasant stimulus.

• Alpha rhythms (8 - 13 Hz): These waves are recorded in a waking state,

but indicate a state of relaxation. In the occipital areas, for example,

the amplitude of alpha waves increases greatly when the eyes are closed,

while it decreases drastically when they are reopened, or if mental e↵ort

is exerted. In the same frequency range as the alpha rhythm, but with

localisation in the area of the motor cortex, we also find themu rhythm,

which is particularly interesting because it is strongly correlated with

movement.

• Beta rhythms (13 - 30 Hz): These waves are recorded in the frontal,

central and parietal areas, and occur during the waking state with eyes
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open when the subject is involved in a mental activity. Beta rhythms

are also associated with motor activity, and are modulated during both

real movement and motor imagination.

• Gamma rhythms (30 - 100 Hz): gamma rhythms have frequencies

greater than 30Hz and indicate a state of deep concentration. Gamma

rhythms also occur in relation to certain motor functions and during

maximal muscle contraction. Gamma rhythms are less used in EEG-

based BCI systems because they are more susceptible to muscular or

EEG artefacts.

2.1.2 Control signals in EEG-based BCI systems

BCIs are based on so-called control signals, which are taken directly from the

brain. These signals can be categorised into three macro categories which are

evoked signals, spontaneus signals and hybrid signals.

Evoked signals

An evoked signal, or Evoked Potential (EP), is a detectable signal as a vari-

ation of the EEG that occurs following the presentation of a somatosensory,

auditory or visual stimulus. For the sake of clarity, although the terms are

sometimes used synonymously, EP and ERP have di↵erent meanings, as ERP

is associated with enhanced cognitive processing.

However, included in the category of evoked signals we find:

• Steady State Evoked Potentials (SSEP): the brain produces SSEP sig-

nals in the cortex when the subject perceives periodic stimuli such as

flickering images, modulated sounds, and also when the subject feels

certain vibrations [38]. Among the various types of detected SSEP
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Figure 2.2 EEG rhythms.

signals we can find Steady State Visual Evoked Potentials (SSVEP),

somatosensory SSEP and auditory SSEP.

• P300 : this type of evoked potentials occur as small positive spikes fol-

lowing infrequent visual, somatosensory or auditory stimuli when these

are interposed with more frequent or routine stimuli. They are de-

tectable in the parietal cortex approximately 300ms after the infrequent

stimulus [39].
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Spontaneus signals

Spontaneous signals, as the word implies, are the signals generated sponta-

neously/voluntarily by the subject without any external stimulation. Part of

this family of signals are:

• Sensorimotor rhythms : these rhythms are commonly referred to as

EEG signal oscillations, and are detectable in areas close to the primary

motor and sensory cortex. Sensorimotor rhythms have the characteris-

tic of being modulated in correspondence with any motor task, but the

great success of these rhythms in the BCI field derives from the fact

that a subject can learn how to control them even without the need for

real movement [40].

Modulations of these rhythms resulting from sensory stimulation, a

motor act or imagination can be of two types, called Event-Related

Desynchronization (ERD) and Event-Related Synchronization (ERS),

of alpha and beta bands. ERDs are detected during motor preparation,

execution and imagination and can be seen as a correlate of an acti-

vated cortical area, in contrast ERSs represent a deactivated cortical

area or an inhibited cortical network, at least under certain conditions.

• Slow Cortical Potentials (SCP): these control signals are small, slow

changes in cortical potential lasting from 300ms to a few seconds, which

can also be detected by EEG [41].

These slow potential shifts are related to changes in the level of corti-

cal activity, such that negative SCPs correspond to increased activity,

whereas positive shifts are associated with reduced activation of the

cortex. Through training, it is possible for both healthy and paralysed

patients to learn to voluntarily control SCPs, which can then be used
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as control signals in BCI systems, e.g. to move a cursor on a screen or

control an external device such as an exoskeleton.

A sub-category of SCP that is of interest for the purposes of this thesis

work is MRCP [42]. These potentials are known to reflect the cortical pro-

cesses employed in planning and execution of a motor task. These cortical

processes represent the pre-intention of a future action that a subject wants

to perform, for example the beginning of a step during walking. As shown

in Figure 2.3, they begin with a slowly increasing negativity, called the Bere-

itschaftspotential (BP) [43], and progress to a steeper, later negativity that

begins about 300/400 ms (depending on the subject) before the onset of the

movement, called the Negativity Slope (NS).

As we will see later, the use of this type of control signal is widely used in the

literature to perform tasks such as movement detection and/or classification.

Hybrid signals

When we talk about hybrid control signals we mean the combination of

several control signals in order to increase the reliability of the BCI system.

Examples of combinations found in the literature are SSVEP and P300 [45],

SSVEP and Electromyography (EMG) [46], EEG and EMG [47] and many

more.

2.1.3 Synchronous and Asynchronous BCI

BCI systems can be classified as synchronous or asynchronous, depending on

how the input data is processed.

Synchronous BCIs analyze brain signals only during predefined time win-

dows, for example, time-locked to a specific event or stimulus. As a conse-

quence, we have that the user during the execution of a task will have to
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Figure 2.3 Neurophysiological results. a. Grand average MRCP over subjects and

sessions for nineteen cases; b. Grand average ERD over subjects and sessions. The

dashed line marks the mu frequency band later used in classification. In both figures,

the black vertical line represents the onset of motion; c. and d. Source localization

results for MRCP temporal features and µ band spectral features at movement onset

are displayed from three perspectives: top view, lateral view from the left and back

view. From [44].

send commands only during these periods dictated by the BCI itself. One

of the advantages of this type of system is its implicit robustness, since the

onset of mental activity is known a-priori and is therefore associated with a

specific signal. This results in a reduction of motion artifacts and a subse-

quent simplification of the BCI.
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However, the BCIs just mentioned assume that the user is always in the

control state, thus causing false interpretations of the brain signal and sub-

sequent false actions in the BCI. Thus, we can derive the need for the system

to be able to infer from the EEG whether the user intends to operate the in-

terface (control state) or not to operate (non-control state). A BCI that can

handle control states is called asynchronous. From a signal processing point

of view, the asynchronous approach allows to a more natural interaction with

the user and also a lower latency in the overall system.

2.2 Related Work

2.2.1 BCI for gait decoding

The overall clinical e�cacy of BCI-robotics is highly dependent on the corre-

lation between robot motion and predicted motion, which in turn depends on

the robustness of the BCI determined by the quality of the brain signal and

the performance of the decoding tools. Over the last decade, several BCIs

using variety of neural inputs, feedback modalities, and experiment protocols

have been reported for resolving the gait decoding problem.

The study carried out in [48] shows how signal features with frequency less

than 2 Hz are the most significant in the walk and direction classification

phase. In this regard in [49, 50] is shown how the delta band of the EEG

signal contains information concerning the kinematics of the walking move-

ments, and it is shown how such information can be decoded through partic-

ular Wiener and Kalman filters.

The most common BCIs for the decoding of lower limb movements dealt with

the problem of distinguishing basic commands such as ”stop” and ”go” and

many of the works found in the literature to do this use ERD (Sezione 2.1.2)
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as a feature for decoding. To give some examples, it can be seen in BCIs like

[51, 52, 53] the use of this feature for the control of a lower-limb exoskeleton,

while in [54] can be found a BCI that control a Functional Electrical Stim-

ulation (FES) system for overground walking. Another aspect that can be

explored is the issue of crossing an obstacle, addressed in [55] where the au-

thors decoded the subject’s intention to walk or cross an obstacle through a

Support Vector Machine (SVM) that predict the intention based on Common

Spatial Pattern (CSP) features. In [56], a knee prosthesis is presented that is

used for two main functions: sitting and walking. In this case the purpose of

the study was to establish the feasibility of manipulating a prosthetic knee

by BCI, hence, it can be seen that the solution is based on a simple software

that activate the prothesis under a certain threshold condition of ERD signal.

Despite being less investigated, recent works showed the potential of decod-

ing the gait activity through MRCP analysis. For example, [57] exploited the

EEG delta band to decode the walking kinematics. An interesting study is

shown in [58], in which a solution composed by a non-linear dimensionality

reduction method, called Locality Preserving Projection (LPP), and a Linear

Discriminant Analysis (LDA) classifier were utilized to decode MRCP and

control a Motorized Ankle-Foot Orthosis (MAFO).

Nevertheless, one can also find works in which ERD and MRCP features are

used together as in [59].

It is worth highlighting that all these works use classical machine learning

techniques that do not consider the temporal dependence of the features with

respect to the movement they are decoding. However, it has been shown that

the brain activity over the motor cortex is characterized by a modulation

time-locked with the gait cycle during locomotion activity [60]. Thus, it is of

fundamental importance for gait decoding to have an explicit representation
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of time inside the classification framework.

2.2.2 Deep learning in BCI

The use of neural networks has never been popular as a choice for solv-

ing problems concerning the decoding of neural correlates of EEG signals.

This, in the past, was due to too high computation times, scarcity of avail-

able datasets and/or problems with the architectures themselves (vanish-

ing/exploding gradients, 3.3).

In recent years, technological progress and the greater availability of large

amounts of data have made it possible to develop algorithms based on deep

learning that can innovate and improve the performance obtained with the

classic methodologies such as statistical analysis or non-linear methods (neu-

ral networks). Many of these algorithms, because they are not based on

deep learning, require feature engineering as a separate task before perform-

ing classification. This leads to disadvantages from the perspective of losing

some information because features extraction requires basic knowledge of bi-

ology to investigate the neural correlates state through EEG signals. Human

experience may help capture features on some particular aspects but it is

insu�cient in more general conditions. Therefore, an algorithm is required

to extract representative features automatically.

Deep learning was created to fill this gap by providing algorithms that can

extract features from time series automatically and faster, hence, avoiding

the time-consuming feature engineering steps by working directly on possi-

bly pre-processed brain signals to learn distinguishable information through

back-propagation.

At present, deep learning in EEG classification, has explored areas such as:

Emotion Recognition, Motor Imagery, Mental Workload, Seizure Detection,
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Sleep Stage Score, and Event-Related Potential [61].

However, other works recently demonstrated how deep learning has outper-

formed machine learning in applications like prediction of motion [62] or

prediction of epileptic seizures [63].

In this light, it is clear that the thinking of the scientific community is grad-

ually shifting towards the use of deep methodologies to develop better per-

forming BCIs. Bringing back the topic of gait decoding, it can be said that

only a few works propose BCIs based on deep learning for solving this prob-

lem. In [64], the methodology involves the use of a Long Short Term Memory

(LSTM)-based recurrent neural network that exploits the information of SCP

to do an o✏ine decoding of a subject’s walk. The same authors in [47], have

filled the gap due to the single-signal decoding also integrating the EMG

information. A last work that explored this field is the one in [65], in which

a LSTM network was tested o✏ine to estimate the joint angles of a leg on

healthy subjects during treadmill walking. Although also these works show

superior performance of deep learning models with respect to traditional ma-

chine learning approaches, it is important to note that none of the latter

works are compatible with a real-time decoding application.

2.3 Aims and structure

The research work carried out in this thesis aims to develop a novel BCI

for decoding the walking intention from EEG signals. In particular, the

proposed methodology, to the best of our knowledge, is the first exploiting

a deep learning-based approach for gait decoding which is fully compatible

with an online application, and thus aims to overcome the limitations found

in the literature.



2.3 Aims and structure 19

Two main milestones can be identified in this thesis: the first concerns the

study of the EEG correlates of the swing phase of the walk. The information

extracted from this analysis was essential to be able to propose a sensible and

valid approach to detect walking intention. The second milestone concerns

the identification and optimisation of a deep learning model able to learn from

neural correlates the intention of a subject who is about to walk in order,

for example, to trigger the support of a lower limb exoskeleton. Although

the focus of this thesis is on the decoding of walking movement, it is worth

highlighting that the proposed model can be applied for the decoding of other

types of movements (e.g., upper limb reaching).

The thesis is structured in six chapters: Chapter 1 ’Background’ and

Chapter 2 ’Introduction’ aim to provide an overview of the issues addressed

in this work, to describe the landscape of BCI and their inter-facing with

deep learning techniques, and to describe the addressed problem. Chapter 3

’Materials and Methods’ will list the tools used and describes the proposed

approach. In ’Results’, Chapter 4, the e�cacy and performance of the imple-

mented model will be evaluated on a pre-recorded walking dataset. Finally,

in Chapters 5 and 6, respectively ’Discussion’ and ’Conclusions’, the results

obtained will be discussed and the contribution that this work has made in

relation to the state-of-the-art will be highlighted.
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3.1 Summary

As mentioned in ’Aims and structure’ (2.3), in this thesis, I aim to show the

e↵ectiveness of a deep learning based approach for gait decoding. A sum-

mary of the o✏ine processing and classification procedures used in this work

is shown in Figure 3.1.

The dataset considered in this thesis is a collection of EEG and EMG record-

Figure 3.1 Model Evaluation.
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ings related to walking. Only the portion related to the EEG signals was used

and in particular it was pre-processed, for the reduction of artifact contam-

ination, according to the guidelines of [66], work in which the dataset was

acquired using a Mobile Brain/Body Imaging (MoBI) framework.

Considering the promising results of Deep Learning (DL) networks to decode

movements (sub section 2.2), and inspired by works like [67], it has been

decided to develop a recurrent network model based on GRU layer in order

to solve the problem of gait decoding through the detection of pre-movement

EEG correlates, MRCP [68].

This type of classifier was optimized and trained with di↵erent dataset per-

centages and with di↵erent amounts of data augmentation to get a perfor-

mance estimation that reflects the real case in which a subject will record a

small amount of EEG data per session and the model will progressively learn

to be more and more accurate. The aim of this deep learning classifier will

be to detect between a future ’swing’ and a ’stand’ state.

3.2 Deep Learning Fundamentals

DL is a sub-field of Machine Learning (ML) that has achieved enormous

success in recent years in various contexts. The applications based on DL

that are seen nowadays both in the scientific and industrial fields are varied

among which, classification of sounds or images, natural language processing

or based on the discussions of this thesis movement detection. When we speak

of learning we refer to a procedure that consists in estimating the parameters

of the model from the data so that the learned architecture can be used to

perform a specific task. In particular, the most used DL architecture is the

so-called Artificial Neural Network (ANN), or easily Neural Network (NN).
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In the following sections, the architectures and related algorithms taken

into consideration in the work to be presented will be described in increasing

detail. Part of the proposed material is derived from [69].

3.2.1 Supervised Learning

Among the many DL approaches, in this thesis I will focus only on Supervised

Learning [70]. This type of technique uses a-priori labelled data for learning

purposes. For the sake of completeness, a model based on supervised learning

can be defined as:

• Model: seen as a set of hypothesis H.

• Domain set: X is the set of object that we may wish to label.

• Target set: Y is the set of possible label (target).

• Training data: S = (x1, y1), ..., (xN , yN) is a finite sequence of N pairs

in X ⇥ Y . This is the input that the model has access to.

• Predictor: the model is requested to output a label that act like the

function h 2 H such that h : X ! Y .

• Loss function: a function L : h(x), y ! R that measure how bad is the

prediction.

• Training algorithm: A(s) that aim to output the best h 2 H according

to the loss function L.

It can be said that the learning problem that will be addressed can be

seen in this way: given a training set S and a model (e.g. a Recurrent

Neural Network (RNN) [linked to paragraph]), the aim is to minimize the
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loss function L with a training algorithm (e.g. backpropagation) to have the

”best” h 2 H (which corresponds to the particular weights of the RNN).

3.2.2 Neural Networks

Informally, a NN model is a collection of artificial neurons that receive an

input, combine them in their internal state and produce an output using

an activation function. The groups of neurons of a network are organised

in multiple layers, among which can be distinguished: input layer that re-

ceives the data, output layer that produces the results and hidden layer

(everything that lies between input and output layer). The interconnections

between these artificial neurons are called neural connections, each of these

connections has a specific weight that is modified during the training process.

Feedforward and Recurrent Neural Networks

Neural networks can be of two types:

• Feedforward, Figure 3.2, in these networks, connections link neurons

of one level with neurons of the next level and therefore backward

connections or connections to the same level are not allowed.

• Recurrent, in recurrent networks there are feedback connections (usu-

ally to neurons at the same level, but also backwards). This consider-

ably complicates the flow of information and training, requiring to con-

sider the behaviour in several temporal instants (unfolding in time). On

the other hand, these networks are more suitable for the management

of sequences (e.g. audio, video, sentences in natural language), because
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Figure 3.2 Representation of an ANN.

endowed with a memory e↵ect (short term) that at time t makes the

information processed at t - 1, t - 2, etc.

Figure 3.3 Representation of an RNN.

A significant di↵erence in these two types of networks is the fact that

feedforward networks have di↵erent weights for each node while recurrent

neural networks share the same parameter weight in each layer of the net-

work.

Nevertheless, both typologies modify the value of these weights through pro-

cesses of Backpropagation (BP’) and Gradient Descend (GD) to facilitate the

reinforcement learning.

In more detail in Section 3.2.2, it will be seen that the recurrent networks,

unlike the feedforward ones, use a variant of the algorithm of BP’ called

Backpropagation Through Time (BPTT).
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Backpropagation

The backpropagation algorithm is the algorithm through which an NN has

the ability to adapt to a problem. The idea is to test how wrong the network’s

The idea is to test how wrong the prediction of the network is, and adjust the

weights to correct it, repeating the operation many times for each training

data. In a simple way the procedure can be encapsulated in a list of steps:

• Forward step: Propagate the data through the network and calculate

in the output the loss function (this can be done for multiple data and

taking the average in the end).

• Backward step: Calculate how to adjust the parameters inside the NN

through the gradient of the loss function.

• Output step: Update the parameters.

Backpropagation Through Time

The application of the backpropagation algorithm to a recurrent neural net-

work applied to sequential data as a time series, as mentioned above, is called

Backpropagation Through Time.

In this type of network at each time step presented as input there is a pre-

diction of the output.

It can be seen in Figure 3.4, on the left we have a RNN with a single

hidden layer represented compactly.

For convenience a notation can be defined:

• x
t, input layer.

• h
t, hidden layer.
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Figure 3.4 RNN Unfold.

• y
t, output layer.

• Whx, matrix weight between input and hidden.

• Wyh, weight matrix between output and hidden

• Whh, weight matrix of the hidden layer (not present in feedforward

networks).

The algorithm of backpropagation is applied to the unfolded graph of the

RNN. You can see from the notation that at each time step are present the

same weight matrix as mentioned above. We can then begin to describe the

net input of the hidden layer at timestep t through this equation:

z
t
h = Whxx

t +Whhh
t�1 + bh (3.1)

while the activation is given by:

h
t = �h(z

t
h) (3.2)
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Proceeding, the net input for the output is then given by:

z
t
y = Wyhh

t + bh (3.3)

with activation:

y
t = �y(z

t
y) (3.4)

As it is seen in 3.4, every time step calculates the own loss and the total loss

for a given sequence of input values paired with a sequence of output values

would be the sum of the losses over all the time steps:

L =
TX

t=1

Lt (3.5)

Using chain rule, the gradient of loss function w.r.t. Wyh at t timestep is:

@L
t

@Wyh
=

@L
t

@yt

@y
t

@Wyh
(3.6)

The partial derivate of loss function w.r.t. Whh depends on the previous

hidden states so if for example we want to calculate the gradiend at time t

= 2 we have:

@L
2

@Whh
=

@L
2

@y2

@y
2

@h2

@h
2

@Whh
+

@L
2

@y2

@y
2
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3

@h2

@h
2

@Whh
(3.7)

while for Whx the general formula for gradient calculation is:

@y

@W
=

t+NX

i=t+1

@y

@ht+N

@ht+N

@hi

@hi

@W
(3.8)

More details can be found in [71].

Note that as the number of input sequences increases in terms of timeteps,
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the number of derivations required for a single weight update also increases

considerably. This can cause the weights to disappear or explode (go to zero

or overflow) and make learning slow and the model skill noisy.

3.3 Proposed model

Figure 3.5 Model Architecture.

In the BCI developed in this work, the task of classifying the brain signal

is performed by the model in Figure 3.5. It is a model with a simple architec-

ture that exploits the potential of a GRU layer. In particular the architecture

of the network is formed by an input layer that receives in input temporal

windows of fixed length, a GRU layer necessary for the decoding of neural

correlates, a dropout layer to prevent any overfitting and a fully connected

layer followed by the output layer with two neurons.

More in detail a GRU is an evolution of the classical architecture of a re-

current neural network that aims to eliminate the problem of the vanishing

gradient. According to [72], the problem of the vanishing gradient is related

to the intrinsic structure of the usual RNNs. In particular, as explained

earlier in subsection 3.2.2, BPTT results in a decrease in the gradient as it
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propagates backward in time, and since gradients are values used to update

the weights of a neural network, if a gradient value becomes extremely small,

it does not contribute to learning. Here the update formula:

new weight = weight+ (learning rate ⇤ gradient) (3.9)

In other words, small or no updates of the gradient lead to a network that

does not learn.

GRUs were created to fill this gap and in particular as a solution to

short-term memory. To do this, this type of recurrent network uses internal

mechanisms called gates which can regulate the flow of information, and in

this particular architecture we have:

• forget gate, used from the model to decide how much of the past infor-

mation to forget.

• update gate, similar to forget gate, it decides what information to throw

away and what new information to add.

As mentioned earlier, such a network is able to maintain information related

to previous timesteps. In other words, a GRU is able to understand and

maintain in memory the most relevant information and to throw away or

give less weight to the others.

Referring to the Figure 3.6, I will now explain the mathematics behind this

architecture

First, let’s introduce the notations:

• xt: input at time t

• ht: hidden unit value at time t
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Figure 3.6 Single unit of a GRU layer.

• ĥt: candidate activation vector

• rt: reset gate array

• zt: update gate array

• W
r
,W

z
,W

h
, U

r
, U

z
, U

h: weight matrices

First, the array rt of values in output to the reset gate is computed:

rt = �(W z
xt + U

z
ht�1) (3.10)

In this equation we see that the input values xt to the unit and the hidden

unit value at the previous time step ht�1 are multiplied by the corresponding

weight arrays W z and U
z. The weighted arrays are then summed and finally

the sigmoid function is applied. All these operations have the purpose to

’forget’ the values that are not relevant for the learning. The sigmoid function

being defined in [0, 1] goes to normalise the value of the most important
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features to values that are close to 1, while values that must be forgotten

close to 0.

Considering now the calculation of the intermediate result given by the

update gate zt, we see from the formula below that essentially the preliminary

operation that is carried out is the same of the forget gate with the di↵erence

of the weights used.

zt = �(W r
xt + U

r
ht�1) (3.11)

A final component we need is the candidate activation vector ĥt which is

calculated as follow:

ĥt = tanh(W h
xt + (rt � U

h
ht�1)) (3.12)

Here tanh activation function is used to help regulate the values flowing

through the network in the range [�1, 1].

Now that we have all the elements we need to upgrade the hidden state ht

let’s calculate its value as follows:

ht = (1� zt)ht�1 + zt � ĥt (3.13)

To recap, the interacting parts of this formula are rt which contains the

useful information taken from the previous hidden state, ĥt which stores the

information derived from the past and zt which tells us which information is

useful to enrich the new hidden state.

The training strategy for GRU models is Adam [73], which has been

widely used in the training of multilayer networks and proved to be e�cient

in the training process. This model is trained by optimising the cross-entropy

loss function. The learning rate was set to 0.001, the �1 e �2 were set at 0.9
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and 0.999, respectively, " to 1 · 10�8 and clipnorm was set to 1.

3.3.1 Network Optimization

When using deep learning models, one must take into account the importance

that lies in parameter optimization. The reason is that neural networks are

known to be di�cult to configure and there are a lot of parameters that need

to be set. Thus, in this thesis I also investigated the best set of parameters

that would ensure a robust and accurate gait decoding.

To do this, a preliminary grid search was launched to better understand the

behaviour of the model as the parameters change, table 3.1:

• Number of hidden units of the GRU layer of the model, since there is no

definitive rule of thumb on how many hidden units one should choose.

• Batch size, the number of samples that will be propagated through the

network at each iteration.

• Percentage of Dropout, ignoring randomly selected neurons during train-

ing usually increases a model’s ability to generalise a problem.

Parameter Tested values
Number of hidden units 50, 100, 150, 200

Batch size 8, 16, 32
Percentage of Dropout 0, 0.1

Table 3.1 Network optimization. Parameters used in the network optimization.

It should be specified that all training performed in this work was done

using a balanced dataset with equal numbers of swing and stand samples.
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Figure 3.7 Mobile Brain/Body Imaging (MoBI) framework [66]. The experimen-

tal set up consisted of a 64-channel EEG and a 6-channel EMG acquisition systems to

record neurophysiological signals of participants walking on the treadmill. The Acticap

Control Box receiving EEG cables from the cap was securely fastened to the subject’s

waist and connected to the EEG amplifier via a 2-m cable fastened to the hand rails

of the treadmill to minimize cable movements. Four foot-switches (FSW) were placed

under the heel and the toe of each foot and wirelessly acquired by the EMG amplifiers

to detect gait events.

3.4 Model evaluation

3.4.1 Dataset

The dataset was acquired through the use of the so-called MoBI framework

[74], Figure 3.7, which allows the simultaneous acquisition of EEG and EMG

with su�cient temporal resolution for motion analysis [75]. Thus, this data

collection consists of simultaneous recordings of 64-channel EEG signals and
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6 lower extremity EMG signals from eleven able-bodied subjects (mean age

30 ± 4 years) walking on a treadmill at two distinct velocities, 2.5 km/h and

3.5 km/h. For each walking velocity, two acquisitions of 10 minutes each were

performed. In this work, only the EEG recordings for each of the subjects

were considered, at the velocity of 2.5 km/h.

EEG data were recorded with a custom signal pre-amplifying active elec-

trode cap (acti-CAP, Brain Products GmbH, Germany) and a 64- channel

EEG amplifier (SD MRI, Micromed S.p.A., Italy) with a sampling rate of

2048 Hz/channel (bandwidth DC - 1024 Hz). The montage was chosen in ac-

cordance with the 5% International 10/20 System [76]. EMG electrodes were

placed according to SENIAM guidelines (www.seniam.org) on three muscles

of each leg, namely Tibialis Anterior (TA), Vastus Medialis (VM) and Biceps

Femoris (BF), which were simultaneously recorded with a wireless EMG sys-

tem (BTS Free EMG 300) at a sampling rate of 1000 Hz. In addition, the

shoes of each subject were equipped with four foot-switches, two under the

heel and two under the toes, in order to identify the gait events of each leg

(Right/Left Heel Strike—RHS/LHS and Right/Left Toe O↵— RTO/LTO).

Data from the foot-switches were wirelessly acquired through the EMG sys-

tem with a sampling frequency of 1000 Hz. A common trigger was sent both

to EMG and EEG acquisition systems multiple times at the beginning and

end of each session to guarantee robust, minimum-jitter o✏ine synchroniza-

tion. EEG, EMG and foot-switches data were resampled at 1024 Hz and

aligned before further preprocessing.

In order to reduce movement artifacts and to have at a later stage a more

faithful decoding of the motion correlates in the EEG data, a pre-processing

was done. In essence, it is based on Artifacts Subspace Reconstruction (ASR)

and Adaptive Mixture Independent Component Analysis (AMICA) and is
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used to remove bad channels, bad epochs and line noise (more details in

[64]).

For the purpose of this thesis, the EEG dataset of each subject (both move-

ment and stance) was then divided into time windows (windowing) of 300 ms,

a size based on the MRCP literature and the average duration of the stance

phase. The Common Average Reference (CAR) filter was then applied to the

portion of the signal present in each of the time windows, with the intent of

re-referencing the signal with respect to the average electrical activity mea-

sured on all scalp channels. Finally, with the aim of the classification phase,

z-score normalization were applied on the frequency bands from 1Hz to 8Hz

that were extracted for each time window through a 4th-order Butterworth

filter. This range was chosen as seen in [64] to give the best results, and in

particular as found in [77, 78], it was seen that frequency bands below 10 Hz

contain most of the information related to movement.

Thus speaking of windowing, as can be seen in Figure 3.8[A], as far as the

walking dataset is concerned, the temporal windows of equal length into

which it has been divided include all the temporal instants prior to the swing

phase of the walk (movement onset). Regarding the windowing of the stand

dataset, Figure 3.8[B], it was carried out by sliding a window of the same

length as that used for the walk with an overlap between adjacent windows

of 20Hz in order to generate a greater number of samples (sub section 3.4.2).

3.4.2 Data Augmentation

The dataset was divided into 25% test set, 20% validation set, and the re-

maining training set data. It is well known that deep classifiers require a

large number of samples to learn, and it is for this reason that in order to

improve performance, especially on smaller cuts of datasets, I used the tech-
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Figure 3.8 Windowing. [A] Windowing on EEG walk dataset. [B] Windowing on

EEG stand dataset.

nique of data augmentation to produce new artificial samples useful to the

learning process [79].

In this work, the importance of the data augmentation resides in the increase

of walking steps available to train the network. Indeed, in a real application

with end-users, a subject with a motor deficit is not able to walk for a long

period due to early fatigue, thus limiting the amount of training data that

can be recorded during the first session.

Recalling that each window of the pre-processed dataset contains the tem-

poral instants antecedent to the beginning of a swing, the process through

which the new windows are generated consists of the same procedure de-

scribed in Section 3.4.1, except that these windows will no longer be taken
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strictly from the instant 0, i.e. the beginning of the swing, but rather from a

shift of this instant backwards or forwards. In this way, and as it can be seen

from the results obtained in the next chapter, I was able to create artificial

brain pre-activations that the models during the training phase recognize as

new examples.

Considering what was said in Section 3.3.1, network optimization was per-

formed on the 50% of the training set data (220 steps) and to these data, an

augmentation on the walking part was performed obtaining about 660 steps.

After that, performance was tested by training the model with di↵erent por-

tions of training set (Table 3.2) to which four di↵erent data augmentations

were applied, Table 3.3.

The intention of testing the model with di↵erent percentages of datasets

served to simulate the performance that can be achieved from the first record-

ing of a patient’s data (which is usually around 30-60 steps) to subsequent

recordings that improve the overall accuracy of the model. Hence, the study

of data augmentation was done in order to evaluate its e↵ectiveness in con-

ditions of data scarcity, e.g. first recordings.

Training set # Steps

7% 30

15% 70

30% 140

50% 220

100% 440

Table 3.2 Training set percentages and number of steps.
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Data Augmentation Shift [ms]

augmentation x1 0 (no data augmentation)

augmentation x2 0, +100

augmentation x3 -50, +50, +150

augmentation x5 -50, 0, +50, +100, +150

Table 3.3 Data Augmentation third grid search.
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4.1 Analysis of walking correlates

An important part of this work is the analysis of correlates in order to find

an e�cient way to decode the gait information from the EEG signal.

The data used belong to the 1-8 Hz frequency band, which as mentioned in

Section 3.4.1, is the one that contains most of the motion information. In

Figure 4.1, for each subject, it is possible to visualize the median of the signal

made on the Cz channel, over a time window of 500 ms, coupled with median

absolute deviation (grey area). This channel was chosen for visualization as

the legs are somatotopically represented over the motor cortex in the sulcus

between the left and right hemisphere. From the temporal plots I can say to

be consistent with the literature [42] as the correlate related to pre-intention

of movement that emerges, the MRCP, it can be seen in all subjects. In

particular, the negative flexion of the MRCP, the BP, is seen to appear

about 200/300 ms before movement onset. Figure 4.2 shows the time course

of the grand average amplitude of the EEG signals of all the subjects on the

C1, C2, Cz, CP1, F2 and Fz channels. The individual channels plotted

highlight the course of [42] averaged for all subjects (colored line) and for

each of the subjects (gray line). This visualization revealed that the latency

and amplitude of the negative peak of the MRCP varies from subject to
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Figure 4.1 Single channel grand average.Median made on Cz channel for each of

the 11 subjects considered in this work, the dashed line represents the negative peak

of MRCP, while the area around the green line is the median absolute deviation. The

information is gathered in the last plot and associated to the median made on all

subjects (red line, Cz channel), with the relative line indicating the negative peak of

the MRCP (dashed line).

subject and therefore is subject-specific. Also from the grand average of each

channel it can be seen that the MRCP appears first in the central channels

(e.g., Cz and Fz) than in the lateral channels (e.g., C1 and CP1), consistently

with the somatotopic representation of the legs over the sensorimotor cortex.

Analysing this behavior on all the recorded channels, it can be seen in the

grand average (Figure 4.2, bottom), that in addition to having a specific
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subject dependency, the feature presents a specific channel dependency since

the MRCP amplitudes and latencies appear to di↵er from channel to channel.

Finally, from the topographic plots below, a spatial view of the behavior

just described is shown, in particular in the first two instants prior to the

generation of the MRCP, a low activation of the frontal area of the brain can

be noticed. While observing the behavior in the instant prior to the MRCP

peak, it can be seen a high activation first in the frontal area followed by a

propagation of the potential throughout the motor area.
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Figure 4.2 Grand-average EEG amplitude time course.On top, grand average of

EEG signals on channels C1, C2, Cz, CP1, F2 and Fz across all subjects (colored lines)

and for each subject (gray lines).

On bottom grand average across all subjects on the channels in which MRCP is most

visible (temporal visualization). In the topographic plots below (spatial visualization)

it can be seen how potentials migrate during the instants prior to the onset of MRCP

and in its peak of maximum negativity



4.2 Network Optimization 45

4.2 Network Optimization

In order to optimize the selection of the hyper-parameter settings of the model

presented in Section 3.3, a preliminary grid search was launched. In this first

phase, the performance evaluation was carried out through the accuracy and

cross-entropy loss metrics, using 50% of the whole dataset (training set) to

which a five-fold increase in data augmentation was applied, and was used

to predict the validation set, augmented in the same way as the training

set. Figure 4.3 (top) shows the results of this first analysis. In the two

color maps, the batch size and dropout values are shown and the best overall

performance is obtained with values of 8 and 0.1, respectively, obtaining

93.5±4.5% in accuracy and 0.30±0.21 in loss.

Secondly, I analysed the dependency of the classification performance with

respect to the network size by setting the batch size and dropout hyper-

parameters (8 and 0.1 respectively) and proceeding with a second grid search,

based on increasing the number of hidden units of the GRU layer.

The results are shown in Figure 4.3 (bottom). The plots represents the

median (solid line) and the subject-specific (dots) performance as the number

of hidden units increases, considering a network trained with 15%, 30%, 50%

and 100% percentages of the training set. The trend highlighted shows a

general increase in validation accuracy and a decrease in validation loss as

the number of hidden units increases. This trend flattens around 400 hidden

units. A further increase of the number of units leads to a plateau, or even a

drop, of the performance. Given the little di↵erence in performance between

the networks with 400, 500 and 600 hidden units, it was decided to select

as candidate network the one with the lowest number of hidden units, that

obtains 96.2±2.9% in accuracy and 0.21±0.16 in loss on average in the model
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trained with 50% of training data.

4.3 Data Augmentation Results

The last analysis done in this work concerns the behavior that the identified

model assumes with respect to data augmentation.

The color maps in Figure 4.4 represent the performance of the optimal

model identified by the previous analyses (400 hidden units, batch size 8

and dropout 0.1) with respect to the percentage of training set used to train

the model (7%, 15%, 30%, 50% and 100%) and to the applied data augmen-

tation (no augmentation, 2x, 3x, 5x). The reported results were obtained

on the test set, augmented in the same way as the corresponding training

dataset.

From the bi-variate analysis (color maps), it is evident that larger amounts

of data lead to an improvement in test accuracy and loss. In particular we

see that this trend besides being present to the increase of the percentage

of the training set used (columns) for the training, datum pertinent to the

literature, it is present also when the data on which the model is trained

with artificially generated data (rows). In the figures below we can see some

aspects in more detail. In the second row we can better see what has just

been described, the mean shows the progression of performance as the per-

centage of training set used increases, a trend that is mirrored in all subjects

considered. While, from the results in the third row, see also the Tables 4.1,

it emerges the fact that the network trained with a too small percentage of

training set (7%) tends to overfit. It is also interesting to note, that between

a training without data augmentation and one with a 5x data augmentation

the performance has clearly improved, in particular we see that with the use
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of a 30% dataset the di↵erence in performance is 11.6 in accuracy and 0.85

in loss. In addition, in a model trained with 100% of the data increased from

3x to 5x there is a di↵erence in loss and accuracy of 0.8 and 0.04 respectively

while with 15% of the data with the same augmentation what emerges is

di↵erence of 9 in accuracy and 0.61 in loss, so it can be seen that there is no

net improvement in performance when using a large dataset.

Accuracy

Training set [%] x1 x2 x3 x5

7% 74.1 ± 13.1 69.5 ± 10.6 67.7 ± 9.8 76.7 ± 10.4

15% 78.8 ± 12.1 79.2 ± 10.8 80.7 ± 9.8 89.7 ± 7.7

30% 83.5 ± 11.5 87.6 ± 8.9 90.4 ± 9.0 95.1 ± 3.4

50% 88.3 ± 8.1 93.9 ± 4.1 94.8 ± 4.1 96.7 ± 2.3

100% 92.1 ± 5.9 96.3 ± 2.7 97.0 ± 1.8 97.8 ± 1.3

Loss

Training set [%] x1 x2 x3 x5

7% 1.86 ± 1.0 2.13 ± 0.77 2.26 ± 0.73 1.47 ± 0.70

15% 1.43 ± 0.80 1.32 ± 0.72 1.17 ± 0.66 0.56 ± 0.45

30% 1.11 ± 0.74 0.80 ± 0.62 0.53 ± 0.51 0.26 ± 0.18

50% 0.69 ± 0.47 0.34 ± 0.25 0.29 ± 0.22 0.16 ± 0.12

100% 0.49 ± 0.4 0.20 ± 0.16 0.16 ± 0.11 0.12 ± 0.07

Table 4.1 Data Augmentation results. Tables that shows the results (accuracy and
loss) on the test set (25% of the data) of networks trained with 7%, 15%, 30%, 50%

and 100% of the training set data with a specific augmentation. (The test set has the

same augmentation)
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Figure 4.3 Network Optimization results. GRU network performance in terms of

validation accuracy (blue) and loss (red) with di↵erent architectures (i.e., lot size,

dropout, number of hidden units). The color maps represent the average performance

of the GRU network, trained with 50% of the dataset augmented (3x) with a number

of hidden units equal to 50. The bottom plots, represents the median (solid line) and

each point represents the performance of each subject as the number of hidden units

varies with a 15%, 30%, 50% and 100% training set, with batch size 8 and dropout

0.1.
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Figure 4.4 Data Augmentation Results. The two colormaps show the grid search

results in test accuracy and cross entropy loss obtained with the selected model (400

GRU hidden units, batch size 8 and dropout 0.1) using di↵erent percentages of dataset

(7%, 15%, 30%, 50%, 100%) and di↵erent data augmentation (not increased, dupli-

cated, tripled, quadrupled). In the second row we find a mono-variate analysis, in-

cluding average performance (test accuracy and loss) on all subjects and performance

of individual subjects. In the third line it is present the average performance on all

the subjects (for each percentage of training set used for the training) on the various

quantities of data augmentation.
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5 | Discussion

In this study, I demonstrated the ability to robustly identify step intention

through MRCP decoding.

It has been seen that the MRCP is seen in all subjects, in particular as a

negative flexion of the signal in the 500 ms prior to the movement onset. How-

ever, as it can be seen in Figure 4.1, the characteristics of the MRCP feature

appear to be strongly subject-specific and channel-dependent. The MRCP

appears earlier in some channels than in others (Figure 4.2), consistently with

the neuroscientific literature: the movement intention is generated frontally

(e.g., F2, Fz), propagate to the central motor area (e.g., Cz) and then to the

rest of the sensorimotor cortex (e.g., C1, CP1) [80, 81]. Given this findings,

the selection of a recurrent model has been made to deal with the time and

amplitude variability of the feature of interest. Indeed, the GRU layer of the

proposed model is capable to encode the temporal dependencies of the input

data. In this way the model is able to understand if in a given temporal

window there is the presence of the MRCP, and therefore of a pre-intention

of movement, or if this correlate is not present and then the subject does not

intend to perform any movement.

For the purpose of solving the gait decoding problem using deep learning,

several tests and di↵erent evaluations were performed in terms of network

architecture and hyper-parameters setting. Moreover, to minimize the risk
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of overfitting and thus prove the robustness of the proposed approach, three

completely disjoint datasets were considered for training, validation and test-

ing [82]. In particular, network performance was evaluated on data that was

not available during the network optimization and training processes. Despite

the good performance that the GRU model has filed in preliminary tests, for

the purpose of a better understanding of its behavior it was necessary to

identify the set of hyper-parameters that best generalized our problem. The

set of hyper-parameters was selected in two steps: the first grid search al-

lowed the identification of the best model performance with respect to batch

size and dropout percentage. Then, a second grid search was adopted to

optimize the number of hidden units in the GRU layer, as shown in Figure

4.3. In line with previous works [64], in general, larger networks, in terms

of number of hidden units of the recurrent layer, store a greater amount of

time-dependent information, thus improving the accuracy of classification, as

well as the classification loss, for all the considered subjects.

As it was said in Section 4.2, it was noticed that at a certain point the per-

formance of the networks reached a plateau and in this regard the network

chosen was the one with 400 hidden units. A limitation of this work is the

fact that networks with more than one layer of GRU have not been tested.

It is true that increasing the size of the same layer at a certain point does

not increase the performance, and this has been verified, but this does not

mean that the performance cannot be improved by increasing the depth of

the network in terms of number of layers. However, it has to be said that

looking at works like [61, 64], it has been seen that in general more than 2

layers are not recommended and that in general very good performances can

be obtained with networks with only one layer.

A concluding part of this work was dedicated to studying the impact that



53

data augmentation has on the performance of the designated model.

In an EEG-based recurrent neural network for gait decoding the amount of

data used for training is an important factor for the correct generalization of

the problem.

The study of data augmentation was done to understand the benefits it can

give on small amounts of data, which reflect for example the first phase of

data acquisition of a patient, in which usually 60 to 70 steps are recorded at

most. This detail should not be taken for granted because as mentioned in

Section 3.4.2, the e↵ort in performing movements by a patient with motor

deficit is to be considered a limitation in terms of amount of data recorded

with consequent impact on performance after the first training of the neural

network.

From the results in Figure 4.4 (third row), it has been seen that models

trained with a too small amount of data tends to overfit with data aug-

mentation because the number of original data available are not su�cient

to create a certain variability of the input. However, using a slightly larger

dataset (15%), the model obtained satisfying performance, with accurcay

close to 90% on average. It is important to highlight the fact that as the

percentage of training set increases, the data augmentation becomes less im-

portant because the data are already enough, while when the data are few

the augmentation is useful because it helps to reduce the performance gap.

Indeed, by using a third of the available data (30% dataset) and applying a 5x

data augmentation, I achieved performance which are close to that obtained

with models trained with 50% and 100% of the dataset.

The optimization of network hyperparameters was done in grand average

on all the subjects, while the model was trained subject-specifically. This

choice was made to overcome two problems: the risk of overfitting and the
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training time. Indeed, since only a few data were available for each subject,

customize excessively the network on a specific subject can lead to overfitting.

Regarding the training time, the optimization procedure is time consuming,

and requires hours of process, which are not compatible with the standard

duration of a rehabilitation session (about 1 hour). So with the analysis in

grand average proposed, it is possible to create a first network for the first

session, with generic hyper parameters that in average performs well for all

the subjects, and subsequently, as the data are accumulated in the successive

sessions, it is possible to customize the hyper parameters in order to have

better performance on the single subjects.

Although the proposed technique is able to e↵ectively classify gait pat-

terns from EEG signals, there are some aspects of this study that need to

be addressed in future work. The analysis in my work did not only aim to

analyze a network for decoding purposes, rather, the aspect of the amount

of data available was also evaluated. This aspect in the field of deep learning

and in particular in problems related to bio-informatics, as stated in [61], is

more relevant than in classical applications (e.g., image classification, speech

decoding). In this regard, the amount of data that we expect from a single

session of data recording is closer to the 7% of the dataset used in this work,

that showed the worst performance as well as decreasing performance with

the proposed data augmentation method. Thus, future work should focus

on investigating other data augmentation approaches that would allow more

satisfactory performance with smaller dataset. Another aspect, which lim-

its an accurate evaluation is the fact that the performances of the models

reported derive from an evaluation made only o✏ine. However, what I can

say is that the network is compatible with an online application, in fact, it

expects the data in chunk (temporal windows) which are su�ciently short
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in order to have an elaboration for an online use. In the future, a real-time

version of the proposed model will be implemented and tested to control a

lower limb exoskeleton within ROS-Neuro [83], a middleware for neurorobotic

applications developed by the University of Padova.

Furthermore, validation of the proposed model was done on a walking dataset

acquired by means of a treadmill (Section 3.4.1), in [84] it was pointed out

that the features generated in the brain under such conditions might present

slightly di↵erent characteristics than those resulting from natural walking.

In this regard, a future development will certainly be to acquire new data

of walking over ground of patients, unlike this dataset, with actual motor

disabilities, in order to have a validation of the model that best reflects the

real case.
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6 | Conclusions

Despite showing promising performance in the literature with respect to tra-

ditional machine learning models, only a few works have used deep learning

for the gait decoding problem from the sole EEG activity [67, 64], and their

are not compatible for an online application.

This work overcomes the limitations of the state-of-the-art by proposing the

development of a deep learning model for gait decoding that is suitable for

online use.

The proposed approach, exploiting information from movement-related neu-

ral correlates, has been shown to successfully decode the pre-intention to take

a step during the locomotion.

In summary, my results support the suitability of DL models for decoding

time-related information associated to the movement. In particular, it has

been demonstrated that the use of data augmentation can be a valid method-

ology to overcome the problem related to the scarcity of initial data due to the

limited ability of patients with motor disabilities to make long EEG record-

ings.

Future developments will include the integration of a lower limb exoskeleton

for real-time testing, and future analyses will evaluate performance on end

users (i.e., stroke or SCI patients) in clinical settings and should explore the

suitability of the proposed approach for examining cortical plasticity during
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rehabilitation.
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