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Abstract

After the first direct observations of gravitational waves generated by the coales-
cence of binary black hole systems, expectations about the possibility to reveal
binary neutron star systems are growing. Beyond the chance to probe the “strong”
gravity regime and thus the validity of general relativity, these events will allow us to
study extreme physical conditions not reproducible on Earth and in particular the
behaviour of matter at supranuclear densities. Furthermore, the emission of gravi-
tational waves is accompanied by a wide set of electromagnetic signals which cover
the entire spectrum, from gamma to radio, paving the way to a multi-messenger
astrophysics. The present work will give a brief overview of these systems, from the
formation to the dynamics, with emphasis on the gravitational and electromagnetic
emission and on the present and future detection perspectives.

In the first chapter we will introduce neutron stars, starting with a short historical
background, and we will report some general information about their structure and
present observations. We will give the foundation for a theoretical model of such
objects.

In the second chapter we will discuss the formation channels for a binary system
and the three phases of binary system coalescence.

In the third chapter we will solve the linearized Einstein field equations, showing
that they admit a wave solution. We will then understand how the gravitational
wave emission is related to the stress-energy tensor of the source, and we will apply
the theory to the case of a binary system.

In the fourth chapter we will give an overview of the most promising electro-
magnetic counterparts to the gravitational wave signal from binary neutron star
mergers.
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1 Neutron stars

1.1 A brief overview
In 1934 Baade and Zwicky [1] proposed the idea of neutron stars (NSs), shortly

after the discovery of the neutron by Chadwick [2]. They pointed out that NSs would
be at very high density and small radius and much more gravitationally bound than
ordinary stars. They also suggested that they would form in supernova collapses.
Most of the scientific community ignored Baade and Zwicky proposal for more than
30 years, until 1967, when Bell and Hewish observed [3] with a radio telescope a
repeating signal at a fixed declination and right ascension. The signal consisted in a
series of pulses equally spaced and always ∼ 1.337 s apart (Figure 1.1), reason why
they are known as “pulsars” (pulsating-stars).

Figure 1.1: The first radio pulsar CP1919 discovered by Hewish and Bell in 1967.1

In 1968, Gold and Pacini proposed [4, 5] that these signals are emitted by rotating
NSs, and this is generally accepted today. For a star with mass M and radius
R, rotating with angular velocity ω = 2π

T
, being T the period, we can find an

approximate lower limit for T , requiring that the centrifugal acceleration does not
exceed the gravitational acceleration at its equator:

ω2R <
GM

R2 (1.1.1)

1https://briankoberlein.com/2014/05/14/little-green-men/
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which gives

T >

(
3π
Gρ

) 1
2

, (1.1.2)

where ρ = M
(

4
3πR

3
)−1

is the mean density. Equation (1.1.2), knowing T , gives a
very convervative lower limit for ρ:

ρ >
3π
GT 2 . (1.1.3)

With data recorded by Hewish and Bell (Figure 1.1), we get ρ & 108 g cm−1: this
density limit is just consistent with the densities of white dwarfs (WDs). But for the
faster pulsar soon discovered in the Crab Nebula, with period T = 0.033 s, we get a
density too high for a stable WD. The Crab Nebula is the remnant of a supernova
collapse, and this is in agreement with Baade and Zwicky suggestion.

A very simple pulsar model which accounts for many of their observed properties
is the oblique rotator magnetic dipole model (Figure 1.2). Radiated energy is given
by

Ė = − 2
3c3 |m̈|

2, (1.1.4)

with m being the magnetic dipole associated to the NS. We can write it in terms of
the angular velocity ω as

Ė = −B
2R6ω4 sin2 (α)

6c3 , (1.1.5)

where B is the magnetic field at the surface and α the angle between the magnetic
dipole and the rotation axis.

NSs, together with white dwarfs (WDs) and black holes (BHs), belong to a class
of astrophysical objects known as compact objects (COs). They differ from normal
stars mainly for two reasons: first, they are not supported by thermal pressure due to
nuclear fusion. WDs are supported by the degeneration pressure of electrons, while
in NSs degeneration pressure is given by neutrons. On the other hand, BHs are
fully collapsed objects, in which gravity is so strong that nothing can contrast it and
matter collapses to a singularity. Second, they have much smaller radii relative to
normal stars with comparable mass, and hence much stronger surface gravitational
field.

To determine the structure of NSs we need a general relativistic model for spher-
ically symmetric bodies in static gravitational equilibrium, and an equation of state
(EOS) for degenerate matter which relates pressure to density.
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Figure 1.2: Magnetic dipole model for pulsars.2

1.2 Neutron stars models

1.2.1 Tolman–Oppenheimer–Volkoff equation
Since the extreme gravitional fields play a crucial role in NSs and their equilib-

rium configuration, we need general relativity to determine the equations to describe
their structure. We follow Tolman-Oppenheimer-Volkoff (TOV) for the general rel-
ativistic model of NSs. Starting with Einstein field equations

Rµν −
1
2gµνR = 8πG

c4 Tµν , (1.2.1)

and denoting dΩ2 ≡ dθ2 +sin2 θdφ2, we take the most general spherically symmetric
metric

ds2 = −Adt2 +Bdr2 + 2Cdtdr +DdΩ2, (1.2.2)

with t, r, θ and φ being the time, radial and angular coordinate respectively. Since
we are looking for a static solution, A, B, C and D are functions of r only. Equa-
tion (1.2.2) can be easily rewritten in a more convenient form. We’ll consider the
following metric equivalent to (1.2.2):

ds2 = −e2Φdt2 + e2λdr2 + r2dΩ2, (1.2.3)

2https://www.nature.com/nature/journal/v406/n6792/fig_tab/406139a0_ft.html
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where Φ and λ are functions of r. To obtain the TOV equation we assume that the
stellar material can be treated as a perfect fluid. The stress-energy tensor is then

T µν =
(
ρ+ P

c2

)
uµuν + Pgµν , (1.2.4)

where ρ is the mass density of the fluid, P its pressure and uµ the four-velocity field.
We also define a new metric function m (r) by

e2λ =
(

1− 2m
r

)−1
. (1.2.5)

By equations (1.2.1) with the stress-energy tensor given by (1.2.4), we get:
dm

dr
= 4πr2ρ, (1.2.6)

dP

dr
= −ρm

r2

(
1 + P

ρ

)(
1 + 4πPr3

m

)(
1− 2m

r

)−1
, (1.2.7)

where we set c=G=1. Equation (1.2.7) is known as “Tolman-Oppenheimer-Volkoff
equation of hydrostatic equilibrium”.

We want the interior metric to smoothly match the exterior Schwarzschild metric

ds2 = −
(

1− 2M
r

)
dt2 +

(
1− 2M

r

)−1
dr2 + r2dΩ2, (1.2.8)

where M denotes the total mass of the gravitational field’s source. The quantity
m (r) must then be equal to M at r = R, being R the radius of the star, hence the
interpretation of m (r) as the total mass inside radius r. From (1.2.6) we get the
following expression for the total mass of the star:

M =
∫ R

0
4πr2ρdr. (1.2.9)

This includes all contributions to the relativistic mass, including gravitational bind-
ing energy. Equations (1.2.6) and (1.2.7), together with an EOS of the form P =
P (ρ), lend themselves to easy numerical computation of a general relativistic stellar
model by following these steps:
• Pick a value of central density ρc and the boundary condition m (0) = 0. EOS

gives a value for Pc.

• Integrate (1.2.6) and (1.2.7) out from r = 0, using the values in the previous
step as initial condition. For every obtained value of P , the EOS gives a value
for ρ.

• The value r = R at which P = 0 is the radius of the star, and m (R) = M the
total mass.

Repeating this procedure for different ρc, we can obtain different stellar models with
varying central densities.
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1.2.2 Equations of state
To determine the internal structure of a NS, as we pointed out previously, we need

an EOS which links the microscopic information of the system to the macroscopic
thermodynamic variables. For densities ρ < ρd = 4× 1011 g/cm3, the properties
of matter can be obtained directly from experiments. As ρ increases, inverse β-
decay becomes more efficient, and neutrons are produced in large number, while the
associated neutrinos leave the star. When ρ reaches ρd, there are no more free energy
levels available for the neutrons, that must then drip out from the nuclei, forming
a neutron gas. This process is called neutron drip. For densities ρd < ρ < ρ0 =
2.67× 1014 g/cm3, models of the EOS are based on extrapolations of the available
empirical data, as the extremely neutron rich nuclei are not observed on Earth.

However, no data is available for matter above the nuclear density ρ0. EOS
models for supranuclear densities are obtained mainly by two approaches: non-
relativistic many-body theory (NMBT) and relativistic mean-field theory (RMFT).
In NMBT nucleons are considered as point-like particles, whose dynamic is described
by the non-relativistic Hamiltonian

H =
∑
i

p2
i

2mi

+
∑
j>i

vij +
∑
k>j>i

Vijk, (1.2.10)

where the terms vij and Vijk describe two- and three-nucleons interactions. The
resulting problem can be solved exactly.

In RMFT, based on the relativistic quantum field theory, nucleons are described
as Dirac particles interacting through meson exchange. In the simplest implementa-
tion of this approach, the dynamic is modelled in terms of a scalar field and a vector
field. Unfortunately this approach leads to equations of motion which can be solved
only in the mean-field approximation, which is known to fail in strongly correlated
systems. Employing different EOSs in the TOV equation we get different models
for the interior structure of the NS. Several general features emerge, in particular:

• Stars calculated with a stiff EOS have a greater maximum masses than stars
derived from a soft EOS.

• Stars derived from a stiff EOS have a lower central density, a larger radius and
a much thicker crust than stars of the same mass computed from a soft EOS.

The internal structure of NSs is not well determined, because of uncertainties in the
EOS for supranuclear densities. However, we can compute some models based on
realistic EOSs.

In Figure 1.3 we show the internal structure computed with two different EOS.
The layering is consequence of the onset of different regimes in the EOS as one
proceeds to higher densities. We can identify the layers for the stiff EOS as follows:

5



Figure 1.3: Neutron star structure computed with a soft (left) and a stiff (right) equation of
state. [6]

• The surface, with density ρ . 106 g/cm3. In this region the temperatures and
the strong magnetic fields can significantly affect the EOS.

• The outer crust, with 106 g/cm3 . ρ . ρd. This is a solid region where a
lattice of heavy nuclei coexists in β-equilibrium with a degenerate electron
gas.

• The inner crust, with ρd . ρ . ρ0. This layer consists of a lattice of neutron-
rich nuclei together with a neutron gas and an electron gas.

• The neutron liquid, with ρ0 . ρ . ρcore. Being this region far above the
neutron drip density, it contains mainly free neutrons, with a smaller concen-
tration of protons and normal electrons.

• The core, a region where ρ = ρcore ∼ 1015 g/cm3.

What lies in the core is still an open question. At very high densities, above
1015 g/cm3, nucleons interactions must be treated relativistically, but relativistic
many-body theory for strongly interacting matter is not fully developed. Since at
those densities nuclei begin to “touch”, one might speculate that matter undergoes
a phase transition, at which quarks begin to drip out of the nucleons. This would
result in deconfined quark matter. Collins and Perry (1975) suggested that quark
matter, for sufficiently high densities, may be treated by first approximation as an
ideal, relativistic Fermi gas. However, the existence of stable quark stars is still an
unresolved issue.

6



Since observational properties of a NS depend on the EOS, observations can shed
light on the properties of matter at supranuclear density. This is the main reason
why NSs are often said to represent ideal laboratories to study physics under extreme
conditions that cannot be reproduced on earth.

1.2.3 Neutron star masses and radii
By measuring the mass of a NS we can infer information about the stellar evo-

lution of its progenitor, the composition and the EOS, and test general relativity in
the strong gravity regime. If the NS is in a binary system we can determine its mass
by measuring the six Keplerian parameters and the five post-Keplerian parameters
(needed when general relativistic effects are important). The post-Keplerian param-
eters are measured by radio pulsar timing techniques and rely on the measurement
of relativistic effects in the binary orbit. Observational data are shown in Figure
1.4. Concerning the radii of a NS, we can obtain an upper and a lower limit from

Figure 1.4: Measured masses of neutron stars.3

3J. Lattimer, Annual Review of Nuclear and Particle Science, Vol. 62, 485, 2012. https:
//stellarcollapse.org/nsmasses (Jun 2017)

7

https://stellarcollapse.org/nsmasses
https://stellarcollapse.org/nsmasses


equilibrium relations. Assuming the sound speed has to be lower than the speed
of light to preserve causality, and a soft transition between high and low density
regions, we find for the lower limit

Rmin '
3GM
c2 = 6.2 km

(
M

1.4M�

)
, (1.2.11)

while for the upper limit, including the contribution of the centrifugal force due to
the rotational motion

Rmax '
(
GMP 2

4π2

) 1
3

= 16.8 km
(

M

1.4M�

)(
P

1 ms

) 2
3
, (1.2.12)

where with M� we refer to the solar mass. A way to measure NSs’ radii is the
observation of thermal emission from the NS surface at optical and X-ray frequencies
[7].
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2 Binary neutron star systems

About half of all stars belong to a binary or multiple stellar system. A binary
system consists in a pair of objects orbiting around their centre of mass. If almost
one of the two object is a CO it is called a compact binary system. We are interested
in those systems composed by two NSs.

2.1 Binary formation channels
Stellar evolution model expect different fates for a star for different values of its

initial mass:

• For masses M < M� the star will end its life as a white dwarf.

• For masses M & 8M� the star will undergo a supernova explosion. There are
then two cases: if M . 25M� the remnant will be a NS. If M & 25M� a BH
will form.

We describe the standard formation channel for a binary NS-NS system, illustrated
in Figure 2.1. In this scenario there is a massive binary system in which both stars
have masses between ∼ (8− 25)M� (to ensure a pair of supernovae). The heavier
one evolves over and passes through its giant phase, and finally undergoes a Type
Ib, Ic or II supernova, leaving behind what will become the NS. Supposing that the
system is not destroyed by the explosion, the companion evolves in turn, reaching the
giant phase and overflowing its Roche lobe. The first NS starts accreting matter from
the companion and later a common envelope phase can be established, if the mass
is transferred too fast to be accreted. Dynamical friction dramatically shrinks the
binary separation, until sufficient energy is released to expel the envelope. Without
this step the separation would be too wide to lead to a merger within a Hubble time.
The core of the secondary will eventually undergo a supernova too, either unbinding
the system or leaving a tight binary. While this scenario has been well studied there
are several aspects which remain uncertain. In particular:

• The common envelope efficiency, which gives information about the expected
range of the binary separation and the mass of the heavier CO after the ac-
cretion phase, is poorly constrained.

• The maximum allowed NS mass will affect whether the primary reamains a
NS or undergoes accretion-induced collapse to a BH. This value depends upon
the nuclear matter EOS, which is not yet determined. The strongest limit
is by now set by the binary pulsar PSR J1614-2230, for which a mass of

9



Figure 2.1: Standard formation channels for close NS-NS binaries. [8]

M = 1.97± 0.04M� was determined by Shapiro time delay measurements [9]
(see also [10]).

• The supernova kick velocity distribution is only partially understood, so we
can’t predict if the system will become unbound after the explosion.

2.2 Stages of a binary merger
The compact binary system evolution can be divided in three phases: inspiral,

merger and ringdown. In Figure 2.2 we show an illustration of the three phases with
the associated gravitational wave signal expected.

10



Figure 2.2: Illustration of the merger phases with the gravitational wave signal associated.1

Inspiral During the inspiral phase the two objects orbit around their centre of
mass. Their orbit shrinks gradually, reducing their distance, due to gravitational
wave emission (see Chapter 3). The first stage of the inspiral phase takes a long
time, because the gravitational radiation emitted has very low power. In this phase
we can threat the two COs as point-like masses, and calculate the power emission
by gravitational radiation in the Newtonian approximation. We will do it in Section
3.4, after we have introduced gravitational waves.

Merger The merger phase begins when the two objects come into contact. The
Newtonian approximation is no longer valid here, as the system is governed by
strong gravitational field and involves tidal deformation and disruption, so we can
not consider the masses as point-like. To understand the dynamics in this phase we
need full general relativistic simulations, which are also predicting the gravitational
wave emission. The merger of two NSs is not well understood principally due to
the uncertainty about the EOS and the effect of the magnetic fields. Gravitational
waves produced during this stage carry important information about the structure
of the NS and thus about the EOS for supranuclear density. This phase takes very
short time: from milliseconds to seconds, depending on the masses.

Ringdown After the merger phase the emitted radiation can be computed by
perturbation theory. It consists of a superposition of quasi-normal modes of the
remnant, which can give information about the object: in case of a BH remnant,
the quasi-normal modes depend on the mass and angular momentum. For a NS
remnant instead there is a relation with the EOS. The remaining object will “ring”,
namely will be oscillating in shape around an equilibrium, emitting gravitational

1http://www.soundsofspacetime.org/coalescing-binaries.html
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waves due the oscillation asymmetry. The oscillating modes are quasi-normal, be-
ing damped by the gravitational waves emission. Signals in this stage are emitted
in a very short time, varying from milliseconds to seconds as the previous phase,
depending again on the mass of the remnant.

Unlike the BH-BH mergers (recently observed by LIGO [11]), which are not ex-
pected to produce bright electromagnetic counterparts to their gravitational wave
signal, NS-NS mergers are expected to (as we will see in Chapter 4), and observing
these two kind of signals together offers a unique opportunity to constrain the EOS
of matter at supranuclear densities. Moreover, NS-NS mergers are also a prime
candidate astrophysical site for the production of heavy elements in the Universe,
via r-process nucleosynthesis in the matter ejected during, and possibly after, the
merger.

2.3 Post-merger scenarios
While NS-BH (and obviously BH-BH) mergers will unavoidably end up in a BH,

possibly surrounded by a massive accretion disk, after a NS-NS merger there are
three different possibility for the remnant to be, depending on the EOS and the
masses (Figure 2.3):

• a BH will form. It is still possible.

• The binary NS will merge into a hypermassive NS (HMNS), a NS with mass
above the maximum mass allowed for uniformly rotating configurations. Typi-
cally, HMNSs will collapse into a BH on a timescale of ∼ ms. Common believe
is that HMNSs are supported by the rapid rotation of the core, and undergo
a collapse when enough differential rotation is carried away by gravitational
radiation emission or electromagnetic torque.

• The binaries will merge into a long-lived NS, which we assume to be either
supramassive (SMNS, a NS with mass above the maximum allowed for non
rotating configurations) or indefinitely stable. SMNSs can survive for minutes
or even longer, against the ms of the HMNS. They are believed to be sup-
ported by uniform rotation and to collapse when enough angular momentum
is removed via magnetic dipole radiation.

However, the mechanism leading to the collapse to a BH of HMNSs and SMNSs is
still poorly understood, since a growing number of simulations indicate that they
both have slowly rotating cores and that collapse is avoided because a significant
amount of matter in the outer layers approaches Kepler velocity. [13, 14, 15]

12



Figure 2.3: Post-merger scenarios for NS-NS coalescences. [12]

Binary NS mergers leading to a NS (hypermassive, supramassive or stable) are
characterized by a post-merger phase in which the gravitational waves emission can
be significant for several milliseconds and much stronger than those emitted by a
BH remnant ringdown signal. The post-merger signal carries information about the
remnant structure, thus representing another promising way to constrain the NS
EOS.
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3 Gravitational radiation from
compact binary systems

In this chapter we discuss the generation of gravitational waves according to
general relativity. Sections 3.1, 3.2 and 3.3 are devoted to compute generic gravita-
tional wave solutions and the associated power. In Sections 3.4, 3.4.1 and 3.4.2 we
consider the case of a compact binary system during the inspiral phase, the binary
evolution due to gravitational radiation, and the resulting signal (the characteristic
“chirp”). Finally, in Section 3.5, we briefly discuss the recent discovery of binary
black hole mergers by the LIGO-Virgo collaboration, which provides direct examples
of gravitational wave signals from compact binary inspirals and mergers.

3.1 Wave solutions to the linearized Einstein field
equations

In the weak field limit we can linearize Einstein field equations (1.2.1) by writing
the space-time metric as

gµν = ηµν + hµν , (3.1.1)
where ηµν = diag (−1,+1,+1,+1) is the smooth Minkowski metric and hµν a small
perturbation, so that |hµν | � 1. In this limit, the Christoffel symbols can be written
as

Γµαβ = 1
2η

µν (∂βhαν + ∂αhβν − ∂νhαβ) = 1
2
(
∂βh

µ
α + ∂αh

µ
β − ∂µhαβ

)
, (3.1.2)

and the Ricci tensor becomes

Rµν = 1
2
(
∂ν∂αh

α
µ + ∂µ∂αh

α
ν − ∂α∂αhµν − ∂µ∂νhαα

)
. (3.1.3)

Introducing the new symmetric second-rank tensor

h̄µν = hµν −
1
2ηµνh

α
α, (3.1.4)

and imposing the gauge conditions

∂ν h̄
µν = 0, (3.1.5)

the field equations are then

�h̄µν = −16πG
c4 Tµν , (3.1.6)
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in which � = ∂µ∂µ is the d’Alambert operator. The simplest solution to (3.1.6) in
void is the monochromatic, plane-wave solution function

h̄µν = Aµνe
ikαxα + Aµνe

−ikαxα , (3.1.7)

with Aµν and kµ satisfying

kαk
α = 0, (3.1.8)

Aµαk
α = 0. (3.1.9)

This solution clearly describes a wave with frequency ω = k0, which propagates with
the speed of light in the direction 1

k0 (k1, k2, k3).

3.2 Generation of gravitational waves

We can solve equations (3.1.6) in analogy with electrodynamics. For the electro-
magnetic four-potential we have

�Aµ = 1
c
jµ, (3.2.1)

∂µA
µ = 0, (3.2.2)

which has the same structure of (3.1.5) and (3.1.6). The exact solution is then

h̄µν = Gret ∗
(
−16πG

c4 T µν
)

= −4G
c4

∫ T µν
(
t− |~x−~y|

c
, ~y
)

|~x− ~y|
d3y (3.2.3)

where Gret (x) = 1
4πrδ (t− r) is the retarded Green function. Faraway from the

source we can approximate |~x− ~y| with the distance r from the source itself, so

h̄µν (t, ~x) = −4G
c4r

∫
T µν

(
tret + ~n· ~y

c
, ~y

)
d3y, (3.2.4)

with ~n = ~x
r
. Equations (3.2.4) relate the deviation from the smooth Minkowski

metric in the observer frame (t, ~x) to the stress-energy tensor of a source distant
r from its origin, evaluated at the retarded time tret = t − r

c
. The quantity ~n·~y

c

represents the microscopic retard, which can be ignored if the speed of the source is
non relativistic.
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3.3 Power emission by gravitational wave radia-
tion

We want to derive a law to describe the power emission of a body which emits
gravitational waves. It is easy to demonstrate that h̄µν from equations (3.2.4) fulfills
the relations

∂ρh̄
µν = 1

c3nρ
˙̄hµν (3.3.1)

nµ
˙̄hµν = 0 (3.3.2)

and
nµn

µ = 0, (3.3.3)

where we set nµ = (1, ~n). We need an expression for the stress-energy tensor of the
gravitational field itself. Fortunately, in the weak field limit, for a field which follows
(3.3.1), (3.3.3) and (3.3.3), the expression we look for is easy:

T µνgrav = c4

32πG

(
∂µh̄

αβ∂ν h̄αβ −
1
2∂µh̄

α
α∂ν h̄

β
β

)
. (3.3.4)

Again, in analogy with electrodynamics, we can determine the angular power emit-
ted distribution as

dWgrav

dΩ = cr2
(
T 0i
gravn

i
)
, (3.3.5)

and the total power as

Wgrav =
∫ dWgrav

dΩ dΩ, r →∞. (3.3.6)

Using (3.3.1), (3.3.2) and (3.3.3), we can write (3.3.4) in the form

T µνgrav = nµnνc4

32πG

(
˙̄hαβ ˙̄hαβ −

1
2

(
˙̄hαα

)2
)
, (3.3.7)

and, after some steps, we find for the angular power emitted distribution the ex-
pression

dWgrav

dΩ = r2c3

32πG
˙̄hij ˙̄hlmΛijlm, (3.3.8)

where Λijlm = δilδjm − 1
2δ
ijδlm − 2δilnjnm + δijnlnm + 1

2n
injnlnm. In the non-

relativistic limit we can write the spatial components of h̄ as

h̄ij = −4G
rc4

∫
T ij

(
t− r

c
, ~y
)
d3y. (3.3.9)
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Introducing the mass-quadrupole moment of the source

Qij = 1
c2

∫
yiyjT 00d3y, (3.3.10)

since ∫
T ijd3y = 1

2Q̈
ij, (3.3.11)

we find that h̄ij is related to Qij by the relation

h̄ij (t, ~x) = −2G
rc4 Q̈

ij
(
t− r

c

)
. (3.3.12)

Using (3.3.12) into (3.3.5), we get

dWgrav

dΩ = G

8πc5

...
Q
ij...
Q
lmΛijlm, (3.3.13)

and, integrating over the solid angle, we finally get an expression for the total power
emitted

Wgrav = G

5c5

...
Qij

...
Qij, (3.3.14)

where Qij = Qij − 1
3δ
ijQk

k is the reduced mass-quadrupole moment.

3.4 Gravitational waves from binary systems
We want to determine the signal emitted by a compact system orbiting around

its centre of mass during the inspiral phase. As we anticipated in Section 2.2, we
can threat the two objects as point-like masses until the merger. Let

l ≡ r1 + r2 (3.4.1)

be the distance between the objects (see Figure 3.1),

M ≡ m1 +m2 (3.4.2)

the total mass and
µ ≡ m1m2

M
(3.4.3)

the reduced mass. It is easy to calculate the orbital frequency ω with classical
mechanics:

ω =
√
GM

l3
. (3.4.4)
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Figure 3.1: Centre of mass frame for binary system. Angular velocity is perpendicular to x and
y axes.

On the orbital plane the coordinates for the masses m1 and m2 are

x1 = m2

M
l cos (ωt) , (3.4.5)

y1 = m2

M
l sin (ωt) , (3.4.6)

z1 = 0, (3.4.7)
x2 = −m1

M
l cos (ωt) , (3.4.8)

y2 = −m1

M
l sin (ωt) , (3.4.9)

z2 = 0. (3.4.10)

The 00-component of the stress-energy tensor then is

T 00 = c2
2∑

n=1
mnδ (x− xn) δ (y − yn) δ (z) , (3.4.11)

and the non-vanishing components of the mass-quadrupole moment (3.3.10) are

Q11 = µl2 cos2 (ωt) = µ

2 l
2 cos (2ωt) + cost., (3.4.12)
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Q22 = µl2 sin2 (ωt) = −µ2 l
2 cos (2ωt) + cost. (3.4.13)

and
Q12 = µl2 cos (ωt) sin (ωt) = µ

2 l
2 sin (2ωt) . (3.4.14)

From 3.3.12 we find
h̄ij (t, ~x) = −2G

rc4 (2ω)2Qij. (3.4.15)

Defining the matrix Aij as

A (t) =


cos (2ωt) sin (2ωt) 0
sin (2ωt) − cos (2ωt) 0

0 0 0

 (3.4.16)

we can write Qij as
Qij = µ

2 l
2Aij, (3.4.17)

and we can rewrite (3.4.15) in the following form:

h̄ij (t, ~x) = 2G
rc4

µ

2 l
2 (2ω)2Aij

(
t− r

c

)
. (3.4.18)

Recalling (3.4.4), and defining the wave amplitude

h0 = 4µMG2

rlc4 (3.4.19)

we finally get
h̄ij (t, ~x) = h0A

ij
(
t− r

c

)
. (3.4.20)

From these equations we see that the radiation is emitted at twice the orbital fre-
quency.

3.4.1 Power emission
As we found in Section 3.3, the total power is given by (3.3.14), so we need to

calculate the time dependent components of the reduced mass-quadrupole moment
Qij. Remembering that

Qij = Qij − 1
3δ

ijQk
k, (3.4.21)

and noting that Qij calculated in the previous section is traceless, those components
are

Q11 = −Q22 = µ

2 l
2 cos (2ωt) (3.4.22)
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and
Q12 = µ

2 l
2 sin (2ωt) . (3.4.23)

The power emitted is
Wgrav ≡

dEgrav
dt

= 32
5
G4

c5
µ2M

l5
. (3.4.24)

This expression has to be considered as an average over several periods since the
gravitational field energy can not be defined locally in general relativity.

We suppose that the system has the time to adjust the orbit to compensate the
energy lost by gravitational radiation changing the orbital energy, such that

dEorb
dt

+Wgrav = 0. (3.4.25)

The orbital energy is given by the sum of the kinetic and potential energy

Eorb = Ek + V = 1
2m1ω

2r2
1 + 1

2m2ω
2r2

2 −
Gm1m2

l
= −1

2
GµM

l
, (3.4.26)

and
dEorb
dt

= −Eorb
(

1
l

dl

dt

)
. (3.4.27)

Since ω = 2π
T
, where T is the orbital period, with (3.4.4) we can write (3.4.27) in

terms of T as follows
dEorb
dt

= −2
3
Eorb
T

dT

dt
, (3.4.28)

and remembering that dEorb
dt

= −Wgrav, we finally find how the orbital period changes
due to the emission of gravitational waves:

dT

dt
= 3

2
T

Eorb
Wgrav. (3.4.29)

From (3.4.27) we can also find how the separation l changes in time. We get

1
l

dl

dt
= Wgrav

Eorb
= −

(
64
5
G3

c5 µM
2
)

1
l4
. (3.4.30)

Integrating (3.4.30), assuming that l (t = 0) = l0, we obtain

l (t)4 = l40 −
256
5
G3

c5 µM
2t, (3.4.31)

which can be written as
l (t) = l0

(
1− t

tcoal

) 1
4

(3.4.32)

21



defining tcoal = 5
256

c5

G3
l40

µM2 .
From (3.4.32) we see that the separation becomes null when t = tcoal. Since

in fact the masses are not point-like, the merger starts before t = tcoal. Further-
more, when the two stars are close enough, the weak field approximation and the
slow motion assumption are not satisfied, making the quadrupole formalism failing.
However, tcoal gives an indication of the time that the system needs to merge starting
from an orbital distance l.

3.4.2 Emitted waveform
By (3.4.32) we can compute how ω changes in time:

ω (t) =
√√√√GM

l (t)3 = ω0

(
1− t

tcoal

)− 3
8
, (3.4.33)

with ω0 =
√

GM
l30

. As we previously found, the frequency is twice the orbital period,

νGW (t) = 2ω(t)
2π , and the amplitude is given by (3.4.19):

h0 (t) = 4µMG2

rc4l (t) = 4π 2
3G

5
3M 5

3

c4r
νGW (t)

2
3 , (3.4.34)

whereM = µ
3
5M

2
5 is said chirp mass.

Equation (3.4.34) shows that the amplitude and the frequency increase in time,
in a way similar to the “chirp” of a bird. An example is shown in Figure 3.2.

Figure 3.2: Inspiral signal from binary system.1

1http://www.ligo.org/science/GW-Overview/images/inspiral.jpg
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3.5 Binary black hole mergers in the early ad-
vanced LIGO-Virgo era

Exactly a hundred years after the prediction of gravitational waves by Einstein’s
theory of general relativity [16], the first observation has been announced by the
LIGO-Virgo collaboration in 2016 [11], and so far there are three confirmed obser-
vations, all coming from BH-BH merger.

Figure 3.3: The first gravitational wave event observed by LIGO detectors. [11]

In Figure 3.3 we show the signal detected on September 14, 2015, at 09:50:45 UTC,
by the LIGO Hanford, WA, and Livingston, LA, observatories, later confirmed in
2016. In the top charts we see the signal detected by the two interferometers, H1
data being shifted in time because the signal arrived first at L1. Unlike the other
two events, we can clearly see the inspiral and the ringdown waveform, because of
the very high signal-to-noise ratio of the mergers. In the second row we see the
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reconstructed signal: in particular the thin line in red (blue) on the left (right)
chart represents the numerical relativity predicted waveform. In the third row there
are the residual after subtracting the numerical relativity waveform from the de-
tected signal. Finally, in the last row we have a time-frequency plot of the strain
data, showing the signal frequency increasing in time together with the amplitude,
according to our calculations in the previous sections. In Table 3.1 we show the

Event m1/M� m2/M� Mf/M� DL Mpc
GW150914 35.4+5.0

−3.4 29.8+3.3
−4.3 62.2+3.7

−3.4 440+160
−180

GW151226 14.2+8.3
−3.7 7.5+2.3

−2.3 20.8+6.1
−1.7 440+180

−190

GW170104 31.2+8.4
−6.0 19.4+5.3

−5.9 48.7+5.7
−4.6 880+450

−390

Table 3.1: Current observations of binary black hole systems.

current data for present observations [17, 18, 19]. Together with the name of the
event, we report the mass m1 and m2 of the two object, the final mass Mf after the
merger and the luminosity distance DL. The latter is known with a big uncertainty
because we cannot determine the relative orientation of the system to the sight line,
due to the inability of the current network of detectors to discern both polarizations
of the GW signal. In Figure 3.4 we report the current prediction by the LIGO-Virgo

Figure 3.4: Advanced LIGO (left) and advanced Virgo (right) target strain sensitivity as a
function of frequency. [20]

collaboration about the future sensitivity that will be reached by the detectors.
A binary NS merger detection is highly awaited as the next most important

breakthrough. Besides being a very promising source of GWs, these events offer a
unique opportunity to constrain the NS EOS. Moreover, they are likely accompanied
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by a rich variety of electromagnetic signals, the most relevant of which will be
discussed in the next chapter.

25



26



4 Electromagnetic radiation from
binary neutron star systems

As we already pointed out previously, BH-BH mergers are not expected to pro-
duce bright electromagnetic (EM) signals. Conversely, mergers involving NSs are
expected to link EM and GW skies. EM signals generated from NS-BH and binary
NS (BNS) systems cover the entire EM spectrum and they are emitted over a va-
riety of timescales. There are several reasons to study these signals. For example,
by detecting the EM counterpart to the GW will give an opportunity to identify
the host galaxy and the relative position of the source to it: this will provide valu-
able information on binary formation channels, age of the stellar population and
supernova birth kicks. In addition, this identification can allow us to determine
the redshift and thus estimate the distance of the source, which is typically mea-
sured with very high uncertainty from a GW detection alone (as seen in Table 3.1).
Moreover, a combined EM and GW observation can prove the connection between
short gamma-ray bursts (SGRBs) and binary NS or NS-BH mergers, revealing in-
formation on when and how they can be produced. Finally, EM signal alone can
reveal exclusive information on the physics of the merger and post-merger phases,
especially if the remnant is a massive NS.

In the following, we give a brief overview of the most promising EM signals
expected in association with BNS mergers.

4.1 Short gamma-ray bursts
SGRBs are the brightest events known in the Universe. They consist in highly

energetic photon beams (observable in the gamma-ray band) that light up a tiny
region in the sky for less than ∼ 2 s. SGRBs are among the earliest proposed coun-
terparts to the GW signal form BNS and NS-BH mergers. The leading (standard)
model explains this emission via a relativistic outflow (jet) generated by a torus of
matter accreting onto a remnant BH, that is formed soon (< 10− 100 ms) after the
merger [21, 22, 23, 24, 25, 26]. However, the physical mechanism that would launch
the jet is still uncertain. Two commonly invoked mechanisms are the neutrino and
the magnetic mechanism:

• neutrinos and antineutrinos copiously emitted by the accretion disk deposit
thermal energy at the poles of the BH via annihilation. The produced e+/e−

are accelerated to relativistic velocities and decelerated by the external matter
(interstellar medium or previously ejected matter), and shocks within different

27



waves generate the gamma-ray burst [27].

• strong poloidal magnetic field threading the BH can remove angular momen-
tum from the BH itself via the Blandford–Znajek process [28]. If the magnetic
field is strong enough a cascade pair production which can power the jet is
generated.

Recent simulations indicate that the neutrino mechanism seems to be too weak to
drive a powerful enough jet. Hence, the energy requirements favour magnetic fields
as the main driving force. Since magnetic fields are likely to play a key role in the
formation of a jet, we need general relativistic magnetohydrodynamic simulations to
investigate the nature of these events. In Figure 4.1 we show a recent BNS merger
simulation where an “incipient jet” starts to emerge after the BH has formed [29].

The above standard BH-disk paradigm, however, leaves important open ques-
tions. According to the model, the energy release should stop once the torus has
been accreted on a timescale of < 1 s, which is consistent with SGRBs timescales.
Nevertheless, recent observations by the Swift satellite [30] revealed long-lasting
(∼ 102− 105 s) X-ray afterglows in a large fraction of SGRB events, which are diffi-
cult to explain by the short accretion timescale of the torus. These afterglows could
be explained in a different scenario in which the BNS merger result in a stable or
long-lived NS rather than a BH, with the additional energy release powered by the
loss of rotational energy via magnetic spindown [31, 32, 33]. This so-called “magne-
tar” model has its own difficulties. In particular, the much higher baryon pollution
expected in this case in the surrounding of the merger site makes it more difficult
to launch a jet, which might not be able to pierce through a denser environment.

A third alternative is offered by the recently proposed “time-reversal” scenario
[34], which overcomes the problems of the BH-disk and magnetar scenarios. The jet
engine of this model is a long-lived supramassive NS produced by a BNS merger,
which eventually collapses to a BH on timescales of ∼ minutes or even longer. The
magnetized NS remnant injects energy to the surrounding matter via EM spindown
(see Section 4.3). Then it collapses to a BH and creates the conditions to generate
a jet. The merger site is then surrounded by a plasma nebula inflated by the
EM spindown and by an external layer of isotropic baryon-loaded ejecta expelled
in the post-merger phase, which is now at lower densities. While the jet easily
drills through the environment and produce the gamma-ray emission, the spindown
energy is trapped inside the nebula and diffuses on much longer timescales. As a
result, the spindown-powered X-ray emission can still be observed for a long time
after the SGRB itself, explaining in this way the long-lasting X-ray afterglows. This
scenario can thus explain both the SGRB and the X-ray afterglows. Nevertheless,
it cannot be validated by present simulations since it covers timescales that are now
inaccessible.
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If any of these scenarios is correct, observing a SGRB in coincidence with the
GW signal from a compact binary coalescence would represent a “smoking-gun”
confirmation of the association between these events and mergers involving a NS.

Figure 4.1: Simulation of a BNS merger with SGRB generation. The arrows indicate plasma
velocities, and the white lines show the B-field structure. [29]

4.2 Kilonova/Macronova transients

Kilonovae or macronovae are another important EM counterpart to the GW
signal for BNS mergers and NS-BH mergers (e.g., [35] and refs. therein). This
radiation is emitted at optical and infrared wavelengths, with timescales of days to
weeks. It is powered by the heating generated from radioactive decay of r-process
elements, produced in the sub-relativistic ejecta. The merger ejects a small fraction
of matter at sub-relativistic velocity; since NS is primary composed by neutron-rich
nuclei and free neutrons, r-process nucleosynthesis is expected to take place. Free
neutrons impact on heavy (56Fe or heavier) nuclei creating unstable isotopes via
rapid neutron capture, which can undergo β-decay. Radioactivity provides a long-
term heat source for the expanding envelope, and heavy elements filter out the high
energy radiation, allowing only the lower energy signal to escape.

A simultaneous detection of kilonova/macronova and a GW signal would provides
rich information about the merger events. It can be useful for determining the host
galaxy of the source and since its lightcurve reflects the binary parameters, it could
also be useful for extracting the physical information of the binary.
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4.3 Spin-down powered transients from long-lived
NS remnants

As discussed at the end of Chapter 2, BNS mergers can produce a long-lived
massive NS remnant. This has important consequences. First, neutrinos and mag-
netically driven outflows can provide an additional source of ejecta material for the
r-process nucleosynthesis. Second, the magnetized NS remnant emits EM spin-down
radiation, and this can power a nearly isotropic transient when reprocessed through
the surrounding pulsar wind and the matter ejected during the merger (e.g. [36,
37]). This emission represents a potentially promising counterpart to the GW signal
from BNS mergers (while it is absent for NS-BH mergers) and provides a possible
explanation for the long-lasting X-ray afterglows of SGRBs (see Section 4.1). Since
spin-down radiation is exclusive of long-lived NS remnants, detecting this signal
would be an evidence that the product of the BNS merger is a long-lived NS.
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5 Conclusions

The Theory of general relativity has been one of the biggest revolutions in physics
and in our way to conceive the Universe, eradicating the concepts of absolute space
and time postulated by the classical mechanics. About a hundred years ago Albert
Einstein predicted that, as a stone falling on the smooth surface of a lake would
generate small ripples on it, a perturbation of the smooth space-time metric would
also generate ripples in the shape of space-time itself. For exactly a hundred years,
gravitational waves remained a prediction, until 2016. With the first observation of
a gravitational wave by the LIGO interferometer, a new era of physics has begun:
we have now a new sense to probe the Universe. With the capability to detect
gravitational waves we can gain complementary information to those obtained by
electromagnetic spectrum detectors, and we can study objects which were invisible
before, like black holes.

Binary neutron star mergers represent the ultimate targets for a multi-messenger
astrophysics. As we have seen, they are the most promising source of both electro-
magnetic and gravitational signals. The extreme conditions in which neutron stars
form and live, and the catastrophic events in the merger and post-merger phases pro-
vide a rich phenomenology and a unique opportunity to test theories in conditions
not reproducible on Earth.

In Chapter 3 we formally derived the equations for a gravitational wave propa-
gating in space-time, starting from the linearized field equations of general relativity,
and below we solved analytically the case of two objects in circular orbit around the
system’s centre of mass, and we found the waveform for the inspiral phase. However,
as we pointed out, this is an approximation, which is valid only when the objects are
far enough so that the weak field and the slow motion conditions hold on. In fact,
the spherical symmetry of the neutron star is an approximation too. While there is
a chance to solve analytically the inspiralling system, no chances are given for the
merger phase. When the stars start to be close enough that the weak field approx-
imation doesn’t hold on anymore, we cannot apply the linearized field equations.
Thus, we need full general relativistic simulations to compute the signal expected. In
addition, since neutron star magnetic fields are very strong, magnetohydrodynamics
comes into play and makes things more complicated.

In Chapter 4 we have briefly shown the most promising electromagnetic coun-
terparts to the gravitational wave signal for a binary neutron star merger. Unlike
Chapter 3, we have not given a mathematical background for these signals. As we
discussed, there is not a generally accepted model to explain those type of emissions,
in particular for the short gamma-ray bursts, and most of the information we have
comes from simulations.
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To conclude, although there is still much to understand, new research scenarios
have now become reality thanks to the LIGO-Virgo collaboration, enabling us to
deeply investigate the physics and astrophysics of binary neutron star mergers.
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