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Abstract:

A Brain-Computer Interface (BCI) is a communication sys-
tem between the brain and an external device. BCIs are
often directed at assisting, augmenting, or repairing hu-
man cognitive or sensory-motor functions. In completely
disabled patients, it may be used to recognize the patients’
"will" directly from the brain in order to command a de-
vice, e.g. a prosthesis. The purpose of this project was
to develop a decoder for a BCI system capable of provid-
ing a control output based on decoding of different direc-
tions of movement execution, which in turn will enhance
the quality of the command to external systems to propiti-
ate the restoration of more complex motor functions than
the two-choice commands commonly available in literature.
The system was based on classification of invasive and non-
invasive brain signal recordings. The project was divided
into sub-tasks: 1) experimental recording of a data bank
of electroencephalographic (EEG) signals for testing the
BCI; 2) development of a multi-class translation algorithm
that decodes different movement directions based on EEG
and intracranial recordings. The late step was subdivided
in other two parts: a) time analysis for the detection of
movement intention, and b) time frequency analysis for the
classification of movement direction. Results of the detec-
tion of the intention of movement and the classification of
the direction were significantly above the level of chance
for both iEEG and scalp EEG data. The present study
also enabled to set a comparison of different methods used
for spatial filtering, normalization and classification. Merg-
ing detection and direction classification analyses seems a
promising approach for the development of asynchronous
brain–computer interface systems.
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agreement with the author.
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Chapter 1

Introduction

1.1 BCI systems
A brain-computer interface (BCI), also referred as brain-machine interface (BMI), is a
device that translates neuronal signals reflecting a persons’ intention into commands
driving a machine (e.g. prosthesis, cursor, computer, robot, etc.) [Waldert et al., 2008;
Birbaumer, 2006]. Typically, BCI control is achieved via classification of mental states or
motor intentions using brain signals (such as EEG, iEEG, etc.). It is usually a closed-loop
system, which acquires the signals, treats the data (preprocessing, feature extraction and
classification are used to make a decision) and finally provides a feedback to the user
through the device (e.g. movement of the prosthesis, etc.) [Pfurtscheller et al., 2008].

Figure 1.1: Elements of a BCI system. With the user’s EEG recording as input, the system digitizes
the brain signals, extracts and classifies signal features and feeds the results to the application interface.
The user controls the application and receives visual, auditory, or haptic feedback on the accuracy of
the focused thought. In this way, the system becomes a closed-loop [Pfurtscheller et al., 2008].
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2 Chapter 1. Introduction

1.1.1 BCI for communication

The key part of a BCI system is to make brain and computer communicate with each
other. To achieve this goal, several physiological phenomena and technical approaches
are used. To date, the brain signals employed for invasive BCIs include: (1) action
potentials from nerve cells or nerve fibers, (2) synaptic and extracellular field potentials
and (3) electrocorticograms. The non invasive BCIs used include, instead: (1) the slow
cortical potentials (SCP) component of the EEG, (2) other EEG and MEG oscillations,
mainly sensorimotor rhythm (SMR), also called µ-rhythm, (3) P300 and other event-
related brain potentials, (4) blood-oxygen-level-dependent (BOLD) response in func-
tional magnetic resonance imaging (fMRI) and (5) near-infrared spectroscopy (NIRS),
which measures cortical blood flow [Birbaumer, 2006].
A blind approach might also provide interesting results. Instead of using precise and
well-known phenomena in given brain areas, classifiers can be trained on several ’random’
features. Although this approach may be less efficient at first sight, it might provide
new inputs about brain functional areas and physiology.

BCI systems are used in many different fields and applications. The main ones are
rehabilitation and multi-media (e.g gaming, etc.).

1.1.2 BCI for rehabilitation

BCI systems have different medical applications. For instance, restorative BCI systems
aim at normalization of neurophysiologic activity that might facilitate motor recovery.
Rehabilitation methods based on neuroscience seek to stimulate spontaneous functional
motor recovery by exploiting the brain potential for plastic reorganization. The example
of stroke rehabilitation is meaningful. Motor impairment after stroke is the leading cause
of permanent physical disability. A patient who has important difficulty to move his
limbs, or can not even move them at all, can use a BCI system with visual feedback
in order to improve his condition of disability. By triggering limb movements, even if
the movement is not real (e.g. motor imagery), and adapting his will to the feedback,
the patient activates sensorimotor networks that the lesions affected [Pfurtscheller et al.,
2008; Soekadar et al., 2011].

Figure 1.2: Feedback training using virtual hands. The participant’s task is to imagine left- and
right-hand opening and closing tasks. The BCI generates movement of the right or left (virtual) hand
according to classified brain patterns [Pfurtscheller et al., 2008].
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Differently, the assistive technology (AT), using a BCI system, aims to provide assis-
tance to disabled people in a daily environment (e.g. web browsing, prosthesis control,
etc...). Because a BCI device alone is not able to provide 100 % reliable decoding of the
real intention of the subject, BCI in AT is mainly used as an additional channel in a
so-called hybrid BCI (hBCI) system [Millan et al., 2010].
However, examples of BCI-only AT systems are present in the literature. For in-
stance, Leeb et al. succeeded to make a reliable brain-controlled wheelchair. When
the tetraplegic user imagine movements of his paralysed feet, beta oscillations appear
in the EEG recordings and are used to control the wheelchair in a virtual environment.
The patient is then able to drive himself in a virtual street and move from avatar to
avatar.

The navigation in a virtual environment may also have applications in the multi-media/gaming
field.

1.1.3 BCI for gaming

Although BCI research will likely continue to focus on medical applications, BCIs may
also be used by healthy users for different purposes [Allison et al., 2007].
For instance, the Berlin Brain Computer Interface (BBCI) provides intuitive control
strategies in plausible gaming applications through the use of bio-feedbacks. In addition,
the BBCI paradigm shows encouraging result for patients without previous experiences
with BCI systems. Indeed, even an untrained subject can navigate through the Pacman
labyrinth (see figure 1.3) in about 40 seconds [Krepki et al., 2003].

Figure 1.3: Feedback "Brain Pacman" and the head filling strategy for indication of user’s upcoming
intentions. The Pacman moves every 2 seconds [Krepki et al., 2007].

On top of this, many other applications can be imagined. Middendorf et al. presented
a BCI that allowed people to bank a full motion aircraft simulator; some other games or
virtual environments allow users to turn or lean left or right. However, this particular
kind of BCI usually only allows one degree of freedom with a binary choice [Allison et al.,
2007].
A few companies have sold BCIs intended to enable healthy subjects to play simple
games (e.g. ibva.com, cyberlink.com and smartbraingames.com). Although the state
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of art of BCI gaming usually allows only one degree of freedom with a binary choice,
further developments are expected in this field [Allison et al., 2007].

1.1.4 Types of BCI systems

BCIs can be categorized according to two main characteristics: synchronization and
invasiveness [Besserve, 2007].

1.1.4.1 Synchronous - asynchronous BCIs

The main difference between synchronous and asynchronous BCIs stands in the fact that
synchronous BCI uses the response of the brain to a given stimulus, while asynchronous
BCI analyses the signal in continue. The synchronous paradigm is usually used more
often [Besserve, 2007]. For example, Leeb et al. uses an asynchronous paradigm, which
screens the brain in continue, in order to control a wheelchair in real-time by imagination
of feet movements.
In this report the brain response to a given signal off-line was analysed: the preparation
of the movement is triggered by a visual cue, then actual movement initiated by a "Go
signal". It involves, therefore, a synchronous BCI.

1.1.4.2 Invasive - non invasive BCIs

Invasive BCI uses intracranial techniques to acquire the signal, such as electrocorticog-
raphy (ECoG, in which electrodes are on the surface of the cortex) or stereoelectroen-
cephalography (SEEG, where electrodes are placed inside the grey matter). Non-invasive
BCI instead uses extracranial recordings of the brain activity, such as electroencephalog-
raphy (EEG, electrodes on the scalp), magnetoencephalography (MEG) or functional
magnetic resonance imaging (fMRI) [Besserve, 2007]. Unlike invasive systems, which
entail the risks associated with brain surgery, non invasive systems are basically harm-
less [Pfurtscheller et al., 2008].
For practical reasons, non invasive BCI are more common: from 2007 to 2011, 14.992
publications have cited EEG or MEG, while only 337 mention intracranial EEG [Dalal
et al., 2011].

1.2 State of the art
The following report was written with the goal of detecting the movement intention
and classification of four different directions of hand movement, both during the actual
movement and the preparation phase, by means of invasive and non-invasive synchronous
BCIs.

1.2.1 Overview

Directional tuning of hand/arm movement is present in iEEG, in the low-pass filtered
signals (Mehring et al. 2004, Ball et al. 2009; see also figure 1.5) and in the ampli-
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tude modulations of different frequency bands (Leuthardt et al. 2004, Ball et al. 2009).
Tuning strength is sufficient for relatively accurate directional decoding from low-pass
filtered signals as well as from amplitude modulations of different frequency bands.
As for non invasive EEG, it has been shown that directional tuning for hand/arm move-
ment can also be observed both in low-pass filtered signals and in amplitude modulations
of different frequency bands (Waldert et al. 2008, figure 1.6). However, it seems that
EEG are less capable of revealing high frequencies (Dalal et al. 2008, Waldert et al.
2008) and only few publications clearly show movement dependent high γ modulations
above 90 Hz that are unlikely due to artefacts (Gonzalez et al. 2006, Ball et al. 2008).
The common time-frequency pattern during center-out movements (see figure 1.4) is the
following: change of amplitude in a low frequency band (< 2 Hz for iEEG, < 7 Hz for
EEG) during the movement, decrease of amplitude in an intermediate frequency band
(6-30 Hz for iEEG, 10-30 Hz for EEG) shortly before and lasting until the end of the
movement, and movement related amplitude increase in high frequency band (34-128 Hz
for iEEG, 62-87 Hz for EEG) [Waldert et al., 2009].

Figure 1.4: Grand-average time-resolved amplitude spectrograms during centre-out movements for the
different recording techniques (LFP, ECoG, EEG, MEG) [Waldert et al., 2009].
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Figure 1.5: Average human ECoG recorded from one electrode placed over the hand/arm motor
cortex, measured during continuous target-to-target movement and sorted for eight different movement
directions (lower plot). The vertical solid line shows the time of a new target appearance (t = 0) while
the dotted line indicates the median time of target reaching. Coloured bands display the mean over
all single traces of one direction +/- standard-error of the mean. The upper inset shows the average
magnitude of hand velocity [Waldert et al., 2009].

Figure 1.6: Averaged movement related potential recorded with one EEG electrode above the contra-
lateral motor area of one subject (average +/- standard-error of the mean across all trials for each
direction, blue – right, green – up, red – left, cyan – down) [Waldert et al., 2009].

1.2.2 Particular cases

Rickert et al. showed that the local field potential (LFP) recorded by an intracranial pro-
cedure can be used to discriminate 8 directions in a centre-out arm movement. Analysis
of the LFPs in the time domain showed that the amplitude of a slow complex waveform
beginning shortly before the onset or arm movement is modulated with the direction of
the movement (see figure 1.7. Direction-dependant modulations are also found in other
frequency ranges (<4 Hz, 6-13 Hz and 63-200 Hz), where the components of the signal
typically increase their amplitudes before and during movement execution (see figure
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1.8). As shown in figure 1.9, the analysis of the low frequency band yields the best
decoding power (DP = 0.24 on < 4 Hz and 1 electrode) and the combination of the high
frequency band and the low frequency band (63-200 Hz and < 4 Hz) can increase the
decoding power.

Figure 1.7: Tuning of the movement-evoked potential. Time 0 ms indicates movement onset. (a) Grand
average movement evoked potentials (averaged across all recorded LFPs). Trials were aligned either to
movement onset (black curve) or to cue onset (grey curve). P1, P2, N1, and N2 indicate the points in
time of the positive and negative peaks of the average LFP. (b) Directional tuning of a movement evoked
potential obtained from a single electrode: trial-averaged activity shown separately for each movement
direction [Rickert et al., 2005].

Figure 1.8: (a) Time-resolved amplitude spectrum. (b) Each frequency bin normalized by its baseline
amplitude, (c) Changes in the amplitude exhibited in four different frequency bands (<4, 6–13, 16–42,
and 63–200 Hz) during the task [Rickert et al., 2005].
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Figure 1.9: Decoding power in different frequency bands [Rickert et al., 2005].

Leuthardt et al. used ECoG recordings to control a one-dimensional computer cur-
sor. This binary task can be a achieved with up to 74 % accuracy while opening and
closing the right hand (combination of frequency bands within 10.5 and 50.5 Hz) and
83 % of accuracy while imagining opening and closing right hand (showing a decrease
in 30.5-32.5 Hz band). This result may seem curious, as the best result is achieved with
the imagination task. This can be explained by the effort Leuthardt et al. of optimising
the imaginary task, which is indeed more relevant for BCI. Direction-dependant modula-
tions are also found for a bidimensional joystick movement direction task (4 directions),
particularly in the 40-180 Hz band (see figure 1.10).

Figure 1.10: ECoG correlations with joystick movement direction before and during movement
[Leuthardt et al., 2004].

Ball et al. proposed a general study on how arm movement direction in neuronal
activity of the cerebral cortex (ECoG technique) can be used for movement control
mediated by a BCI. The results shown in figures 1.11 and 1.12 are found using regularized
linear discriminant analysis (RLDA) in a center-out arm movement task in 4 directions.
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Figure 1.11: Decoding accuracy from different frontal anatomical subregions and signal frequency
bands (four movement directions). The dashed line depicts the chance level. Stars indicate bars with
significant decoding accuracy. (a) Decoding results for the movement-related potentials from the whole
mean duration of the reaching movement, including activity up to 250 ms prior to movement onset. The
five groups of bars correspond to the anatomical subdivisions MC (entire motor cortex = M1 + PM),
M1 (primary motor cortex), PM (premotor cortex), PF (prefrontal cortex) and PM + PF (premotor and
prefrontal cortex). Each of the five bars in the individual groups of bars represents one recording session
(two sessions from subject 1, and one session from each of the subjects 2, 3 and 4). Horizontal coloured
lines mark the mean DA for each anatomical subdivision. (b) Frequency domain decoding results for
MC, for the same time window as in (a), for the low, intermediate and different gamma bands (low,
high and broad). In (c) and (d), the corresponding results as in (a) and (b) are given for activity during
the pre-movement time window only, ranging from 250 ms to 0 ms before the arm movement onset [Ball
et al., 2009].
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Figure 1.12: Temporal evolution of decoding accuracy. Graphs show the DA of the time window
lasting from 500 ms before until the time indicated on the x-axis. Time is given relative to movement
onset. (a) Time course for decoding of the movement-related potentials for M1, PM, MC and PF. (b)
Time course of DA for decoding from the amplitude spectra using the low, intermediate and different
gamma bands for M1. The black line indicates the chance level. (c) Time course for PM and (d) for PF
[Ball et al., 2009].

1.3 Problem statement
Movement intention detection can be achieved studying EEG waveforms which occur
before the movement onset. One of the major challenges in detecting EEG waveforms
from single trials is the poor signal to noise ratio (SNR) of the EEG. Since EEG sig-
nals represent the summation of potentials generated by a large population of cortical
neurons, the amplitude of the spontaneous EEG activity is relatively large (in the range
of 100 µV ) with respect to the activity related to motor planning and execution, such
as the initial negative phase of MRCP (range 8–10 µV , see appendix C for a MRPC
insight). In order to improve the SNR of EEG signals, spatial filtering can be used.
However, commonly used spacial filters such as Laplacian filters, may not be optimal for
detection of MRCPs from single trials [Niazi et al., 2011].
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Once the movement intention is confirmed, the decoding of the direction is the next
challenge. By considering the signal in the frequency domain, new information about
the movement direction might be found. The ability to decode the direction of upper-
limb motor tasks from its underlying neural signature is even more intriguing for brain
computer interface used for rehabilitation. Although a lot of progress has been achieved
in the recent years, numerous methodological and physiological questions remain open
or need deeper exploration. Specifically, what type of information about movement di-
rection can be extracted from surface and invasive recordings of brain activity? Which
brain signals provide the best decoding of limb movements direction? What signal clas-
sification algorithms are best suited for this endeavour and how can we optimize them
to achieve efficient BCIs in the future?

Aim

The goal of this research project is to implement and apply multiple detection and
decoding techniques to scalp and depth EEG recorded in subjects performing center-out
motor task in four different directions. The accuracy of the various decoding strategies
will be compared at various levels: (a) the classification methods, (b) the discriminant
neuronal signatures, known as the features, (c) the type of EEG recordings and (d)
robustness to artifacts and noise.

Methods

This interdisciplinary project consists of two main parts: (1) electrophysiological record-
ings of brain activity such as MRCPs, LFPs and different brainwaves, both from iEEG
and scalp EEG; and (2) implementation and comparison of signal detection, classifica-
tion and decoding approaches to infer movement intention and direction from invasive
and non-invasive brain signal recordings.

Part 1

Experimental data acquisition in subjects performing a delayed motor task was con-
ducted. In addition to already existing intracranial EEG recordings acquired from an
epileptic patient (Grenoble hospital, France), new surface EEG recordings were acquired
(Aalborg University laboratory, Denmark). The latter experiment used scalp EEG in a
delayed center-out motor task. The scalp EEG data were cleaned from blinks or muscle
artifacts and were pre-processed prior to implementation of detection and classification
tests.

Part 2

• Two types of signals were explored: (a) surface EEG (acquired in Aalborg Univer-
sity laboratory), and (b) depth intracranial EEG (provided by Lyon laboratory).
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• Two types of analyses were considered, (a) movement intention detection and (b)
movement direction detection, either intended (during the preparation period) or
executed (during real movement).

• Two types of features were assessed: (a) time-domain features such as motor corti-
cal potentials for movement intention detection, and (b) frequency-domain features
for movement detection/direction decoding.

• Different spatial filter were used in the time-domain analysis. For the frequency-
domain, features were examined with a number of appropriate signal processing
tools that include: (i) wavelet transforms, to compute the frequency features from
the EEG signals, (ii) Linear Discriminant Analysis (LDA), Support Vector Machine
(SVM), k-Nearest Neighbor (KNN) and Neural Network (NN) for classification of
(intended/executed) movement directions.

Expected impact

The results of this ambitious project may have implications at least at three levels: (a)
from a methodological point of view, the comparison of the classification approaches
on experimental data can provide important insights into the strengths and limitations
of existing methods and might suggest how to improve them; (b) from a physiological
perspective, identification of the best discriminant features will advance our knowledge
of motor encoding/decoding in the context of motor-related BCIs; (c) in the long-term,
the expertise and results obtained in this project may have useful implications on the
future use of BCI to control a robotic prosthesis (neural prosthesis) on one hand, and on
the use of BCI in the context of neuro-rehabilitation in patients with motor deficiencies
on the other.



Chapter 2

Methods

In this chapter are reported the experimental protocol, the methods used for time analy-
sis (movement intention detection) and, finally, the methods used for the time frequency
analysis (movement direction classification).

2.1 Experimental protocol

2.1.1 Subjects

2.1.1.1 Intracortical EEG

The subject is a patient affected by a drug-resistant epilepsy who decided to be operated.
As the EEG/MEG investigations are not sufficient to find the epileptic focus, in-depth
electrodes were used until the site was located. During the investigation period, the
patient gave her agreement to carry the present experiment.

2.1.1.2 Scalp EEG

Five subjects were used for this purpose. The subjects were all right-handed males
with an age that ranged from 23 to 30. None of the subject suffered from hand or
arm pathologies or neurological disorders. The participants gave their informed written
consent before inclusion in the study. The entire test was conducted accordingly to "The
Rights of a Volunteer in a Biomedical Research Project", issued by the Danish National
Committee on Biomedical Research Ethics.

2.1.2 Experimental setup

2.1.2.1 Intracortical EEG

Intra-cerebral recordings were conducted using a video-SEEG monitoring system (Mi-
cromed, Treviso, Italy), which allowed the simultaneous data recording from 128 depth-
EEG electrode sites. The data from the recorded patient were bandpass filtered online
from 0.1 to 200 Hz and sampled at 1024 Hz During the acquisition, the data were

13
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recorded using a reference electrode located in the white matter.
The in-depth electrodes were placed in agreement with the surgeon needs so as to iden-
tify the epileptic focus. As a result, they were spread in the brain without any relations
to the investigated task.
As shown in figures 2.1 and 2.2, each electrode is labelled by a letter and each dot rep-
resents an electrode site where a signal was recorded. On each electrode, the different
sites are labelled by a number: from 1 (closer from the scalp), to usually 16, depending
on the specific electrode (e.g. v14 is the 14th site on electrode v).

Figure 2.1: Electrodes implantation diagram, each dot represents a recording site (Image from Lyon).

Figure 2.2: Electrodes implantation diagram, each dot represents a recording site (Image from Lyon).
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2.1.2.2 Scalp EEG

The experiment took place in an electrically shielded room. Subjects were seated on
a chair, in front of a LCD screen placed on a table, with the arm on the table and
the hand holding a mouse. EEG signals were recorded from Ag/AgCl scalp electrodes
(trying to keep the impedance below 5 kΩ). Twenty electrodes were placed accordingly
to the International 10-20 system, located in F3, F1, Fz, F2, F4, FC3, FC1, FCz, FC2,
FC4, C3, C1, Cz, C2, C4, CP3, CP1, CPz, CP2, CP4, P3, P1, Pz, P2, P4. The subjects
were grounded at the forehead. The right ear lobe (A2) was used as a reference, while
the EOG was measured from FP1. The EEG and EOG signals were sampled with a
rate of 500 Hz and amplified with a gain of 19, using a forty channels digital DC EEG
amplifier (Nuamps Express, Neuroscan, USA) and data were recorded with the Acquire
Software Scan 4.5 (Neuro Scan Labs).Presentation software was used in order to follow
the exact same protocol used and provided from Lyon. The signals were converted by
a 32-bit A/D converter. Early preprocessing has been performed with EEGLAB and
Neuroscan.

2.1.3 Task

The experimental task consisted in a center-out movement of the hand in four differ-
ent direction. The subjects were to perform a simple movement of the hand in the
given direction, while holding the mouse (no constraints on the speed of the movement),
reaching a given target on the screen and then coming back to the central starting point.
Presentation software was used to display synchronized cues on the screen both for the
iEEG and surface EEG recordings. The task consisted, in detail, of:

• A "rest period", from 0 to 1 sec, during which the screen was blank.

• At 1 sec a visual cue (illuminated target) in a random direction, was given to the
subject.

• A "preparation period", from 1 to 2.5 sec, during which the subject was previously
instructed not to perform the movement.

• At 2.5 sec a "go signal" was displayed. This meant that the subject could start the
movement in the suggested direction.

• A "movement period", starting from 2.5 to 3.9 sec. The subject moved the pointer
of the mouse towards the target, reached it, and came back to the central starting
target on the screen.



16 Chapter 2. Methods

Figure 2.3: Experiment setup. The central point and the 4 different targets (up, down, right, left) can
be seen on the screen.

This protocol was used both for the iEEG and surface EEG, with some differences
between the number of direction and number of trials recorded. As for the iEEG record-
ings, the subject performed 50 trials (movement tasks) for each of the four directions
(up, down, left and right), both for the left and the right hand. As for the surface
EEG recordings, 100 trials for each of the four directions (up, down, left and right) were
collected for the right hand, whereas only two directions (up and down, 100 trials) were
collected from the left hand. The increase in the number of trails recorded from the
scalp EEG can be justified by the loss of quality of the scalp recordings with respect to
the intracortical ones.

2.2 Artifact removal

2.2.1 Detrend

The iEEG signal is 0.1 to 200 Hz bandpassed online then detrendend to remove the
continuous part (offset). The scalp EEG signal is 0.05 - 150 Hz bandpass filtered offline
then detrended. However, the bandpassing and detrending do not remove the muscular
artifacts.

2.2.2 Artifact removal

2.2.2.1 iEEG data

As the muscular artifacts were widespread into the brain, their influence could partially
removed their by using bipolarization on iEEG data. I.e., instead of using the voltage of
site 6 and site 7 of electrode n (calculated from a reference electrode in the white mat-
ter) as two signals, n7-n6 was used. If an artifact was present, it most likely appeared
on both the two sites due to the short inter-site distance (around 3 mm). Thus, these
artifacts could removed by bipolarization [Jerbi et al., 2009]. After bipolarization, the
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isolated recording sites (those without any adjacent sites) were removed as well.
In order to remove the remaining artifacts (e.g. channels corrupted by or used for syn-
chronization purposes), for each channel, an averaged time-frequency (TF) map (average
across all the trials and all the movement tasks) was built and visually inspected. The
procedure allowed to discard those channels which did not contain useful information
(see figures 2.4 and 2.5) Performing the procedures described above, 91 sources of signal
out of the starting 128, were kept.

Figure 2.4: Averaged TF map for channel f10-f9. The vertical black lines show respectively the visual
cue and the go signal. The channel does not show any particularly evident artifact.

Figure 2.5: Example of a synchronous high amplitude artifact around 2450 ms. This artifact was found
on channels i5-i4 and i6-i5, which were probably used to send trigger signals to the system.
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2.2.2.2 Scalp EEG data

A 75 µV threshold was used for the detection of eyes artifacts in the EEG signal. For
each epoch, if the signal acquired from any electrode was above the threshold, the entire
epoch was discharged (and not only the couple epoch-electrode). Indeed, if an artifact
was above the threshold level on one electrode, it was also present on other electrodes,
maybe without being strong enough to cross the threshold. It is worth mentioning that
a bipolarized iEEG signal is generally far less vulnerable to muscular artifacts than EEG
signal Leuthardt et al. [2004].

2.3 Signal processing

2.3.1 Movement intention detection

Here follows a brief introduction to the protocol and the techniques used to analyse the
data set, which are later treated more extensively. The experimental data were analysed
with two different spatial filters and a cross-correlation approach was used to determine
the movement intention detection accuracy. Since the aim is detecting the intention of
the movement, only the initial negative phase of the MRCP was used (see appendix C
for a MRPC insight). The signal analysis methods are discussed in the following sub-
sections. The procedure was divided in two steps: first, the MRCP template extraction
from the training data, and then the movement intention detection accuracy calculus.
The aim of spatial filtering is to improve the signal-to-noise ratio by creating a virtual
channel which is a (linear, in the following cases) combination of the input channels
of the filter. The first filter was a large Laplacian spatial filter (LSF), which has been
proved to be a valuable choice among other fixed coefficient spatial filters [Niazi et al.,
2011]. The second filter was an optimized spatial filter (OSF), where the optimization
process is achieved with the aim of maximizing the SNR of the filtered data. After the
spatial filtering, the MRCP template was extracted from the resulting channel (named
surrogate channel from now on).
In the second part of the analysis, the negative phase of the MRCP template was com-
pared to the data to calculate the movement intention detection accuracy. This was
achieved by measuring the cross-correlation between template and signal and obtaining
the number of correct and incorrect detections. The results are expressed using statisti-
cal parameters as true positive rate (TPR) and false positives rate (FPR). Finally, the
performance of the different spatial filters was compared.
The protocol described above was applied on: (a) each data set containing the single
task performed by each subject (e.g ’down’ movement with the right hand for subject
no. 3), and (b) combining for each hand (and subject) the data of all the movement
tasks (e.g all the epochs from left hand of subject no. 3), allowing to use more epochs
for the averaging, but losing the information about the direction.
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Figure 2.6: The flux diagram describes the first part of the protocol (signal processing)
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Figure 2.7: The flux diagram describes the second part of the protocol (template extraction and
movement detection)
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2.3.1.1 Electrode selection

iEEG After the bipolarization process, 91 channels located in 16 electrodes (see figure
2.8) were available. Out of these 91, 7 channels were selected to be used in the analysis;
their location is showed in figure 2.8. This amount of channels may seem restricted com-
pared to the starting number, but this selection was necessary for at least two reasons:
(a) the optimization process for the OSF filter on 91 channels would have required a
very long computation, and (b) from an MRCP extraction point of view, these seven
channels were the ones showing a shape that reminded the one of the MRCP.
Among these seven channels, two channels were chosen from two electrodes near senso-
rimotor areas, three channels from other two electrodes located in the frontal lobe and
the two last channels came from two electrodes which passed through the temporal lobe.
The locations of the chosen electrodes are near the motor cortex, the prefrontal areas
and basal ganglia, places in which the MRCP is likely to be generated (see appendix C).

Figure 2.8: Electrodes location and number of the channels chosen for the iEEG data analysis.

Scalp EEG For the spatial filtering, 9 channels out of 20 were chosen as input for the
filter. As figure 2.9 shows, they were:

• C3, C1, Cz, CP3, CP1, CPz, P3, P1, Pz for right hand movements and

• Cz, C2, C4, CPz, CP2, CP4, Pz, P2, P4 for left hand movements.

The choice is justified by the fact that these electrodes are located above the premo-
tor, motor and somatosensory cortices and are not expected to be easily contaminated
by task related auditory or visual artifacts. Electrodes F3, F1, Fz, F2 and F4 electrodes
were not used, both to make the optimization process faster and because they are the
nearest to the subject face.
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Figure 2.9: Electrodes selection for the scalp EEG. The squares indicate which electrodes were selected
for the analysis, depending on the hand used during the movement (right hand:blue square, left hand:red
square). The circle indicated which electrode had 1 as weight coefficient in the Laplacian filtering process.

2.3.1.2 Preprocessing

iEEG and scalp EEG data was band-pass filtered with a third order Butterworth zero-
phase filter from 0.05 Hz to 5 Hz to isolate the nìabnd of interest prior to the application
of the spatial filter.

2.3.1.3 Spatial filtering

In the past years, spatial filtering has been used in the BCI context especially for source
localization in EEG recordings. In particular, the surface Laplacian is a technique which
is applied in order to improve the spatial resolution of electroencephalographic signals.
Through a liner combination of the input channels, the filtering process results in a single
virtual channel (later referred as surrogate channel) which contains greater spatial in-
formation than the raw potentials measured by EEG montages [Bradshaw and Wikswo,
2001].
A spatial filter is defined and changes its characteristics depending on its set of coeffi-
cients. In this study, two different spatial filters were investigated: a Laplacian spatial
filter (LSF) and an optimal spatial filter (OSF) [Niazi et al., 2011].
The two spatial filters (LSF and OSF, see next paragraph) were applied on the pre-
processed data (both iEEG channels and EEG channels) and resulted in a surrogate
channel for each one of them.
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Laplacian filter The Laplacian filter has fixed coefficients. The channel coefficients
used in this study, were:

xi =
{

1, i = 1
− 1

(Nch−1)) , ∀i 6= 1,

where Nch is the number of channels. Thus, Nch = 7 for the iEEG data and Nch = 9
for the scalp EEG. The sum of the Nch coefficients was zero so that the spatial dc (mean
value of the waveform) components were rejected [Niazi et al., 2011]. Channel 1, which
has weight equal to 1 in the Laplacian filter (x1 = 1), was chosen and changed according
to the type of data which was processed.

As for iEEG data, channel 1 was chosen empirically among the sources located in
the frontal areas and above the motor cortex. Because of their location, a preference was
initially reserved to M and N electrodes (see figure 2.8 for detailed position). As it could
be expected, the signal recorded from these sites presented a good source of information
about the movement phase (after the ’go’ signal in the protocol), but they did not show
the MRCP negativity phase. A more recurrent negative phase was instead present in a
channel located on electrode F, placed over the frontal lobe of the brain. A preliminary
analysis was anyway conducted and confirmed that channel F performed from 0 % up
to 10-15 % better in terms of TPR compared to channels located in M or N (see section
2.3.1.4). Thus, the channel in the F electrode was finally chosen as channel 1 for the
Laplacian filter for the final analysis.

As for the scalp EEG, instead, channel 1 corresponded to C1 for right hand move-
ments and C3 for left hand movement. As shown in figure 2.9, C1 and C3 were respec-
tively at the center of the of the two sets of electrodes positioned contralaterally with
respect to the hand used during the task. Their positions, overlaying the hand area in
the brain, were the ones that could most likely provide a good source of information
[Ramoser et al., 2000].
Here follows an example for the scalp EEG data (right hand movement):

surrogate channel =
[
x1 x2 ... xNch

] 
channel C1
channel C3

...
channel Pz


Optimized Laplacian Filter The Optimal Spatial Filter (OSF) provides an opti-
mized coefficient set so to maximize the signal-to-noise ratio in the surrogate channel.
The filter coefficients were optimized on the data set with the following procedure. First,
’signal’ epochs of about 1 s were selected (approximately equal to the entire MRCP
length). These epochs contained the initial negative phase of the MRCP. More precisely,
they started from the beginning of the negativity phase of the MRCP and finished shortly
before its peak positivity in the movement period. Then, ’noise’ epochs of 1 second (by
protocol it corresponded to the whole rest period) were selected.
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The aim of the optimization process was to find a set of channels that maximizes the
’signal’ energy while minimizing the ’noise’ energy, with the constraint that the sum of
the coefficients was zero. This can be translated in maximizing the SNR, which was
calculated as:

SNR = Psignal

Pnoise
,

where Psignal and Pnoise are respectively the power of the signal and noise.
A quasi-Newton method was used for the optimization and the BFGS (Broyden–Fletcher–Goldfarb–Shanno)
method was applied for the Hessian update. From an initial guess, a series of steps were
repeated iteratively until the set of the filter coefficients x converged to the solution. The
initial vector of coefficients x0 was based on the EEG large Laplacian montage [Niazi
et al., 2011].
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Figure 2.10: Normalized epoch traces (mean over all the epochs) for the movement in the ’up’ direction,
with the left hand (iEEG data). The plot displays the raw signal and the two spacial filters outputs.
More precisely: (a) normalized ’raw’ signal (after preprocessing) acquired from the ’channel 1’ of the
Laplacian filtering (coefficient x1 = 1)(’Raw’, dotted line), (b) normalized surrogate channel of the
Laplacian filter (’LSF’, dashed line), and (c) normalized surrogate channel of the Optimized Spacial
Filter (’OSF’, continuous line). The vertical dashed lines correspond to the ’visual cue’ and the ’go
signal’,respectively.
The descending phase of the MRCP was later used as template for the movement detection.
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Figure 2.11: Normalized epoch traces (mean over all the epochs) for the movement in the ’up’ direction,
with the left hand (scalp EEG data recorded from subject no. 2). The plot displays the raw signal and
the two spacial filters outputs. More precisely: (a) normalized ’raw’ signal (after preprocessing) acquired
from the ’channel 1’ of the Laplacian filtering (coefficient x1 = 1)(’Raw’, dotted line), (b) normalized
surrogate channel of the Laplacian filter (’LSF’, dashed line), and (c) normalized surrogate channel of
the Optimized Spacial Filter (’OSF’, continuous line). The vertical dashed lines correspond to the ’visual
cue’ and the ’go signal’,respectively.
The descending phase of the MRCP was later used as template for the movement detection.

2.3.1.4 Template extraction and movement intention detection

The template was built on the descending phase of the MRCP extracted from the training
data (referred to leave one-out cross-validation) of the surrogate channels of the two
differnt filters (LSF and OSF), allowing later comparison. Then, through cross-validation
(using the leave-one-out technique, see D.2.5) between template and testing signal epochs
was calculated and a ROC curve was built. The ROC allowed to measure the true
positive rate and false positive rate of the movement intention detection. The threshold
for the cross-correlation, above which a ’detection’ occurred, was selected on the midpoint
of the turning phase of the ROC. This allowed to obtain a balance between number of
correct detections and number of false positives.

Template extraction The templates were obtained from the OSF and LSF surrogate
channels, averaging the epochs of the training set, and then extracting the MRCP portion
of interest: from about the start of the depression phase till the negativity peak (see
figure 2.12). The length of this template was in most cases of less or equal to 1 second
of signal, depending on the subject, the hand and the movement in question.
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Figure 2.12: Example of template extracted from the training set (subject 2, left hand movement in the
’up’ direction from scalp EEG data). The template corresponds to the descending phase of the MRCP
(thick line).

Movement detection For the movement detection, a leave-one-out cross-validation
approach was used (more information can be found in section D.2.5). The cross-
correlation between the template (built on the training data) and testing epoch was
calculated. After setting a certain threshold, the true and false positive rates could be
measured. The TPR and FPR were calculated as:

TPR = tp/(tp+ fn), FPR = fp/(fp+ tn),

where tp, tn, fp, fn indicate the number of true positives, true negatives, false positives
and false negatives, respectively.

• tp (true positive): a movement is detected in the ’signal’ portion of the epoch (in
the protocol it corresponded to ’preparation’ + ’movement’ phase)

• tn (true negative): an absence of movement is detected in the ’noise’ portion of
the epoch (’rest period’ in the protocol description)

• fp (false positive): a movement is detected in the ’noise’ portion of the epoch

• fn (false negative): absence of movement is detected in the ’signal’ portion of the
epoch

The "detection" corresponded to finding a cross-correlation value higher than the set
threshold.
The process was repeated with different threshold values, and resulted in a receiver
operating characteristic (ROC). Finally the "optimal" threshold was chosen as the one
that allowed to obtain the highest number of correct movement detections while having
the lowest of incorrect detections; this translated in reaching the highest TPR while
minimizing the FPR. It was decided to identified the ’optimal’ threshold as the one
which provides the nearest value (Euclidean distance) to (TPR,FPR) = (100%, 0%) in
the ROC curve. This value lay in the well known midpoint of the turning phase of the
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ROC. By doing this, a balance between TPR and FPR can be obtained.
After selecting the optimal threshold, the corresponding optimal TPR and FPR were
calculated. They represented a measure of the movement intention detection accuracy.

Figure 2.13: Example of cross correlation signal between template and the portion of the ’signal’
portion of one epoch. The dotted red line shows the optimal threshold. In this case, the graph shows a
tp.

Artificially generated noise By protocol, the rest period (here referred also as ’noise’
signal) lasted 1 second. This duration is almost three times shorter than the remaining
part of the signal (2.9 sec) and it is nearly the same as the MRCP template. Thus, it is
probably not long enough to lead to a correct detection accuracy. In order to obtain a
more realistic result, epochs of artificial noise of the same length of the rest of the epoch
(2.9 sec) were generated.
This was done estimating an auto-regressive (AR) model of every ’noise’ epoch and using
it to build new noise for the epoch under exam, in place of the real noise. By doing this,
the new ’noise’ and ’signal’ portions were of the same length.
The order of the model was set using the Akaike Final Prediction Error estimate (FPE).
When the FPE did not improve in a significant way, the model could not be enhanced
by incrementing its order. Using this criteria, the order was set at 15, with the provided
set of data. Burger’s method, which has been proved to be a valid method to estimate
the parameters of an AR model, was used [De Hoon et al., 1996].
Since the AR model input was white noise, the noise estimate was slightly different every
time the algorithm was run. The TPR and FPR, which changed in the same way, were
thus calculated as the mean over the values of TPRs and FPRs obtained by running the
algorithm 10 times.
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Figure 2.14: The figure shows an example of ROC curve, which gives direct information about the
detection accuracy.
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2.3.2 Movement direction classification

Both iEEG and scalp EEG recordings were cleaned from artifacts as described in section
2.2. The time-frequency approach was mainly used to investigate the decoding accuracy
of the movement direction (for two and four directions). Other types of analyses were
conducted on the decoding of movement intention and the discrimination of the hand
used during the task, comparing both the data of the preparation period and movement
period to the rest period.
First, normalized time-frequency maps of the power spectral density of the epochs were
built for each electrode, then features were extracted from the maps and finally used for
classification. Four classification algorithms were used and compared for this purpose:
linear discriminant analysis (LDA), support vector machine (SVM), k-nearest neighbor
(kNN) and neural network (NN) (see figure 2.15).
Following, each one of the mentioned steps is explained in detail.

Bipolarization

TF maps

Normalization

Detrend

Features extraction

Classification

LDA SVM kNN NN

Remove
artifacts

EEG

Remove
artifacts

iEEG

EEG data

Figure 2.15: The flux diagram presents the methods used for the time-frequency analysis. (1) pre-
processing: detrend and bipolarization, (2) time-frequency (TF) maps and normalization, (3) feature
extraction, (4) classification with different methods: linear discriminant analysis (LDA), support vector
machine (SVM), k-nearest neighbour (kNN), neural network (NN). The artifacts removal is performed
at different levels with respect to the origin of the recordings.
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2.3.2.1 Time-frequency maps

Time-frequency (TF) maps of the Power Spectral Density (PSD) for each channel and
epoch were calculated using the wavelet transform. Despite a demanding computation,
wavelet transform ensures better resolution for both time and frequency compared to the
windowed Fourier transform (see appendix D.1). Furthermore, the computational issue
was of minor importance because the analysis was performed offline. Morlet windows
were used for the wavelet transform, as they are the most used in the BCI context. In
figure 2.16 there is an example of how a TF map looked like.

Figure 2.16: Example of a TF map. The effect of wavelet transform in high frequencies (stretching)
and low frequencies (crushing) is evident. Note the increase of power in the high frequencies during
preparation and the movement, while the power of the intermediate frequency band decreases. The
power of the very low frequencies is particularly high during the movement preparation. Vertical black
lines are the visual cue and the go signal, respectively.

Normalization In order to enhance the relative power within an epoch, the power
spectra was normalized with the following method:

TF − baseline
baseline

,

where the baseline represents the PSD at rest (corresponding, by protocol, to the first
second of the epoch). The power spectral density was first divided in frequency bins
of 1 Hz. Then, the PSDs of each frequency bin are subtracted and then dived by the
baseline PSD of the corresponding bin. TF maps were calculated in order to extracte
the features of interest for the classification.
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2.3.2.2 Feature extraction

Averaged PSD values in certain time and frequency windows were chosen as the fea-
tures. The selected time-windows were common for iEEG and scalp EEG data: 100-800
ms for the rest period, 1000-2300 ms for the preparation period and 2700-3700 ms for
the movement period. Because of the different nature of the recordings, instead, the
frequency ranges choice was treated separately.

Usual frequency bands are extensively referenced in the iEEG-related literature.
Normally, frequencies up to 200 Hz can be used for iEEG avoiding major noise issues
([Leuthardt et al., 2004]).
Using multiple references, the following frequency ranges were chosen for iEEG record-
ings: 2-4, 2-7, 4-7, 8-13, 6-30, 15-30, 30-130, 60-130 and 60-160 Hz. Very low and very
high bands (0-2 Hz, 160-200 Hz) were not considered because of the wavelet transform’s
lack of resolution in extreme frequencies ([Leuthardt et al., 2004; Rickert et al., 2005;
Ball et al., 2009; Waldert et al., 2009; Jerbi et al., 2011]).

Usual frequency bands are extensively referenced in the EEG-related literature as
well. Usually, the maximal frequency is around 90 Hz, but recent references report the
use of frequencies up to 150 Hz. The following frequency ranges were selected for scalp
EEG recordings: < 3 Hz, < 5 Hz, < 7 Hz, 2-4 Hz, 10-30 Hz, 15-30 Hz, 30-50 Hz, 60-85
Hz, 62-87 Hz, 50-128 Hz, 30-130 Hz, which was supported by other studies ([Ball et al.,
2008; Waldert et al., 2008, 2009; Jerbi et al., 2011]). The 50-128 Hz and 30-130 Hz were
particularly high, but it was interesting to test them anyway.

2.3.2.3 Classification

Classification algorithms Linear discriminant analysis (LDA), Support Vector Ma-
chine (SVM), k-Nearest Neighbor and Neural Network (NN) were the classification al-
gorithms applied to this study. A supervised approach were employed, since there was
prior knowledge of which sample belonged to which class.
A review wrote by Lotte et al. helped the decision of the classifiers. LDA, RFLDA,
SVM, KNN and Perceptrons provide good results in several studies (see table 2.17).
However, the RFLDA is only useful if the sample size is small compared to the size
of the feature vector [Dai and Yuen, 2003], which is not our case. It should also be
remarked that perceptron does not actually refer to the historical perceptron, but to
pattern recognition feedforward neural networks.
KNN algorithms are not very popular in the BCI community, probably because they are
known to be very sensitive to the dimensionality of the feature space. However, when
used in BCI systems with low-dimensionality feature vectors, kNN can be efficient [Lotte
et al., 2007]. Due to its low computational requirements and good performance, LDA
is particularly well suited for online classification or multi-class analysis [Lotte et al.,
2007]. In addition, many references use LDA for the classification of hand movement
using EEG signals [Rickert et al., 2005; Mehring et al., 2004]. As mentioned above,
NN was also included. More precisely, a four-layer feedforward neural network, using a
widespread supervised training method called back-propagation, was used.
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Figure 2.17: Accuracy of classifiers in movement intention based BCI [Lotte et al., 2007].

Evaluation of the classifier performances The limited amount of data suggested
the application of a method that reuses the training data for the testing. The popular
leave-one-out cross-validation was selected for this purpose.
The decoding accuracy (DA) was picked as the parameter used to characterize the clas-
sifier performances. The DA is defined as the percentage of correctly decoded trials
(samples, epochs) over the total number of the trials:

DA = Nc

N
,

where Nc is the number of samples which is correctly classified and N is the total
number of samples [Waldert et al., 2009; Mehring et al., 2004].

2.3.2.4 Classification on iEEG recordings

As the iEEG data was available from the beginning, a deeper and more extensive exam-
ination was operated. In order to select the channels on which to run a more detailed
analysis (see the end of this section), the following hypothesis was made: if a good DA
for a couple channel-task (e.g. channel 1 is good to discriminate the 4 movements task)
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can be found using a large time window, the DA could be improved by choosing differ-
ent time windows, other frequency bands or by using a multi-feature approach, for the
same couple channel-task. On the contrary, a good DA using a narrow time-window will
not necessarily lead to a better DA on a wider one. As a result, the first analysis was
performed on the widest time-windows.
The main goal of this first analysis was to find the channels which provided the best
results for each classification method. In fact, at the end of this procedure, the three
best channels were kept aside for further investigation. Besides that, a secondary goal
was to provide a comparison of the different classifiers and their parameters, e.g. the
parameter k in kNN. K = 3 was chosen as it can provide great sensitivity, and k = 5
because it can be more robust to the noise.
Following, you can find a summary of the methods used for this analysis:

• ’subtraction and division by baseline’ normalization

• investigation of all the channels (91)

• use of the largest time windows: 100-800 ms, 1000-2300 ms and 2700-3700 ms for
the rest, preparation and movement period, respectively)

• single-feature analysis

• LDA, SVM, kNN (k=3 and k=5) classification algorithms

Regarding NN, due to long computation time, an extensive analysis as was done on
LDA, SVM and kNN was impossible (more than 10 days of computation). As a result, it
was decided to test the NN only on the best features (couples channel-frequency range)
for each task of both LDA and kNN.

This time-frequency approach was not only used to find the decoding accuracy of the
movement direction, both for two directiona (discrimination between movement towards
’up’ direction vs ’down’ direction) and for four directions (discrimination of movements
towards ’up’, ’left’, ’right’ and ’down’ direction), but also to examine the decoding of
movement intention (comparing rest vs preparation period and rest vs movement period)
and the discrimination of the hand used during the task (comparing the two different
preparation periods for the left hand vs right hand, as well as the two movement periods).

Further analysis was conducted on the iEEG recordings. Unless otherwise specified,
these analyses were not conducted from scratch on each channel, but rather on the three
channels which gave the best DA with the procedure described above.

Influence of the normalization In addition to the ’subtraction and division by
baseline’ method, the following were also studied on kNN (k=3) and LDA:

• absence of normalization

• TF − baseline

• T F
baseline
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Time-windows influence For each period of the task, other two shorter time windows
besides the largest were considered: 100-500 ms and 400-800 ms for the rest period; 1000-
1400 ms and 200-2500 ms for the preparation period; 2500-300 ms and 3200-3700 ms for
the movement period.

Two-feature analysis Multi-feature approaches are highly referenced in literature, so
a two-feature analysis (two different frequency ranges at the same time) was conducted
on LDA and kNN. The DA was obtained by examining only the three best channels
provided by the first single-feature analysis, but did not lead to a better DA. This was
quite unexpected, thus a second analysis from scratch scanning all the possible channels
was performed with LDA (the DA, indeed, improved using this approach).

Combination of channels The signals supplied by the three channels found in the
first classification analysis were combined by summation as follows: chann1 + chann2,
chann2 + chann3, chann3 + chann1, chann1 + chann2 + chann3, with the aim of
improving the DA.

2.3.2.5 Classification on scalp EEG recordings

As scalp EEG recordings have been performed in the last weeks of the project, the
results found for intracortical data were applied to scalp EEG classification. So, the
protocol included the use of the ’subtraction and division by the baseline’ normalization
method, the largest time windows (100-800, 1000-2300 and 2700-3700 ms), one feature
(frequency band), a single channel, and LDA and kNN (k=3 and k=5) classification
algorithms. Due to this time issues, SVM an NN were not used.
Further analysis was anyway briefly performed on the first data provided by the Aalborg’s
laboratories (subject 1) and included the use of different time windows and SVM. As for
the time windows, no improvement of the DA was shown. Regarding SVM, instead, the
results were very similar to those provided by LDA, as happened in the iEEG analysis.
So, as SVM was a time consuming algorithm, it was not kept.
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Chapter 3

Results

Time and time-frequency results are successively displayed in this chapter.

3.1 Movement intention detection
In general, the results demonstrated that it is possible to detect voluntary movement
intentions using the descending phase of the MRCPs. The TPR (true positive rate) was
always above 70% (OSF data) and often above 75 %, which roughly translates in the
correct detection of three intended movement out of four. The TPRs sometimes reach
values above 80% or 90% (using real noise and estimated noise, respectively). Most of
the FPRs (false positive rate) were, instead, around 20-25%. Considering the complexity
of the task the subject had to perform, and the amount of ’noise signal’ available, the
results were considered rather satisfactory.

The following tables present the TPRs (%) and FPRs (%) for the datasets already
described in chapter 2. They point out the detection performances on (a) the particular
movement (4 directions) performed by each subject (e.g. movement towards ’down’
direction, with the right hand of subject no. 3), and (b) the combined data that came
from the hand (left and right) of a subject, with no distinction of the direction.
An average over the different movements for every subject can also be evaluated easily
(see tables 3.1, 3.2, 3.5, 3.6 and 3.3, 3.4 3.7, 3.8).
The analysis was performed both on iEEG and EEG data (Tables from 3.1 to 3.4 and
from 3.5 to 3.9, respectively). The detection accuracy has been calculated for two data
sets: the first provided by purely by the recordings unchanged, and the second by using
estimated ’noise signals’ of 3 seconds, built from the ’real’ noise signals (corresponding to
the first second of the recorded epochs). In the latter case, an average of the TPRs and
FPRs has been calculated over the values (TPRs and FPRs) that were given running
the algorithm 10 times. The standard deviation of the mentioned average was not
reported in the tables to avoid confusion and because it was always lower than 5%. As
expected, using only the rest period (or ’real noise’) as the noise signal provided greater
performances.

35
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A comparison between the performance of the two spatial filters is highlighted in the
tables as well, finding no relevant improvement using the OSF. In particular, table 3.9
shows the detection accuracy for the two filters, averaging the TPRs and FPRs over all
the movements and all the subjects.
Finally, Table 3.10 shows the mean over the five subjects for the six tasks (scalp EEG
recordings), using estimated noise.

Since the legend is common for every table, it will be listed here:

• OSF Optimized Spatial Filter

• LSF Laplacian Spatial Filter

• LH Left Hand

• RH Right Hand

• u movement towards ’up’ direction

• d movement towards ’down’ direction

• l movement towards ’left’ direction

• r movement towards ’right’ direction
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Mov. OSF - TPR (%) LSF - TPR (%)

LH_u 84.0 80.0
LH_r 90.0 82.0
LH_d 96.0 82.0
LH_l 90.0 72.0
RH_u 80.0 70.0
RH_r 94.0 80.0
RH_d 86.0 74.0
RH_l 80.0 88.0

sd 6.0 6.0
Mean 87.5 78.5

Mov. OSF - FPR (%) LSF - FPR (%)

LH_u 18.0 20.0
LH_r 12.0 24.0
LH_d 30.0 26.0
LH_l 12.0 10.0
RH_u 18.0 32.0
RH_r 18.0 24.0
RH_d 32.0 38.0
RH_l 20.0 32.0

sd 7.4 8.6
Mean 20.0 25.8

Table 3.1: The table shows the detection accuracy for the iEEG data for the particular movement task
performed by the subject.
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Mov. OSF - TPR (%) LSF - TPR (%)

LH_u 79.9 70.1
LH_r 79.6 74.1
LH_d 71.4 81.5
LH_l 81.5 69.9
RH_u 72.7 78.0
RH_r 73.4 75.3
RH_d 68.3 72.4
RH_l 75.0 77.9

sd 4.7 4.1
Mean 75.2 74.9

Mov. OSF - FPR (%) LSF - FPR (%)

LH_u 26.7 38.9
LH_r 34.7 42.2
LH_d 34.4 36.7
LH_l 29.3 32.8
RH_u 34.8 45.6
RH_r 35.0 38.2
RH_d 52.5 43.6
RH_l 31.4 41.1

sd 7.8 4.1
Mean 34.9 39.9

Table 3.2: The table shows the detection accuracy for the iEEG data for the particular movement task
performed by the subject, using estimated noise signal for the analysis.
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Mov. OSF - TPR (%) LSF - TPR (%)

LH 81.5 84.5
RH 83.0 83.0

sd 1.1 1.1
Mean 82.3 83.8

Mov. OSF - FPR (%) LSF - FPR (%)

LH 14.5 23.5
RH 20.5 27.0

sd 4.2 2.5
Mean 17.5 25.3

Table 3.3: The table shows the detection accuracy for the iEEG data, for the joined movement tasks
performed by the subject, for both hands.

Mov. OSF - TPR (%) LSF - TPR (%)

LH 75.2 77.9
RH 78.7 80.3

sd 2.5 1.7
Mean 77.0 79.1

Mov. OSF - FPR (%) LSF - FPR (%)

LH 31.9 32.0
RH 35.2 34.3

sd 2.3 1.6
Mean 33.6 33.2

Table 3.4: The table shows the detection accuracy for the iEEG data, for the joined movement tasks
performed by the subject, for both hands, using estimated noise in analysis.
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OSF - TPR (%) LSF - TPR (%)

Mov. sub1 sub2 sub3 sub4 sub5 sub1 sub2 sub3 sub4 sub5

LH_u 66.3 60.0 76.6 57.1 71.7 70.4 64.7 64.9 66.3 71.7
LH_d 83.4 79.3 61.3 77.9 77.3 63.6 70.1 54.8 72.6 75.3
RH_u 70.4 87.8 69.0 75.2 81.0 68.4 79.6 75.0 65.0 66.0
RH_r 69.0 72.4 72.2 84.0 91.2 75.0 78.6 58.8 69.0 84.3
RH_d 63.3 78.8 75.3 65.0 86.5 79.6 88.9 69.1 65.0 64.4
RH_l 69.4 81.2 85.7 82.0 78.8 80.6 68.7 65.3 64.0 73.1

sd 6.9 9.5 8.2 10.4 6.9 6.7 8.9 7.2 3.3 7.2
Mean 70.3 76.6 73.4 73.5 81.1 72.9 75.1 64.7 67.0 72.5

OSF - FPR (%) LSF - FPR (%)

Mov. sub1 sub2 sub3 sub4 sub5 sub1 sub2 sub3 sub4 sub5

LH_u 45.9 31.8 45.7 27.6 44.6 45.9 36.5 40.4 36.7 29.3
LH_d 21.2 44.8 35.4 42.1 26.8 33.3 51.7 37.6 35.8 39.1
RH_u 17.3 25.5 24.0 30.9 21.0 27.6 34.7 50.0 25.8 38.0
RH_r 27.0 27.6 26.8 27.0 3.9 31.0 35.7 21.6 34.0 17.6
RH_d 33.7 20.2 29.9 36.0 19.2 19.4 39.4 27.8 27.0 50.0
RH_l 48.0 36.4 32.7 26.0 22.1 21.4 25.2 18.3 23.0 52.9

sd 11.3 9.3 8.6 6.3 14.7 9.6 7.0 11.1 5.1 12.1
Mean 32.2 31.1 32.4 31.6 22.9 29.8 37.2 32.6 30.4 37.8

Table 3.5: The table shows the detection accuracy for the scalp EEG data for the particular movement
task performed by the subject.
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OSF - TPR (%) LSF - TPR (%)

Mov. sub1 sub2 sub3 sub4 sub5 sub1 sub2 sub3 sub4 sub5

LH_u 70.0 62.0 73.7 65.3 65.7 73.8 62.6 65.1 58.1 69.3
LH_d 80.9 84.8 72.8 70.6 69.6 56.4 84.0 57.7 66.1 63.7
RH_u 76.7 78.0 69.7 69.8 75.9 68.8 79.0 76.7 63.6 58.3
RH_r 81.4 77.1 80.7 69.2 86.1 80.0 78.3 66.5 69.3 77.2
RH_d 57.7 77.0 70.0 78.5 78.8 68.6 85.1 64.1 64.4 64.6
RH_l 61.2 64.7 60.7 69.0 72.0 73.2 74.6 60.5 64.6 66.0

sd 10.1 8.7 6.5 4.4 7.2 7.9 8.2 6.5 3.7 6.3
Mean 71.3 73.9 71.3 70.4 74.7 70.1 77.3 65.1 64.4 66.5

OSF - FPR (%) LSF - FPR (%)

Mov. sub1 sub2 sub3 sub4 sub5 sub1 sub2 sub3 sub4 sub5

LH_u 40.1 20.2 32.2 28.7 19.7 19.8 18.8 17.1 16.9 23.6
LH_d 30.0 19.3 27.8 33.4 22.2 23.3 29.4 32.7 30.8 28.2
RH_u 19.4 22.2 16.9 21.6 21.5 18.0 25.3 25.1 22.5 21.8
RH_r 26.5 22.1 25.6 25.9 17.5 15.3 23.1 24.0 22.5 21.5
RH_d 20.4 18.3 23.3 23.3 17.2 19.8 25.1 24.7 19.5 29.9
RH_l 31.9 29.6 22.4 25.1 25.0 24.2 25.0 25.6 24.8 32.4

sd 7.7 4.1 5.2 4.2 3.0 3.3 3.5 5.0 4.8 4.6
Mean 28.1 22.0 24.7 26.3 20.5 20.1 24.5 24.9 22.8 26.2

Table 3.6: The table shows the detection accuracy for the scalp EEG data for the particular movement
task performed by the subject, using estimated noise signal for the analysis.
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OSF - TPR (%) LSF - TPR (%)

Mov. sub 1 sub 2 sub3 sub4 sub5 sub 1 sub 2 sub3 sub4 sub5

LH 74.5 87.8 70.0 84.0 81.0 69.4 79.6 78.0 69.0 66.0
RH 75.0 72.4 72.1 75.3 91.2 80.0 78.6 58.8 64.9 84.3

sd 0.4 10.9 1.5 6.2 7.2 7.5 0.7 13.6 2.9 12.9
Mean 74.8 80.1 71.1 79.7 86.1 74.7 79.1 68.4 67.0 75.2

OSF - FPR (%) LSF - FPR (%)

Mov. sub 1 sub 2 sub3 sub4 sub5 sub 1 sub 2 sub3 sub4 sub5

LH 24.5 25.5 23.0 27.0 21.0 23.5 34.7 51.0 34.0 38.0
RH 35.0 27.6 27.8 30.1 3.9 35.0 35.7 21.6 25.8 17.6

sd 7.4 1.5 3.4 2.2 12.1 8.1 0.7 20.8 5.8 14.4
Mean 29.8 26.6 25.4 28.6 12.5 29.3 35.2 36.3 29.9 27.8

Table 3.7: The table shows the detection accuracy for the iEEG data, for the joined movement tasks
performed by the subject, for both hands.

OSF - TPR (%) LSF - TPR (%)

Mov. sub 1 sub 2 sub3 sub4 sub5 sub 1 sub 2 sub3 sub4 sub5

LH 80.8 76.7 67.3 69.8 76.4 69.4 81.0 76.0 63.9 58.5
RH 74.4 76.2 80.1 72.4 85.1 82.7 78.0 66.3 69.1 76.4

sd 4.5 0.4 9.1 1.8 6.2 9.4 2.1 6.9 3.7 12.7
Mean 77.6 76.5 73.7 71.1 80.8 76.1 79.5 71.2 66.5 67.5

OSF - FPR (%) LSF - FPR (%)

Mov. sub 1 sub 2 sub3 sub4 sub5 sub 1 sub 2 sub3 sub4 sub5

LH 29.8 23.2 16.8 24.3 24.3 24.2 28.1 25.5 22.3 20.4
RH 25.8 19.8 26.3 29.1 19.5 19.7 21.5 26.6 22.4 20.1

sd 2.8 2.4 6.7 3.4 3.4 3.2 4.7 0.8 0.1 0.2
Mean 27.8 21.5 21.6 26.7 21.9 22.0 24.8 26.1 22.4 20.3

Table 3.8: The table shows the detection accuracy for the iEEG data, for the joined movement tasks
performed by the subject, for both hands, using estimated noise in analysis.
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TPR (%) FPR (%)

OSF LSF OSF LSF

72.3 69.7 24.3 23.2

Table 3.9: Mean over all the movement tasks and all the subjects, for the same spatial filter (estimated
noise data)

TPR (%) FPR (%)

Mov. OSF LSF OSF LSF

LH_u 67.3 65.8 28.2 19.2
LH_d 75.7 65.6 26.5 28.9
RH_u 74.0 69.3 20.3 22.5
RH_r 78.9 74.3 23.5 21.3
RH_d 72.4 69.4 20.5 23.8
RH_l 65.5 67.8 26.8 26.4

Table 3.10: The table shows the mean over the five subjects of the everyone of the six tasks performed
during scalp EEG recordings (estimated noise data).
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3.2 Movement direction classification

3.2.1 iEEG data

The following tables display the results of the decoding accuracy (DA) obtained from
the first analysis performed on iEEG recordings (see section 2.3.2). A summary of the
analysis can be found in figures 3.4 and 3.5, which respectively display the best DAs found
for each comparative analysis and each classifier, and the number of occurrences of each
frequency band which belongs to the best discriminant features across the classifiers.
Some representative TF-maps are reported in figures 3.6, 3.7 and 3.8.

LDA SVM
DA(%) freq. band (Hz) chann. DA(%) freq. band (Hz) chann.

RM 82.25 60-130 v14-v13 86 2-7 i2-i1
RP 81.5 6-30 b2-b1 86.25 2-7 v14-v13
LRM 67 60-160 u2-u1 67 60-160 u2-u1
LRP 64 60-130 v3-v2 63 60-130 v3-v2
UDM 66 60-160 g13-g12 65 60-160 g13-g12
UDP 64 8-13 u2-u1 63 2-4 x14-x13
4M 36 15-30 o10-o9
4P 35 30-130 x14-x13

Figure 3.1: For LDA and SVM classifiers, the best decoding accuracy (DA) found using all channels
and all the frequency bands is displayed. The type of analysis is shown in the first column. RM: rest vs
movement; RP: rest vs preparation; LRM: left vs right hand, using the movement period; LRP: left vs
right hand, using the preparation period; UDM: movement towards ’up’ direction vs movement towards
’down’ direction, using the movement period; UDP: movement towards ’up’ direction vs movement to-
wards ’down’ direction, using the preparation period; 4M: 4-directions classification, using the movement
period; 4P: 4-directions classification, using the preparation period.
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kNN, k=3 kNN, k=5
DA(%) freq. band (Hz) chann. DA(%) freq. band (Hz) chann.

RM 99.5 60-130 x13-x12 99 15-30 g14-g13
RP 99.75 2-7 k11-k10 98.75 30-130 m11-m10
LRM 78 8-13 f3-f2 78 8-13 f3-f2
LRP 71 2-7 e8-e7 69 60-160 o9-o8
UDM 73 15-30 q7-q6 66 60-130 v2-v1
UDP 68 2-4 e6-e5 71 4-7 o2-o1
4M 37 60-130 f9-f8 40.5 15-30 o9-o8
4P 40 2-7 q8-q7 36.5 2-7 e8-e7

Figure 3.2: For kNN classifiers (k=3 and k=5), the best decoding accuracy (DA) found using all chan-
nels and all the frequency bands is displayed. The type of analysis is shown in the first column. RM:
rest vs movement; RP: rest vs preparation; LRM: left vs right hand, using the movement period; LRP:
left vs right hand, using the preparation period; UDM: movement towards ’up’ direction vs movement
towards ’down’ direction, using the movement period; UDP: movement towards ’up’ direction vs move-
ment towards ’down’ direction, using the preparation period; 4M: 4-directions classification, using the
movement period; 4P: 4-directions classification, using the preparation period.

NN for LDA NN for kNN
DA(%) DA(%)

RM 95.7 95.7
RP 95.2 94
LRM 55 50
LRP 59 44
UDM 50 50
UDP 50 41

Figure 3.3: For NN, the decoding accuracy (DA) found using only the couple channel-frequency that
leads to the best DA with the previous analyses conducted using LDA and kNN (k=3) is displayed. The
type of analysis is shown in the first column. RM: rest vs movement; RP: rest vs preparation; LRM: left
vs right hand, using the movement period; LRP: left vs right hand, using the preparation period; UDM:
movement towards ’up’ direction vs movement towards ’down’ direction, using the movement period;
UDP: movement towards ’up’ direction vs movement towards ’down’ direction, using the preparation
period.
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Figure 3.4: Best decoding accuracy (DA) found for each type of analysis and each classifier. For
the NN classifier, the average of the DA found with NN-LDA and NN-kNN is displayed (see figure
3.3). RM: rest vs movement; RP: rest vs preparation; LRM: left vs right hand, using the movement
period; LRP: left vs right hand, using the preparation period; UDM: movement towards ’up’ direction vs
movement towards ’down’ direction, using the movement period; UDP: movement towards ’up’ direction
vs movement towards ’down’ direction, using the preparation period; 4M: 4-directions classification,
using the movement period; 4P: 4-directions classification, using the preparation period.

Figure 3.5: Number of occurrences of each frequency band which belongs to the best discriminant
features across the classifiers.
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Figure 3.6: Averaged time-frequency map across all the events and all the epochs of channel v14-v13.
Note how the power in high and low frequencies increases during the preparation and the movement
period. This channel yields to a DA = 82.25% for rest vs movement using the 60-130 Hz frequency band
and LDA, and a DA = 86.25% for rest vs preparation using the 2-7 Hz and SVM.

Figure 3.7: The figure displays the subtraction of the averaged (on all the epochs) time-frequency maps
of movement towards ’up’ direction and towards ’down’ direction (channel o2-o1). We notice an increase
of power in the 2-5 Hz frequency band and a decrease of power in the 5-8 Hz frequency band during
the preparation period, and an increase of power in 3-7 Hz frequency band during the movement. This
channel yields to a DA = 71% movement towards ’up’ direction vs movement towards ’down’ direction,
using the preparation period, 4-7 Hz frequency band, and kNN (k=5).
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Figure 3.8: The figure displays the subtraction of the averaged (on all the epochs) time-frequency maps
of left vs right hand (channel u2-u1). This channel yields to a DA = 67% using the preparation period,
60-160 Hz frequency band, LDA and SVM.

3.2.1.1 Influence of normalization

The influence of the absence and three types of normalization for kNN (k=3) and LDA
classifiers is displayed in tables 3.9 and 3.10, respectively (see section 2.3.2.4 for details
on the normalization techniques). The ’subtraction and then division by the baseline’
method, provided the best results in terms of DA. This method and the ’division by the
baseline’ method led to very similar DAs (but different TF maps). Results using SVM
are also very similar to the ones obtained with LDA. Thus, the results regarding the
normalization method 2) and using SVM classification are not displayed.
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kNN, k=3
no norm. sub. & div. sub.

DA(%) / chann. DA(%) / chann. DA(%) / chann.
RM 57/x13-x12 99.5/x13-x12 99/n14-n13
RP 58.75/h13-h12 99.25/v3-v2 99.25/g14-g13
LRM 68/e8-e7 78/e8-e7 64/q3-q2
LRP 64/f3-f4 71/f3-f4 62/i5-i4
UDM 61/e12-e11 73/q7-q6 62/q7-q6
UDP 63/b3-b2 68/e6-e5 66/f11-f10
4M 32/v3-v2 37/q8-q7 34.5/q8-q7
4P 33/f9-f8 40/f9-f8 32.5/e7-e5

Figure 3.9: The best DA and the corresponding channel are displayed for kNN (k=3) classification. No
norm: absence of normalization; sub & div: subtraction and division by the baseline; sub: subtraction
of the baseline. RM: rest vs movement; RP: rest vs preparation; LRM: left vs right hand, using the
movement period; LRP: left vs right hand, using the preparation period; UDM: movement towards ’up’
direction vs movement towards ’down’ direction, using the movement period; UDP: movement towards
’up’ direction vs movement towards ’down’ direction, using the preparation period, 4P: 4-directions
classification, using the preparation period.

LDA
no norm. sub. & div. sub.

DA(%) / chann. DA(%) / chann. DA(%) / chann.
RM 66.5/l14-l13 82.25/k7-k6 83.75/v14-v13
RP 58.75/b2-b1 81.5/b2-b1 80.25/b2-b1
LRM 64/u7-u6 67/v3-v2 66/v3-v2
LRP 62/e3-e2 64/u2-u1 62/e3-e2
UDM 62/i4-i3 66/g13-g12 63/v2-v1
UDP 60/x14-x13 64/u2-u1 60/u2-u1
4M 33/x14-x13 29.5/x14-x13 33/x14-x13
4P 32.5/o10-o9 35/o10-o9 31.5/o10-o9

Figure 3.10: The best DA and the corresponding channel are displayed for LDA classification. No
norm: absence of normalization; sub & div: subtraction and division by the baseline; sub: subtraction
of the baseline. RM: rest vs movement; RP: rest vs preparation; LRM: left vs right hand, using the
movement period; LRP: left vs right hand, using the preparation period; UDM: movement towards ’up’
direction vs movement towards ’down’ direction, using the movement period; UDP: movement towards
’up’ direction vs movement towards ’down’ direction, using the preparation period, 4P: 4-directions
classification, using the preparation period.
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3.2.1.2 Time windows influence

The time-windows influence on the feature choice process was evaluated by calculating
the DA for LDA and kNN (k=3) classification (see figures 3.12 and 3.11, respectively)
using several combinations of the time-windows for each period of the task. They were
100-500 ms, 100-800 ms and 400-800 ms for the rest period; 1000-1400 ms, 1000-2300
ms and 2000-2500 ms for the preparation period; 2500-3000 ms, 2700-3700 ms and 3200-
3700 ms for the movement period. Large time windows (222 in the tables) led to the
best DA. See section 2.3.2.4 for further information.

kNN, k=3
111 122 133 211 222 233 311 322 333

DA(%) DA(%) DA(%) DA(%) DA(%) DA(%) DA(%) DA(%) DA(%)
RM 98.5 98.75 99 98.75 99.5 98.75 99 99.25 99.25
RP 98.75 99 99 99 99.75 99 98.75 99.25 99
LRM 62 65 63 62 78 60 62 57 63
LRP 61 64 69 73 71 65 60 69 64
UDM 65 64 63 63 73 63 59 61 65
UDP 64 58 67 62 69 62 64 65 58
4M 31.5 33 31 34.5 37 32.5 30 32 31
4P 33 30.5 31 31 40 32 31 33 30

Figure 3.11: The table displays the best DA found for each type of analysis and several windows
combinations for kNN (k=3). The considered time windows are referenced as a code of three numbers,
where the position of the digit corresponds to the period and the digit itself corresponds to the chosen
time-window among the three of them (with respect to the period). E.g., 122 means: 122 first time
window for the rest period (100-500 ms); 122 second time window for the preparation period (2700-3700
ms) and 122 the second time window for the movement period (2700-3700 ms). Other notations remain
the same.
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LDA
111 122 133 211 222 233 311 322 333

DA(%) DA(%) DA(%) DA(%) DA(%) DA(%) DA(%) DA(%) DA(%)
RM 78.75 81.75 81.75 77.5 82.25 80.25 81.25 79.75 83.25
RP 81 81.25 78.75 77.75 81.5 80.75 79 79.25 82
LRM 60 62 63 61 67 66 62 64 65
LRP 64 61 62 61 64 61 63 59 61
UDM 59 67 62 61 64 61 60 64 65
UDP 61 60 61 61 64 61 58 64 62
4M 31 32.5 32.5 30.5 36 32.5 30 31.5 34
4P 31.5 30.5 30 32 33 33.5 32.5 36 33

Figure 3.12: The table displays the best DA found for each type of analysis and several windows
combinations for LDA. The considered time windows are referenced as a code of three numbers, where
the position of the digit corresponds to the period and the digit itself corresponds to the chosen time-
window among the three of them (with respect to the period). E.g., 122 means: 122 first time window
for the rest period (100-500 ms); 122 second time window for the preparation period (2700-3700 ms)
and 122 the second time window for the movement period (2700-3700 ms). Other notations remain the
same.

3.2.1.3 Two-feature analysis

The two-feature analysis (two different frequency ranges at the same time) for LDA
and kNN (see figures 3.13 and 3.15, respectively) can be compared with the analysis
performed with a single-feature analysis (see figure 3.1, 3.2 and 3.3). In tables from 3.13
to 3.16, the DA was obtained investigating only the three best channels provided by the
single-feature analysis, while in table 3.17 all the possible channels were used using LDA.
The DA improves only by performing the latter approach. Refer to chapter 2.3.2.4 for
further information.

LDA, 2 features
DA(%) chann. freq.(Hz)

RM 84.25 v14-v14 2-4 – 60-160
RP 82.75 b3-b2 2-7 – 30-130
LRM 66 u2-u1 2-4 – 30-130
LRP 65 g13-g12 4-7 – 60 160
UDM 65 v3-v2 2-4 – 60-160
UDP 68 x14-x13 2-4 – 6-30
4M 33 o10-o9 2-7 – 30-130
4P 36 x14-x13 2-4 – 4-7

Figure 3.13: Display the best results found using LDA with two features applied on the 3 best channels
provided by the single-feature analysis. Other notations remain the same.
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SVM, 2 features
DA(%) chann. freq.(Hz)

RM 88.5 i2-i1 2-7 – 6-30
RP 90 v14-v13 2-7 – 30-130
LRM 66 u2-u1 4-7 – 60-160
LRP 63 v3-v2 2-4 – 60 130
UDM 64 g13-g12 60-130 – 60-160
UDP 66 x14-x13 2-4 – 6-30

Figure 3.14: Display the best results found using SVM with two features applied on the 3 best channels
provided by the single-feature analysis. Other notations remain the same.

kNN, k=3, 2 features
DA(%) chann. freq.(Hz)

RM 97.75 x13-x12 2-4 – 15-30
RP 97.75 v3-v2 15-30 – 30-130
LRM 74 f3-f2 8-13 – 60-160
LRP 66 e8-e7 6-30 – 15-30
UDM 64 n9-n8 2-4 – 30-130
UDP 62 b3-b2 2-4 – 2-7
4M 35 f10-f9 2-7 – 60-160
4P 36 q8-q7 2-7 – 30-130

Figure 3.15: Display the best results found using kNN (k=3) with two features applied on the 3 best
channels provided by the single-feature analysis. Other notations remain the same.

kNN, k=5, 2 features
DA(%) chann. freq.(Hz)

RM 97.75 g14-g13 6-30 – 15-30
RP 98 m11-m10 2-7 – 15-30
LRM 74 f3-f2 8-13 – 60-160
LRP 68 o9-o8 15-30 – 60-130
UDM 64 n9-n8 2-4 – 30-130
UDP 62 n9-n8 6-30 – 30-130
4M 40 g12-g11 4-7 – 60-130
4P 37 e8-e7 2-7 – 30-130

Figure 3.16: Display the best results found using kNN (k=5) with two features applied on the 3 best
channels provided by the single-feature analysis. Other notations remain the same.
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LDA, 2 features
DA(%) chann. freq.(Hz)

RM 84.25 v14-v13 2-4 – 60-160
RP 83.75 v14-v13 2-7 – 60-130
LRM 68 n2-n1 2-7 – 4-7
LRP 66 k12-k11 8-13 – 6-30
UDM 66 o10-o9 2-7 – 30-130
UDP 69 e7-e6 30-130 – 60-160
4M 39.5 z5-z4 8-13 – 6-30
4P 36.5 n10-n9 4-7 – 60-130

Figure 3.17: Display the best results found using LDA with two features applied on the all the channels
("from scratch"). Other notations remain the same.

3.2.1.4 Combination of channels

As reported in section 2.3.2.4, the information supplied by two (or three) channels was
combined by summation of the signals from the channels, for each type of comparison
(RM, RP, LRM, LRP, UDM and UDP), as follows: chann1 + chann2, chann2 + chann3,
chann3 + chann1, chann1 + chann2 + chann3. All the possible combinations of the three
best channels provided by the initial single-feature analysis were investigated on LDA,
SVM and kNN classifiers. Compared to the initial findings, the DA remained the same
or decreased, thus the results are not displayed.

3.2.2 EEG data

The protocol can be found in section 2.3.2.5. The results for the 4-direction classification
were close to the level of the chance (25%) and are consequently not displayed.
The analysis was conducted on the right hand of the 5 subjects (apart when investigating
the classification of the two hands, of course). A summary of the results is displayed in
figures 3.23 and 3.24. Some TF maps are displayed in figures 3.25, 3.26 and 3.27.
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Subject 1
LDA KNN, k=3 KNN, k=5

DA(%) freq.(Hz) chann. DA(%) freq.(Hz) chann. DA(%) freq.(Hz) chann.
RM 81.6 30-130 C3 99.6 60-85 C3 99.5 30-130 C2
RP 81.6 62-87 F3 99.6 15-30 CZ 99.3 2-3 CP1
LRM 65.3 50-128 CZ 63.2 15-30 C1 64.3 15-30 C1
LRP 60.7 62-87 F3 66.3 50-128 CP4 64.3 50-128 C4
UDM 63.8 30-50 FZ 62.2 2-4 F3 63.8 60-85 F1
UDP 58 15-30 CPZ 62.2 50-128 F4 64.8 50-128 F4

Figure 3.18: For LDA classification conducted on subject 1, the best decoding accuracy (DA) found
using all channels and all the frequency bands is displayed. The type of analysis is shown in the first
column. RM: rest vs movement; RP: rest vs preparation; LRM: left vs right hand, using the movement
period; LRP: left vs right hand, using the preparation period; UDM: movement towards ’up’ direction vs
movement towards ’down’ direction, using the movement period; UDP: movement towards ’up’ direction
vs movement towards ’down’ direction, using the preparation period.

Subject 2
LDA KNN, k=3 KNN, k=5

DA(%) freq.(Hz) chann. DA(%) freq.(Hz) chann. DA(%) freq.(Hz) chann.
RM 83.5 30-130 CP1 99.6 15-30 FCZ 99.6 60-85 CP2
RP 79.6 2-7 FC1 99.6 2-4 C3 99.5 4-7 F1
LRM 61.3 30-130 CZ 66.5 4-7 C1 64.4 15-30 C1
LRP 61.3 2-5 FC1 65.5 4-7 C1 64.9 50-128 C1
UDM 60.8 15-30 FZ 63.9 60-85 CP4 64.9 50-128 FC3
UDP 59.8 15-30 F1 62.9 60-85 C1 69 60-85 C1

Figure 3.19: For LDA classification conducted on subject 2, the best decoding accuracy (DA) found
using all channels and all the frequency bands is displayed. The type of analysis is shown in the first
column. RM: rest vs movement; RP: rest vs preparation; LRM: left vs right hand, using the movement
period; LRP: left vs right hand, using the preparation period; UDM: movement towards ’up’ direction vs
movement towards ’down’ direction, using the movement period; UDP: movement towards ’up’ direction
vs movement towards ’down’ direction, using the preparation period.
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Subject 3
LDA KNN, k=3 KNN, k=5

DA(%) freq.(Hz) chann. DA(%) freq.(Hz) chann. DA(%) freq.(Hz) chann.
RM 88.7 15-30 F4 99.7 10-30 C4 99.4 30-130 FC4
RP 79.1 2-7 FC2 99.7 30-130 FCZ 99.3 2-3 FC1
LRM 62.4 30-130 FC1 61.3 4-7 F3 63.9 30-130 F1
LRP 61.3 30-50 CZ 61.9 4-7 F2 63.9 60-85 CP1
UDM 58.2 60-85 F3 63.9 60-85 CPZ 63.4 2-4 FC4
UDP 60.8 62-87 CP3 69 2-3 F3 65.4 2-5 C1

Figure 3.20: For LDA classification conducted on subject 3, the best decoding accuracy (DA) found
using all channels and all the frequency bands is displayed. The type of analysis is shown in the first
column. RM: rest vs movement; RP: rest vs preparation; LRM: left vs right hand, using the movement
period; LRP: left vs right hand, using the preparation period; UDM: movement towards ’up’ direction vs
movement towards ’down’ direction, using the movement period; UDP: movement towards ’up’ direction
vs movement towards ’down’ direction, using the preparation period.

Subject 4
LDA KNN, k=3 KNN, k=5

DA(%) freq.(Hz) chann. DA(%) freq.(Hz) chann. DA(%) freq.(Hz) chann.
RM 78.3 30-130 CZ 99.6 30-50 CP1 99.5 30-50 CP1
RP 79.7 10-30 FZ 99.6 30-50 FC2 99 30-130 FC2
LRM 62.8 30-50 FC2 62.3 30-130 CZ 63.9 30-50 FC2
LRP 60.8 10-30 CZ 64.9 2-7 CP3 66.5 50-128 C3
UDM 62.9 2-5 F1 63.4 30-50 CZ 62.9 2-5 F1
UDP 58.8 10-30 C3 66.5 2-5 FZ 68.6 2-5 FZ

Figure 3.21: For LDA classification conducted on subject 4, the best decoding accuracy (DA) found
using all channels and all the frequency bands is displayed. The type of analysis is shown in the first
column. RM: rest vs movement; RP: rest vs preparation; LRM: left vs right hand, using the movement
period; LRP: left vs right hand, using the preparation period; UDM: movement towards ’up’ direction vs
movement towards ’down’ direction, using the movement period; UDP: movement towards ’up’ direction
vs movement towards ’down’ direction, using the preparation period..
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Subject 5
LDA KNN, k=3 KNN, k=5

DA(%) freq.(Hz) chann. DA(%) freq.(Hz) chann. DA(%) freq.(Hz) chann.
RM 82 30-130 F3 99.7 10-30 CP1 99.2 2-5 C3
RP 79.8 60-85 CPZ 99.9 2-4 CP3 99.4 60-85 F4
LRM 70.6 60-85 F3 65.5 2-7 CP2 64.4 2-7 FC2
LRP 64.9 30-130 F3 66 2-4 CP1 65.5 10-30 CP4
UDM 72.7 50-128 F3 71.6 50-128 F3 69.6 50-128 F3
UDP 64.4 50-128 F1 63.4 15-30 FC4 64.9 60-85 CZ

Figure 3.22: For LDA classification conducted on subject 5, the best decoding accuracy (DA) found
using all channels and all the frequency bands is displayed. The type of analysis is shown in the first
column. RM: rest vs movement; RP: rest vs preparation; LRM: left vs right hand, using the movement
period; LRP: left vs right hand, using the preparation period; UDM: movement towards ’up’ direction vs
movement towards ’down’ direction, using the movement period; UDP: movement towards ’up’ direction
vs movement towards ’down’ direction, using the preparation period.

Figure 3.23: Average over the subjects of the best decoding accuracy (DA) found for each type of
analysis and each classifier. RM: rest vs movement; RP: rest vs preparation; LRM: left vs right hand,
using the movement period; LRP: left vs right hand, using the preparation period; UDM: movement to-
wards ’up’ direction vs movement towards ’down’ direction, using the movement period; UDP: movement
towards ’up’ direction vs movement towards ’down’ direction, using the preparation period.
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Figure 3.24: Number of occurrences of each frequency band which belongs to the best discriminant
features across the classifiers (data from all the 5 subjects is included).

Figure 3.25: Averaged time-frequency map across all the events and all the epochs of channel CP1
(subject 1). Note how the power in low frequencies decreases during the preparation and the movement
period, while the power in the intermediate frequencies increases only during the preparation period,
and the power in the higher frequencies increases only during the movement period. This channel yields
to a DA = 99.3% for rest vs movement using the 2-3 Hz frequency band and kNN (k=5).
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Figure 3.27: The figure displays the subtraction of the averaged (on all the epochs) time-frequency
maps of left vs right hand (channel F3, subject 5). We notice a first decrease of intermediate and higher
frequencies during the preparation period, then a clearer decrease of intermediate and higher frequencies
during the movement period. This channel yields to a DA = 70.6% using the movement period, 60-85
Hz frequency band and LDA, and a DA = 64.9% using the preparation period, 30-13 Hz frequency band
and LDA.

Figure 3.26: The figure displays the subtraction of the averaged (on all the epochs) time-frequency
maps of movement towards ’up’ direction and towards ’down’ direction (channel F1, subject 1). We
notice a decrease of power in the higher frequencies during the preparation period. This channel yields
to a DA = 63.8% movement towards ’up’ direction vs movement towards ’down’ direction, using the
movement period, 60-85 Hz frequency band, and kNN (k=5).



Chapter 4

Discussion

4.1 Results summary
In general, the results demonstrated the feasibility to detect a user’s voluntary intention
of movement using the negative phase of MRCPs or the time-frequency maps from exe-
cuted movements trials in four directions. Despite the relative complexity of the protocol
followed by the subject during the task (see Chapter 2), the true positive rates obtained
from both iEEG data and scalp EEG with time analysis showed that spatial filtering is
a robust and valuable technique with respect to movement intention detection purposes.
The average TPR (true positive rate) was around 70-75% (OSF filter), reaching values
above 80% or 90% (real noise and estimated noise, respectively), while the majority of
the false positive rates were around 20-25%. Finally, a consideration about the detec-
tion accuracies of movement in the four directions can be made. The tables show (in
particular, but not only, Table 3.10) no general trend of a better detection accuracy for
a particular direction rather than another.
It was also possible to use time-frequency analysis for the detection of movement inten-
tion, although it is a far less robust method. Indeed, important changes in the power
spectral density may be induced by mental states of the user and can be mistaken as
movement intentions. The decoding accuracy obtained from both iEEG and EEG data
was above 80% (LDA and SVM) and goes up to 99% (kNN).
Once the movement intention is validated, the movement direction analysis can be taken
into account. Time-frequency analysis enables the classification of the intended direc-
tion of movement on intracortical EEG. Using the data from the preparation phase, the
DA was about 70% (kNN) and 64% (LDA and SVM) in a two-direction classification,
whether for a four-directions classification it was around 38% (kNN) and 35% (LDA).
Using the data form the actual movement period, the DA was instead about 75% (kNN)
and 67% (LDA or SVM) for two directions, and around 39% (kNN) and 36% (LDA)
for four directions classification. A two-directions classification was possible on scalp
EEG data as well. On average the DA was 66% (kNN) and 62% (LDA), while the four-
directions classification is around the level of chance.

59
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An interesting outcome was the difference observed across the subjects with respect
to frequency ranges and classifiers performances. As for the employed methods, the
DA greatly benefited from the normalization applied to the time-frequency maps. In
particular, ’subtraction and division’ normalization (see chapter 2.3.2.4) led to the best
accuracy. It can be therefore concluded that normalization enhances the decoding accu-
racy. Concerning the time windows, the choice of the three longer time windows yielded
to the best results. Moreover, the effort of combining more channels did not gave the
expected improvement. Finally, with the use of a multi-feature analysis, the decoding
accuracy of movement direction increased with LDA and SVM classifiers, whereas it led
to a globally decreased DA using kNN.

4.2 Similar BCI paradigms
The novelty of the detection of movement intention analysis stands in the appli-
cation of the movement intention detection based on the negative phase of the MRCP
for four different directions of movement, with no prior training of the subjects. Since
there are no similar studies, a direct comparison is not possible. Several studies can be
though reported, which concentrated their attention on low frequencies (1-4 Hz) switch
designs, mainly intended for communication purposes [Bashashati et al., 2006; Yom-Tov
and Inbar, 2003]. Their results showed a lower TPR (50 -70%), but one of the goals
relied in having a minimal FPR (which was around 1-2%).
A similar study, conducted by Niazi et al. on scalp EEG recordings, has been of great
inspiration for the design of the detection of movement intention. In this study, the accu-
racy of the detection of movement intention from single trial MRCPs for both movement
imagination and execution, was measured applying a similar spatial filtering technique:
a portion of the negative phase of the MRCP (until movement onset) was used as a
template. A similar Optimized Laplacian Filter (OSF) was used to improve the SNR
of the MRCP over the noise. The mean of TPR was 82.5% (FPR were not reported).
However, the subject performed always the same task (ankle dorsiflexion), instead of a
four direction task, Moreover, it was shown that the OSF outperformed the LSF.
As the results of this project work suggest, the Optimized Spatial Filter brings an im-
provement over the Large Laplacian filter, but it often was not high. One of the reasons
may stand in the fact that, by protocol, only of 1 second of noise signal (the ’rest period’)
was available in the SNR optimization. The results anyway confirmed the robustness
of the Optimized Spatial filter in this kind of analysis, where four different movement
directions were performed by 5 (scalp EEG) + 1 (iEEG) subjects at their preferred
speed, following a rather "complex" set of instructions. The validity of the OSF was also
confirmed in a study conducted on MRCP classification by Boye et al., on imagination of
plantar-flexions with the right foot. Features were extracted with principal component
analysis and the classification of MRCPs over the noise was performed with kNN and
SVM. In this case, the TPR were high (80-90%), but given the differences in the protocol
(e.g. a larger data set, only one task rather than four, and usage of the entire MRCP
waveform), a direct comparison appears inappropriate.
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Some of papers mentioned above tend to give a priority to a low FPR rather than high
TPRs. Depending on the purpose of the BCI system, a different threshold can be set,
which would result in a different weight of TPRs over FPRs. In this study, the thresh-
old was set in order to reach the highest TPR while minimizing the FPR, but other
approaches can be used. For instance, a higher TPR could be achieved increasing the
number of false positives, or also using the entire MRCP as template instead of the
negative phase. In the latter case, thought, the detection could only be made once the
movement is already started, loosing the predictive properties of the study.

Moving to direction classification, it should be specified that in the time-frequency
analysis different classification methods (LDA, SVM, kNN, NN) were compared, both on
scalp and intracranial EEG recordings, which has not been done in such an extensive way
before. In addition, the different normalization methods comparison is not referenced in
current literature as well. As a result, the studies mentioned below only partially cover
the analysis performed in this report. Is is again important to stress that one of the
main goals was to compare different classifiers, rather than spending time to optimize
only one, as the majority of the published studies did.

From the reported findings, it can be concluded that normalization enhances the
decoding accuracy for time frequency analysis. The best results were found with the
’subtranction and division’ normalization (see 2.3.2.4).
A multi-channel classification approach was also carried out on the iEEG recordings.
This analysis is indeed supported by current BCI literature. For example, in a similar
experiment on EEG recordings, Jerbi et al. reported a peak of the DA when 34 out of 55
channels were used, while a drop of DA occurred using more electrodes. Moreover, they
hypothesised that simultaneous multichannel recordings from large neuronal ensembles
used in the context of brain machine interfaces, which further supports the notion of a
distributed representation of limb kinematics in multiple cortical areas. According to
Waldert et al., the decoding performance on iEEG data could be increased by using
additional recording sites; indeed, the weaker inter-channel correlation and thus less
redundancy between channels, could lead to an improvement of the system. In another
study, Waldert et al. reported that the use of few sensors placed exclusively above
contralateral motor-related areas can improve the DA of a similar EEG experiment.
Also Mehring et al., as shown in figure 4.1, supported the use of multiple channels
in order to increase the DA. In addition, Rickert et al. showed that combining two
frequency bands at the same time can increase the DA (e.g. <4 Hz and 63-200 Hz, see
figure 4.2), but also noticed that the combination of all the frequency bands did not
further increase the DA because of the relatively low amount of additional information
added by the intermediate frequency band competes with the decrease in performance
of the decoder as a result of the higher complexity of the feature space. So, a trade-off
between a) the number of features, b)an increase of complexity in the feature space and
c) the computation time -a major issue, in our case- has to be found.
The cited studies suggested the use a multi-channel and multi-feature approach, however
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these procedures not always brought a benefit to the DA, as already mentioned at the
beginning of this chapter and as it is explained in section 4.3.3.

Figure 4.1: Decoding of movement target and trajectories from multiple local field potentials (LFP).
Average probability of correctly discriminating between eight targets as a function of the number of
recording electrodes. LFPs (green) and single-unit activity (SUA, red), both recorded simultaneously
from identical sets of micro-electrodes yielded a similar decoding power. Using LFPs in conjunction with
simultaneously recorded SUAs (black) further increased the average decoding power [Mehring et al.,
2004].

Figure 4.2: Decoding power of different frequency bands. a) The box plots show the distribution
of decoding power of single LFPs for various frequency bands and their combinations indicated at the
bottom. White bars depict the median, the box ranges from the lower to the upper quartiles, the dashed
whiskers extend to the most extreme decoding power within the 1.5-fold interquartile range from the
borders of the bars, and the symbols mark outliers. b) Decoding power of simultaneous LFP recordings
from eight electrodes [Rickert et al., 2005].
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According to Jerbi et al., the highest directional tuning information can be found in
<4 Hz and 60-140 Hz frequency bands. With the project’s results in mind (see section
3), it can be noticed that most of the frequencies ranges which provided the best DAs
ware either in the lower or in the higher frequency bands. Yet, some intermediate bands
also yielded to interesting DAs, especially for kNN and LDA classification. The use
of intermediate frequency bands is e.g. supported by Rickert et al., who showed that
the amplitude of the LFPs in the <13 Hz band was modulated with the direction of
movement and that it decreased during movement execution in the 16–42 Hz band. Also
Mehring et al. used the changes of relative spectral power in the 8-30 Hz band in order
to classify limb movements.

In conclusion, the reached level of DA, particularly looking at the kNN classifier, can
be seen as satisfactory and can be compared to what is found in literature. For example,
Leuthardt et al. used ECoG recordings decoding to control a one-dimensional computer
cursor. This binary task was achieved with up to 74% accuracy while performing opening
and closing movements of the right hand, and with 83% of accuracy while the subject was
performing imagination of the same task. Other binary tasks referenced by Leuthardt
et al. were performed with a 60 to 70% DA before training. However, these papers
focused on the classification 4 or 8 directions classification (see figure 4.2) and use ECoG
recording, thus a direct comparison is not possible.

Concerning EEG results, the DA of the detection of four directions was instead at the
level of chance. The decoding of movement direction from EEG recordings, indeed, is
considered to be still an open challenge and was only performed with encouraging results
by Waldert et al. (see figure 4.3). In this study, scalp EEG and MEG recordings were
used to decode four different directions of movement. They obtained a decoding accuracy
of 67% on average across the subjects, using information from the low-pass filtered (<3
Hz) MEG activity during the movement. Their study is unfortunately isolated. Thus,
it has been largely assumed that non invasive recordings cannot decode limb movement
directions because of the low SNR and bandwidth limitation [Jerbi et al., 2011].
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Figure 4.3: DA (averaged across all subjects, decoded time window: 0–500 ms) using signals from
different groups of sensors ranging from single sensor-based decoding to decoding of all sensors above
motor-related areas. The DA values for both the 3 Hz low-pass (LP) filtered MEG activity and the
three frequency bands with significant power modulations are shown. Error bars indicate SEM. MRA,
Motor-related area; ROI, regions of interest derived from the single sensor-based decoding. The three
horizontal lines indicate the chance, p<0.05, and p<0.001 levels [Waldert et al., 2008].

4.3 Limitations

4.3.1 Recordings reliability

For obvious reasons, iEEG recordings in the human are only performed on non-healthy
subject during pre-surgical investigations. iEEG is therefore recorded mostly in pa-
tients with intractable epilepsy who are sometimes cognitively impaired due to various
pain/sedating medication or frequent seizures. In addition, the period between channel
implantation and channel removal is often very limited and sometimes the patients do
not have interest to participate in BCI experiments [Waldert et al., 2009]. Furthermore,
epileptic EEG shows characteristic peaks from time to time during the ’normal’ state.
During a crisis, those peaks gain in amplitude and the different EEG channels begin to
synchronize with each other. If there is a crisis during an experiment, the data have
of course to discarded. However, the ’normal state’ peaks remain and might induce a
bias in the data. Because the placement of the electrodes is solely determined by the
requirements of the surgeon, some areas (e.g. motor cortex) which could be relevant for
BCI-systems purposes might be missing. Indeed, according to Leuthardt et al., the de-
coding performance is dependant on the location of the implanted electrodes, the number
of electrodes, and the inter-electrodes distance. Again, these parameters are determined
on neurosurgical evaluations.
Based on the limited availability of intracranial recordings, their invasiveness and re-
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liability, the used of such data in a day to day environment for BCI systems seems
inappropriate and improbable. On top of this, in case of low DA, a general conclusion
about whether iEEG is able to decode limb movements or not, can not be drawn. Nev-
ertheless, the use iEEG data seemed to allow better decoding of the movement direction
compared to EEG, probably because of its better spatial resolution, and low / absent
influence of muscle artifacts and low-pass filtering effect of other tissues (e.g. the skull).

Concerning scalp EEG data, we face the opposite problem: the area recorded with
each electrode is wide. Although EEG enables to cover the entire surface of the scalp,
it is not able to isolate a very specific zone.
As reviewed by Jerbi et al., the presence of eye artifacts induces a notable drop in the
accuracy. Even if eye blinks are discarded with the use of a threshold, some eye saccades
might remain and impact the results [Waldert et al., 2008]. In addition, at least another
person was present in the same room while the experiment was running, leading to an
increased risk of eye saccades.

4.3.2 Experimental protocol

There were limitations related to the experimental protocol, which were common for
EEG and iEEG. In the protocol, visual cues triggered the execution of a task (the first
visual cue to indicate the direction and the ’go signal’). The impact of visual trig-
gers on the EEG signals is not known. Indeed, a punctual drop in the power of a given
frequency band right after the visual cue could have been mistaken as movement prepara-
tion. Furthermore, after a visual cues, each subject reacted differently: some performed
the movement quickly, some more slowly, some with a constant speed during the ex-
periment, some increasing or decreasing it. As a result, the protocol was not exactly
the same and some results might have been biased, e.g. particularly in the averaging
across the MRCP templates. The mouse position information could have been used in
order to locate precisely the movement onset, however using such a technique would
have raised algorithmic issues due to a different length of each sample for every trial.
Finally, although a great effort was made in order to carefully reproduce the intracranial
experimental protocol ran in Grenoble (France), the two setups were not exactly the
same: positions (the subject sat in a bed in France, sat on a chair in Denmark), distance
from the screen, etc. These differences might lead to unknown bias.

Further considerations can be made on the detection of movement intention. As a
first note, by protocol, only 1 sec. of rest period (also referred as ’noise’ in chapter
2) was available. This led to the decision to generate estimated noise based on the
real one. As it might be expected, the performances decreased using the estimated
noise. Nevertheless, most of the drawn considerations were based on those results,
because the same length of ’noise’ and ’signal’ ensured greater reliability of the results.
Only 50 epochs were collected for each movement for iEEG recordings, while they were
100 for scalp EEG. These numbers could be increased. It is in fact worth mentioning
that combining all the epochs from one hand in one dataset, with no distinction of the
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direction, led to higher TPRs and lower FPRs, increasing the decoding accuracy. This
result can be explained by the fact that a larger training set allowed to built a better
MRCP template. This difference was indeed more beneficial to the iEEG, as only half
of epochs were recorded with respect to scalp EEG data. On top of this, the limited
number of epochs "forced" to reuse the training data also for the testing (leave-one-
out cross-validation). Finally, the results from iEEG analysis generally showed higher
FPRs (using estimated noise), despite the fact that intracortical recordings have greater
spatial resolution than standard scalp EEG. This might have happened because the
electrodes were placed in order to treat the epileptic subject’s illness, rather than in
optimal locations (e.g the motor cortex), and were not spatially disposed on a surface
like for the scalp EEG data, nor one next to the other, but spread around the brain. This
probably affected the performance, since spatial filtering was used for the analysis on the
iEEG data as well. On top of this, bipolarisation might have deleted some important
components of the MRCP.

4.3.3 Methods

The limitations mainly regarded the time-frequency approach, due to the more extensive
analysis proposed in the decoding of movement direction part.

A limit (and a strength) of normalization was the fact that it was conducted specifi-
cally for each epoch. In a real-time online analysis, such a method cannot been used (a
common baseline should be used for all the epochs). In a previous study conducted by
Rohu et al., it has been shown that the use of an averaged baseline across the epochs
led to a decrease of the DA for the movement classification.
Results showed that the DA decreased by narrowing the time windows. However, as the
analysis was conducted only on the 3 channels which gave the best DA using the longest
time-windows, a conclusion cannot be generalized or extended on the other electrodes.
Furthermore, due to data storage limitations, a more refined time-window analysis could
not be performed.
As for time-windows, the combination of the channels was carried only on the 3 channels
resulting from the first long time-windows results. An analysis from scratch, trying all
the possible combinations of two or more channels, was not conducted due to obvious
time and computational issues.
The combination of two or three features showed different behavior of kNN and LDA-
SVM in a two-feature analysis. This is not surprising, as LDA and SVM are close
methods. Yet, a decrease of the DA is more unexpected. This can be explained again
by the choice of the 3 channels relevant for a single feature analysis. If those channels
provided a good result in a single-feature analysis, it is not implicit they can do it also
for a multi-feature approach. In fact, as shown by a further analysis of two-feature
classification applied on all the channels (see figure 3.17), the DA actually increased.

Classifier comparison As first notice, an objective classifier comparison is extremely
difficult due to all the parameters which have to be taken into account (particularly in
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NN and SVM). In addition, the choice of the classifier is highly dependant of both the
data set and the goal of the classification (e.g. offline vs. online).
For both iEEG and EEG data, results showed that kNN classifiers (both for k = 3 and
k = 5) globally led to better results than LDA, SVM or NN. The impact of k is not obvi-
ous. According to Lotte et al., kNN algorithms are not popular in the BCI community,
probably because of their sensitivity to the curse-of-dimensionality (when the number
of training data is small compared to the size of the feature vectors), which makes them
perform poorly in several BCI experiments. However, when kNN is used in BCI systems
with low dimensional feature vectors, it may prove itself to be efficient, as it did in this
study
Neural Networks are very sensitive to overtraining, especially with noisy and non-
stationary data as EEGs. Therefore, careful architecture selection and regularization
is required [Lotte et al., 2007]. This could partially explain the poor DA obtained in the
classification of the direction, where the features space is more complex and noisy than
for the ’rest vs movement’ classification. Furthermore, due to time issues, the neural
network classification was run only on the best features previously found for LDA and
kNN, which might not necessarily be the most relevant for this type of classifier.
Finally, LDA generally provided slightly worse results than SVM, with the benefit of a
lower computational effort. Further optimization on SVM classifier could have increase
the DA.
Ideally, classifiers should be tested within the same context (i.e. with the same users,
using the same feature extraction method and the same protocol). One of the problems
would be to apply to each classifier the same level of optimization and pre-established
parameters (number of layers and learning function for NN, k and distance measure for
kNN, a-priori assumptions for LDA and parameters for SVM). For this reason Schalk
et al. have proposed the use of a general purpose BCI system, the BCI2000 toolkit.
This toolkit is a modular framework which allows to easily change the classification,
preprocessing or feature extraction modules. With such a system, it becomes possible
to test several classifiers with the same features and preprocessing. The use of BCI2000
could help to choose the best a-priori classifier which has to be further optimized.

4.4 Prospectives
The two techniques proposed in this study (time and time frequency analysis) could be
both applied in the same BCI system. Indeed, the two methods might be complementary.
Even if time frequency analysis performs equally or better than time analysis for the
detection of movement intention, it is a far less robust method. E.g., a mental calculation
task or state may lead to important changes in the time-frequency domain, and could
thus be mistaken as a movement intention. On the contrary, MRCPs are specifically
linked to motor tasks.
A way of improving the system would be the use of not only the early phase, but the
whole MRCP, which may also enable the decoding of the movement direction. Modifying
the experimental protocol might also lead to better and more reliable outcomes. For
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instance, a longer rest and preparation period would bring benefit to the time-based
approach. The visual cues should also be eliminated to avoid possible and undesired
contributions on the MRCPs and time-frequency maps, and the mouse position could
be used to precisely detect the movement onset and course.
In order to be used such a system in real life application, another important aspect
should be further investigated. Considering the heterogeneous results found among the
subjects, it seems difficult to design a system which could be efficient without fitting itself
to the user (choice of a classifier, features, optimized filter coefficients, etc...). Two paths
might be followed: try to find patterns with cross comparison on a large population of
subjects, or, better, trying to adapt the techniques of choice on a specific user, quickly
and efficiently.
The use of a training session also seems a valuable approach in order to improve the
results. Closed loop systems have shown to improve quickly also with short training
periods. Leuthardt et al. reported 74-100% final accuracy for a binary task performed
across all subjects after short training periods (3-24 min) (see figure 4.4).

Figure 4.4: Learning curves for ECoG control of vertical cursor movement using motor imagery to
move up and rest to move down). (Accuracy in the absence of control would be 50%) [Leuthardt et al.,
2004]

A study conducted by Leuthardt et al. reported a substantial improvement from
71% to 94% of correct classification using a closed loop system. For a future application
in a real-time system, the use of a closed loop system seems very appealing, both for the
selection of the features of interest and the optimization of the classifier.
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Conclusion

The goal of this research project was to implement and apply multiple detection and de-
coding techniques to scalp and depth EEG recorded in subjects performing a 4-directions
center-out motor task. Two main techniques have been investigated: time analysis and
time frequency analysis. The accuracy of the various decoding strategies has been com-
pared at various levels:
(a) the EEG recordings: intracortical EEG (iEEG) and scalp EEG
(b) robustness to artifacts and noise, with preprocessing, bipolarization methods and
blinks discarding
(c) different spatial filters (large Laplacian filter and Optimized Laplacian Filter) in the
time analysis and different classification methods with in time-frequency analysis (LDA
and kNN for scalp EEG data; LDA, SVM, kNN and NN for iEEG data).
(d) factors influencing the features: different time windows and frequency ranges, the
number of employed features,the combination of channels, and normalization.
Not surprisingly, iEEG recordings, which are less noisy and less affected by artifacts,
led to better classification performances than scalp EEG signal. The detection of move-
ment intention was performed with up to 86% of TPR (for estimated noise) for the time
analysis and up to 98% with time-frequency analysis, while the classification of move-
ment direction decoding accuracy was up to 78% (two directions classification), and up
to 40% (four directions classification). The K-NN classifier with subtraction & division
normalization was globally the one that performed better on the used datasets, while
the two spatial filters, with a slight advantage for the Optimized Spatial Filter, provide
similar results in the case of use of AR-estimated noise.

By using the combination of time and time-frequency analysis it is possible to first
detect a motor task, and then identify the direction.
A reliable detection of human movement intention, along with the knowledge of the
direction of movement, has a potential implication in the control of external devices,
such prostheses or other robotic systems. Such BCI paradigm could be useful in the
development of a patient-driven rehabilitation system which could induce plastic changes
in the brain, or even in the context prosthetics control in amputees.
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Appendix A

The brain

A brief introduction to brain anatomy is described below. The following pages are based
on [Martini, 2006] and [Standring et al., 2005].

The brain is one of the most complex parts of a human being. It accounts for up to
98% of the neural tissue within the entire body and has a weight of about 1.4 kg with
large individual variance.

A.1 Protection and support
The brain tissue is tender and delicate and so it needs protection from potential damage.
Its protection is ensured by three layers: the cranial bones, the cranial meninges and
the cerebrospinal fluid. The bones of the cranium supply a hard encapsulation of the
brain. As show in figure A.1, the cranial meninges consist of multiple layers: dura mater,
arachnoid mater and pia mater, in order of deepness. The dura mater has two fibrous
layers, or lamellae, with tissue fluids and blood vessels in between. The arachnoid mater
provides a smooth surface covering the entire brain, which follows the brain down into
its sulci, as does the pia mater. The pia mater is a thin fibrous tissue, anchored to every
fold of the brain, which encloses cerebrospinal fluid in order to protect the brain and
allows blood vessels to pass through and feed the brain cells.
The cerebrospinal fluid has both a role in the transport of nutrients, as a vehicle for
chemical messengers and other substances, and in protecting the brain from mechanical
stress, partially preventing the brain from beating against the skull.
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Figure A.1: Meninges surrounding the brain (adapted for own use from [Standring et al., 2005]).

Figure A.2: Gross anatomy of the brain (adapted for own use from [Martini, 2006]).
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A.2 Structure
The brain can be anatomically divided into four parts (see figure A.2): the brain stem,
the diencephalon, the cerebellum and the cerebrum. The brain stem is located in the
inferior part of the brain, connected and superior to the spinal cord.

A.2.1 The brain stem

The brain stem consists of several parts, which, starting superior from the spinal cord,
are: medulla oblongata, pons, mesencephalon. Sometimes the diencephalon is regarded
as part of the brain stem.
The medulla oblongata transmits sensory information to the superior parts of the brain
stem and regulates autonomic functions, such as heart rate and blood pressure. The
pons connects the cerebellum to the brain stem and is involved in visceral and somatic
motor control and transmits sensory information to superior parts of the brain stem and
the cerebellum. The mesencephalon controls auditorily and visually triggered reflexes
and helps maintaining consciousness.

A.2.2 The diencephalon

The diencephalon is a region composed by a left and right thalamus both relaying and
processing sensory information. The inferior part is called hypothalamus and is involved
in hormone production, emotions and autonomic functions.

A.2.3 The cerebellum

The second largest part of the brain is the cerebellum, located posterior at the level of
the mesencephalon and covered by the cerebellar cortex. The main function of the cere-
bellum is to adjust the ongoing movements and to help to coordinate repeated advanced
somatic motor patterns by receiving sensory information and comparing it to previously
experienced movements, allowing to make smooth movements.

A.2.4 The cerebrum

The cerebrum consists of two highly folded cerebral hemispheres covered with neural
cortex. In general, each one controls the contralateral side of the body. Even if the
hemispheres look similar, they do not have the same functionality neither the same size.
The cerebrum plays a role in most higher mental functions, such as attention, awareness,
thought, intellect, memory, highly complex movements, sensations and speech. The
superficial layer of the cerebrum is the cerebral cortex, which together with the deeper
basal nuclei, is part of the grey matter (formed from neurons and their unmyelinated
fibers) and superficial to the white matter (formed predominantly by myelinated axons).
The surface of the cerebral cortex is folded into the so called "sulci" and organized
in different layers. The cerebral cortex can be topographically subdivided into four
lobes: frontal, parietal, occipital and temporal lobe (see figure A.3), and is commonly
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described as comprising three parts: sensory, motor, and association areas, depending
on the functionality. Below follows a short explanation of the main areas that compose
the cortex.

Cortices

The primary motor cortex (M1) is located in the posterior part of the frontal lobe and is
involved in performing voluntary movements, whereas the primary sensory cortex (S1),
which is a part of the parietal lobe, il located posteriorly. It allows conscious sensation
of vibration, touch, pressure, pain etc. The two cortices are named "primary" because
they have a specifically defined topographic mapping of the body, so that a specific area
of the primary motor cortex is related to motion of a corresponding group of muscles or
organ (for example a limb). The regions of the primary sensory and motor cortex are
not of the same size: as the size increases, a finer control and sensitivity is allowed. The
gustatory cortex, the visual cortex, the auditory and olfactory cortex are also worth to
be mentioned.

Association centres

To each of the cortices mentioned above corresponds an association centre, which in-
terprets signals and coordinates the motor response. The somatic motor association
area stimulates the neurons of the primary motor cortex in order to achieve the planned
movement, while the primary motor cortex initiates the actual movement. Moreover,
the association area stores a pattern of stimulation, which matches the corresponding
movement pattern.

Integrative centres

The integrative centres collect information from the association centres in order to per-
form highly complex motor or analytical tasks. The prefrontal cortex located in the
frontal lobe, which integrates information from sensory association centres and Wer-
nicke’s area, while allowing coordinated access to visual and auditory memory.
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Figure A.3: The figure shows a) the major anatomical landmarks of the left cerebral hemisphere, b)
the areas mainly involved in speech and c) histological distinct areas (adapted for own use from [Martini,
2006]).
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Appendix B

Organization of movement

In this chapter a general overview about organization of movement and motor control is
given. The following is mainly based on [Martini, 2006] and [Kandel et al., 2000] unless
specified differently.

B.1 Motor cortices and motor planning
The cerebral cortex, the brain stem and the spinal cord are the most important parts of
the nervous system involved in movement. Skeletal muscles can be controlled from many
places in the central nervous system (CNS): the spinal cord, the pons, the basal ganglia,
the cerebellum and the motor cortex, each part having its own role. The spinal cord can
be described as the main path trough which signals from the brain are transmitted to
the periphery of the body and the opposite. The structure is more complex than this
schematic description, though: the spinal cord consists of several cord centres, which
are commanded by the upper levels of the nervous system. These neuronal circuits in
the cord are also responsible for walking movements or different reflexes. Pons, basal
ganglia and cerebellum belong to the lower brain and control automatic, instantaneous
muscle responses to sensory stimuli.
As it has already been said, the cerebral cortex is involved in processing and integrat-
ing sensory information and establishing motor commands. The motor cortex is, more
specifically, in charge of complex movements that are controlled by thought processes
and also functions as a storage of information for future control of motor activities.
Each part of the body receiving somatosensory input corresponds to a specific area in
the cortex; this is often represented with a somatosensory homonculus, as shown in figure
B.1(a). In the same way, the primary motor cortex (M1) is organised in a topographical
manner, containing a representation of each part of the body (see figure B.1(b)). Besides
M1 and S1, a complete map of the body is present in the premotor areas too. However,
while stimulation in the M1 evokes simple movements of single joints, stimulation of
the premotor cortex results in more complex movement involving multiple joints and
resemble natural coordinated movements. The premotor areas consist of the premotor
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Figure B.1: The figure shows a) The somatotopic representation of the body in somatosensory cortex
b) the topographic representation of the body in the motor cortex (adapted for own use from [Kandel
et al., 2000]).

Figure B.2: The major inputs to the motor cortex in monkeys.
A. The major inputs to the primary motor cortex. (PMd = dorsal premotor area; PMv = ventral
premotor area; S1 = primary sensory cortex; SMA = supplementary motor area.)
B. The major inputs to the premotor areas. Dense interconnections between the premotor areas are not
shown here. (adapted for own use from [Kandel et al., 2000]).

cortex and the supplementary motor area and are mainly involved in coordination and
planning of movements.
All these areas in the brain are interconnected to each other in a complex network (see
figure B.2).

B.2 Types of movement
The corticospinal tract is considered as the direct pathway of voluntary movements. In
the spinal cord, the projection neurons are connected either with interneurons or directly
with motor neurons, which in turn transmit the signals to the skeletal muscles. Three
types of movements may occur with respect to ascending and descending signals via
different pathways and at different levels: voluntary movement, reflexes and rhythmic
movement.
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Reflexes are performed subconsciously and can occur exclusively at a spinal level, though
they may also be modulated by subcortical or cortical commands. A reflex is started
by a sensory stimulus which then leads to excitations of motor neurons at a spinal level,
resulting in a muscle contraction or relaxation, possibly even before sensation occurs.
Distinct reflexes are initiated by different stimuli of the same sensory receptors or by
stimuli of different receptors and can be modulated throughout excitation or depression
of the level of the post-synaptic neuron excitability.
Rhythmic movements, instead, are characterized by a stereotyped action involving rep-
etitions of the same movements (e.g. walking, running, swimming, crawling, flying) and
allow control of movement at a ’low’, spinal level without involvement of higher cortical
control (conscious control). These can be triggered by peripheral stimuli that activate
the underlying circuits or from higher cortical centres, which can also overrule them.
Here, though, we will focus on the voluntary movement planning, control and execution.

B.2.1 Voluntary movement

Voluntary movement is usually goal directed and therefore fully conscious. It arises in
the motor cortex and is delivered by the spinal cord. When a voluntary movement is
started, neurons in the M1 send commands to upper and lower motor neurons. Neurons
in the M1 are responsible for a specific somatic location respectively (see figure B.4);
for example, the leg components are situated in the middle, the face components are
located laterally and so on. The largest representations belong to muscles which imply
finest movement control (e.g. arms, legs and face, see figure B.3 and B.4).
Typically, the performance of a voluntary movement is based on movements the person
has done several times before. In this case, the cortical motor area uses the pattern al-
ready memorised in deeper layers of brain stem, basal ganglia, cerebellum or spinal cord
and combines it with the information that comes from the S1. This constant feedback
from the S1 enables a finer control and adjustment of the voluntary movement before
and during the execution. The cerebellum, instead, plays an essential role as important
control centre for unknown motor activities. When a new unknown movement is needed
(motor learning), the cerebellum is not only in charge of the adaptation of the motor
task to the new movement sequence, but it is also associated in planning, execution,
controlling and refining of the movement execution.
The neuronal activity in the cortex and the subsequent effect in the muscles is specific.
More precisely, it has been shown that the force of a movement is proportionally related
to the firing rate of the associated cortical neurons: when the load opposing a movement
increases, the firing rate of the active neurons increases as well.

Direction of the movement

One of the first and most relevant studies regarding the direction of movement coding
mechanism in the brain was achieved by Georgopoulos et al., who conducted studies on
the primates’ brain. Georgopoulos et al. trained monkeys to move a joystick toward
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Figure B.3: The figure shows the motor cortices in humans. The sequence of representation of body
parts is similar. The ankle control area is medial while the face, mouth, and mastication control areas
are lateral. The face and fingers in the human motor cortex have much larger representations because
of the greater degree of cortical control of these areas (adapted for own use from [Kandel et al., 2000]).

Figure B.4: Somatotopic oraganization of the medial and laterl motor cortex in the monkey, showing
the arm and leg representations. ArSi, arcuate sulcus, inferior limb; ArSs = arcuate sulcus, superior
limb; CS = central sulcus; M1 = primary motor cortex; PMd = dorsal premotor area; PMv =
ventral premotor area; PS = precentral sulcus; SGm = superior frontal gyrus, medial wall; SMA =
supplementary motor area; pre-SMA = presupplementary motor area; SPcS = superior precentral
sulcus. (adapted for own use from [Kandel et al., 2000])
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visual targets located in different directions and recorded the associated changes in ac-
tivity in the primary motor cortex. The experiment indicated that all neurons fired both
before and during movement in a wide range of directions. It appears that motor cortical
neurons are tuned to the direction of movement, but individual cells fire preferentially in
connection with movement in certain a direction. The raster plots in figure B.5 show the
firing pattern of a single neuron during movement in eight directions. The cell fires at
relatively higher rates during movements in the range from 90 to 225 degrees, pointing
out that different cells have different preferred movements directions. Cortical neurons
with different preferred directions are all active during movement in a particular direc-
tion and the entirety of this activity results in a population vector that closely matches
the direction of movement vector.
This means that movement in a particular direction is determined not by the actions
of the single neurons, but by the net action of a large population of neurons, where the
contribution of each neuron to movement in a particular direction can be represented
by a vector, the length of which indicates the level of activity during the movement in
that direction and where the contributions of individual cells can be added vectorially
to produce a population vector.
Georgopoulos et al. also found a strong dependence between directionally tuned cell’s
firing rate and external load, suggesting that the activity of neurons in the primary mo-
tor cortex varies with the direction. This modulation depends on the amplitude of the
force required to displace the limb; the neuron’s firing rate increases if the load opposes
the movement of the arm in the cell’s preferred direction, while it decreases if the load
pulls the arm in the cell’s preferred direction.

Movement planning

In order to initiate a voluntary movement, The M1 needs to be stimulated by neurons
from the premotor cortex and the supplementary motor area (SMA), which support
and coordinate the M1. The preparatory activity of a movement is performed in the
premotor areas and the primary motor cortex. This planning results in a motor pro-
gram (or movement pattern) describing extent, angle and velocity of movement of the
joints involved. Thus, the premotor cortex is in charge of providing sensory guidance
of movement, while the SMA is responsible for planning and coordination of complex
movements. The premotor cortex and the SMA are able to receive information from
different decisional centres within the brain; these areas interpret the information, coor-
dinate the execution commands and send it to the M1, which subsequently controls the
actual signals sent to the muscles (effectors). A movement is the consequence of trigger-
ing of a pattern more that of the stimulation of each neuron separately, thus allowing to
perform the movement more easily when it has been repeated.
A possible measure of the activity in the motor cortex of the brain, prior and dur-
ing voluntary muscle movement, is called Bereitschaftspotential or BP (from German,
"readiness potential"), which is covered more extensively in chapter C.
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Figure B.5: The raster plots of the firing pattern of a single neuron during movement in eight direction.
The cell fires at higher rates during movements in the range fro 90 degrees to 225 degrees. For these
recordings a monkey was trained to move a handle to eight locations arranged radially in one plane
around a central starting position. Each row of tics in each raster plot represents activity in a single
trial. The rows are aligned at the onset of movement (zero time) (adapted for own use from [Georgopoulos
et al., 1982]).
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The Bereitschaftpotential

A comprehensive book which describes in detail the Bereitschaftspotential was published
in 2003 ([Jahanshahi and Hallett, 2003]). It is hereby used as main reference, but also
integrated with more recent findings, trying, when possible, to focus on hand movements
in electroencephalographic recordings.

The first report of electroencephalographic (EEG) activity preceding voluntary move-
ment in humans was made by Kornhuber and Deecke in 1964, who recorded EEG and
electromyogram (EMG) activity, with the aim of connecting in some respect the activ-
ity of the brain with the one of the muscles involved in the movement on a temporal
scale. The experiment was conducted using an off-line averaging technique and led to
the identification of two main components of the BP, one before and one after the EMG
onset: the actual Bereitschaftspotential (BP), also known as readiness potential (RP),
and the reafferente potential. Later they found two more components which appear
before the movement onset: the pre-motion positivity (PMP) and the motor poten-
tial (MP). Although a relatively high number of studies have been conducted on the
movement-related cortical potentials (MRCPs), the actual physiological significance of
each component, among others that of BP, has not been fully clarified yet [Shibasaki
and Hallett, 2006].
In its original formulation by Kornhuber and Deecke, the BP was seen as ’readiness po-
tential’, an index of motor preparation. Further experiments have shown new and wider
interpretations of the BP, which involve its influence in activities such as anticipation
and expectancy, attention, preparatory activity, intention to act, resource mobilization,
effort, timing of movements and degree of effort associated with movement. Jahanshahi
and Hallett proposed that it is possible to differentiate the contributions to BP asso-
ciated with cognitive, motivational and motor processes among the different areas of
the motor cortex, rising the hypothesis that while prefrontal areas may be involved in
the decision-making process necessary for response selection timing and initiation of the
motor action, the pre-SMA motor areas and lateral premotor cortex may take care of
preparatory precesses [Jahanshahi and Hallett, 2003].
The BP has become a common tool in motor physiology laboratory in the past years, not
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Figure C.1: A schematic representation of the time course and the Bereitschaftpotential (BP) prior to
movement (adapted for own use from [Jahanshahi and Hallett, 2003])

only to investigate movement parameters such as force, rate, movement complexity and
mode of movement, but its latency and/or shape have been reported to change in case
of neurological disorders. Various methods are used to record BPs, e.g. scalp electroen-
cephalography (EEG), magnetoencephalography (MEG), intracranial EEG recordings,
combined EEG and positron emission tomography (PET), combined EEG and MEG,
combined EEG and functional magnetic resonance imaging (fMRI).
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Figure C.2: Waveforms and terminology of MRCPs from a single normal subject in self-iniated left
wrist extention. Avarage of 98 trials.
Reference: linked ear electrodes ((Ref:A1A2). Early pre-movement negativity (early BP) starts 1.7 s
before the onset of the averaged, rectified EMG of the left wrist extensor muscle, and is maximal at the
midline central electrode (Cz) and widely and symmetrically distributed on both hemispheres. The late
negative slope (late BP) starts 300 ms before the EMG onset and is much larger over the right central
region (contralateral to the movement). A negative peak localized at the contralateral central area (C2)
is N-10 or motor potential (MP). Another negative peak occurring shortly after N-10 is localized over
the midline frontal region and corresponds to N+50 or the frontal peak of motor potential (fpMP).
(adapted for own use from [Shibasaki and Hallett, 2006])
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C.1 Morphology of BPs
BPs are considered to represent neuronal activation, which is the outcome of an increase
of extracellular K+ concentration and decrease of Ca++ concentration. This activation
of brain regions result in negative slow potentials, such as the BP. More specifically,
the BP is a negative cortical potential which develops beginning about 1.5 to 1 s prior
the onset af a self-placed movement (see figure C.1 and C.2), although the onset of
BP with respect to the movement onset significantly differs among diverse conditions of
movement and among subjects. For example, when the subject is requested to repeat
the same movement, the BP starts much earlier as compared to the same movement
executed in natural conditions, because in such experimental conditions the subject has
a longer time to prepare for the movement. It is important to stress that the BP is
related to an actual, intended or imaginary voluntary movement. Thus, the BP can be
defined as a movement-related cortical potential (MRCP).
Initially a distinction between the slowly rising phase of BP waveform and change in the
steepness of the slope, which suddenly occurs around 400 to 500 ms prior to movement
onset, was made (see figure C.1). The early and late BP differ in term of distribution
over the scalp: the early BP is bilaterally symmetrical, but the late and peak BP are
asymmetrically distributed and maximal over the contralateral precentral areas [Jahan-
shahi and Hallett, 2003]. The early slow, rising negativity has been usually referred as
early BP, BP1, and NS1 (negative slope 1), whereas BP2, NS’ and NS2 stand for the
second phase of negativity [Jahanshahi and Hallett, 2003]. The late BP was thought to
be more specific for the site of movement while the early BP was thought to represent
the more general preparation for the forthcoming movement because of its diffuse distri-
bution, but neither the physiology nor the functional significance of change of steepness
is currently completely known (see section C.2).
Later, a third negative component was distinguished, occurring 50 to 60 ms prior to
movement onset, the ’motor potential’ (MP, peak BP or peak NS’), which is the point of
maximum negativity over the hand area contralateral to the moving hand. The BP mid-
line maximal, symmetric distribution is likely due to the summation of electrical fields
generated from homologous areas of both hemispheres [Shibasaki and Hallett, 2006].
Different groups have proposed wide range of different terminologies, according to their
findings and different opinions about origin, location and physiological meaning of BP
components (see table C.3 for details), however, in this report, in order to avoid confusion
about the use of the term BP, we call the early segment ’early BP’ and the late, steeper
segment ’late BP’, and just BP for the early BP and the late BP inclusive (see figure C.2).
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Figure C.3: Terminology used to describe the components of movement-related cortical potentials
(adapted for own use from [Shibasaki and Hallett, 2006])

C.2 Generator sources of MRCPs
The generator sources of MRCPs have to be fully understood yet. In order to achieve
this challenge, various dipole source localization techniques have been applied, as al-
ready mentioned above. The identification of generators of single MRCP components is
a controversial topic in the existing literature. The complexity of the problem occurs due
to several different factors, such as the specific localization technique which was used,
the type of movement under investigation, the movement performance and the investi-
gated time frame. However, it is common opinion among the literature that the BP is
mainly generated by sources located in the supplementary motor area (SMA) (both the
proper SMA as well as the cingulate motor area (CMA) should be considered in this
context) and in the M1 (particularly in the contralateral motor cortex) to a lesser or
greater extent. [Shibasaki and Hallett, 2006]. Moreover, also regarding the time course
of activation of the SMA and M1, there are still doubts. Some suggest that the BP
reflects serial activation of the SMA preceding M1, others propose that SMA and M1
are activated in parallel [Jahanshahi and Hallett, 2003].
The current consensus on the generator source of each MRCP component is summa-
rized in table C.4. At least regarding self-paced repetition of simple movements at slow
rate, the early BP begins about 2 s before the movement onset in the pre-SMA with no
site-specificity and is bilaterally generated from the localized area of the SMA according
to the somatotopic organization and shortly thereafter in the lateral premotor cortex
bilaterally, again with relatively clear somatotopy. About 400 ms before the movement
onset, the steepness of the waveform suddenly changes and the late BP occurs in the
contralateral M1 and lateral premotor cortex with precise correspondence to a somato-
topic organization. The generator sources of post-movement components have not been
clearly identified yet [Shibasaki and Hallett, 2006].

Shibasaki and Hallett, in their review, have reported some experiments concerning
the case of hand movements. SMA and lateral precentral gyrus were shown to be the
main generator sources for early BP. It has been proposed that there are three dipole
sources of the early BP, one in the SMA and two others in bilateral M1, and that only
the source recorded in the SMA was influenced by the mode of movement selection in
such a way that it was larger before freely selected movements than fixed ones. Based
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Figure C.4: Generator sources of each component of movement-related cortical potentials (MRCP)
(adapted for own use from [Shibasaki and Hallett, 2006])

on the high-resolution DC-EEG analysis, it has been estimated that BP occurs earlier
in the SMA and cingulate motor areas, after in the contralateral M1, and finally in the
ipsilateral M1. Principal component analysis and fMRI-constrained EEG dipole source
analysis were used, determining that the main source of early BP was the crown of the
precentral gyrus bilaterally (specifically hand area of area 6), the source of late BP in
both area 4 and area 6, and MP in area 3. Most studies have localized the source of MP
or N-10 in the M1 hand area.
For this report, it is important to record EEG from multiple electrodes, including C1 and
C2, because the late BP is maximal over the contralateral central area (approximately
C1 or C2 of the International 10-20 System) for hand movements.

C.3 Factors influencing BP
As reported by Shibasaki and Hallett, Lang W. reviewed extensively the factors that con-
tribute to magnitude and time course of BP recorded in a self-paced condition. Taken
together, the amplitude and the time course of the MRCP are affected by various factors,
such as: level of intention; speed, precision, mode (free versus fixed), pace or repetition,
discreteness, complexity of the movement; preparatory state; learning and skill acquisi-
tion; perceived effort; force exerted and pathological lesions of brain structures.
Below are listed some studies supporting the information given by table C.5, which
summarizes the findings about this issue so far [Shibasaki and Hallett, 2006].

The effect of the complexity of a movement on the BPs was investigated in several
studies, mostly involving comparison of single, simultaneous and sequential movements,
which confirm that more complex movements translate in larger late BPs.
Comparison of isolated single finger extension with simultaneous finger extension of two
fingers revealed significantly larger BP at the pre-central area contralateral to the move-
ment. In the case of single finger activation; although only half of the muscles are
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Figure C.5: Differential influence of various factors on early and late BP in normal and pathological
conditions. As for the factors in normal conditions. (adapted for own use from [Shibasaki and Hallett,
2006])

activated. This phenomena can be explained by the fact that single finger movements
are finer and more discrete, therefore requiring a more ’precise’ motor program and M1
activation (Kitamura et al., 1993). Another study was comparing single isotonic elbow
flexion and single isometric finger flexion with sequential and simultaneous activation
of these two movements, finding a larger BP for the sequential and simultaneous move-
ments compared to single flexion (Benecke et al., 1985). Kitamura found that, when
middle and index finger were moved consecutively, the negative slope started earlier,
but no amplitude changes of the BP were observed, compared to simultaneously activa-
tion of the fingers. Thus, it was hypothesised that the execution of unilateral sequential
movement requires a greater and earlier activation of the SMA and the primary hand
sensorimotor areas (Kitamura et al.). Earlier onset and larger amplitude of BP in a
sequential or more complex movement compared to a simple one, was also reported by
Simonetta et al.(1991).
The exerced force is another factor that was shown to increase the BP (Slobounov et al.,
2004; Masaki et al., 1998). In a study conducted by Masaki et al. (1998), when subjects
were asked to produce a specific force, a larger negative slope was observed compared
to movements performed in a non-purposive manner although the same amount of force
was produced. This leads to think about the involvement of a planning process which is
required to produce a particular force and subsequently leads to a larger BP amplitude.
Again, a possible explanation can be that the preparation process in order to develop
larger forces requires a higher level of activity of the involved brain areas.
As for the mode of movement, investigation showed that freely selected movements lead
to higher amplitude of BP as opposed to pre-determined repetitive movements. This
influence does not seem to involve all the areas of the brain, though. By using a spatio-
temporal decomposition, three dipole sources of the BP were estimated: one located in
the SMA and two in the M1 in each hemisphere, finding that only the source in the
SMA was influenced by the mode of the movement (Praamstra et al.,1995). In contrast,
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Dirnberger et al. (1998) observed a larger lateralized readiness potential for freely se-
lected movements compared to fixed repetitive movements, considering this as a result
of a greater involvement of M1 activity in the selected movement mode.
Furthermore, the BP onset is affected by the speed with which the movement is con-
ducted. The BP starts later if the movement is performed with a higher speed (Shibasaki
and Hallett, 2006). The time course of the early BP is also influenced by the level of
experience of the movement under study. Libet et al.(1983), for example, observed a BP
occurring 1 s earlier when the movement is associated with a preplanning or preparation
time to act shortly compared to movements which are associated with a more specific
or endogenous intention to act (about 500 ms prior onset).



Appendix D

Signal processing and
classification background

In this chapter are explained some of the signal processing, classification and statistical
techniques used during the project. The following pages do not cover all the theory;
rather they give a general overview on the specific techniques that have been applied.

D.1 Time-frequency maps
Time-frequency maps were used for the movement direction classification, which was
indeed base on time-frequency analysis (see example in figure D.3).
A time-frequency (TF) map is a view of a signal (taken to be a function of time) repre-
sented over both time and frequency, where the modulus represented the power spectral
density of the signal. There are two main ways of computing a TF map: the windowed
Fourier transform and the wavelet transform.

Windowed Fourier transform The windowed Fourier transform replaces the sinu-
soidal wave of the Fourier transform’s with the product of a sinusoid and a window
localized in time. It takes two arguments: time and frequency. It uses an atom which
is the product of a sinusoidal wave with a finite energy symmetric window g. The win-
dowed Fourier transform family of atoms is obtained by time translations and frequency
modulations of the original window g, thus it has a constant time frequency resolution.
This resolution can be changed by rescaling of the time window. It is a complete, sta-
ble and redundant representation of the signal (see figure D.1), hence it is invertible
[Chaplais, 1998].

Wavelet transform The wavelet transform replaces the Fourier transform’s sinusoidal
waves by a family generated by translations and dilations of a window called a wavelet.
It takes two arguments: time and scale. Its time spread is proportional to scale s, while
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its frequency spread is proportional to the inverse of s [Chaplais, 1998].
The main advantage of wavelet transforms is the variation of windows length. In order
to isolate signal discontinuities, one would like to use short basis functions and, at the
same time, long basis functions in order to obtain detailed frequency analysis. There-
fore, reformulating, short high-frequency basis functions and long low-frequency ones.
This "happy medium" is exactly what is provided by wavelet transforms (see figure D.2)
[Graps, 1995]. Wavelet transforms do not have a single set of basis functions like the
Fourier transform, which utilizes just the sine and cosine functions. Instead, wavelet
transforms have an infinite set of possible basis functions. Thus, wavelet analysis pro-
vides immediate access to information that may be obscured by other time-frequency
methods such as Fourier analysis [Graps, 1995].

Figure D.1: Windowed Fourier transform - The boxes show the localization of an atom in the time-
frequency space computed by the windowed Fourier transform. Notice that the time-frequency resolution
is constant [Chaplais, 1998].
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Figure D.2: Wavelet transform - The boxes show the localization of an atom in the time-frequency
space computed by the wavelet transform. The time resolution is finer when punctual changes occur
in the signal (high frequencies), while the frequency resolution is finer when the signal is stable in time
(low frequencies) [Chaplais, 1998].

Figure D.3: Averaged TF map for channel f10-f9. The vertical black lines show respectively the visual
cue and the go signal. Note the effect of wavelet transform in high frequencies (stretching) and low
frequencies (crushing).

D.2 Classification
Classification algorithms were used to identify ’patterns’ of brain activity. Considering
the features and a classification algorithm, the BCI tries to recognize different mental
states in a given data set (e.g. hand movement). As a result, the performance of a
pattern recognition system depends on both the features and the specific algorithm em-
ployed [Lotte et al., 2007].
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Given the features, a classifier is trained on an experimental data set so to adjust a
boundary between the classes by means of a classification algorithm. Formally, classifi-
cation consists in finding the true label y∗ of a feature vector x using a mapping function
f learnt from a training set T [Lotte et al., 2007].
A classifier can easily reach 100% of good classification on a given set of data (e.g. by
learning "by heart" which sample belongs to which class) but, at the same time, provide
poor performance on a new data set. It is thus important to find to evaluate the classifier
performance.
The classification methods used during the project are listed in the following pages.

D.2.1 K-nearest-neighbor

The k-nearest-neighbor (kNN) rule is a supervised method for data classification. This
method assumes no prior knowledge of the statistics of the data in question. kNN is
sometimes referred as a ’lazy method’, meaning that there it implies very little training
and it does not use the training data points to do any generalization.
The k-nearest-neighbor rule classifies a sample by the majority of the number k of the
nearest training samples around it, as shown in figure D.4. K is often an odd number to
ensure majority, and the outcomes of the classification are strongly linked to the choice
of k. E.g., a high k removes noise, but decreases the accuracy of the boundaries [Duda
et al., 2001].
The distance between samples can be calculated using different measures. For this
project, the Euclidean distance formula was chosen, as it is the most used:

D(a,b) =
(

d∑
k=1

(ak − bk)2
) 1

2

Where d is the dimensionality of a and b.

.
Figure D.4: The figure shows the principle behind K-Nearest-Neighbor Rule in a two dimensional
feature space. The blue squares represent class 1 and the red triangles represent class two. The green
dot will be classified according to the chose number k of nearest samples (image from Wikipedia)
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D.2.2 Linear discriminant analysis

Linear discriminant analysis (LDA) is a method used in statistics, pattern recognition
and machine learning in order to find a linear combination of features which separates two
or more classes of objects or events. LDA is characterized as a supervised and parametric
method and is performed under the hypothesis of multivariate normal distribution, with
different mean for each class, same conditional covariance matrix and same a priori
probability for each class [Duda et al., 2001].
LDA is a "fast" method compared to more complex ones but, depending on the underlying
distribution of the samples, its performances may be poorer. When classes need to
be classified, a decision boundary is needed: LDA looks for the linear combination
of features which best describes the data and it calculates a decision boundary. The
decision boundary has the form of a hyperplane g(x) = 0 (or multiple hyperplanes to
solve a N -class problem with N > 2) of the feature space. The discriminant function
g(x) is described as:

g(x) = wt · x + w0,

where x is the input features vector, w is the weight vector, which determines the
direction of the decision boundary, and w0 is the bias, which determines the location of
the decision boundary.
Figure D.5 shows the result of LDA for the given set of data. It can be observed how
LDA divides the two classes with a linear boundary.

Figure D.5: LDA performed in a two dimensional feature space. The red points and the blue circles
belong to different classes, the straight line is the boundary computed by LDA [Mirkin, 2011].
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D.2.3 Support vector machine

Support Vector Machine (SVM) is closely related to Linear Discriminant Analysis. It
uses both k-nearest-neighbor rule and linear discriminant analysis classification [Press
et al., 2007]. SVM aims to find one (or several) separating hyperplane(s) between two
or more classes. Differently from LDA, thought, SVM tries to find the hyperplane with
the largest margin between the classes, thus it ensures a better generalization of the
classifier. Furthermore, SVM does not assume multivariate normal distribution of the
features [Noble et al., 2004]. A possible case is illustrated in figure D.6. The hyperplane
labelled H1 could be a result of a LDA and H2 of SVM analysis. While H1 separates
the classes, it is less generalizable than the hyperplane H2, which separates the classes
by a greater margin [Duda et al., 2001].
SVM finds the so-called support vectors (samples on the margin), which are the most
difficult samples to classify. The hyperplane is then situated with equal distance with
respect to the support vectors. As it is not realistic to expect two (or more) classes
to be completely separable, the soft-margins method is introduced. It will choose a
hyperplane that splits the samples, while still maximizing the margin (see figure D.7).
The soft margins are introduced to allow samples of one class to push trough the margin
and into the area of the other class [Noble et al., 2004].

Figure D.6: The hyperplanes H1, H2 and H3 lead to different separation and generalizability. H3
(green) doesn’t separate the two classes. H1 (blue) does, with a small margin and H2 (red) with the
maximum margin (image from Wikipedia).
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Figure D.7: Maximum-margin hyperplane and margins for an SVM trained with samples from two
classes. Samples on the margin are called the support vectors (image from dtreg.com).

D.2.4 Neural network

Another interesting method that was used during the project, is the neural network (NN)
based classification, since the architecture of neural networks is inspired by the brain. A
NN is made of several simple communication processors (called ’neurons’), distributed in
at least two layers. Usually, a neuron is connected to every other neuron of the following
layer [Hudson and Cohen, 1999].
The inputs of the neural network are the different features, and each output is a class.
Given a certain input, the sample is classified according to the output of the NN. The
NN can be trained with a training data set [Hudson and Cohen, 1999].
There are three main characteristics which describe a NN: neuron model, architecture
and training algorithm [Hudson and Cohen, 1999].

Figure D.8: Representation of a neuron using a NN (image from Wikipedia).

Neuron model As showed in figure D.8, each input is first weighted, then all the
weighted inputs are summed by the so-called ’transfer function’ and, finally, the ’acti-
vation function’ will provide a final single output. The activation function ϕ can vary
a lot from a NN to another. Its simplest form is a threshold which provides a binary
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output (e.g. if the input netj > θj , then the output is 1, otherwise it is 0) or it can also
be a more complex continuous functions [Hudson and Cohen, 1999].

Architecture For a supervised NN, at least three layers are usually used (as in figure
D.9). The layers between the input and output layers are called hidden layers. A three-
layer neural network is also usually complex enough to solve the given classification
problems if the activation function is not linear[Hudson and Cohen, 1999].

Figure D.9: Architecture of a neural network (image from Wikipedia)

However, more than three layers can be used. This enables a more adaptive NN with
greater processing power at the cost of more complex training algorithm [Hudson and
Cohen, 1999].
One of the most important types of NNs is the feed-forward. As illustrated in D.9 there
is no feedback from a layer to the previous one. Each input represents a component of
the feature vector and each output represents a class [Hudson and Cohen, 1999].

Training algorithm A widespread supervised training method is the so-called back-
propagation [Hudson and Cohen, 1999]. When there is a mistake (wrong classification)
in the outputs, the difference between the expected outputs and the actual outputs is
computed. This difference is called error and it is propagated backwards through the
hidden layers. The output of each neuron is multiplied by the error, so to get a gradient of
the weight. If the gradient is negative, the weight is increased for each neuron according
to a given learning rate, and vice versa [Hudson and Cohen, 1999].

D.2.5 Evaluation of classifier performance

In order to perform a classification, the first step is to train the classifier using a training
set. The next step is to test the classifier and answer the question: how well does
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the classifier perform on a new data set? There are several methods to evaluate the
performance of a classifier.
A good choice is to separate the total amount of data into a training data set a testing
data set and, when possible, a validation data set. In this way, the training data would
never be used to test the classifier. Unfortunately, three (or even two) sets are often
difficult to generate because of the required extensive amount of data. The limited
amount of data makes it necessary to apply a method that reuses the training data
[Hawkins, 2004]. One of these methods is cross validation, and the leave-one-out cross
validation is in turn its best-known particular case.
The leave-one-out cross-validation trains the classifier on the entire set of samples, except
one. The left-out sample is then used to test the classifier. This operation is iterated for
every sample and provides a final confusion matrix [Duda et al., 2001].
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