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Abstract 

Type 1 diabetes (T1D) is characterized by the absence of insulin production and thus by an 

impaired glycaemia control. T1D therapy consists in providing insulin to the patient, aiming to 

maintain the blood glucose level in euglycaemia (i.e., between 70 and 180 
mg

dl
), counteracting 

hyperglycaemia, but without incurring in hypoglycaemic events, which can lead to severe 

consequences in the short term. This is not trivial, due to disturbing factors and given the 

pharmacokinetics and pharmacodynamics1 of exogenous insulin. 

The Artificial Pancreas (AP) is a new technology for the automation and the optimization of 

basal insulin administration, which works by a closed-loop algorithm that controls the 

functioning of an insulin pump, basing on the measurements provided by a glucose sensor. The 

objective of this work is to improve the quality of glycaemia control, by adding in AP the 

possibility to suggest carbohydrates assumptions and the administration of corrective insulin 

boluses, by using the Model Predictive Control (MPC) algorithm. The idea is to strengthen the 

counteraction of hypo- and hyperglycaemia, respectively. 

To model the quantity of CHO to be suggested and the capability of the algorithm to choose 

whether to deliver a bolus or not, a series of Boolean support variables is needed and has to be 

included in the control problem. Therefore, our approach involves the resolution of a Mixed 

Integer Quadratic Programming (MIQP) problem, which the MPC’s control problem can be 

reformulated as. 

To evaluate the performances of the resultant system (the triple-action MPC AP), we resort to 

the UVa/Padova T1D Simulator®, an accurate model of a T1D patient's metabolism, which was 

accepted by the U.S. FDA (Food and Drug Administration) as a substitute of animal trials for 

preclinical testing of T1D therapies, and is integrated with a population of realistic virtual 

subjects to perform the trials on. We compare our approach with a state-of-the-art strategy (the 

single-action MPC AP), which only manages the basal insulin delivery, and an advanced 

technique (the dual-action MPC AP), which, in addition, can suggest carbohydrates intakes. 

The results show how the triple-action MPC AP outperforms both the single-action- and the 

dual-action MPC AP, with an increment of the average time in euglycaemia of more than 9% 

and almost 3%, respectively, with the optimal parametrization. Adopting a suboptimal tuning, 

 
1 The pharmacokinetics (PK) of a drug are the quantitative description of how the body interacts with the substance, 

for the entire duration of the exposure (i.e. “what the body does to the drug”). The pharmacodynamics (PD) are 

the description of the biochemical, physiologic and molecular effects the drug has on the body (i.e. “what the drug 

does to the body”). 
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inferred by using hyperparameters’ regression models, our approach still outperforms the 

single-action technique, with an increase of the time in euglycaemia of almost 5%, and shows 

slightly better performances with respect to the dual-action MPC AP, as well. 



5 
 

I. Introduction 

Type 1 diabetes (T1D) is an autoimmune2 disease causing the destruction of the beta-cells in 

the Langerhans islets in pancreas. The task of these cells is to produce insulin, which is the 

fundamental hormone in the utilization process of glucose, to generate ATP3 for most of the 

tissues, and for the regulation of glucose level in blood (glycaemia) as well. Therefore, the lack 

of the endogenous insulin in T1D patients leads to ketoacidosis4, since lipids are much more 

employed as an alternative source of energy, but also to an impaired glycaemia regulation. 

Glucose remains in blood within anomalous levels, reaching values over 180 
mg

dl
 

(hyperglycaemia), that is a condition which, if prolonged in time, can cause micro- and macro-

vascular complications and thus diabetic retinopathy, an increased risk of heart disease, but also 

neuropathy, nephropathy, and several other problems. Therefore, T1D therapy consists in 

supplying exogenous insulin (adopting artificial substitutes) in such a way to adjust the blood 

glucose (BG) level and to try to maintain it in euglycaemia, i.e. under 180 
mg

dl
 but over 70 

mg

dl
 

as well. Lower levels, referred as hypoglycaemia, indeed, are even more dangerous, since they 

lead to short-term critical issues, namely seizure, coma or even death if not promptly treated, 

and must be avoided as much as possible [1-2]. This is not a trivial task, due to the external 

sources of variability and disturbance, namely meals, physical exercise and stress, and to the 

fact that it must be taken into account that exogenous insulin acts gradually and with a certain 

delay, from the time of infusion [3-4]. 

The traditionally adopted therapy for T1D involves several time-sparse manual insulin 

administrations, via insulin pens, and BG measurements by fingerstick devices, along the day. 

In detail, the patient is required to take a predefined quantity of insulin shortly before each meal 

(meal bolus), calculated with an empirical formula that takes into account the estimated amount 

of carbohydrates (CHO) in the meal, the difference between the measured glycaemia and the 

desired value, and the insulin-on-board5. In addition, whenever he or she feels that is 

undergoing a hypo- or hyperglycaemic event, he or she should measure the blood glucose level 

 
2 Autoimmune pathologies are characterized by a dysfunction of the immune system, that induces the organism to 

attack its own tissues. The underlying causes of these diseases are still not known, therefore they are particularly 

hard to be addressed. 

3 Adenosine triphosphate (ATP) is the molecule that acts like the source of energy for the cells, to perform any 

biological task. 

4 Ketoacidosis is a complication of diabetes, characterized by a reduction of the hematic PH, caused by a major 

release of acid components in blood due to an excessive use of lipids for ATP production. This can provoke 

dehydration, polyuria, polydipsia, hypotension and arrhythmias [1]. 

5 Namely the insulin which is still active in the body at a given time, from a previous administration. This can be 

computed with a heuristic method, as reported in [5]. 



6 
 

and perform a corrective action, i.e. take a certain amount of CHO or insulin, respectively. An 

improvement came from the introduction in the market of continuous glucose monitoring 

(CGM) sensors, that allow to oversee the glucose level in the interstitial zone automatically and 

in a practically constant way, and pumps for the continuous subcutaneous insulin infusion 

(CSII). Here, the meaning of “continuous” is to be intended as the fact that they both work at a 

relatively high frequency; in particular, the sampling time of the sensor is 1-5 minutes [6]. The 

combination of a CGM sensor with a CSII pump, being manually driven by the patient, form 

the set-up for the so-called sensor-augmented-pump (SAP) therapy. However, the crucial issue 

of the SAP strategy, as well as for the mentioned traditional approach, is that every control 

action has to be managed by the patient and, therefore, the effectiveness of the therapy heavily 

depends on his or her diligence and concentration, which must be constant. For this reason, a 

manual approach can be particularly burdensome for the individual and is not really robust, 

leaving room for further improvement [7]. 

In the perspective of automatizing and optimizing insulin administration, the Artificial Pancreas 

(AP) technology is emerged. It works by a closed-loop control algorithm, which is in charge of 

regulating the functioning of a CSII pump, on the basis of the measures provided by a CGM 

sensor, trying to mimic the behaviour of a real pancreas [8-9]. In this way, there is a software 

that fulfils, in a potentially optimized way, what otherwise should be performed by the patient, 

whose burden is thus significantly lower. Several algorithms have been examined for the AP 

controller (fuzzy logic, PID) [10-11], but the most successful and so the most adopted one is 

the Model Predictive Control (MPC) [12-14], mainly because it employs a predictive reasoning 

and for its capability to handle constraints on the control variables. This is the technique adopted 

in the current work. 

 

Figure 1. The AP architecture. 
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Most of the state-of-art systems are single-hormone APs [15-16], i.e. the algorithm they work 

with controls a unique variable, precisely the basal pump insulin infusion. Therefore, the 

glycaemia can be controlled only by being reduced (since this is the effect the insulin has on 

it), but there is not any other variable to get the opposite outcome, i.e. to actively promote a 

glucose increase, which significantly limits how much aggressively the hyperglycaemic events 

can be tackled, without incurring in hypoglycaemia. A state-of-art solution to try to overcome 

this issue is to suggest the assumption of fast-acting CHO when a hypoglycaemic event is 

detected or predicted to happen (emergency hypotreatment, i.e. against hypoglycaemia); this 

helps in avoiding moderate glucose drops, but it has to be noticed that this is a mere emergency 

measure and it is not coordinated with the control action on the insulin infusion, being managed 

by a module that is independent from the control algorithm [17]. 

In [17], exploiting an important feature of the MPC that is the capability to manage more control 

variables simultaneously, Pavan et al. propose an new technique, to be referred as dual-action 

MPC AP (in short, dualMPC): a single-hormone MPC AP, or singleMPC in brief (precisely an 

AP working with a MPC that manages only the basal insulin infusion), which controls an 

additional variable representing extra-CHO intakes. The strength of this algorithm comes from 

the fact the CHO intakes, to be suggested to the patient mainly as hypotreatments, are planned 

proactively in synergy with the insulin control. However, an issue affecting this strategy is that 

the patient is heavily involved in the control loop (human-in-the-loop problem): the suggested 

carbohydrates cannot be administered automatically if not in a hospital environment, since they 

can be infused intravenously but not subcutaneously; therefore, the subject is in charge of 

manually assume them. To lighten the extra-burden the patient has, some constraints are 

applied: the suggested CHO amounts have to be quantized among a few values, to ease their 

assumption and to reduce the risk of carb-counting errors; the CHO suggestions have to be 

sparse in time and there is a maximum number of them that can be given in a day; in addition, 

there can be “do-not-disturb” time periods, when no extra-CHO intakes can be suggested [17]. 

In this work we aim to achieve a further improvement for AP, exploring the possibility for the 

algorithm to manage the delivery of extra corrective insulin boluses, mainly as hypertreatments 

(i.e., against hyperglycaemia). There is consensus in the clinical community that the additional 

administration of insulin boluses may improve control, since they appear essential to counteract 

persistent hyperglycaemia; indeed, boluses are (variable) quantities of insulin that are released 

all at once and so are expected to have a large impact on glycaemia. This option has already 

been investigated, coupling the corrective boluses management with the basal insulin infusion 

control, however making use of modules independent from the controller [18] or heuristic 
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methods [19] for the boluses’ definition, basing on a mere reactive (not proactive) reasoning. 

Conversely, our goal is to obtain an innovative algorithm, adding to the dualMPC AP the 

capability to proactively plan also the administration of the corrective boluses, including them 

with a third control variable. In this way, we aim to achieve a method that helps in counteracting 

any hyperglycaemic peak, persistent or not, much more aggressively and effectively, still 

relying on the capability of the algorithm to suggest CHO intakes to avoid dangerous glucose 

drops that could arise as a consequence, and so to have a more stable BG trend. Even if there 

can be an ambiguity between the basal insulin (i.e. the first control variable) and the corrective 

boluses (since they both consist in insulin), the latter have to be intended as something separated 

(and to be subject to different constraints) with respect to the former, but still in synergy with 

all the other manipulated variables. Since they can possibly have a great impact on glycaemia 

and thus can significantly influence the physical state of the individual, their administration 

should be confirmed by him or her, if he or she feels to be in the right condition for that. For 

this reason, they must be bounded to the constraint of the sparsity in time as well, in order to 

contain the patient’s burden. Analogously to the definition proposed by Pavan et al. in [17], our 

system will be called in the following as triple-action MPC AP (or tripleMPC in short). 

We compare our approach both with a state-of-the-art strategy, which is the singleMPC, and 

with the dualMPC, to be considered as an advanced technique. In order to test the performances 

of the three versions of the MPC AP that we consider, a series of trials, on a given population 

of T1D patients, has to performed. At the state-of-the-art, the easiest and most convenient 

option is in-silico testing; in our work, for this purpose we exploit the latest version of the 

UVa/Padova T1D Simulator® (v. 2013) [20], a large-scale and accurate model of the T1D 

metabolic subsystem. Indeed, it was accepted by the U.S. Food and Drug Administration (FDA) 

as a substitute of animal testing for preclinical trials for T1D therapies evaluation, thus 

representing a less expensive, less complicated, more rapid, and ethical alternative way for 

testing. Therefore, now it is a well-established tool for this scope in the scientific literature [20-

21]. The parameters of the model this simulator is based on are not unique, but a dataset of 100 

virtual T1D patients, each one representing a different set of parameters and spanning the 

variability observed in a real T1D population, is available and comes with the simulator. In the 

simulation scenario we adopt, the UVa/Padova T1D simulator is integrated with a model 

simulating the functioning of a real CGM sensor, a patient decisions’ simulator [22], which 

models the meal announcement (that indeed must be provided by him or her) and the 

administration of the emergency hypotreatments, and of course a module where the controller 

is implemented, thus replicating the AP logic architecture as well. 
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MPC is a model-based technique, as its name may suggest. For the examined MPC APs, we 

adopt a linearized version of the UVa/Padova T1D system, in order to achieve a trade-off 

between the accuracy of the resultant model and its simplicity, which makes the problem more 

robust and lowers the computational cost. For major feasibility, we consider uniquely the model 

of the average virtual patient, for any tested individual. 

1.1. Thesis organization 

The thesis will be structured as follows. Section II focuses on the methods and particularly on 

the implementation of the single-, the dual- and the tripleMPC. In section III the experimental 

set-up is discussed, describing in detail the mentioned simulator, the simulation scenario and 

the metrics adopted to assess the algorithms’ performances. In section IV, we explain the tuning 

procedure for the MPCs’ hyperparameters. In section V the results are shown and properly 

discussed. The conclusions and some final remarks are reported in section VI. An appendices’ 

section containing further useful details is present as well. 
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II. Methods 

The control problem we aim to solve consists in regulating the blood glucose 𝐵𝐺(𝑘), but in 

true what the AP disposes of are measurements of the patient’s interstitial glucose 𝑔(𝑘), 

provided by the CGM sensor every 5 minutes. Therefore, what we aim to do is to keep 𝑔(𝑘) as 

close as possible to a suitable target value 𝑔0, acting against several disturbances, the main 

being represented by the meals, and unexplained metabolic fluctuations; in our work we set 

𝑔0 = 120 
mg

dl
. We assume that the information about the incoming meal’s CHO amount (meal 

announcement) is provided by the patient to the system; for this reason, the meal disturbance 

𝑑(𝑘) can be considered measurable, but what the AP disposes of is actually an estimate of it 

𝑑̂(k), possibly affected by errors [17]. 

The MPC solves the problem explained above by following the Receding Prediction Horizon 

strategy [23]. At each time step, it considers the time interval comprehending the current step 

and the 𝑃𝐻 future ones, where 𝑃𝐻 stands for Prediction Horizon and is a settable constant. It 

thus searches for the optimal sequence of control actions for the current time and the 𝑃𝐻 − 1 

steps ahead, between all the possible ones. Each element of the mentioned sequence is 

computed taking into account the correspondent predicted response of the system, i.e. for the 

subsequent time step6 within the prediction horizon; therefore, the system’s output 𝑔 is 

forecasted for the 𝑃𝐻 future steps. Finally, according to the receding horizon policy, rather than 

using the entire calculated sequence, only its first element is applied, then waiting for the next 

CGM sensor’s measurement; this is what makes the MPC strategy a closed-loop approach. The 

optimal control actions’ sequence is established by minimizing a cost function, comprehending 

the terms mentioned above (i.e. the unknown sequence of control variables and the 

correspondent system’s responses); consequently, the control problem is reconducted to an 

optimization one. The predictions about 𝑔 are computed exploiting a model of the T1D 

metabolic subsystem (this is why MPC is a model-based algorithm), to be initialized at each 

step with the system’s current state 𝑥, to be estimated basing on the measurement of 𝑔, the 

insulin infusion and the CHO intake at the present time. In our work, we refer to the 

UVa/Padova T1D model. As previously described, this model’s parameters are not unique but 

depend on the considered virtual patient. Rather than adopting its individualized form for each 

tested patient, we resort to the average one, i.e. referred to the average patient, whose parameters 

are precisely the mean of those of all the available virtual subjects. Even if this introduces a 

 
6 The effect of a control action is appreciable at the next sampling time, with respect to when it is computed and 

applied, i.e. when a new measurement is available. 
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certain degree of approximation, this is done for practical feasibility: indeed, the same model 

can be used in a real scenario as well, where the individual model of a real person is hard if not 

impossible to be known, instead. 

In the following, we describe the implementation of the three MPCs we consider, starting from 

the singleMPC, passing through the dualMPC and concluding with the tripleMPC, which is the 

core objective of our project. 

 

2.1. singleMPC 

The single-hormone MPC acts on one variable only, denoted as 𝑖(𝑘), that is how much insulin 

the pump releases at each time 𝑘. This is a LMPC (Linear Model Predictive Control), since it 

is based on a linearized, and discretized, version of the metabolic system’s model employed in 

the UVa/Padova T1D Simulator. The discretization is performed with a sampling time 𝑇𝑠 =

5 min (the period the CGM sensor works with), while the linearization is made around the basal 

equilibrium point (of the average patient), obtained with basal insulin infusion (𝑖(𝑘) = 𝑖𝑏(𝑘)) 

and no disturbance (𝑑(𝑘) = 0 mg). To do this, we resort to the Model Linearizer App, included 

in Simulink®. The resulting model, in state-space form, is the following: 

{
𝑥̅(𝑘 + 1) = 𝐴𝑥̅(𝑘) + 𝐵𝑖(̅𝑘) +𝑀𝑑̂(𝑘)

𝑔̅(𝑘) = 𝐶𝑥̅(𝑘)
(1) 

where: 

● k is the time step; 

● 𝑥̅ ∈ 𝑅16×1 is the state; 

● 𝑔̅ ∈ 𝑅 [
mg

dl
] is the difference between 𝑔(𝑘) and the basal glucose 𝐺𝑏 of the patient; 

● 𝑖̅ ∈ 𝑅 [
pmol

min

kg
] is the deviation of the insulin infusion 𝑖(𝑘) from the basal one of the patient, 

normalized by the body weight 𝐵𝑊 of the subject, i.e. 

𝑖(̅𝑘) =  
𝑖(𝑘) − 𝑖𝑏(𝑘)

𝐵𝑊
; (2) 

● 𝑑̂ ∈ 𝑅0
+ [mg] is the announced meal’s CHO consumption. 

● 𝐴 ∈ 𝑅16×16, 𝐵 ∈ 𝑅16×1,𝑀 ∈ 𝑅16×1, 𝐶 ∈ 𝑅1×16 are matrices. 
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The current state 𝑥̅(𝑘) is unknown but it can be estimated via Kalman filter, basing on the 

current-time values of the CGM reading, of the insulin infusion and of the CHO intake. Further 

details are reported in section 2.4. 

The MPC optimization problem explained above is solved by minimizing the following 

quadratic cost function, with respect to the sequence of insulin doses 𝑖(̅∙): 

𝐽(𝑥̅(𝑘), 𝑘, 𝑖(̅∙)) = ∑ ((𝑔̅(𝑘 + 𝑗) − 𝑔0̅̅ ̅(𝑘 + 𝑗))
2

𝑃𝐻−1

𝑗=0

+ 𝑟̃(𝑖(̅𝑘 + 𝑗) − 𝑖0̅(𝑘 + 𝑗))
2
)+‖𝑥̅(𝑘 + 𝑃𝐻)‖𝑃

2 (3) 

The first term in (3) is needed to penalize a deviation of 𝑔̅(𝑘) from the desired reference 

𝑔0̅̅ ̅(𝑘) = 𝑔0(𝑘) − 𝐺𝑏, while the second one is introduced to discourage large control actions 

with respect with to a suitable reference 𝑖0̅(𝑘) =
𝑖0(𝑘)−𝑖𝑏(𝑘)

𝐵𝑊
. How much weight and thus 

importance the latter has with respect to the former is determined by the parameter 𝑟̃ ∈ 𝑅+: 

with a small 𝑟̃ the adherence of 𝑔 to its reference is promoted, regardless of the amount of 

insulin 𝑖; conversely, the focus is on how much the computed insulin quantity is close to its 

reference, giving less importance to the quality of control. We suggest to refer to the appendix 

A.1, for a better understanding of the adopted notation. 

The signal 𝑖0̅(𝑘) is obtained basing on the traditional manual therapy, adding the meal boluses 

𝑖𝑚𝑒𝑎𝑙(k) to the basal insulin: 

𝑖0(𝑘) = 𝑖𝑏(𝑘) + 𝑖𝑚𝑒𝑎𝑙(𝑘), 

therefore 

𝑖0̅(𝑘) =
𝑖𝑚𝑒𝑎𝑙(𝑘)

𝐵𝑊
(4). 

The signal 𝑖𝑚𝑒𝑎𝑙(𝑘) is defined as in [24]: 

𝑖𝑚𝑒𝑎𝑙(𝑘) = {

𝑑̂(𝑘)

𝐶𝑅
+
𝑔(𝑘) − 𝐺𝑏

𝐶𝐹
− 𝐼𝑂𝐵(𝑘) 𝑎𝑡 𝑚𝑒𝑎𝑙 𝑡𝑖𝑚𝑒𝑠

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(5) 

where 𝐶𝑅 and 𝐶𝐹 are patient-specific parameters and represent the carbohydrates-to-insulin 

ratio (i.e. how much grams of ingested CHO are covered by 1 U of insulin) and the correction 

factor (i.e. the glucose drop caused by 1 U of insulin), respectively. 𝐼𝑂𝐵(𝑘) stands for the 

insulin-on-board, i.e. the quantity of insulin that is still active at time 𝑘, and is computed as 
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reported in [5]. A further discussion about the meaning and the implementation of 𝑖𝑚𝑒𝑎𝑙 is 

present in the appendix A.2. 

The third term in (3) ‖𝑥̅(𝑘 + 𝑃𝐻)‖𝑃
2 = 𝑥̅(𝑘 + 𝑃𝐻)𝑇𝑃𝑥̅(𝑘 + 𝑃𝐻) is the terminal cost and is 

needed to take into account the system’s response at time 𝑘 + 𝑃𝐻 as well. The state 𝑥̅ is 

considered instead of the output 𝑔̅ to promote stability. The weight 𝑃 is computed by solving 

the Riccati equation: 

𝑃 = 𝐴𝑇𝑃𝐴 − (𝐴𝑇𝑃𝐵)(𝑟𝐼 + 𝐵𝑇𝑃𝐵)−1(𝐵𝑇𝑃𝐴) + 𝑞𝐼 (6) 

which has a unique non-negative solution and where 𝐼 is the identity matrix and 𝑞 and 𝑟 are 

such that 𝑟̃ =
𝑟

𝑞
. 

In addition, the constraints on the minimal and maximal administrable dose of insulin (due to 

the actuator’s physical limits): 

0 ≤ 𝑖(𝑘) ≤ 𝑖𝑚𝑎𝑥(𝑘) ∀𝑘 

are taken into account and become, after the same normalization 𝑖 and 𝑖0 undergo to: 

𝑖𝑚̅𝑖𝑛(𝑘) ≤ 𝑖(̅𝑘) ≤ 𝑖𝑚̅𝑎𝑥(𝑘) ∀𝑘 (7) 

where 𝑖𝑚̅𝑖𝑛(𝑘) = −
𝑖𝑏(𝑘)

𝐵𝑊
 and 𝑖𝑚̅𝑎𝑥(𝑘) =

𝑖𝑚𝑎𝑥(𝑘)−𝑖𝑏(𝑘)

𝐵𝑊
. 

The MPC optimal control problem can be summed up as following: 

min
𝑖̅(∙)𝑠.𝑡.

𝑖̅𝑚𝑖𝑛(∙)≤𝑖̅(∙)≤𝑖̅𝑚𝑎𝑥(∙)

𝐽(𝑥̅(𝑘), 𝑘, 𝑖(̅∙)) (8)
 

The MPC algorithm modulates the standard insulin reference 𝑖0̅(𝑘) at any time 𝑘, respecting 

the constraints. How the modulation is done depends on the trade-off it does between how much 

large the deviations of 𝑔̅ and 𝑖 ̅ from their own respective reference signals (i.e. the first two 

penalty terms in (3)) are. How that trade-off is solved is strongly determined by 𝑟̃, which has to 

be tuned specifically for each patient, due to the high inter-patient biovariability. This 

individualized tuning is discussed in section IV. 

Finally, with the proper manipulations (reported in detail in appendix A.3), the problem 

previously described can be rewritten in a more compact matrix form and thus reconducted to 

a Quadratic Programming (QP) problem: 

min
𝑈 𝑠.𝑡.
𝐹𝑠𝑈≤𝑓𝑠

1

2
𝑈𝑇𝑄𝑠𝑈 + 𝑐𝑠

𝑇𝑈 (9) 
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where 

𝑈(𝑘) = [
𝑖(̅𝑘)
⋮

𝑖(̅𝑘 + 𝑃𝐻 − 1)
] ∈ 𝑅𝑃𝐻×1 (10), 

𝐹𝑠 = [
−𝐼𝑃𝐻
𝐼𝑃𝐻

] ∈ 𝑅2𝑃𝐻×𝑃𝐻, 𝑓𝑠(𝑘) = [
−𝐼𝑚̅𝑖𝑛(𝑘)

𝐼𝑚̅𝑎𝑥(𝑘)
] ∈ 𝑅2𝑃𝐻×1 (11), 

𝐼𝑃𝐻 = [

1 0 … 0
0 ⋱ ⋮
⋮ ⋱ 0
0 … 0 1

] ∈ 𝑅𝑃𝐻×𝑃𝐻 

with 

𝐼𝑚̅𝑖𝑛(𝑘) = [
𝑖𝑚̅𝑖𝑛(𝑘)
⋮

𝑖𝑚̅𝑖𝑛(𝑘)
] ∈ 𝑅𝑃𝐻×1, 𝐼𝑚̅𝑎𝑥(𝑘) = [

𝑖𝑚̅𝑎𝑥(𝑘)
⋮

𝑖𝑚̅𝑎𝑥(𝑘)
] ∈ 𝑅𝑃𝐻×1 

and suitable matrix 𝑄𝑠 ∈ 𝑅
𝑃𝐻×𝑃𝐻 and vector 𝑐𝑠 ∈ 𝑅

𝑃𝐻×1, representing in matrix form the cost 

function (3). 

 

2.2. dualMPC 

The dualMPC proposed by Pavan et al. in [17] introduces a second control variable 𝑐(𝑘) ∈ 𝑅, 

representing the suggested extra-CHO intakes; therefore, the model has to be modified as 

follows: 

{
𝑥̅(𝑘 + 1) = 𝐴𝑥̅(𝑘) + 𝐵𝑖(̅𝑘) + 𝑀𝑑̂(𝑘) +𝑀𝑐(𝑘)

𝑔̅(𝑘) = 𝐶𝑥̅(𝑘)
(12) 

The new variable is defined as 

𝑐(𝑘) = 𝛾1𝑐1(𝑘) + 𝛾2𝑐2(𝑘) (13), 

where 𝛾1 = 1000 
mg

min
 and 𝛾2 = 2000 

mg

min
, while 𝑐1, 𝑐2 ∈ {0,1} are two Boolean support 

variables. As better discussed later, these variables will be bound not to be both active at the 

same time, i.e. to be mutually exclusive. In this way, 𝑐(𝑘) is quantized and can assume three 

values only, precisely 0, 𝛾1 or 𝛾2 [17]. 

An additional term is added to the cost function too, which becomes: 
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𝐽(𝑥̅(𝑘), 𝑘, 𝑖(̅∙)) = ∑ ((𝑔̅(𝑘 + 𝑗) − 𝑔0̅̅ ̅(𝑘 + 𝑗))
2
+ 𝑟̃(𝑖(̅𝑘 + 𝑗) − 𝑖0̅(𝑘 + 𝑗))

2
𝑃𝐻−1

𝑗=0

+ 𝑠̃(𝑐1(𝑘 + 𝑗)
2 + 𝑐2(𝑘 + 𝑗)

2))+‖𝑥̅(𝑘 + 𝑃𝐻)‖𝑃
2 (14) 

As a result, there is also a penalty on the ℓ0-norm of the signal 𝑐(∙), that is the number of its 

non-zero elements, in the prediction horizon (i.e. 𝑐(𝑘 + 𝑗), for 𝑗 = 1,… , 𝑃𝐻 − 1). In other 

words, the number of CHO suggestions is penalized, independently from their amount [17]. 

There is a better explanation of what the ℓ0-norm is in appendix A.1. 

To promote sparsity in time of the CHO suggestions, in such a way to prevent frequent requests 

of patient intervention, a minimal distance ∆𝑐 between two consecutive CHO intakes is 

imposed. This is obtained with the following constraint on the Boolean support variables: 

∑ (𝑐1(𝑘 + 𝑖) + 𝑐2(𝑘 + 𝑖)) ≤ 1

𝑗+∆𝑐−1

𝑖=𝑗

∀𝑗 = 0,… , 𝑃𝐻 − ∆𝑐 (15) 

that can be rewritten in the more compact matrix form 

𝐹̃𝑐𝐶1,2(𝑘) ≤ 𝑓𝑐 (16) 

where 

𝐶1,2(𝑘) = [𝑐1(𝑘), … , 𝑐1(𝑘 + 𝑃𝐻 − 1), 𝑐2(𝑘), … , 𝑐2(𝑘 + 𝑃𝐻 − 1)]
𝑇 ∈ 𝑅2𝑃𝐻×1, 

𝐹̃𝑐 = [𝐹̃𝑐1 𝐹̃𝑐2], 𝐹̃𝑐1 = 𝐹̃𝑐2 =

{
 
 
 

 
 
 

[
 
 
 
 
1 … 1
0 1 …
⋮ ⋱
⋮
0 … …

⏞      
∆𝑐

0 … … 0
1 0 … 0

⋱ ⋮
⋱ ⋱ 0
0 1 … 1]

 
 
 
 

⏞          
𝑃𝐻−∆𝑐

∈ 𝑅(𝑃𝐻−∆𝑐+1)×𝑃𝐻 𝑖𝑓 𝑃𝐻 > ∆𝑐

[1 … 1] ∈ 𝑅1×𝑃𝐻 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 

𝑓𝑐 = {
[1 … 1]𝑇 ∈ 𝑅𝑃𝐻−∆𝑐+1 𝑖𝑓 𝑃𝐻 > ∆𝑐

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. 

In this way, in every possible interval of length ∆𝑐 within the prediction horizon, at most only 

one term between all the 𝑐1’s and 𝑐2’s in that period of time can be active. In particular, at each 

time within every interval the mutual exclusivity of 𝑐1 and 𝑐2 is imposed.  

However, the above constraints do not fully ensure the sparsity, because they restrict only to 

the planned CHO suggestions at the current time 𝑘, while the CHO intakes suggested in the 

past, which are not included within the current prediction horizon, are not considered. As an 
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example, the optimal solution at time 𝑘 − 1 can include an extra-CHO at the beginning of the 

prediction horizon; that extra-CHO is consumed at the next step 𝑘, but it is not taken into 

account in the new optimization problem that is formulated at 𝑘. In addition, we similarly want 

to force a minimal distance ∆𝑚 to the CHO suggestions from the last meal announcement [17], 

not to exacerbate the glycaemic rise. To achieve all this, another time-varying constraint is 

imposed: 

𝑐1(𝑘 + 𝑖) + 𝑐2(𝑘 + 𝑖) ≤ 𝑐𝑚𝑎𝑥(𝑘 + 𝑖) ∀𝑖 = 0, … , 𝑃𝐻 − 1 (17) 

where 𝑐𝑚𝑎𝑥 is a variable defined as 

𝑐𝑚𝑎𝑥(𝑘 + 𝑖) = {
0

𝑖𝑓 𝑘 + 𝑖 − 𝑘𝑙𝑎𝑠𝑡
𝐶𝐻𝑂 ≤ ∆𝑐

𝑜𝑟 𝑖𝑓 𝑘 + 𝑖 − 𝑘𝑙𝑎𝑠𝑡
𝑚𝑒𝑎𝑙 ≤ ∆𝑚

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(18) 

where 𝑘𝑙𝑎𝑠𝑡
𝐶𝐻𝑂 and 𝑘𝑙𝑎𝑠𝑡

𝑚𝑒𝑎𝑙 are used to memorize the times of the last extra-CHO intake and the last 

meal, respectively. 

If rewritten in matrix form, the above constraint is: 

𝐹̃𝑚𝑎𝑥
𝑐 𝐶1,2(𝑘) ≤ 𝐶𝑚𝑎𝑥(𝑘) (19) 

with 

𝐹̃𝑚𝑎𝑥
𝑐 = [𝐼𝑃𝐻 𝐼𝑃𝐻] ∈ 𝑅

𝑃𝐻×2𝑃𝐻, 𝐶𝑚𝑎𝑥(𝑘) = [𝑐𝑚𝑎𝑥(𝑘) … 𝑐𝑚𝑎𝑥(𝑘 + 𝑃𝐻 − 1)]
𝑇 ∈ 𝑅𝑃𝐻×1. 

To limit the number of CHO suggestions the algorithm can give in a day to an upper bound 

𝑛𝑚𝑎𝑥, another time-varying constraint is introduced, that is 

∑ (𝑐1(𝑘 + 𝑖) + 𝑐2(𝑘 + 𝑖)) ≤ 𝑛𝑟𝑒𝑠(𝑘)

𝑃𝐻−1

𝑖=0

(20) 

where 𝑛𝑟𝑒𝑠(𝑘) is the residual number of extra-CHO intakes that can be given in a day; it is 

decreased of one unit every time a CHO suggestion is given and it is reset to 𝑛𝑚𝑎𝑥 every day at 

06: 00 AM. 

Finally, the introduction of “do-not-disturb” zones, namely time intervals where no CHO 

suggestions can be given, is requested, in order to avoid the intervention of the patient in 

predefined periods of the day, when it is expected to be problematic if not impossible. To 

achieve this, it is sufficient to force 𝑛𝑟𝑒𝑠(𝑘) to be zero in these periods. In our work, we set up 

a “do-not-disturb” zone during every night, from 00: 00 to 06: 00 AM. 

The above constraint can be translated in matrix form as follows: 
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[1 … 1⏞      
2𝑃𝐻

]𝐶1,2(𝑘) ≤ 𝑛𝑟𝑒𝑠(𝑘). 

The optimization problem reported above can be formulated in a more compact form as a Mixed 

Integer Quadratic Programming (MIQP) problem (not just as a QP due to the presence of the 

Boolean support variables), as explained in appendix A.3 as well: 

min
𝑈 𝑠.𝑡.
𝐹𝑑𝑈≤𝑓𝑑

𝑈𝑃𝐻+1,…,3𝑃𝐻∈{0,1}

1

2
𝑈𝑇𝑄𝑑𝑈 + 𝑐𝑑

𝑇𝑈 (21)
 

following a procedure analogous to that used to obtain the formula (9), redefining 𝑈(𝑘) as 

𝑈(𝑘) = [

𝑖(̅𝑘)
⋮

𝑖(̅𝑘 + 𝑃𝐻 − 1)

𝐶1,2(𝑘)

] ∈ 𝑅3𝑃𝐻, (22) 

with 

𝐹𝑑 =

[
 
 
 
 
 
 

−𝐼3𝑃𝐻

𝐼𝑃𝐻

0
⋮
0

…
⋱
…

0
⋮
0

0 … 0 𝐹̃𝑚𝑎𝑥
𝑐

⋮ ⋱ ⋮ 𝐹̃𝑐
0 … 0 1 … 1]

 
 
 
 
 
 

∈ 𝑅(6𝑃𝐻−∆𝑐+2)×3𝑃𝐻, 𝑓𝑑(𝑘) =

[
 
 
 
 
−𝑈𝑚𝑖𝑛

𝑑 (𝑘)

𝑈𝑚𝑎𝑥
𝑑 (𝑘)

𝑓𝑐
𝑛𝑟𝑒𝑠(𝑘) ]

 
 
 
 

∈ 𝑅6𝑃𝐻−∆𝑐+2×1 (23) 

𝐼3𝑃𝐻 = [

1 0 … 0
0 ⋱ ⋮
⋮ ⋱ 0
0 … 0 1

] ∈ 𝑅3𝑃𝐻×3𝑃𝐻, 

𝑈𝑚𝑖𝑛
𝑑 (𝑘) = [

𝐼𝑚𝑖𝑛(𝑘)
0
⋮
0

] ∈ 𝑅3𝑃𝐻×1, 𝑈𝑚𝑎𝑥
𝑑 (𝑘) = [

𝐼𝑚𝑎𝑥(𝑘)
𝐶𝑚𝑎𝑥(𝑘)

] ∈ 𝑅2𝑃𝐻×1 

and suitable matrix 𝑄𝑑 ∈ 𝑅
𝑃𝐻×𝑃𝐻 and vector 𝑐𝑑 ∈ 𝑅

𝑃𝐻×1. 

 

2.3. tripleMPC 

The core objective of our project is to introduce in AP the capability to administer corrective 

insulin boluses (as well as CHO suggestions), thus implementing the so-called tripleMPC. As 

anticipated in the introduction, this option has already been explored, however resorting to mere 

heuristic methods or a separate independent module [18-19]. The characteristic of tripleMPC 
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which distinguish it from these mentioned approaches, and which makes it innovative is that 

the corrective boluses are included with a real additional control variable. In this way they are 

proactively planned as well, in synergy with basal insulin modulation and the planning of the 

CHO suggestions. We choose to represent the boluses with the continuous variable 𝑏(𝑘) ∈ 𝑅0
+. 

A Boolean support variable 𝑧(𝑘) ∈ {0,1} is needed as well, to model the ability of the algorithm 

to choose whether to administer a bolus or not, and so to have that 𝑏(𝑘) ≠ 0 only if 𝑧(𝑘) is 

active (otherwise 𝑏 would be continuously modulated, as well as the basal insulin 𝑖). This is 

achieved imposing the following time-variant lower and upper bounds on 𝑏(𝑘): 

𝑚 ∙ 𝑧(𝑘) ≤ 𝑏(𝑘) ≤ 𝑀 ∙ 𝑧(𝑘) ∀𝑘 (24) 

where 𝑚 ∈ 𝑅0
+ and 𝑀 ∈ 𝑅+ are constants, with 𝑚 < 𝑀; in this way, when 𝑧(𝑘) = 0, 𝑏(𝑘) is 

forced to be null, vice versa, when 𝑧(𝑘) is active, 𝑏(𝑘) is free to assume any value ranging from 

𝑚 to 𝑀. In our work we set 𝑚 =
50

𝐶𝐹
 
U

min
, i.e. the (individualized) minimum quantity of insulin 

that is expected to lead to a glucose drop of 50 
mg

dl
, and 𝑀 = 100 

U

h
≅ 1.67 

U

min
. Notice that 

𝑚 ≠ 0: this is to avoid the otherwise possible delivering of small and so not impactful boluses, 

which would hardly be practically useful. 

These bounds can be rewritten using the matrix notation, as: 

[
−𝐼𝑃𝐻 𝑚 ∙ 𝐼𝑃𝐻
𝐼𝑃𝐻 −𝑀 ∙ 𝐼𝑃𝐻

] [
𝐵(𝑘)
𝑍(𝑘)

] ≤ [0 … 0⏞      
𝑃𝐻

]𝑇 (25) 

where 

𝐵(𝑘) = [𝑏(𝑘),… , 𝑏(𝑘 + 𝑃𝐻 − 1)]𝑇 ∈ 𝑅𝑃𝐻×1, 𝑍(𝑘) = [𝑧(𝑘), … , 𝑧(𝑘 + 𝑃𝐻 − 1)]𝑇 ∈ 𝑅𝑃𝐻×1. 

The model must be modified and becomes: 

{
𝑥̅(𝑘 + 1) = 𝐴𝑥̅(𝑘) + 𝐵𝑖(̅𝑘) + 𝑀𝑑̂(𝑘) + 𝑀𝑐(𝑘) + 𝐵𝑏(𝑘)

𝑔̅(𝑘) = 𝐶𝑥̅(𝑘)
(26) 

where 𝑐(𝑘) is defined as in (13), but now with 𝛾1 and 𝛾2 increased to 3000 and 4000 
mg

min
, 

respectively, since with the extra boluses the total quantity of administered insulin is more 

consistent and the expected risk of major hypoglycaemic events must be prevented. 

The cost function is also extended, as follows: 
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𝐽(𝑥̅(𝑘), 𝑘, 𝑖(̅∙)) = ∑ ((𝑔̅(𝑘 + 𝑗) − 𝑔0̅̅ ̅(𝑘 + 𝑗))
2
+ 𝑟̃(𝑖(̅𝑘 + 𝑗) − 𝑖0̅(𝑘 + 𝑗))

2
𝑃𝐻−1

𝑗=0

+ 𝑠̃(𝑐1(𝑘 + 𝑗)
2 + 𝑐2(𝑘 + 𝑗)

2) + 𝑤̃1𝑏(𝑘 + 𝑗)
2

+ 𝑤̃2𝑧(𝑘 + 𝑗)
2)+‖𝑥̅(𝑘 + 𝑃𝐻)‖𝑃

2 (27) 

De facto, the signal 𝑧(∙) takes into account the number of administered extra-boluses. 

Therefore, in this way both the quantity and the number of corrective boluses are penalized, as 

well. The weight 𝑤̃1 should be relatively small, since the quantity penalization has to be 

intended as a way only to prevent the algorithm to deliver excessively large boluses. The 

penalization of the number, instead, is introduced to promote the boluses’ delivering only when 

actually needed. 

The support variable 𝑧(𝑘) is necessary to promote the sparsity in time of the corrective boluses, 

as well. This can be achieved by imposing on it constraints similar to (15) and (17), i.e.: 

∑ (𝑧(𝑘 + 𝑖)) ≤ 1

𝑗+∆𝑏−1

𝑖=𝑗

∀𝑗 = 0,… , 𝑃𝐻 − ∆𝑏 (28) 

with ∆𝑏 the minimal distance between two consecutive corrective boluses that we want, and 

𝑧(𝑘 + 𝑖) ≤ 𝑧𝑚𝑎𝑥(𝑘 + 𝑖) ∀𝑖 = 0, … , 𝑃𝐻 − 1, 

with 

𝑧𝑚𝑎𝑥(𝑘 + 𝑖) = 0 𝑖𝑓 𝑘 + 𝑖 − 𝑘𝑙𝑎𝑠𝑡
𝑏𝑜𝑙𝑢𝑠 ≤ ∆𝑏 , 

where 𝑘𝑙𝑎𝑠𝑡
𝑏𝑜𝑙𝑢𝑠 is the time of the last corrective bolus administration. 

These can be rewritten in matrix form, respectively as: 

𝐹̃𝑏𝑍(𝑘) ≤ 𝑓𝑏 (29) 

with 

𝐹̃𝑏 =

{
 
 
 

 
 
 

[
 
 
 
 
1 … 1
0 1 …
⋮ ⋱
⋮
0 … …

⏞      
∆𝑏

0 … … 0
1 0 … 0

⋱ ⋮
⋱ ⋱ 0
0 1 … 1]

 
 
 
 

⏞          
𝑃𝐻−∆𝑏

∈ 𝑅(𝑃𝐻−∆𝑏+1)×𝑃𝐻 𝑖𝑓 𝑃𝐻 > ∆𝑏

[1 … 1] ∈ 𝑅1×𝑃𝐻 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 
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𝑓𝑏 = {
[1 … 1]𝑇 ∈ 𝑅𝑃𝐻−∆𝑏+1 𝑖𝑓 𝑃𝐻 > ∆𝑏

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

and 

𝐼𝑃𝐻𝑍(𝑘) ≤ 𝑍𝑚𝑎𝑥(𝑘), (30) 

with 

𝑍𝑚𝑎𝑥(𝑘) = [𝑧𝑚𝑎𝑥(𝑘) … 𝑧𝑚𝑎𝑥(𝑘 + 𝑃𝐻 − 1)]
𝑇 ∈ 𝑅𝑃𝐻×1. 

In addition, we want to introduce a minimal distance ∆𝑏𝑐 between the suggested CHO intakes 

and the extra boluses, to avoid the simultaneous use of these aggressive and antagonistic control 

actions; this is obtained with the following constraint: 

∑ (𝑐1(𝑘 + 𝑖) + 𝑐2(𝑘 + 𝑖) + 𝑧(𝑘 + 𝑖)) ≤ 1

𝑗+∆𝑏𝑐−1

𝑖=𝑗

∀𝑗 = 0,… , 𝑃𝐻 − ∆𝑏𝑐 (31) 

that can be rewritten as 

[𝐹̃𝑏𝑐 𝐹̃𝑏𝑐 𝐹̃𝑏𝑐] [
𝐶1,2(𝑘)

𝐵(𝑘)
] ≤ 𝑓𝑏𝑐 (32) 

with 

𝐹̃𝑏𝑐 =

{
 
 
 

 
 
 

[
 
 
 
 
1 … 1
0 1 …
⋮ ⋱
⋮
0 … …

⏞      
∆𝑏𝑐

0 … … 0
1 0 … 0

⋱ ⋮
⋱ ⋱ 0
0 1 … 1]

 
 
 
 

⏞          
𝑃𝐻−∆𝑏𝑐

∈ 𝑅(𝑃𝐻−∆𝑏𝑐+1)×𝑃𝐻 𝑖𝑓 𝑃𝐻 > ∆𝑏𝑐

[1 … 1] ∈ 𝑅1×𝑃𝐻 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 

𝑓𝑏𝑐 = {
[1 … 1]𝑇 ∈ 𝑅𝑃𝐻−∆𝑏𝑐+1 𝑖𝑓 𝑃𝐻 > ∆𝑏𝑐

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

and adding that 

𝑐𝑚𝑎𝑥(𝑘 + 𝑖) = 0 𝑖𝑓 𝑘 + 𝑖 − 𝑘𝑙𝑎𝑠𝑡
𝑏𝑜𝑙𝑢𝑠 ≤ ∆𝑏𝑐 and 𝑧𝑚𝑎𝑥(𝑘 + 𝑖) = 0 𝑖𝑓 𝑘 + 𝑖 − 𝑘𝑙𝑎𝑠𝑡

𝐶𝐻𝑂 ≤ ∆𝑏𝑐. 

A minimal distance ∆𝑚
𝑏  from a meal to a corrective bolus is needed as well, since a further bolus 

intake after a meal is likely to lead to hypoglycaemia. This is due to the delay in insulin action 

and therefore to the fact that the bolus can take effect when the glycaemic level has already 

dropped. Moreover, typically it can be hard for our MPC to foresee accurately the long-term 

effect of a bolus in such a situation. This is because the linearized model we adopt for our MPC 
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is limited exactly when near hypoglycaemia and when referring to a relatively far future time; 

therefore, the MPC’s model-based predictions are less accurate in these conditions. This can be 

included imposing that 

𝑧𝑚𝑎𝑥(𝑘 + 𝑖) = 0 𝑖𝑓 𝑘 + 𝑖 − 𝑘𝑙𝑎𝑠𝑡
𝑚𝑒𝑎𝑙 ≤ ∆𝑚

𝑏 . 

Lastly, since we want to include the use of emergency hypotreatments as well, we impose that 

𝑐𝑚𝑎𝑥(𝑘 + 𝑖) = 0 𝑖𝑓 𝑘 + 𝑖 − 𝑘𝑙𝑎𝑠𝑡
𝑒𝐻𝑇 ≤ ∆𝑐 

where 𝑘𝑙𝑎𝑠𝑡
𝑒𝐻𝑇 is the time of the last emergency hypotreament, in order to have the minimal 

distance ∆𝑐 also between the emergency hypotreatments and the planned ones7. 

Overall, 𝑐𝑚𝑎𝑥 (for the tripleMPC) and 𝑧𝑚𝑎𝑥 are respectively defined as 

𝑐𝑚𝑎𝑥(𝑘 + 𝑖) =

{
 
 

 
 

0

𝑖𝑓 𝑘 + 𝑖 − 𝑘𝑙𝑎𝑠𝑡
𝐶𝐻𝑂 ≤ ∆𝑐,

𝑖𝑓 𝑘 + 𝑖 − 𝑘𝑙𝑎𝑠𝑡
𝑚𝑒𝑎𝑙 ≤ ∆𝑚,

𝑖𝑓 𝑘 + 𝑖 − 𝑘𝑙𝑎𝑠𝑡
𝑏𝑜𝑙𝑢𝑠 ≤ ∆𝑏𝑐

𝑜𝑟 𝑖𝑓 𝑘 + 𝑖 − 𝑘𝑙𝑎𝑠𝑡
𝑒𝐻𝑇 ≤ ∆𝑐

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑧𝑚𝑎𝑥(𝑘 + 𝑖) =

{
 

 
0

𝑖𝑓 𝑘 + 𝑖 − 𝑘𝑙𝑎𝑠𝑡
𝑏𝑜𝑙𝑢𝑠 ≤ ∆𝑏,

𝑖𝑓 𝑘 + 𝑖 − 𝑘𝑙𝑎𝑠𝑡
𝑚𝑒𝑎𝑙 ≤ ∆𝑚

𝑏

𝑜𝑟 𝑖𝑓 𝑘 + 𝑖 − 𝑘𝑙𝑎𝑠𝑡
𝐶𝐻𝑂 ≤ ∆𝑏𝑐

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(33) 

Finally, as similarly as for the dualMPC and as discussed in appendix A.3, we can reconduct to 

the MIQP formulation of the problem 

min
𝑈 𝑠.𝑡.
𝐹𝑡𝑈≤𝑓𝑡

𝑈 𝑃𝐻+1,…,3𝑃𝐻
4𝑃𝐻+1,…,5𝑃𝐻

∈{0,1}

1

2
𝑈𝑇𝑄𝑡𝑈 + 𝑐𝑡

𝑇𝑈 (34)
 

redefining 𝑈(𝑘) as 

𝑈(𝑘) =

[
 
 
 
 
 

𝑖(̅𝑘)
⋮

𝑖(̅𝑘 + 𝑃𝐻 − 1)

𝐶1,2(𝑘)

𝐵(𝑘)
𝑍(𝑘) ]

 
 
 
 
 

∈ 𝑅5𝑃𝐻×1, (35) 

 
7 To fully accomplish this, in true it is necessary also to work on the separate module that manages the emergency 

hypotreatments, which we could not do due to our timetable. For the same reason, we could not include the last 

modification regarding 𝑐𝑚𝑎𝑥  for the dualMPC too, since this would have meant redoing all the relative tests, that 

had already been done when we figured out all this is needed. 
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with 

𝐹𝑡 = [
−𝐹𝑚𝑖𝑛

𝑡

𝐹𝑚𝑎𝑥
𝑡

𝐹̃

] ∈ 𝑅(12𝑃𝐻−∆𝑐−∆𝑏−∆𝑏𝑐+4)×5𝑃𝐻,

𝑓𝑡(𝑘) =

[
 
 
 
 
 
 
−𝑈𝑚𝑖𝑛

𝑡 (𝑘)

𝑈𝑚𝑎𝑥
𝑡 (𝑘)

𝑓𝑐
𝑛𝑟𝑒𝑠(𝑘)

𝑓𝑏
𝑓𝑏𝑐 ]

 
 
 
 
 
 

∈ 𝑅12𝑃𝐻−∆𝑐−∆𝑏−∆𝑏𝑐+4×1

(36) 

𝐹𝑚𝑖𝑛
𝑡 =

[
 
 
 
 
𝐼𝑃𝐻 0 … … … 0

0 𝐼𝑃𝐻 ⋱ ⋮
⋮ ⋱ 𝐼𝑃𝐻 0 … 0
⋮ ⋱ 𝐼𝑃𝐻 −𝑚 ∙ 𝐼𝑃𝐻
0 … … 0 𝐼𝑃𝐻 ]

 
 
 
 

∈ 𝑅5𝑃𝐻×5𝑃𝐻, 

𝐹𝑚𝑎𝑥
𝑡 =

[
 
 
 
 
 
 
 
 
 
 
 
 

0 ⋯ 0 0 ⋯ 0
𝐼𝑃𝐻 ⋮ ⋱ ⋮ 𝐼𝑃𝐻 ⋮ ⋱ ⋮

0 ⋯ 0 0 ⋯ 0
0 ⋯ 0 0 ⋯ ⋯ ⋯ ⋯ 0
⋮ ⋱ ⋮ 𝐹̃𝑚𝑎𝑥

𝑐 ⋮ ⋱ ⋱ ⋮

0 ⋯ 0 0 ⋯ ⋯ ⋯ ⋯ 0
0 ⋯ ⋯ ⋯ ⋯ 0
⋮ ⋱ ⋱ ⋮ 𝐼𝑃𝐻 −𝑀 ∙ 𝐼𝑃𝐻
0 ⋯ ⋯ ⋯ ⋯ 0
0 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋮ 𝐼𝑃𝐻
0 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 0 ]

 
 
 
 
 
 
 
 
 
 
 
 

∈ 𝑅4𝑃𝐻×5𝑃𝐻, 

𝐹̃ =

[
 
 
 
 
 
 
 
 
 
 
0 … 0 0 … … … … 0
⋮ ⋱ ⋮ 𝐹̃𝑐 ⋮ ⋱ ⋱ ⋮

⋮ ⋱ ⋮ ⋮ ⋱ ⋱ ⋮
0 … 0 1 … 1 0 … … … … 0
0 … … … … … … … 0
⋮ ⋱ ⋱ ⋱ ⋮ 𝐹̃𝑏
0 … … … … … … … 0
0 … 0 0 … 0
⋮ ⋮ 𝐹̃𝑏𝑐 𝐹̃𝑏𝑐 ⋮ ⋮ 𝐹̃𝑏𝑐
0 … 0 0 ⋯ 0 ]

 
 
 
 
 
 
 
 
 
 

∈ 𝑅(3𝑃𝐻−∆𝑐−∆𝑏−∆𝑏𝑐+4)×5𝑃𝐻, 

𝑈𝑚𝑖𝑛
𝑡 (𝑘) = [

𝐼𝑚𝑖𝑛(𝑘)
0
⋮
0

] ∈ 𝑅5𝑃𝐻×1, 𝑈𝑚𝑎𝑥
𝑡 (𝑘) =

[
 
 
 
 
 
𝐼𝑚𝑎𝑥(𝑘)
𝐶𝑚𝑎𝑥(𝑘)

0
⋮
0

𝑍𝑚𝑎𝑥(𝑘)]
 
 
 
 
 

∈ 𝑅4𝑃𝐻×1 
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and suitable matrix 𝑄𝑡 ∈ 𝑅
𝑃𝐻×𝑃𝐻 and vector 𝑐𝑡 ∈ 𝑅

𝑃𝐻×1. 

Notice that now the upper bound for the administrable dose of insulin is imposed on the sum of 

𝑖 and 𝑏, i.e. 

𝑖(̅𝑘) + 𝑏(𝑘) ≤ 𝑖𝑚̅𝑎𝑥(𝑘) ∀𝑘. (37) 

Finally, we specify that the optimization problem (9) was solved by using Matlab® and, 

regarding (21) and (34), also resorting to ILOG CPLEX Optimization Studio® (v. 12.9) [25]. 

 

2.4. State estimate 

To estimate the state 𝑥̅, we adopt a Kalman filter (KF). Starting from the assumptions that there 

is a model-plant mismatch and that the sensor cannot be perfectly accurate, the model error 

𝑣𝑥(𝑘) and the measurement noise 𝑣𝑦(𝑘) are introduced in the model8, thus switching to a 

stochastic description: 

{
𝑥̅(𝑘 + 1) = 𝐴𝑥̅(𝑘) + 𝐵𝑖(̅𝑘) + 𝑀𝑑̂(𝑘) + 𝑣𝑥(𝑘)

𝑔̅(𝑘) = 𝐶𝑥̅(𝑘) + 𝑣𝑦(𝑘)
(38) 

with [𝑣𝑥, 𝑣𝑦] white Gaussian noises, independent, with zero mean and covariance matrix 

𝑉𝑎𝑟 [
𝑣𝑥
𝑣𝑦
] = [

𝑄𝑥 𝑆

𝑆′ 𝑅𝑦
] ∈ 𝑅17×17. 

For simplicity, we assume that 𝑆 = 0 and so that they are also uncorrelated. We set 𝑅𝑦 =

9.1692
mg2

dl2
 and the non-null elements 𝑞1, … , 𝑞16 of the diagonal matrix 𝑄𝑥 to the values 

reported in Table I, by referring to [13]9. 

The KF is initialized with 𝑥̅(0) = 0; then the state estimation, at a certain time 𝑘, is performed 

by following an iterative strategy made of two steps: 

1) the KF predicts the state for the current time 𝑥̂(𝑘|𝑘 − 1), basing on the state estimate 

𝑥̂(𝑘 − 1|𝑘 − 1) from the previous iteration (at time 𝑘 − 1) and assuming that 𝑣𝑥(𝑘) =

𝐸[𝑣𝑥(𝑘)] = 0, i.e.: 

 
8 Here we consider the basic model the singleMPC refers to, but the reported reasoning can be straightforwardly 

extended to the other models. 

9 With respect to [13], in the version of the UVa/Padova T1D Simulator we use, there are 3 additional states. 

Therefore, in true we set 𝑞1, … , 𝑞13 to the values reported in [13], while we established the additional terms 

𝑞14, … , 𝑞16 by trial and error. 
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𝑥̂(𝑘|𝑘 − 1) = 𝐴𝑥̂(𝑘 − 1|𝑘 − 1) + 𝐵𝑖(𝑘) + 𝑀𝑑̂(𝑘); (39) 

2) when the measurement for the current time 𝑔(𝑘) becomes available, it is exploited to 

update the previously predicted state: 

𝑥̂(𝑘|𝑘) = 𝑥̂(𝑘|𝑘 − 1) + 𝐿(𝑔̅(𝑘) − 𝐶𝑥̂(𝑘|𝑘 − 1)). (40) 

𝐿 is the (constant) observer gain and it is defined as: 

𝐿 = 𝑃𝐶𝑇(𝐶𝑃𝐶𝑇 + 𝑅𝑦)
−1 (41) 

with 𝑃 the positive-definite matrix which is the unique solution to the Riccati equation 

𝑃 = 𝐴𝑃𝐴𝑇 +𝑄𝑥 − 𝐴𝑃𝐶
𝑇(𝐶𝑃𝐶𝑇 − 𝑅𝑦)

−1
𝐶𝑃𝐴𝑇 (42) 

that can be computed offline, as well as 𝐿. 

Table I. Diagonal elements of the matrix 𝑄𝑥. 

Element Value [%] Measurement unit 

𝑞1, 𝑞2, 𝑞3 0.1 mg2 

𝑞4, 𝑞5 10 (
mg

kg
)
2

 

𝑞6, 𝑞7, 𝑞8 0.1 (
pmol

l
)
2

 

𝑞9, 𝑞10, 𝑞11, 𝑞12 0.1 (
pmol

kg
)
2

 

𝑞13 10 (
mg

dl
)
2

 

𝑞14, 𝑞15, 𝑞16 0.1 (
pmol

l
)
2
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III. Experimental set-up 

To tune and validate the algorithms previously described, we employed the UVa/Padova T1D 

Simulator®, an accurate model of a T1D patient’s metabolism consisting in 16 nonlinear 

differential state-update equations (plus the static output equations), containing about 35 

parameters. The model parameters are not unique; conversely, the simulator is coupled with a 

bunch of 100 virtual patients, i.e. different realizations of the parameters’ set, sampled from a 

probability distribution inferred from clinical data and respecting the real inter-subject 

variability [20]. In 2008, it was accepted by the U.S. FDA (Food and Drug Administration) as 

a substitute of animal trials for preclinical testing of T1D therapies, thus representing a less 

expensive, more affordable and ethical option. In this work we adopt a subsequently updated 

version of this simulator (v. S2013), which was approved by the FDA as well in 2017, including 

several additional features: a model of the “dawn-phenomenon”10, time-varying model 

parameters and suboptimal patients’ therapy parameters [20]. These are optional features and, 

if enabled, significantly increase the realism of the simulation scenario. 

The UVa/Padova T1D model is connected with a simulator of the functioning of a real CGM 

sensor, affected by white noise, and of course a module where the control algorithm is 

implemented, thus reproducing the logic architecture of the AP as well. The measurement error 

is also an optional property. 

 

Figure 2. A schema of the UVa/Padova T1D metabolic model.  

 
10 The glycaemic rise that is typically found for T1D patients in the early morning. 
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The simulations of the functioning of the considered algorithms that we made last three days, 

starting from 00: 00 AM, each one including the consumption of three meals, which are 

announced by the patient to the system. The times of occurrence and the amount of CHOs of 

the meals vary between subjects and are sampled from uniform distributions, whose values 

accord to the range of the data in [26] and are reported in Table II. The meal announcements, 

together with the carb-counting error11 (CCE) that is committed by the subject and affects the 

meal’s CHO amount reported to the system, are simulated by a patient decisions’ model [22], 

which is integrated with the UVa/Padova T1D simulator as well. It models also the generation 

mechanism of emergency hypotreatments (eHT), which are just triggered when the measured 

glycaemia drops below hypoglycaemia threshold levels; therefore, we will distinguish them 

from the planned ones (pHT), proposed by the dual- and the tripleMPC. The CCE and the eHT 

can be optionally included in the scenario, as well. More details on how the CCE is modelled 

and on the eHT generation mechanism can be found in [22] or in appendix A.4. 

Table II. Ranges of the possible CHO amount and time of consumption of each meal. 

Meal CHO amount [g] Time of consumption 

Breakfast [19 − 97] [06: 30 AM − 08: 00 AM] 

Lunch [31 − 124] [11: 30 AM − 01: 00 PM] 

Dinner [28 − 140] [06: 00 PM − 08: 30 PM] 

The simulation scenario we choose is relatively realistic and in particular it can be set up 

enabling the “dawn-phenomenon”, the time variability of the insulin sensitivity, the CGM 

sensor noise, the CCE and the eHT, and setting suboptimal values of 𝐶𝑅 and 𝑖𝑏(𝑘). 

The described scenario is appropriate to test the performances of the single- and the dualMPC, 

but it is not expected to be the most appropriate to evaluate the actual potential of the tripleMPC; 

indeed, since we impose that the corrective boluses cannot be administered after a meal, until a 

period of time equal (at least) to ∆𝑚
𝑏  has elapsed, in general there is no other occasion in which 

the blood glucose rises so high that they become necessary. For this reason, an extra robustness 

test is performed, introducing in the previous simulation scenario, during the night and thus far 

from any meal, an unexplained hyperglycaemic event, which is more persistent and so more 

challenging with respect to post-prandial hyperglycaemia, and which is expected not to be 

addressable only modulating the basal insulin, as for the meals. This is achieved by adding an 

unannounced and prolonged CHO assumption. In detail, we introduce in each day an extra CHO 

 
11 The random error that can be committed by the patient estimating the CHO amount of a meal to be announced. 
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intake of 25 g from 00: 00 to 00: 30 AM, plus another one of 20 g from 00: 30 to 05: 00 AM, 

both with constant rate of assumption. In order to do a fair comparison between the three 

algorithms, this test is repeated for the other two MPCs as well. The introduction of such a 

disturbing factor, even if its generation mechanism is not properly realistic, makes sense, 

exactly because in a real scenario the hyperglycaemias are tipically more persistent, and do not 

occur only at mealtimes (as in the previous simulation scenario), because there may be other 

sources of hyperglycaemias (e.g., stress) apart from meals, in the rest of the day. 

To evaluate the performances of the three versions of MPC, we adopt the standard metrics 

according to [27-28]. These include the time-in range (𝑇𝐼𝑅), i.e. between 70 and 180 
mg

dl
, the 

time-below-range (𝑇𝐵𝑅), i.e. below 70 
mg

dl
, the time-above-range (𝑇𝐴𝑅), i.e. above 180 

mg

dl
, 

the time-in-deep-hypoglycaemia (𝑇𝐷ℎ), i.e. below 55 
mg

dl
, the time-in-deep-hyperglycaemia 

(𝑇𝐷𝐻), i.e. above 250 
mg

dl
, all in percentage. The mean 𝜇𝐶𝐺𝑀 and the standard deviation 𝜎𝐶𝐺𝑀 

of the CGM signal are considered too. Moreover, we include the area-under-the-curve in 

hypoglycaemia (𝐴𝑈𝐶ℎ), defined as the area between the glucose signal 𝑔(𝑘) and the 

hypoglycaemic threshold 𝐵𝐺ℎ = 70 
mg

dl
, i.e. 

𝐴𝑈𝐶ℎ =∑(max(𝐵𝐺ℎ − 𝑔(𝑘), 0))𝑇𝑠

𝑁

𝑘=1

(43) 

where 𝑁 is the number of simulated CGM measurements, and, similarly, the area-under-the-

curve in hyperglycaemia (𝐴𝑈𝐶𝐻), i.e. 

𝐴𝑈𝐶𝐻 =∑(max (𝑔(𝑘) − 𝐵𝐺𝐻, 0))𝑇𝑠

𝑁

𝑘=1

(44) 

with the hyperglycaemic threshold 𝐵𝐺𝐻 = 180 
mg

dl
. In addition, we evaluate the daily average 

number 𝑛𝐻𝑇 and amount 𝑞𝐻𝑇 of ingested hypotreatments’ CHO, which are both split between 

emergency and planned, for the dual- and the tripleMPC. The daily average number 𝑛𝑏𝑜𝑙 and 

amount 𝑞𝑏𝑜𝑙 of the administered extra boluses is taken into account as well, for the tripleMPC. 

Moreover, we consider also the metric 𝑇𝐷𝐼, that is the total-daily-insulin that the patient 

assumes on average. For the metrics with a Gaussian distribution, we report the population 

mean and standard deviation, while for the others the median and the interquartile range. 

To compare the performances of the algorithms and particularly to evaluate the statistical 

significance of possible improvements regarding the metrics obtained with the tripleMPC, with 
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respect to the single- and the dualMPC, we resort to a paired-sample t-test, if the population of 

the considered metric has a Gaussian distribution, or a Wilcoxon signed rank test, otherwise. 

The normality of each distribution is evaluated by means of a Lilliefors test and the significance 

level is set to 5%, for all the three tests. 
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IV. Algorithms tuning 

How much aggressively each algorithm acts on each control variable depends on the weights 

𝑟̃, 𝑠̃ and the couple 𝑤̃1, 𝑤̃2, related to the inputs 𝑖(𝑘), 𝑐(𝑘), and 𝑏(𝑘), respectively. Due to the 

high inter-subject variability concerning the metabolism and particularly the sensitivity to 

insulin and carbohydrates, it is hard to find fixed values for these hyperparameters that are 

appropriate for every patient; therefore, these parameters have to be individually optimized. All 

the other hyperparameters can be fixed instead; the values we used for these parameters are 

reported in Table III. 

Table III. Fixed hyperparameters’ values, for each algorithm. 

Parameter singleMPC dualMPC tripleMPC Measurement unit 

𝑃𝐻 12 12 24 - 

𝑖𝑚̅𝑖𝑛(𝑘) −
𝑖𝑏(𝑘)

𝐵𝑊
 −

𝑖𝑏(𝑘)

𝐵𝑊
 −

𝑖𝑏(𝑘)

𝐵𝑊
 

pmol
min
kg

 

𝑖𝑚̅𝑎𝑥(𝑘) 
104 − 𝑖𝑏(𝑘)

𝐵𝑊
 

104 − 𝑖𝑏(𝑘)

𝐵𝑊
 

104 − 𝑖𝑏(𝑘)

𝐵𝑊
 

pmol
min
kg

 

𝛾1 - 103 3 ∙ 103 
mg

min
 

𝛾2 - 2 ∙ 103 4 ∙ 103 
mg

min
 

∆𝑐 - 90 120 min 

∆𝑚 - 45 60 min 

𝑛𝑚𝑎𝑥 - 20 20 - 

𝑚 - - 
3 ∙ 105

𝐶𝐹
𝐵𝑊

 

pmol
min
kg

 

𝑀 - - 
104

𝐵𝑊
 

pmol
min
kg

 

∆𝑏 - - 60 min 

∆𝑚
𝑏  - - 90 min 

∆𝑏𝑐 - - 90 min 

The strategy for hyperparameters individualization we consider consists in testing several 

admissible points in the hyperparameters space and choosing the one associated to the best 

performances, according to a suitable cost function. This can be done in silico, but unfortunately 
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not in real patients, since dangerous BG levels could be reached in some tests. Hence, the 

solution we adopt is to train regression laws in silico, to be used to compute the personalized 

optimal hyperparameters also for real subjects, starting from patients’ accessible parameters 

like 𝐶𝑅 or the body weight 𝐵𝑊. Briefly, we proceed by following these three steps: 

1) the 100 available virtual subjects are split in a training and a testing set, including 50 

patients each, randomly sampled; 

2) the optimal hyperparameters are retrieved for the subjects belonging to the training set 

and then used to infer the regression models; 

3) the regression laws are used to compute suboptimal hyperparameters for the testing set. 

These are repeated also in the simulation scenario for the robustness test (i.e. with the 

introduction of persistent hyperglycaemia). 

More in detail, the cost function we use to evaluate the control performance and to be minimized 

in order to retrieve the optimal hyperparameters choice, for the training set, is a modified 

version of the Weighted Area Outside Target Range (wAOTR), defined as: 

𝑤𝐴𝑂𝑇𝑅 = 𝛼𝐴𝑈𝐶ℎ + 𝛽𝐴𝑈𝐶𝐻 + 𝜆𝑞𝐻𝑇 (45) 

where 𝛼, 𝛽 and 𝜆 are different weights assigned respectively to hypoglycaemia, hyperglycaemia 

and the total quantity in grams of the ingested extra-CHOs, both emergency and planned; the 

values we set them to are 𝛼 = 1𝑒3 
dl

mg∙min
, 𝛽 = 35 

dl

mg∙min
 and 𝜆 = 5𝑒3 g−1. 

Table IV. Ranges for the Bayesian search of the individualized hyperparameters. 

Parameter singleMPC dualMPC tripleMPC 
Measurement 

unit 

𝑟̃ [10 − 107] [1 − 106] [1 − 106] (

kg
min
pmol

)

2

 

𝑠̃ - [10 − 108] [1 − 105] - 

𝑤̃1 - - [10−3 − 1𝑒2] (

kg
min
pmol

)

2

 

𝑤̃2 - - [1 − 104] - 

Once the cost function is defined, the hyperparameter optimization is performed on the training 

set via Bayesian search [29]. In our work, we initialize the algorithm with 𝑁𝑟 random points, 

then the objective function is evaluated 𝑁𝑒 times, with 𝑁𝑟 = 20 and 𝑁𝑒 = 60 for the single- 
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and the dualMPC, while 𝑁𝑟 = 30 and 𝑁𝑒 = 70 for the tripleMPC. The ranges of values 

considered for 𝑟̃, 𝑠̃, 𝑤̃1 and 𝑤̃2 in which to search are indicated in Table III. 

Finally, the achieved optimal hyperparameters are used to retrieve the regression laws we look 

for, via least square regression. Let us consider the 𝑝-th patient of the training set, with 𝑝 =

1, … ,50, and let us denote, for the 𝑝-th subject, the optimal 𝑟̃ for the singleMPC with 𝑟̃𝑠(𝑝), the 

optimal 𝑟̃ and 𝑠̃ for the dualMPC with 𝑟̃𝑑(𝑝) and 𝑠̃𝑑(𝑝) and the optimal 𝑟̃, 𝑠̃, 𝑤̃1, 𝑤̃2 for the 

tripleMPC with 𝑟̃𝑡(𝑝), 𝑠̃𝑡(𝑝), 𝑤̃1(𝑝), 𝑤̃2(𝑝). We assume a log-linear regression model, that is: 

log(ℎ(𝑝)) = 𝜑ℎ(𝑝)𝜃ℎ + 𝜖ℎ(𝑝) (46) 

where ℎ ∈ {𝑟̃𝑠, 𝑟̃𝑑, 𝑠̃𝑑, 𝑟̃𝑡, 𝑠̃𝑡, 𝑤̃1, 𝑤̃2} is one of the hyperparameters. 𝜑ℎ(𝑝) ∈ 𝑅
1×𝑁𝑟𝑒𝑔 is a vector 

containing 𝑁𝑟𝑒𝑔 regressors in patient 𝑝, i.e. a proper subset of patient’s accessible parameters. 

This subset depends on which hyperparameter is considered and is selected from an initial pool 

of possible accessible parameters, which is {𝐵𝑊, 𝐶𝑅𝑎𝑣𝑔, 𝐶𝐹, 𝑖𝑏𝑎𝑣𝑔} for the regression of 

𝑟̃𝑠, 𝑟̃𝑑, 𝑟̃𝑡, 𝑠̃𝑑, 𝑠̃𝑡, and {𝐴𝑔𝑒, 𝐵𝑊, 𝐶𝑅𝑎𝑣𝑔, 𝐶𝐹, 𝐶𝐿, 𝑖𝑏𝑎𝑣𝑔 , 𝐺𝑏 , 𝑇𝐷𝐼} for the two remaining 

hyperparameters, where 𝐶𝑅𝑎𝑣𝑔 and 𝑖𝑏𝑎𝑣𝑔  are the daily averages of 𝐶𝑅 and 𝑖𝑏(𝑘), respectively, 

while 𝐶𝐿 is the clearance12. To perform the regressors’ choice, we resort to the stepwise 

regression technique, using the Matlab function stepwiselm. For 𝑤̃2, the selection principle we 

adopt is the Akaike Information Criterion (AIC), setting the maximum change of the computed 

AIC value to include a new regressor to the model to 0 and its minimal change to remove a 

term to 0.01; for the remaining hyperparameters, we use the Sum of Squared Errors (SSE) 

criterion, setting the maximum p-value of the F-statistic to add a new regressor to 0.05 and the 

minimal p-value to remove an element to 0.15. More details on the stepwise regression are 

reported in the appendix A.5. The final subsets of selected regressors are: 

𝜑𝑟̃𝑠(𝑝) = 𝜑𝑟̃𝑑(𝑝) = 𝜑𝑟̃𝑡(𝑝) = [1 𝐶𝑅𝑎𝑣𝑔(𝑝) 𝐵𝑊(𝑝)], 

𝜑𝑠̃𝑑(𝑝) = 𝜑𝑠̃𝑡(𝑝) = 𝜑𝑤̃1(𝑝) = [1 𝐶𝑅𝑎𝑣𝑔(𝑝)], 

𝜑𝑤̃2(𝑝) = [1 𝐵𝑊(𝑝)]. 

The term 1 is added to include the intercept of the regression line. 

Lastly, 𝜃ℎ ∈ 𝑅
𝑁𝑟𝑒𝑔×1 is the unknown vector of the regression model’s parameters for the 

hyperparameters ℎ and it is independent from which patient is considered, while 𝜖ℎ(𝑝) is the 

 
12 The blood volume per time unit that the kidneys clear from a substance, in the case from (inactive) insulin. 
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regression error. An estimate 𝜃ℎ of the model parameters can be computed by minimizing 

𝜖ℎ(𝑝), thus: 

𝜃ℎ = (𝛷
𝑇𝛷)−1𝛷𝑇[log(ℎ(1)) … log(ℎ(50))]

𝑇
(47) 

where 𝛷 ∈ 𝑅50×𝑁𝑟𝑒𝑔 is the matrix obtained by concatenating the regressor vectors 𝜑 of the 50 

patients of the training set. The achieved parameters 𝜃ℎ are: 

𝜃𝑟̃𝑠 = [4.0520, 0.2239,−0.0074]
𝑇 ,

𝜃𝑟̃𝑑 = [−2.3431, 0.3303, 0.0360]
𝑇 , 𝜃𝑠̃𝑑 = [6.8416, 0.2689]

𝑇 ,

𝜃𝑟̃𝑡 = [2.8776, 0.3631,−0.0230]
𝑇 , 𝜃𝑠̃𝑡 = [7.9909, 0.0763]

𝑇 ,

𝜃𝑤̃1 = [−7.2072, 0.3878]
𝑇 , 𝜃𝑤̃2 = [3.2684, 0.0051]

𝑇

 

for the standard simulation scenario, and 

𝜃𝑟̃𝑠
𝑅 = [−2.9037, 0.2381, 0.0570]𝑇 ,

𝜃𝑟̃𝑑
𝑅 = [−5.8018, 0.3274, 0.0617]𝑇 , 𝜃𝑠̃𝑑

𝑅 = [4.9214, 0.2724]𝑇 ,

𝜃𝑟̃𝑡
𝑅 = [−9.7427, 0.4326, 0.1020]𝑇 , 𝜃𝑠̃𝑡

𝑅 = [8.7014, 0.0310]𝑇 ,

𝜃𝑤̃1
𝑅 = [−5.0386, 0.1880]𝑇 , 𝜃𝑤̃2

𝑅 = [3.3945, 2.9283 ∙ 10−4]𝑇

 

for the robustness test. 

Finally, the regression laws can be used to obtain a suboptimal estimate of each hyperparameter, 

for any (virtual or real) patient 𝑙, as: 

ℎ̂(𝑙) = 𝑒𝜑ℎ(𝑙)𝜃̂ℎ . (48) 
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V. Results and discussion 

We report and discuss the results of our work, comparing those achieved with the triple-action 

MPC AP with those relative both to the single-action- and the dual-action MPC AP. We 

discriminate between the simulation scenario for the robustness test and the original one, i.e. 

with and without the additional persistent hyperglycaemias; for both the cases, we divide the 

results obtained with the optimal tuning, for the training set, from those achieved with the 

suboptimal parametrization, for the patients of the testing set. We confront the population 

distributions of the correspondent individualized hyperparameters and examined metrics, each 

described by its mean and standard deviation, if Gaussian, or by its median and interquartile 

range, otherwise. For the hyperparameters and a subset of fundamental metrics, we also include 

a figure, which integrates the two boxplots, the scatter plot and the parallel coordinate plot of 

the correspondent data obtained with the two algorithms being compared. By way of example, 

for each scenario, we show the results, in terms of simulated signals, obtained (with the optimal 

tuning) for a representative subject belonging to the training set, as well. 

 

5.1. Original scenario 

 

Figure 3. CGM measurements, basal insulin, corrective boluses, meals and hypotreatments (divided in emergency 

eHT and planned pHT), simulated on a representative patient, with the optimal tuning, in the original scenario. 

The yellow signals are referred to the singleMPC, while those in blue represent the tripleMPC. The black dashed 

lines in the CGM subplot (the first from above), are the borders of the euglycaemic range. The meals are in red. 

Figure 3 shows the results of the three days of simulation on a representative patient (adult 

#90), in the original scenario, obtained with the singleMPC and the tripleMPC, both optimally 

tuned. The yellow lines refer to the former, while those in blue to the latter. From top to bottom, 
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the three subplots in this figure show respectively: the CGM signals; the administered basal 

insulin and the corrective boluses (identified by circles); the meals (red signal) and the 

hypotreatments, divided in emergency eHT (marked with a cross) and planned pHT (identified 

by triangles). This figure shows what we discussed in section III, i.e. that this simulation 

scenario is appropriate to test the single-action- and the dual-action MPC AP, but it is expected 

not to be the most suitable to test the actual potential of the triple-action MPC AP: in the hour 

and a half following each meal, no corrective boluses can be administered, and there are few 

other occasions where a bolus is needed. Consequently, the resultant performances of the two 

algorithms seem to be similar. Nonetheless, the potential of our technique can be already 

guessed from the fact that, even if not significantly, it still can counteract more the post-prandial 

hyperglycaemias, in particular those after breakfast, while avoiding important hypoglycaemic 

events, thanks to the planned extra-CHO intakes. Moreover, notice that most of the meal 

boluses computed by the tripleMPC are smaller, since they are integrated with the corrective 

boluses; therefore, insulin is better distributed in time. 

 

Figure 4. CGM measurements, basal insulin, corrective boluses, meals and hypotreatments (emergency and 

planned), on a representative patient, with the optimal tuning, in the original scenario. The yellow signals represent 

the dualMPC, while those in blue are related to the tripleMPC. The black dashed lines in the CGM subplot are the 

borders of the euglycaemic range. The meals are in red. 

Figure 4 shows the results for the same representative patient, achieved (in the original scenario) 

with the dualMPC and the tripleMPC (with the optimal tuning). The yellow lines now refer to 

the dualMPC. The meaning of the plotted lines is the same as before. The remarks we can make 

are analogous to those for the previous plot: the triple-action MPC AP, thanks to the 

administration of more insulin, but more distributed in time, is capable of managing 
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hyperglycaemia in a (not significantly) better way. The control performances of the two 

strategies are almost comparable, as well as for their ability to avoid hypoglycaemia. 

More complete results, both for the training set and the testing set, and a more detailed 

discussion are reported in the following. 

Optimal tuning 

Table V. Metrics and hyperparameters for the optimally tuned single- and tripleMPC (in the original scenario). 

For the normally distributed variables, identified by the symbol †, the mean ± the standard deviation is given, 

while for the others the median and the interquartile range ([25𝑡ℎ − 75𝑡ℎ percentile]) are reported. The variables 

for which there is a statistically significant difference are identified by the symbol *, beside the p-value resultant 

from the relative statistical test. 

training set 

Variable singleMPC tripleMPC p-value 

𝜇𝐶𝐺𝑀  [
mg

dl
]  148.8 [139.9 − 158.6] 149.2 [140.4 − 156.1] 0.1602 

𝜎𝐶𝐺𝑀
†  [

mg

dl
]  54.1 ± 18.0 53.2 ± 17.7 0.2215 

𝑇𝐼𝑅† [%]  76.6 ± 10.1 77.5 ± 9.0 0.2362 

𝑇𝐵𝑅 [%]  0.1 [0.0 −  1.2] 0.1 [0.0 −  1.4] 0.4780 

𝑇𝐴𝑅† [%]  22.7 ± 9.8 21.6 ± 8.6 0.0928 

𝑇𝐷ℎ [%]  0.0 [0.0 − 0.0] 0.0 [0.0 − 0.4] 0.1913 

𝑇𝐷𝐻 [%]  7.1 [1.4 − 11.0] 6.6 [1.8 − 8.4] 0.0026 * 

𝐴𝑈𝐶ℎ  [
min∗mg

dl
]  1.0 [0.0 − 235.6] 0.6 [0.0 − 650.3] 0.3256 

𝐴𝑈𝐶𝐻  [
min∗mg

dl
]  5.3 ∙ 104 [2.6 ∙ 104 − 7.0 ∙ 104] 4.8 ∙ 104 [2.3 ∙ 104 − 6.2 ∙ 104] 0.0219 * 

𝑛𝐻𝑇  0.1 [0.0 − 0.2] 0.3 [0.1 − 0.7] 2.9 ∙ 10−5 * 

𝑛𝑒𝐻𝑇  - 0.1 [0.0 − 0.3] - 

𝑛𝑝𝐻𝑇  - 0.2 [0.0 − 0.3] - 

𝑞𝐻𝑇 [g]  1.9 [0.0 − 5.6] 5.3 [1.7 − 13.3] 2.8 ∙ 10−5 * 

𝑞𝑒𝐻𝑇  [g]  - 1.7 [0.0 − 7.2] - 

𝑞𝑝𝐻𝑇 [g]  - 3.6 [0.0 − 5.6] - 

𝑛𝑏𝑜𝑙  - 1.0 [0.3 − 1.7] - 

𝑞𝑏𝑜𝑙  [U]  - 1.3 [0.5 − 2.2] - 

𝑇𝐷𝐼† [U]  40.9 ± 11.9 41.4 ± 12.5 2.2847 

𝑟̃  [(
kg

min

pmol
)

2

]  2.3 ∙ 103 [455.1 − 9.9 ∙ 103] 5.5 ∙ 103 [45.7 − 3.0 ∙ 105] 0.2078 

𝑠̃  - 7.4 ∙ 104 [8.5 ∙ 103 − 9.6 ∙ 104] - 

𝑤̃1  [(
kg

min

pmol
)

2

]  - 6.6 [0.0 − 95.3] - 

𝑤̃2  - 11.6 [2.9 − 563.5] - 
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Table V shows how the metrics and the hyperparameters achieved (in the original simulation 

scenario) for the singleMPC and the tripleMPC, being optimally tuned, are distributed. For the 

variables that follow a Gaussian distribution (identified by the symbol †), the mean ± the 

standard deviation is reported, conversely for the others is more appropriate to indicate the 

median and the interquartile range ([25th − 75th percentile]). The p-values resultant from the 

statistical tests, performed to compare the distributions of each variable for the two algorithms, 

are shown as well; beside a p-value the symbol * is indicated, if the distributions of the 

correspondent metric (or hyperparameter) are different in a statistically significant way. Notice 

that the time-in-range 𝑇𝐼𝑅 is larger with our technique, even if not significantly, since the 

lowering of the time-below-range 𝑇𝐵𝑅 and the time-above-range 𝑇𝐴𝑅 are not remarkable, as 

guessed from figure 3. However, there is a statistically significant improvement for the time-

in-deep-hyperglycaemia (and so for the area-under-the-curve in hyperglycaemia as well), 

showing the usefulness of the correction boluses even in the original scenario, which is not 

particularly suitable for testing the actual capabilities of the tripleMPC, as already discussed. 

There is a significant increase of the total number of hypotreatments 𝑛𝐻𝑇 as well, and also the 

total quantity of extra-CHO 𝑞𝐻𝑇, that is expected due to the presence in our strategy of the 

planned hypotreatments. 

In figure 5, the results for the metrics 𝑇𝐼𝑅, 𝑇𝐵𝑅, 𝑇𝐴𝑅, 𝑛𝐻𝑇 and the base 10 logarithm of the 

hyperparameter 𝑟̃ are shown in a more intuitive form, with two boxplots of the data obtained 

with the two algorithms, integrated with the scatter plot and the parallel coordinate plot of the 

same data. The differences in the variables can thus be appreciated for the single subjects as 

well. The segments of the parallel coordinate plot are coloured in green, if there is an 

improvement with our approach, otherwise in red (or in yellow, if the degradation is not 

significant); the darker the colour, the more significant the difference. The logarithm is applied 

to 𝑟̃ to have a linear and so more intelligible distribution. In this figure, it can be noticed that 

there is a significant part of the training set for which 𝑇𝐴𝑅, and thus 𝑇𝐼𝑅, increases with our 

technique, while 𝑇𝐵𝑅 decreases. 

In table VI the distributions of the same metrics and hyperparameters (in the same scenario) are 

reported for the optimally tuned dualMPC as well. The meanings of the symbols † and * are 

the same as for the previous table. In this case, 𝑇𝐼𝑅 and 𝑇𝐴𝑅 are comparable; this is due to the 

fact that the dualMPC can modulate the basal insulin in a slightly more aggressive way (indeed, 

𝑟̃ tends to be significantly smaller, thus lowering the penalization on the basal insulin 

administration), thanks to presence of the planned hypotreatments, thus almost equalling the 

effect of the corrective boluses. The reason is to be attributed not to the fact the that the boluses 



 RESULTS AND DISCUSSION 
ORIGINAL SCENARIO 

39 
 

are ineffective, but that their usage is particularly limited, in the basic scenario. In addition, 

notice that, with the dualMPC, there is a quite inferior risk of hypoglycemia, and so a minor 

use of extra-CHO (indeed, 𝑛𝑒𝐻𝑇, 𝑞𝐻𝑇 and 𝑞𝑒𝐻𝑇 are lower, and 𝑠̃ tends to be larger, therefore 

penalizing more the CHO suggestions). 

 

Figure 5. Boxplots, scatter plots and parallel coordinate plots for (from top to bottom, from left to right): 𝑇𝐼𝑅, 

𝑇𝐵𝑅, 𝑇𝐴𝑅, 𝑛𝐻𝑇 and 𝑙𝑜𝑔10(𝑟̃), for the optimally tuned singleMPC and tripleMPC, in the original scenario. The 

segments of the parallel coordinate plot are green, if representing an improvement with the latter for the 

correspondent patient, otherwise are red (or yellow, if the degradation is not significant). The logarithm is applied 

to 𝑟̃ to have a linear distribution. 
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Table VI. Metrics and hyperparameters for the optimally tuned dual- and tripleMPC (in the basic scenario). For 

the variables which are normally distributed (symbol †), the mean ± the standard deviation is reported, while for 

the others the median and the interquartile range ([25𝑡ℎ − 75𝑡ℎ percentile]) are indicated. The variables that differ 

in a statistically significant way are identified by the symbol *, beside the p-value resultant from the relative 

statistical test. 

training set 

Variable dualMPC tripleMPC p-value 

𝜇𝐶𝐺𝑀  [
mg

dl
]  149.6 [139.8 − 156.6] 149.2 [140.4 − 156.1] 0.8356 

𝜎𝐶𝐺𝑀
†  [

mg

dl
]  52.6 ± 17.2 53.2 ± 17.7 0.4064 

𝑇𝐼𝑅† [%]  78.2 ± 9.2 77.5 ± 9.0 0.2835 

𝑇𝐵𝑅 [%]  0.0 [0.0 −  0.5] 0.1 [0.0 −  1.4] 0.0248 * 

𝑇𝐴𝑅† [%]  21.4 ± 8.8 21.6 ± 8.6 0.7104 

𝑇𝐷ℎ [%]  0.0 [0.0 − 0.0] 0.0 [0.0 − 0.4] 0.0011 * 

𝑇𝐷𝐻 [%]  6.7 [1.3 − 9.1] 6.6 [1.8 − 8.4] 0.7535 

𝐴𝑈𝐶ℎ  [
min∗mg

dl
]  0.0 [0.0 − 27.4] 0.6 [0.0 − 650.3] 7.6 ∙ 10−4 * 

𝐴𝑈𝐶𝐻  [
min∗mg

dl
]  4.72 ∙ 104 [2.5 ∙ 104 − 6.4 ∙ 104] 4.8 ∙ 104 [2.3 ∙ 104 − 6.2 ∙ 104] 0.9577 

𝑛𝐻𝑇  0.7 [0.0 − 2.0] 0.3 [0.1 − 0.7] 0.6540 

𝑛𝑒𝐻𝑇  0.0 [0.0 − 0.3] 0.1 [0.0 − 0.3] 0.0027 * 

𝑛𝑝𝐻𝑇  0.2 [0.0 − 1.3] 0.2 [0.0 − 0.3] 0.3244 

𝑞𝐻𝑇 [g]  10.0 [0.0 − 21.7] 5.3 [1.7 − 13.3] 0.0070 * 

𝑞𝑒𝐻𝑇  [g]  0.0 [0.0 − 8.3] 1.7 [0.0 − 7.2] 0.0028 * 

𝑞𝑝𝐻𝑇 [g]  1.7 [0.0 − 13.3] 3.6 [0.0 − 5.6] 0.0722 

𝑛𝑏𝑜𝑙  - 1.0 [0.3 − 1.7] - 

𝑞𝑏𝑜𝑙  [U]  - 1.3 [0.5 − 2.2] - 

𝑇𝐷𝐼† [U]  42.1 ± 13.2 41.4 ± 12.5 0.0828 

𝑟̃  [(
kg

min

pmol
)

2

]  1.2 ∙ 103 [43.8 − 8.8 ∙ 103] 5.5 ∙ 103 [45.7 − 3.0 ∙ 105] 0.0208 * 

𝑠̃  2.1 ∙ 105 [4.1 ∙ 103 − 3.8 ∙ 107] 7.4 ∙ 104 [8.5 ∙ 103 − 9.6 ∙ 104] 2.1 ∙ 10−4 * 

𝑤̃1  [(
kg

min

pmol
)

2

]  - 6.6 [0.0 − 95.3] - 

𝑤̃2  - 11.6 [2.9 − 563.5] - 

Figure 6 is analogous to the previous one, but it is referred to the comparison between the 

tripleMPC and the dual-action strategy, with optimal tuning, in the original simulation scenario. 

In addition, there is the boxplot, together with the scatter and the parallel coordinate plots, of 

the data regarding 𝑛𝑒𝐻𝑇, 𝑛𝑝𝐻𝑇 and base 10 logarithm of 𝑠̃, as well. The logarithm is applied to 

𝑠̃ for the same reason as for 𝑟̃. Basing on this figure, we can remark that the performances of 

the two algorithms, in the currently considered scenario, are substantially similar. 
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Figure 6. Boxplots, scatter plots and parallel coordinate plots for (from top to bottom, from left to right): 𝑇𝐼𝑅, 

𝑇𝐵𝑅, 𝑇𝐴𝑅, 𝑛𝐻𝑇, 𝑛𝑒𝐻𝑇, 𝑛𝑝𝐻𝑇, 𝑙𝑜𝑔10(𝑟̃) and 𝑙𝑜𝑔10(𝑠̃), for the optimally tuned dual- and tripleMPC (in the original 

scenario). The segments of the parallel coordinate plot are green, if representing an improvement with the latter 

for the correspondent patient, otherwise are red (or yellow, if the degradation is not significant). The logarithm is 

applied to 𝑟̃ and 𝑠̃ to have a linear distribution. 
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Suboptimal tuning 

Table VII. Metrics and hyperparameters for the single- and the tripleMPC (in the original scenario), with 

suboptimal tuning. For the variables with a Gaussian distribution (symbol †), the mean ± the standard deviation 

is reported, while for the others the median and the interquartile range ([25𝑡ℎ − 75𝑡ℎ percentile]). The variables 

for which there is a statistically significant difference are identified by the symbol *, beside the p-value resultant 

from the relative statistical test. 

testing set 

Variable singleMPC tripleMPC p-value 

𝜇𝐶𝐺𝑀  [
mg

dl
]  153.9 [141.0 − 170.4] 154.4 [143.0 − 169.3] 0.0101 * 

𝜎𝐶𝐺𝑀
†  [

mg

dl
]  54.3 ± 18.5 58.8 ± 22.1 6.3 ∙ 10−5 * 

𝑇𝐼𝑅† [%]  73.8 ± 11.8 71.6 ± 13.6 0.0071 * 

𝑇𝐵𝑅 [%]  0.0 [0.0 −  1.1] 1.0 [0.0 −  3.4] 2.7 ∙ 10−4 * 

𝑇𝐴𝑅† [%]  25.5 ± 11.3 26.4 ± 11.8 0.1023 

𝑇𝐷ℎ [%]  0.0 [0.0 − 0.0] 0.0 [0.0 − 1.0] 1.6 ∙ 10−4 * 

𝑇𝐷𝐻 [%]  7.4 [1.7 − 13.1] 7.8 [2.3 − 15.7] 0.0042 * 

𝐴𝑈𝐶ℎ  [
min∗mg

dl
]  0.0 [0.0 − 301.2] 489.9 [0.0 − 1.4 ∙ 103] 3.7 ∙ 10−5 * 

𝐴𝑈𝐶𝐻  [
min∗mg

dl
]  6.6 ∙ 104 [2.5 ∙ 104 − 1.0 ∙ 105] 6.4 ∙ 104 [2.7 ∙ 104 − 1.1 ∙ 105] 0.0024 * 

𝑛𝐻𝑇  0.0 [0.0 − 0.2] 0.5 [0.3 − 1.3] 1.5 ∙ 10−9 * 

𝑛𝑒𝐻𝑇  - 0.1 [0.0 − 0.7] - 

𝑛𝑝𝐻𝑇  - 0.4 [0.3 − 0.4] - 

𝑞𝐻𝑇 [g]  0.0 [0.0 − 3.9] 8.9 [5.6 − 24.4] 1.1 ∙ 10−9 * 

𝑞𝑒𝐻𝑇  [g]  - 2.2 [0.0 − 13.3] - 

𝑞𝑝𝐻𝑇 [g]  - 7.2 [5.0 − 8.3] - 

𝑛𝑏𝑜𝑙
†  - 2.5 ± 1.6 - 

𝑞𝑏𝑜𝑙
† [U]  - 3.8 ± 2.7 - 

𝑇𝐷𝐼† [U]  39.5 ± 10.1 39.0 ± 10.3 0.0510 

𝑟̃  [(
kg

min

pmol
)

2

]  2.9 ∙ 103 [899.1 − 7.8 ∙ 103] 4.7 ∙ 103 [631.8 − 1.9 ∙ 104] 1.4 ∙ 10−4 * 

𝑠̃  - 1.3 ∙ 104 [9.3 ∙ 103 − 2.0 ∙ 104] - 

𝑤̃1  [(
kg

min

pmol
)

2

]  - 1.5 [0.2 − 12.04] - 

𝑤̃2  - 38.5 [36.8 − 40.0] - 

We now compare the performances of the singleMPC and the tripleMPC, evaluated in the basic 

scenario on the testing set, with the suboptimal hyperparameters (inferred by using the 

regression models presented in section IV). Confronting the metrics’ distributions reported in 

tables V and VII, we assist to a degradation of the performances for both the algorithms, which 

is expected, since the regression laws are approximate. However, this is more evident for the 

tripleMPC: e.g., the decrease of the average 𝑇𝐼𝑅 is 5.9 units, while for the singleMPC it is 2.8 
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units. This is why the quality of control of our technique is quite worse, with a slightly longer 

time spent in hypoglycaemia and, therefore, a significant increase of the hypotreatments, as 

shown in table VII. The principal reason of this is probably the lower quality of the regression 

model for the hyperparameter 𝑤̃2: indeed, the second term of the vector 𝜃𝑤̃2  (reported in section 

IV) is relatively small, which means that the variable 𝐵𝑊 is not a significant regressor for 𝑤̃2 

(despite being selected by stepwise regression); therefore, the variability of 𝑤̃2 is not 

sufficiently nor appropriately explained. 

 

Figure 7. Boxplots, scatter plots and parallel coordinate plots for (from top to bottom, from left to right): 𝑇𝐼𝑅, 

𝑇𝐵𝑅, 𝑇𝐴𝑅, 𝑛𝐻𝑇 and 𝑙𝑜𝑔10(𝑟̃), for the sub-optimally tuned single- and tripleMPC (in the original scenario). The 

segments of the parallel coordinate plot are green, if representing an improvement with the latter for the 

correspondent patient, otherwise are red (or yellow, if the degradation is not significant). The logarithm is applied 

to 𝑟̃ to have a linear distribution. 
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Figure 7 shows the integration of boxplots, scatter plot and parallel coordinate plot for the data 

referred to the sub-optimally tuned singleMPC and tripleMPC, in the currently considered 

scenario, and supports the previous remarks. In this scenario, if our algorithm is employed with 

a suboptimal parametrization, is less effective than its optimally tuned version, since the number 

of patients in the testing set for which there is a degradation of the control quality, being 

compared to the singleMPC, is larger, with respect to the training set. 

Table VIII. Metrics and hyperparameters for the sub-optimally tuned dual- and tripleMPC, in the basic scenario. 

For the variables which are normally distributed (symbol †), the mean ± the standard deviation is reported, while 

for the others the median and the interquartile range ([25𝑡ℎ − 75𝑡ℎ percentile]) are indicated. The variables that 

differ in a statistically significant way are identified by the symbol *, beside the p-value resultant from the relative 

statistical test. 

testing set 

Variable dualMPC tripleMPC p-value 

𝜇𝐶𝐺𝑀  [
mg

dl
]  153.7 [139.1 − 167.4] 154.4 [143.0 − 169.3] 6.8 ∙ 10−5 * 

𝜎𝐶𝐺𝑀
†  [

mg

dl
]  53.7 ± 18.5 58.8 ± 22.1 2.6 ∙ 10−6 * 

𝑇𝐼𝑅† [%]  74.6 ± 12.0 71.6 ± 13.6 1.7 ∙ 10−4 * 

𝑇𝐵𝑅 [%]  0.0 [0.0 −  1.2] 1.0 [0.0 −  3.4] 7.2 ∙ 10−4 * 

𝑇𝐴𝑅† [%]  24.5 ± 11.4 26.4 ± 11.8 0.0013 * 

𝑇𝐷ℎ [%]  0.0 [0.0 − 0.0] 0.0 [0.0 − 1.0] 1.6 ∙ 10−4 * 

𝑇𝐷𝐻 [%]  7.1 [1.7 − 12.7] 7.8 [2.3 − 15.7] 8.5 ∙ 10−5 * 

𝐴𝑈𝐶ℎ  [
min∗mg

dl
]  0.0 [0.0 − 352.1] 489.9 [0.0 − 1.4 ∙ 103] 1.1 ∙ 10−4 * 

𝐴𝑈𝐶𝐻  [
min∗mg

dl
]  6.2 ∙ 104 [2.1 ∙ 104 − 9.7 ∙ 104] 6.4 ∙ 104 [2.7 ∙ 104 − 1.1 ∙ 105] 1.1 ∙ 10−5 * 

𝑛𝐻𝑇  0.1 [0.0 − 0.3] 0.5 [0.3 − 1.3] 2.4 ∙ 10−9 * 

𝑛𝑒𝐻𝑇  0.0 [0.0 − 0.2] 0.1 [0.0 − 0.7] 2.3 ∙ 10−4 * 

𝑛𝑝𝐻𝑇  0.0 [0.0 − 0.0] 0.4 [0.3 − 0.4] 2.4 ∙ 10−9 * 

𝑞𝐻𝑇 [g]  1.7 [0.0 − 5.6] 8.9 [5.6 − 24.4] 1.0 ∙ 10−9 * 

𝑞𝑒𝐻𝑇  [g]  0.0 [0.0 − 5.6] 2.2 [0.0 − 13.3] 9.6 ∙ 10−5 * 

𝑞𝑝𝐻𝑇 [g]  0.0 [0.0 − 0.0] 7.2 [5.0 − 8.3] 1.2 ∙ 10−9 * 

𝑛𝑏𝑜𝑙
†  - 2.5 ± 1.6 - 

𝑞𝑏𝑜𝑙
† [U]  - 3.8 ± 2.7 - 

𝑇𝐷𝐼† [U]  40.0 ± 10.6 39.0 ± 10.3 8.0 ∙ 10−5 * 

𝑟̃  [(
kg

min

pmol
)

2

]  791.4 [224.9 − 3.7 ∙ 103] 4.7 ∙ 103 [631.8 − 1.9 ∙ 104] 2.3 ∙ 10−8 * 

𝑠̃  1.8 ∙ 105 [5.3 ∙ 104 − 7.8 ∙ 105] 1.3 ∙ 104 [9.3 ∙ 103 − 2.0 ∙ 104] 7.4 ∙ 10−10 * 

𝑤̃1  [(
kg

min

pmol
)

2

]  - 1.5 [0.2 − 12.04] - 

𝑤̃2  - 38.5 [36.8 − 40.0] - 
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Figure 8. Boxplots, scatter plots and parallel coordinate plots for (from top to bottom, from left to right): 𝑇𝐼𝑅, 

𝑇𝐵𝑅, 𝑇𝐴𝑅, 𝑛𝐻𝑇, 𝑛𝑒𝐻𝑇, 𝑛𝑝𝐻𝑇, 𝑙𝑜𝑔10(𝑟̃) and 𝑙𝑜𝑔10(𝑠̃), for the dual- and the tripleMPC (in the original scenario), 

with suboptimal tuning. The segments of the parallel coordinate plot are green, if representing an improvement 

with the latter for the correspondent patient, otherwise are red (or yellow, if the degradation is not significant). 
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Table VIII and figure 8 show the results obtained with the suboptimal tuning of the dual-action- 

and the triple-action MPC AP. In this case, the consequences of the approximation error of the 

regression model for 𝑤̃2, added to the fact that the current scenario is not the most suitable to 

test our strategy (while being appropriate for the dualMPC, and the singleMPC as well), are 

more evident. The tripleMPC is quite less effective, the difference of each metric is statistically 

significant and, particularly for the metrics reported in figure 8, there is no improvement for 

most of the testing set. 

We can conclude that the regression of the hyperparameters for the tripleMPC, particularly of 

𝑤̃2, must be refined, and that, as expected, the original scenario is not the most suitable to 

evaluate the actual usefulness of our algorithm. However, the results achieved with its optimally 

tuned version suggest its potential, and particularly its capability to effectively counteract 

hyperglycaemia, without significantly increasing the risk of incurring in hypoglycaemic events. 

This will be much more appreciable in the following section, where we report the results 

obtained in the simulation scenario including the additional persistent hyperglycaemias. 

 

5.2. Robustness test 

Figures 9 and 10 show the simulated signals obtained employing the tripleMPC on the 

representative patient (#90), compared to those achieved (for the same subject) with the 

singleMPC and the dualMPC, respectively. The considered scenario is the advanced one (i.e., 

comprehending the additional persistent hyperglycaemias), and the hyperparameters of the 

algorithms are optimal. Since no extra boluses can be administered after a meal, as already 

discussed, the quality of control of the post-prandial hyperglycaemias of the three algorithms is 

comparable. However, a significant difference can be noticed in the rest of the simulated period, 

particularly between about 01: 00 AM and 07: 00 AM, when the persistent hyperglycaemic 

events occur: indeed, even if these events are unexplained and unannounced, our algorithm is 

able to solve them (particularly during the second night), thanks exactly to the corrective 

boluses, while this is not possible with the basal insulin modulation, which is the only strategy 

the single- and the dualMPC can resort to. Apart from the post-prandial times, with the 

tripleMPC the glucose level is maintained almost completely in euglycaemia. Even if the 

generation mechanism of the nocturnal hyperglycaemias (as explained in section III) is not 

properly realistic (and must be revised), the introduction of such a type of events makes sense, 

since they are persistent, as well as the real hyperglycaemias typically are, and occur apart from 

mealtimes, as in the real cases of hyperglycaemic events due to additional disturbing factors, 
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e.g., stress or alcohol assumption. Therefore, the results reported in these two figures are a first 

demonstration of the real usefulness of our innovative approach, in such a more challenging 

and possibly more realistic scenario. 

 

Figure 9. CGM measurements, basal insulin, corrective boluses, meals and hypotreatments (divided in emergency 

eHT and planned pHT), simulated on subject #90, with the optimal tuning, in the advanced scenario. The yellow 

signals are referred to the singleMPC, while those in blue represent the tripleMPC. The black dashed lines in the 

CGM subplot are the borders of the euglycaemic range. The meals are in red. 

 

Figure 10. CGM measurements, basal insulin, corrective boluses, meals and hypotreatments (eHT and pHT), 

simulated on subject #90, with the optimal tuning, in the scenario for the robustness test. The yellow signals 

respresent the dualMPC, those in blue are referred to the tripleMPC. The black dashed lines in the CGM subplot 

are the borders of the euglycaemic range. The meals are in red. 

The population results for the advanced scenario and a more complete discussion are present in 

the following. 
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Optimal tuning 

The comparison of the population distribution of the metrics and the hyperparameters of the 

tripleMPC with those referred to the singleMPC and the dualMPC, evaluated in the advanced 

scenario on the training set (with optimal tuning), is described by the values in tables IX and X, 

respectively. 

Table IX. Metrics and hyperparameters for the optimally tuned single- and tripleMPC (in the advanced scenario). 

For the normally distributed variables, identified by the symbol †, the mean ± the standard deviation is given, 

while for the others the median and the interquartile range ([25𝑡ℎ − 75𝑡ℎ percentile]) are reported. The variables 

for which there is a statistically significant difference are identified by the symbol *, beside the p-value resultant 

from the relative statistical test. 

training set 

Variable singleMPC tripleMPC p-value 

𝜇𝐶𝐺𝑀  [
mg

dl
]  170.3 [158.8 − 182.0] 164.9 [154.8 − 176.7] 1.3 ∙ 10−4 * 

𝜎𝐶𝐺𝑀  [
mg

dl
]  57.1 [50.1 − 68.0] 54.2 [45.0 − 60.6] 1.8 ∙ 10−5 * 

𝑇𝐼𝑅† [%]  57.0 ± 11.9 62.2 ± 12.5 3.0 ∙ 10−5 * 

𝑇𝐵𝑅 [%]  0.9 [0.0 −  2.0] 0.8 [0.0 −  2.0] 0.0860 

𝑇𝐴𝑅† [%]  41.8 ± 11.4 36.6 ± 12.2 7.0 ∙ 10−5 * 

𝑇𝐷ℎ [%]  0.0 [0.0 − 0.7] 0.0 [0.0 − 0.6] 0.4756 

𝑇𝐷𝐻 [%]  10.4 [3.8 − 17.1] 7.1 [1.8 − 13.1] 3.5 ∙ 10−6 * 

𝐴𝑈𝐶ℎ  [
min∗mg

dl
]  175.2 [0.0 − 916.1] 153.4 [0.0 − 840.2] 0.0903 

𝐴𝑈𝐶𝐻  [
min∗mg

dl
]  8.7 ∙ 104 [5.5 ∙ 104 − 1.2 ∙ 105] 6.7 ∙ 104 [4.2 ∙ 104 − 1.0 ∙ 105] 3.5 ∙ 10−7 * 

𝑛𝐻𝑇  0.2 [0.0 − 0.6] 0.4 [0.1 − 1.0] 7.8 ∙ 10−4 * 

𝑛𝑒𝐻𝑇  - 0.1 [0.0 − 0.4] - 

𝑛𝑝𝐻𝑇  - 0.2 [0.0 − 0.3] - 

𝑞𝐻𝑇 [g]  3.3 [0.0 − 10.0] 6.9 [1.7 − 17.8] 0.0021 * 

𝑞𝑒𝐻𝑇  [g]  - 2.8 [0.0 − 8.9] - 

𝑞𝑝𝐻𝑇 [g]  - 2.8 [0.0 − 6.7] - 

𝑛𝑏𝑜𝑙
†  - 2.6 ± 1.9 - 

𝑞𝑏𝑜𝑙
† [U]  - 3.3 ± 2.5 - 

𝑇𝐷𝐼† [U]  45.4 ± 13.3 44.3 ± 14.6 0.0566 

𝑟̃  [(
kg

min

pmol
)

2

]  432.4 [50.8 − 1.2 ∙ 103] 415.2 [3.2 − 8.6 ∙ 104] 0.2184 

𝑠̃  - 6.6 ∙ 104 [8.2 ∙ 103 − 9.9 ∙ 104] - 

𝑤̃1  [(
kg

min

pmol
)

2

]  - 0.15 [0.0 − 25.9] - 

𝑤̃2  - 11.4 [2.6 − 224.1] - 

Basing on table IX, we observe a net improvement of control with our technique, with respect 

to the single-action approach: the time-above-range 𝑇𝐴𝑅 decreases in a statistically significant 
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way, as well as the time-in-deep-hyperglycaemia 𝑇𝐷𝐻 and the mean CGM signal 𝜇𝐶𝐺𝑀, despite 

using a lower total quantity of insulin (indeed, the daily average quantity, 𝑇𝐷𝐼, is minor). This 

means that there is a better distribution in time of the administered insulin, possibly with a 

higher concentration only when needed (thanks to the boluses). In addition, the time-below-

range 𝑇𝐵𝑅 is lower as well (almost significantly, since the threshold p-value is 5%), for a major 

employment of hypotreatments, which is expected. Overall, with the tripleMPC, the total time-

in-range 𝑇𝐼𝑅 is subject to an increase, on average, of 9.1% (with respect to the value obtained 

with the singleMPC). 

Table X. Metrics and hyperparameters for dual- and tripleMPC, in the advanced scenario, with optimal tuning. 

For the variables with a Gaussian distribution (the symbol †), the mean ± the standard deviation is reported, while 

for the others the median and the interquartile range ([25𝑡ℎ − 75𝑡ℎ percentile]). 

training set 

Variable dualMPC tripleMPC p-value 

𝜇𝐶𝐺𝑀  [
mg

dl
]  166.7 [158.6 − 176.0] 164.9 [154.8 − 176.7] 0.7758 

𝜎𝐶𝐺𝑀  [
mg

dl
]  56.3 [47.2 − 63.0] 54.2 [45.0 − 60.6] 0.0591 

𝑇𝐼𝑅† [%]  60.5 ± 11.6 62.2 ± 12.5 0.1166 

𝑇𝐵𝑅 [%]  0.3 [0.0 −  1.6] 0.8 [0.0 −  2.0] 0.1483 

𝑇𝐴𝑅† [%]  38.6 ± 11.3 36.6 ± 12.2 0.0884 

𝑇𝐷ℎ [%]  0.0 [0.0 − 0.0] 0.0 [0.0 − 0.6] 0.1528 

𝑇𝐷𝐻 [%]  8.0 [1.5 − 13.7] 7.1 [1.8 − 13.1] 0.7527 

𝐴𝑈𝐶ℎ  [
min∗mg

dl
]  9.8 [0.0 − 593.9] 153.4 [0.0 − 840.2] 0.2580 

𝐴𝑈𝐶𝐻  [
min∗mg

dl
]  7.4 ∙ 104 [5.2 ∙ 104 − 1.0 ∙ 105] 6.7 ∙ 104 [4.2 ∙ 104 − 1.0 ∙ 105] 0.2009 

𝑛𝐻𝑇  1.0 [0.3 − 4.0] 0.4 [0.1 − 1.0] 0.0352 * 

𝑛𝑒𝐻𝑇  0.3 [0.0 − 1.0] 0.1 [0.0 − 0.4] 0.1183 

𝑛𝑝𝐻𝑇  1.0 [0.0 − 2.7] 0.2 [0.0 − 0.3] 0.0028 * 

𝑞𝐻𝑇 [g]  13.3 [5.0 − 45.0] 6.9 [1.7 − 17.8] 0.8866 

𝑞𝑒𝐻𝑇  [g]  5.0 [0.0 − 16.7] 2.8 [0.0 − 8.9] 0.2151 

𝑞𝑝𝐻𝑇 [g]  10.0 [0.0 − 25.0] 2.8 [0.0 − 6.7] 0.7270 

𝑛𝑏𝑜𝑙
†  - 2.6 ± 1.9 - 

𝑞𝑏𝑜𝑙
† [U]  - 3.3 ± 2.5 - 

𝑇𝐷𝐼† [U]  48.0 ± 15.5 44.3 ± 14.6 6.3 ∙ 10−8 * 

𝑟̃  [(
kg

min

pmol
)

2

]  222.9 [10.4 − 2.0 ∙ 103] 415.2 [3.2 − 8.6 ∙ 104] 0.0083 * 

𝑠̃  1.8 ∙ 104 [202.1 − 1.2 ∙ 106] 6.6 ∙ 104 [8.2 ∙ 103 − 9.9 ∙ 104] 0.1876 

𝑤̃1  [(
kg

min

pmol
)

2

]  - 0.15 [0.0 − 25.9] - 

𝑤̃2  - 11.4 [2.6 − 224.1] - 
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The results reported in table X testify an improvement of our algorithm with respect to the 

dualMPC as well: 𝑇𝐴𝑅 is reduced, as well as 𝑇𝐷𝐻, consequently 𝑇𝐼𝑅 increases, precisely of 

2.8% (on average) from the value achieved with the dualMPC. Moreover, this is achieved with 

a remarkably lower usage of insulin (𝑇𝐷𝐼 is smaller, on average). We observe a slightly minor 

𝑇𝐵𝑅 with the dual-action strategy, but with a statistically significant increase of the number of 

suggested hypotreatments, and so of the burden for the patient. These are promising results, 

considering also that the dualMPC is an already advanced technique, which, thanks to the 

planned hypotreatments, not only lowers the risk of hypoglycaemia but has the possibility to 

safely administer more basal insulin, as well. 

 

Figure 11. Boxplots, scatter plots and parallel coordinate plots for (from top to bottom, from left to right): 𝑇𝐼𝑅, 

𝑇𝐵𝑅, 𝑇𝐴𝑅, 𝑛𝐻𝑇 and 𝑙𝑜𝑔10(𝑟̃), for the optimally tuned singleMPC and tripleMPC, in the advanced scenario. The 

logarithm is applied to 𝑟̃ to have a linear distribution. 



 RESULTS AND DISCUSSION 
ROBUSTNESS TEST 

51 
 

 

Figure 12. Boxplots, scatter plots and parallel coordinate plots for (from top to bottom, from left to right): 𝑇𝐼𝑅, 

𝑇𝐵𝑅, 𝑇𝐴𝑅, 𝑛𝐻𝑇, 𝑛𝑒𝐻𝑇, 𝑛𝑝𝐻𝑇, 𝑙𝑜𝑔10(𝑟̃) and 𝑙𝑜𝑔10(𝑠̃), for the optimally tuned dual- and tripleMPC (in the current 

scenario). The logarithm is applied to 𝑟̃ and 𝑠̃ to have a linear distribution. 
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Figures 11 and 12 show the boxplots, the scatter plot, and the parallel coordinate plot of the 

data regarding the fundamental metrics and the hyperparameters, collected for the three 

optimally tuned algorithms (in the robustness tests). We observe an improvement of the 

performances with the tripleMPC, specially with respect to the singleMPC, for most of the 

training set; this further supports the previous remarks, at an individual level as well. 

Suboptimal tuning 

Finally, we compare and discuss the results achieved with the three algorithms in the advanced 

scenario, on the testing set, therefore with the suboptimal parametrizations (inferred with the 

regression models). 

testing set 

Variable singleMPC tripleMPC p-value 

𝜇𝐶𝐺𝑀  [
mg

dl
]  175.7 [159.2 − 193.6] 168.7 [158.4 − 186.5] 0.2818 

𝜎𝐶𝐺𝑀  [
mg

dl
]  59.9 [47.5 − 72.6] 58.0 [45.4 −  76.2] 0.7981 

𝑇𝐼𝑅† [%]  54.1 ± 15.2 56.7 ± 14.5 0.0031 * 

𝑇𝐵𝑅 [%]  1.4 [0.0 −  3.2] 1.1 [0.0 −  2.7] 0.4640 

𝑇𝐴𝑅† [%]  44.0 ± 14.8 41.2 ± 13.2 0.0010 * 

𝑇𝐷ℎ [%]  0.0 [0.0 − 1.2] 0.1 [0.0 − 1.5] 0.0254 * 

𝑇𝐷𝐻 [%]  10.5 [2.2 − 21.2] 9.7 [3.2 − 20.0] 0.0754 

𝐴𝑈𝐶ℎ  [
min∗mg

dl
]  423.8 [0.0 − 1.6 ∙ 103] 351.9 [0.0 − 1.9 ∙ 103] 0.0630 

𝐴𝑈𝐶𝐻
†  [

min∗mg

dl
]  9.5 ∙ 104 [5.2 ∙ 104 − 1.6 ∙ 105] 8.5 ∙ 104 [4.9 ∙ 104 − 1.5 ∙ 105] 0.1659 

𝑛𝐻𝑇  0.3 [0.0 − 0.7] 0.7 [0.4 − 1.2] 1.1 ∙ 10−7 * 

𝑛𝑒𝐻𝑇  - 0.2 [0.0 − 0.8] - 

𝑛𝑝𝐻𝑇  - 0.4 [0.3 − 0.7] - 

𝑞𝐻𝑇 [g]  4.2 [0.0 − 12.2] 11.9 [7.2 − 24.4] 6.2 ∙ 10−8 * 

𝑞𝑒𝐻𝑇  [g]  - 3.3 [0.0 − 15.0] - 

𝑞𝑝𝐻𝑇 [g]  - 8.1 [5.0 − 11.7] - 

𝑛𝑏𝑜𝑙
†  - 4.3 ± 1.9 - 

𝑞𝑏𝑜𝑙  [U]  - 5.7 [3.8 − 9.6] - 

𝑇𝐷𝐼† [U]  44.4 ± 11.1 41.0 ± 12.2 8.2 ∙ 10−10 * 

𝑟̃  [(
kg

min

pmol
)

2

]  400.1 [164.8 − 888.8] 537.4 [108.4 − 2.3 ∙ 103] 6.7 ∙ 10−4 * 

𝑠̃†  - 1.1 ∙ 104 ± 1.9 ∙ 103 - 

𝑤̃1  [(
kg

min

pmol
)

2

]  - 0.3 [0.1 − 0.7] - 

𝑤̃2
†
  - 30.5 ± 0.1 - 
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Table XI (above) and XII (below). Metrics and hyperparameters for the sub-optimally tuned singleMPC (table 

XI), dualMPC (table XII) and tripleMPC, in the advanced scenario. For the variables which are normally 

distributed (symbol †), the mean ± the standard deviation is reported, while for the others the median and the 

interquartile range ([25𝑡ℎ − 75𝑡ℎ percentile]). The variables that differ in a statistically significant way are 

identified by the symbol *, beside the p-value resultant from the relative statistical test. 

testing set 

Variable dualMPC tripleMPC p-value 

𝜇𝐶𝐺𝑀  [
mg

dl
]  172.1 [156.3 − 188.5] 168.7 [158.4 − 186.5] 0.0703 

𝜎𝐶𝐺𝑀  [
mg

dl
]  57.4 [44.9 − 72.4] 58.0 [45.4 −  76.2] 0.0529 

𝑇𝐼𝑅† [%]  56.2 ± 16.5 56.7 ± 14.5 0.5373 

𝑇𝐵𝑅 [%]  1.2 [0.0 −  3.1] 1.1 [0.0 −  2.7] 0.6207 

𝑇𝐴𝑅† [%]  41.8 ± 15.5 41.2 ± 13.2 0.4509 

𝑇𝐷ℎ [%]  0.0 [0.0 − 1.0] 0.1 [0.0 − 1.5] 0.0044 * 

𝑇𝐷𝐻 [%]  10.3 [1.5 − 20.1] 9.7 [3.2 − 20.0] 0.9352 

𝐴𝑈𝐶ℎ  [
min∗mg

dl
]  305.2 [0.0 − 1.7 ∙ 103] 351.9 [0.0 − 1.9 ∙ 103] 0.0161 * 

𝐴𝑈𝐶𝐻
†  [

min∗mg

dl
]  8.6 ∙ 104 [3.8 ∙ 104 − 1.5 ∙ 105] 8.5 ∙ 104 [4.9 ∙ 104 − 1.5 ∙ 105] 0.7437 

𝑛𝐻𝑇  0.2 [0.1 − 0.3] 0.7 [0.4 − 1.2] 0.0038 * 

𝑛𝑒𝐻𝑇  0.1 [0.0 − 0.3] 0.2 [0.0 − 0.8] 0.1107 

𝑛𝑝𝐻𝑇  0.0 [0.0 − 0.2] 0.4 [0.3 − 0.7] 0.0048 * 

𝑞𝐻𝑇 [g]  2.4 [1.1 − 5.2] 11.9 [7.2 − 24.4] 2.8 ∙ 10−6 * 

𝑞𝑒𝐻𝑇  [g]  1.6 [0.0 − 4.4] 3.3 [0.0 − 15.0] 0.0277 * 

𝑞𝑝𝐻𝑇 [g]  0.4 [0.0 − 1.9] 8.1 [5.0 − 11.7] 2.7 ∙ 10−7 * 

𝑛𝑏𝑜𝑙
†  - 4.3 ± 1.9 - 

𝑞𝑏𝑜𝑙  [U]  - 5.7 [3.8 − 9.6] - 

𝑇𝐷𝐼† [U]  46.0 ± 12.6 41.0 ± 12.2 8.0 ∙ 10−21 * 

𝑟̃  [(
kg

min

pmol
)

2

]  149.8 [49.9 − 519.4] 537.4 [108.4 − 2.3 ∙ 103] 1.8 ∙ 10−9 * 

𝑠̃†  2.8 ∙ 104 [8.2 ∙ 103 − 1.2 ∙ 105] 1.1 ∙ 104 ± 1.9 ∙ 103 1.4 ∙ 10−5 * 

𝑤̃1  [(
kg

min

pmol
)

2

]  - 0.3 [0.1 − 0.7] - 

𝑤̃2
†
  - 30.5 ± 0.1 - 

As for the values observed with the suboptimal tuning, in the original scenario, there is a 

degradation of the performances for each algorithm, but more evidently for the tripleMPC. For 

instance, the average 𝑇𝐼𝑅 decreases of 5.5 units for the tripleMPC, while it lowers of 2.9 units 

for the singleMPC and 4.3 units for the dualMPC, with respect to the case with the optimal 

tuning. This is due to the expected approximation error of the regression models, which is likely 

major for the regression law of 𝑤̃2. Nonetheless, our technique still performs significantly better 

with respect to the single-action approach: there is a statistically significant decrease of 𝑇𝐴𝑅, 
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so an increase of 𝑇𝐼𝑅 (of 4.8% on average), in addition with a significantly lower usage of 

insulin. We notice an increment of 𝑇𝐷ℎ, probably because the suboptimal hyperparameters that 

determine the boluses’ administration lead to an aggressive administration, and of the extra-

CHO as well, which is expected. The remarks regarding 𝑇𝐼𝑅 and 𝑇𝐴𝑅 are valid at an individual 

level as well, basing on figure 13, where we notice particularly a lowering of the time-above-

range, and thus an increment of the time-in-range, for many of the patients of the testing set. 

 

Figure 13. Boxplots, scatter plots and parallel coordinate plots for (from top to bottom, from left to right): 𝑇𝐼𝑅, 

𝑇𝐵𝑅, 𝑇𝐴𝑅, 𝑛𝐻𝑇 and 𝑙𝑜𝑔10(𝑟̃), for the sub-optimally tuned singleMPC and tripleMPC, in the advanced scenario. 
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Figure 14. Boxplots, scatter plots and parallel coordinate plots for (from top to bottom, from left to right): 𝑇𝐼𝑅, 

𝑇𝐵𝑅, 𝑇𝐴𝑅, 𝑛𝐻𝑇, 𝑛𝑒𝐻𝑇, 𝑛𝑝𝐻𝑇, 𝑙𝑜𝑔10(𝑟̃) and 𝑙𝑜𝑔10(𝑠̃), for the dual- and the tripleMPC (in the advanced scenario), 

with suboptimal tuning. 
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We notice a lowering of 𝑇𝐴𝑅 and thus an increment of 𝑇𝐼𝑅 also with respect to the dualMPC, 

even if in this case these differences are not statistically significant. With the tripleMPC, there 

is an increase of 𝑇𝐷ℎ and the hypotreatments, as well. Overall, the performances of our 

algorithm and the dual-action strategy, with a suboptimal parametrization, are almost 

comparable. Considering the limited quality of the regression models (particularly for 𝑤̃2) and 

the fact that the dualMPC is already an advanced technique, these results are decorous. The 

individual results concerning some fundamental metrics (and the hyperparameters) are shown 

in figure 14, and confirm the previous statement. 

In conclusion, the overall outcomes of the tests performed in the advanced scenario confirm 

that this is much more appropriate to test the capabilities of the tripleMPC, and prove the real 

usefulness and the positive impact on control of the corrective boluses, in such a scenario which 

is possibly more realistic, as well. In this scenario, our algorithm is proven to outperform both 

a state-of-the-art strategy (i.e., the singleMPC) and an advanced approach (the dualMPC), with 

the optimal parametrization, thanks exactly to the additional capability to plan the 

administration of the extra boluses, coupled with the planning of hypotreatments and the basal 

insulin modulation. Adopting a suboptimal tuning, inferred by using regression models (which, 

in addition, can be improved), the tripleMPC still outperforms the singleMPC, and shows 

almost comparable performances with respect to the dualMPC, with a slightly lower time-

above-range and thus a major time-in-range. 
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VI. Conclusions 

The core of this thesis project is the development of the triple-action MPC AP (or tripleMPC), 

an algorithm for the inclusion in an AP of the capability to proactively plan the suggestion of 

CHO intakes to the patient and the administration of corrective insulin boluses, together with 

the basal insulin modulation. The idea is to reinforce the counteraction of hypo- and 

hyperglycaemia, respectively. This is done by using MPC, a model-based predictive strategy, 

which formulates the control problem as an optimization one, and allows to impose constraints 

on the control variables. This is achieved by starting and taking inspiration from the work of 

Pavan et al. in [17], where an approach to introduce the CHO suggestions is proposed. The 

suggestible CHO amount is modelled as a quantized variable 𝑐, by including in the control 

problem two Boolean support variables 𝑐1 and 𝑐2, thus reconducting the optimization to a MIQP 

problem; in addition, a series of constraints are imposed on these Boolean variables, in order to 

impose the sparsity in time of the suggestions, to limit their daily number and to forbid their 

use in predefined periods of the day (“do-not-disturb” zones). All this is needed to contain the 

burden of the patient, which must manually assume the suggested CHO doses. Conversely, the 

amount of a corrective bolus is represented by a continuous variable 𝑏; together with the fact 

that the boluses are early planned in synergy with the other control variables, this makes our 

approach innovative with respect to the state-of-the-art strategies. An additional Boolean 

support variable 𝑧 is included, to model the capability of the algorithm to choose whether to 

deliver a bolus or not, and to impose the sparsity in time on the boluses as well, by imposing 

suitable constraints on 𝑧. 

Our algorithm is compared to a state-of-the-art strategy, the single-action MPC AP (in short, 

singleMPC), which only modulates the basal insulin infusion, and the advanced technique 

proposed by Pavan et al. in [17] (the dual-action MPC AP or, in brief, dualMPC), with the 

additional capability to plan CHO suggestions. The assessment of the performances of the three 

algorithms is performed via in-silico trials, by exploiting the UVa/Padova T1D Simulator (v. 

2013), an accurate model of the metabolic subsystem of a T1D patient, which was approved by 

FDA as a substitute of animal testing for preclinical trials for T1D therapies evaluation. The 

model’s parameters are not fixed, conversely the simulator is associated to a dataset of 100 

virtual adult patients, each one being a different realistic parameters’ set, to perform the trials 

on. The model our MPC is based on is a linearized version exactly of the UVa/Padova T1D 

system of the average virtual subject. 
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The basic simulation scenario that we consider covers three days, each one including the 

consumption of three meals, and is characterized by realistic features. However, it turns out to 

be limiting to evaluate the actual potential of the tripleMPC; therefore, we consider a more 

suitable alternative scenario as well, where an unannounced persistent hyperglycaemic event is 

added, during each simulated night. Even if the generation mechanism of these 

hyperglycaemias is not properly realistic, this makes sense, since the real hyperglycaemic 

events are persistent as well, and can occur due to other disturbing factors, apart from meals. 

There is a subset of our MPC’s hyperparameters (i.e., the weights in the MPC’s cost function) 

which have to be individualized, due to the high inter-subject biovariability. The search of the 

optimal patient-specific tuning must be performed via trial-and-error, i.e. testing different 

combinations of the parameters (in our work, chosen basing on a Bayesian approach) and 

selecting the one associated to the best performances. This would be dangerous and thus cannot 

be done for any real patient; therefore, basing on the optimal values obtained for a training set 

of subjects, a regression law is retrieved for each hyperparameter, to be used for any T1D 

individual to estimate the best tuning for him or her. The quality of these regression models is 

assessed on a testing set. 

The overall results confirm that the advanced scenario (i.e., with the additional persistent 

hyperglycaemias) is more appropriate to test the real potential of our strategy, and show how it 

can outperform both the state-of-the-art approach (the single-action MPC AP) and the advanced 

one (the dual-action MPC AP), with the optimal tuning of the hyperparameters. Indeed, in this 

case, we notice an increase of the average time-in-range of more than 9%, with respect to the 

former, and almost 3%, with respect to the latter. Adopting a suboptimal parametrization, 

inferred by using the regression laws, we assist to a degradation of the performances for each 

algorithm, but which is more evident for the tripleMPC; therefore, the need to improve the 

regression models emerges. Nonetheless, also in this case our approach outperforms the single-

action technique, with an increment of the time-in-range of almost 5% on average, while it 

shows comparable performances with respect to the dual-action MPC AP, with a slight lowering 

of the time-above-range and a correspondent increase of the time-in-range. In conclusion, these 

results are appreciable and promising, demonstrating the usefulness and the positive impact on 

control of the administration of early-planned corrective boluses, being coupled with the basal 

insulin modulation and the suggestion of scheduled hypotreatments. 
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6.1. Future developments 

There is a series of possible future improvements for our algorithm. 

First, the generation mechanism of the persistent hyperglycaemias, that we introduced in the 

advanced simulation scenario (i.e., for the robustness test), must be improved such to be more 

realistic. Indeed, it is rough and is not based on any real observations of this phenomenon. 

Therefore, this upgrade could be achieved by referring to and exploiting real data. 

In addition, 𝑃𝐻 could be increased, so that the MPC can predict in a more complete and 

therefore better way the effects of a planned bolus. However, in this way the number of 

optimization variables increases and the simulation times can become too much large, making 

the execution of all the needed tests particularly onerous. A solution to increase 𝑃𝐻, but limiting 

this problem, consists in computing only the optimal sequence of control actions from the 

current time 𝑘 to 𝑘 + 𝑃𝐻𝑖, with 𝑃𝐻𝑖 (Input or Control Horizon) smaller than 𝑃𝐻 (Output or 

Prediction Horizon), while forcing the control variables to be constant for the remaining period 

of the Prediction Horizon, e.g. equal to the values computed for the time 𝑘 + 𝑃𝐻𝑖. This can be 

done because the assumption holds that the elements of the optimal sequence after a certain 

𝑃𝐻𝑖 have less impact on the value calculated for the control actions at the current time. 

Consequently, the number of variables to be computed decreases, as well as the computational 

time. 

Moreover, the model the MPC relies on could be modified introducing a nonlinearity, to better 

describe the pharmacodynamics of insulin, in particular to highlight the insulin resistance that 

is found in hyperglycaemia. In this way, the controller could better predict the actual advantages 

of boluses with respect to the basal insulin. For instance, this could be done by describing with 

a Hill function the relation between the quantity of the administered insulin with its effect on 

glycaemia, so that the latter is significantly larger over an insulin threshold amount, that only a 

bolus can overcome [30]. However, this would complicate the problem and might increase the 

computational cost, requiring to resort to a nonlinear MPC including the optimization of 

Boolean variables. 

Furthermore, a development for the near future could be to use glucagon (the antagonist 

hormone of insulin) instead of CHO. This would make the system fully automatic and thus it 

would lower the burden on the patient, since glucagon can be administered subcutaneously with 

a pump of its own, as well as insulin. This is an option that is currently being explored [31-32]; 

however, there is still no full consensus on the long-term safety of glucagon and so on whether 

it could be securely included as a true additional control variable or if it should be used only as 
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mere emergency measure. This is mostly due to the fact that the hepatic extraction13 mechanism, 

which is stimulated by glucagon, may fail in case of depleted glycogen storage or may be 

inhibited by substances such as alcohol [17]. 

Finally, there is a declination of the tripleMPC of practical relevance and that may be worth to 

be explored, that is a system for the proactive planning only of CHO intakes and insulin boluses’ 

(manual) administrations (without the automated basal insulin modulation). De facto, this is a 

Decision Support System (DSS) for the early suggestion of hypo- and hypertreatments. This 

should be thought as coupled with a manual therapy and so, potentially, it could apply not 

necessarily only to an AP-like architecture: indeed, in this case where the boluses’ delivery can 

be performed without resorting to an insulin pump (that is no longer indispensable), but e.g. via 

insulin pen, only a CGM sensor is needed. The resultant architecture is simpler and, specially, 

pump-faults-free, therefore the advantage is that it could be manageable also by those patients 

that are less capable and expert. In order to calm the risk of bolus-amount-counting errors and 

to limit the burden on the patient, the boluses should be respectively quantized and constrained 

to be sparse in time as well. 

  

 
13 The release in blood of glucose stored in the liver, in form of glycogen. 
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Appendices 

A.1. Notation 

In this appendix we report a few details on the notation we resort to. 

𝓵𝟐-norm 

In the cost functions (3), (14) and (27) a notation like ‖𝑣(𝑘)‖𝑊
2  is adopted. This stands for the 

ℓ2-norm and corresponds to 

‖𝑣(𝑘)‖𝑊
2 = 𝑣(𝑘)𝑇𝑊𝑣(𝑘) (𝐴1) 

where 𝑣 ∈ 𝑅𝑛×1 is a vector and 𝑊 ∈ 𝑅𝑛×𝑛 is a weight matrix. 

𝓵𝟎-norm 

In (14) and (27), the weighted sum of the squares of the Boolean variables 𝑐1 and 𝑐2, for each 

time step within a given prediction horizon, is included, that is 

∑ 𝑠̃(𝑐1(𝑘 + 𝑗)
2 + 𝑐2(𝑘 + 𝑗)

2)

𝑃𝐻−1

𝑗=1

= ∑ 𝑠̃(𝑐1(𝑘 + 𝑗) + 𝑐2(𝑘 + 𝑗))

𝑃𝐻−1

𝑗=1

= ∑ 𝑠̃ ∙ 𝑐𝑏𝑜𝑜𝑙(𝑘 + 𝑗)

𝑃𝐻−1

𝑗=1

. (𝐴2) 

The signal 𝑐𝑏𝑜𝑜𝑙(∙), i.e. comprehending every 𝑐𝑏𝑜𝑜𝑙(𝑘 + 𝑗) ∀𝑘, 𝑗, is dichotomic as well. It is 

non-null when 𝑐1(𝑘) or 𝑐2(𝑘) is active, i.e. whenever 𝑐(𝑘) = 𝛾1 ∙ 𝑐1(𝑘) + 𝛾2 ∙ 𝑐2(𝑘) ≠ 0; in 

other words, it takes into account the number of times a CHO intake is suggested, regardless 

the amount. This is the so-called ℓ0-norm. 

 

A.2. Basal insulin reference 

As discussed in section 2.1, the reference signal for the control variable 𝑖 ̅is defined as in [24]: 

𝑖𝑚𝑒𝑎𝑙(𝑘) = {

𝑑̂(𝑘)

𝐶𝑅
+
𝑔(𝑘) − 𝐺𝑏

𝐶𝐹
− 𝐼𝑂𝐵(𝑘) 𝑎𝑡 𝑚𝑒𝑎𝑙 𝑡𝑖𝑚𝑒𝑠

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 

that is the heuristic formula for the meal boluses’ calculation, coming from the traditional 

therapy. The carbohydrates-to-insulin ratio 𝐶𝑅 is the amount of CHO covered by 1 U of insulin, 
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therefore the first term 
𝑑̂(𝑘)

𝐶𝑅
 is the quantity of insulin that is expected to balance the CHO content 

of the announced meal. 𝐶𝐹 represents the glycaemic drop caused by 1 U of insulin; 

consequently, 
𝑔(𝑘)−𝐺𝑏

𝐶𝐹
 is a correction term that takes into account the distance, with sign, of the 

current measurement of 𝑔(𝑘) from the patient’s basal glycaemia 𝐺𝑏, and it is an additional 

amount of insulin, if positive, or a quantity to be subtracted, if 𝑔(𝑘) < 𝐺𝑏. The last term 𝐼𝑂𝐵(𝑘) 

is the so-called insulin-on-board, namely how much insulin is still active in the body at the 

considered time. It can be estimated as reported in [5], i.e. by giving the currently infused insulin 

dose to the state-space model 

{
𝑥(𝑘 + 1) = [−13 ∙ 10

−3 0
13 ∙ 10−3 −13 ∙ 10−3

] 𝑥(𝑘) + [
1
0
] 𝑖(𝑘)

𝑦(𝑘) = [1 1]𝑥(𝑘)

, (𝐴3) 

then rounding to the second decimal place and applying a delay of one sampling time to the 

resultant output 𝑦(𝑘). 

 

A.3. QP and MIQP problems’ formulation 

An optimization problem can be reconducted to a (MI)QP formulation like 

min
𝑥 𝑠.𝑡.

𝐴𝑥−𝑏≤0

1

2
𝑥𝑇𝑄𝑥 + 𝑐𝑇𝑥, 

where 𝑥 is the optimization variable, 𝑄 a positive definite matrix and 𝑐 a vector, if the adopted 

model is linear, the cost function is quadratic, and the constraints can be expressed in the linear 

form 𝐴𝑥 − 𝑏 ≤ 0. This can be done for each considered algorithm, since in each case the 

respective optimization problem is compliant to these assumptions. This is convenient, because 

in this way it is assured that the problem is convex (so no local minima exist and the 

convergence is guaranteed) and there are efficient and steady algorithms for its resolution (e.g. 

Interior-Point, Active Set). 

To do this, the following lemma is needed. 

Lemma. ∑ 𝑤 ∙ 𝑣(𝑘 + 𝑗)2𝑁
𝑗=1 = 𝑉(𝑘)𝑇𝑊𝑉(𝑘) ∀𝑘, with 𝑉(𝑘) = [𝑣(𝑘),… , 𝑣(𝑘 + 𝑁)]𝑇 ∈

𝑅𝑁×1, 𝑊 = [

𝑤 0 … 0
0 ⋱ ⋮
⋮ ⋱ 0
0 … 0 𝑤

] ∈ 𝑅𝑁×𝑁 , 𝑣(𝑘) a scalar variable and 𝑤 ∈ 𝑅. 
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Proof. 𝑉(𝑘)𝑇𝑊𝑉(𝑘) = 𝑉(𝑘)𝑇 ∙ 𝑤𝐼 ∙ 𝑉(𝑘) = 𝑣(𝑘) ∙ 𝑤 ∙ 𝑣(𝑘) + ⋯+ 𝑣(𝑘 + 𝑁) ∙ 𝑤 ∙

𝑣(𝑘 + 𝑁) = 𝑤 ∙ 𝑣(𝑘)2 +⋯+𝑤 ∙ 𝑣(𝑘 + 𝑁)2 = ∑ 𝑤 ∙ 𝑣(𝑘 + 𝑗)2𝑁
𝑗=1 . 

The QP formulation of the singleMPC optimization problem in (9) is achieved by defining 

𝑈(𝑘), 𝐹𝑠, 𝑓𝑠 as shown in section 2.1 and manipulating the cost function (3) as follows. 

𝐽 = ∑ ((𝑔̅(𝑘 + 𝑗) − 𝑔0̅̅ ̅(𝑘 + 𝑗))
2
+ 𝑟̃(𝑖(̅𝑘 + 𝑗) − 𝑖0̅(𝑘 + 𝑗))

2
)

𝑃𝐻−1

𝑗=0

+ ‖𝑥̅(𝑘 + 𝑃𝐻)‖𝑃
2 = 

= ∑ ((𝑔̅(𝑘 + 𝑗) − 𝑔0̅̅ ̅(𝑘 + 𝑗))
2
)

𝑃𝐻−1

𝑗=1

+ ∑ (𝑟̃(𝑖(̅𝑘 + 𝑗) − 𝑖0̅(𝑘 + 𝑗))
2
)

𝑃𝐻−1

𝑗=0

+ ‖𝑥̅(𝑘 + 𝑃𝐻)‖𝑃
2  

since the output at the current time 𝑘 depends on the control action at 𝑘 − 1, which is not 

included in the current prediction horizon. Moreover, for the lemma reported above: 

𝐽 = (𝑌(𝑘) − 𝑌0(𝑘))
𝑇𝑄(𝑌(𝑘) − 𝑌0(𝑘)) + (𝑈(𝑘) − 𝑈0(𝑘))

𝑇𝑅(𝑈(𝑘) − 𝑈0(𝑘)) (𝐴4) 

with 

𝑌(𝑘) = [𝑔̅(𝑘 + 1),… , 𝑔̅(𝑘 + 𝑃𝐻 − 1), 𝑥̅(𝑘 + 𝑃𝐻)𝑇]𝑇 ∈ 𝑅𝑃𝐻+15×1, 

𝑈(𝑘) = [𝑖(̅𝑘),… , 𝑖(̅𝑘 + 𝑃𝐻 − 1)] ∈ 𝑅𝑃𝐻×1, 

𝑄 = [

1 0 … 0
0 ⋱ ⋮
⋮ 1 0
0 … 0 𝑃

] ∈ 𝑅𝑃𝐻+15×𝑃𝐻+15, 𝑅 = [

𝑟̃ 0 … 0
0 ⋱ ⋮
⋮ ⋱ 0
0 … 0 𝑟̃

] ∈ 𝑅𝑃𝐻×𝑃𝐻. 

Given the model (1), the prediction of the output evolution, for a generic 𝑁, can be computed 

at a given time 𝑘 by solving the equation: 

𝑔̅(𝑘 + 𝑁|𝑘) = 𝐶𝐴𝑁𝑥̅(𝑘|𝑘) +∑𝐶𝐴𝑁−𝑗𝐵𝑖(̅𝑘 + 𝑗 − 1|𝑘)

𝑁

𝑗=1

. (𝐴5) 

Therefore, 

𝑌(𝑘) = 𝐴̃𝐶𝑥̅(𝑘) + 𝐵̃𝐶𝑈(𝑘) + 𝑀̃𝐶𝐷(𝑘) (𝐴6) 

with 

𝐴̃𝐶 = 𝐶̃𝐴̃, 𝐵̃𝐶 = 𝐶̃𝐵̃, 𝑀̃𝐶 = 𝐶̃𝑀̃, 
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𝐶̃ = [

𝐶 0 … 0
0 ⋱ ⋮
⋮ 𝐶 ⋮
0 … … 0

] ∈ 𝑅𝑃𝐻+15×16𝑃𝐻, 𝐴̃ = [

𝐴
𝐴2

⋮
𝐴𝑃𝐻

] ∈ 𝑅16𝑃𝐻×16, 

𝐵̃ =

[
 
 
 
 
 

𝐵 0 … … … 0
𝐴𝐵 𝐵 0 … … ⋮
𝐴2𝐵 𝐴𝐵 𝐵 0 … 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮ 0

𝐴𝑃𝐻−1𝐵 𝐴𝑃𝐻−2𝐵 … … 𝐴𝐵 𝐵]
 
 
 
 
 

∈ 𝑅16𝑃𝐻×𝑃𝐻, 

𝑀̃ =

[
 
 
 
 
 

𝑀 0 … … … 0
𝐴𝑀 𝑀 0 … … ⋮
𝐴2𝑀 𝐴𝑀 𝑀 0 … 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮ 0

𝐴𝑃𝐻−1𝑀 𝐴𝑃𝐻−2𝑀 … … 𝐴𝑀 𝑀]
 
 
 
 
 

∈ 𝑅16𝑃𝐻×𝑃𝐻, 

𝐷(𝑘) = [
𝑑̂(𝑘)
⋮

𝑑̂(𝑘 + 𝑃𝐻 − 1)
] ∈ 𝑅𝑃𝐻×1. 

Consequently, 

𝐽 = (𝐴̃𝐶𝑥̅(𝑘) + 𝐵̃𝐶𝑈(𝑘) + 𝑀̃𝐶𝐷(𝑘) − 𝑌0(𝑘))
𝑇

𝑄 (𝐴̃𝐶𝑥̅(𝑘) + 𝐵̃𝐶𝑈(𝑘) + 𝑀̃𝐶𝐷(𝑘) − 𝑌0(𝑘))

+ (𝑈(𝑘) − 𝑈0(𝑘))
𝑇
𝑅(𝑈(𝑘) − 𝑈0(𝑘)) = 

= (𝐴̃𝐶𝑥̅(𝑘) + 𝑀̃𝐶𝐷(𝑘) − 𝑌0(𝑘))
𝑇

𝑄 (𝐴̃𝐶𝑥̅(𝑘) + 𝑀̃𝐶𝐷(𝑘) − 𝑌0(𝑘)) + 𝑈0(𝑘)
𝑇𝑅𝑈0(𝑘)

+ (𝐴̃𝐶𝑥̅(𝑘) + 𝑀̃𝐶𝐷(𝑘) − 𝑌0(𝑘))
𝑇

𝑄 (𝐵̃𝐶𝑈(𝑘))

+ (𝐵̃𝐶𝑈(𝑘))
𝑇

𝑄 (𝐴̃𝐶𝑥̅(𝑘) + 𝑀̃𝐶𝐷(𝑘) − 𝑌0(𝑘)) − 𝑈0(𝑘)
𝑇𝑅𝑈(𝑘)

− 𝑈(𝑘)𝑇𝑅𝑈0(𝑘) + 𝑈(𝑘)
𝑇(𝐵𝐶

𝑇𝑄𝐵𝐶 + 𝑅)𝑈(𝑘). (𝐴7) 

Notice that the first two terms in the second expression in (A7) are constant with respect to the 

optimization variable 𝑈(𝑘) and so can be discarded; in addition, the third term is equal to its 

transposed that is equal to the fourth term, and analogously for the fifth and the sixth terms. 

Therefore, 

𝐽 = 2 ((𝐴̃𝐶 𝑥̅(𝑘) + 𝑀̃𝐶𝐷(𝑘) − 𝑌0(𝑘))
𝑇

𝑄𝐵̃𝐶 − 𝑈0(𝑘)
𝑇𝑅)𝑈(𝑘)

+ 𝑈(𝑘)𝑇(𝐵𝐶
𝑇𝑄𝐵𝐶 + 𝑅)𝑈(𝑘). (𝐴8) 
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Since 𝐽 has to be minimized, multiplicative terms do not count and so it can be divided by 2, 

thus obtaining an equivalent cost function: 

𝐽′ =
1

2
𝑈(𝑘)𝑇𝑄𝑠𝑈(𝑘) + 𝑐𝑠

𝑇𝑈(𝑘) (𝐴9) 

that is the QP formulation of 𝐽 for the singleMPC, with 

𝑄𝑠 = 𝐵𝐶
𝑇𝑄𝐵𝐶 + 𝑅,

𝑐𝑠 = ((𝐴̃𝐶𝑥̅(𝑘) + 𝑀̃𝐶𝐷(𝑘) − 𝑌0(𝑘))
𝑇

𝑄𝐵̃𝐶 − 𝑈0(𝑘)
𝑇𝑅)

𝑇

.
(𝐴10) 

The MIQP formulation of the optimization problems of the dual- and the tripleMPC, in (21) 

and (34) respectively, can be obtained defining 𝐹𝑑 , 𝑓𝑑 , 𝐹𝑡, 𝑓𝑡 as shown in sections 2.2 and 2.3, 

and performing analogous manipulations. The main difference is that 𝑈(𝑘) has to be redefined, 

in each case, as reported in the same sections, and 𝐵̃ has to be substituted with 

𝐵̃′ = [𝐵̃ 𝛾1𝑀̃ 𝛾2𝑀̃] ∈ 𝑅
16𝑃𝐻×3𝑃𝐻 (𝐴11) 

for the dualMPC, and with 

𝐵̃′′ = [𝐵̃ 𝛾1𝑀̃ 𝛾2𝑀̃ 𝐵̃ 0] ∈ 𝑅16𝑃𝐻×5𝑃𝐻 (𝐴12) 

for the tripleMPC. Notice that the last block of 𝐵̃′′ is null, since it multiplies the vector 𝑍(𝑘) =

[𝑧(𝑘) … 𝑧(𝑘 + 𝑃𝐻 − 1)]𝑇, which is not included in the model. 

 

A.4. Carb-counting-error and emergency hypotreatments 

In the adopted simulation scenario, there is also a patient decisions’ model [22], which is needed 

to simulate the meal announcement mechanism, in particular the carb-counting-error (CCE) 

committed by the patient and affecting the meal’s CHO amount reported to the system, and the 

emergency hypotreatments (eHT) generation process. In this appendix, we discuss how the 

CCE is modelled and how the eHT originate. 

Carb-counting-error 

To simulate the estimated CHO amount of an announced meal, a model of the probability 

density function of the carb-counting-error is involved. This model is a non-standardized 

Student’s t function, and it is fitted by maximum-likelihood to the data published by Brazeau 

et al. in [33], in which the CHO content of 448 meals was estimated by T1D patients and in 

parallel assessed by a dietitian [22]. 
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Emergency hypotreatments 

In the scenario we consider, self-monitoring blood glucose (SMBG) measurements are included 

as well, namely additional checks of the blood glucose (BG), manually performed by the patient 

in parallel with CGM readings. SMBG checks are involved to monitor hypoglycaemia; indeed, 

they are triggered in response to hypoglycaemia symptoms, which are generated when the BG 

level falls below a patient-specific threshold of hypoglycaemia awareness, or if the CGM 

measurement goes below 70 
mg

dl
 (the patient-independent threshold of hypoglycaemia) and if 

at least 15 min are passed since the last SMBG check and CHO intake [22]. In other words, 

SMBG measurements are triggered whenever the measured BG is close to or below 70 
mg

dl
. 

An emergency hypotreatment is generated after a SMBG check for hypoglycaemia, if the 

measured BG is below 70 
mg

dl
. During waking hours (06: 00 AM − 10: 00 PM), the amount of 

the hypotreatment is set to 15 g if SMBG > 55
mg

dl
 or 20 g if SMBG ≤ 55

mg

dl
. After 15 min, a 

re-check for hypoglycaemia is simulated, with a probability of 10%; if at the re-check the 

SMBG measurement is still below 70
mg

dl
, another hypotreatment is given. Conversely, during 

night hours (10: 00 PM − 06: 00 AM), the hypotreatments’ amount is set to 25 g, whatever the 

entity of the detected hypoglycaemic event, and no re-checks for hypoglycaemia are simulated. 

Finally, any hypotreatment is assumed to be consumed in one minute [22]. 

 

A.5. Stepwise regression 

To perform the regressors’ selection procedure, presented in section IV, we resort to the 

stepwise regression algorithm. The idea it is based on is to proceed by steps, considering one 

variable at a time and including it in the regression model only if it respects the criterion chosen 

to quantify the model fit to the data. 

There are more variants of this technique. The forward selection approach involves starting 

with an empty pool of regressors, and adding a variable if its inclusion improves the fit in 

statistically significant way. Conversely, with the backward elimination variant, the initial set 

of regressors includes all the candidate variables, and each one is dismissed from the model 

only if its loss does not deteriorate the model fit, in a statistically significant way. In this case, 

we employ the bidirectional elimination approach, that is the combination of the two above: 

first, the forward selection is used, then the backward elimination is applied to the regressors’ 

set resultant from the previous phase. 
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There are more selection criterions as well, to evaluate in different ways the model fit, and so 

to decide if the model at a given step is better than the one at the previous step or not; we limit 

to presenting only the two principles used in our work. First, the Sum of Squared Errors (SSE) 

criterion, which consists in computing, at each step, exactly the sum of squares of the 

differences between the observed data and the values predicted with the current model; if the 

new SSE is lower than the SSE from the previous step, the variable which is currently 

considered is included in the model. To evaluate if the SSE lowering is statistically significant, 

a F-test (also known as ANOVA test) is performed. Conversely, the Akaike Information 

Criterion (AIC) involves the calculation (at each step) of the AIC value, defined as: 

𝐴𝐼𝐶 = 2𝑘 − 2 ln(𝐿̂) (𝐴13) 

where 𝑘 is the number of variables in the present model, and 𝐿̂ the maximum value of the 

likelihood function associated to the model (i.e., the probability density function of the observed 

data, as a function of the current model’s regressors). The lower the AIC value, the better the 

model, since in this way there is a trade-off between the minimization of the number of 

regressors 𝑘 and the maximization of the quality of the model, quantified by 𝐿̂. When using the 

forward selection, the improvement of the model fit at a given step is statistically significant if 

the decrease of AIC is lower than a maximum threshold; in the backward elimination approach, 

the worsening of the model quality is statistically significant if the AIC value’s increase is larger 

than a minimum threshold. 
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