

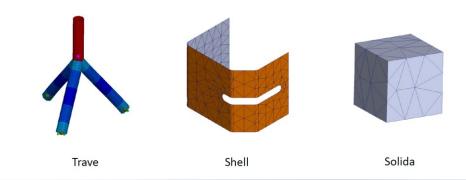
Università degli Studi di Padova – Dipartimento di Ingegneria Industriale Corso di Laurea in Ingegneria Meccanica

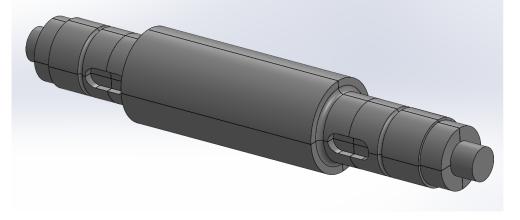
Relazione per la prova finale ANALISI FEM DI UN RIDUTTORE AD INGRANAGGI MEDIANTE SOLIDWORKS SIMULATION

Tutor universitario: Prof. Alberto Campagnolo

Laureando: Andrea Sartore

Padova, 13/03/2023

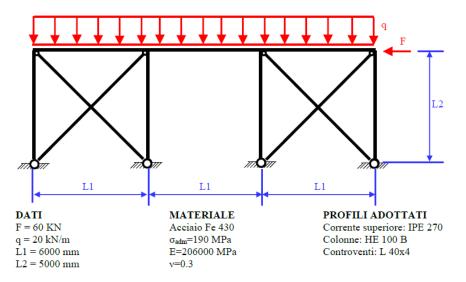


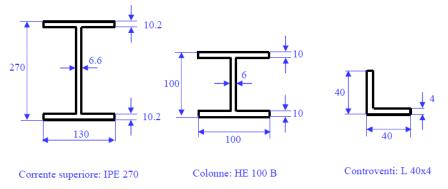

Obiettivi:

- 1. Verifiche a fatica flessionale mediante il calcolo del K_t (da analisi FEM) nelle tre sezioni critiche dell'albero intermedio
- 2. Verifiche a deformabilità flessionale mediante il calcolo di spostamenti e rotazioni (ottenuti da tre modelli diversi) dell'albero intermedio

Fasi di lavoro:

- 1. Introduzione sul metodo degli elementi finiti
- 2. Addestramento a Solidworks Simulation:
 - a) Telaio piano
 - b) Piastra forata
- 3. Albero intermedio del riduttore:
 - a) Calcolo del K_t da analisi FEM
 - b) Verifiche a deformabilità


ADDESTRAMENTO A SOLIDWORKS SIMULATION: TELAIO PIANO



Obiettivo:

Determinazione della struttura deformata, delle reazioni vincolari e dei diagrammi delle sollecitazioni. Esecuzione finale della verifica strutturale.

PROFILI

Schema della struttura e dei carichi applicati

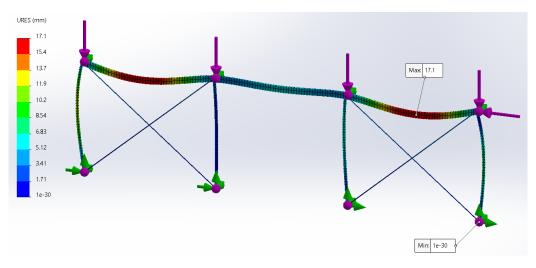
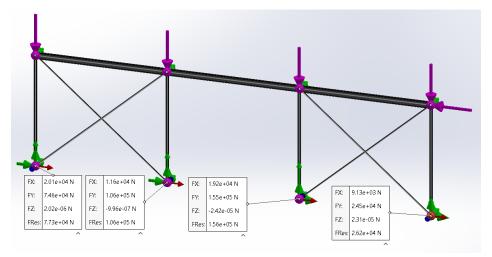
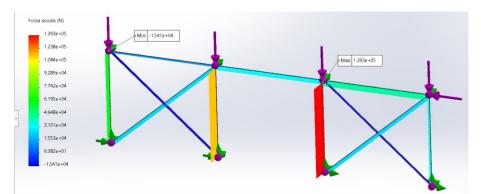
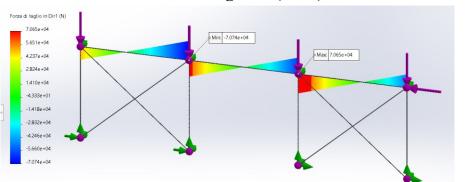
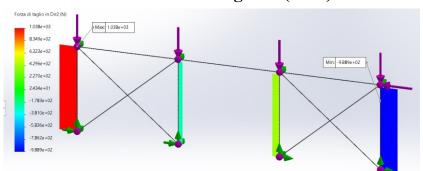



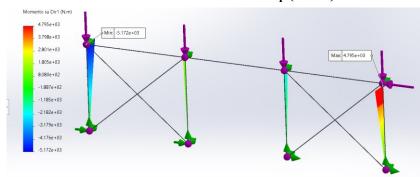
Grafico dello spostamento (in alto) e reazioni vincolari (in basso)

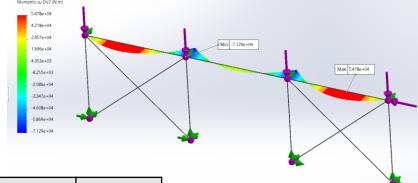




www.dii.unipd.it


Sforzo normale N


Sforzo di taglio T (Dir1)

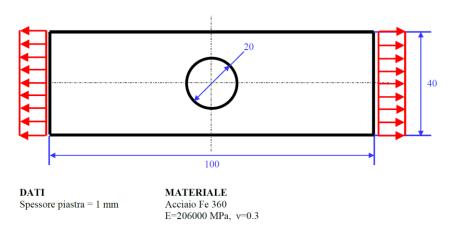

Sforzo di taglio T (Dir2)

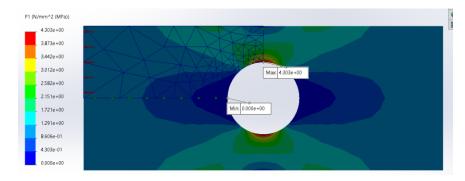
Momento flettente M_f (Dir1)

Momento flettente M_f (Dir2)

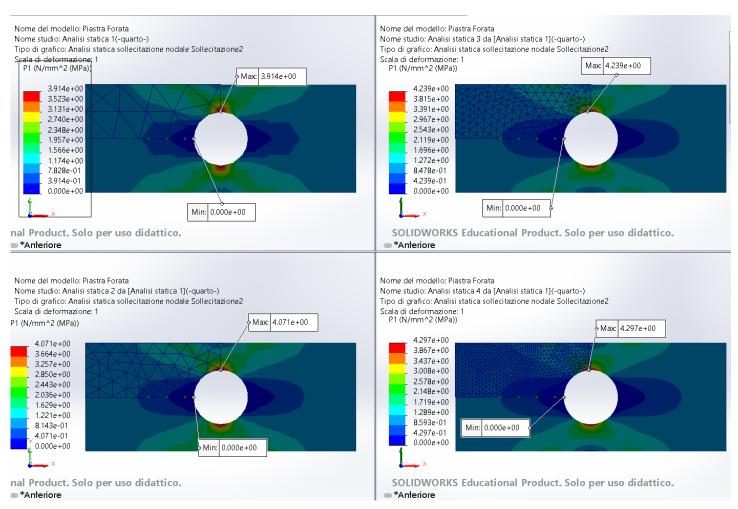
Verifiche strutturali del corrente superiore (IPE 270)

Posizione	N [N]	M_f [Nmm]	$\sigma_{xx}(N)$ [MPa]	$\begin{bmatrix} \sigma_{xx}(M_f) \\ [\text{MPa}] \end{bmatrix}$	σ _{xx,tot} [MPa]	$ig \sigma_{xx,tot}ig \leq \ \sigma_{amm} ?$	Verifica superata?
1	1,289·104	5,461·10 ⁷	3,00	138,25	141,25	$141,25 \le 190$	Sì
2	1,289·104	$-7,129\cdot10^7$	3,00	-180,48	-177,48	-177,48 ≤ 190	Sì
3	3,169·104	-7,051·10 ⁷	7,37	-178,5	-171,13	-171,13 ≤ 190	Sì
4	4,220 · 104	$5,478 \cdot 10^7$	9,82	138,68	148,5	$148,50 \le 190$	Sì


ADDESTRAMENTO A SOLIDWORKS SIMULATION: PIASTRA FORATA

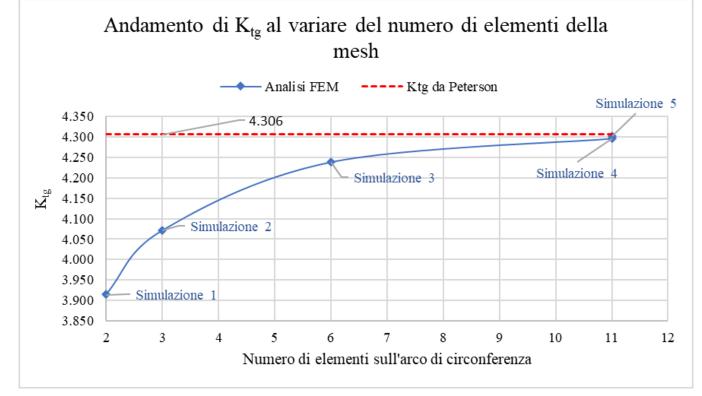


Obiettivo:

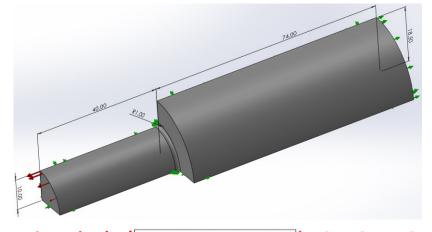

Determinazione del K_{tg} supponendo una sollecitazione di trazione pari ad 1 MPa.

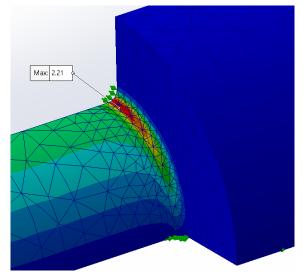
Schema della piastra e del carico di trazione applicato

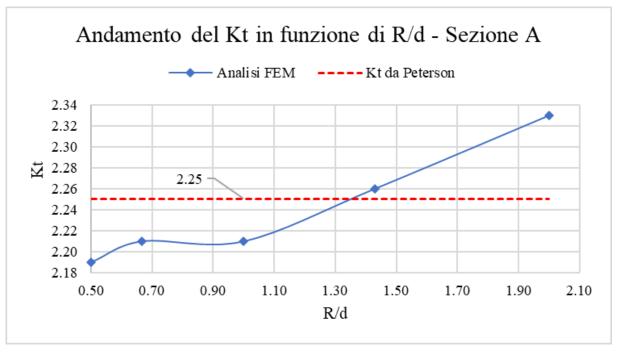
Analisi FEM con controllo mesh


Confronto tra le quattro analisi FEM senza controllo mesh

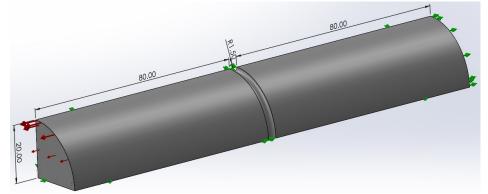
PIASTRA FORATA: CONFRONTO DEI RISULTATI OTTENUTI

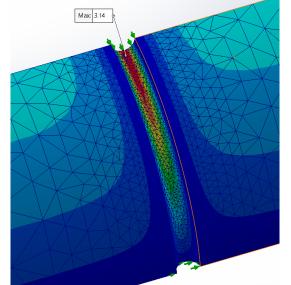

	Analisi statica	1	2	3	4	5
	\mathbf{K}_{tgFEM}	3.914	4.071	4.239	4.297	4.303
converge se $\Delta \le 3\%$	Differenza %	4.01	4.13	1.37	0.	14
	Converge?	No	No	Sì	S	Sì
	$\mathbf{K}_{ ext{tgPET}}$			4.306		
accettabile se $\Delta \le 10\%$	Deviazione %	/	/	-1.56	-0.21	-0.07
	Accettabile?	/	/	Sì	Sì	Sì

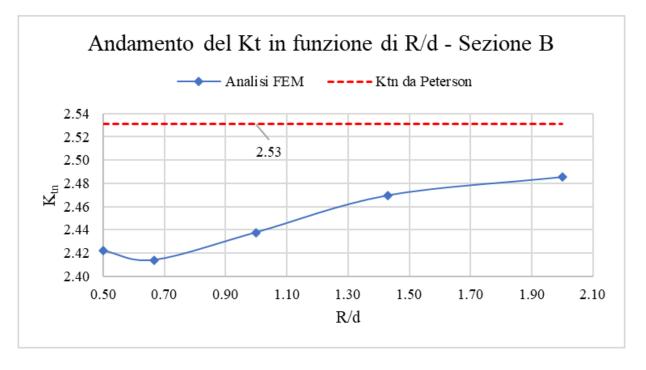




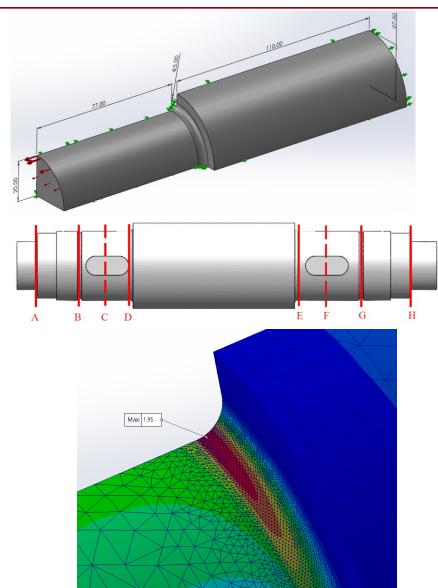
Analisi statica	1	2	3	4	5
K _{tFEM}	2.19	2.21	2.21	2.26	2.33
Differenza %	0.91	0.00	2.26	3.10	
Converge?	Sì	Sì	Sì	No	
K_{tPET}	2.25				
Deviazione %	-2.68	-1.79	-1.79	0.43	/
Accettabile?	Sì	Sì	Sì	Sì	/
K _{tANALITICO}			2.61		

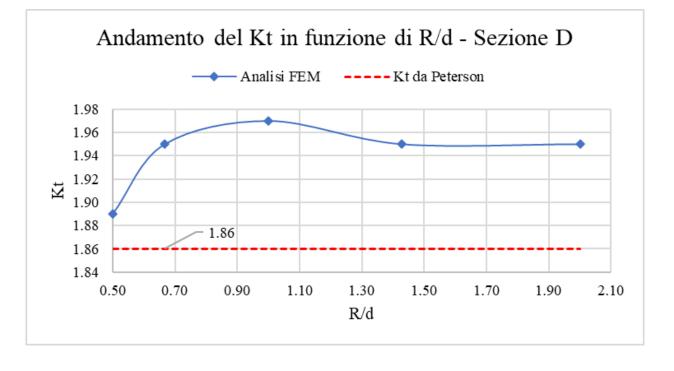



Albero intermedio del riduttore: calcolo del K_T da analisi FEM — SEZIONE B

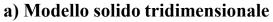


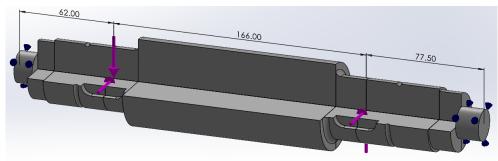
	d^3
$K_{tn} =$	$K_{tg}\frac{\alpha}{D^3}$

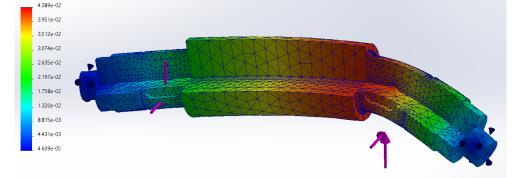

Analisi statica	1	2	3	4	5
$\mathbf{K}_{ ext{tgFEM}}$	3.06	3.05	3.08	3.12	3.14
K _{tnFEM}	2.42	2.41	2.44	2.47	2.49
Differenza %	-0.33	0.98	1.30	0.64	
Converge?	Sì	Sì	Sì	Sì	
\mathbf{K}_{tnPET} 2.53					
Deviazione %	-4.31	-4.63	-3.69	-2.44	-1.81
Verifica	Sì	Sì	Sì	Sì	Sì
K _{tnANALITICO}			2.43		



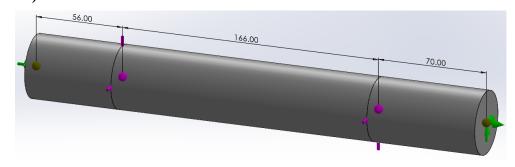
Albero intermedio del riduttore: calcolo del K_T da analisi fem — sezione d

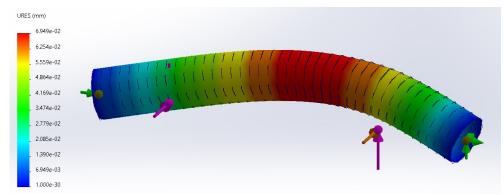

Analisi statica	1	2	3	4	5
K _{tFEM}	1.89	1.95	1.97	1.95	1.95
Differenza %	3.17	1.03	-1.02	0.00	
Converge?	No	Sì	Sì	Sì	Sì
$\mathbf{K}_{ ext{tPET}}$			1.86		
Deviazione %	/	4.89	5.96	4.89	4.89
Accettabile?	/	Sì	Sì	Sì	Sì
K _{tANALITICO}			2.03		

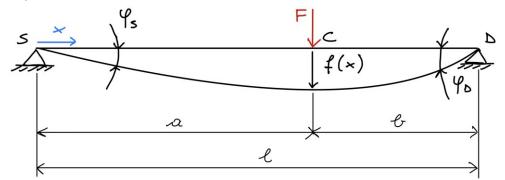




ALBERO INTERMEDIO DEL RIDUTTORE: VERIFICHE A DEFORMABILITÀ MEDIANTE TRE MODELLI DIVERSI

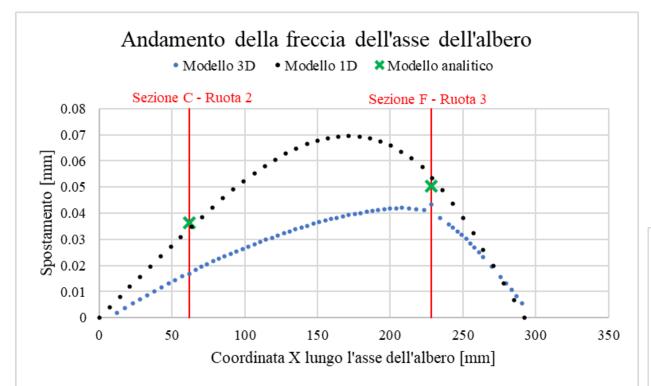






b) Modello trave monodimensionale

c) Modello analitico


$$f(x) = \frac{F \cdot a^2 \cdot b^2}{6 \cdot E \cdot J_{eq} \cdot l} \left(2\frac{x}{a} + \frac{x}{b} - \frac{x^3}{a^2 \cdot b} \right)$$

$$\varphi_{s} = \frac{F \cdot b \cdot (l^{2} - b^{2})}{6 \cdot E \cdot J_{eq} \cdot l} \qquad \varphi_{d} = -\frac{F \cdot a \cdot (l^{2} - a^{2})}{6 \cdot E \cdot J_{eq} \cdot l}$$

ALBERO INTERMEDIO DEL RIDUTTORE: VERIFICHE A DEFORMABILITÀ DA ANALISI FEM — GRAFICI FRECCE E ROTAZIONI

$$f \le f_{lim} = 0.127 \ mm$$

$$\downarrow$$
da normativa ASME

da normativa ASME

 $\varphi_{S} \le \varphi_{Slim} = 10' = 0.00291 \, rad$ $\varphi_d \le \varphi_{dlim} = 4' = 0,00116 \, rad$

Verifiche a fatica flessionale mediante il calcolo del \mathbf{K}_{t} nelle tre sezioni critiche dell'albero intermedio

Sezione	A	В	D
$\mathbf{K}_{ ext{tFEM}}$	2.19	2.42	1.95
K_{tPET}	2.25	2.53	1.86
Deviazione %	-2.68	-4.31	4.89

Verifiche a deformabilità mediante il calcolo di spostamenti e rotazioni dell'albero intermedio

Modello	Freccia f ₂ sezione C [mm]	Freccia f ₃ sezione F [mm]	Rotazione $oldsymbol{arphi}_s$ [rad]	Rotazione $oldsymbol{arphi}_d$
Tridimensionale	0,01681	0,04326	0,000378	0,000823
Monodimensionale	0,03484	0,05343	0,000559	0,000910
Analitico	0,03636	0,05027	0,000559	0,000905