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Abstract 

Nowadays, one of the goals that we always try to satisfy when facing a space mission that 

has as objective the observation of solid bodies, is to obtain the DTM, Digital Terrain Model, 

of the planet’s surface that we are going to observe. The DTM model is a model that includes 

three-dimensional spatial characteristics of the region framed and it is the result of complex 

procedures starting from at least two images of the same region acquired from different point 

of views. 

HYPSOS, HYPerspectral Stereo Observing System, is an instrument that will employ a new 

technology able to give simultaneously both 3D spatial and spectral information of the 

observed features. With the spectral information and the spatial information, we can create 

a representation of the surface linked with the hyperspectral information emitted and diffused 

by the objects on the surface in 3D space. Thus, we name the resulting data product 

Hyperspectral Digital Terrain Model (HDTM). 

An important step for the use of the stereo camera is the modelling and calibration. In this 

thesis I present the work done for realizing a technique of geometric calibration of HYPSOS, 

which acquires the data by means of a pushbroom scanning system. The adopted technique 

follows the method introduced by Gupta and Hartley, that under some assumptions, allows 

to greatly simplify the computational steps usually involved in the pushbroom model 

calibration. This analysis allows to reproduce results at the sub-pixel scale, allowing also to 

model the non-linear effects induced by the camera movement. The accuracy of the model 

has been validated using different approaches: we used a series of simulated images 

obtained with a ray-tracing software and a numerical benchmark.  

An important task of the work has been to implement the estimation of the model proposed 

by Gupta & Hartley for the linear pushbroom systems and validate the method: this has been 

done both with numerical inputs and with the extraction of the chessboard corners 

coordinates extracted from the ray-traced images by means of a Harris Corner detector. 

Furthermore, I searched for the optimal chessboard geometry to provide the smallest error 

in the detection.     
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Sommario 

Al giorno d’oggi, uno degli obbiettivi che si cerca sempre di soddisfare in una missione 

spaziale che ha come obbiettivo l’osservazione di corpi solidi, è quello di ottenere il DTM, 

Digital Terrain Model, della superficie del pianeta da osservare. Il modello DTM è un modello 

che comprende le caratteristiche spaziali della regione analizzata, a partire da almeno due 

immagini della stessa regione acquisite da punti di vista differenti. 

HYPSOS, HYPerspectral Stereo Observing System, è uno strumento che impiegherà una 

nuova tecnologia che sarà in grado di restituire simultaneamente sia le informazioni spaziali 

3D che le informazioni spettrali dell’oggetto osservato. Con le informazioni spaziali e 

spettrali, possiamo creare una rappresentazione della forma della superficie collegata 

insieme alle informazioni iperspettrali emesse e riflesse dagli oggetti ricoperti dalla superficie 

nello spazio 3D. Il modello che ne risulta viene chiamato Hyperspectral Digital Terrain Model 

(HDTM). 

Un passaggio importante per l'utilizzo della stereo camera è la modellazione e calibrazione; 

In questa tesi presenterò il lavoro svolto per la calibrazione geometrica del sistema di 

acquisizione pushbroom di HYPSOS, seguendo il metodo introdotto da Gupta e Hartley che, 

fatte alcune ipotesi, consente di semplificare notevolmente i passaggi computazionali 

solitamente coinvolti nella calibrazione del modello pushbroom. Questa analisi ha permesso 

di riprodurre i risultati alla scala sub-pixel, consentendo anche di modellare gli effetti non 

lineari indotti dal movimento della stereo camera. L’accuratezza del modello è stata validata 

utilizzando diversi approcci: abbiamo sfruttato una serie di immagini simulate ottenute con 

un software di ray-tracing e un benchmark numerico. 

Un obiettivo fondamentale del lavoro è stato quello di implementare la stima del modello 

proposto da Gupta & Hartley per i sistemi pushbroom lineari e validare il metodo sia con 

input numerici, sia grazie alle coordinate dei corners della scacchiera estratti dalle immagini 

ottenute con ray-tracing per mezzo di un rilevatore Harris Corner. Inoltre, ho lavorato per 

capire quale potesse essere la migliore geometria della scacchiera per la calibrazione, che 

permettesse di ottenere un errore minore nel rilevamento. 
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Chapter 1: INTRODUCTION

In this chapter I will shortly introduce the planetary photogrammetry process and the 

stereo camera concept. Then I will describe the optical prototype of HYPSOS and will give 

an overview of what are the objective of my work and an outline of my thesis. 

1.1 Context 

HYPSOS, HYPerspectral Stereo Observing System, as mentioned before, is a new kind of 

remote sensing pushbroom instrument born from the joining of two different instruments: a 

stereoscopic pushbroom camera system and a spectrograph. It is a very compact instrument 

so it will be very useful for applications on small size spacecrafts, or on interplanetary 

missions. This instrument collects light from two different perspectives, which allows to 

realize the tridimensional model of the observed surface, and then to extract the spectral 

information from each resolved element, thus giving a full 4-dimensional hypercube dataset. 

In all modern planetary space mission, the objective is usually to provide the digital terrain 

model (DTM) of the surface which is usually obtained by a stereo camera onboard of the 

orbiter. The DTM is useful for morphological studies of the observed planet. At the same 

time, it is really important to also get information about the surface composition, for this 

reason it is necessary to also involve a spectrograph. Usually, the 4D (three spatial and one 

spectral) information is obtained by means of two different instruments, a stereo camera, 

and a spectrograph; unfortunately, this is rather difficult to perform because the two 

instruments have different Field of View, different pixel size and different covered region. 

This is the reason why HYPSOS has been designed: the main task to achieve is the cross-

calibration of the two instruments to get the spectral DTM, SDTM. 

In this way a single instrument will provide all the data and information to fully characterize 

the observed planet surface without needing to merge the data collected from the two 

instruments.  

Another main task will may be to get an accurate software that can integrate the information 

to get the SDTM, so there is for example the problem of the wavelength dependent 

characteristics of the instruments and of the spectral bidirectional reflectance distribution 

function of the observed surface that can impact on the quality level. 
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1.1.1 Planetary photogrammetry 

Photogrammetry is a digital image processing technique in terms of measurement and 

interpretation, that allows to derive the shape and the location of an object, posed to a big 

distance, using one or more photograph. The primary purpose is to obtain a three-

dimensional reconstruction of an object in a digital form or a graphical form.  

If we talk about the acquisition of planetary bodies stereo-images, what we want to obtain is 

the DTM, Digital Terrain Model, deriving also from laser altimeter experiments on board the 

orbiting spacecraft.  

When we reduce the three-dimensional object to a two-dimensional one, we have a loss of 

information. There may be areas in which the contrast is too small, or the size is limited, and 

for this, there will be a geometric changing in the object. There are geometric changes 

caused by the relative position between camera and object, optical lens defect, and the 

shape of the object itself; but there are also radiometric changes because, the 

electromagnetic radiation reflected from the object and recorded by the camera, may be 

affected by the transmission media, air or glass.  

To define the reconstruction of the object from a stereo-image or a photograph it is important 

to describe the optical process of the image acquisition without neglecting the elements that 

contribute to the process, such as: light sources, properties of the surface of the observed 

object, the transmission media in which the light travels and the technology implied. 

In the recent years, all the space missions that aim to explore bodies with a solid surface 

want to derive the topography of the surface with great precision, to provide important 

information for geologists studying the structure, the geomorphology and the physic of 

planets and asteroids, for these reasons different tools and methods have been 

implemented. In contrast to the mapping of the Earth surface, the other planets and satellites 

present the following problems: 

• Planets or satellites surface has no definition of the geoid, a reference surface that 

is used for height and depth measurements. The definition of the geoid requires 

information on the internal and crustal structure of the planet, on density and gravity, 

and on any gravitational and density anomalies. Very often we do not have this 

information from other planets, or it is inaccurate. 

• Their atmospheres present different characteristics respect to the Earth one. 
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So, considering all that have been said till now, the process to derive the DTM starting form 

raw data, is very complex and it must answer to two main requirements: an extremely large 

volumes of data and a big accuracy. In particular, the baseline and the stereo-angle are 

crucial for the final accuracy. The stereo angle between the two images can be fixed by 

mechanical constraints (depending on the stereo camera configuration) as in the along-track 

mode or by the geometry of the photogrammetric block characteristics defined by the choice 

of the orbital images.  

Despite the presence of new algorithms that allows better results in qualitative terms, 

continuous and smooth surface, and in terms of time for the process, usually the trend is to 

opt for classical area-based techniques refining the method improving the different phases 

of the process. 

After the calibration procedure, that allows to know the characteristics of the imaging system, 

it is possible to start with the three-dimensional re-construction. The first step is to find the 

disparity map, usually achieved with a stereo algorithm and allows to describe the 

correspondence between two images. The disparity map is an image where the value of 

each pixel is equal to the difference between the coordinates of different pixel location of the 

two images of the stereo pair (Figure 1.1). 

 

 

Figure 1.1: Disparity map creation combining Left and Right images. 
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Figure 1.2: Basic concept of the stereo vision. 
 

The concept is that an arbitrary point P of the surface is projected in different locations on 

two stereo images, left PL and right PR. Then, knowing the geometry of the imaging process, 

it is possible to estimate the 3D position. In particular, the position of P can be calculated 

knowing the intrinsic and extrinsic parameters of the cameras, such as the focal length and 

the position of the two cameras. 

Once the disparity map is produced, the triangulation phase can be performed and the DTM 

can be produced. 

1.1.2 Stereo camera overview 

When in a mission we observe a planet, it is important to have the topography 

measurements of the surfaces. We can gain the global and local shape of the planets in two 

ways: 

• Exploiting Laser Altimeter data. 

• Using a photogrammetric procedure. 

The first one provides data in the form of profiles along ground tracks, and it is very accurate, 

it suffers of problems in terms of spatial resolution and positional error. At the same time 

from the second one, that acquires stereo images, it is possible to obtain the Digital Terrain 
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Models (DTM) with flexibility and a better performance. From these models it is possible to 

gain information of the topography of the surface that allows to plan spacecraft missions and 

even missions with landers. 

To obtain the three-dimensional reconstruction, it is necessary to have overlapping frames 

in order to achieve stereo-images pairs of the same area. Because of the parallax effect and 

the different acquisition points of view, we have the effect called disparity. At the state of art 

there are many technologies that allow to provide high quality stereo cameras for space 

mission, even if the 3D analysis and interpretation of planet surfaces require more studies. 

To provides good stereo-images, it is also important to keep in mind that photogrammetry 

must adapt to the resources allocated to the instrument and to the orbit. So, the optical 

design and the sensor must satisfy the requirements. Particularly when we talk about the 

constraints imposed by the spacecraft orbit and by the imaging geometry, we refer to the 

accuracy and precision of the stereo reconstruction. 

The main elements we must keep in mind for a good accuracy are the baseline and the 

stereo-angle; the latter, measured between two images, can be fixed by mechanical 

constraint in the along-track mode or by the geometry of the photogrammetric block. It is 

useful sometimes to get a multi-images block of the same area to have a stable processing 

and more accuracy. 

Nowadays there are two kinds of camera for the stereo-acquisition, the pushbroom 

cameras and the frame-based ones. The first kind are characterized by a capture of the 

images making the scan of one line at time, creating so an image meanwhile the satellite 

moves along the trajectory. For the second kind, the totality of the image is captured in one 

time, meaning that all the pixels are acquired simultaneously. The pushbroom camera is the 

most used and the simplest in terms of configuration; it is obtained involving two independent 

cameras tilted to gain the desired stereo-angle. In other cases, such us NAC camera on 

board of LRO, the two tilted optical channels have the scope to obtain an extended field of 

view and not a stereo reconstruction; the stereo pairs are created by images captured in two 

consecutive orbits. The left and right cameras have a small overlapping area but can still 

provide three or four models from which it is possible to obtain the elevation measurements. 

A different configuration is the one adopted for the HRSC camera; it consists of a multi-line 

pushbroom stereo camera that can provide up to 5 panchromatic multi-angle observation 

during Mars’ orbit. The capability of simultaneous acquisition of stereo imagery avoids the 

changing of imaging conditions during successive orbital passes, arriving to a ground 
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resolution of 10 m/px. Another kind of configuration is the one used for the STC on board 

BepiColombo mission, we are talking about a push-frame configuration. This is a solution 

between the two-cameras and the single-camera; the detector is a bi-dimensional array, and 

the operations allows a variable overlap of the imaged regions in the along-track direction, 

increasing the image matching accuracy. 

In the case of HYPSOS the adopted solution consists in using a single stereo camera with 

two sub-channels, allowing to respect the constraints imposed by the mission and the 

stability of the camera. The final purpose will be to integrate to the stereo camera the 

characteristics of a hyper-spectral imager on both channels.  

1.2 HYPSOS instrument concept 

HYPSOS concept start from the idea of joining in one instrument a pushbroom stereo 

camera system and a spectrograph. To design the instrument, everything started from the 

classic configuration of a nadir pointing satellite and a pushbroom system of acquisition with 

his forward and backward channels tilted by an angle of ± 20° with respect to nadir along 

the flying direction. This approach can be used for civilian applications to realize low-coast 

Earth 4D-observing system, like nanosats or Unmanned Aerial Vehicles.  

For the realization of the optical design, it has been considered the stereo camera of 

SIMBIO-SYS, which is the imaging system on board of the ESA BepiColombo mission to 

Mercury. The technology applied to HYPSOS is to send two separate beams of light along 

the same optical path, and to get the two images on the same focal plane; thanks to this the 

mass and the total envelope resources are minimized. To provide the spectral information, 

we need to englobe the spectrograph in such a way that the two collected images are sent 

to the entrance slit of the spectrometer. In the following Figure 1.3 it is possible to see the 

ground projected FoV’s of a standard pushbroom stereo camera for a nadir pointing satellite; 

the sub-satellite track indicates the spacecraft on-ground trajectory and his associated 

motion orientation: Channel 1 represents the forward FoV and Channel 2 the backward FoV. 

HYPSOS stereo camera optical system has been designed to provide a 90° rotation of the 

FoV’s and bring them onto the spectrograph entrance slit, which has the function of field 

stop. In this way, the two FoV’s are entering the spectrograph in different portions of the 

entrance slit and, by means of a suitable imaging spectrograph, the spectra of the two FoV’s 

are obtained.  



19 

 

 
Figure 1.3: HYPSOS’ Field of View ground projection. 

 

The advantage is that from the design concept it is possible to achieve all the information 

needed to have a 4D instrument at the same time:  

→ from the two stereo channel we obtain the data needed to reconstruct the surface DTM. 

→ from the spectrometer the spectral information for each point on the DTM. 

From a primary analysis a good configuration can be obtained by using all-reflective 

telescope as stereo camera, in this way we avoid chromatic aberration, and the camera is 

wavelength independent. To validate the concept, we realized an instrument prototype.  

1.2.1 Optical prototype 

The optical configuration of the prototype is represented in Figure 1.4: a couple of flat mirrors 

collects the light from two different directions with an inclination of ± 20° with the respect to 

the optical axis.  
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The two beams of light pass through two 45° tilted Schmidt- Pechan prisms1 (SPP), which 

provide a 90° rotation of the FoV; in this way both lights path have in common the same 

optical elements after the SPP. 

 

Figure 1.4: Optical layout of HYPSOS prototype. 

The light passes through a three-mirror anastigmatic (TMA) telescope (M1, M2, M3) and is 

folded by a flat mirror (FM) before reaching the focus. On the telescope focal plane, a slit 

defines the instrument FoV, as shown in Figure 1.3, with a separation between the two 

channels. Then the light passes through a double-pass imaging spectrometer composed by 

four lenses (L1, L2, L3, L4) and a concave reflection grating (G). As a final step a 

bidimensional detector collects the two separate spectra. In Table 1.1 all the principal 

parameters of the optical device are summarized. 

Table 1.1: Principal parameters of HYPSOS optical prototype. 

M1 
Radius of curvature: 467 mm 
Concave hyperbolic surface. 
conic constant: -1.474 

M1-M2 distance 
 
135 mm 

M2 
Radius of curvature: 141 mm 
Convex spherical surface 

M1-M3 distance 
 
135 mm 

 
1 The Schmidt-Pechan prism is a type of optical prism that rotate an image of 180°. Pechan design will invert 
or revert (flip) the image, depending on the orientation of the prism, but not both at the same time. The 
image's handedness is not changed by the Schmidt-Pechan. 
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M3 
Radius of curvature: 117.5 mm 
Concave oblate ellipsoidal surface.  
conic constant: 0.198 

M3-FM distance 
 
225 mm 

FM-focal plane distance 
 
41.73 mm 

Spectrograph entrance slit(s) 
Two co-axial slits (22 µm x 8 mm each), 1 mm central 
separation. 

L1 
Meniscus 
R1: 562.7 mm; R2: 61.1 mm 
Thickness: 19 mm 

L2 
Plano convex 
R: 50.78 mm 
Thickness: 19 mm 

L3 
Plano convex 
R: 91.84 mm 
Thickness: 7.4 mm 

L4 
Meniscus 
R1: 104.4 mm; R2: 64.8 mm 
Thickness: 3.2 mm 

G 
Concave spherical 
Radius of curvature:83.7 mm 
Ruling density: 678 mm-1 

 

1.3 Research objective 

My thesis work is based on the calibration of HYPSOS, and so there are two set of 

parameters that is necessary to find: intrinsic and extrinsic parameters. Intrinsic parameters 

are those parameters which are internal to the stereo camera such as focal length, principal 

point (P), etc..., meanwhile extrinsic parameters are those parameters that allow as to know 

the location t (translation vector) and orientation R (rotation matrix) of the stereo camera 

with respect to an external coordinate system that we assume to be the coordinate system 

of the world. 

So, starting from modelling and analyzing the pushbroom sensor, a Python code has been 

created. It was necessary to create simulated images of a bi-planar chessboard used as a 

target for the calibration; from this, using a Harris Corner detector, all corners of the 

chessboard representing the image coordinates (2D coordinates) have been detected. In a 

different way, using the geometry of the chessboard, also the object coordinates (3D 

coordinates) were extracted and using as an input both kind of coordinates for the 

pushbroom code, the camera matrix has been extracted. So, we can summarize all the 

parameters that are necessary dividing them into inputs and outputs: 
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INPUTS: 

• 3D object coordinates of the checkerboard corners evaluated in the world reference 

system that consist of a high number of easily detectable, homogeneously distributed, 

and accurate reference points. 

• 2D image coordinates that are semi-automatic points detected by using Harris corner 

detector algorithm. 

OUTPUTS 

• Focal length (f). 

• Principal point (P). 

• Starting point, Rotation matrix (R), Translation vector (T). 

The last step has been to evaluate all the intrinsic parameters of the model and trying to 

check if the value obtained were close to the real ones.   
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Chapter 2: LITERATURE OVERVIEW AND METHOLOGY 

In this chapter I will firstly describe the hyperspectral imaging, the specter of application and 

the advantages of using it. Then I will give a short overview of the most used 

photogrammetric methods for camera calibration and a comparison between pinhole 

camera and pushbroom camera, dealing with the function and the mathematical model. 

2.1 Overview of hyperspectral imaging 

Remote sensing satellites can provide a great variety of data in panchromatic, multispectral, 

and hyperspectral modes.  

Panchromatic images consist of only one spectral band, usually displayed as a gray scale 

image. The image can be interpreted as a black and white aerial photograph of the area. To 

interpret the panchromatic images is usually evaluated the radiometric information. 

Differently, a multispectral image consists of several bands of data, displayed one at time 

as a gray scale image or as a color composite image combining three bands at time. 

Multispectral sensor typically provides 15 bands meanwhile hyperspectral sensors can 

provides up to 100 spectral bands, which explains his name.  

Hyperspectral imaging is a technology that has been mostly used in remote sensing to study 

the surfaces of different planet and other bodies in the solar system. The used instruments 

are imaging spectrometers, that can have a moderate spatial resolution (~ 1-30 m) coupled 

with a regular sampling of a broad spectral range from ultraviolet (~ 0.35 µm) to thermal 

infrared (~ 12 µm) of the electromagnetic spectrum.  

In this way we can say that imaging spectrometers are able to provide images with an extra 

dimension to conventional imaging: the spectral dimension. The physics behind the process 

is strictly connected with the principle of electromagnetic radiation and the way it interacts 

with different objects; we can have reflectance, absorption, and transmission of the incident 

flux. Hyperspectral remote sensing sample the spectral range of interest, viewing the surface 

as a series of contiguous and spectrally narrow image bands. We can see the function of 

the system in Figure 2.1: each spatial element of the image has an associated full resolution 

spectrum; the calibrated reflectance or emittance spectra collected will be compared with 

the one measured in the laboratory for different materials, in this way when it matches, we 

are able to identify the different materials composing the surface that we are observing. 
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Since today hyperspectral imagery has been used to detect and map a wide variety of 

materials and to detect surface properties. Other applications are the detection of 

topographical and geological features of a surface, the research of water sources and 

analysis of water quality, and vegetation biochemical and biophysical data detection. 

 

Figure 2.1: Example of hyperspectral imaging approach on Earth. 
 

Hyperspectral imaging can give more benefits than multispectral as it covers a continuous 

spectral range without gaps allowing a uniform analysis of the mineralogical properties of a 

surface. 

2.2 Camera calibration 

The process due to evaluate all parameters of a camera necessary to give a 

correspondence between the 3D coordinates of an object in the real world and the image 

points (2D coordinates) is called camera calibration. The parameters can be divided into 

two categories: 

• Intrinsic parameters, that are all the parameters that strictly depend on the camera 

that we are using (e.g., focal length). 

• Extrinsic parameters, that allow us to have the correspondence between 3D and 2D 

coordinates. 
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2.2.1 Geometric parameters 

The geometric parameters allow to understand the position of the image captured by the 

camera. They are in some way the connection between the points of the scene and the 

points on the image plane. They are the following parameters: the type of projection; the 

position and the orientation of the camera in the space (world); physics propriety of the 

matrix of the camera sensor; the distortion due to the optical design.  

A common geometric model for a projection of a camera consists of a plane called image 

plane (π), with a center of projection (point O). The distance between this point O and π 

is called focal length (f).  

 

 

Figure 2.2: Representation of a camera projection. 
 

 

We have the optical axis, that is the line perpendicular to the image plane that pass through 

the center of projection and intersect the image plane in the point called the principal point 

(P). If we want to get the projection of the point (xw, yw, zw)T, a generic world point, we must 

trace the line that pass-through P and O and the intersection with the image plane of this 

line will be the projection of the point in the image plane; in Figure 2.2 is represented by 

(xi,yi)T.  

2.2.2 Computer Vision coordinate system 

The Computer Vision is the totality of the processes which leads us to have an approximate 

model of the 3D world starting from the 2D images. The real world is described by a series 

of equations that connect the image taken by the camera (one or more, it depends on the 
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model) to the coordinates of the scene that we want to observe. For this reason, we need 

first of all to decide a reference system for the camera, so usually is assumed that 

1. We know the position of the camera system with respect to a reference system note, 

such as the world coordinate system for which we can easily decide the position of 

the center. 

2. The coordinates of the image points of the camera reference system are connected 

to the pixel coordinates. 

Starting from these two conditions, we need to know more parameters of the camera as 

possible. As said before the parameters can be divided in extrinsic parameters, that define 

the position, orientation of the camera system with respect to the world reference system; 

and intrinsic parameters that are those parameters that give the correspondence between 

the pixel coordinates of the image with respect to the camera reference system. 

2.2.2.1 World to camera coordinate reference system transformation 

The world coordinate system is a 3D reference system with an arbitrary origin. We can 

denote a point in this system like 𝑥𝑤̅̅̅̅ =(xw,yw,zw).  Extrinsic parameters are used to correlate 

each other the reference system of the world to the reference system of the camera. This is 

easily done by means of a roto-translation. In fact, we can introduce: 

• The Translation vector T =(𝑇𝑥, 𝑇𝑦, 𝑇𝑧)
𝑇
, that represents the relative position between 

the two systems. 

• The Rotation Matrix R 

 

R = [

𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

] 

 

that is an orthogonal matrix which leads us to know how the two systems are each 

other oriented. 

A point in the camera based reference system can be indicated like 𝑥�̅�=(xc,yc,zc). 

2.2.2.2 Camera to image reference system transformation  

Intrinsic parameters can be defined as the set of parameters needed to determinate the 

optical, geometrical, and digital characteristics of our telescope, such as: 
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• The focal length f. 

• The Field of view. 

• Aperture. 

• Resolution. 

The focal length, as said before, can be defined as the distance between the optical center 

and the image plane (or plane of focus) that corresponds to the sensor. 

The equations of the prospective projection are non-linear for the presence of zc at the 

denominator 

 𝑥𝑖 = 𝑓
𝑥𝑐

𝑧𝑐
      and  𝑦𝑖 = 𝑓

𝑦𝑐

𝑧𝑐
 (2.1) 

The third coordinate of the point projected in the image plane is equal to the focal length, 

and for the fact that it is a constant value, we must write the projected point like 𝑥�̅� = (xi, yi)T. 

Introducing the coordinates of the principal point P = (Px, Py), and (Sx, Sy) dimensions of 

the pixel, to get the transformation from camera coordinates of a point (xi, yi) to pixel 

coordinates (u, v) of the same point we need to evaluate the following equations 

 𝑢 = −(𝑥𝑖 − 𝑃𝑥)𝑆𝑥 (2.2) 

 𝑣 = −(𝑦𝑖 − 𝑃𝑦)𝑆𝑦 (2.3) 

in which the sign minus is due to the opposite orientation of the x and y axis in the two 

reference systems. In conclusion the intrinsic parameters are f, Px, Py, Sx, Sy. 

In many cases we need to consider also the optical distortion introduced by the optical lens 

which affects the images. The distortion is usually associated to an optical aberration that 

deforms and bends physically straight lines of the images transforming straight lines into 

curvy lines. This distortion is usually called curvilinear. 

We can divide the optical distortion into two types: 

- Barrel Distortion (or positive radial distortion), which leads to an inwards curve, 

particularly the extreme edges of the frame, in a shape of a barrel.  
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- Pincushion Distortion (or negative radial distortion), where lines are curved outward 

from the center.  

 

Figure 2.3: Representation of the image distortion: image without distortion, with 
Barrel Distortion and with Pincushion Distortion. 

 

As it is possible to see from the Figure 2.3, the main distortion appears at the edges of the 

field of view, in other words we have that at the center of the image the distortion can be 

neglected but it increases when we move to the edges. These distortions for the pinhole on 

axis case, can be evaluated as a radial distortion and can be represented as a radial 

translation of the points of the image. Introducing K1 and K2 as parameters to evaluate the 

distortion we can write. 

𝑢 = 𝑢𝑑(1 + 𝐾1𝑟
2 + 𝐾2𝑟

4)   and   𝑣 = 𝑣𝑑(1 + 𝐾1𝑟
2 + 𝐾2𝑟

4) 

xd  and yd are the coordinates of the distorted point ad r is evaluated from r2= xd
2 + yd

2. 

2.3 Camera models 

2.3.1 Pinhole camera model 

The pinhole is the most known and used camera model. If we design a simple camera 

system, which means a system that can record an image of an object or scene in the 3D 

world, we can think about a barrier with a small aperture (pinhole) between the object in the 

3D world and an image sensor.  

This means that now every point of the 3D object can emit many rays of light outwards; only 

the rays passing through the small aperture will reach the image sensor, as shown in Figure 

2.4. 
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Figure 2.4: Schematic image of the pinhole camera model working. 

 

If we map the points of the 3D object and the points in the sensor, we will obtain that the 

sensor gets exposed by an “image” of the 3D object due to this mapping.   

If now we call �̅�𝑤 a point in the 3D object visible to the pinhole camera, we have that this 

point will be projected on to the image plane, resulting in a 2D image point �̅�𝑖 = (𝑢, 𝑣)𝑇.  

To project a world object point into the image plane, we need to firstly transform it into a 

camera point, using the following transformation 

 𝑥𝑐̅̅̅  =  𝑅𝑥𝑤̅̅̅̅ + 𝑇 (2.4) 

Where R represents the rotational matrix and T the vector of the translation. Writing this 

equation in a matrixial way obtaining the extrinsic camera matrix 3x4 called E. 

 𝐸 = [𝑅|𝑇] (2.5) 

To provide a relationship between the camera points and the 2D image points, it is possible 

to define the intrinsic parameters matrix K such that �̅�𝑖  is proportional to K. Defining 
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𝑲 = [

𝑓𝑥 0 𝑝𝑥
0 𝑓𝑦 𝑝𝑦
0 0 1

] 
 

We can write  

 

𝑤 [
𝑢
𝑣
1
] = 𝑲𝒙𝒄̅̅ ̅ =  [

𝑓𝑥 0 𝑝𝑥
0 𝑓𝑦 𝑝𝑦
0 0 1

] [

𝑥𝑐
𝑦𝑐
𝑧𝑐
] (2.6) 

where u and v are the image coordinates and w is the factor used to normalize the vector 

�̅�𝑖 . Meanwhile 𝑓𝑥 and 𝑓𝑦 represents the focal length in terms of the x and y pixel dimension; 

𝑃𝑥 and 𝑃𝑦 are the principal point coordinates. 

The camera matrix M (3x4) results from the product of matrix K and E. Finally, we obtain 

 𝑴 = 𝑲𝑬 (2.7) 

 

[
𝑤𝑢
𝑤𝑣
𝑤
] = [

𝑓𝑥 0 𝑝𝑥
0 𝑓𝑦 𝑝𝑦
0 0 1

] [

𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

  𝑇𝑥
  𝑇𝑦
  𝑇𝑧

] [

𝑥𝑤
𝑦𝑤
𝑧𝑤
1

] (2.8) 

2.3.2 Pushbroom camera model 

The pushbroom acquisition system is a commonly used sensor in satellite imagery. 

Modelling and analyzing the pushbroom acquisition is difficult and computationally intensive 

for the fact that we must combine the motion of the orbit of the satellite with respect to the 

rotating Earth and the non-linearity of the model that involves orbital dynamics. There are 

many mathematical models that has been studied to analyze the acquisition, models of 

varying complexity and accuracy. The main approaches used for high resolution satellite 

imagery are based on rational polynomials functions, affine projections, and direct linear 

transformation DLT. 
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In this work, I have studied the Gupta and Hartley model (Gupta R. & Hartley R.,1997), and 

I have implemented the estimation system in a Python code, 

 This model allows to give a very accurate results even if it is a simplified model. The key 

assumptions are: 

• The sensor array is travelling in a straight line and constant velocity with respect to 

the world. 

• The sensor orientation, and so the view plane, is fixed all over the image acquisition 

duration. 

Before estimating the intrinsic and extrinsic parameters of the camera it is necessary to 

evaluate the mathematical model for the pushbroom system that, due to the system of 

acquisition, will be different to the one of the pinhole case. 

The pushbroom system works thanks to the movement of the structure, projecting on the 

camera focal plane a linear scan of the ground surface while the platform travels along the 

path. The plane defined by the linear array of sensors and the optical center is called 

instantaneous view plane or simply view plane. 

This optical system is mounted on the satellite and when the satellite moves, as we can see 

in Figure 2.5 the view plane scan a region of space keeping his direction almost 

perpendicular to the direction of motion (X axis). 

 

 

 

Figure 2.5: Schematic projection of the pushbroom camera model acquisition system. 
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This camera can be seen as a perspective camera that moves along a linear trajectory in 

space with constant velocity and fixed orientation. In this way the camera is constrained so 

that at any moment in time it images only the points lying in the view plane whose orientation 

is fixed. At any time, a 2D projection of the view plane into an image line takes place since 

the view plane scans the whole area of interest. 

So, we can say that the coordinate u represents the time the arbitrary point �̅�𝑤  is imaged, 

and v is the projection of the point on the image line. Considering an orthogonal coordinates 

frame attached to the moving camera with the origin of the coordinates system coincident 

with the center of projection, we have that the Y axis lies in the view plane parallel with the 

focal plane; the Z axis lies in the view plane perpendicular to the Y axis and the x coordinate 

is perpendicular to the view plane. In this way x, y and z axis form a right-handed coordinates 

frame.   

2.3.2.1 Camera matrix 

Starting from a 2D projection of a point with (0, yc, zc) coordinates with respect to the camera 

frame we can write for the 1D projection of the v coordinate 

 
[
𝑤𝑣
𝑤
] = [

𝑓 𝑝𝑦
0 1

] [
𝑦𝑐
𝑧𝑐
] (2.9) 

With f the focal length, 𝑃𝑦 the principal point offset in Y direction and w is a scale factor. 

To simplify the analysis, it is possible to consider a fixed camera and a world moving, instead 

of a stationary world and a moving camera. In this way a point in the space at the instant t 

will be represented as 𝒙(𝑡) = (x(t), y(t), z(t)). Assuming −𝑽 = −(𝑉𝑥, 𝑉𝑦, 𝑉𝑧)
𝑇 the velocity vector 

of the point with respect to the camera (with the minus sign representing that the velocity of 

the camera with respect to the world is V) and tim the instant in which the moving point in 

space crosses the view plane, we can write the 2D projection (u, v) , where u = tim: 

 
[
𝑢
𝑤𝑣
𝑤
] = [

1 0 0
0 𝑓 𝑝𝑦
0 0 1

] [

𝑡𝑖𝑚
𝑦𝑖𝑚
𝑧𝑖𝑚

] (2.10) 

The coordinates of the moving point �̅� as a function of the time can be written as 

 �̅�(𝑡) = 𝑥0 − 𝑡𝑉 = (𝑥0, 𝑦0, 𝑧0)
𝑇 − 𝑡(𝑉𝑥, 𝑉𝑦 , 𝑉𝑧) (2.11) 
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Where �̅�0 = �̅�(𝑡 = 0) . 

At the time tim = x0/Vx, the point �̅� will be at the position (0, yim, zim)T, because the view plane 

is at the coordinate x = 0. This can be represented by 

(0, 𝑦𝑖𝑚 , 𝑧𝑖𝑚)
𝑇 = (0,  𝑦0 − 𝑥0𝑉𝑦/𝑉𝑥, 𝑧0 − 𝑥0𝑉𝑧/𝑉𝑥)

𝑇 

Or like  

 

[

𝑡𝑖𝑚
𝑦𝑖𝑚
𝑧𝑖𝑚

] = [

1/𝑉𝑥 0 0
−𝑉𝑦/𝑉𝑥 1 0

−𝑉𝑧/𝑉𝑥 0 1
] [

𝑥0
𝑦0
𝑧0
] (2.12) 

Combining equation 2.10 and equation 2.12 we obtain the final projection (u,v) on the image 

plane of �̅�(t) in terms of the observed point in the camera reference frame at time t = 0. 

 

[
𝑢
𝑤𝑣
𝑤
] = [

1 0 0
0 𝑓 𝑝𝑦
0 0 1

] [

1/𝑉𝑥 0 0
−𝑉𝑦/𝑉𝑥 1 0

−𝑉𝑧/𝑉𝑥 0 1
] [

𝑥0
𝑦0
𝑧0
] (2.13) 

 

Now, we must consider that generally the coordinates of the points are known in terms of 

some external fixed coordinate system (xw, yw, zw)T. Between the external coordinate system 

and the camera-based we have this relation:  

(𝑥0, 𝑦0, 𝑧0)
𝑇 = 𝑅 ((𝑥𝑤, 𝑦𝑤 , 𝑧𝑤)

𝑇 − (𝑇𝑥, 𝑇𝑦 , 𝑇𝑧)
𝑇
) 

 = (𝑅| − 𝑅𝑇) (𝑥𝑤 , 𝑦𝑤, 𝑧𝑤, 1)
𝑇 (2.14) 

With T = (𝑇𝑥, 𝑇𝑦, 𝑇𝑧)
𝑇
 which represents the translation vector (position of the camera at time 

t=0 in the external coordinate system), and R is the rotation matrix. From this, we can finally 

write  

[
𝑢
𝑤𝑣
𝑤
] = [

1 0 0
0 𝑓 𝑝𝑦
0 0 1

] [

1/𝑉𝑥 0 0
−𝑉𝑦/𝑉𝑥 1 0

−𝑉𝑧/𝑉𝑥 0 1
] (𝑅|−𝑅𝑇) [

𝑥𝑤
𝑦𝑤
𝑧𝑤
1

] 

 = M (xw, yw, zw,1)T (2.15) 
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M is the camera matrix (or reprojection matrix) which leads us to have the final correlation 

between the 3D world coordinates and the 2D image coordinates.  

It is important to say that we have two different transformations along the two directions, in 

particular:  

• Perspective projection along the v direction. 

• Orthographic projection along the u direction. 

The Orthographic projection does leave parallel lines parallel, and it preserves relative 

distance between objects. The perspective projection doesn’t preserve distances or 

angles, and parallel lines no longer remain parallel.  

The camera matrix M for a linear pushbroom sensor can model translation, rotation and 

scaling of the 3D world coordinates as well as translation and scaling of the 2D image 

coordinates. It cannot take in account of the rotation of the image plane. The linear 

pushbroom camera matrix has in total 11 degrees of freedom: the first row, m1
T , has 4 

degrees of freedom; the other two rows, m2
T and m3

T, have 7 degrees of freedom.  

The analysis of equation 2.15 reveals that multiplying M by a constant factor k is like 

multiplying the image coordinate u per k, while the coordinate v remains unchanged. This 

means that the last two rows of M can be multiplied by a factor k without changing the 

mapping. 

It is also important to define the way we can determinate where the points are set with 

respect to the camera. To understand if the points are in front of the camera, we must 

analyze the value of the parameter w. Remembering that the positive z axis is directed in a 

way that the points in front of the camera have a positive z coordinate, the mapped point 

should also have w > 0.  

For the fact that, as said before, we can multiply the last two rows of M by the factor k, if k 

is negative, then the points will not lie anymore in front of the camera because w will be 

negative too. 
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2.3.2.2 Intrinsic parameters matrix 

M can be written as M= (K |-KT) for a non-singular matrix K (3x3).  

𝐾 =  [

1/𝑉𝑥 0 0
−𝑘(𝑓𝑉𝑦 + 𝑝𝑣𝑉𝑧)/𝑉𝑥 𝑘𝑓 𝑘𝑝𝑦

−𝑘𝑉𝑧/𝑉𝑥 0 𝑘
]𝑅 = 𝐿𝑅                        (2.16) 

L is the matrix containing all the intrinsic parameters of the system, in particular  

𝑓 =  𝐿22 

𝑝𝑦 = 𝐿23 

𝑉𝑥 =  1/𝐿11 

𝑉𝑧 = −𝐿31/L11 

𝑉𝑦 = −(𝐿21 + 𝑝𝑦𝐿31)/(𝑓𝐿11). 

 

The mathematical method applied to solve the pushbroom Gupta and Hartley model is the 

DLT method, usually applied for the pinhole acquisition system.  

Starting from eq. 2.15 we can write  

𝑢 =  𝑚1
𝑇�̅�𝑤 

 𝑤𝑣 = 𝑚2
𝑇�̅�𝑤 (2.17) 

𝑤 = 𝑚3
𝑇�̅�𝑤 

Combining the last two equations, we eliminate the factor w leading to 

𝑢 =  𝑚1
𝑇�̅�𝑤 

 𝑣 𝑚3
𝑇�̅�𝑤 = 𝑚2

𝑇�̅�𝑤 (2.18) 

If we have at least 11 sets of points, meaning a set of 11 correspondences between world 

coordinates (xw, yw, zw) and image coordinates (u, v), we can evaluate the matrix M. In 

particular we know that the first row of M, 𝑚1
𝑇rely only the u coordinates and it can be 

evaluated given four ground control points. Meanwhile the second and the third rows of M, 
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𝑚2
𝑇, 𝑚3

𝑇 , need seven ground control points to be evaluated and rely only the v coordinates 

of the points. These 11 sets of points represent the 11 degrees of freedom of the system: 

• 3 degrees of freedom related to the position. 

• 3 degrees of freedom of orientation. 

• 3 degrees of freedom related to the velocity. 

• the focal length. 

• the v-offset. 

The M matrix will be evaluated using the Direct Linear Transformation method, which is 

described in the following subchapter. Unfortunately, there is not a unique solution for the 

system of equations. Hence to determinate the right projective matrix, we need first to 

evaluate the position of the points with respect to the camera. For this, when we have 

evaluated the matrix M, we chose one point �̅�𝑖 and evaluate the product (ui,wivi,wi)T = M(xw, 

yw, zw,1)T; if wi is negative than the last two rows of M must be multiplied by -1. In this way 

all points are in front of the camera. In doing so all the parameters of the camera will now 

be evaluated using a variation of the standard QR factorization method2, explained later. It 

is important to say that some parameters of the camera are for sure known from the 

manufacturing, for example, the focal length or the principal point offset. But unfortunately, 

these values cannot be inserted in the DLT method, and they can be used only in a second 

time to correct the values that we obtain from the resolution.  

We start obtaining the parameters of the camera by determining the initial position at t = 0. 

Matrix M can be written as M = (K | -KT) for a non-singular matrix K (3x3), that correspond 

to the left-hand 3x3 block of M. So, we can easily determine the translation vector T by 

solving the linear equation  

 −𝐾𝑻 = −𝑚3
𝑇 (2.19) 

 
2 The QR factorization, is a decomposition that allows to express a matrix A as a product between two separate 
matrixes, Q and R. Where Q is an orthogonal matrix and R is an upper/ right triangular matrix. This method is 
often used to solve the linear least squares problem. 
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K is in the form written in eq. 2.16, and it is now known, so we need to evaluate L and R. 

The matrix of rotation R is obtained by a sequence of rotation matrixes Rz, Ry, Rx. Denoting 

with c = cos(θ), and s = sin(θ) 

𝑅𝑧 = [
1 0 0
0 𝑐 −𝑠
0 𝑠 𝑐

] ; 

𝑅𝑦 = [
𝑐 0 𝑠
0 1 0
−𝑠 0 𝑐

] ; 

𝑅𝑥 = [
𝑐 −𝑠 0
𝑠 𝑐 0
0 0 1

]. 

Now to evaluate the values of θ, we impose equal to zero the elements L12, L13, L32. 

Defining the sequence of the intermediate products exploiting the QR factorization leads 

us to 

P = L Rz, Q=L Rz Ry, K=L Rz Ry Rx. 

Working on this we obtain 

𝜃𝑧 = 𝑎𝑟𝑐𝑡𝑎𝑛2(𝐾12, 𝐾11) 

𝜃𝑦 = 𝑎𝑟𝑐𝑡𝑎𝑛2(𝑃13, −𝑃11) 

𝜃𝑥 = 𝑎𝑟𝑐𝑡𝑎𝑛2(𝑄32, −𝑄33) 

The rotation matrix is not uniquely determinate so we must check if L22 and L33 are both 

positive, if not it would contradict that K= L33 > 0 and the geometric requirement that L22/ L33 

= f > 0. So, in case these quantities are negative, we must correct as follow: if L33 < 0 then 

we should apply a further rotation around the Y axis, Ry, of an angle of π; if also L22 < 0, 

then it is needed to apply another rotation around the Z axis, Rz, again by an angle of π.  
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2.3.2.3 The DLT method 

The Direct Linear Transformation (DLT) is the most common method applied to solve the 

3D position of an object, and so to find the camera calibration. Normally this method is 

applied to the pinhole sensor, but with some changes we can apply it to the pushbroom one. 

First of all, we have to consider n points (xw, yw, zw) in the 3D world reference system and 

their correspondent 2D n points (u, v) in the image reference system; the correlation 

between these points must be as precise as possible because the correlation hardly affects 

the solution. The scope of the DLT is to find the matrix M starting from the linear correlation 

between the coordinates. 

The correlation between the coordinates is given by (u, wv, w)T = M (xw, yw, zw, 1)T  

[
𝑢
𝑤𝑣
𝑤
] = [

𝑚11 𝑚12 𝑚13

𝑚21 𝑚22 𝑚23

𝑚31 𝑚32 𝑚33

  𝑚14

  𝑚24

  𝑚34

] [

𝑥𝑤
𝑦𝑤
𝑧𝑤
1

] 

from which we can obtain the equations 2.17; that set of equations can be rewritten in the 

form of  

 [ A ]{ q } = { b }. (2.20) 

with A the matrix 2nx11 that represents the vectors spanning a 2xn dimensional space; b 

the 2nx1 vector containing the u and v image coordinates in pixel; lastly q is the 11x1 vector 

containing the 11 elements of M. The twelfth element m34 can be considered equal to 1 

because the last two rows of M are free scaling, and the scale factor can be recovered later 

(k). 
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      (2.21) 

The vector q is the only unknow but due to pixel error b will lie outside of the hyperplane 

spanned by A. To solve the system at the last squares solution we have to use the Penrose 

solution, that allows to project the vector b into the hyperplane: 
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 𝒒 = (𝑨𝑇𝑨)−1𝑨𝑇𝒃 (2.22) 

Hence, obtained q we can rewrite the vector in the matrixial form adding the element m34 

and we have the matrix M. 

Below the implementation of the DLT modified method extracted from the Python code 

Construction of the matrix A. 

xt = (np.transpose(imjpoints)[0:len(imjpoints)]) 

Xt = (np.transpose(objpoints)[0:len(xt)]) 

one = np.ones((len(Xt), 1)) 

zeros = np.zeros((len(Xt), 1)) 

Xt_1 = np.hstack((Xt, one)) 

X1t = np.empty((len(Xt), 1)) 

X0t = np.empty((len(Xt), 1)) 

xXt = np.empty((len(Xt), 3)) 

for i in range(0, len(Xt)): 

   xXt[i] = -xt[i][1] * Xt[i] 

xXt_1 = np.hstack((xXt, one)) 

zero4 = np.array((0, 0, 0, 0)) 

zero3 = np.array((0, 0, 0)) 

A = np.array((len(Xt)*2, 11)) 

for i in range(0, len(Xt)): 

    C = np.hstack((Xt_1[i], zero4, zero3)) 

    B = np.hstack((zero4, Xt_1[i], xXt[i])) 

    C = np.reshape(A, (1, 11)) 

    B = np.reshape(B, (1, 11)) 

    if i == 0: 

        A = np.vstack((C, B)) 

    else: 

        A = np.vstack((A, C, B)) 

Definition of the vector b, composed by the alternate ui, vi coordinates 

b = np.empty((len(Xt)*2, 1)) 

for i in range(0, len(xt)): 

     a = (xt[i, 0]) 

     c = (xt[i, 1]) 

     if i == 0: 

         b = np.vstack((a, c)) 

     else: 

         b = np.vstack((b, a, c)) 

Final estimation of the projective matrix M, applying the pseudoinverse transformation.  

#penrose pseudoinverse 

A_Pseud = np.linalg.pinv(A.astype(float)) 

m = A_Pseud.dot(b) 

mm = np.append(m, 1) 

M = mm.reshape((3, 4)) 

print('matrice M', M) 
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Chapter 3: STUDY SETUP 

In this Chapter, the arrangement of the laboratory setup able to simulate the acquisition 

mode of HYPSOS is described; the photogrammetric procedures used to calibrate the 

system, both through a mathematical modelling (implemented in MATLAB) and with ray-

tracing simulation process. Then, an automatic procedure to capture the corners of the 

chessboard using the Harris corner detector is described. Finally, the analysis of the results 

obtained from the running of the implemented pushbroom model estimation is discussed 

and summarized in the conclusions. 

3.1 Experimental setup 

The setup that will be used to validate the HYPSOS concept and to generate the data is 

similar to the one used for the BepiColombo-STC stereo validation. 

The experimental set-up for HYPSOS takes many elements from the one used for the stereo 

camera STC of SYMBIO-SYS, on board of the BepiColombo mission. Some changes have 

been introduced in the setup due to the different acquisition mode of HYPSOS (pushboom 

with respect to the push frame).  

To perform the geometric calibration of the HYPSOS system on the optical bench in 

laboratory (exploiting many elements of the Stereo Validation System Setup (SVS) (Figure 

3.1) of STC), we arranged a setup composed by:  

• two rotational stages (devoted to reproducing the stereo angle of HYPSOS),  

• a translator that allows the acquisition in push-broom mode,  

• a collimator lens (achromatic doublet with nominal focal length of 1m),  

• an illumination source (halogen lamp)  

• a biplanar calibration gauge (chessboard) useful for the calibration algorithm based 

on known reference points with corresponding projections in the image. 
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Figure 3.1: Schematic image of the laboratory set-up used to simulate the acquisition 
system of HYPSOS. 

 

 

Figure 3.2: Stereo Validation setup (both for STC and HYPSOS). 

 

During the geometric calibration the target will be a bi-planar chessboard, as we can see in 

Figure 3.3; then it will be replaced by stones like Anorthosite and Basalt useful to simulate 

a planetary surface. This reference gauge, devoted to the photogrammetric calibration, has 

been designed to provide a high number of easily detectable points, homogeneously 

distributed on the complete scanning acquisition. 
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Figure 3.3: The scheme of HYPSOS acquisition during the calibration. 

 

The target is mounted on a translator that can simulate the acquisitions of the pushbroom 

model, moving forward the target.  

It is important to fix a central point (CP in figure 3.3) using a fixed mark in the field of view of 

the stereo camera. 

So, in laboratory the target is moved relatively to the fixed instrument meanwhile when we 

are in flight the target will be stationary relatively to the satellite that is moving along the 

orbit. We can see also the light source mounted over a curve rail that allows to maintain a 

constant lighting condition and avoids the shading effects, that introduce an error in the 

image correlations phase. 
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Figure 3.4: A schematic view of STC/HYPSOS acquisition system on a simulated 
Mission. 

Figure 3.4 shows the acquisition of the two channels tilted by an angle of  20°.  

The aim of the photogrammetric pipeline foreseen for HYPSOS, is the reconstruction of the 

scene with the generation of the Hyperspectral DTM of the target, meanwhile the spectral 

information is exported as orthorectified image cubes with the pixel size of the DTM. 

The photogrammetric calibration is essential for the determination of the projection matrices 

that describe the projection system for the final triangulation that derives the 3D information 

from the stereo images. 

The definition of the stereo camera model is mandatory, and the photogrammetric 

procedures for the estimation of the intrinsic and extrinsic parameters are also needed. 

Thanks to the acquisition with the stereo validation setup, all the calibration steps are 

permitted.  

3.2 Bi-planar calibration gauge 

In order to proceed with the photogrammetric calibration of the system, we decided to use 

a bi-planar laminated chessboard that provides high number of easily detectable corners, 

homogeneously distributed on the scanning acquisition, we decide to use a bi-planar 

laminated chessboard. Both the planes are paper printed with a regular chess pattern. A 
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first design of the calibration gauge that considers a good number of corners has a lower 

plane with a dimension of 4x4 cm2 and the upper plane of 2x2 cm2 with a height of 0.5 cm; 

every square of the chessboard has a dimension of 0.2x0.2 cm2.  

 

Figure 3.5: Bi-planar calibration gauge used for the camera calibration. 

 

The DLT method requires a high resolution of the chessboard, because even a small error 

in the chessboard design could induce a large error in the resulting estimation. To evaluate 

the error introduced to the calibration by the chess squares design, we implemented a 

program in MATLAB that can provide the variations in the focal length estimating the error 

induced by the corner detection process. 

3.2.1 Image simulation 

In preparation of the actual image data, a simulated benchmark has been created exploiting 

a powerful Airbus ray-tracing software (SurRender, Brochard & al., 2018) that provides a 

useful set of synthetic images. Furthermore, a proper numerical simulation (in MATLAB 

code) based on the geometrical characteristics of the calibration setup has been used for 

further analysis. 

Concerning the generation of the synthetic images thanks to SurRender software, we started 

with reproducing in the 3D modelling environment the 3D mesh of the designed reference 

gauge (Figure 3.5). Then defining the geometry of the SVS and creating a virtual stereo 

camera with the main characteristics of HYPSOS, we were able to reproduce with high 

fidelity the line scanning, that, once mosaicked, have provided a good synthetic dataset for 
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the validation of the method for the camera model estimation. The entire workflow is 

summarized in the block diagram in Figure 3.6. 

 

Figure 3.6: Synthetic image process of acquisition with SurRender. 

 

For what concerns the mathematical simulation in MATLAB code that, starting from the 

known geometry of the setup, the code is able to provide both the 3D (world) and 2D (image 

plane) coordinates. Exploiting the two implemented codes we can validate the model with a 

double check: one with ray-tracing simulated data images and one with numerical set of 

data obtained with a mathematical simulation. 

HYPSOS works as a line scan stereo camera providing on the CCD array the spatial 

information on one direction and the spectral one in the other direction. The mosaics are 

realized putting together the lines acquired during the movement of the system in the along-

track direction. The movement of the acquisition system is enabled by the movement of the 

translator. 
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3.3 Harris corner detector 

Starting with the simulated images obtained with the ray-tracing software, the first step in 

the procedure consists in the definition of the image corners of the chessboard squares. To 

derive the 2D coordinates of the corners impressed on the simulated images we decided to 

implement a Harris corner detector (Juranek L., & al.,2018). 

The corners can be defined as important local features in the images; they are points with 

high curvature in a curve and are individuated in the zone where four regions of different 

brightness meet. There are many methods to detect the corners, but they can mainly be 

divided into contours based, that works on image edge data; and intensity based. Harris 

Corner method belongs to the second group: it works on a gray color image, and it detects 

the corners analyzing the different scale of gray in the image. The precision and the quality 

of the corner’s coordinates detection is crucial for the calibration.  

Before understanding where to find the corners coordinates, we have to define three kinds 

of regions in the gray image: the flat region (Figure 3.7a) where there is no gradient changes 

in all the directions; then we have the edge region (Figure 3.7b) where there is no change 

in gradient along the edge direction; and finally, the corner (Figure 3.7c) where there is a 

significant gradient variation in both directions. 

 

Figure 3.7: a) represents the flat region; b) represents the edge region. 
 c) represents the corner region. 

Harris corners are based on an error model, evaluated in the following equation 

 𝑬(𝑢, 𝑣) =∑𝑤(𝑥, 𝑦)[𝐼(𝑥 + 𝑢, 𝑦 + 𝑣) −  𝐼(𝑥, 𝑦)]2

𝑥,𝑦

 (3.1) 
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where I is the intensity of the image in the point (x, y) and u and v are the shifts in the two 

directions, and w(x,y) is the window function, that is either a rectangular window or a 

Gaussian window which gives weights to pixels underneath. 

We have now to maximize this function E(u,v), in particular the second therm. We can do 

this applying a Taylor expansion that leads us, for small shifts [u, v], to 

 
𝐸(𝑢, 𝑣)  ≈ [𝑢 𝑣] (∑𝑤(𝑥, 𝑦) [

𝐼𝑥
2 𝐼𝑥𝐼𝑦

𝐼𝑥𝐼𝑦 𝐼𝑦
2 ]) [

𝑢
𝑣
] (3.2) 

If we call M the term inside the round parenthesis, we can rewrite the equation like 𝐸(𝑢, 𝑣) ≈

[𝑢 𝑣]𝑀 [
𝑢
𝑣
]. Now, finding the eigenvectors of M, we can determinate the different types of 

regions: flat, edge, corner. Evaluating the score R 

𝑅 = 𝑑𝑒𝑡(𝑀) −  𝑘 (𝑡𝑟𝑎𝑐𝑒(𝑀))2 

𝑑𝑒𝑡(𝑀) =  𝜆1𝜆2 

𝑡𝑟𝑎𝑐𝑒(𝑀) = 𝜆1+𝜆2 

where k is an empirical constant factor (typically with a value of 0.04-0.06), and 𝜆1𝑎𝑛𝑑 𝜆2 

are the two eigenvalues of M. so we have that: 

• if | R | is small, and so 𝜆1 𝑎𝑛𝑑 𝜆2 are small, we are in the flat region. 

• R < 0, that means that 𝜆1 >> 𝜆2 or vice versa, we are in an edge region. 

• R > > 0, 𝜆1~ 𝜆2 and 𝜆1, 𝜆2 are big values, we have a corner.  

 

Figure 3.8: Eigenvalues for the different kind of region. 
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3.3.1 Python implementation 

To implement the Harris Corner detector routine in Python we have used the cornerHarris 

function of the OpenCV toolbox: giving in input a gray color image and the 3D coordinates 

of the bi-planar chessboard it allows to obtain the detection of the corner coordinates. Here 

the code implementation  

# #image definition 

img = cv2.imread('img_tilt.png') 

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 

gray = np.float32(gray) 

#Harris Corner detector 

dst = cv2.cornerHarris(gray, 2, 3, 0.04) 

#centroid definition 

ret, dst = cv2.threshold(dst, 0.01 * dst.max(), 255, 0) 

dst = np.uint8(dst) 

ret, labels, stats, centroids = cv2.connectedComponentsWithStats(dst) 

To find the corners with a better accuracy we did also a refinement of the coordinates using 

another function, cornerSubPix, that provides a sub-pixel accuracy. 

#subpixel refinement 

criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.001) 

corners = cv2.cornerSubPix(gray, np. float32(centroids), (5, 5), (-1, -1), criteria) 

Below there are the results obtained for a chessboard modelled with the SW SurRender. 

 
Figure 3.9: Harris Corner detection on Python applied on a simulated image of the bi-
planar chessboard. 
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Chapter 4: STUDY SETUP 

In this Chapter, I describe the results obtained from the analysis (camera model estimation) 

starting with both the images simulated with the ray-tracing software and with the numerical 

dataset generated in MATLAB (numerical simulation). The validation procedure and the 

main problems we had to face in terms of detection error have been presented together with 

the conclusions of the work. 

4.1 Results obtained with a numerical simulation 

To check the implementation of the Gupta method for the pushbroom model in Python, we 

started deriving a MATLAB code that would allow to get a numerical simulated dataset, not 

subjected to any source of errors introduced, for instance, by the detection of the corner 

coordinates by  the Harris detector. This code allows to obtain a data set of correspondence 

between the 3D coordinates of the gauge and the 2D image coordinates.  

This is the part of code implemented to obtain the 3D coordinates of the upper and lower 

planes defined by the number of squares of the chessboard (Nup, Ndown) and the single 

square dimension (CHESSBOARDIM).  For simplicity we decide to fix the second plane not 

in the middle of the first one but on a corner. 

[xdw ydw]=meshgrid([1:Ndown1]*CHESSBOARDDIM,[1:Ndown2]*CHESSBOARDDIM); 

z=xdw; 

z(:)=0; 

X=[xdw(:),ydw(:),z(:)]; 

[x y]=meshgrid([1:Nup1]*CHESSBOARDDIM,[1:Nup2]*CHESSBOARDDIM); 

cond_x=(xdw<min2(x))|(xdw>max2(x)); 

cond_y=(ydw<min2(y))|(ydw>max2(y)); 

f=find(cond_x|cond_y); 

z=x; 

z(:)=H; 

X=[X(f,:);[x(:),y(:),z(:)]]; 

This code allows to obtain the various intrinsic and extrinsic parameters that lead us to verify 

our pushbroom model implementation in Python. So, first of all, the matrix L (equation 2.16) 

can be defined, as follows: 

[𝐿] = [
10.889 0 0
0 1.0208𝑒 + 4 3.840
0 0 1

] 
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L is obtained, in fact, by imposing a velocity Vx, of 7.0640 px/s, repetition time (Rt) of 0.013s 

and a focal length of 245 mm. L11 has been converted in mm dividing by Rt. Subsequently, 

considering the inclination of 20°, the Vx will be divided in the other two components along 

y and z directions. 

The matrix M that we obtain considering the 3D coordinates and the 2D ones is:  

[𝑀] = [
10.889
0
0

0 0 0
     10208.333 3.840 3.84𝑒 − 13

0 1 1000
] 

And the translation vector has been set to: T = [ 0, 0, -1.000e+03]. 

Projecting the 3D points using the matrix M, we obtained all the direct correspondences of 

corners.  

ijn2(:,1)=[Mmis(1,1:4)]*[X';ones(1,length(X))]; 

ijn2(:,2)=([Mmis(2,1:4)]*[X';ones(1,length(X))])./([Mmis(3,1:4)]*[X';ones(1,length(X))]); 
 

 

 

Figure 4.1: Plots of all the corners of the bi-planar chessboard. 
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As a preliminary analysis, giving as input these correspondences of points to the Python 

code, we were able to verify that the results are the same in terms of matrix M, Translation 

vector, Rotation vector, and focal length. Since the estimation provides the results that we 

expected for both the nadiral (Table 4.1) and tilted case of an angle of 20° (Table 4.2), ), the 

implemented Python Gupta model can be considered correct 

Table 4.1: Results obtained in Python with the sets of points produced by the numerical 

simulation with the MATLAB code for a nadiral acquisition. 

Reprojecting Error along u direction [px] 1.888e-15 

Reprojecting Error along v direction [px] 2.108e-13 

Focal length [mm] 244.999 

Rotation Vector [deg] [4.341e-11, 180.000, 3.513e-13] 

Translation Vector [mm] [1.068e-11, -1.231e-11,-1.000e+03] 

Table 4.2: Results obtained in Python with the sets of points produced by the numerical 

simulation with the MATLAB code for a tilted acquisition of 20°. 

Reprojecting Error along u direction [px] 3.654e-13 

Reprojecting Error along v direction [px] 4.646e-11 

Focal length [mm] 244.999 

Rotation Vector [deg] [-179,999,159,999, 1,400e-12] 

Translation Vector [mm] [-1.685e-08,-2.631e-11, 1.000e+03] 

 

Further analysis will be made using the simulated images obtained starting from considering 

the i, j pixels indices of the image and working to obtain the Intensity matrix of the pixels. 

Starting from the matrix M, again we want to work to transforming the i, j into the 3D 
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coordinates. The first step is to create a planar image and so we have Z0 = 0. To obtain X0 

and Y0 it is necessary to solve the system of equations: 

 
[

𝑚11 𝑚12

𝑚21 − 𝑗𝑚31 𝑚22 − 𝑗𝑚32
] [
𝑋0
𝑌0
] = [

𝑖 − 𝑚14

𝑗𝑚34 −𝑚24
] (4.1) 

Therefore, evaluating the results for every pixel of the image it is possible to define the 

intensity like 

 
𝑖𝑠𝑥 = |((

𝑋0
2
) , 2)|  and 𝑖𝑠𝑦 = |((

𝑌0
2
) , 2)| (4.2) 

And the Intensity matrix like 

 𝐼(𝑖, 𝑗) = (( 𝑖𝑠𝑥 = 0)&(𝑖𝑠𝑦 = 0))|((𝑖𝑠𝑥 = 1)&(𝑖𝑠𝑦 = 0)) (4.3) 

The same procedure can be made with the second level of the chessboard, considering 

ZH=H, with H the heigh of the second plane. 

 
[

𝑚11 𝑚12

𝑚21 − 𝑗𝑚31 𝑚22 − 𝑗𝑚32
] [
𝑋𝐻
𝑌𝐻
]

= [
𝑖 − 𝑚14−𝐻𝑚13

𝑗𝑚34 −𝑚24 −𝐻(𝑚13 − 𝑗𝑚33)
] 

(4.4) 

 

4.2 Results obtained with the ray-traced images 

4.2.1 Nadiral image analysis on a set of corners 

The first simulation, that has been made using the Harris corner detector, uses the simulated 

nadiral images obtained with SurRender. Remembering that the 3D world points coordinates 

are known and correct because they are obtained from the geometry of the chessboard, we 

decide to use a set of eighteen points, composed by the 3D coordinates and the respective 

2D coordinates obtained with collineation. With this simulation we obtained quite good 

values: 
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Figure 4.2: Representation of the residual values for the eighteen points, obtained from 
the simulation for the nadiral image. (The value is multiplied by a factor 1.05). 
 

 

The reprojecting error is evaluated as 

sum = 0 

for i in range(0, len(Xt)): 

Table 4.3: Values obtained with eighteen corners (Nadiral Image). 

Reprojecting Error along u direction 

[px] 

0.048 

Reprojecting Error along v direction 

[px] 

0.026 

Focal length [mm] 230.638 

Rotation Vector [deg] [179.197, -179.939, 0.0018] 

Translation Vector [mm] [-2.179, 3.657, 187.273] 
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    sum += np.square(xt[i][0]-x_reproj[i][0]) 

reproj_error_x = np.sqrt(sum)/len(Xt) 

for both u and v directions. The focal length of 230.64mm is close to the real value of 245mm. 

The third component of the translation vector is still far from the real value of 1 meter; this is 

mainly due to the correlation between the parameters, so an error in one variable has an 

impact also in the other variables. The instability of the estimation reveals also that the 

number of the corners strongly influences the final estimation. The results obtained with the 

numerical dataset suggested that the larger the number of the corners more stable is the 

estimation. This issue has been analyzed in paragraph 4.2.4. 

4.2.2 Inclined image analysis  

The same analysis has been made for images acquired with a tilted view with respect to 

nadir, also obtained with the ray-tracing software. With these tilted images, the errors in the 

definition of the exact image coordinates of the corners increase. 

These simulations are very important because they are representative of the way in which 

HYPSOS will acquires the images, that is with an inclination of 20°. This is the reason why 

we performed a deeper analysis with the tilted images created by the MATLAB code, 

described in the preview chapter. 

Table 4.4: Values obtained with eighteen corners (Tilted Image). 

Reprojecting Error along u direction [px] 0.279 

Reprojecting Error along v direction [px] 0.023 

Focal length [mm] 344.041 

Rotation Vector[deg] [170.317, -171.316, 0.449] 

Translation Vector [mm] [39.777, 2.997, 280.947] 

 

The correlation between the parameters leads us to have significant errors especially in the 

rotational vector.  
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4.2.3 Harris detected corners analysis 

The following step has been to evaluate the calibration using all corners of the chessboard. 

For this test, all points detected from the Harris corner detector program, have been used. 

In this way what we obtain is shown in Table 4.5 and in Figure 4.3 

 

 

Figure 4.3a: Histogram of the residual values (in pixel units) obtained from the primary 
analysis for all detected corners with Harris along u direction. 

Table 4.5: Values obtained with all detected corners. 

Reprojecting Error along u direction [px] 0.0064 

Reprojecting Error along v direction [px] 0.0053 

Focal length [mm] 355.995 

Rotation Vector[deg] [179.197, -179.939, 0.0018] 

Translation Vector [mm] [-10.358, 16.868, 1445.121] 
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The deviations of the corners coordinates are 0.38px for the u direction and of 0.28px for 

the v direction.  

The estimation of the focal length is quite distant from what we were expecting, mainly due 

to the error in the detection of the corners by the Harris operator, of the order of few tenths 

of pixels. The number of the corners influences the stability of the system, together with the 

height of the second plane of the chessboard that can help to decouple the correlation 

between the parameters. 

To better understand how much the detection affects the focal length estimation, we tested 

different configurations of the chessboard. The code is able to create a plot of the focal 

length varying the error detection. 

4.2.4 Instability of the detection process  

To analyze the instability of the estimation in relation with the detection of the corners, using 

the Harris Corner operator, as just said, we created a MATLAB code. The inputs of the code 

are the matrix L of the intrinsic parameters, that we were able to establish considering the 

 

Figure 4.3b: Histogram of the residual values (in pixel units) obtained from the primary 
analysis for all detected corners with Harris along v direction. 
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instrument and its characteristics; the 3D coordinates of the chessboard obtained by defining 

the number of the squares of the chessboard, the size of the single square, the height of the 

second plane, and finally a random error of detection taken between 0 px and 0.4 px from 

the literature. We obtain that the focal length is highly sensitive to the definition of the height 

(helping in decoupling the parameters) and to the number of corners.  

The configuration of a chessboard as the one we used as a target (as a starting design), 

with 390 corners and a height of the second plane of 5 mm, gives as response a range of 

focal lengths that varies from 244.99 mm to 350.53 mm with several peaks.  

 

Figure 4.4: Representation of the variation of the focal length due to an 
error of detection with an evaluation on 390 corners. 

 

Other configurations obtained changing the number of the corners and the size of the 

squares of the chessboard, without changing the height, are shown in the following plots. It 

is clear that the number of corners influences the focal length: for the case of 4900 points, 
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corresponding to a chessboard with 70x70 squares in the lower plane and 35x35 squares 

in the upper plane, with a dimension of the squares of the chessboard of 2mm (as the one 

we used) the focal length range varies from 244.99 mm to 271.04 mm; meanwhile in the 

case of again 4900 points but a size of the squares of the chessboard of 5 mm the range 

varies from 244.75 mm to 254.95 mm. These configurations are, without any doubt, more 

stable and would allow to reduce the impact of the error in the estimation. 

  

Figure 4.5: Representation of the variation of the focal length due to an error of detection 
with an evaluation on 4900 corners. Image a) with a dimension of the squares of the 
chessboard of 2 mm and b) dimension of the squares of the chessboard of 5 mm. 

 

Other tests have been made, on a set of 22500 corners, corresponding to a chessboard with 

150x150 squares in the lower plane and 75x75 squares in the upper plane, and a height of 

100 mm, again with both 2 mm and 5 mm as sizes of the squares of the chessboard. These 

cases give the best results, in fact the range of the focal length variation for the first 

configuration is from 244.99 mm to 245.71 mm, instead for the second one from 245.00 mm 

to 245.27 mm. This is the most stable configuration, but unfortunately not reasonable to 

realize for the calibration. Most likely this result it is due to the bigger height of the second 



59 

plane that allows a better decoupling between the coordinates of the two planes and a better 

analysis. 

 
 

Figure 4.6: Representation of the variation of the focal length due to an error of detection 
with an evaluation on 22500 corners. Image a) with a dimension of the squares of the 
chessboard of 2 mm and b) with a dimension of the squares of the chessboard of 5 mm. 

From these tests, in order to gain a more stable configuration for the calibration, we searched 

for a good compromise between the limits of realization of the gauge and the stability of the 

estimation procedure. A good solution, to gain a larger number of corners, would be to 

stretch the chessboard in the along-track direction, meanwhile we have a limit in the cross-

track direction. What we obtained to fit all the requirements is a chessboard with the following 

geometry: we kept the size of the squares of the chessboard of 2 mm, the cross-track 

direction of 4 cm and we elongate the along-track direction to 8 cm, and raised the second 

plane to 1 cm. In this way we gained 800 corners. The fitted result is reported in the following 

plot. 
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Figure 4.7: Representation of the variation of the focal length due to an error of detection 
with an evaluation on 800 corners. 

As it is possible to see in Figure 4.7 the range of the focal length varies from 244.99 mm to 

277.63. This last test could represent a good compromise for the stability of the system 

considering a chessboard of feasible realization. 

The purpose of determining the individual camera parameters is to allow to know how the 

camera parameters influence the calibration of the stereo camera. For instance, the focal 

length and principal point offset of the camera may be known quite precisely from 

manufacturing specifications. In the DLT method for determining the camera matrix M, as 

described in section 2 there is no way to incorporate this information into the calibration 

process. One way to do that, however, is to get an initial solution for the camera matrix M, 

extract the parameters from the matrix, fix the known parameters to the known values, and 

finally carry out an iterative parameter fitting algorithm to get a more exact estimate of the 

camera mapping. This approach could allow any of the parameters to be fixed absolutely, 

or with a specified standard deviation and it will be possible to parametrize the camera in 

different ways to allow for different types of knowledge of the stereo camera setup. 
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This could be a possible solution for the estimation problems that we encountered so far, 

another kind of solution that we tested has been to try a refinement of the re-projection errors 

using Chebyshev polynomials as described in the next session. 

4.3 Chebyshev polynomials refinement 

The linear pushbroom stereo camera model is not able to capture the non-linear aspects 

and so it is possible to fit them to get the best residuals in the image coordinate projection. 

Using a single photogram for every pose and so not having a defined movement, imply the 

overfit of the model.  

For these reasons we decided to work with a polynomial approximation. In this way we 

should obtain an image coordinate with stronger consistency with the linear pushbroom 

model and the coordinates of the object. In particular the Chebyshev polynomials of the first 

kind Tn(x) have been used.  

𝑇𝑛(𝑥) = 𝑐𝑜𝑠(𝑛𝜃) 

with x = cos (𝜃). If the range of the variables is in the interval [-1, 1], the range of 𝜃 is [0, 𝜋]. 

Knowing that cos (n𝜃) can be written as a polynomial of degree n of cos(𝜃), the first few 

polynomials of Chebyshev are:  

𝑇0(𝑥) = 1; 

𝑇1(𝑥) = 𝑥; 

𝑇2(𝑥) = 2𝑥
2 − 1; 

𝑇3(𝑥) = 4𝑥
3 − 3𝑥. 

So, combining the polynomial of the third grade for two variables, in our case u and v, we 

obtain the following equation that we had evaluated to model the residuals in both directions 

obtaining two polynomials Pu(u, v) and Pv(u, v).  

𝑃(𝑢, 𝑣) = 𝑎0 + 𝑎10𝑢 + 𝑎01𝑣 + 𝑎11𝑣𝑢 + 𝑎20(2𝑢
2 − 1) + 𝑎02(2𝑣

2 − 1) +

𝑎12𝑣(2𝑢
2 − 1) + 𝑎21𝑢(2𝑣

2 − 1) + 𝑎30(4𝑢
3 − 3𝑢) + 𝑎03(4𝑣

3 − 3𝑣)        (4.5) 
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The aij coefficients have been estimated with a least squares optimization following the 

process as follows. 

The corners are homogeneously distributed along the gauge and cover the whole FOV of 

the stereo camera so, the approximation function is used to model the residual between the 

detected image coordinates and the projected one. For this step it is important to underline 

the difference between the forward and the inverse mapping: 

• The forward mapping allows the calculation of the new image coordinates (unew, vnew) 

starting from the original coordinates. Obtained the polynomials for both directions 

we can write 

 
[
𝑢𝑛𝑒𝑤
𝑣𝑛𝑒𝑤

] = [
𝑃𝑢(𝑢𝑜𝑟 , 𝑣𝑜𝑟)
𝑃𝑣(𝑢𝑜𝑟 , 𝑣𝑜𝑟)

] + [
𝑢𝑜𝑟
𝑣𝑜𝑟

] (4.6) 

• The inverse mapping is evaluated as 

 
[
𝑢𝑜𝑟
𝑣𝑜𝑟

] = [
𝑃𝑢(𝑢𝑛𝑒𝑤 , 𝑣𝑛𝑒𝑤)
𝑃𝑣(𝑢𝑛𝑒𝑤 , 𝑣𝑛𝑒𝑤)

] + [
𝑢𝑛𝑒𝑤
𝑣𝑛𝑒𝑤

] (4.7) 

Considering the inverse error like einv = Mxw - ximg. 

The forward mapping is useful for computing the transformation of the points from the 

original location to the new one but not for resampling the image because it may create gaps 

in the resampled image; meanwhile the inverse mapping is useful for resampling the image. 

Starting from these considerations we fitted the inverse error with the Chebyshev polynomial 

to obtain the coefficients. In the following table there are the results for both u and v 

directions.  

Table 4.6: Coefficients for the Chebyshev polynomial fitting the residuals in u and v 
variables. 

 Coefficients for Pu(u, v) Coefficients for Pv(u, v) 

a0   8.507e-01   1.615e-01 

a10 - 1.040e-02 - 5.154e-04 

a01   5.540e-04 - 4.073e-03 
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a11   1.150e-06   5.836e-06 

a20   9.127e-06   1.626e-07 

a02 - 1.914e-06   7.012e-06 

a12 - 3.258e-10 - 1.231e-09 

a21   3.175e-11 - 2.564e-09 

a30 - 6.075e-10 - 8.464e-13 

a03   3.087e-10 - 9.353e-10 

 

The analysis of the coefficients reveals that the major influence is given from the a0 

coefficients.  

4.3.1 Re-estimated error  

According to the Chebyshev polynomial fit results, we added the evaluated error to the 

corners detected with Harris, in this way we were able to re-estimate the M projective matrix, 

giving as an input the new image coordinate, and so of the intrinsic parameters. We gained 

a better fit for the displacement residuals and even for the focal length. 

Table 4.7: Values obtained with 2D Chebyshev polynomial refinement. 

Reprojecting Error along u direction [px] 0.0035 

Reprojecting Error along v direction [px] 0.0012 

Focal length [mm] 329.489 

Rotation Vector [deg] [178.437, 179.998, 0.0069] 

Translation Vector [mm] [-9.954, 16.817, 1337.511] 

The focal length is improved by the 7.4%, passing from the value of 355.99mm to 329.49mm. 

Meanwhile the residuals along the two directions yielded a significant improvement 

especially along the v direction: the maximal residuals length along the u direction is of 

0.15px meanwhile along the v direction reaches the value of 0.07px. 
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Figure 4.8a: Histogram of the residual values (in pixel units) obtained from the 
refinement with Chebyshev for all detected corners with Harris corner detector along u 
direction. 

 

Figure 4.8b: Histogram of the residual values (in pixel units) obtained from the 
refinement with Chebyshev for all detected corners with Harris corner detector along v 
direction. 

Considering the 2D Chebyshev polynomials (Fig. 4.8a and 4.8b), the larger residual errors 

along u direction indicates that the camera motion has a larger impact on the accuracy of 
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the corner coordinate definition. On the other hand, residual error that changes as a function 

of v direction indicates that the error is related to intrinsic properties of the camera itself.  

4.4 Correlation between parameters 

Another important point is to find how much the variation of one parameter influences the 

others. It is a statistic way to understand the connection between pairs of variables. At the 

same time this is a useful way to understand the stability of a systema and the quality of the 

obtained data.  

The correlation between parameters must be avoided as much as possible, because it will 

lead to instability of the process and incorrect solutions. 

The covariance between two variables must be calculated before the correlation, and then 

the standard deviation. For example, considering two variables X, Y the correlation between 

the two is defined like 

 
𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  𝜌 =  

𝑐𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌
 (4.8) 

• If 𝜌 is +1, means that the two variables have a perfect positive relationship; this 

means that when one variable moves higher or lower, the other variable do the same; 

the nearer to 1 is the value, the stronger get the correlation. 

• If 0 < 𝜌 < 1, the two variables move in the opposite direction, and they have a negative 

correlation. 

•   If 𝜌 is -1, they have a perfectly negative correlation. 

So near to 1 or -1 the linear relationship is strong; near to 0 the linear relationship is weak, 

and we are in a better condition. 

Evaluating this would allow us to understand in a better way the calibration stability, and it 

would be a good method for re-estimate the projection matrix constraining the necessary 

parameters, fixing the parameters that we know with higher precision.  
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Conclusions 

This work aimed to calibrate a new concept of hyperspectral stereo imaging system 

(HYPSOS) following the method introduced by Gupta and Hartley for estimating the linear 

pushbroom stereo camera model. 

The method has been implemented in a Python code and it has been validated using two 

kinds of datasets: a numerical dataset created with a MATLAB code and using a virtual 

dataset produced using a ray-tracing software able to generate simulated images. 

Working with the numerically simulated dataset, the implemented method of Gupta & Hartley 

has been successfully validated. Then, we realized a series of chessboard simulated images 

exploiting the geometry of a bi-planar chessboard and the ray-tracing software, SurRender. 

This second analysis has been made extracting the 2D image coordinates, called corners, 

using the Harris Corner detector. With this analysis the strong correlation between the 

different parameters has been underlined, leading to some errors in the estimation of the 

intrinsic and extrinsic parameters, and at suggesting a certain instability of this estimation 

system. 

The sensitivity in the focal length estimation has been evaluated varying the amount of the 

errors introduced by the corner detection process and the tests suggested that increasing in 

the number of the possible corners and/or the increasing in the height of the second plane 

of the gauge makes the estimation more robust and stable. 

Several chessboard configurations have been tested in order to find the best trade-off 

between a good number of corners, a proper height for the second plane but in accordance 

with the limits imposed by the chessboard realization and the limits of the scanning system 

in the along-track direction. 

As exposed in the reference paper of Gupta & Hartley, fix the known parameters to known 

values, and finally carry out an iterative parameter fitting algorithm to get a more exact 

estimate of the camera mapping is the best approach to overcome the instability problems 

of the system. Allowing any of the parameters to be fixed absolutely, or with a specified 

standard deviation, it is possible to parametrize the camera in different ways to allow for 

different types of knowledge of the stereo camera setup. 
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In this work, the possibility to fix some parameters has not been considered, but the 

possibility of determining the individual camera parameters, has allowed the knowledge of 

the camera parameters to influence the calibration of the stereo camera.  

The work can be considered very useful to drive the choice of the best configuration for the 

design of a proper chessboard to be used for the geometric calibration of a pushbroom 

stereo camera such as HYPSOS. The method implemented will be the starting point for the 

procedures that will be adopted during the actual calibration of HYPSOS with the real 

images and the use of the simulated and synthetic datasets have provided to the team, 

involved into the project, a good benchmark for the identification of the critical aspects 

imposed by the complexity of the calibration of an innovative imaging system as HYPSOS. 
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