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Chapter 0

Introduction

The equiconsistency of ZF-Inf and PA is part of the mathematical folklore, it appears for
the first time in Akermann’s “Die Widerspruchsfreiheit der allgemeinen Mengenlehre”[1],
published in 1937. Ackermann’s idea was to investigate the consistency of what he calls
general theory of sets, i.e., Zermelo-Fraenkel theory without the axiom of infinity, by trac-
ing it back to the consistency of arithmetic, consistency in which mathematicians had
great confidence in that period. The heart of the Ackermann’s idea is that it is possible
to translate the general theory of sets into the formal theory of arithmetic and vice versa
in a syntactic manner. To translate sets into natural numbers he had to find a way to
codify the relation “P” in arithmetical terms such that the translation of every axiom
of ZF-Inf would be a theorem in PA. He found a translation of “ P ” - that is the so
called Ackermann Encoding - by observing that every natural number a can be written
as sums of power of 2: a < 2b0 ` 2b1 ` ...` 2bn , in which every bi is either 0 or 1. Thus, he
translated i P m into bi < 1 where m < 2b0 ` ...` 2bn , that is: m P n iff the m-th digit in

the binary expansion of n is 1. This translation is interesting not only because it works,
but because it is also primitive recursive; thus, it only requires primitive recursive arith-
metic as a meta-theoretic assumption to be formalized, and PRA is weaker than standard
arithmetic. The translation of PA into ZF-Inf involves matching numbers with finite
hereditary sets and restricting quantifiers accordingly. Subsequently the equiconsistency
of PA and ZF-Inf became part of mathematics’s folklore as “well-known” result, without
having an extensive bibliographical reference. In 2007 Richard Kaye and Tin Lok Wong
published a paper titled “On Interpretations of Arithmetic and Set Theory”[2] in which
they argued the equiconsistency of PA and ZF-Inf + ␣Inf by proving that it is possible,
using ϵ´Induction, to construct two interpretations of PA in ZF-Inf + ␣Inf and vice
versa, that are one the inverse of the other. In 2009 Richard Pettigrew published a paper
called “On Interpretations of Bounded Arithmetic and Bounded Set Theory”[5] in which,
starting from the bi-interpretability proved by Kaye and Wong, he defined a mutual in-
terpretation for a bounded arithmetic theory and a sets theory obtained by ZF-Inf -
Repl + ␣Inf + WHP, that is a slighted modified version of Mayberry’s Euclidean Sets
theory.
Our purpose is to treat the Ackermann proof together with the preliminary results neces-
sary to formalize it. In Chapter 1 we will enunciate the general logical results necessary for
our discussion. In Chapter 2, we will present and discuss both ZF-Inf and PA theories,
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6 Chapter 0. Introduction

covering some basic results needed to conclude equiconsistency. In our treatment of Peano
Arithmetic, we will explore recursive primitive functions and representable functions, ulti-
mately establishing that all recursive primitive functions are representable. Thus, we will
define PA’, a conservative extension of PA obtained by adding a symbol for each defini-
tion of a primitive recursive function. Regarding axiomatic set theory, we will introduce
the Zermelo-Fraenkel axioms and explore results concerning ordinals, transfinite induc-
tion, and transfinite recursion within the framework of ZF-Inf. We will therefore move
on to enunciate a conservative extension of ZF-Inf obtained by adding a symbol for 0, a
symbol for the successor function and two symbols for sum and product of finite ordinals
respectively, i.e. ZFord-Inf. Finally, we will articulate a set of axioms equivalent to ZF-
Inf, denoted as ZF’-Inf, in which we weaken the union and power axioms and eliminate
certain non-independent axioms such as empty and pair. Therefore, in Chapter 3, we will
develop the proof of equiconsistency. We will define two translations: one translating PA
into ZFord-Inf and another translating ZF’-Inf into PA’. Those translation, with some
consideration about the equiconsistency of ZF-Inf with ZF’-Inf and ZFord-Inf and PA
with PA’ yield to the equiconsistency of PA and ZF-Inf. In conclusion, in Chapter
4, we will discuss the consequences of the equiconsistency of PA and ZF-Inf in finite
set theory. Therefore we will start from the definition of finite set, comparing different
definitions of finiteness and infinity, and we will comment on the role of the axiom of
choice. We will conclude the fourth chapter by briefly mentioning and commenting on
the contemporary results that we mentioned in the first part of the introduction.
We will use, as mainly references in the literature, Kunen[3] for set theory, Mendelson[4]
for logic and both Mendelson[4] and Takahshi[6] for formal arithmetic results.



Chapter 1

Logical Background

In this chapter we will introduce the logical framework necessary to develop our discussion,
therefore we will define the concept of first order language and first order theory. In this
chapter we will use definitions and results taken from Mendelson[4]

1.1 First Order Languages with equality

From an intuitive standpoint a formal language is a collection of symbols that can be put
together by using a clear and formal set of rules. A first order language with equality L is
defined by an alphabet of symbols (that is a collection of symbols intended to represent
variables, constants, relations and functions), a set of terms (which are the ”objects” of
the theory) and a set of formulas.

An alphabet is defined by a collection
@

C,F ,R,V
D

and a collection of logical symbols
and auxiliaries symbols where:

• V is a countable set containing symbols for the variables. Usually the symbols used
for variables are x0 , x1 , yn, ...

• F is an arbitrary set containing symbols for the functions. Functions are usually
denoted by f 1, g2, hn, ....
The superscript in this signature represents the arity of function, that is the number
of terms to whom the function applies.

• R is an arbitrary set of symbols used to represent relations. The relations are
usually represented with capital Latin letters (such as Q,P,R) and they have the
same notation for arity as the functions. L has a particular relation symbol A2

1
that

represents equality; we shall write t < s instead of A2

1
pt, sq

• C is an arbitrary set containing the symbols representing constants.

• Logical symbols are the connectives: Ñ (implication), ␣ (negation), and the uni-
versal quantifier @

7



8 Chapter 1. Logical Background

• The auxiliary symbols are: p, q (Parenthesis) and ”,”

We can now imagine the terms of a formal language L as the structure elements of
the theory, or the elements of L that form a closed set with respect to functions. So we
can formalize this idea:
From an inductive point of view we can define the set of terms TL saying:

1. every individual constant a P C is a term

2. every variable x P V is a term

3. if t1, ...., tn are terms and fn is a symbol for an n-ary function in L then fn
`

t1, ...., tn
˘

is a term

4. no other element of L is a term

We can also define TL as the smallest set that satisfies:

C Y V Ď TL and pt1, ...., tn P TL and fn P F q ñ fn
`

t1, ...., tn
˘

P TL (1.1)

From the definition of formal language we can imagine the idea of formulas as a finite
sequence of symbols from a given alphabet that is in the formal language. Therefore, we
can define the set of formulas over the language L as we do in definition of terms.
We can define the set of formulas over L <

@

C,F ,R,V
D

in an inductive way saying:

1. if t, t1 P TL , then t < t1 is a formula

2. if t1, ......, tn P TL and Rn P R then Rnpt1, ...., tnq is a formula

3. if ϕ and È are well formed formulas then p␣ϕq, pϕ Ñ Èq, p@xϕq are well formed
formulas

We can conclude this section by explaining some conventions that we will use:
We do not need to introduce ^, _, Ø and D since we can define them as abbreviations:

pϕ^ Èq :< p␣pϕÑ p␣Èqqq (1.2)

pϕ_ Èq :< pp␣ϕq Ñ Èq (1.3)

pϕØ Èq :< ppϕÑ Èq ^ pÈ Ñ ϕqq (1.4)

pDxϕq :< p␣p@xp␣ϕqqq (1.5)

And we adopt the usual conventions regarding the elimination of parenthesis and the
hierarchy order of operators
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1.2 First order Theories With Equality

Now we have all the concepts necessary to define what is a First Order Theory T over a
First Order language L.

Definition 1.2.1 (First Order Theory With Equality Over with a First Order Language
with Equality). Let L be a first order language. A first order theory T in the language L
is a set of formulas of L, called the axioms of T , together with some rules of inference.
The axioms may be divided into logical axioms - axioms involving formulas, connectives,
quantifiers and equality (which are common to all first order theories) - and proper axioms,
which depend on the theory itself. If ϕ, È and ¹ are formulas of L than the logical axioms

of T are

pA1q pϕÑ pÈ Ñ ϕq (1.6)

pA2q ppϕÑ pÈ Ñ ¹qq Ñ ppϕÑ Èq Ñ pϕÑ ¹qqq (1.7)

pA3q ppp␣Èq Ñ p␣ϕqq Ñ ppp␣Èq Ñ ϕq Ñ Èqq (1.8)

pA4q p@xiqϕpxiq Ñ ϕptq (1.9)

pA5q p@xiqpϕÑ Èq Ñ pϕÑ p@xiqÈq (1.10)

pA6q p@x1qx1 < x1 (1.11)

pA7q x < y Ñ pϕpx, xq Ñ ϕpx, yqq (1.12)

In pA4q ϕpxiq must be a formula of L for all i and t P TL must be free free for xi in ϕpxiq
while in pA5q ϕ must not have free occurrences of xi.
The proper axioms, as mentioned above, cannot be specified, since they depend on the
objects and the meaning of T . A first order theory without proper axioms is called first
order predicate calculus

In conclusion, the rules of inference of T are:

(MP) Modus Ponens: ϕ follows from È and È Ñ ϕ

(Gen) Generalization: p@xiqϕ follows from ϕ

Remark 1.2.2. Since now we will use “First Order Theory” instead of “First Order Theory
with Equality”

Definition 1.2.3 (Proof). We say that a formula ϕ follows in T from a set Γ of formulas
if and only if there is a sequence ϕ1, ...., ϕk such that ϕ is ϕk and every ϕi for each i verifies:
either ϕi is an axiom of T , or ϕi is in Γ, or ϕi is direct consequence by Modus Ponens or
Generalization of some of the preceding formulas in the sequence, with the proviso that
every time Gen is used on a variable xi, then there are no free occurrences of xi in each
formula in Γ preceding the use of Gen. The sequence is called proof (or deduction) of ϕ
from Γ, and we write

Γ $T ϕ (1.13)

The members of Γ are called hypotheses or premises of the proof.
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Definition 1.2.4 (Theorem). If Γ $T ϕ and Γ is the empty set H than instead of
H $T ϕ we can write $T ϕ. In this case we state that ϕ is a theorem of T . That is, ϕ
is a theorem in T if it follows from the axioms of T without any other assumptions.

Theorem 1.2.5 (Deduction Theorem). Let Γ Y tϕ, Èu a set of formulas of a first order
language L and let T be a first order theory over L

Γ $T ϕÑ È ðñ Γ, ϕ $T È

Definition 1.2.6 (Consistency). A theory T is consistent if no formula ϕ and its negation
␣ϕ are both provable in T . We write Cons(T ) if the theory is consistent and Incon(T )
if it is not.

Definition 1.2.7 (Equiconsistency). Let T and K be two first order theories, they are
said to be equiconsistent if:

ConspT q ðñ ConspK q (1.14)

Remark 1.2.8. Since T proves two formulas ϕ, È if and only if proves their conjunction
ϕ ^ È, the formulas such ϕ ^ ␣ϕ are said to be contradictions. It is possible to prove
that all contradictions are equivalent. So it makes sense to introduce a symbol meaning
“contradiction” K. Then it is clear that ␣ϕ is equivalent to ϕÑK.

1.3 Proprieties of First Order Theories

We shall now enunciate some important properties of first order theories that will be
useful during our discussion

Proposition 1.3.1 (Particularization Rule A4). If t is free for x in ϕpxq, then

@xpϕpxqq $T ϕptq

Proposition 1.3.2 (Existential Rule E4). Let t be a term that is free for x in formula
ϕpx, tq, and let ϕpt, tq arise from ϕpx, tq by replacing all free occurrences of x by t. Then
ϕpt, tq $ pDxqϕpx, tq

Remark 1.3.3. By E4 the following holds:

$T Dxpx < xq

This establishes that the domain of the theory is not empty

Definition 1.3.4 (Rule C). A rule C deduction in a first order theory T is defined in
the following manner: Γ $T ,C ϕ if and only if there is a sequence of formulas ϕ1‘, ..., ϕn

such that ϕn is ϕ and the following conditions hold:

1. For each i ă n either
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(a) ϕi is an axiom of T or

(b) ϕi is in Γ

(c) ϕi follows by MP or Gen from preceding formulas in teh sequence with the
clause that if Gen is used on xi no preceding formulas in Γ has free occurrences
of xi

(d) there is a preceding formula DxÈpxq such that ϕi is Èpdq, where d is a new
individual constant (rule C)

2. As axioms in 1(a) we can also use all logical axioms that involve the new individual
constant already introduced in the sequence by application of rule C

3. No application of Gen is made using a variable that is free in some DxÈpxq to which
rule C has been previously applied

4. ϕ contains none of the new individual constants introduced in the sequence in any
application of rule C

Proposition 1.3.5. If Γ $T ,C ϕ then Γ $T ϕ

Proposition 1.3.6 (Definition of a new function symbol). Let K be a First order theory
with equality. Assume that $K pD!uqϕpy1, ..., yn, uq let K ˚ be the theory with equality
obtained by adding to K a new function symbol fn and the proper axiom

p@uqpϕpfnpk1, ..., knq, y1, ..., ynqq (1.15)

as well as every instance of (A1)-(A7) that involves fn. There is an effective transforma-
tion mapping each formula È of K ˚ into a formula È˚ of K such that:

a. If f does not occur in È, then È˚ is È

b. p␣Èq˚ is ␣pÈ˚q

c. pÈ Ñ Àq˚ is È˚ Ñ À˚

d. pp@xqÈq˚ is p@xqpÈ˚q

e. $K ˚ È˚ Ñ È

f. If $K ˚ È then $K È˚

Hence, if È does not contain fn and $K ˚ È then $K È

Remark 1.3.7. It is possible to apply proposition 1.3.6 also to a set of new symbols
corresponding to formulas that verify the hypotheses of the proposition obtain the same
result
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Chapter 2

Presentation of Formal Systems

2.1 Peano Arithmetic

The theory of numbers is one of the most immediate intuition of mathematics, therefore
it is not surprising that the confidence of mathematicians regarding the consistency of
arithmetic was unconditional at the beginning of the twentieth century. The first semi-
axiomatic presentation of natural arithmetic was given by Dedekind in 1879; in a modified
form it came as Peano Arithmetic. It can be defined through the following axioms:

PA1 0 is a natural number

PA2 If x is a natural number, there is another natural number denoted by x1 and called
the successor of x

PA3 0 ‰ x1 for every natural number x

PA4 If x1 < y1 then x < y

PA5 If Q is a property that may or may not hold for any given natural number, and if
(I) 0 has the property Q and (II) whenever a natural number x has Q then even x1

has Q, then all the natural numbers have the property Q (mathematical induction
principle)

2.1.1 Peano Arithmetic Formal Theory

Now we can formally define Peano Arithmetic (PA)

Definition 2.1.1 (The language of arithmetic). The language of arithmetic, LA is the
language that we will use to formalize arithmetic. LA is a language of the first order with
equality. LA has a single individual constant a1, we shall write 0 as alternative notation
for a1. Finally, LA has three function letters: f 1

1
, f 2

1
and f 2

2
. We shall write t1 instead of

f 1

1
ptq, t` s instead of f 2

1
pt, sq and t ¨ s instead of f 2

2
pt, sq

13



14 Chapter 2. Presentation of Formal Systems

Definition 2.1.2 (Proper Axioms of S ). The proper axioms of S are the universal
closure of:

pS1q @xp0 ‰ xq (2.1)

pS2q @x1@x2px
1
1
< x1

2
Ñ x1 < x2q (2.2)

pS3q @x1px1 ` 0 < x1q (2.3)

pS4q @x1@x2px1 ` x
1
2
< px1 ` x2q

1q (2.4)

pS5q @x1px1 ¨ 0 < 0q (2.5)

pS6q @x1@x2ppx1 ¨ x
1
2
q < px1 ¨ x2q ` x1q (2.6)

pS7q ϕp0q Ñ pp@xqpϕpxq Ñ ϕpx1qq Ñ p@xqϕpxqq (2.7)

in (S7) ϕ must be a formula of S . Notice that (S1)-(S6) are formulas and (S7) is an
axiom schema. 1

Remark 2.1.3. Any theory that has the same theorem as S is often called Penao Arith-

metic, or simply PA

Remark 2.1.4. From (S7) and (MP) we can derive the induction rule:

ϕp0q, p@xiqpϕpxiq Ñ ϕpx1
iqq $S p@xqpϕxq (2.8)

Proposition 2.1.5. For any terms t, r, s of LA the following are theorems of S

(S1’) 0 ‰ t1

(S2’) t1 < s1 Ñ t < s

(S3’) t` 0 < t

(S4’) t` r1 < pt` rq1

(S5’) t ¨ 0 < 0

(S6’) t ¨ r1 < pt ¨ rq ` t

Proof. (S1’)-(S6’) follow from (S1)-(S6) applying rule A4 with the appropriate terms

Proposition 2.1.6. For any terms t, r, s the following formulas are theorems of S

a. t < t

1(S7) does not fully correspond to (PA5) since (PA5) refer to the 2ℵ0 property of natural numbers
while (S7) refers only to the denumerable property defined by formulas of LA. To completely correspond
to (PA5) we would need an axiom such: @Xrp0 P X ^ @kpk P X Ñ k1 P Xqq Ñ @npn P Xqs. This
formulation corresponds to mathematical induction, it can bee seen by matching every property Q to the
set of all natural that satisfies Q KQ. But we cannot use an axiom like this: in fact X in the formula is a
subset of natural number, and so the quantifier are quantifying over a subset of theory’s objects. Using
arbitrary natural’s subsets allows us to refer to |PpNq| < 2ℵ0 proprieties. However, this is possible only
in a second order theory, since in a first order theory we can quantify only over sets defined by formulas
of LA, and so we will use (S7) instead of a complete axiomatization of (PA5).
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b. t < r Ñ r < t

c. t < r Ñ pr < sÑ t < sq

d. r < tÑ ps < tÑ r < sq

e. t < r Ñ t` s < r ` s

f. t < 0` t

g. t1 ` r < pt` rq1

h. t` r < r ` t

i. t < r Ñ s` t < s` r

j. pt` rq ` s < t` pr ` sq

k. t < r Ñ t ¨ s < r ¨ s

l. 0 ¨ t < 0

m. t1 ¨ r < t ¨ r ` r

n. t ¨ r < r ¨ t

o. t < r Ñ s ¨ t < s ¨ r

Proof.

a. p1q t` 0 < t (S3’)

p2q pt` 0 < tq Ñ pt` 0 < tÑ t < tq Equivalence Property

p3q t` 0 < tÑ t < t 1, 2, MP

p4q t < t 1, 3, MP

b. p1q t < r Ñ pt < tÑ r < tq Equivalence Property

p2q t < tÑ pt < r Ñ r < tq 1, tautology, MP

p3q t < r Ñ r < t 2, (a.), MP

c. p1q r < tÑ pr < sÑ t < sq Equivalence Property

p2q t < r Ñ r < t (b.)

p3q t < r Ñ pr < sÑ t < sq 1, 2, tautology, MP
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d. p1q r < tÑ pt < sÑ r < sq (c.)

p2q t < spr < tÑ r < sq 1, tautology, MP

p3q s < tÑ t < s (b.)

p4q s < tÑ pr < tÑ r < sq 2, 3, tautology, MP

e. Apply induction rule to ϕpxq: x < y Ñ x` z < y ` z

i. p1q x` 0 < 0 (S3’)

p2q y ` 0 < 0 (S3’)

p3q x < y Hyp

p4q x` 0 < y 1, 3, (c.), MP

p5q x` 0 < y ` 0 4, 2, (d.), MP

p6q $S x < y Ñ x` 0 < y ` 0 1-5, deduction theo-
rem

Thus, $S ϕp0q

ii. p1q x < y Ñ x` z < y ` z Hyp

p2q x < y Hyp

p3q x` z1 < px` zq1 ` z1 < px` zq1 (S4’)

p4q y ` z1 < py ` zq1 (S4’)

p5q x` z < y ` z 1, 2, MP

p6q px` zq1 < py ` zq1 5, equivalence prop-
erty, MP

p7q x` z1 < py ` zq1 3, 6, (c.), MP

p8q x` z1 < y ` z1 4, 7, (d.), MP

p9q $S px < y Ñ x ` z < y ` zq Ñ px < y Ñ
x` z1 < y ` z1q

1-8, deduction theo-
rem

Thus, $S ϕpzq Ñ ϕpz1q and, by Gen: $S p@zqpϕpzq Ñ ϕpz1qq. Hence $S p@zqϕpzq
by induction rule. Therefore, by Gen and rule A4, $S t < r Ñ t` s < r ` s

f. Let ϕpxq be x < 0` x

i. $S 0 < 0` 0 by (S3’), (b.) and MP; thus $S ϕp0q

ii. p1q x < 0` x Hyp

p2q 0` x1 < p0` xq1 (S4’)
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p3q x1 < p0` xq1 1, Equivalence Prop-
erty, MP

p4q x1 < 0` x1 3, 2, (d.), MP

p5q $S x < 0` xÑ x1 < 0` x1 1-4, deduction theo-
rem

Thus, $S ϕpxq Ñ ϕpx1q and, by Gen, $S p@xqpϕpxq Ñ ϕpx1qq. So, by (i), (ii) and
the induction rule, $S p@xqpx < 0` xq. Then, by rule A4, $S t < 0` t

g. Let ϕpxq be x1 ` y < px` yq1

i. p1q x1 ` 0 < x1 (S3’)

p2q x` 0 < x (S3’)

p3q px` 0q1 < x1 2, Equivalence Prop-
erty, MP

p4q x1 ` 0 < px` 0q1 1, 3, (d.), MP

Thus, $S ϕp0q

ii. p1q x1 ` y < px` yq1 Hyp

p2q x1 ` y1 < px1 ` yq1 (S4’)

p3q px1 ` yq1 < px` yq2 1,Equivalence Prop-
erty, MP

p4q x1 ` y1 < px` yq2 2, 3, (c.), MP

p5q x` y1 < px` yq1 (S4)’

p6q px` y1q1 < px` yq2 5, Equivalence Prop-
erty, MP

p7q x1 ` y1 < px` yq2 4, 6, (d.), MP

p8q $S x1 ` y < px` yq1 Ñ x1 ` y1 < px` y1q1 1-7, deduction theo-
rem

Thus, as in f. by Gen we can apply induction rule, and we can end the proof using
Gen and rule A4

h. Let ϕpxq be x` y < y ` x

i. p1q x` 0 < x (S3’)

p2q x < 0` x (f.)

p3q x` 0 < 0` x 1, 2, (c.), MP

Thus, $S ϕp0q
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ii. p1q x` y < y ` x Hyp

p2q x` y1 < px` yq1 (S4’)

p3q y1 ` x < py ` xq1 1, Equivalence prop-
erty, MP

p4q px` yq1 < py ` xq1 1, equivalence prop-
erty, MP

p5q x` y1 < py ` xq1 2, 4, (c.), MP

p6q x` y1 < y1 ` x 5, 3, (d.), MP

p7q $S x` y < y ` xÑ x` y1 < y1 ` x 1-6, deduction theo-
rem

By Gen$S @ypϕpyq Ñ ϕpy1qq. So, by (i), (ii) and the induction rule$S p@yqpx`y <
y ` xq. Then, by rule A4 and Gen $S t` r < r ` t

We will leave out the (j)-(o) poofs, since they take place like the ones above

Proposition 2.1.7. For any terms t, r, s, the following formulas are theorems of S

a. t ¨ pr ` sq < pt ¨ rq ` pt ¨ sq (distributivity)

b. pr ` sq ¨ t < pr ¨ tq ` ps ¨ tq (distributivity)

c. pt ¨ rq ¨ s < t ¨ pr ¨ sq (associativity of ¨)

d. t` s < r ` sÑ t < r (cancellation law for +)

Proof. Omitted, see E.Mendelson: “Introduction To Mathematical logic”, sixth edition,
2015[4]

Definition 2.1.8. We can define an inequality in S : t ă s for pDwqpw ‰ 0^w` t < sq,
t ď s for t ă s_ t < s, t ą s for s ă t and t ě s for s ď t

Proposition 2.1.9. For any terms t,r,s, the following are theorems: ␣pt ă tq, t ă
s Ñ ps ă r Ñ t ă rq, t ă s Ñ p␣ps ă tqq, t ă s Ñ t ` r ă s ` r, t ď t,
t ď s Ñ ps ď r Ñ t ď rq, 0 ď t, 0 ă t, t ă r Ø t1 ď r, t ď s Ø t1 ď r,
t ă t1, 0 ă 1, 1 ă 2, ..., t ‰ r Ñ pt ă r _ r ă tq, t < r _ t ă r _ r ă t,
t ď r _ r ď t, t ` r ě t, r ‰ 0 Ñ t ` r t, r ‰ 0 Ñ t ¨ r ě t, r ‰ 0 Ø r ą 0,
r ą 0Ñ pt ą 0Ñ r ¨t ą 0q, r ‰ 0Ñ pt ą 1Ñ t¨r ą rq, r ‰ 0Ñ pt ă sØ t¨r ă s¨rq,
r ‰ 0Ñ pt ď sØ t ¨ r ď s ¨ rq, ␣pt ă 0q, t ď r ^ r ď tÑ t < r

Proof. Omitted, see E.Mendelson: “Introduction To Mathematical logic”, sixth edition,
2015[4]

Definition 2.1.10. We define the ordinal n̄ as ppp0q1q1 ¨ ¨¨q1
looooomooooon

n times
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Proposition 2.1.11.

a. For any natural number k, $S x < 0_ ..._ x < k Ø x ď k

a’. For any natural number k ą 0 and for any formula ϕ, $S ϕp0q^ϕp1q^ ...^ϕpkq Ø
p@xqpx ď k Ñ ϕpxqq

b. For any natural number k ą 0, $S x < 0_ ..._ x < pk ´ 1q Ø x ă k

b’. For any natural number k ą 0 and any formula ϕ, $S ϕp0q ^ ... ^ ϕpk ´ 1q Ø
p@xqpx ă k Ñ ϕpxq

c. $S pp@xqpx ă y Ñ ϕpxqq ^ p@xqpx ě y Ñ Èpxqqq Ñ p@xqpϕpxq _ Èpxqq

Proof. Omitted, see E.Mendelson: “Introduction To Mathematical logic”, sixth edition,
2015[4]

Proposition 2.1.12.

a. Complete induction: $S p@xqpp@zqpz ă xÑ ϕpzqq Ñ ϕpxqq Ñ p@xqpϕpxqq

b. Least number principle: $S pDxqϕpxq Ñ pDyqϕpyq ^ p@zqpz ă y Ñ ␣ϕpzqq

Proof. a. Let Èpxq be p@zqpz ď xÑ ϕpzqq

i. p1q p@xqpp@zqpz ă xÑ ϕpzqq Ñ ϕpxqq Hyp

p2q p@zqpz ă 0Ñ ϕpzqq Ñ ϕp0q 1, rule A4

p3q ␣pz ă 0q Proposition 2.1.9

p4q p@zqpz ă 0Ñ ϕpzqq 3, tautology, Gen

p5q ϕp0q 2-4, MP

p6q p@zqpz ď 0Ñ ϕpzqq, i.e Èp0q 5, Proposition 2.1.11

p7q p@xqpp@zqpz ă xÑ ϕpzqq Ñ ϕpxq $S Èp0q 1-6

ii. p1q p@xqpp@zqpz ă xÑ ϕpzq Ñ ϕpxqq Hyp

p2q Èpxq, i.e., p@zqpz ď xÑ ϕpzqq Hyp

p3q p@zqpz ă x1 Ñ ϕpzqq 2, Proposition 2.1.9

p4q p@zqpz ă x1 Ñ ϕpzqq Ñ ϕpx1q 1, Rule A4

p5q ϕpx1q 3, Rule A4

p6q z ď x1 Ñ z ă x1 _ z < x1 Definition, tautology

p7q z ă x1 Ñ ϕpzq 3, rule A4

p8q z < x1 Ñ ϕpzq 5, (A7), substi-
tutability of equality
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p9q p@zqpz ď x1 Ñ ϕpzqq, i.e. Èpx1q 6, 7, 8, tautology,
Gen

p10q p@xqpp@zqpz ă x Ñ ϕpzqq Ñ ϕpxqq $S

p@xqpÈpxq Ñ Èpx1qq
1-9, deduction theo-
rem

By (i.) and (ii.), and the induction rule, we obtain À $S p@xqpÈpxqq, that is,
À $S p@xqp@zqpz ď xϕpzqq, where À is p@xqpp@zqpz ă x Ñ ϕpzqq Ñ ϕpxqq. Hence,
by rule A4 twice, À $S x ď xÑ ϕpxq. But $S x ď x. So, À $S ϕpxq, and, by Gen
and the deduction theorem $S À Ñ p@xqpϕpxqq

b. Omitted, see E.Mendelson: “Introduction To Mathematical logic”, sixth edition,
2015[4]

In the next proposition we will prove the existence of the division and the reminder
in PA.

Proposition 2.1.13.

$S y ‰ 0Ñ pDuqpDvqrx < y ¨ u` v ^ v ă y

^ p@u1qp@v1qppx < y ¨ u1 ` v1 ^ v1 ă yq Ñ u < u1 ^ v < v1qs
(2.9)

Proof. Let ϕpxq be y ‰ 0Ñ pDuqpDvqpx < y ¨ u` v ^ v ă yq

i. p1q y ‰ 0 Hyp

p2q 0 < y ¨ 0` 0 (S3’), (S5’)

p3q 0 ă y 1, Proposition 2.1.9

p4q 0 < y ¨ 0` 0^ 0 ă y 2, 3, conjunction

p5q pDuqpDvqp0 < y ¨ u` v ^ v ă yq 4, rule E4 twice

p6q y ‰ 0Ñ pDuqpDvqp0 < y ¨ u` v ^ v ă yq 1-5, deduction theorem

ii. p1q ϕpxq, i.e., y ‰ 0Ñ pDuqpDvqpx < y ¨u`v^v ă
yq

Hyp

p2q y ‰ 0 Hyp

p3q pDuqpDvqpx < y ¨ u` v ^ v ă yq 1, 2, MP

p4q x < y ¨ a` b^ b ă y 3, rule C twice

p5q b ă y 4, conjunction elimina-
tion

p6q b1 ď y 5, Prop 2.1.9.

p7q b1 ă y _ b1 < y 6, Definition
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p8q b1 ă y Ñ px1 < y ¨ a` b1 ^ b1 ă yq 4, (S4’), derived rules

p9q b1 ă y Ñ pDuqpDvqpx1 < y ¨ u` v ^ v ă yq 8, rule E4, deduction
theorem

p10q b1 < y Ñ x1 < y ¨ a` y ¨ 1 4, (S4’), Theorema

aIn S , t ¨ 1 < x is a the-
orem

p11q b1 < y Ñ px1 < y ¨ pa` 1q ` 0^ 0 ă yq 10, Proposition 2.1.7,
theorem, (S3’)a

asame as above

p12q b1 < y Ñ pDuqpDvqpx1 < y ¨ u` v ^ v ă yq 11, rule E4 twice, de-
duction theorem

p13q pDuqpDvqpx1 < y ¨ u` v ^ v ă yq 7, 9, 12, disjunction
elimination

p14q ϕpxq Ñ py ‰ 0Ñ pDuqpDvqpx1 < y ¨ u` v^ v ă
yqq, i.e., ϕpxq Ñ ϕpx1q

1-13, deduction theo-
rem

By (i.), (ii.), Gen and the induction rule, $S p@xqϕpxq. This establishes the existence
of a quotient u and a reminder v. To prove uniqueness: assume y ‰ 0. Assume x <
y ¨ u` v^ v ă y and x < y ¨ u1` v1^ v1 ă y. Now: u < u1 or u ă u1 or u1 ă u. If u1 < u

then v < v1 by Proposition 2.2.3. If now u ă u1, then u1 < u` w for some w ‰ 0. Then
y ¨u` v < y ¨ pu`wq` v1 < y ¨u` y ¨w` v1. Hence, v < y ¨w` v1. Since w ‰ 0, y ¨w ě y.
So, v < y ¨w`v1 ě y, contradicting v ă y. Hence ␣pu ă u1q. Similarly ␣pu1 ă uq. Thus,
u < u1. Since y ¨ u` v < x < y ¨ u1 ` v1, it follows that v < v1

Now, we have defined Peano Arithmetic, but in order to simplify future proofs we may
need a conservative extension of PA obtained by adding a symbol for every definition of
primitive recursive function of PA

2.1.2 Representable, Primitive Recursive and Recursive Func-
tions

Definition 2.1.14 (Representable functions). Let K be a first order theory with equal-
ity in the language LA (language of arithmetic). A number theoretic function f of n
arguments is said to be representable in K if and only if there is a formula ϕpx1, ..., xn, yq
of K with free variables x1, ..., xn, y such that, for any natural numbers k1, ..., kn,m, the
following hold:

1. If fpk1, ..., knq < m, then $K ϕpk1, ..., kn,mq

2. $K pD!yqϕpk1, ..., kn, yq

Definition 2.1.15 (Strongly representable functions). A representable number theoretic
function is said to be strongly representable if the following holds:
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2’ $K pD!yqϕpx1, ..., xn, yq

Remark 2.1.16. We can notice that strongly representability implies representability; in
fact we can obtain the representability with generalization and p@xqÈpxq $ Èptq (t is free
in È)

Proposition 2.1.17 (V.H. Dyson). If fpx1, ..., xnq is representable in K , then is strongly
representable in K

Proof. Assume f representable in K by a formula ϕpx1, ..., xn, yq. Then f is strongly
representable in K by the formula Èpx1, ..., xn, yq:

prpD!yqϕpx1, ..., xn, yqs ^ ϕpx1, ..., xn, yqq _ p␣rpD!yqϕpx1, ..., xn, yqs ^ y < 0q (2.10)

1. Assume fpk1, ..., knq < m. Then $K ϕpk1, ..., kn,mq and $K pD!yqϕpk1, ..., kn, yq.
So, by conjunction introduction and disjunction introduction, we get

$K Èpk1, ..., kn,mq

2’ We must show that $K pD!yqϕpx1, ..., xn, yq

Case 1. Take pD!yqϕpx1, ..., xn, yq as hypothesis. (i) It is easy, using rule C, to obtain
ϕpx1, ..., xn, bq, where b is a new individual constant. Together with our hypothesis
and conjunction and disjunction introduction, this yield Èpx1, ..., xm, bq and then, by
rule E4 pDyqÈpx1, .., xm, yq. (ii) Assume Èpx1, ..., xm, uq ^ Èpx1, ..., xm, vq. Now, from
Èpx1, ..., xm, uq and our hypothesis we obtain ϕpx1, ..., xm, uq and, in the same way, from
Èpx1, ..., xm, vq we obtain ϕpx1, ..., xm, vq and so, since f is representable, we get u < v.
The deduction theorem yields Èpx1, ..., xm, uq ^ Èpx1, ..., xm, vq Ñ u < v. Now, from (i)
and (ii) D!yqpÈpx1, ..., xm, yqq; thus we have proved

$K pD!yqϕpx1, ..., xn, yq Ñ pD!yqÈpx1, ..., xn, yq

Case 2. Take ␣pD!yqϕpx1, ..., xn, yq as hypothesis. (i) Our hypothesis, together with 0 = 0
(which is a theorem in K ) yields, by conjunction introduction, ␣pD!yqpϕpx1, ..xm, yq^0 <
0qq. By disjunction introduction, Èpx1, ..., xn, 0q and, by rule E4, pDyqÈpx1, ..., xn, yq. (ii)
Assume Èpx1, ..., xn, uq^Èpx1, ..., xn, vq; then from Èpx1, ..., xn, uq and our hypothesis fol-
lows that u < 0 and so, from Èpx1, ..., xn, vq follows v < 0. Hence u < v. By deduction
theorem Èpx1, .., xn, uq^Èpx1, ..., xn, vq Ñ u < v. From (i) and (ii), pD!yqpÈpx1, ..., xn, yqq.
Thus, we have proved $K ␣pD!yqϕpx1, ..., xn, yq Ñ pD!yqÈpx1, ..., xn, yq

Now, by case 1 and 2 and an instance of the tautology rpÈ Ñ Èq ^ p␣È Ñ ϕqs Ñ È, we
can obtain $K pD!yqÈpx1, ..., xn, yq. Then f is a strongly representable functions.

Remark 2.1.18. Since representable and strongly representable are equivalent we shall use
only “representable function” to refers to both representable and strongly representable

Definition 2.1.19 (Initial Functions). The following functions are called initial functions



Chapter 2. Presentation of Formal Systems 23

I. The zero function, Zpxq < 0 for all x

II. The successor function, Npxq < x` 1 for all x

III. The projection functions, Un
i px1, ..., xnq < xi for all x1, ..., xn

Definition 2.1.20. From the initial functions we can obtain new functions by:

i. Substitution: if fpx1, .., xnq < gphpx1, ..., xnq, ..., hmpx1, ..., xnqq then f is said to be
obtained by substitution from the function

gpy1, ..., ymq, h1px1, ..., xnq, ..., hmpx1, ..., xnq

ii. Recursion:

fpx1, ..., xn, 0q < gpx1, ..., xnq

fpx1, ..., xn, y ` 1q < hpx1, ..., xn, y, fpx1, ..., xn, yq

Here, we allow n < 0, in which case we have fp0q < k where k is a fixed natural
number.

fpy ` 1q < hpy, fpyq

We shall say that f is obtained from g and h (in the case in which n < 0 just h
alone) by recursion. The parameters of recursion are x1, ..., xn. Notice that f is
well defined: fpx1, ..., xn, 0q is given by the first equation, and if we already know
fpx1, ..., xn, yq then we can obtain fpx1, ..., xn, y ` 1q by the second equation.

Definition 2.1.21 (Primitive Recursive Function). A function f is said to be primitive

recursive if and only if it can be obtained from the initial functions by any finite number
of substitutions (i.) and recursions (ii.) - that is, if there is a finite sequence of functions
f0, ..., fn such that fn < f and for 0 ď i ď n, either fi is an initial function or fi comes
from the preceding functions in the sequence by an application of rules (i.) or (ii.)

We shall show that the class of recursive functions is identical with the class of repre-
sentable functions S

Remark 2.1.22. The initial functions are representable

Proof.

1. The zero function, Zpxq < 0, is representable in K by the formula formula x1 <
x1 ^ y < 0. For any k and m, if Zpkq < m, then m < 0 and $K k < k ^ 0 < 0;
that is, condition 1 (in definition 2.1.14) holds. Also it is easy to show that $K

pD!yqpx1 < x1 ^ y < 0q. Thus, condition 2’ (in definition 2.1.15) holds; so zero
function is representable.

2. The successor function Npxq < x` 1, is representable in K by the formula formula

y < x1
1
. For any k and m, if Npkq < m then m < k ` 1; hence, m is k

1
. Then

$K m < k
1
. It is easy to verify $K pD!yqpy < x1

1
q. Then successor function is

representable.
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3. The projection function Un
j px1, ..., xnq < xj is representable in K by x1 < x1 ^

x2 < x2 ^ ... ^ xn < xn ^ y < xj. If Un
j pk1, ..., knq < m, then kj < m. Hence

$K k1 < k1^ ...^ kn < kn^ kj < m. Thus, condition 1 (in definition 2.1.14) holds.
Also, $K pD!yqpx1 < x2 ^ ... ^ xn < xn ^ xj < yq, that is, the condition 2’ (in
definition 2.1.15) holds. Thus, projector functions are representable

Remark 2.1.23. Functions obtained by substitution on representable functions are repre-
sentable

Proof. Assume that the functions gpx1, ..., xmq, h1px1, ..., xnq, ..., hmpx1, ..., xnq are repre-
sentable in the theory with equality K by the formulas

ϕpx1, ..., xm, zq, È1px1..., xn, y1q, ..., Èmpx1, ..., xn, ymq

Define f by substitution:

fpx1, ..., xnq < gph1px1, ..., xnq, ..., hmpx1, ..., xnqq

Then f is strongly representable by formula Àpx1, ..., xn, zq:

pDy1q...pDymqpÈ1px1, ..., xn, y1q ^ ...^ Èmpx1, ..., xn, ymq ^ ϕpx1, ..., xm, zqq

To prove condition 1 (in definition 2.1.14), let fpk1, ..., knq < p. Let hjpki, ..., knq < rj
for 1 ď j ď m; then gpr1, ..., rmq < p. Since ϕ, È1, ..., Èm represent g, h1, ..., hm, we
have $K Èjpk1, ..., kn, rjq for 1 ď j ď m, and $K ϕpr1, ..., rm, pq. So, by conjunction
introduction, $K È1pk1, ..., kn, r1q ^ ... ^ Èmpk1, ..., kn, rmq ^ ϕpr1, ..., rm, pq. Hence, by
rule E4, $K Àpk1, ..., kn, pq. Thus, condition 1 holds. Now we shall prove the condition 2’
(in definition 2.1.15). Assume Àpx1, ..., xn, uq ^ Àpx1, ..., xn, vq, that is

pDy1q...pDymqpÈ1px1, ..., xn, y1q ^ ...^ Èmpx1, ..., xn, ymq ^ ϕpx1, ..., xm, uqq (2.11)

and

pDy1q...pDymqpÈ1px1, ..., xn, y1q ^ ...^ Èmpx1, ..., xn, ymq ^ ϕpx1, ..., xm, vqq (2.12)

By remark 2.11, using rule C m times:

È1px1, ..., xn, b1q ^ ...^ Èmpx1, ..., xn, bmq ^ ϕpb1, ..., bm, uq (2.13)

By remark 2.12, using rule C again:

È1px1, ..., xn, c1q ^ ...^ Èmpx1, ..., xn, cmq ^ ϕpc1, ..., cm, vq (2.14)

Since $K pD!yqÈjpx1, ..., xn, yjq we obtain from Èjpx1, ..., xn, bjq and Èjpx1, ..., xn, cjq that
bj < cj. From ϕpb1, ..., bm, uq and b1 < c1, ..., bm < cm we have ϕpc1, ..., cm, uq; this, with
$K pD!yqpϕpx1, ..., xm, zqq and ϕpc1, ..., cm, vq, yields u < v. Thus, we have shown $K

Àpx1, ..., xn, uq^Àpx1, ..., xn, vq Ñ u < v. Now, it is easy to prove that$K pDzqÀpx1, ..., xn, zq.
Hence, $K pD!zqÀpx1, ..., xn, zq. So condition 2’ (in definition 2.1.15) is proven, and then
f is representable.
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Proposition 2.1.24. Let gpy1, ..., ynq be primitive recursive. Let x1, ..., xn be distinct
variables and, for 1 ď i ď k, let zi be one of x1, ..., xn. The the function f such that
fpx1, ..., xnq < gpz1, ..., zkq is primitive recursive (or recursive)

Proof. Let zi < xji , where 1 ď ji ď n. Then zi < Un
ji
px1, ..., xnq. Thus,

fpx1, ..., xnq < gpUn
j1
px1, ..., xnq, ..., U

n
jk
px1, ..., xnqq

and therefore f is a primitive recursive (or recursive), since it arise from g, Un
j1
, ..., Un

jk
by

substitution.

Corollary 2.1.25.

a. The zero function Znpx1, ..., xnq < 0 is primitive recursive

b. The constant function Cn
k px1, ..., xnq < k, where k is a fixed natural number, is

primitive recursive

c. The substitution rule can be extended to the case where each hi may be a function
of some but not not necessarily all of the variables. Likewise, in the recursione rule,
the function g may not involve all the variables x1, ..., xn, y or fpx1, ..., xn, yq and h
may not involve all of the variables x1, ..., xn, y, or fpx1, ..., xn, yq

Proof.

a. In Proposition 2.2.2, let g be the zero function Z; then k < 1. Take z1 to be x1

b. Use mathematical induction. For k < 0, this is part (a). Assume Cn
k prim-

itive recursive. Then Cn
k`1
px1, ..., xnq is primitive recursive by the substitution

Cn
k`1
px1, ..., xnq < NpCn

k px1, ..., xnqq

c. By Proposition 2.2.2, any possible variables among x1, ..., xn not involved in a func-
tion can be added as dummy variables. For examples, if hpx1, x3q is primitive
recursive, then h˚px1, x2, x3q < hpx1, x2q < hpU3

1
px1, x2, x3q, U

3

3
px1, x2, x3qq is also

primitive recursive since it is obtained by a substitution.

Proposition 2.1.26. The following functions are primitive recursive:

a. x` y

b. x ¨ y

c. xy

d. ¶pxq <

#

x´ 1 if x ą 0

0 if x < 0

¶ is called predecessor function
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e. x ´ y <

#

x´ y if x ě y

0 if x ă 0

f. |x´ y| <

#

x´ y if x ě y

y ´ x if x ă y

g. sgpxq <

#

0 if x < 0

1 if x ‰ 0

h. sgpxq <

#

1 if x < 0

0 if x ‰ 0

i. x!

j. minpx, yq = minimum of x and y

k. minpx1, ..., xnq

l. maxpx, yq = maximum of x and

m. maxpx1, ..., xnq

n. rmpx, yq = remainder upon division of y by x

o. qtpx, yq = quotient upon division of y by

p. fpx, yq < rmpqtpy, 2xq, 2q

Proof.

a. Apply recursion rule: x ` 0 < 0 or fpx, 0q < U1

1
pxq and x ` py ` 1q < Npx ` yq or

fpx, y ` 1q < Npfpx, yqq4

b. Using (a): x ¨ 0 < 0 or gpx, 0q < Zpxq and x ¨ py ` 1q < px ¨ yq ` x or gpx, y ` 1q <
fpgpx, yq, xq

c. x0 < 1, xpy`1q < pxyq ¨ pxq5

d. ¶p0q < 0, ¶py ` 1q < y

e. x ´ 0 < x, x ´ py ` 1q < ¶px ´ yq

f. |x´ y| < px ´ yq ` py ´ xq (substitution)

g. sgpxq < x ´ ¶pxq (substitution)

h. sgpxq < 1 ´ sgpxq

4since we are working in S , every nonzero element can be expressed as successor of another element
5since now we will imply functional notation
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i. 0! < 1, py ` 1q! < py ` 1q ¨ py!q

j. minpx, yq < x ´ px ´ yq

k. Assume minpx1, ..., xn, xn`1q already shown primitive recursive, then:

minpx1, ..., xn`1q < minpminpx1, ...xnq, xn`1q

l. maxpx, yq < y ` px ´ yq

m. As in (k): maxpx1, ..., xn`1q < maxpmaxpx1, ..., xnq, xn`1q

n. rmpx, 0q < 0, rmpx, y ` 1q < Nprmpx, yqq ¨ sgp|x´Nprmpx, yqq|q

o. qtpx, 0q < 0, qtpx, y ` 1q < qtpx, yq ` sgp|x´Nprmpx, yqq|q

p. fpx, yq is obtained by substitution over remainder and exponentiation, that are
primitive recursive functions

To justify (n) and (o): if q and r are the quotient and the reminder upon the division of
y by x, then y < qx ` r, and 0 ď r ă x. So, y ` 1 < qx ` pr ` 1q. If r ` 1 ă x (that is
|x´Nprmpx, yqq| ą 0) then the quotient and the reminder upon the division of y ` 1 by
x are q and r ` 1. If r ` 1 < x (that is |x´Nprmpx, yqq| < 0) then y ` 1 < pq ` 1qx and
quotient and reminder are q ` 1 and 0

Definition 2.1.27. Now we can define a primitive recursive relation that will be funda-
mental for our discussion. We say that x Ắ y iff rmpqtpy, 2xq, 2q < 1.

Remark 2.1.28. x Ắ y is a primitive recursive relation since rmpqtpy, 2xq, 2q is a primitive
recursive function

Lemma 2.1.29 (Gödel’s ´-Function). Let ´px1, x2, x3q < rmp1` px3` 1q ¨ x2, x1q. Then
´ is primitive recursive, by proposition 2.1.26. Also, ´ is strongly representable in S by
the following formula formula Btpx1, x2, x3, yq:

pDwqppx1 < p1` px3 ` 1q ¨ x2q ¨ w ` yq ^ py ă 1` px3 ` 1q ¨ x2qq (2.15)

Proof. By Proposition 2.1.13 $S pD!yqBtpx1, x2, x3, yq. Assume ´pk1, k2, k3q < m. Then
k1 < p1`pk3`1q ¨k2q ¨k`m for some k, and m ă 1`pk3`1q ¨k2. So, $S k1 < p1`pk3`
1q ¨ k2q ¨ k`m by numerals property. Moreover, $S m ă 1`pk3` 1q ¨ k2 by expressibility
of ă and numerals property. Hence, $S k1 < p1`pk3`1q¨k2q¨k`m^m ă 1`pk3`1q¨k2
from which, by rule E4, $S Btpk1, k2, k3,mq. Thus, by Bt, ´ is strongly representable in
S

Lemma 2.1.30. For any sequence of natural number k0, k1, ..., kn, there exist natural
numbers b and c such that ´pb, c, iq < ki for 0 ď i ď n



28 Chapter 2. Presentation of Formal Systems

Proof. Let j < maxpn, k1, .., knq and let c < j!. Consider the numbers ui < 1 ` pi ` 1qc
for 0 ď i ď n; no two of them have a factor in common other than 1. In fact, if p where
a prime dividing both 1 ` pi ` 1qc and 1 ` pm ` 1qc with 0 ď i ă m ď n, then p would
divide their difference pm ´ iqc. Now, p does not divide c, since, in that case p would
divide both pi` 1qc and 1`pi` 1qc, and so would divide 1, which is impossible. Hence, p
also does divide pm´ iq; for m´ i ď n ď j and so, m´ i divides j! < c. If p divided m´ i,
then p would divide c. Therefore, p does not divide pm´ iqc which yields a contradiction.
Thus, the numbers ui, 0 ď i ď n, are relatively prime in pairs. Also, for 0 ď i ď n,
ki ď j ď j! < c ă 1 ` pi ` 1qc < ui; that is, ki ă ui. Now, by the Chinese remainder
theorem, there is a number b ă u0u1...un such that rmpui, bq < ki for 0 ď i ď n. But
´pb, c, iq < rmp1` pi` 1qc, bq < rmpui, bq < ki.

The lemmas 2.1.29 and 2.1.30 allows us to express in S assertion about finite se-
quences of natural numbers, and this is crucial to to prove the representability of recursive
functions

Proposition 2.1.31. Every primitive recursive function in S is representable in S .

Proof. The initial functions Z,N and U i
n are representable in S , by remark 2.1.22. The

substitution rule does not lead out of the class of representable function, by remark 2.1.23.
For the recursion rule, assume that gpx1, ..., xnq and hpx1, ..., xn, y, zq are representable in
S by formula ϕpx1, .., xn`1q and Èpx1, ..., xn`3q, respectively, and let

fpx1, ..., xn, 0q < gpx1, ..., xnq (2.16)

fpx1, ..., xn, y ` 1q < hpx1, ..., xn, y, fpx1, ..., xn, yqq (2.17)

Now, fpx1, ..., xn, yq < z if and only if there is a finite sequence of numbers b0, ..., by, such
that b0 < gpx1, ..., xnq, bw`1 < hpx1, ..., xn, w, bwq for w ` 1 ď y, and by < z. But, by
lemma 2.1.30, reference to finite sequences can be formulated in therms of the function ´
and, by lemma 2.1.29, ´ is representable in S by the formula Btpx1, x2, x3, yq. We now
shall show that fpx1, ..., xn, xn`1q is representable in S by the formula Àpx1, ..., xn`2q:

pDuqpDvqrppDwqpBtpu, v, 0, wq ^ ϕpx1, ..., xn, wqqq ^Btpu, v, xn`1, xn`2q

^ p@wqpw ă xn`1 Ñ pDyqpDzqpBtpu, v, w, yq ^Btpu, v, w1, zq ^ Èpx1, ..., xn, w, y, zqqqs

(2.18)

i. First, assume that fpx1, ..., xn, pq < m. We wish to show that $S Àpk1, ..., kn, p,mq.
If p < 0, then m < gpk1, ..., knq. Consider the sequence consisting of m alone. By
lemma 2.1.30, there exist b and c such that ´pb, c, 0q < m. Hence, by lemma 2.1.29:

$S Btpb, c, 0,mq (2.19)

Also, since m < gpk1, ..., knq, we have $S ϕpk1, ..., kn,mq. Hence, by rule E4,

$S pDwqpBtpb, c, 0, wq ^ ϕpk1, ..., kn, wqq (2.20)
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In addition, since $S ␣pw ă 0q, a tautology and Gen yield

p@wqpw ă 0Ñ pDyqpDzqpBtppb, c, w, yq

^ pBtpb, c, w1, zq ^ Èpk1, ..., kn, w, y, zqqqq
(2.21)

Applying rule E4 to conjunction of 2.38, 2.39, 2.40, we obtain $S Àpk1, ..., kn, 0,mq.
Now, for p ą 0, fpk1, ..., kn, pq is calculated from the equation 2.36 in p ` 1 steps.
Let ri < fpk1, ..., kn, iq. For the sequence of numbers r0, r1, ..., rp, there are, by
lemma 2.1.29, numbers b, and c such that ´pb, c, iq < ri for 0 ď i ď p. Hence, by
Lemma 2.1.30, $S Btpb, c, i, riq. In particular, ´pb, c, 0q < r0 < fpk1, ..., kn, 0q <
gpk1, ..., knq. Therefore, $S Btpb, c, 0, r0q ^ ϕpk1, ..., kn, r0q, and, by rule E4,

(i) $S pDwqpBtpb, c, 0, yq ^ ϕpk1, ..., kn, wqq

Since rp < fpk1, ..., kn, pq < m, we have ´pb, c, pq < m. Hence,

(ii) $S Btpb, c, p,mq.

For 0^ i^ p´ 1, ´pb, c, iq < ri < fpki, ..., kn, iq and

´pb, c, i` 1q < ri`1 < fpk1, ..., kn, i` 1q <

hpk1, ...kn, i, fpk1, ..., kn, iqq < hpk1, ..., kn, i, riq

Therefore, $S Btpb, c, i, riq ^ Btpb, c, i1, i` 1q ^ Èpk1, ..., kn, i, ri, ri`1q. By rule E4,
$S pDyqpDzqpBtpb, c, i, yq ^ Btpb, c, i1, zq ^ Èpk1, ..., kn, i, y, zqq. So, by Proposition
2.1.11,

(iii) $S p@wqpw ă pÑ pDyqpDzqpBtpb, c, w, yq^Btpb, c, w1, zq^Èpk1, ..., kn, w, y, zqqq.

Then applying rule E4 twice to the conjunction of (i), (ii) and (iii), we obtain
$S Àpk1, ..., kn, p,mq. Thus, we have verified condition 1 in definition 2.1.14

ii. We must show that $S pD!xn`2qÀpk1, kn, p, xn`2q. The proof is by induction of p in
the metalanguage. Notice that, by what we have proved above, it suffices to prove
only uniqueness.
The case of p < 0 is trivial. Assume $S pD!xn`2qÀpk1, ..., kn, p, xn`2q. Let ³ <
gpk1, ..., knq, ´ < fpk1, ..., kn, pq, and µ < fpk1, ..., kn, p ` 1q < hpk1, ..., kn, p, ´q.
Then

1. $S Èpk1, ..., kn, p, ´, µq

2. $S ϕpk1, ..., kn, ³q

3. $S Àpk1, ..., kn, p, ´q

4. $S Àpk1, ..., kn, p` 1, µq

5. $S pD!xn`2qÀpk1, ..., kn, p, xn`2q
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Now, assume
Àpk1, ..., kn, p` 1, xn`2q (2.22)

We must prove xn`2 < µ. From 2.41, by rule C,

a. pDwqpBtpb, c, 0, wq ^ ϕpk1, ..., kn, wqq

b. Btpb, c, p` 1, xn`2q

c. p@wqpw ă p` 1Ñ pDyqpDzqpBtpb, c, w, yq ^Btpb, c, w1, zq ^
Èpk1, ..., kn, w, y, zqqq

d. From (c): p@wqpw ă pÑ pDyqpDzqpBtpb, c, w, yq ^Btpb, c, w1, zq ^
Èpk1, ..., kn, w, y, zqqq

e. From (c) by rule A4 and rule C:

Btpb, c, p, dq ^Btpb, c, p` 1, eq ^ Èpk1, ..., kn, p, d, eq

f. From (a), (d), and (e): Àpk1, ..., kn, p, dq

g. From (f), (5) and (3): d < ´

h. From (e) and (g), Èpk1, ..., kn, ´, eq

i. Since ´ represents h, we obtain from (1) and (h): µ < e

j. From (e) and (i): Btpb, c, p` 1, µq

k. From (b), (j) and Lemma 2.1.29: xn`2 < µ

This concludes the induction.

2.1.3 Extended Peano Arithmetic Theory

Ackermann encoding translates the membership relation into a primitive recursive rela-
tion based on binary expansion in PA. Therefore we will need an extension of PA that
has a symbol for each definition of recursive primitive function, and which therefore can
internalize the translation of the set-theoretic membership relation via Ackermann en-
coding. This subsection will be dedicated to define this conservative extension, namely
Extended Peano Arithmetic (PA’), and to prove that PA and PA’ are equiconsistent

Definition 2.1.32. Let LA be the language of arithmetic (definition 2.1.1), then let L1
A

be the language obtained adding to LA a functional symbol fn
i for every definition of

primitive recursive function f on S 6

Definition 2.1.33. Let L1
A be the language in definition 2.1.32, then we can define a

first order theory T over L1
A with the same logical axioms of S and, for proper axioms:

6Since the classes of recursive and representable functions are the same we can notice that we are
adding at least ℵ0 new symbols
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• The same axioms of S , as well as every instance of them involving terms of the
extended language, and:

• Let f be a symbol for a definition of a primitive recursive function of arity n in S

with ϕipx1, ..., xn, yq the formula that represents f in S , where ϕi is constructed as in
the proof of Proposition 2.1.317. Now, let fn

i be the functional symbol corresponding
to the definition of f . Then, for fn

i we shall add the proper axiom:

@x1, ..., @xnϕipx1, ..., xn, f
n
i px1, ..., xnqq (2.23)

The theory T is called Extended Peano Arithmetic

Proposition 2.1.34. Let f be a primitive recursive function defined by recursion over
g, h and let ϕ the formula that represent f according to proposition 2.1.31. Let ϕ1, ϕ2 the
formulas that represent respectively g and h, then the following hold:

$S ϕpx1, ..., xn, 0, hq Ø ϕ1px1, ..., xn, hq

$S ϕpx1, ..., xn, y ` 1, hq Ø Dzpϕ2px1, ..., xn, y, h1, hq ^ ϕpx1, ..., xn, y, zqq

where h1 is such ϕpx1, .., xn, y, h1q

Proof. Let $S ϕpx1, ..., 0, hq. Then, since $S @w␣pw ă 0q

ϕpx1, ...., 0, hq $S DuDvpDwpBtpu, v, 0, wq ^ ϕ1px1, ..., xn, wqq ^Btpu, v, 0, hqq

Now, since $S D!yBtpx1, x2, x3, yq, w and h must be equal. Thus:

ϕpx1, ..., xn, 0, hq $S ϕ1px1, ..., xn, hq

Now, let $S ϕ1px1, ..., xn, hq. Then, let k0 < h be a sequence of only one natural, then,
by lemma 2.1.29:

piq $S DuDvpBtpu, v, 0, hqq

And, by Hypotheses:

piiq ϕ1px1, ..., xnq $S DuDvpBtpu, v, 0, hq ^ ϕ1px1, ..., xn, hqq

Then, since $S @w␣pw ă 0q, by a tautology and Gen:

piiiq @wpw ă 0Ñ pDyqpDzqpBtpb, c, w, yqq ^ pBtpb, c, w1, zq ^ ϕ2pk1, ..., kn, w, y, zqqq

Applying rule C on piiq and E4 twice to the conjunction of piq, piiq and piiiq, we obtain
ϕpx1, ..., xnq $S ϕpx1, ..., xnq. Thus $S ϕpx1, ..., xn, 0, hq Ø ϕ1px1, ..., xn, hq

Now, we have to prove $S ϕpx1, ..., xn, y ` 1, hq Ø ϕ2px1, ..., xn, y, h1, hq.
Let $S ϕpx1, ..., xn, 0` 1, hq, then, by definition of ϕ in 2.1.31 the following holds:

pDuqpDvqrppDwqpBtpu, v, 0, wq ^ ϕ1px1, ..., xn, wqqq ^Btpu, v, 1, hq

^ p@wqpw ă 1Ñ pDaqpDbqpBtpu, v, w, aq ^Btpu, v, w1, bq ^ ϕ2px1, .., xn, a, bqqqs

7Considering also the equivalence between representable and strongly representable functions
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Then, we have that w in the last part of the sentence could be only 0, and in that case
we would have

pDuqpDvqrppDmqpBtpu, v, 0,mq ^ ϕ1px1, ..., xn,mqqq ^Btpu, v, 1, hq

^ p0 ă 1Ñ pDaqpDbqpBtpu, v, 0, aq ^Btpu, v, 0` 1, bq ^ ϕ2px1, .., xn, a, bqqqs

from which, by $S D!yBtpx1, x2, x3, yq, a < m and h < b. Then, by property of the
conjunction, ϕpx1, ..., xn, 0 ` 1, hq $S ϕ1px1, ..., xn,m, hq. Now, we can generalize this
prove. Let $S ϕpx1, ..., xn, y ` 1, hq, then

pDuqpDvqrppDwqpBtpu, v, 0, wq ^ ϕ1px1, ..., xn, wqqq ^Btpu, v, y ` 1, hq

^ p@wqpw ă y ` 1Ñ pDaqpDbqpBtpu, v, w, aq ^Btpu, v, w1, bq

^ ϕ2px1, .., xn, a, bqqqs

We can define for every, w ă y ` 1, aw and bw such as

pw ă y ` 1Ñ pDaqpDbqpBtpu, v, w, aq ^Btpu, v, w1, bq ^ ϕ2pa, bqqq

Then, since Bt is representable, ai < bi´1, a0 < m, by < h. Also, for all w, by conjunction
proprieties ϕ $S ϕ2px1, ..., xn, bw´1, bwq in particular ϕ $S ϕ2px1, ..., xn, by´1, hq.
In order to conclude the proof we can work as in proposition 2.1.31 to prove

ϕ1px1, ..., xn, bw`1, hq $S ϕpx1, ..., xn, y ` 1, hq

Remark 2.1.35. Let fn be a functional symbol in L1
A defined in T by

@x1, ..., @xnϕipx1, ..., xn, f
n
i px1, ..., xnqq

then, if ϕi is defined as in proposition 2.1.31, that is, if it is defined by recursion in S ,
the following hold:

$T fpx1, ..., xn, 0q < gpx1, ..., xnq

$T fpx1, ..., xn, y ` 1q < hpx1, ..., xn, y, fpx1, ..., xn, yqq

where g and h are functional symbols defined by ϕ1, ϕ2 involved in ϕi

Proof. By proposition 2.1.34 the following hold

$S ϕpx1, ..., xn, 0, hq Ø ϕ1px1, ..., xn, hq

$S ϕpx1, ..., xn, y ` 1, hq Ø ϕ2px1, ..., xn, y, h1, hq

But, by proposition 1.3.6

$T ϕpx1, ..., xn, 0, hq Ø ϕ1px1, ..., xn, hq

$T ϕpx1, ..., xn, y ` 1, hq Ø ϕ2px1, ..., xn, y, h1, hq
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But we have as proper axioms

@x1, ..., @xnϕipx1, ..., xn, fpx1, ..., xnqq

@x1, ..., @xnϕ1px1, ..., xn, gpx1, ..., xnqq

@x1, ..., @xnϕ2px1, ..., xn, hpx1, ..., xnqq

Then

$T fpx1, ..., xn, 0q < gpx1, ..., xnq

$T fpx1, ..., xn, y ` 1q < hpx1, ..., xn, y, fpx1, ..., xn, yqq

Lemma 2.1.36. The following are theorems of PA’:

PA’ $ 20 < 1

PA’ $ qtpb, 1q < b

PA’ $ qtp2c, 2a`1q < qtpc, 2aq

PA’ $ qtp2c` 1, 2a`1q < qtpc, 2aq

Then, we have:

PA’ $ pa` 1q Ắ 2cØ a Ắ c

PA’ $ pa` 1q Ắ p2c` 1q Ø a Ắ c

Lemma 2.1.37. In PA’ the following holds:

PA’ $ b ď aÑ b ă 2a

PA’ $ b ă 2a Ñ qtpb, 2aq < 0

Thus,

PA’ $ a Ắ bÑ a ă b

Proposition 2.1.38. The extended Peano arithmetic T is a conservative extension of
Peano arithmetic S

S ◁ T (2.24)

Proof. By definition 2.1.32 LA Ă L1
A. Let ϕ be a sentence in LA, that is, a sentence

that does not contain any fn
i . Then, by definition 2.1.32 $T ϕ ñ$S ϕ. Since every

proper axiom of S is also a proper axioms of T , then, if ϕ does not contain any fn
i ,

$S ϕñ$T ϕ. Thus, S ◁ T

Remark 2.1.39. Since T is a conservative extension of S , then

ConspS q ñ ConspT q (2.25)
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Theorem 2.1.40. S and T are equiconsistent

ConspS q ðñ ConspT q (2.26)

Proof. From Definition 1.2.6, since $S 0 ‰ 1 by (S1), S is inconsistent if and only if
$S 0 < 1. Now, since 0 < 1 involves only terms of LA and S ◁T , then $S 0 < 1 ðñ
$T 0 < 1. Thus, InconpT q ðñ $T 0 < 1. This yields to InconpT q ðñ InconpS q,
and then: ConspT q ðñ ConspS q

Remark 2.1.41. Since now we will use PA instead of S and PA’ instead of T

2.1.4 Primitive Recursive Aritithmetic

Primitive Recursive Arithmetic (PRA) is a finitistic formalization of the natural numbers,
proposed by Skolem in 1923. It is weaker than PA since it does not have quantifier and
can only formalize primitive recursive arguments. We will use PRA as meta-theoretic
assumption to formalize our translations between ZF-Inf and PA, this means that our
equiconsistency proof can be proved finistically

Definition 2.1.42. The language of PRA consists of

• A countably infinite number of variables

• The propositional connective

• A predicate letter A2

1
also written as <, an individual constant 0, a functional symbol

with arity 1 f 1

1
also written as Spq - successor function - and a functional symbol

fn
i for every definition of primitive recursive funciton

Definition 2.1.43. The logical axioms of PRA are:

• Tautologies of the propositional calculus

• Usual axioms of equality for ” < ”

The logical rules are the modus ponens and the variable substitution

Definition 2.1.44. The non logical axiom of PRA are:

• Spxq ‰ 0

• Spxq < Spyq Ñ x < y

as well as every recursive definition of every primitive recursive function, that is:

• fpx1, ..., xn, 0q < gpx1, ..., xnq

• fpx1, ..., xn, Spyqq < hpx1, ..., xn, y, fpx1, ..., xn, yqq

PRA replaces the axiom of induction with the rule of induction:
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ϕp0q ϕpxq Ñ ϕpSpxqq

ϕpxq

Remark 2.1.45. Lemmas 2.1.36 and 2.1.37 are still valid in PRA. Since m Ắ n is a
primitive recursive relation, then it is formalized in PRA as well as other primitive
recursive functions and relations

2.2 Zermelo-Fraenkel Without Infinity Axiomatic Set

Theory

In this section, we will define the axiomatic theory of sets by Zermelo-Fraenkel without the
axiom of infinity. We will develop some results regarding ordinals, transfinite induction,
and transfinite recursion with the aim of defining a conservative extension of ZF-Inf,
denoted as ZFord-Inf, which includes symbols for finite ordinals and their operations.
We will conclude the section by elaborating on a theory equivalent to ZF-Inf, called
ZF’-Inf, obtained by weakening the axioms of union and power and eliminating some
non-independent axioms such as the axiom of empty set and pair.

2.2.1 Zermelo-Fraenkel Theory

Definition 2.2.1. Let L be a first order language with two predicate letters A2

1
(in future

we will write a < b instead of A2

1
pa, bq) and A2

2
(we will write a P b instead of A2

2
pa, bq). L

is the language of ZF

Definition 2.2.2 (ZF). Let L be the first order language in definition 2.2.1. Then the
Zermelo Fraenkel theory, ZF, is the first order theory over L with equality (in which A2

1

is the equality), with the following proper axioms

ZF 1. Extensionality.
@zpz P xØ z P yq Ñ x < y (2.27)

ZF 2. Empty Set.
Dx@ypy R xq (2.28)

ZF 3. Foundation.

Dypy P xq Ñ Dypy P x^␣Dzpz P x^ z P yqq (2.29)

ZF 4. Paring.
@x@yDzpw P z Ø pw < x_ w < yqq (2.30)

ZF 5. Union.
@xDy@zpz P y Ø Dv P x^ z P vq (2.31)

ZF 6. Power Set.
@zDyp@wpw P z Ñ w P xq Ø z P yq (2.32)
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ZF 7. Separation Scheme. For each formula ϕ without y free,

@xDy@zpz P y Ø z P x^ ϕpzqq (2.33)

ZF 8. Replacement Scheme. Let φ be a formula formula of L

@xD!yφpx, yq Ñ @aDb@ypy P bØ Dx P aφpx, yqq (2.34)

ZF 9. Infinity.

DxpDupu P x^p@vpv R uqqq^@zpz P xÑ Dypy P x^@wpw P y Ø pw P z_w < zqqqqq
(2.35)

Remark 2.2.3. From now we will use Ď, Ă, Ppxq and H with the usual meaning

Definition 2.2.4 (ZFC). We can define ZFC as ZF with the addition of axiom of
choice

x ‰ 0^ a Ď PpxqzH ^ a ‰ H Ñ Dc : aÑ x@z P apcpzq P zq (2.36)

Definition 2.2.5. We denote ZF with the axiom of infinity deleted as ZF-Inf

Remark 2.2.6. Since now we will work, unless otherwise specified, in ZF-Inf

Now we will develop some set theoretic results, necessary for our discussion. We take
the book by Kunen[3] as reference.

Definition 2.2.7 (successor). Let x a set, than we can define is successor as spxq < xYtxu

Definition 2.2.8. Using Pair, Empty and Union we can define naturals numbers in terms
of sets

0 < H 1 < t0u < tHu < sp0q 2 < t0, 1u < tH, tHuu < sp1q

we can define the natural number n as n < spsp¨ ¨ ¨p0qqq
looooomooooon

k times

. They are called finite ordinals

Definition 2.2.9 (sums and products of finite ordinals). Let x and y (since y is a finite
ordinal y < 0 or Dz y < spzq) be two finite ordinal, then we define sums and products as

x` 0 < x

x` spzq < spx` zq

and

x ¨ 0 < 0

x ¨ spzq < x ¨ z ` x

Remark 2.2.10. We gave an informal definition of sum and product of finite ordinals; it
would be natural to justify it by recursion on É. But É is not a set in ZF-Inf. To justify
a recursive definition over a class we will need the transfinite recursion theorem, that we
will discuss in the next section



Chapter 2. Presentation of Formal Systems 37

Definition 2.2.11. x is transitive if @y P xpy Ď xq

Definition 2.2.12 (Ordinals). ³ is a ordinal if ³ is transitive and it is totally ordered by
P8

Proposition 2.2.13. ³ is an ordinal if and only if ³ is transitive and is well ordered by
P9

Lemma 2.2.14. If ³ is an ordinal, then sp³q is an ordinal. Hence, the sets 0, 1, ...sp³q
are all ordinals

Definition 2.2.15. Let ³ and ´ be ordinals, then we define ³ ă ´ as ³ P ´ and ³ ď ´

as ³ P ´ _ ³ < ´. ON denotates the proper class of all ordinals10

Proposition 2.2.16. ON is well order by P

Proposition 2.2.17. if X is a subset of ON and X is transitive, then XPON

Lemma 2.2.18. If ³,´ are ordinals, then ³ Y ´ and ³ X ´ are ordinals, with ³ Y ´ <
maxp³, ´q and ³ X ´ < minp³, ´q

Lemma 2.2.19. If ³ is any ordinal, then Sp³q is an ordinal, ³ P Sp³q and, for all ordinals
µ: µ ă sp³q if and only if µ ď ³

Lemma 2.2.20. If ³ and ´ are ordinals and sp³q < sp´q then ³ < ´

Proof. We can proceed by contradiction. Let us suppose ³ ‰ ´. Then, by definition of
successor function ³ P sp³q, but sp³q < sp´q. Thus, ³ P sp´q. Now, since ³ ‰ ´ then
³ P ´. In the same way we get ´ P ³. This contradicts the axiom of foundation.

Definition 2.2.21. An ordinal ´ is

• a successor ordinal if ´ < sp³q for some ³

• a limit ordinal if ´ ‰ 0 and ´ is not a successor ordinal

• a natural number if every ³ ď ´ is either 0 or a successor

Lemma 2.2.22. If n is a natural number, then spnq is also a natural number and every
element of n is a natural number

Definition 2.2.23. We can define the class of natural number as

É < tn : n is a natural numberu

Remark 2.2.24. Without assuming the axiom of infinity we cannot claim that É exists
(that is, É is a set). But we can prove induction also on class

8that is, @y@zpy < z _ y P z _ z P yq
9That is, every subset of x has minimum for P

10By proper class we mean an informal collection of objects. A proper class is not a set and it is not
an object of the theory; so it is a way to talk about an arbitrary collection of elements in a complete
informal way
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Theorem 2.2.25 (Principle of Ordinary Induction). For any class X: if H P X and
@y P Xpspyq P Xq, then X contains all natural numbers

Proof. Suppose that n is a natural number and n R X. Then n P spnqzX, so spnqzX ‰ H.
spnq is well ordered, so, let m be the least element of spnqzX. Then m ‰ 0 since 0 P X,
and m ‰ spyq for any y, so m is not a natural number, contradicting lemma 2.2.22

In ZF-Inf it is impossible to prove that É is a set, thus we need to justify the definition
of sums and products of finite ordinals given in 2.2.9. From an informal standpoint it
is clear that our definition of sums and products is given by recursion, but we need to
justify it in terms of transfinite recursion.

Definition 2.2.26. R is a binary relation if R is a set of ordinate pair, that is,

@u P RDxDyru <ă x, y ąs 11

xRy stances for ă x, y ąP R
R is sad to be transitive iff @x@y@z P ArxRy ^ yRz Ñ zRzs

Definition 2.2.27. For any set R, we can define:

dompRq < tx : Dyrpx, yq P Rsu ranpRq < ty : Dyrpx, yq P Rsu

Definition 2.2.28. R æ A :< tpx, yq P R : x P Au

Definition 2.2.29. R is well-founded on A if every non empty subset of A contains an
R-minimal element

Remark 2.2.30. In this definition we are not asking that A is a set

Lemma 2.2.31. The axiom of foundation is equivalent to the statement that P relation
is well-founded on V < tx : x < xu

Definition 2.2.32. Let R be a relation on a class A. If y P A, let y Ó< predRpyq <
predA,Rpyq < tx P A : xRyu. Then R is set-like on A if y Ó is a set for all y P A

Remark 2.2.33. If A=ON and R is the membership, then y Ó< y, then P is set-like on ON

Definition 2.2.34. For a relation R and a class A:

1. s is a path (or, R-path) of n steps in A if n P É, n ě 1, s is a function, dompsq < n`1,
ranpsq Ď A and @j ă nrspjqRspj ` 1qs

2. The s in (1) is called path from s(0) to s(n)

3. The transitive closure of R on A is the relation R˚ < R˚
A on A defined by xR˚y iff

there exists a path in A from x to y

Lemma 2.2.35. For a relation R and a class A:

11the notion of ordinate pair is formalizeb by Kuratowsky’s definition, i.e. ă x, y ą:< ttxu, tx, yuu
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1. R˚ is transitive on A

2. If R is set like on A, then R˚ is set-like on A

Theorem 2.2.36 (Transfinite Induction on Well-Founded Relations). Assume
that R is well-founded and set-like on a class A, and let X be a non empty sub-class of A.
Then X has an R-minimal element.

Proof. Fix any a P X. Let b be an R-minimal element of the set tau Y ppredR˚paq XXq.
Then b is an R-minimal element of X, since yRbÑ y P predR˚paq

Theorem 2.2.37 (Transfinite Recursion on Well-founded Relation). Let R be a
well-founded and set-like relation on A, and @x@sD!yϕpx, s, yq. Define Gpx, sq to be the
unique y such that ϕpx, s, yq. Then we can write a formula È for which the following are
provable:

• @xD!Èpx, yq, so È defines a function F, where F pxq is the y such that Èpx, yq

• @a P ArF paq < Gpa, F æ pa Óqs.

Proof. For set d, h, let Appph, dq say that h is a function and domphq < D Ď A. @y P
dry ÓĎ ds, and @y P drhpyq < Gpy, h æ py Óqqs; so, we are saying that h is an approximation

to F defined on some set d. Here y Ó abbreviates predA,Rpyq as before. Note that the
property @y P dry ÓĂ ds implies also @y P drpredA,R˚pyq Ď ds. An important set with this
property is:

dx :< xY predA,R˚pxq

for any x P A; this is a set because R˚ is set like by Lemma 2.2.35
Assuming that the theorem is true, Apppd, hq implies that h < F æ d, since hpyq < F pyq
for all y P d is easily proved by transfinite induction. Since we do not know yet that the
theorem is true, we shall prove the theorem by using this Apppd, hq to write down the
definition of È:

Èpx, yq ðñ rx R A^ y < Hs _ rx P A^ DdDhrApppd, hq ^ x P d^ hpxq < yss

We now need to check that this definition works, which will be easy one we have verified
the existence and the uniqueness of these approximation.
Uniqueness means that all the approximations agree wherever the are defined:

Apppd, hq ^ Apppd1, h1q Ñ ApppdX d1, hX h1q (U)

To verify this, note first that @y P pd X d1qry ÓĂ pd X d1qs. Then, note that hpyq < h1pyq
for all y P pd X d1q, since a R-minimal element of ty P d X d1 : hpyq ‰ h1pyqu would be
contradictory, using hpyq < Gpy, h æ py Óqq. So, the intersection hX h1 is really a function
with domain dX d1 that takes y P dX d1 to hpyq < h1pyq. Then ApppdX d1, hXh1q is clear.
By (U), we know that for all x, there is at most one y such that Èpx, yq. To prove that
such y always exists, use:

@x P ADdDhrApppd, hq ^ x P ds (E)



40 Chapter 2. Presentation of Formal Systems

To prove (E) we apply transfinite induction on R, using theorem 2.2.36. First observe
that Apppd, hq ^ x P d Ñ Apppdx, hxq, where hx < h æ dx. Assuming that (E) is false,
let X < tx P A : ␣DdDhrApppd, hq ^ x P dsu ‰ H. Observe that for all x R X, we
have a hx such that Apppdx, hxq, and hx is unique by (U). Let a P X be a R-minimal
element of X. Let b̃ :< predA,R˚paq <

Ť

tdx : xRau. By minimality xRa Ñ x R X, so,
by Replacement axiom we may define a set h̃ :<

Ť

thx : xRau which is a function by
(U), and it is easy to verify that Apppd̃, h̃q. Now, a R d̃, but a ÓĎ d̃. Informally F æ d̃
”should be” h̃, so F paq ”Should be” Gpa, h̃ æ pa Óqq. Formally, let d < d̃ Y tau and let
h < h̃Y tpa,Gpa, h̃ æ pa Óqqqu. Then Apppd, hq and a P d contradicting a P X.
Combining (U) and (E), we know that @xD!yÈpx, yq, so y defines a function F as in (1).
Then (2) follows from the definition of Apppd, hq

Remark 2.2.38. Let A < ON , and R usual order, then ³ Ó< ³, and so the recursion
scheme is usually written as F p³q < GpF æ ³q

Lemma 2.2.39. In theorem 2.2.37, suppose that F and F 1 both satisfy :

F paq < Gpa, F æ pa Óqq < Gpa, F 1 æ pa Óqq < F 1paq

Then @apF paq < F 1paqq

Proof. If not, and a is R-minimal in ta P A : F pxq ‰ F 1pxqu, then

F paq < Gpa, F æ pa Óqq < Gpa, F 1 æ pa Óqq < F 1paq

That is a contradiction

Now, we can redefine sums and products of finite ordinals (for witch we have given an
informal definition in 2.2.9) in therms of transfinite induction.

Definition 2.2.40. pp´q is ´ if ´ < 0 and pp´q < µ if ´ < spµq

Lemma 2.2.41. Sums and Products of finite ordinals exist

Proof. Let ³ be a fixed ordinal, then we can define ϕ`p³, x, yq < ϕα,`px, yq as:

ppOrdp³q ^ Funpxq ^ D´pOrdp´q ^Dompxq < ´qq Ñ

ppDµp´ < spµqqq Ñ y < spxpµqqq ^ pp´ < 0q Ñ y < 0qq

^ p␣pOrdp³q ^ Funcpxq ^ D´pOrdp´q ^Dompxq < ´qq Ñ y < 0q

Now, by uniqueness of predecessor and successor it is clear that ϕα,` is a functional
formula; that is, ZF-Inf $ @xDyϕα,`px, yq. Therefore, by transfinite recursion (theorem
2.2.37) there exists a formula Èα,`px, yq < È`p³, x, yq such that, if F is the function
defined by Èα,` and G is the function defined by ϕα,`, then @´pFαp´q < GpF æ ´qq. We
can apply transfinite recursion for every ³. In functional therms: for each ³ we can define
Gα so that Gαpxq < 0 unless x is a function with domain some ordinal ´, in which case
Gαpxq is ³ if ´ < 0 and is spxppp´qqq if ´ < spµq for an ordinal µ. Then, Theorem 2.2.37
yields to the existence of a unique Fα such that @´pFαp´q < GpF æ ´qq. Thus, we have
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defined Gαp´q < ³ ` ´ (we can conclude this equality since Gα is unique).
In the same way we can obtain the existence of the product ³ ¨ ´. Define ϕ‚p³, x, yq <
ϕα,‚px, yq as

12

pppOrdp³q ^ Funpxq ^ D´pOrdp´q ^Dompxq < ´qq Ñ

ppDµpOrdpµq ^ ´ < spµqq Ñ y < xpµq ` ³q ^ p´ < 0Ñ y < 0qqq

^ p␣pOrdp³q ^ Funpxq ^ D´pOrdp´q ^Dompxq < ´qq Ñ y < 0q

By uniqueness of successor ZF-Inf $ @xD!yϕα,‚px, yq. Therefore we can apply transfinite
recursion, and so there exists a functional formula Èα,‚px, yq such that, if F is the function
defined by Èα,¨ and G is the function defined by ϕα,‚, then @´pFαp´q < GpF æ ´qq. In
functional therms: for each ³ let be Gαpxq be 0 unless x is a function with domain some
ordinal ´, in which case Gαpxq < 0 if ´ < 0 and Gαpxq is xp´q`³. Thus, Theorem 2.2.37
ensure us that Gαp´q < F pG æ ´q < ³ ¨ ´ exists.

This definition through transfinite recursion ensures that functional formulas exist
which define sums and products of ordinals.

2.2.2 Ordinal Extension of ZF-Inf

In the next chapter, we will define a translation of PA into ZF-Inf. To accomplish
this, we need functions to translate the successor, sum, and product functions of PA.
Therefore, we will now define a conservative extension of ZF-Inf, including symbols for
ordinals, the successor function, and sums and products of ordinals.

Definition 2.2.42. Let L be the language of the sets (Definition 2.2.1), then we can define
Lord as the language that contains L, a new individual constant 0, an unary function
symbol spxq, and two binary function symbols: “ ` ” and “ ¨ ”. Then we can define
ZFord-Inf as the first order theory that has the same logical and proper axioms of ZF-
Inf and the following proper axioms:

• @zpz R 0q

• @z@ypy P spzq Ø py P z _ y < zqq

• @x@ypÈ`px, yq, px` yqq

• @x@ypÈ‚px, yq, px ¨ yqq

The existence of È` and È‚ is provided by transfinite recursion, as seen in lemma 2.2.41

Proposition 2.2.43. ZFord-Inf is a conservative extension of ZF-Inf

ZF-Inf◁ ZFord-Inf

12The function + that appears in the formula is the one defined above
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Proof. Let ϕpx, zq :< @ypz P z Ø py < x _ y P xqq, then by extensionality we easily
get ZF-Inf $ @xD!zϕpx, zq. Now, by lemma 2.2.41 ZF-Inf $ @x@yD!zpÈ`px, y, zqq and
ZF-Inf $ @x@yD!zpÈ¨px, y, zqq. Thus we can apply proposition 1.3.6, therefore if ϕ does
not contain neither sp.q nor ` nor ¨, then ZFord-Inf $ ϕñ ZF-Inf $ ϕ. Now, by definition
L Ă Lord. This yields to ZF-Inf◁ ZFord-Inf

Theorem 2.2.44. ZF - Inf and ZFord-Inf are equiconsistent

Cons(ZF-Inf) ðñ Cons(ZFord-Inf)

Proof. ZF - Inf is inconsistent if, and only if, ZF-Inf $ Dxpx P xq. Then also ZFord-Inf $
Dxpx P xq, thus: Incon(ZF-Inf) ñ Incon(ZFord-Inf). Now , since ZF-Inf ◁ ZFord-Inf then
ZFord-Inf $ Dxpx P xq ñ ZF-Inf $ Dxpx P xq holds. Therefore we have proved the
equiconsistency of ZF-Inf and ZFord-Inf

2.2.3 A Lighter Axiomatic Presentation of ZF-Inf

As we will see in the next chapter a lighter presentation of ZF-Inf may be really helpful
to conclude that if ZF-Inf is consistent than PA is also consistent. This section is
dedicated to enunciate this lighter presentation of ZF-Inf and to prove that is equivalent
to ZF-Inf

Definition 2.2.45 (ZF’). Let L be the language of set theory in Definition 2.2.1, then
ZF’-Inf is the first order theory with equality over L whith the proper axioms:

ZF’ 1. Extensionality.
@zpz P xØ z P yq Ñ x < y (2.37)

ZF’ 2. Foundation.

Dypy P xq Ñ Dypy P x^␣Dzpz P x^ z P yqq (2.38)

ZF’ 4. Weakened Union.
@xDy@c P x@z P cpz P yq (2.39)

ZF’ 5. Weakened Power.

@xDy@zp@wpw P z Ñ w P xq Ñ z P yq (2.40)

ZF’ 6. Separation Scheme. For each formula ϕ without y free,

@xDy@zpz P y Ø z P x^ ϕpzqq (2.41)

ZF’ 7. Replacement Scheme. Let φ be a formula formula of L

@xD!yφpx, yq Ñ @aDb@ypy P bØ Dx P aφpx, yqq (2.42)
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Theorem 2.2.46. ZF-Inf and ZF’-Inf are equivalent

ZF-Inf = ZF’-Inf

Proof.

i. We will prove that ZF-Inf $ ZF’-Inf.
Since Extensionality, Foundation, Separation and Replacement do not change, for
they there are nothing to prove.
ZF’ 4. ZF $ @xDy@zpz P y Ø Dv P xpz P vqq by ZF 5; then ZF $ @xDy@zpz P y Ð
Dv P xpz P vqq. Then ZF $ @xDy@c P x@z P cpz P yq
ZF’ 5. ZF’ 5 consist of only one implication of Power Axiom, so is trivially valid
in ZF-Inf

ii. Now, we need to prove that ZF’-Inf $ ZF-Inf. Since Extensionality, Foundation,
Separation and Replacement do not change, for them there is nothing to prove.
Empty set. It follows for Separation: ZF 1 $ @xDypz P y Ø z P x^ϕpzqq. Let ϕpzq
be z ‰ z. Since ϕ is a logical contradiction: ZF 1 $ Dy@zpz R yq. We are allowed to
use Separation since, by Remark 1.3.3, there exists at least one set.
Union. From ZF’4: ZF 1 $ @xDy@c P x@z P cpz P yq, then, by Separation on y
using ϕpwq:Du P x ^ w P u we get ZF’ $ @xDyDApp@c P x@z P cpz P yqq ^ pw P AØ
w P y ^ pDu P x ^ w P uqq. Since, by definition ZF’ $ A Ď y (where y is the set
provided by ZF’ 5 and A is union set as described ZF 5) then ZF’ $ @xDy@zpz P
y Ø Dv P x^ z P vq
Power. It follows from ZF’ 5 by Separation (we need to add z P y Ñ z Ď x)
Paring. It follows from Union, Power and Replacement. LetH be the set provided
by Axiom of Empty Set, and Ppxq the set provided by Power Set Axiom. Now, we
can define a formula ϕpu, v, x, yq : < pu < ∅ ^ v < xq _ pu < t∅u ^ v < yuq. By
replacement on PpPpHqq we get the pair set of x and y

Corollary 2.2.47. Since ZF-Inf = ZF’-Inf

ConspZF-Infq ðñ ConspZF’-Infq

2.3 Preliminary conclusions

In this section, we have defined ZF-Inf and PA, and for both, we have defined other
equiconsistent systems. For ZF-Inf, we have defined a conservative extension, ZFord-Inf,
and an equivalent one, ZF’-Inf. For PA, we have defined a conservative extension, PA’,
obtained by adding a symbol for every primitive recursive function. The next chapter will
be dedicated to concluding the equiconsistency: in order to obtain the equiconsistency,
we will translate ZFord-Inf into PA and PA’ into ZF’-Inf. ZFord-Inf into PA and PA’
into ZF’-Inf.
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Chapter 3

Equicontistency of PA and ZF-Inf

In this chapter we will prove that there exists a translation of PA into ZFord ´ Inf and
that there exists a translation of ZF’-Inf into PA’. The existence of these translations
will provide us the equiconsistency of PA and ZF-Inf. Our proof will be just a syntactic
proof. This allows us to rely on a very weak meta-theory; in fact the translations we
present can be formalized in PRA.

3.1 Ordinal Translation

Definition 3.1.1. Let I be a translation of PA into ZFord-In for which:

• The constant of 0 PA is translated to 0 in ZFord-Inf. Ip0Paq < 0ZFord-Inf

• The successor function p¨q1 in PA is translated to spIpxqq, i.e: Ipx1q < spIpxqq

• The functions ` and ¨ in PA are translated to sum and product of finite ordinals
in ZFord-Inf, i.e. Ipa` bq < Ipaq ` Ipbq and Ipa ¨ bq < Ipaq ¨ Ipbq

• IpϕÑ Èq < Ipϕq Ñ IpÈq and Ip␣ϕq < ␣Ipϕq

• Quantified formulas @xP pxq in PA are translated to @xpNatpxq Ñ IpP pxqqq where
Natpxq := ordpxq^py < 0_psuccpyq^@xpx P y Ñ x < 0_succpxqqq in ZFord-Inf.

1

Proposition 3.1.2. PA $ ϕñ ZFord-Inf $ Ipϕq

Proof. We have to prove that in ZFord-Inf the translation of each PA axiom holds.

• ZFord-Inf $ @xpNatpxq Ñ p0 ‰ spxqq. We can prove this by contradiction: if Natpzq
and 0 < spzq, then z P 0 < H by the proper axiom of spq, contradicting the proper
axiom for the ordinal 0.

• ZF-Inf $ @x1pNatpxq Ñ p@x2pNatpx2q Ñ pspx1q < spx2q Ñ x1 < x2qqqq. This
follows directly from Lemma 2.2.20

1succpyq means “y is a successor”, that is Dzpspzq < xq. ordpyq means “y is a ordinal”, that is
p@z P ypz Ď yqq ^ p@x P y@z P ypx < z _ x P z _ z P xqq

45
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• (S3)-(S6) are trivially verified by definition of sums and products of finite ordinals

• Let ϕ be a formula formula. Then (S7) is verified by Theorem 2.2.25. Let X be the
class of naturals defined by Ipϕq, then, by ordinary induction principle if H P X
and @y P Xpspyq P Xq then X contains every natural number.

Theorem 3.1.3. If ZFord-Inf is consistent, then PA is consistent

Cons(ZFord-Inf)ñ Cons(PA)

Proof. Let PA be inconsistent, then PA $ ϕ^␣ϕ and so, by Proposition 3.1.2 ZFord-Inf $
Ipϕ^␣ϕq. Therefore, since I does not changeÑ and ␣, ZFord-Inf $ Ipϕq^␣Ipϕq. Thus,
Incon(PA)ñ Incon(ZFord-Inf). This yields to:

Cons(ZFord-Inf)ñ Cons(PA)

3.2 Ackermann Translation

In this section we will define a translation of ZF’-Inf into PA’, and we will show that
any sentence in ZF’-Inf can be syntactically translated into a sentence of PA’. In order
to do this we will use the “Ackermann Encoding” to translate the membership relation of
sets and we will prove that this translation preserves the provability; that is, if a sentence
is a theorem in ZF’-Inf then also its translation will be a theorem in PA’

Idea (Ackermann Encoding). From an informal standpoint the Ackermann Encoding
asserts that: n P m if the nth digit in the binary expansion of m is 1. For example let
be x < 0, then, since @ypy R xq, Ap0q < 0. Let now x < 1̄ < t0u, by definition of 1̄ the
only z such z P 1̄ is 0. Thus, the 0th digit of the binary expansion of Ap1̄q must be 1 and,
since not other sets belong to 1̄ all the other digits bust be 0. Thus Ap1̄q < p1q2 < p1q10.
In the following table, we list some examples of translations:

Example of Some Translation

Set Binary Encoding Decimal Number

0 < H 0 0

1̄ < t0u 1 1

t1̄u 10 2

2̄ < t0, 1̄u 11 3

t0, 2̄u 1001 9

t0, t1̄uu 101 5

3̄ < t0, 1̄, 2̄u 1011 11

t1̄, 2̄, t0, t1̄uuu 101010 42
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Now, we need to define a translation of ZF’-Inf in PA’ in a formal way

Definition 3.2.1 (Ackermann Translation). Let A be the translation of ZF’-Inf in PA’
for which:

• Apx1 < x2q is Apx1q < Apx2q.

• Apn P mq is n Ắ m :< rmpqtpm, 2nq, 2q < 1. This is the Ackermann Encoding
written in terms of primitive recursive functions in PA’

• ApϕÑ Èq is Apϕq Ñ ApÈq, Ap␣ϕq is ␣Apϕq and Ap@xϕpxqq is @xApϕpxqq

A is called the Ackermann Translation.

Proposition 3.2.2. ZF’-Inf $ ϕñ PA’ $ Apϕq

Proof. We need to prove that in PA’ the translation of every axiom of ZF’-Inf holds.
The following arguments can be fully internalized in PRA.

• Extensionality. Let be x, y such that @zpz Ắ x Ø z Ắ yq. Now, from an
informal standpoint this means that x and y has a 1 in the same nth place in binary
representation. Since two numbers with the same binary representation are the
same, then x < y. From a formal point of view we need to prove that:

PA’ $ @xpx <
ÿ

iẮx

2iq 2

We can prove this by induction:

– since PA’ $ i Ắ x Ñ i ă x and PA’ $ @x␣px ă 0q then PA’ $ @i␣pi Ắ 0q.
Thus,

PA’ $ 0 <
ÿ

iẮ0

2i

– let us suppose x <
ř

iẮx 2
i, then, by product property and exponential def-

inition 2x <
ř

iẮx 2
i`1. By Lemma 2.1.36 2x <

ř

i`1Ắ2x 2
i`1, then, PA’ $

x <
ř

iẮx 2
i Ñ 2x <

ř

jẮ2x 2
j. Now, as above, by Lemma 2.1.36 PA’ $ x <

ř

iẮx 2
i Ñ 2x` 1 <

ř

jẮp2x`1q 2
j. Then by induction scheme:3

PA’ $ @xpx <
ÿ

iẮx

2iq

Thus, we have proved that

PA’ $ @x@y@zppz Ắ xØ z Ắ tq Ñ x < yq 4

2this sum make sense in PA’ since ”i Ắ x” is a primitive recursive relation
3φp0q ^ p@xppφpxq Ñ pφp2xqq ^ pφpxq Ñ φp2x ` 1qqq9q Ñ @xφpxq is equivalent to induction scheme
4We may notice that, without referring to any quantifier, the theorem about binary expansion is still

valid in PRA, since we can use an equivalent of the induction rule:

φp0q φpxq Ñ φp2xq φpxq Ñ φp2x ` 1q

φpxq
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• Foundation. Let x ‰ 0 and ϕpnq :< n Ắ x. Since x ‰ 0 there exist at least one
place in its binary representation with digit 1, that is Duϕpuq. Now, by Proposition
2.1.12(b): PA’, Duϕpuq $ Dnpϕpnq ^ p@zqpz ă nÑ ␣ϕpnqqq. Since m Ắ nÑ m ď n

if existed m such that m Ắ x^m Ắ n then we would have m ď n^ϕpmq, and so or
m < n or we would contradict the minimality of n. Thus, n is the minimal element
for ”Ắ” in x, in other words:

PA, Du Ắ x $ Dypy Ắ x^␣Dzpz Ắ x^ z Ắ yqq

• Weakened Union. From an informal standpoint the axiom of weakened union
asserts the existence of an upper bound of the union set, that is, we need to prove
that PA’ $ @xDy@u Ắ x@z Ắ upz Ắ yq. Now, let x be a natural, then @i ‰
x␣pi Ắ 2xq (this follows from the observation on the binary expansion in the proof
of Extensionality, since 2x <

ř

iẮx 2
i the only natural such that i Ắ 2x is x).

Now, let us prove by induction than @ipi ď x Ñ pi Ắ 2x ´ 1qq. We will prove
by induction that PA $ 2x ´ 1 <

ř

iăx 2
i and then, since PA $ @xpx <

ř

iẮx 2
iq,

PA $ @ipi ă xÑ i Ắ 2x ´ 1q.

– 20 ´ 1 < 0 <
ř

iẮ0
2i

– Let 2x ´ 1 <
ř

iăx 2
i. Then:

2x
1

´ 1 < 2x ¨ 2´ 1 < p2x ` 1´ 1q ¨ 2´ 1

< p2x ´ 1q ¨ 2` 1 <
ÿ

iăx

2i`1 ` 20

<
ÿ

iăx1

2i

Thus, PA $ @xp2x ´ 1 <
ř

iăx 2
iq. Now, since PA’ $ @xpx <

ř

iẮx 2
iq:

PA’ $ @ipi ă xÑ i Ắ 2x ´ 1q

Now, by Lemma 2.1.37 PA’ $ @n@mpn Ắ mÑ n ă mq. Then:

@zpz Ắ u Ắ xÑ z ă u ă xq

and then @u Ắ x@z Ắ upz Ắ 2x ´ 1q. Thus, we have proved that

PA’ $ @xDy@u Ắ x@z Ắ upz Ắ yq

• Weakened Power. We should start specifying what the interpretation of y Ď x

is. By definition py Ď xq ðñ p@zpz P y Ñ z P xqq. This is interpreted in
py Ď xq ðñ p@zpz Ắ y Ñ z Ắ xqq. I.e. ”y Ď x if, for every z, the z-th digit of the
binary representation of y is 1 implies that the z-th digit of the binary representation
of x is 1”. In other words y Ď x if, and only if, the binary representation of y is
contained in the binary representation of x. Now, in order to satisfy the weakened
power axiom, we need to find an upper bound for power set. We can work as in
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Weakened Union:
Since @y@xpy Ď xÑ y ď xq (This follows from Lemma 2.1.37), then @y@xpy Ď xÑ
y Ắ 2x`1 ´ 1. Thus we have found an upper bound for power set. This yields to:

PA’ $ @xDy@zpz Ď xÑ z Ắ yq

• Separation Scheme. We need to prove that for all formula ϕ (in L1
A) without y

free:
@xDy@zpz Ắ y Ø z Ắ x^ ϕpzqq

We can proceed by complete induction (Proposition 2.1.12):
let Èpxq :< Dy@zpz Ắ y Ø z Ắ x ^ ϕpzqq, then: Suppose that @wpw ă x Ñ Èpzqq.
Now, let be x <

ř

iẮx 2
i. Since, i ą x Ñ ␣pi Ắ xq holds there are finite in such

that in Ắ x. This allows us to define ˝pxq :< x´2mpxq, where mpxq is the maximum
natural such mpxq Ắ x5

mpxq < n´
n

ÿ

y<o

s̄gp
y

ÿ

i<0

rmpqtpx, 2x´iq, 2qq

mpxq is, by definition, primitive recursive. Thus we can conclude that ˝pxq is prim-
itive recursive since it is obtained by substitution on primitive recursive functions.
Now, if x <

ř

iẮx 2
i then ˝pxq <

ř

iẮx^iămpxq 2
i; thus ˝pxq Ă x. The maximal-

ity of ˝pxq is guaranteed by the maximality of mpxq. We know from the induc-
tive hypothesis that Èpzq holds for every z ă x, so Èp˝pxqq holds. Now, we
need to prove that Èpxq holds. Let y be the natural provided by ϕp˝pxqq, then
@zpz Ắ y Ø z Ắ ˝pxq ^ ϕpzqq. Now, we can define:

u <

#

y ` 2mpxq if ϕpmpxqq

y otherwise

Then, since ˝pxq Ă x, @zpz Ắ u Ø pz Ắ x ^ ϕpzqqq, and so: PA’ $ @xp@zpz ă x Ñ
Èpxqq Ñ Èpxqq. This concludes the induction:

PA’ $ @xDy@zpz Ắ y Ø z Ắ x^ ϕpzqq

• Replacement Scheme. We need to prove the Replacement Scheme:

@uD!vϕpu, vq Ñ @xDy@bpb Ắ y Ø Da Ắ xϕpa, bqq

We can work as in Separation Scheme by complete induction:
Let Èpxq :< @uD!vϕpu, vq Ñ Dy@bpb Ắ y Ø Da Ắ xϕpa, bqq and let us suppose
@zpz ă xÑ Èpzqq. We can define, as above, ˝pxq. By induction hypothesis Èp˝pxqq

5From a meta-theoretical standpoint it is trivial that mpxq < log2pxq, in which the logarithm is
defined over natural numbers in a recursive way. Nevertheless it is not trivial to prove that PA’ proves
the maximally of log2pxq as exponent in the binary expansion of x
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holds, so there is an y such that @bpb Ắ y Ø Da Ắ ˝pxqpϕpa, bqq. Then we can
define u :< y` 2b in which b is the only natural such ϕpa, bq (we have supposed that
PA’ $ @uD!vϕpu, vq). Thus, PA’ $ @xp@zpz ă x Ñ Èpzqq Ñ Èpxqq. This concludes
the induction:

PA’ $ @uD!vϕpu, vq Ñ @xDy@bpb Ắ y Ø Da Ắ xϕpa, bqq

Theorem 3.2.3. If PA’ is consistent, then also ZF’-Inf is consistent

Cons(PA’)ñ Cons(ZF’-inf)

Proof. Let ZF’-Inf be inconsistent, then ZF’-Inf $ ϕ ^ ␣ϕ. Thus, by Proposition 3.2.2
PA’ $ Apϕ^␣ϕq. By definition of Ackermann Translation: PA’ $ Apϕq^␣Apϕq. Thus,
Incon(ZF’-Inf)ñ Incon(PA’). And so

Cons(PA’)ñ Cons(ZF’-Inf)

3.3 Conclusions Regarding Equiconsistency

In this chapter we have proved that Cons(ZFord-Inf) ñ Cons(PA) and Cons(PA’) ñ
Cons(ZF’-Inf). This information with the results of Chapter 2 yields to

Theorem 3.3.1. ZF-Inf and PA are equiconsistent

Cons(ZF-Inf) ðñ Cons(PA)

Proof. By Theorem 3.1.3 Cons(ZFord-Inf)ñ Cons(PA). Thus, by 2.2.44 ZF-Infñ PA.
Now, by Theorem 2.1.40 Cons(PA) ðñ Cons(PA’), by Theorem 3.2.3 Cons(PA’) ñ
Cons(ZF’-Inf) and by Theorem 2.2.47 Cons(ZF’-Inf) ðñ Cons(ZF-Inf). Thus, Cons(PA)ñ
Cons(ZF-Inf).

We have obtained the equiconsistency of ZF-Inf and PA, but we have not explicitly
discussed our meta-theoretic assumption. We said that both translation were primitive

recursive. Thus, all the proof of equiconsistency needs only primitive recursive arithmetic
to be formalized, that is:

PRA $ Cons(ZF-Inf) ðñ Cons(PA)



Chapter 4

Consequences in Finite Set Theory
and Other Results

4.1 Zermelo Fraenkel with the negation of Axiom of

infinity

Our discussion until now took place in ZF-Inf. But ZF-Inf is not a Finite Set Theory,
there are model of ZF-Inf with infinite sets and models without them. In this section
we will discuss different definitions of infinity, and prove that the Ackermann models of
ZF-Inf prove an axiom of finiteness; then we will discuss the role of the axiom of choice.
In his original work Ackermann discusses the axiom of choice explicitly proving that its
translation holds in PA’. We will propose a different argument. A rapid development of
a finite sets theory proves that the finite choice is a theorem; therefore, if the translation
of an axiom of finiteness is valid in PA’, consequently we obtain the validity of the
translation of the axiom of choice

4.1.1 Finite Set Theory

While defining ZF we stated the axiom of infinity as:

DxpDupu P x^ p@vpv R uqqq ^ @zpz P xÑ Dypy P x^ @wpw P y Ø pw P z _ w < zqqqqq

That is, we state the existence of É, that is obtained by Separation.
Now, in literature there are some definitions of mathematical infinity; some of those
assume the axiom of infinity

Definition 4.1.1. We say that x is É´finite iff the following holds

Finωpxq :< ␣DfpFuncpfq ^ Injpfq ^Dompfq < É ^Ranpfq Ď xq1

This definition is obviously not useful for our purpose since É does not exists if Axiom
of Infinity does not holds. But there are other definition of infinity not involving neither
É nor the assumption of axiom of infinity

1Here ”Func(f)” stances for ”f is a function” and ”Inj(f)” stances for ”f is injiective”

51
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Definition 4.1.2. We say that x is f -finite if the following holds:

Finf pxq :< DfDnpFunpfq ^ Injpfq ^Natpnq ^Dompfq < n^Ranpfq < xq

And we have the Dedekind finiteness:

Definition 4.1.3. We say that x is Dedekind-Finite iff the following holds:

FinDpxq :< ␣DfDypx Ě y ^ y ‰ x^ Funpfq ^ Injpfq ^Dompfq < x^Ranpfq < yq

Now we have some preliminary well-known results about the characterization of finite-
ness:

Lemma 4.1.4. ZF $ @xpFinωpxq Ø FinDpxqq

Lemma 4.1.5. ZF-Inf $ @xpFinf pxq Ñ FinDpxqq

Lemma 4.1.6. ZF-Inf $ @xFinDpxq Ñ ␣Inf

Therefore

Corollary 4.1.7. ZF-Inf $ @xFinf pxq Ñ ␣Inf

Thus we can define a Finite Set Theory by using f-finiteness as finiteness axiom

Fin :< @xFinf pxq

Definition 4.1.8. WO is the sentence that every set can be well ordered, formally:

WO :< @xD³DfpOnp³q ^ Funpfq ^Dompfq < ³ ^Ranpfq < x^ Injpfqq

Lemma 4.1.9. ZF-Inf + Fin $WO

Proof. This easily follows from Fin, since Fin provides the existence of a bijection between
every x and a natural n, and a natural numbers is also an ordinal.

Proposition 4.1.10. ZF-Inf $WOØ AC

Proof. Omitted, see K.Kunen: “Set Theory”, 2013[3]

Now we will prove that the Ackermann model of ZF-Inf satisfies @xFinf pxq. To
discuss @xFinf pxq we need to make clear what the translation of a function is.

Remark 4.1.11. In ZF-Inf we can define a function f as a subset of the Cartesian product
of two other sets A,B for which @x P AD!y P Bppx, yq P fq. Now, the definition of order
pair is pa, bq :< ttau, ta, buu. Therefore the Ackermann translation of pa, bq is

Appa, bqq < Apttau, ta, buuq < 22
Apaq

` 22
Apaq`2Apbq

< 22
Apaq

p1` 22
Apbq

q

if a ‰ b and
Appa, aqq < Apttauuq < 22

Apaq
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Otherwise.
Thus, if f is a function, then

Apfq <
ÿ

pa,bqPf
a‰b

2p22
Apaq

p1`22
Apbq

qq `
ÿ

pa,bqPf
a<b

22
2
Apaq

Therefore the domain and the range of a function f are translated in

Apdompfqq <
ÿ

aPA
DbPB pa,bqPf

2Apaq
Apranpfqq <

ÿ

bPB
DaPA pa,bqPf

2Apbq

Theorem 4.1.12. PA’ $ @xApFinf pxqq

Proof. We need some preliminary results:

1. There exists a primitive recursive function fpxq that counts the 1-digit in the binary
expansion of x.

fpxq <
ÿ

iăx

rmpqtpx, 2iq, 2q

f is primitive recursive since it is a bounded sum of primitive recursive functions

2. We can define by recursion a function g such that PA’ $ @xpApNatpyqqrgpxq{ys as:

gp0q < 0

gpn` 1q < gpnq ` 2gpnq

By composing g with f we obtain a primitive recursive function that sends every natural
x of the arithmetic seen as a code for a set, in a natural number which is the code for
the cardinality of x. To prove the theorem we need to construct the code of a bijective
function from x to gpfpxqq. We can proceed by complete induction.

• Let x < 0, then h0 < 0 is the code of a bijective function from 0 to gpfp0qq < 0.

• Suppose that for all y ă x there exists a bijection h : y Ñ gphpyqq. Then we can
define in the same way as in proof of Proposition 3.2.2 ˝pxq and mpxq. Therefore
there must exists the code for a bijective h˝pxq from ˝pxq to gpfp˝pxqqq. Thus we
can define hx as:

hx < h˝pxq ` 2ăăpmpxq,gpfp˝pxqqqqąą

where ăă pmpxq, gpfp˝pxqqqq ąą is the code for the ordered pair of the sets encoded
by mpxq and gpfp˝pxqqq.
Now, domphxq < domph˝pxqq ` 2mpxq < ˝pxq ` 2mpxq < x and ranphxq < ranph˝pxqq `
2gpfp˝pxqqq < gpfpxqq.

We have proved that the Ackermann model ZF-Inf proves the axiom of finiteness.
By lemmas 4.1.9 and 4.1.10, ZF - Inf + Fin $ AC, thus PA’ $ ApACq.

Corollary 4.1.13. Cons(PA’)ñ Cons(ZF-Inf + Fin)
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4.2 An Inverse of Ackermann Translation

In 2007 Kayne and Wong proposed an inverse of the Ackermann interpretation and ob-
served that the definition of this inverse needs the assumption of the ϵ-Induction or the
transitive containment. In this section we will develop and present their results, in order
to define and inverse of the Ackerman translation defined from PA to ZF - Inf + ␣Inf
+ TC. Therefore, for the omitted proof in this section and any further information, we
refer to Kaye and Wong[2]

4.2.1 ϵ-Induction and Transitive Containment

In order to define an inverse for the Ackermann translation we need to consider the ϵ-
induction.

Definition 4.2.1. For a formula formula Èpx, yq, the epsilon induction affirms:

@yp@xp@w P xϕpw, yq Ñ ϕpx, yqq Ñ @xϕpx, yqq

ϵ´Induction, however, is not a theorem of ZF-Inf + ␣Inf, this can be proved by
using the notion of transitive closure of a set

Definition 4.2.2. Define y < TCpxq (“y is the transitive closure of x”) to be

y Ě x^ Transpyq ^ @y1py1 Ě x^ Transpy1q Ñ y1 Ě yq

TC is the axiom: @xDupx Ď u^ Transpuqq

Lemma 4.2.3. ZF-Inf $ @xpDypy Ě x^ Transpyqq Ñ DypTCpxq < yqq

Proposition 4.2.4. ϵ-Induction and TC are equivalent over ZF-Inf

Theorem 4.2.5. TC is independent from ZF -Inf + ␣Inf

The assumption of transitive closure is fundamental in order to define an inverse of
the Ackermann translation.

Proposition 4.2.6. Let A be the Ackermann translation. Then PA’ $ ApTCq

Proof. Let x be a natural, then 2x`1 ´ 1 satisfies ApTCq. As said in Proposition 3.2.2:
PA’ $ @ipi ď x Ñ i Ắ 2x`1 ´ 1q, thus PA’ $ x Ắ 2x`1 ´ 1. Therefore, since PA’ $ @i Ắ

x@j Ắ ipj Ắ 2x`1 ´ 1), then 2x`1 ´ 1 is also transitive. Thus,

PA’ $ ApTCq

Remark 4.2.7. Since Proposition 4.2.6 we cannot define an inverse of Ackermann transla-
tion without the assumption of the transitive closure. We can prove this by contradiction.
Let B be the inverse of Ackermann translation, i.e. a translation from PA onto ZF-Inf
+ ␣Inf such

PA’ $ Apϕq ñ ZF - Inf + ␣Inf $ BpApϕqq < ϕ

Then, since PA’ $ ApTCq we would have ZF-Inf`␣Inf $ BpApTCqq < TC; this would
contradicts theorem 4.2.5
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4.2.2 The inverse of Ackermann Translation

Now we will report the inverse of the Ackermann translation proposed by Kayne and
Wong. The basic idea is similar to the one proposed by us, although there are some
differences. Kayne and Wong do not give an explicit translation of the successor function,
so they give a translation directly from ZF-Inf (which they also define by negating Inf)
to PA. For the reverse a similar thing happens: they do not give a translation for the
successor function, but rather focus on the translation of the order, not defining any
intermediate system

Definition 4.2.8. Let, in ZF-Inf˚ :<ZF - Inf + ␣Inf + TC, PpOnq denotes the class
of sets of ordinals. And let Σ̂ : OnˆPpOnq Ñ On be the class function defined recursively
by

Σ̂p0, xq < 0

for all x P PpOnq, and

Σ̂pspcq, xq <

#

Σ̂pc, xq if spcq R x

Σ̂pc, xq ` spcq if spcq P x

for all c P On and x P PpOnq. Also, let Σ : PpOnq Ñ On the function defined by

Σpxq < Σ̂p
ď

x, xq

Informally, this defines
Σpxq <

ÿ

yPx

y

In which the sums refers to the ordinal sum. By transfinite induction it is possible to
justify the definition of Σ̂ and Σ

Definition 4.2.9. Define Hpxq : V Ñ On recursively by

Hpxq < Σpt2Hpyq P On : y P xuq

To justify the definition of H we need epsilon induction.

Proposition 4.2.10. ZF-Inf˚ proves that H is a bijective class function V Ñ On

Definition 4.2.11. We can define the translation B of PA into ZF-Inf as

• Bpa` bq < Hpaq `Hpbq

• Bpa ¨ bq < Hpaq ¨Hpbq

• BpϕÑ Èq < Bpϕq Ñ BpÈq and Bp@xpϕqq is @xBpϕq

• Bpϕ < Èq is Bpϕq < BpÈq

• Bpx ă yq is Hpxq ă Hpyq

In which the target relations and operations of ă,` and ˆ are the usual ones on ordinal.

Proposition 4.2.12. The translation I and B are inverse each other
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