
Univesità degli Studi di Padova

DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE

Corso di Laurea Magistrale in Ingegneria delle Telecomunicazioni

Deep learning techniques applied in
computer vision

Relatore:
Prof.
Chiuso Alessandro

Presentata da:
Corsale Federico

Anno Accademico 2016/2017

Abstract

Visual representations are defined in terms of minimal sufficient statis-
tics of visual data, for a class of tasks, that are also invariant to nuisance
variability. In previous works analytical expressions for such representa-
tions have been derived and they have been related to feature descriptors
commonly used in computer vision, as well to convolutional neural net-
works. In this document we want to verify the relationship between the
visual representations and the convolutional neural networks. In order to
accomplish this task we adopted a practical approach: we implemented
a CNN and we ran several simulations with different configurations. Us-
ing the accuracy rating as measurement, we have been able to evaluate
whether or not our changes were beneficial.

Failure is an option here. If things are not failing, you are not
innovating enough.

- Elon Musk

3

Contents

1 Introduction 7
1.1 CNN and visual representations 7
1.2 Our contribution . 8
1.3 Structure . 9

2 Neural networks 11
2.1 Machine learning . 11
2.2 Neural networks . 14
2.3 Training neural networks 16

2.3.1 Back-propagation algorithm 17
2.3.2 Modes of learning 19

2.4 CNN . 20
2.4.1 CNN structure 23

2.5 Common issues . 24
2.5.1 Initializing weights 24
2.5.2 Overfitting . 25
2.5.3 Scaling of the inputs 25
2.5.4 Internal covariate shift 25
2.5.5 Number of hidden layer 26
2.5.6 Multiple minima 26
2.5.7 Small training set 27

2.6 Evolution of neural networks 27
2.6.1 AlexNet . 27
2.6.2 VGG Net . 27
2.6.3 GoogLeNet . 27
2.6.4 Microsoft ResNet 29

3 Visual representations 31
3.1 Visual representations 31
3.2 Tools used . 33
3.3 Setup . 34
3.4 Running the experiments 36

5

Contents Contents

3.5 Repositories . 36

4 Results 39
4.1 Regular CNN . 39
4.2 Replacing softmax . 42

4.2.1 L2 normalization 42
4.2.2 L1 normalization 44
4.2.3 Normalizing weights 51
4.2.4 Replacing ReLu with Sigmoid 51

4.3 Table of results . 52

5 Conclusions 55

6

Chapter 1

Introduction

1.1 CNN and visual representations

Convolutional neural networks (CNN) are a class of models vastly used
in computer vision, speech recognition, data mining, statistics etc. This
models have been inspired by the biological neural networks and in par-
ticular by the visual cortex. In fact, experiments on animals shown that
individual neurons respond to stimuli in a restricted region of space,
called receptive field, and that these neurons have an hierarchical struc-
ture.

Convolutional neural networks have some analogies with the visual cor-
tex. In particular, if we design a structure that takes an image as input
and convolves it with a filter we can obtain another image, usually called
feature map, which pixels can be thought as the neurons in the biological
networks. In this case the receptive field can be associated to the size of
the filters and the stimuli intensities can be associated with the weights of
the filters. Using different filters we obtain several representation of the
input image, each of which highlights a feature based on the filter used.
Stacking up different layers (set of filters) that take as inputs features
maps, creates the hierarchical structure known as convolutional neural
network.

Finding the weights to make this model useful, is something related
to the science of learning. This subject studies methods that let ma-
chines learn from data without being explicitly programmed. For neural
networks, the back-propagation algorithm has been developed. Without
entering too much in detail now, we can tell that the back-propagation
algorithm optimize the weights of the CNN by trying to reduce a defined
cost function. This fact causes that the weights may assume arbitrary

7

1.2. Our contribution Chapter 1. Introduction

Figure 1.1: Representation of a convolutional neural network

values that in general might have no interpretations. Studies such as [1]
tried to explain the meaning of the filters in a CNN, but they haven’t
derived analytical expressions to give an interpretation to them. So, in
general, neural networks are seen as black-boxes that once trained ac-
complish particular tasks.

In order to optimize the training, several techniques has been proposed
over the last few years. The most of the methods proposed in literature
aim to counteract some weaknesses of this architecture, but none of them
plays around the interpretations of the parameters of the network. Ex-
amples of such techniques are Batch Normalization which tries to reduce
internal covariance shift, Dropout which tries to reduce the overfitting,
gradient clipping which bounds the gradient in the back-propagation al-
gorithm etc.
A recent study made by Soatto and Chiuso [15] derived analytical ex-
pression for visual representations which are functions of visual data that
are useful to accomplish visual tasks. In their work they also related such
representations to feature descriptors commonly used in computer vision,
as well to convolutional neural networks. In particular they show that
local descriptors can be implemented via linear convolutions and rectified
liner units and provided an approximation of the SA likelihood that can
be implemented by convolutional neural networks.

1.2 Our contribution

Our contribution has been experimenting whether or not the aforemen-
tioned approximation can be useful for training convolutional neural net-
works. In particular we want to exploit the knowledge about visual rep-
resentations in order to constrain some parameters of the network. While
in the one and we risk to lose learning capabilities (because the network

8

Chapter 1. Introduction 1.3. Structure

has less freedom for its weights), in the other hand we may "guide" the
network in the right direction during the training.
In order to evaluate if these changes were beneficial we adopted a practical
approach: we implemented a convolutional neural network, we computed
the accuracy rating with different configurations and we compared the
results with the accuracy rating of a traditional CNN.

1.3 Structure

In the next chapter we will introduce machine learning, neural networks
and convolutional neural networks. In chapter 3 we will introduce visual
representation and illustrate the setup used to perform the simulations.
In chapter 4 we will present the results obtained from our simulations.
In the last chapter we will draw conclusions about the experiment.

9

Chapter 2

Neural networks

2.1 Machine learning

The science of learning plays a key role in several fields such as statistics,
data mining, computer vision, adaptive filtering, speech recognition etc.
This science studies methods that let the machines to learn from data
without being explicitly programmed. Examples of such tasks may be
predicting whether a patient will have an heart attack or identify the risk
factors for prostate cancer based on clinical and demographic variables.

In a typical scenario we have an outcome measurement, usually quan-
titative (such as a stock price) or categorical (such as heart attack/no
heart attack), that we wish to predict based on a set of features (such as
diet and clinical measurements).
In general, in machine learning, we use the letter x to indicate the fea-
tures and the letter y to indicate the outcome. For example, if we want
to estimate the price of an house, we expect x to be the set of features
(such as the number of bedroom, the number of bathroom, the number
of floors, having garage or not etc.) and y to be the price.
Since machine learning means learning from data, we need a training set
(which is a collection of available data) to build a prediction model. A
training set may be constituted by a collection of (xi, yi) or by a collection
of xi only. In the first case we speak about supervised learning while in
the second case we speak about unsupervised learning. We denote with
Xtr and Ytr the collection of xi and yi respectively in the training set.
There are different types of learning. A common classification is based
on what we know and the type of the data we want to predict. Here’s a
table that shows the different types of learning.

11

2.1. Machine learning Chapter 2. Neural networks

In this document we will see a realization of a classifier, i.e. a model
that learning from a training set Xtr will be able to make predictions on
new data by associating to a set of features xnew a discrete value ynew
often referred as label.

When we build a model, usually we need different datasets: the training,
the validation and the test one.

Training dataset

This dataset is required in order to train a given model i.e. optimizing
its parameters in order to fit the training data well. Usually we train
different models with this dataset and later we chose the one that works
best.

Validation dataset

This dataset is required in order to evaluate the goodness of the models.
After training them, we make predictions on this data and we chose the
model that perform best. However, since the data in the validation set
has been used to select the model, we can expect that the error computed
is lower than the error on new data. For this reason we need to evaluate
the performance of the model using another dataset.

Test dataset

This set is used to evaluate the performance of the model. Differently
from the validation set this isn’t used to chose the model, but just as a

12

Chapter 2. Neural networks 2.1. Machine learning

tool to measure its goodness.

In practice we have just the "available data". In order to train the
model we usually split them in these three datasets and subsequently we
perform the training. There are no rules that defines how the available
data should be split between training, validation and test sets, but an
example might be 50%, 25%, 25%. Even the division of the available
data may have impacts on the performance of the model. For this reason
techniques such as cross-validation or bootstrap are commonly used [21].

In real world applications usually we have at disposal a large amount
of data. Among the features we collected in general there might be some
that are useless and we would like that our model won’t account for them.
For example, if our classifier wants to predict whether a patient will have
an heart attack, the feature "patient’s favourite color" is probably useless
and we would like our model to not use it.
The process that aims to discard poor features is called regularization.
Beside the computational aspect (using a large amount of features in our
model increases the computational complexity), selecting the right fea-
tures is also beneficial when we will use the model to predict new data.
In fact, having a model that is overparametrized, lead to the phenomena
called overfitting. The concept is that if we have too many parameters
compared to the number of data available, we are able to fit the training
data "too well" without being able to capture the real trend of the data.

Figure 2.1: Overfitting.

For example, in Figure 2.1 it is possible to see that the green line fit

13

2.2. Neural networks Chapter 2. Neural networks

the training data perfectly, but we can expect that it will perform worse
than the black line on new data. In order to counteract overfitting, regu-
larization techniques such as Ridge regression, the LASSO, Dropout etc
[10] has been developed.

In literature there exists several models that can be used as classifiers,
the one we will use is a neural network.

2.2 Neural networks

Neural networks are a class of models that have been subject of several
studies. Their importance is caused by their large usage is different fields
and applications. Nowadays neural networks are used for function ap-
proximation, classification tasks, data processing, robotics etc [2].

But what Neural Networks actually are? The term Neural Network

has evolved over time and encompass a large class of models and learn-
ing methods. The term itself has an historical reason. In fact, initially,
they were created to model the human brian. The different units of a
neural network should represents the neurons, while the connections be-
tween them should represent the synapses.
In order to understand what they are and how they works, here we de-
scribe the simplest of the models i.e. the one used for regression or
classification.

A Neural Network is a two-stage regression or classification model. For
regression, typically K = 1 and there is only one output unit Y1 at the
top. For K-class classification, there are K units at the top, with the
k-th unit modeling the probability of class k. There are K target mea-
surements Yk, k=1, ..., K, each being coded as a 0-1 variable for the k-th
class.
Derived features ZM are created from linear combinations of the inputs,
and then the target Yk is modeled as a function of linear combinations
of the Zm,

Zm = σ(α0m + αTmX) m = 1, ...,M,

Tk = β0k + βTk Z k = 1, ..., K,

fk(X) = gk(T) k = 1, ..., K,

(2.1)

where Z = (Z1, Z2, ..., ZM), and T=(T1, T2, ..., TK).

14

Chapter 2. Neural networks 2.2. Neural networks

Figure 2.2: Representation of Neural Network

The activation function σ(v) is usually chosen to be the sigmoid

defined as:
σ(v) =

1

1 + e−v
(2.2)

even if other functions such as the Rectified Linear Unit (ReLU) has been
also adopted recently for both performance and computational reasons.
The activation function σ(v) is necessary because it is the element that
let the neural network to learn non-linear function. In fact, should the
σ(v) be equal to the identity function, the entire model would collapse
to a linear model in the inputs.

-8 -6 -4 -2 0 2 4 6 8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Sigmoid.

-8 -6 -4 -2 0 2 4 6 8

0

1

2

3

4

5

6

7

8

(b) ReLU.

Figure 2.3: Activation functions.

The output function gk(T) allows a final transformation of the vector
of outputs T . For regression we typically choose the identity function
gk(T) = Tk. Early work in K-class classification also used the identity
function, but this was later abandoned in favour of the softmax function
defined as:

gk(T) =
eTk∑K
l=1 e

Tl
(2.3)

This is the same transformation used in multilogit model and pro-
duces positive estimates that sum to one.

15

2.3. Training neural networks Chapter 2. Neural networks

The units in the middle of the network are called hidden units because
the values Zm are not directly observed. In general there can be more
than one hidden layer and actually the most recent neural networks stacks
several of them. The Zm can be interpreted as a basis expansion of the
original input X. The neural network is then a standard linear model
using these transformation as inputs [3].

Neural networks have been proved to be universal approximators. In par-
ticular the universal approximation theorem states that a feed-forward
network with a single hidden layer containing a finite number of neurons
can approximate continuous functions on compact subsets of Rn, under
mild assumptions on the activation functions. This implies that simple
neural networks can represent a wide variety of functions when given ap-
propriate parameters.
The first version of the theorem has been proven by George Cybenko in
1989 for sigmoid function, but in 1991 Kurt Hornik has proven that it is
not the specific choice of the activation function, but rather the multi-
layered feed-forward architecture itself which gives neural networks the
potential of being universal approximators [22].

2.3 Training neural networks

The neural network model has unknown parameters, usually called weights.
The purpose of the training is to find values for them such that the model
fit the training data well. We denote the set of weights as θ, which con-
sists of

{α0m, αm;m = 1, 2, ...,M} M(p+ 1) weights,

{β0k, βk; k = 1, 2, ..., K} K(M + 1) weights.
(2.4)

In order to measure how well the model fit the data, we need an error
function. For classification task, both sum-of-squared errors or cross
entropy are used. In our model we will use the cross-entropy defined as:

R(θ) = −
N∑
i=1

K∑
k=1

yik log fk(xi; θ) (2.5)

Where yik ∈ {0, 1} since yi has been coded as an one hot vector.
The classifier is G(x) = argmaxk fk(x).
The generic approach to minimize R(θ) is by gradient descent, called
back − propagation in this settings.

16

Chapter 2. Neural networks 2.3. Training neural networks

2.3.1 Back-propagation algorithm

The back-propagation algorithm consists of two phases: propagation and
weights update. In the first phase, an input is presented to the network
and it is propagated, layer by layer, until it reaches the output layer. The
output of the network is then compared with the desired output. Using
the cost function we are able to evaluate a loss and use it in order to
improve the weights of our network. In particular the computed errors
in the output layer are propagated backward until each neuron has an
associated error which represents its contribution to the original output.
Using these errors, we are able to calculate the gradient of the loss func-
tion with respect to the weights of the network.
In the second phase, this gradient is fed to the optimization method,
which uses it to update the weights, in attempt to minimize the loss
function.

Here is an example of the back-propagation algorithm used when the
activation function σ is the sigmoid and the loss function is the squared
error function defined as

E =
1

2
(t− y)2 (2.6)

where t is the target output for a training sample and y is the actual
output of the output neuron. The term 1

2
is used to cancel the exponent

when differentiating.
For each neuron j, its output oj is defined as

oj = σ(netj) = σ(
n∑
k=1

wkjok) (2.7)

where n is the number of input units to the neuron j, wij denotes the
weight between neurons i and j and lastly netj is the weighted sum of
outputs ok of the previous neurons. If the neuron is in the first layer after
the input layer, the ok of the input layer are simply the inputs xk to the
network.

In order to find the derivative of the error with respect to a weight wij,
we apply the chain rule twice obtaining the following relation:

∂E

∂wij
=
∂E

∂oj

∂oj
∂netj

∂netj
∂wij

(2.8)

In the last factor of the right-hand side of the above, only one term
in the sum netj depends on wij, so that

17

2.3. Training neural networks Chapter 2. Neural networks

∂netj
∂wij

=
∂

∂wij
(
n∑
k=1

wkjok) = oi (2.9)

If the neuron is in the first layer after the input layer, oi is just xi.
The derivative of the output of neuron j with respect to its input is
simply the partial derivative of the activation function. Since we use the
sigmoid, which has the derivative

∂σ

∂v
(v) = σ(v)(1− σ(v)) (2.10)

we obtain

∂oj
∂netj

=
∂

∂netj
σ(netj) = σ(netj)(1− σ(netj)) (2.11)

The first factor is straightforward to evaluate if the neuron is the
output layer, because then oj = y and

∂E

∂oj
=
∂E

∂y
=

∂

∂y

1

2
(y − y)2 = y − t (2.12)

However, if j is in an arbitrary inner layer of the network, finding the
derivative E with respect to oj is less obvious.
Considering E as a function of the inputs of all neurons L = u, v, ..., w

receiving input from neuron j

∂E(oj)

∂oj
=
∂E(netu, netv, ..., netw)

∂oj
(2.13)

and taking the total derivative with respect to oj, a recursive expres-
sion for the derivative is obtained:

∂E

∂oj
=

∑
l∈L

(
∂E

∂netl

∂netl
∂oj

) =
∑
l∈L

(
∂E

∂ol

∂ol
∂netl

wjl) (2.14)

Therefore, the derivative with respect to oj can be calculated if all
the derivatives with respect to the outputs ol of the next layer (the one
closer to the output neuron) are known.
Summarizing we have

∂E

∂wij
= δjoi (2.15)

with

δj =
∂E

∂oj

∂oj
∂netj

=

(oj − tj)oj(1− oj) if j is an output neuron

(
∑

l∈L δlwjl)oj(1− oj) if j is an inner neuron
(2.16)

18

Chapter 2. Neural networks 2.3. Training neural networks

To update the weight wij using gradient descent, one must choose a
learning rate α. The change in weight, which is added to the old weight,
is equal to the product of the learning rate and the gradient, multiplied
by −1:

∆wij = −α ∂E

∂wij
=

−αoi(oj − tj)oj(1− oj) if j is an output neuron

−αoi(
∑

l∈L δlwjl)oj(1− oj) if j is an inner neuron
(2.17)

The term −1 is needed in order to update in the direction of a mini-
mum of the error function.

2.3.2 Modes of learning

We have just explained how back-propagation algorithm works, and in
particular that the propagation and the update phases are repeated cycli-
cally. However we haven’t told anything about how often this cycles re-
peat themselves. There are mainly two different ways in which we can
train our network: stochastic and batch. The first method foresees to
repeat the propagation-update cycle every time we provide a new input
to the network. This method has the advantage to reduce the probability
of the network getting stuck in a local minima, but has the disadvantage
that the network becomes very slow to be trained. On the other hand,
batch learning foresees to propagate several inputs and accumulate er-
rors before updating the weights. This second method yields a faster and
more stable descent to a local minima since the update is performed in
the direction of the average error of the batch samples. In the most re-
cent applications an hybrid mode is used, and the so called mini− batch
are used to train the network [4]. The mini-batches are constituted by
m samples chosen randomly among the data in the training set.

One of the major strengths of the back-propagation algorithm is its
simple and local nature. In fact, each hidden unit passes and receive
information only to and from units that share a connection. So, from a
computational point of view, we have the advantage that this algorithm
can be implemented efficiently on a parallel architecture computer.
On the other hand, back-propagation presents also some disadvantages.
In particular the update performed by the gradient descent depends on
the learning rate α. Such parameter must be chosen carefully because it
dictates how much the weights are changed at every iteration. Using a
value of α to big may cause too strong variations causing the minimum

19

2.4. CNN Chapter 2. Neural networks

to be missed [5]. On the other side, a value of α that is too small slows
the training unnecessarily and may lead to a local minimum that is not
optimal. In order to counteract this kind problems, adaptive algorithms
such as the Adam optimizer has been deployed.
Another drawback related to the back-propagation algorithm is the so
called vanishing gradient problem [6]. This phenomena is caused by
the fact that weights receives updates proportional to the gradient of
the error function with respect to the current weight in each iteration of
training. Traditional activation functions such as the sigmoid or the hy-
perbolic tangent have gradients in the range (-1, 1), and back-propagation
computes gradients by the chain rule. This has the effect of multiplying
n of those small numbers to compute gradients of the lower layers in an
n-layer network, causing that the gradient decreases exponentially with
n and the lower layers train very slowly [9]. To overcome this problem
some solution has been proposed depending on the network trained: for
standard neural networks, we can train one level at a time through unsu-
pervised learning and later tune it with back-propagation, for Recurrent
Neural Networks (RNN) the method called long short term memory

(LSTM) has been vastly adopted etc.
For the same reason vanishing gradient problem exists, also the exploding
gradient problem exists when activation functions with larger derivatives
are adopted. A way to counteract this problem is using the method called
gradient clipping which clips the gradients to prevent them from getting
to large.

Like others models, also neural networks uses different dataset for train-
ing. In fact, beside the training set used to tune the parameters of the
model, the validation set is used to evaluate the optimal number of layers,
the filter size etc.

2.4 CNN

In the previous sections we have introduced neural networks and we have
explained how they are trained. From what we have seen it is clear that
the amount of weights to manage is pretty huge because each neuron is
connected to every other in the previous and following layer.
Such a structure has several downsides. In particular, once we start
to increase the number of layers of the network, the number of weights
becomes larger and larger to the point that it is very inefficient to be
managed. Another problem related to this huge amount of weights is

20

Chapter 2. Neural networks 2.4. CNN

the overfitting. In fact, having such a number of parameters that can be
learned, means that if our training set isn’t big enough the network may
learn to perfectly discriminate data of our training set, but may have
poor performance on new data. Lastly, having such an interconnected
structure means that we lose the capability of extract local features.

Such kind of problems has been made easier to tackle in Convolutional
Neural Networks (CNN). Differently from regular neural networks,
here the neurons are connected just to a subset of the outputs of the
previous layer.

Historically this kind of structure has been inspired by observing the an-
imal visual cortex. In fact, individual cortical neurons respond to stimuli
in a restricted region of space called receptive field. Receptive fields of
different neurons partially overlap such that they tile the visual field. In
the CNN we approximate the response of an individual neuron to stimuli
within its receptive field with a convolution operation [7].
The convolution is made between the input of a given layer and one or
more filters (also called kernels). The output of the convolution op-
eration is called feature map (or activation map). There are as many
feature maps as the number of filters we use to process the input data.
In Figure 2.4 it is shown an example of a convolutional layer with two
filters.

Figure 2.4: Representation of convolutional layer

This convolutional structure is pretty important: beside keeping the
number of parameter smaller, it also provides the translation invariance
property. In fact, being able to use the same filter all over the image

21

2.4. CNN Chapter 2. Neural networks

means that we are able to detect a feature wherever it is. Should the
image being translated, or the object represented moved, we will still be
able to detect the feature.

The way the convolution is performed is part of the CNN design. In
fact, the size of the kernels, the stride and the padding of the convolu-
tion are parameters chosen by the CNN creator.
The size of the kernels impacts both on performance and computational
complexity. The dimension is usually chosen empirically even if some
tricks can be taken into account. For example using two 3x3 filters is the
same as using one 5x5 filter, but the number of weights to be stored is
smaller.
Stride controls how the filter convolves around the input volume. For ex-
ample, a stride set to 1 means that the filter convolves around the input
volume by shifting one unit at a time. In Figure 2.5 is shown an example
of a convolution with two different values of stride.

(a) Stride set to 1

(b) Stride set to 2

Figure 2.5: Representation of strides

Zero-padding, instead, is usually used in order to preserve the dimen-
sion of the input volume. As shown in Figure 2.5 convolving a given
volume with a filter yields an output volume smaller then the input one.
Sometimes this is inconvenient and we would prefer to have the output

22

Chapter 2. Neural networks 2.4. CNN

volume of the same size of the input one. Padding allows achieving this
result by expanding with zeros the input volume so that the convolution
can be performed even on the edges.

In general the dimension of the output volume is given by the follow-
ing formula:

O =
W −K + 2P

S
+ 1 (2.18)

Where O is the output height/width, W is the input height/width,
K is the filter size, P is the padding and S is the stride.

But what these filters actually represents? Filters can be thought of
as feature identifiers. Assuming the input of our CNN is a set of images,
these filters may be things such as edges, simple colors, corners, curves
etc. The first layer of the CNN usually identifies simple structures such
as the ones mentioned before. Higher level filters, instead, identifies much
more complex features [1].

2.4.1 CNN structure

In traditional CNN there are other layers that are interspersed between
convolutional layers. These other layers provide non-linearities and preser-
vation of dimension that help to improve the robustness of the network
and control overfitting [8]. Examples of such layers are activation func-
tions, pooling layers, fully connected layers and dropout layers.

Activation functions

Similarly to the regular neural networks, also in the CNN we use acti-
vation functions. These are usually placed just after the convolutional
layer. Analogously to the neural networks, also in this case they are
needed in order to let the network learning non-linear functions and to
provide a sort of thresholding.

Pooling layers

After placing the activation function, it is often used a pooling layer.
There are different options to perform the pooling, for example max-
pooling or L2-norm pooling. The concept of the pooling layer is to take
a filter (usually of size 2x2), a stride of the same length and apply this to
the input volume. The output will be a volume that holds the maximum

23

2.5. Common issues Chapter 2. Neural networks

number (or the L2-norm) of every subregion the filter has been applied
to. The intuitive reasoning behind this layer is that once we know that
a specific feature is in the original input volume (there will be a high
activation value), its exact location is not as important as its relative
location to the other features. This layer is useful for two reasons: the
first is that it reduces the number of parameters by 75% and the second
is that it will control overfitting.

Fully connected layer

This layer is usually placed at the top of the CNN. It is needed because
once we have a set of high-level features, we need a function that is able
to evaluate which features most correlate to a particular class. Often
there are used a couple of fully connected layer at the top of the CNNs,
one used to combine the features of the last convolutional layer and the
other used to predict the class.

Dropout layer

Dropout layer has the only purpose of fight overfitting. This technique
consists of setting to zero the output of each hidden neuron with prob-
ability 0.5. The neurons which are dropped out in this way do not con-
tribute in the forward pass and do not participate in back-propagation.
So every time an input is presented, the neural network samples a dif-
ferent architecture, but all architectures share weights. This technique
reduces complex co-adaption of neurons since a neuron cannot rely on
the presence of particular other neurons. It is, therefore, forced to learn
more robust features that are useful in conjunction with many different
random subsets of the other neurons [10].

2.5 Common issues

In section 2.3 we explained how neural networks are trained. However,
applying the back-propagation algorithm is not enough and some com-
mon issues must be addressed in order to successfully train the neural
network.

2.5.1 Initializing weights

When we create a CNN, we have to initialize its weights. This process
requires a bit of attention. Using weights equals to zero leads to zero
derivatives and the algorithm never moves. Using weights that are too

24

Chapter 2. Neural networks 2.5. Common issues

large, instead, often lead to poor solutions. So, usually, neural networks
weights are initialized to be random values near zero. Initializing weights
in this way means that at the start of the training the whole neural
network is approximately a linear model because the operative part of
the activation function σ(v) is roughly linear. The network introduces
non-linearities where needed as the training goes on.

2.5.2 Overfitting

As mentioned previously neural networks often have too many weights
and they tend to overfit the data at the global minimum of R. In early
developments of the neural networks an early stopping rule was adopted
in order to prevent this kind of behaviour. The training was performed for
a while and was arrested well before the global minimum was approached.
In order to apply such technique a validation dataset is required for
determining when to stop, since we expect the validation error to start
increasing.
Another method used to tackle the overfitting problem is weight decay
which is analogous to Ridge regression used for linear models. Adding a
penalty λJ(θ) to the error function and estimating λ via cross-validation
is however pretty computational expensive and other methods such as
Dropout has been adopted recently.

2.5.3 Scaling of the inputs

The scaling of the inputs determines the effective scaling of the weights
in the bottom layer. For this reason standardize all inputs to have mean
equal to zero and standard deviation equal to one may have large effect
on the quality of the solution.

2.5.4 Internal covariate shift

During the training process, the distribution of each layer’s input changes
as the parameters of the previous layers change. This phenomena, known
as internal covariate shift [11], slows down the training by requiring
lower learning rates and careful weights initialization. It also makes it
hard to train models with saturating non-linearities. In order to deal with
this problem, a method called Batch Normalization has been proposed.
The core idea of this method is to normalize the input of each layer using
the statistic of the mini-batch B = {x1...m} and learning two parameters
γ and β to maintain the representation power of the network.

25

2.5. Common issues Chapter 2. Neural networks

So, for every layer, the input are scaled in this way:

µB =
1

m

m∑
i=1

xi

σ2
B =

1

m

m∑
i=1

(xi − µB)2

x̂i =
xi − µB√
σ2
B + ε

yi = γx̂i + β = BNγ,β(xi)

(2.19)

Where ε is a small value used to avoid division by zero. During the
training phase it is also required to store the statistic of the training set
so that it can be used when it is necessary to process new data.
Batch-Normalization can also act as a regularizer and in some cases elim-
inates the need for Dropout [11].

2.5.5 Number of hidden layer

Tuning the number of hidden layers has large impact on the performance
of the network. In fact, using too few hidden units, may cause the model
to not have enough flexibility to capture non-linearities in the data. So,
in general, it’s preferable to use a large number of layers. In this last case
extra weights can be shrunk toward zero if an appropriate regularization
technique is adopted.
There are not firm rules about the exact number of layers that should
be used. Typically this number ranges from 5 to 100 with the number
increasing with the number of inputs and the number of training cases.
Usually the choice is guided by background knowledge and experimenta-
tion. Over the last few years we evolved from network such as AlexNet
[10] that uses around 10 layers to networks such as Microsoft ResNet [12]
that uses 152 layers.

2.5.6 Multiple minima

The error function R(θ) is nonconvex, possessing many local minima. As
a result, the final solution depends on the starting values of the weights.
In order to perform a good training, it is necessary to perform different
trainings starting from different configurations and choosing the solution
giving the lowest error.

26

Chapter 2. Neural networks2.6. Evolution of neural networks

2.5.7 Small training set

As mentioned previously, neural networks tend to be overparametrized.
Hence, having large training set is beneficial in order to prevent over-
fitting. Sometimes, however, the available data isn’t big enough and
some data augmentation techniques should be adopted. Data augmen-
tation techniques are procedures that let us enlarge the database using
transformations of the original data. For example, if our dataset is com-
posed by images, we can enlarge it by applying horizontal flips, vertical
flips, random crops, color jitters, rotations etc. while keeping the label
unchanged.

2.6 Evolution of neural networks

Over the last few years neural networks are evolved significantly. In this
section we want to illustrate how the building blocks discussed previously
have been used in order to achieve interesting result in computer vision.

2.6.1 AlexNet

One of the milestone in computer vision is the AlexNet [10]. His network
was able to achieve impressive result in the ILSVRC (ImageNet Large-
Scale Visual Recognition Challenge) marking a top 5 test error of 15.4%
and beating the previous record of 26.6%.
The network was made up of five convolutional layers, max-pooling lay-
ers, dropout layers and three fully connected layers. Even if the archi-
tecture is pretty simple, it is important because it was the first time that
CNN was used to achieve such impressing score on the ImageNet dataset.

2.6.2 VGG Net

VGG Net was a model created in 2014 [13]. This network was composed
by 19 convolutional layers that strictly used 3x3 filters with stride and
pad of 1, along with 2x2 max-pooling layers with stride 2. Even if also this
architecture was pretty simple, it illustrated that going deep with neural
networks is beneficial in order to create an hierarchical representation of
the data.

2.6.3 GoogLeNet

GoogLeNet is one of the first models that introduced the idea that CNN
layers doesn’t always have to be stacked up sequentially. In particular

27

2.6. Evolution of neural networksChapter 2. Neural networks

the authors proposed the inception module that is a block that perform
different computations in parallel. The result of these computations is
then concatenated in order to produce the input to the next layer.

In a traditional CNN we need to make a choice of whether to have a
pooling operation or a convolutional operation. Instead, the idea behind
the inception module is that we can perform all this operation in parallel
while remaining computationally manageable. The tool that keeps the
complexity under control is the block that performs the 1x1 convolution.
This layer outputs a volume with the same height and width of the input
volume but with a depth arbitrary high and equal to the number of 1x1
filters used. This layer can be though as a "pooling of features" because
we are reducing the depth of the volume similarly to how we reduce the
dimensions of height and width with pooling layers.

In Figure 2.6 it is shown the GoogLeNet architecture and in Figure 2.7
the inception module (the highlighted area in Figure 2.6).

Figure 2.6: GoogLeNet

Figure 2.7: Inception module

28

Chapter 2. Neural networks2.6. Evolution of neural networks

2.6.4 Microsoft ResNet

Microsoft ResNet [12] brought back the idea of going deeper. With its
152 layer it has established the new record in the ILSVRC in 2015 with
an error rate of 3.6%. The main innovation of this network is given by
the Residual Block. The idea behind this block is to add the input x
after each Convolutional layer-ReLU-Convulutional layer-ReLU series as
shown in Figure 2.8.

Figure 2.8: Residual Block

29

Chapter 3

Visual representations

Visual representation are defined in terms of minimal sufficient statistics
of visual data, for class of tasks, that are also invariant to nuisance vari-
ability. Soatto and Chiuso derived analytical expressions for visual rep-
resentations and have shown how these are related to feature descriptors
commonly used in computer vision and to convolutional neural networks
[15].
Our purpose was to progress that work and in particular we focused on
deep convolutional architectures. We implemented and studied a CNN
and subsequently we chanced parts of it in order to understand if the
derived expressions behave as expected.

3.1 Visual representations

By definition a visual representation is a function φ(y) of the data y

which is useful to a task. We would like representations to have some
properties such as sufficiency (they are no less informative than the data),
being simpler than the data itself (ideally minimal) and possibly invari-
ant to the effect of nuisance variables. A representation that has these
properties is called optimal.

The sampled anti-aliased likelihood (SAL) has been proven to be an
optimal representation [15] and an hierarchical approximation has been
proposed.
Starting from the decomposition of the hypothesis θ defined as follows

p(y|θ) '
N∑
h=1

[
M∑
k=1

p(y|θ(L)k , g
(L)
h , VL, θ)p(θ

(L)
k , g

(L)
h |θ)] (3.1)

where:

31

3.1. Visual representationsChapter 3. Visual representations

• y is an image.

• θ is the hypothesis (e.g. the image contains a car).

• θ(L) are details added at level VL and locations g(L). θ(L) may be
discretised → θ

(L)
k , k = 1, ...,M

• g(L) are locations and can also be discrtised → g
(L)
h with h =

1, ..., N .

and assuming the following equation holds:

p(y|θ(L), g(L)h , VL, θ) = p(y|g(L)
h VL
|θ(L), θ) · p(y|g(L)

h V c
L
|θ(L), θ)

= (y|g(L)
h VL
|θ(L), θ) · const

(3.2)

we obtain:

p(y|θ) '
N∑
h=1

[
M∑
h=1

p(y|g(L)
h VL
|θ(L), θ(L)k)p(θ

(L)
k , g

(L)
h |θ)] (3.3)

Where the first term in the sum are the outputs of layer L at locations
g
(L)
h for hypothesis θ(L)k and the second term are mixing probabilities
which can be interpreted as local filters at layer L.

The output of Layer L, which is the SAL, is:

32

Chapter 3. Visual representations 3.2. Tools used

p̂θ,ĝ(y) = maxgi =

∫
G

pθ(ggiy)dP (g)

' maxgi

∫
G

N∑
h=1

[
M∑
k=1

p(ggiy|g(L)
h VL
|θ(L)k)p(θ

(L)
k , g

(L)
h |θ)]dP (g)

(3.4)

Where the integral over g does spatial averaging and the maximiza-
tion with respect to gi implies local invariance.
The decomposition can be iterated for inner layers.

We based our simulations on the equation 3.4. In particular, although
the hierarchical structure reminds convolutional neural networks, some
constraints are not imposed in the actual realizations. For example the
term that can be interpreted as a local filter at layer L is a probability
and so it should be non negative, whereas in common implementation
that parameter is free.

The purpose of our work is to use the knowledge about visual repre-
sentation in order to force constraints on the neural network. While on
the one hand this may reduce the freedom of some parameters and con-
sequently reduce the learning capabilities, on the other hand it may drive
the network in the right direction during the training.

3.2 Tools used

In order to implement the CNN, we used the Python package TensorFlow
provided by Google [16]. The major strength of this package is that it
makes easy to build and train CNNs. If fact, in order to create a CNN
and train it, we need to define just the following entities:

• the operations that must be performed by our neural network, i.e.
the model itself. For this scope TensorFlow also provide some util-
ity functions that allow to perform 2D-convolution, max-pooling,
softmax etc.

• the input that will be used by the network. For this scope Ten-
sorFlow uses objects called placeholders which are variables that
aren’t changed by the optimizer.

• the loss function. Defined as a function of the expected and the
predicted output, this is the target of the optimizer.

33

3.3. Setup Chapter 3. Visual representations

• the optimizer. This object has the purpose to compute the deriva-
tives in the back-propagation algorithm and takes care to update
the weights. TensorFlow provides different optimizers such as the
Gradient Descent or the Adam Optimizer [17].

Once we have defined the aforementioned entities, we can run the script
providing the actual values that must be feed to the network. Tensor-
Flow will then create the graph representing the CNN, apply the back-
propagation algorithm and change the weights of our model accordingly.
It must be noted that these computations are transparent to the devel-
oper.

Our code was developed on Linux using Phyton 3.5 (the Anaconda dis-
tribution [19]) and Jupyter [18].

3.3 Setup

The core network used on our simulations was composed by two con-
volutional layers and two fully connected layers. As design parameters
we chose to use 5x5 filters, ReLU activation functions and after them a
max-pooling layer. As regularizer we chose to use the Dropout and at
the top of the network we placed the softmax.
The dimension of the filters and number of layers has just been chosen
accordingly to our computational power in order to have simulations that
didn’t last too long. Probably, a deeper network would have had better
performance but for the scope of our work that wasn’t really important
since the described network has been used just as a reference for other
simulations.
In Figure 3.1 the scheme of the aforementioned network is depicted.

As cost function we used the cross-entropy defined as:

H(θ) = −
K−1∑
i=0

pi log qi (3.5)

Where K is the number of the classes, pi are the targets and qi are
the logits. Since we used mini-batches of m = 64 images to train the
model, our loss function was actually defined as:

L(θ) = − 1

m

K−1∑
i=0

pi log qi (3.6)

As optimizer method we used the Adam Optimizer with a starting
learning rate α = 10−4.

34

Chapter 3. Visual representations 3.3. Setup

Figure 3.1: Core network

Lastly, as data set, we used the Cluttered MNIST database provided on
the daviddao GitHub Repository [20]. It consists of 12000 handwritten
digits of size 40x40: 10000 are used for training, 1000 for validation and
1000 for test. Differently from classic MNIST dataset, cluttered MNIST
provides some artefacts as shown in Figure 3.2.

Figure 3.2: Examples of cluttered handwritten digits.

In our simulation we haven’t used any data augmentation technique.

35

3.4. Running the experimentsChapter 3. Visual representations

3.4 Running the experiments

In our first simulation we used the network described before. The accu-
racy result obtained in this setup has been used as reference for further
simulations to understand whether or not the network was performing
better. All simulations have been carried out in the same way but with
different configuration of the network. We trained the CNN with mini-
batches of m = 64 images, we set a cap to the number of epochs equal to
20000 and if the CNN wasn’t performing better (on the validation set)
for over 2000 iterations then we stopped the training.

In our simulations we mostly focused on the first and last layer on the
CNN. In particular we replaced the softmax layer with other normal-
izations and we normalized the weights of the filters in the first layer.
For every configuration we have observed the accuracy, we analysed the
weights and we tried to understand their behaviour.
In the next Chapter we illustrate and discuss the results obtained.

3.5 Repositories

The analysis of the CNN isn’t completed yet and some other simulations
could be performed. In order to let further researches in this field with-
out the need to restart from scratch, we leave the repositories in which
the code can be found.

https://github.com/Corsal8/Tensorflow
This repository contains the code used to perform the simulations. It is
also possible to find the snapshot of the network so that it isn’t necessary
to retrain the model in order to visualize weights, output layers, or other
kind of data.

https://github.com/Hvass-Labs/TensorFlow-Tutorials
This repository contains a TensorFlow tutorial. Since some code has
been used from this repository, we mention this link because contains
comments and informations that might be useful to understand also our
work.

https://github.com/daviddao/spatial-transformer-tensorflow
This repository contains the Cluttered MNIST dataset used for the sim-
ulations.

36

Chapter 3. Visual representations 3.5. Repositories

In order to being able to use the code in the previous repositories it
is needed to have Python installed, the TensorFlow package in some
Python environment and a tool to run Notebooks (such as Jupiter).

37

Chapter 4

Results

4.1 Regular CNN

As mentioned previously, the first simulation has been performed using
the network depicted in Figure 3.1. Here we report the results obtained
with this setup.

0 2000 4000 6000 8000 10000 12000

Number of iterations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
c
c
u
ra

c
y
 r

a
ti
n
g

Accuracy rating

Training data

Validation data

Figure 4.1: Accuracy rating of the core network as a function of the
number of iterations

For the graph we can see that the training is pretty smooth and after
around 10000 iteration we are able to achieve an accuracy rating of 98%
on the training set and of 93% on the validation set.
In the next figures we can observe the values taken by the filters of the
network. Red values represents positive weights, blue values represents
negative weights.

39

4.1. Regular CNN Chapter 4. Results

Figure 4.2: Values of the filters in the first convolutional layer

Figure 4.3: Values of the filters in the second convolutional layer

Figure 4.4: Values of the filters in the last fully connected layer

40

Chapter 4. Results 4.1. Regular CNN

According to [1], the filters in the first layer are able to detect simple
features (in this case they seems to be edges) while in the higher layers
more complex ones are recognized (in this case it’s almost impossible to
say what they are identifying).

Taking a random input image, we can also observe the output of dif-
ferent layers.

Figure 4.5: Sample image

Figure 4.6: Feature maps at the output of the first convolutional layer

Figure 4.7: Feature maps at the output of the second convolutional
layer

41

4.2. Replacing softmax Chapter 4. Results

4.2 Replacing softmax

One of the first alternative configurations we examined has been the net-
work without the softmax layer. Instead of placing it, we used other
forms of normalization, in particular we applied the L1 and L2 norm.
The idea behind this substitution is based on the interpretation we give
to our network. In fact, based on the equation 3.4 we can interpret the
output of a layer as the SAL. For this reason we expect the output of the
last layer to be a probability and so we impose this constrain.
In fact, with softmax we would have a probability distribution just at
the top of the CNN, but the function g(x) learned at the output of the
last fully connected layer would be a log-probability. With the afore-
mentioned substitution we expect the network to being able to adjust its
weights in order to compute the function eg(x) directly, eliminating the
need of a softmax layer.

4.2.1 L2 normalization

First we show how the network behaves when we replace the softmax
layer with the L2-norm. In order to impose this constrain we used the
following equation:

ŷj =
tj√∑K−1
i=0 t2i

(4.1)

where ŷj is the j-th component of the output layer of the network
and ti is the i-th component of the last fully connected layer.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Number of iterations 10 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
c
c
u

ra
c
y
 r

a
ti
n

g

Accuracy rating

Training data

Validation data

Figure 4.8: Accuracy rating of the network with L2 normalization as a
function of the number of iterations

42

Chapter 4. Results 4.2. Replacing softmax

In Figure 4.11 we can observe that the training becomes slower and
a bit more unstable. In fact, around 13000, 17000 and 18000 iterations
there are spikes that decreases considerably the accuracy of the network.
We can also notice that even after 20000 iterations this configuration
isn’t able to achieve the same score of the previous one.
Inspecting the weights of this setup we obtain the following pictures.

Figure 4.9: Values of the filters in the first convolutional layer

Figure 4.10: Values of the filters in the second convolutional layer

In this case we can see that the first layer filters are weird: while
some seems to identifies edges or curves, the others don’t show under-
standable patterns. The second layer filters doesn’t show recognizable
structure, but they appears more messy compared to the ones in the
previous configuration.

43

4.2. Replacing softmax Chapter 4. Results

4.2.2 L1 normalization

Similarly to the previous case, we ran the simulation using the L1 norm.
In order to impose this normalization we used the following formula:

ŷj =
tj∑K−1

i=0 |ti|
(4.2)

where ŷj is the j-th component of the output layer of the network
and ti is the i-th component of the last fully connected layer.
In the following pictures the accuracy rating as a function of the number
of iterations and the values taken by the weights are depicted.

0 2000 4000 6000 8000 10000

Number of iterations

0

0.1

0.2

0.3

0.4

0.5

0.6

A
c
c
u
ra

c
y
 r

a
ti
n
g

Accuracy rating

Training data

Validation data

Figure 4.11: Accuracy rating of the network with L1 normalization as a
function of the number of iterations

Figure 4.12: Values of the filters in the first convolutional layer

44

Chapter 4. Results 4.2. Replacing softmax

Figure 4.13: Values of the filters in the second convolutional layer

Here we can see that the training becomes extremely unstable and
the top accuracy rating is barely 65%. On top of that we reach a point
in which the network isn’t able to discriminate the inputs and isn’t able
to update its weights in order to achieve better results. Weights in the
first layer doesn’t present recognizable kernels.

Both L2 and L1 normalization haven’t performed so well. The rea-
son why these methods haven’t worked nicely might be caused by the
optimizer which computes smaller errors and consequently updates the
weights slower.
In fact, the optimizer tries to minimize the cross-entropy defined as:

H(θ) = −
K−1∑
i=0

pi log qi(θ) (4.3)

In our case this computation is equivalent to the following

H(θ) = −y · log ŷ (4.4)

Where y represent the true label one-hot encoded and ŷ represents
the output vector of our neural network. For example, if the true class
is 8 and the output vector of our CNN is ŷ = [0 0 0.3 0 0 0 0 0 0.7 0],
the cross entropy is given by the following computation:

45

4.2. Replacing softmax Chapter 4. Results

y ← oh(8)

y = [0 0 0 0 0 0 0 0 1 0]

e = [ε ε ε ε ε ε ε ε ε ε]

H(θ) = −[0 0 0 0 0 0 0 0 1 0] · log(e+ [0 0 0.3 0 0 0 0 0 0.7 0])

= −log(0.7 + ε) = 0.3567

(4.5)

where oh is the one-hot encoder function and e is a vector of small
values ε = 10−8 added to avoid the computation of the log(0).
Since all the digits in our database belong to a single class, we expect
y to be a vector composed by all elements equal to zero beside the j-th
equal to one. With this consideration we can write

H(θ) = −log(ŷj) (4.6)

where ŷj is the j-th component of the output layer of the network.
In case we use softmax, ŷj is defined as follow:

ŷj =
etj∑K−1
i=0 eti

(4.7)

where ti is the i-th component of the vector that must be transformed
with the softmax.
In this case the cross entropy is

H(θ) = −log(ŷj) =

= −log(
etj∑K−1
i=0 eti

) =

= −tj + log(
K−1∑
i=0

eti)

(4.8)

Instead, using for example the L2 norm, we have

ŷj =
tj√∑K−1
i=0 t2i

(4.9)

that means that the cross-entropy is

H(θ) = −log(ŷj) =

= −log(
tj√∑K−1
i=0 t2i

) =

= −log tj +
1

2
log(

K−1∑
i=0

t2i)

(4.10)

46

Chapter 4. Results 4.2. Replacing softmax

Since the ti are always grater then zero because they are the output
of an activation function, comparing (4.10) and (4.8) we notice that
the latter yields grater errors causing stronger weights updates.
The computation can be generalized to the case in which the loss func-
tion is the mean of the cross-entropies computed over the batch.
While this consideration might justify slower training rates, this does not
justify the accuracy drops that occurs using these configurations.

In order to go deeper into this problem, we repeated the simulations
tracking how the weights were updated over time. In Figure 4.14 and 4.15
we have the mean and the standard deviation of the variation of the
weights using the softmax while in Figure 4.16 and 4.17 we have the
analogous graphs using the L1 normalization.

2000 4000 6000 8000 10000 12000

Number of iterations

1

2

3

4

5

6

7

8

9

10

10 -5 Mean weights differences with softmax

Conv layer 1

Conv layer 2

FC layer 1

FC layer 2

Figure 4.14: Difference of weights at each iteration using the softmax.

2000 4000 6000 8000 10000 12000

Number of iterations

1

2

3

4

5

6
10 -5 Std deviation of weights differences with softmax

Conv layer 1

Conv layer 2

FC layer 1

FC layer 2

Figure 4.15: Standard deviation of the variation of the weights using
the softmax

47

4.2. Replacing softmax Chapter 4. Results

2000 4000 6000 8000 10000 12000

Number of iterations

0

0.5

1

1.5

2

2.5

10 -4 Mean weights differences with L1 normalization

Conv layer 1

Conv layer 2

FC layer 1

FC layer 2

Figure 4.16: Difference of weights at each iteration using L1
normalization.

2000 4000 6000 8000 10000 12000

Number of iterations

0

1

2

3

4

5

6

7

8

9
10 -5 Std deviation of weights differences with L1 normalization

Conv layer 1

Conv layer 2

FC layer 1

FC layer 2

Figure 4.17: Standard deviation of the variation of the weights using L1
normalization

48

Chapter 4. Results 4.2. Replacing softmax

From these last graphs we can see that the most significant variations
occurs in the first two layers. This is somehow counter-intuitive since we
would expect that the first layers suffers from gradient vanishing more
then the layer at the top of the network. However, the main difference
between the network with the softmax and the one with the L1 normal-
ization is that in the first case the variation tends to decrease together
with the standard deviations while in the second case there are several
points in which the weights receives considerable swings.

Studying these cases hasn’t really clarified why alternative form of nor-
malization yield worse result then the regular CNN. Inspired by another
work [11] which apply the normalization before the activation function,
we tried to use restart the simulations following the same approach. The
results of this configuration are exposed in Figures 4.18, 4.19 and 4.20.
We can observe that the normalization applied before the activation func-
tion yields considerable improvements on the performance of the network.
Both L1 and L2 normalization are able to achieve the same results of the
network that uses softmax even if with the training is a bit slower.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of iterations

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
c
c
u

ra
c
y
 r

a
ti
n

g

Softmax normalization

Post norm. on training set

Post norm. on validation set

Pre norm. on training set

Pre norm. on validation set

Figure 4.18: Softmax

49

4.2. Replacing softmax Chapter 4. Results

2000 4000 6000 8000 10000 12000 14000

Number of iterations

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
A

c
c
u

ra
c
y
 r

a
ti
n

g

L1 normalization

Post norm. on training set

Post norm. on validation set

Pre norm. on training set

Pre norm. on validation set

Figure 4.19: L1 normalization

2000 4000 6000 8000 10000 12000 14000

Number of iterations

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
c
c
u

ra
c
y
 r

a
ti
n

g

L2 normalization

Post norm. on training set

Post norm. on validation set

Pre norm. on training set

Pre norm. on validation set

Figure 4.20: L2 normalization

50

Chapter 4. Results 4.2. Replacing softmax

4.2.3 Normalizing weights

Another configuration that we used has been the one in which the weights
of the filters of the first convolutional layer was normalized. Usually just
features map are rectified and normalized, not the filters. However, in or-
der to consider weights as probabilities as suggested by the equation 3.4,
we tried to normalize the filters.
The result is shown in Figure 4.21

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

NUmber of iterations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u

ra
c
y
 r

a
ti
n

g

Accuracy rating of normalized and non normalized weights

Non normalized weights on training set

Non normalized weights on validation set

Normalized weights on training set

Normalized weights on validation set

Figure 4.21: Accuracy rating as a function of the iteration number
when weights are normalized

4.2.4 Replacing ReLu with Sigmoid

Our last configuration has been the one in which we replaced the ReLU
activation function with the Sigmoid function. In the first place we used
the sigmoid without any form of normalization. The result with this
setup was poor because the optimizer wasn’t able to train the network
in order to prefer a class over another.
After having introduced the normalization, instead, the network recov-
ered its discriminative power but no real benefits has been found. In
Figure 4.22 the accuracy rating as a function of the number of iterations
is shown.

51

4.3. Table of results Chapter 4. Results

0 2000 4000 6000 8000 10000 12000

Number of iterations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
c
c
u

ra
c
y
 r

a
ti
n

g

Accuracy rating

Training data

Validation data

Figure 4.22: Accuracy rating as a function of the iteration number
when using the Sigmoid

4.3 Table of results

In the previous sections we have shown the results obtained with different
configurations of the convolutional neural network. For each configura-
tion many simulations have been performed, still the graphs represents
particular cases of each. Plotting the mean would have been pointless
since some simulations using the same setup given very different results
and so the mean would have shown something unrealistic. By the way,
it is still useful to have a statistic description of the result obtained in
the different setups used.

Simulation BS µBS σ2
BS IterBS µIterBS

σ2
IterBS

(x106)
Regular CNN 93.1 92.55 0.17 10300 11967 1.42
L2 norm 86.8 84.4 4.1 20000 19040 1.9
L1 norm 77.4 72.7 37 15200 14840 29.8
Soft pre-norm 92.9 92.4 0.23 10500 12140 2
L2 pre-norm 93 92.4 0.21 16400 16020 2.3
L1 pre-norm 92.1 91 0.52 15800 15660 1.54
Weights norm 92.2 91.1 1.71 8600 9100 3.1
Sigmoid 92.6 91.3 3.6 10700 10360 1.2

The different columns represents the following values:

• Simulations is a the short description of the setup used.

52

Chapter 4. Results 4.3. Table of results

• BS is the value of the best score achieved.

• µBS is the mean of the best scores obtained.

• σ2
BS is the variance of the best scores.

• IterBS is the number of iterations performed to achieve the best
score.

• µIterBS
is the mean of the iterations performed to achieve the best

scores of each simulation.

• σIterBS
is the variance of the iterations performed to achieve best

scores of each simulation.

The number of simulation performed in each setup was ranging be-
tween 8-10.

53

Chapter 5

Conclusions

In this document we wanted to verify the relationship between convolu-
tional neural networks and visual representations. In order to do so we
implemented a convolutional neural network and modified it by imple-
menting some operations that reflected the approximation made for the
SA likelihood [15].

The first simulation we made was replacing the softmax layer with other
forms of normalization. The results obtained in this way weren’t optimal
and the training was pretty unstable. We can’t state if this result is ob-
tained because the outputs of the last layer of the convolutional neural
network cannot be interpreted as probabilities or because other factors
degraded the training. For example, if the output of the last layer are
close to zero, normalizing would result in a division by a very small num-
ber that may cause some instability problems.

Normalizing the weights of the filters in the first layer haven’t really
changed the performance of the network (on average we lost 1.45% of
accuracy rating). This means that interpreting weights as probabili-
ties is compatible with the current implementations of the CNNs, still it
doesn’t give additional information about the approximation of the SAL.

Lastly we replaced the activation function with the sigmoid. The re-
sults with this setup was unsurprisingly good since this kind of function
is largely adopted in traditional architectures. The only interesting thing
to note is how the softmax or the sigmoid have the capability to stabilize
the process of training making it extremely smooth. This is probably
due to the region where these function operates. In fact, when the net-
work is firstly initialized, the weights are around zero and these functions
operates in the linear region. Once the training proceeds, they start to

55

Chapter 5. Conclusions

operate in the saturation region making them more insensitive to the
changes. This has the benefit that the weights doesn’t chance drastically
between an iteration an another leading consequently to a smooth train-
ing.

In conclusion we haven’t been able to verify or deny the relationship
between CNN and visual representations. Normalizing the weights has
been tested to be compatible with the current realizations of the CNNs
whereas replacing the softmax led to bad results. However, this isn’t
necessary caused by a coarse approximation of the likelihood but may
be caused by other elements. A deeper investigation on the parameters
of the network is required in order to understand which might be the
factors that lead to these results.

56

Bibliography

[1] Matthew D. Zeiler and Rob Fergus "Visualiz-
ing and Understanding Convolutional Networks".
http://www.matthewzeiler.com/pubs/arxive2013/arxive2013.pdf.
28 November 2013.

[2] https://en.wikipedia.org/wiki/Artificial_neural_network

[3] Trevor Hastie, Robert Tibshirani, Jerome Friedman "The Elements
of Statistical Learning" Second Edition Cap 11, pag 393.

[4] Mu Li, Tong Zhang, Yuquiang Chen, Alexander J. Smola "Effi-
cient mini-batch training for stochastic optimization" published in
Proceedings of the 20th ACM SIGKDD international conference of
Knowledge discovery and data mining. Pages 661-670. 24-27 August
2014.

[5] https://en.wikipedia.org/wiki/Backpropagation

[6] Razvan Pascanu, Tomas Mikolow, Yoshua Bengio"On
the difficulty of training recurrent neural networks".
http://www.jmlr.org/proceedings/papers/v28/pascanu13.pdf.
2013.

[7] https://en.wikipedia.org/wiki/Convolutional_neural_network

[8] https://adeshpande3.github.io/A-Beginner%27s-Guide-To-
Understanding-Convolutional-Neural-Networks/

[9] Yann LeCun, Leon Bottou, Genevieve B. Orr
and Klaus-Robert Muller "Efficient BackProp".
http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf.

[10] Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton "Im-
ageNet Classification with Deep Convolutional Neural Net-
works". https://papers.nips.cc/paper/4824-imagenet-classification-
with-deep-convolutional-neural-networks.pdf.

57

Bibliography Bibliography

[11] Sergey Ioffe, Christian Szegedy "Batch Normalization: Accelerat-
ing Deep Network Training by Reducing Internal Covariate Shift".
https://arxiv.org/pdf/1502.03167v3.pdf. 2 March 2015.

[12] Kaiming He, xiangyu Zhang, Shaoquing Ren, Jian
Sun "Deep Residual Learning for Image Recognition".
https://arxiv.org/pdf/1512.03385v1.pdf. 10 December 2015.

[13] Karen Simonyan and Andrew Zisserman "Very Deep Con-
volutional Networks for Large-Scale Image Recognition".
https://arxiv.org/pdf/1409.1556v6.pdf. 10 April 2015.

[14] Christian Szegedy, Wei Liu, Yangquing Jia, Pierre
Sermanet, Scott Reed, Dragomir Anguelow, Du-
mitru Erhan, Vincent Vanhoucke, Andrew Rabinovich
"Going Deeper with Convolutions". http://www.cv-
foundation.org/openaccess/content_cvpr_2015/papers/Szegedy_
Going_Deeper_With_2015_CVPR_paper.pdf.

[15] Stefano Soatto, Alessandro Chiuso "Visual Representa-
tion: Defining Properties and Deep Approximations".
https://arxiv.org/pdf/1411.7676v9.pdf. 29 February 2016.

[16] https://www.tensorflow.org/

[17] Siedderik P. Kingma, Jimmy Lei Ba "Adam: A Method for Stochas-
tic Optimization". https://arxiv.org/pdf/1412.6980v8.pdf. 23 July
2015.

[18] http://jupyter.org/

[19] https://www.continuum.io/downloads

[20] https://github.com/daviddao/spatial-transformer-tensorflow

[21] Ron Kohavi, "A study of Cross-Validation and Bootstrap for Ac-
curacy Estimation and Model Selection". Appears in the Inter-
national Joint Conference on Artificial Intelligence (IJCAI), 1995.
http://ai.stanford.edu/ ronnyk/accEst.pdf.

[22] Kurt Hornik, "Approximation Capabilities of Multilayer Feedfor-
ward Networks". Neural Networks, Vol. 4. pp. 251-257, 1991.
http://zmjones.com/static/statistical-learning/hornik-nn-1991.pdf.

58

