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Abstract

String theory allows for huge classes of possible models admitting a gravitational low-energy ef-
fective description. However, not any effective field theory (EFT) of gravity admits a string theory
UV completion. By using string theory as the main theoretical laboratory, the “Swampland program”
aims at identifying the hallmarks distinguishing the “landscape” of gravitational EFTs that admit a
consistent UV completion from the “swampland” of seemingly consistent EFTs that do not.

In this context, it has been recently realized that the perturbative regimes of UV complete four-
dimensional N = 1 (i.e. minimally supersymmetric) EFTs are strongly characterized by the presence
of specific types of fundamental strings, called EFT strings. The latter generically support an ‘internal’
world-sheet sector, besides the universal ‘center of mass’ sector, and it is currently unknown how to
couple it to the bulk supergravity sector in a supersymmetrically controlled way.

In this thesis, we illustrate how the universal sector of EFT strings can be coupled to four-
dimensional N = 1 supergravities by appropriately generalizing the superembedding formulation of
superstrings. This provides a promising starting point to add the internal world-sheet sector. In this
respect, we first study in depth the N = (0, 2) two-dimensional supergravity. We finally give a first
example of inclusion of the internal sector, considering N = (0, 2) Fermi multiplets and N = (0, 2)
chiral multiplets. In the latter case, we show that a generalization of the superembedding condition
is needed, leaving the investigation of this interesting aspect for future work.
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Chapter 1

Introduction

The Standard Model (SM) is the most accurate theory that describes the interactions among
elementary particles. Nevertheless, it is surely not the ultimate theory describing the reality at its
very fundamental level. The reason is that it still presents some unsolved theoretical problems, like the
so-called hierarchy problems, or the explanation of dark matter. Furthermore, the Standard Model
leaves apart the gravitational interactions. Among the theories that have been proposed to go beyond
the SM, the most promising one seems to be String Theory, according to which fundamental particles
are nothing but different excitations of a one-dimensional object.

String theory started in the late 1960s as an attempt to organize and to explain the observed spec-
trum of hadrons and their interactions. However, together with the existence of a critical dimension1,
which is 26 for the bosonic string and 10 for the fermionic string, an undesired property of string
theory was the appearance of a massless spin two particle, which is not present in the hadronic world.
Therefore, string theory was ruled out as a possible theory of strong interactions, but the presence of a
massless spin two particle led to regard it as a promising candidate for a complete theory of quantum
gravity (QG).

There exist five different types of critical superstring theories: type I, type IIA, type IIB, heterotic
SO(32) and heterotic E8 × E8. Together with 11-dimensional M-theory, they are all linked among
themselves by dualities, particular equivalences which relate different theories in different perturbative
regimes (small-large or strong-weak dualities). These dualities suggest that these theories should be
different manifestations of a unique theory, that is String theory.

Since superstring theories are 10-dimensional and M-theory is 11-dimensional, it is necessary to
reduce the higher-dimensional string effective descriptions down to four dimensions in order to obtain
relevant phenomenological, particle models. In order to get four-dimensional models, the unobserved
6/7 extra dimensions are assumed to be compactified on manifolds with an extremely small radius,
and the structure of the compactification determines the structure of the four-dimensional theory.

The arbitrariness in compactifying higher dimensional theories down to four dimensions does not
seem to allow for a systematic study of all the possible EFTs. Rather, one may start with a four-
dimensional theory and inquire whether such a description is coherent with its quantum gravity ul-
traviolet (UV) completion. This approach has a bottom-up nature, and goes by the name of the
Swampland program [1–3]; it is characterized by consistency criteria, within the four-dimensional de-
scription, which are called Swampland conjectures and aim at discriminating EFTs compatible with
a complete theory of quantum gravity from those which do not admit such a UV completion.

1It is the dimension required by space-time Lorentz invariance of the quantized bosonic string (or superstring) theory.
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Chapter 1. Introduction

Figure 1.1: Among the (apparently) self-consistent 4-dimensional effective field theories, the string Landscape
represents the sub-set of theories which admit a QG UV completion, while all the others are in the string
Swampland.

The four-dimensional effective field theories originating from string theory are populated by axions
ai, which can be seen as zero gauge-forms subjected to the transformation

ai −→ ai + ci , (1.1)

where ci are arbitrary constants. An axionic theory can be reformulated in terms of another, physically
equivalent theory where the axions are replaced by gauge two-forms B2,i, as we will see in detail in
Section 2.1.

Furthermore, typical EFTs admitting an UV QG completion are characterized by the presence
of BPS objects. In the thesis work, we focus on fundamental axionic strings, which are fundamental
in that they cannot be resolved into some smooth solitonic strings within a 4d EFT. Their tension
satisfies

Λ2 < Tstring < M2
P , (1.2)

where Λ is the effective cut-off scale. These strings electrically couple to the two-form potentials B2,i,
in turn related by an ‘electromagnetic duality’ to the axions. In this sense, it is said that BPS strings
are ‘magnetically’ coupled to the axions, and this is the reason why are also called axionic strings.
In particular, if we consider the dual axionic picture, in Section 2.1 we will show that, encircling
the string, the axions undergo a shift set by the string charges ei under the gauge two-forms B2,i:
ai −→ ai + ei.

In order to include the axionic strings in the EFT, it is necessary to have an axionic shift symme-
try. However, one of the most widely accepted conjectures of the Swampland Program, which is the
No Global Symmetry Conjecture [4, 5], states that exact global symmetries are not admitted in QG.
Therefore, the above axionic shift symmetries must be understood as approximate global symmetries
which are realised only at points of infinite distance in field space. This results in working close to the
infinite distance boundary of the field space in the corresponding string theory models. As we will see
in Section 2.4, the compatibility of this condition with the string backreaction motivates the restriction
to the EFT strings [6–8], which are then a subclass of the BPS axionic strings, whose backreaction
drives the surrounding scalar fields towards asymptotic field-space regions where the EFT admits a
perturbative regime and corresponding axionic shift symmetries.

Throughout the work, we restrict to 4-dimensional EFTs preserving minimal (N = 1) supersym-
metry at the cut-off scale Λ: this supersymmetry can be spontaneously broken at lower energies,
but our considerations will regard the EFT structure at energy scales of order Λ. Therefore, after
having discussed in detail our motivations in Chapter 2, in Section 3.1 we will start from introducing
N = 1 supersymmetry to arrive at writing N = 1 supergravity Lagrangians, by using the superspace
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formalism. Then, in Section 3.2.1 we will derive the supersymmetric action for the axions magneti-
cally coupled to the strings, and its dual version, following [9, 10]. To this aim, we will use proper
superfields which contain, among their components, the axions ai and the gauge two-forms B2,i. They
are the chiral superfields T i, whose lowest components contain the axions ai and the saxions si, which
are related through a duality to the real linear superfields Li, containing the gauge two-forms B2,i and
the dual saxions `i. The last ingredient to write the full action is the contribution of the BPS string
electrically coupled to the gauge two-forms B2,i with charges ei. This part of the action is introduced
in Section 4.1 and enjoys the so-called κ-symmetry, which is a local fermionic symmetry, which rep-
resents the way in which the bulk supersymmetry can be (partially) realized over the string worldsheet.

In the derivation of the string action, we use the so-called Green-Schwarz (GS) formulation dis-
cussed in [9], in which the string is described by the superspace embedding of the bosonic worldsheet,
parametrized by two bosonic coordinates ξm, m = 0, 1, into the target superspace. The GS formulation
allows for a description of the universal ‘center of mass’ sector, consisting of the bosonic and fermionic
fields describing the string profile in the target superspace. However, from explicit UV completions
(in which typically the axionic string corresponds to a brane wrapped on some internal cycle), we
know that possible deformations of the internal configuration correspond to additional fields living on
the worldsheet, which represent the so-called ‘internal’ degrees of freedom of the string. Such internal
sector of the worldsheet theory allows for the anomaly cancellation, required to have a consistent
EFT, which is discussed in [11]. Thus, we need to include this sector in the theory and describe its
interaction with the dynamical background fields, but the GS formalism is not suitable for describing
these degrees of freedom in a supersymmetrically controlled way.

An alternative approach which helps us to do this is the superembedding approach (see [12] and
references therein). In this formulation, to realize local supersymmetry on the worldsheet, we extend
the latter to an N = (0, 2) supersurface M2,2 parametrized by two bosonic coordinates ξm, m = 0, 1,
and two real fermionic coordinates η+u, u = 1, 2. This formalism provides the fermionic κ-symmetry of
the GS formulation with a clear geometrical meaning of standard worldsheet local supersymmetry, thus
giving a supersymmetric theory both in the superworldsheet of the string and the target superspace.
Therefore, after having discussedN = (0, 2) supergravity in Section 3.3, in Section 4.2 we will introduce
the superembedding formalism, by illustrating how it works in the case of N = 1 superstrings [12]. At
this point, we will be ready to implement this approach to our case of interest, and thus Section 4.3 will
be dedicated to reformulate the theory for the BPS axionic strings in the superembedding formalism.
Then, in Section 4.4, we will include in the theory N = (0, 2) Fermi superfields, thus providing a first
example of inclusion of an internal sector to the world-sheet theory of an EFT string. Furthermore,
we will see that an inconsistency arises when one tries to include N = (0, 2) chiral superfields.

Finally, in Chapter 5 we will draw our conclusions.
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Chapter 2

The structure of N = 1 effective field
theories relevant to string
compactifications

In this Chapter, we discuss how axions and axionic strings arise from string compactifications.
In this respect, in Section 2.1 we show the key ingredients of the effective 4-dimensional theories we
will consider throughout the thesis work. Then, in Section 2.3, we consider the explicit example of
M-theory compactifications on G2 manifolds. Finally, in Section 2.4 we discuss the so-called EFT
strings and Section 2.5 is dedicated to show the main results related to them.

2.1 The UV origin of axions in D = 4 EFTs

As said in the Introduction, String theory admits different perturbative formulations, related to
each other by dualities. They are given by the five superstring theories, which are Type I, Type IIA,
Type IIB, Heterotic SO(32) and Heterotic E8 × E8, and the 11-dimensional M-theory. The effective
actions of superstring theories are 10-dimensional, while the low-energy description of M-theory is
11-dimensional supergravity, and they have a spectrum of massless fields which depends on the theory
we are considering. In particular, all theories contain a massless graviton gµν and a dilaton φ, apart
from M-theory which does not include the latter, while for the anti-symmetric tensor gauge fields we
refer to Table 2.1. They can be represented as differential forms, and we use the notation according
to which Cp is a p-form gauge field, given by

Cp =
1

p!
Cµ1µ2...µpdx

µ1 ∧ dxµ2 ∧ · · · ∧ dxµp . (2.1)

Such anti-symmetric tensor fields couple to extended objects: as an example, the NS-NS B2 field
couples to the fundamental, or F1, strings, and their magnetic duals, the NS5-branes; the Ramond-
Ramond fields Cp+1 couple to the so-called Dp-branes, which are the hypersurfaces on which open F1
strings with Dirichlet boundary conditions end.

Theory Antisymmetric tensor fields

Type I C2, Ai1
Type IIA B2, C1, C3

Type IIB B2, C0, C2, C4

Heterotic, SO(32) B2, Ai1
Heterotic, E8 × E8 B2, Ai1

M-theory C3

Table 2.1: Table showing the field content of the 5 superstring theories and M-theory, as far as the anti-
symmetric tensor fields are concerned. Here, we use the notation according to which Bp are NS-NS sector fields,
while Cp are R-R sector fields. Furthermore, Ai

1 stand for Yang-Mills gauge fields.
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Chapter 2. The structure of N = 1 effective field theories relevant to string compactifications

They enter the action through their field-strength Fp+1 = dCp
1, thus the resulting theory is

invariant under the following transformation

Cp −→ Cp + ωp , (2.2)

where ωp is a closed p-form. This is a generalization of the ordinary Maxwell theory, which is retrieved
in the case p = 1. In this case, we know that the photon, described by the 1-form gauge field
A1 = Aµdxµ, couples to electrically charged particles through the interaction term

Sint = e

∫
A1 , (2.3)

where the integral is over the worldline of the particle and e is the electric charge, which, in 4 dimen-
sions, is measured by integrating the electric field over the two-sphere S2:

e =

∫
S2

∗F2 , (2.4)

with F2 = dA1 and ∗F2 the Hodge dual of the field-strength F2
2.

Generalizing this scheme, a (p+ 1)-form gauge field Cp+1 couples electrically to a p-brane and this
interaction is described by

Sint = µp

∫
Cp+1 , (2.5)

where the integration is over the world-volume of the brane, and µp is the p-brane charge, given by

µp =

∫
SD−p−2

∗Fp+2 , (2.6)

since it is exactly D−p−2 the dimension required for a sphere to surround a p-brane in D dimensions.
The magnetic dual of a p-brane is a (D − p− 4)-brane, and it carries a magnetic charge, denoted

by µD−p−4, that is measured by computing the integral
∫
Fp+2 over a sphere Sp+2.

To make contact between string/M-theory and the 4-dimensional world of everyday experience,
the typical procedure is top-down in nature and goes under the name of Kaluza-Klein (KK) compact-
ification. One starts with the D-dimensional effective field theory, formulated inMD and compactify
it over an internal (D − 4)-dimensional compact manifold X of size `c:

MD =M1,3 ×X , (2.7)

where M1,3 is the external four-dimensional manifold.

Figure 2.1: From far away a two-dimensional cylinder looks one-dimensional.

To better visualize the idea behind the KK compactification, we may consider the two cylinders
of Fig. 2.1. Although the surface of the first cylinder is two-dimensional, if seen from a large distance

1Actually, their expression is generally more complicated. For example, FRR
p+1 = dCp +H3 ∧ Cp−2. However, we may

neglect these details for our discussion.
2For the definition of the Hodge dual of a p-form, see Appendix A.
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2.1. The UV origin of axions in D = 4 EFTs

(or, equivalently, if r � `), the cylinder looks effectively one-dimensional. We now have to imagine
that the long dimension of the cylinder is replaced by our four-dimensional space-time and the short
dimension by an appropriate six (for superstring theories), or seven-dimensional (for M-theory) com-
pact manifold. Therefore, since the typical length of the internal manifold is very small, it cannot be
seen at the energy scales we are able to probe, which are E � 1/`c, and the world looks effectively
four-dimensional. Nevertheless, even if the internal manifolds are invisible, their topological properties
determine the particle content and structure of the four-dimensional theory, with its spectrum of fields
determined by dimensionally reducing the higher-dimensional fields.

Axions generically arise in string theory compactifications as Kaluza-Klein (KK) zero modes of
the masslss antisymmetric tensor gauge fields [13, 14]. We now qualitatively give the mechanism
which provide the four-dimensional theories derived from string compactifications with axions and the
corresponding strings, leaving a more quantitative analysis of a concrete example to Section 2.3.

Let us consider a D-dimensional theory and a gauge p-form Cp. In addition, let us introduce a
basis of closed p-forms on the internal manifold X, ωi ∈ Hp(X,Z), i = 1, . . . , bp(X), and also take
them to be harmonic3. The KK expansion for the p-form Cp contains

Cp = ai(x)ωi(y) + . . . , (2.8)

where x and y represent the non-compact and compact coordinates, respectively. The coefficients of
this linear combination, i.e. the ai(x), are four-dimensional (pseudo)scalar fields. Furthermore, if we
assume for simplicity the absence of internal fluxes, the higher-dimensional gauge invariance of the
antisymmetric tensor field action guarantees that no potential is generated at any order in perturbation
theory, thus providing the theory for the scalar field with a global shift symmetry4. Therefore, the
(pseudo)scalar fields under discussion are axions, which can be regarded as gauge 0-forms, subjected
to the transformation

ai −→ ai + ci , (2.9)

with ci being an arbitrary constant.
In 4 dimensions, an axionic theory can be reformulated in terms of another, physically equivalent

theory where the axions ai are replaced by gauge two-forms B2,i. We now illustrate how this duality
works.

Henceforth, we will focus on four-dimensional EFTs preserving minimal N = 1 supersymmetry
at the UV cut-off scale Λ. In this context, let us consider a theory for a set of chiral superfields T i,
called axionic multiplets, whose lowest component contain two sets of real scalar fields, the axions ai

and the saxions si, namely
T i
∣∣ = ti = ai + isi , (2.10)

where the vertical line means that they are evaluated at θ = θ̄ = 0. The physics of theories containing a
set of chiral multiplets is generically encoded in two scalar functions of the fields: the Kähler potential
K(T, T̄ ) and the superpotential W (T ). In particular, let us focus on the part of the action describing
the dynamics of the axions and the saxions, which acquires the form5

S =
M2
P

2

∫ (
R ∗ 1− Gij(s)dsi ∧ ∗dsj − Gij(s)dai ∧ ∗daj

)
, (2.11)

where ∗1 is the four-dimensional volume element, ∗1 = edx0 ∧ dx1 ∧ dx2 ∧ dx3 ≡ ed4x, and the field
metric Gij is defined in terms of the Kähler potential as

Gij(s) ≡
1

2

∂2K

∂si∂sj
, (2.12)

3For the definition of cohomology group and harmonic p-form, see Appendix A.
4The shift symmetry is always broken by non-perturbative contributions, but such symmetry-breaking factors can be

neglected in proper regions of field space, as we will see in Section 2.4.
5Here, we are neglecting possible contributions to the scalar potential arising from W (T ) and associated with non-

perturbative effects. The reason of this assumption will be clearer in Section 2.4.1.
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Chapter 2. The structure of N = 1 effective field theories relevant to string compactifications

We consider the case in which Gij only depends on the saxionic sector si, in order to preserve the
invariance under axionic shifts ai −→ ai + ci.

To formulate the dual description of (2.11) in terms of gauge two-forms B2,i, we first relax the
assumptions that the one-forms dai are exact, but rather regard them as generic one-forms θi and add
a ‘dualizing term’ to the action as follows

S =
M2
P

2

∫ (
R ∗ 1− Gij(s)dsi ∧ ∗dsj − Gij(s)θi ∧ ∗θj

)
−
∫
θiH3,i , (2.13)

where, in the last term, we have introduced the field-strength of the gauge two-form H3,i ≡ dB2,i.
Two paths may be followed, one leading to the axionic formulation, described by (2.11), the other to
a dual formulation where the gauge two-forms B2,i replace the axions ai. In details:

Axionic formulation If we integrate out B2,i, we obtain the relation

dθi = 0 , (2.14)

which is solved by requiring θi = dai for a generic zero-form ai, reducing the action to (2.11).

Dual formulation It is obtained by integrating out the one-forms θi. This leads to

M2
P ∗ θi = −Gij(s)H3,j , (2.15)

where Gij is the inverse of Gij (GijGjk = δik). The relation (2.15) properly exchanges the one-
forms dai with their Hodge-dual counterparts H3,i, so that providing the duality we were looking
for. By plugging (2.15) into (2.13), we arrive at an action that now depends on the saxionic
sector and the gauge two-forms B2,i:

S =
M2
P

2

∫ (
R ∗ 1− Gij(s)dsi ∧ ∗dsj

)
− 1

2M2
P

∫
Gij(s)H3,i ∧ ∗H3,j . (2.16)

This action is invariant under the gauge transformations B2,i −→ B2,i + dα1,i, with α1,i generic
one-forms.

In Section 3.2 we will discuss in detail the supersymmetric generalisation of the dualization pro-
cedure discussed above. In the supersymmetric version, the axionic multiplets are replaced by real
linear multiplets Li, whose bosonic components are real scalars `i, the so-called dual saxions, and the
gauge two-forms B2,i, dual to the axions. The latter are related to each other by (2.15), whereas the
dual saxions are defined in terms of the saxions si as

`i = −1

2

∂K

∂si
. (2.17)

Let us stress that, in order for this dual description to be possible, the theory has to enjoy the
axionic shift symmetry (2.9). In other words, since in the supersymmetric context the theory is
specified by a Kähler potential K, this means that the latter must be invariant under the axionic
shifts (2.9). In Section 2.3, we will see how this is realized in M-theory compactifications.

2.2 The UV origin of axionic strings in D = 4 EFTs

The relation dθi = 0 in (2.14) is modified if the so-called axionic strings are present in the theory.
Generally speaking, the presence of extendend objects is ubiquitous in EFTs arising from string
compactifications. In particular, BPS strings naturally arise in 4-dimensional N = 1 theories with
approximate shift symmetries. We focus our attention on fundamental strings, namely those satisfying

Λ2 < T < M2
P , (2.18)

with Λ being the UV cut-off scale of the EFT, and consider them electrically coupled to the gauge
two-forms B2,i. From the 4-dimensional point of view, they are structureless objects, i.e. they cannot

8



2.2. The UV origin of axionic strings in D = 4 EFTs

be resolved into some smooth solitonic strings within the 4-dimensional EFT. For this reason, they
correspond to fundamental localised objects in the theory.

A string spans a two-dimensional hypersurface S in the target four-dimensional spaceM1,3, which
is determined by the embedding6

ξm 7−→ S : xm ≡ xm(ξ) , (2.19)

where ξm, m = 0, 1, are two spacetime coordinates parametrizing the string worldsheet. The action
describing a string minimally coupled to a set of gauge two-forms B2,i is

Sstring = −
∫
S

√
−det γ Tstring(`) + ei

∫
S
B2,i , (2.20)

where γ represents the induced metric over the string worldsheet

γmn =
∂xm

∂ξm
∂xn

∂ξn
gmn . (2.21)

The second, Wess-Zumino term expresses the minimal coupling of the string to the gauge two-forms
B2,i, under which the string has charges ei, whereas the first, Nambu-Goto term describes the motion
of the string, encoding the kinetic terms of the string degrees of freedom, and it is invariant under
reparametrizations of the worldsheet ξm −→ ξ′m(ξ). It further depends on the string tension Tstring(`),
its mass per unit length, which may generically depend on the dual saxions `i. In particular, in Section
3.2, we will show that, for a given set of charges ei, Tstring(`) is completely fixed by requiring the axionic
strings to be 1

2 -BPS objects, namely preserving one half of the bulk supersymmetry, and its expression
is [9]

Tstring(`) ≡ Te = M2
P |ei`i| . (2.22)

Therefore, in its dual version, the full action which describes the interaction of a string with the
bulk fields is

S =
M2
P

2

∫ (
R ∗ 1− Gijd`i ∧ ∗d`j

)
− 1

2M2
P

∫
GijH3,i ∧ ∗H3,j+

−
∫
S

√
−det γ Tstring(`) + ei

∫
S
B2,i .

(2.23)

Let us see what are the effects of the coupling of the gauge two-forms to a string in the dual axion
picture. In this respect, let us compute the equations of motion for the gauge two-forms B2,i which
originate from the action (2.23):

− 1

M2
P

d
(
Gij ∗H3,j

)
= eiδ2(S) . (2.24)

If we use the duality relation (2.15), we find what we anticipated previously, i.e. the relation dθi = 0
gets modified and becomes

dθi = eiδ2(S) . (2.25)

We can now integrate this equation over a disk D, whose boundary L = ∂D is a circle enclosing the
string, and using that the one-form θi can be still written as θi = dai everywhere but on the worldsheet
S, we obtain ∫

D
dθi = ei

∫
D
δ2(S) =⇒ ∆ai = ei , (2.26)

which tells that, encircling a string, an axion ai is subjected to a monodromy transformation that
shifts the axion ai by the charge ei of the string under the dual two-form B2,i. We will say that the
axions ai are ‘magnetically’ coupled to the string, since the latter is electrically coupled to the gauge
two-forms B2,i, which, in turn, provide an alternative representation for the axions ai, and call such a
string an ‘axionic string’.

6In what follows, the underlined indices refer to target-space indices, while not underlined ones correspond to world-
sheet indices.
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Chapter 2. The structure of N = 1 effective field theories relevant to string compactifications

We now show how axionic strings arise from string compactifications. To this aim, let us consider
the magnetic dual of the p-form Fp+1 = dCp, which is given by FD−p−1 = ∗Fp+1

7. Generally, from the
equation of motion of Fp+1, we can always associate a (D− p− 2)-form CD−p−2 to FD−p−1, such that
FD−p−1 = dCD−p−2. If we focus on the case D = 10, the latter is an (8− p)-form. We now introduce
a basis of (6− p)-forms, which we take to be harmonic, ω̃i ∈ H6−p(X,Z), i = 1, . . . , b6−p(X) dual to
the basis ωi introduced above, i.e. such that∫

X
ωi ∧ ω̃j = δji . (2.27)

By compactifying the theory on the internal space X, the expansion of C8−p includes the following
term:

C8−p = B2,i ∧ ω̃i + . . . . (2.28)

This term arises from taking 2 external and 6 − p internal indices. We know that C8−p electrically
couples to (7 − p)-branes, and their minimal coupling is expressed by the interaction term in (2.5).
Then, if we consider, in addition to the decomposition (2.28), a (7− p)-brane wrapping some internal
cycle, namely whose worldvolume can be written as the product of a 2-dimensional surface S in the
external space with a (6− p)-dimensional internal cycle C, Γ = S × C, we obtain that

µ7−p

∫
Γ
C8−p =

∫
S
B2,i

(
µ7−p

∫
C
ω̃i
)

= ei
∫
S
B2,i , (2.29)

where we have defined the charges ei as

ei ≡ µ7−p

∫
C
ω̃i . (2.30)

They are quantized since we are considering integral harmonic forms ω̃i, whose integral over internal
cycles is quantized, by definition. Furthermore, µ7−p is quantized due to a generalization of the Dirac
quantization condition (valid for point-like charges in D = 4) to the charges carried by a dual pair of
p-branes. Therefore, the minimal coupling of C8−p to a (7− p)-brane wrapping some internal (6− p)-
cycle, gives us the Wess-Zumino term, which expresses the coupling of the gauge two-forms B2,i to a
four-dimensional string, whose world-sheet is S, as in (2.20) and (2.23).

Let us discuss the ‘magnetic’ axionic description of these strings from the 10d viewpoint. For
concreteness, we focus on the NS-NS B2 field. In 10 dimensions, its magnetic dual is B6. Similarly
to before, according to how many indices we take to be internal or external, the two fields admit, in
their expansions, the following terms{

B2 = B2,0 + aiωi + . . .

B6 = B2,i ∧ ω̃i + a0ω6 + . . .
, (2.31)

where ωi and ω̃i are the same as before, but with p = 2, and ω6 is an integral 6-form, such that∫
X
ω6 = 1 . (2.32)

The B2 field electrically couples to the F1-string, while the electric coupling of B6 is with NS5-branes.
Since they constitute a dual pair of fields, from their expansions we see that, in the 4-dimensional
EFT:

• the axion a0 is the magnetic dual of the B2,0 field. Therefore, the 10-dimensional fundamental
string is the axionic string associated to the axion a0 appearing in the expansion of B6;

• the axions ai are the magnetic duals of the gauge 2-forms B2,i, and consequently, in this case,
the axionic strings correspond to NS5-branes wrapped around some internal 4-cycle C.

7Here, as in Section 2.1, we are neglecting the possible quadratic corrections to this expression.
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The scheme outlined here appears in several several string/M-theory compactifications. However,
the above discussion does not take into account supersymmetry, which, as already mentioned, is
crucial to fix the form of the tension as in (2.22). The requirement for the strings to be 1

2 -BPS objects
impose additional conditions on the cycles around which higher-dimensional branes are wrapped in
the internal compactification space. To discuss these topics, we now give an explicit example of how
this kind of models arises from string/M-theory compactifications, by focusing on the case of M-theory
compactified on G2 manifolds.

2.3 An explicit example: M-theory on G2 manifolds

In a smooth space-time, the low-energy effective description of M-theory is 11-dimensional super-
gravity. As already explained in the previous Section, to obtain a 4-dimensional EFT in M-theory
compactifications, we need to consider 11d vacua of the form M1,10 = M1,3 ×X where M1,3 is the
well known flat Minkowski space-time, while X is the internal space, which is a compact 7-dimensional
manifold characterized by a typical length scale `c which is very small with respect to the energy scales
we are able to probe.

A class of 7-manifolds, used in M-theory compactifications, which allows us to obtain a 4-dimensional
effective theory with N = 1 supersymmetry is given by manifolds whose holonomy group is G2. There-
fore, in the following we will focus on this type of M-theory compactifications. Before describing how
to compactify M-theory on such manifolds, we give a brief overview on useful concepts for the purposes
of our goal.

2.3.1 G2 manifolds

Let us start by introducing the notion of holonomy.

Consider an n-dimensional orientable Riemannian manifold (X, g), a point p ∈ X and a vector
v ∈ TpX, tangent to X in p. The manifold is equipped with a Riemannian metric g, which naturally
induces a connection, the Levi-Civita connection. The latter allows to define a parallel transport for
tangent vectors along curves in X. One of the properties of parallel transport is that it preserves
the norm of vectors, hence by transporting v along a closed loop γ in X, we obtain a vector v′ with
the same length, but in general a different orientation with respect to v and the two are related by a
rotation

v′ = Rv , R ∈ SO(n) . (2.33)

On the other hand, the objects that are parallel transported may also be spinors. In this case, under
parallel transport around a closed curve, the transformation of a spinor is an element of the covering
group Spin(n). By considering all possible closed curves in X, we obtain a set of spinors related to
the original one by a matrix U ∈ Spin(n). These rotations form a group called the holonomy group
of X, denoted by Hol(X, g). Note that Hol(X, g) depends on the choice of the metric g, since it is
built out of the parallel transport defined by the Levi-Civita connection. This means that the same
manifold X with different metrics can have different holonomy groups. In the most general case, the
holonomy group of an n-dimensional Riemannian manifold is Spin(n), but in some special instances
it can be a proper subgroup thereof:

Hol(X, g) ⊂ Spin(n) . (2.34)

In this case, (X, g) is called a manifold of special holonomy.

In 7 dimensions, the exceptional Lie group G2 is a possible holonomy group, and we now explain
why M-theory compactifications on G2 manifolds lead to 4d EFTs with N = 1 supersymmetry. First
of all, we have to say how to determine the number of supersymmetry transformations preserved by
compactification of M-theory on X. It turns out [15] that this number is equal to the number of
covariantly constant spinors, i.e. the solutions of the equation

∇Mη = 0 , (2.35)
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Chapter 2. The structure of N = 1 effective field theories relevant to string compactifications

where η is an 11d Majorana spinor, ∇ is the covariant derivative containing the spin connection and
M = 0, 1, . . . , 10 is an index labelling the coordinates XM on M1,10. Since we consider a space-time
of the form M1,10 =M1,3 ×X, we can factorize the spinor η as

η(XM ) = η(xµ, yA) = ζ(xµ)⊗ ψ(yA) , (2.36)

where:

• ζ is a 4-component Majorana spinor on M1,3 with coordinates xµ, µ = 0, . . . , 3;

• ψ is a spinor on X, with coordinates yA, A = 1, . . . , 7.

In our case, since we are consideringM1,3 to be flat Minkowski space-time and it admits a basis of four
independent covariantly constant spinors ζ, the number of preserved supersymmetry transformations
is 4N , where N is the number of 7d spinors ψ solving the equation

∇(7)
A ψ = 0 , (2.37)

where ∇(7) is the 7d covariant derivative. To determine the number of solutions of (2.37), the idea
is that of decomposing the spinor representation of Spin(7) into irreducible representations of the
holonomy group Hol(X, g) (in our case G2) and look for singlets, on which Hol(X, g) acts trivially,
hence leaving them invariant.

In the case of a G2 manifold X, there is only one solution to (2.37), thus giving 4 conserved
supercharges, which is exactly the number of preserved supersymmetry transformations necessary to
have N = 1 supersymmetry in 4 dimensions.

The presence of covariantly constant spinors typically allows one to define associated covariantly
constant p-forms. In particular, a G2 manifolds is characterized by the existence of one invariant
3-form ϕ, called associative form, with ϕABC = ψ†ΓABCψ

8, and one invariant 4-form, which is the
7-dimensional Hodge dual of ϕ and therefore denoted by ∗ϕ, called coassociative form.

Starting from ϕ, it is possible to reconstruct a G2 holonomy metric g by means of the following
formula

gAB = det(h)−
1
9hAB , (2.38)

with

hAB =
1

144
ϕACDϕBEFϕGHIε

CDEFGHI . (2.39)

One property of this metric is Ricci-flatness, i.e. it has vanishing Ricci tensor, RAB = 0. Therefore,
it automatically solves the 7-dimensional vacuum Einstein equations.

To conclude this introduction to G2 manifolds, we illustrate an important property of the 3-form
ϕ and its dual ∗ϕ.

Let us consider a closed p-form ωp and a p-dimensional submanifold S ⊂ X. If we restrict the
metric g on S, it defines a volume form volS . It is said that ωp is a calibration if its pull-back on S
satisfies9

ωp|S = α(x) · volS , with α(x) ≤ 1 , ∀x ∈ S . (2.40)

If α(x) = 1, ∀x ∈ S, we say that the submanifold S is calibrated by ωp, and we can then calculate its
volume by integrating the corresponding calibration ωp on S itself:

Vol(S) =

∫
S
ωp . (2.41)

Since ωp is closed, by Stokes’ theorem we have that∫
S−S′=∂Σ

ωp =

∫
Σ

dωp = 0 =⇒
∫
S
ωp =

∫
S′
ωp , (2.42)

8Here, ΓABC = Γ[AΓBΓC], where ΓA are 7-dimensional Γ-matrices.
9For an introduction to calibrated geometries, see [16].
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where S′ belongs to the same homology class of S. On the other hand, since ωp is a calibration, it
satisfies (2.40) also when we restrict it on S′, but with α(x) not equal to 1 everywhere on S′, in general.
Therefore, we have found that calibrated submanifolds have minimal volume in their homology class.

This is important since it can be shown that branes wrapped on internal cycles preserve some
fraction of the bulk supersymmetry if and only if the cycles are calibrated. Thus, calibrated subman-
ifolds are identified as supersymmetric cycles, and, in our case, the calibrations are exactly given by
the associative 3-form ϕ and the coassociative 4-form ∗ϕ. We use this result when we will analyse the
UV origin of BPS axionic strings in M-theory compactifications.

We now have all the ingredients to derive the structure of the 4d EFT arising from M-theory
compactification on G2 manifolds.

2.3.2 Axions from M-theory on smooth G2 manifolds

At low energies and on a smooth space-time, M-theory is well approximated by 11-dimensional
supergravity. In D = 11 supergravity, the bosonic degrees of freedom are given by the graviton and a
3-form C3, whose field strength is denoted by G4 = dC3. The part of the action associated to these
fields is

S11 =
2π

`9M

∫ (
R ∗ 1− 1

2
G4 ∧ ∗G4 −

1

6
C3 ∧G4 ∧G4

)
, (2.43)

where `M denotes the 11-dimensional Planck length. Let us study the massless scalar fields arising in
the 4-dimensional theory, by first discussing the metric. Recall that we are considering a space-time
of the form M1,10 =M1,3 ×X, thus the metric is decomposed in the following way:

dŝ2 = GMNdXMdXN = e2Agµν(x)dxµdxν + `2M g̃AB(y)dyAdyB , (2.44)

with the metric on X which can be constructed from the associative 3-form ϕ as in (2.38) and satisfies
the vacuum Einstein equations. Here, `2M is introduced to make the 7d metric g̃AB and coordinates
yA dimensionless, while the expression for the Weyl rescaling factor e2A is obtained by requiring that
the 4d Einstein-Hilbert term arising from its 11d version has the canonical form

M2
P

2

∫
d4x
√
−gR(4) , (2.45)

with g ≡ det g. The dimensional reduction of the 11d Einstein-Hilbert term gives

2π

`9M

∫
d11X

√
−GR̂(11) −→ 2π

`9M
`7MVX

∫
d4x
√
−ge2AR(4) + . . . , (2.46)

where VX is the adimensional volume of the internal space, which can be expressed in terms of ϕ and
∗ϕ as

VX =

∫
X

√
g̃d7y =

1

7

∫
X
ϕ ∧ ∗ϕ , (2.47)

with g̃ ≡ det g̃. Therefore, by comparing (2.45) and (2.46) we find that

e2A =
`2MM

2
P

4πVX
. (2.48)

If we consider fluctuations of g̃AB(y)

g̃AB(y) + δg̃AB(x, y) , (2.49)

and require that Einstein equations are still satisfied, one can show [17] that the number of independent
moduli obtained from the metric is b3(X), that is the number of harmonic 3-forms on X. Since the
metric is built out of the associative 3-form ϕ, such moduli arising from the metric can be obtained by
decomposing the latter. Let us then introduce a basis {Σi}, i = 1, . . . , b3(X) of the integral homology
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Chapter 2. The structure of N = 1 effective field theories relevant to string compactifications

group H3(X,Z). In terms of this basis, each 3-cycle in X may be written as Σ = miΣ
i, with mi ∈ Z.

Furthermore, let us introduce a dual basis {ωi} of 3-forms, defined by requiring that∫
Σi
ωj = δij . (2.50)

This basis also represents a basis of the integral coohomology group H3(X,Z), which is the group of
3-forms whose integral on any 3-cycle Σ is always integer. Therefore, using the two bases and the
duality relation (2.50), we obtain that, if we consider the integral of ωi on a generic 3-cycle Σ = miΣ

i,
it exactly gives the integer mi: ∫

Σ
ωi = mi , mi ∈ Z . (2.51)

We now perform a decomposition of the associative form ϕ in terms of the integral harmonic 3-form
basis just introduced

ϕ =

b3(X)∑
i=1

si(x)ωi(y) , (2.52)

and we finally obtain what anticipated. Indeed, the notation for the coefficients of this decomposition
is not accidental, since they are exactly the saxions of Section 2.1, which, utilising (2.50), can be
written as

si =

∫
Σi
ϕ . (2.53)

Similarly, one can decompose the 3-form field C3 as10

C3 =

b3(X)∑
i=1

ai(x)ωi(y) + . . . , (2.54)

where ai are the axions, which, as for the saxions, can be seen as integrals of C3 on the basis of 3-cycles

ai =

∫
Σi
C3 . (2.55)

The reason why they are supersymmetric partners of the saxions lies in the fact that, in the 11d
picture, the objects they come from, i.e. the metric and C3, are in turn superpartners. Together, ai

and si form the lowest components of the axionic multiplets T i mentioned in Secton 2.1, namely

ti = ai + isi =

∫
Σi

(C3 + iϕ) , i = 1, . . . , b3(X) . (2.56)

Generically speaking, a 4d N = 1 supersymmetric EFT is characterized by a Kähler potential K
for the scalar fields. In our case, its form was found in [18–20], and is given by

K = −3 log

(
VX
2π2

)
, (2.57)

with VX the adimensional volume of the internal space X, which is computed as in (2.47) in terms of
ϕ and ∗ϕ. This result is important, because it tells us that the Kähler potential only depends on the
metric and, if we recall (2.52) and (2.54), this implies that K only depends on the saxions si and not
on the axions ai. Therefore, K enjoys an axionic shift symmetry, and, as already said in Section 2.1,
it is needed in order for the dualisation procedure to be possible.

To see the origin of the dual saxions `i, we first introduce dual bases of harmonic 4-forms {ω̃i} and
4-cycles {Πi}, i = 1, . . . , b4(X), such that∫

X
ωi ∧ ω̃j = δji ,

∫
Πi

ω̃j = δji , (2.58)

10Here, the ellipses stand for an additional term in the KK reduction of the 3-form field C3, which gives origin to 4d
Abelian gauge fields. However, we did not elaborate on them, since they are not relevant for the purposes of the thesis
work.
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2.3. An explicit example: M-theory on G2 manifolds

where {ωi} is the basis of harmonic 3-forms defined above. Furthermore, note that, since X is a
7-dimensional manifold and in general bp(X) = bn−p(X) for an n-dimensional manifold, in our case
b3(X) = b4(X).

We can now decompose the coassociative form ∗ϕ in terms of the 4-form basis {ω̃i}

1

2VX
∗ ϕ =

b4(X)∑
i=1

`i(x)ω̃i(y) , (2.59)

and, analogously to the case of the axions and the saxions, the dual saxions `i are then the integrals
of ∗ϕ on the basis of 4-cycles {Πi}.

2.3.3 BPS strings from M-theory on smooth G2 manifolds

We now move to the analysis of axionic strings. According to the discussion of Section 2.1,
since p = 2 and D = 11, the 3-form C3 electrically couples to a 2-brane, called the M2-brane, and
magnetically to a 5-brane, called the M5-brane. Axionic strings arise in the 4-dimensional EFT from
M5-branes wrapped on 4-cycles. Therefore, let us start from the 11-dimensional bosonic action for an
M5-brane11

SM5 = −TM5

∫
W6

√
−h6d6σ + TM5

∫
W6

A6 + . . . , (2.60)

where TM5 = 2π/`6M is the brane tension, W6 is the 6-dimensional world-volume of the brane,
parametrized by the coordinates σa, a = 0, . . . , 5 and with induced metric h6,ab, while A6 is a 6-
form potential, dual to the 3-form C3, under which the M5-brane is charged. If we wrap the M5-brane
around an internal 4-cycle, its world-volume W6 can be written as W6 = S × Π, where S represents
the external 2-dimensional world-sheet of the string and Π the internal 4-cycle. We can now rewrite
the two terms in (2.60):

• If we consider a metric GMN with the form as in (2.44) and a calibrated Π (for which we have
seen that the volume can be expressed as the integral of the coassociative form ∗ϕ), the first
integral can be factorized into two pieces and becomes

−TM5`
4
M

∫
S
e2A
√
−hd2σ

∫
Π

√
h4d4σ = − 2π

`2M
Vol(Π)

∫
S
e2A
√
−hd2σ =

= − 2π

`2M

∫
Π
∗ϕ
∫
S
e2A
√
−hd2σ .

(2.61)

By decomposing the 4-cycle Π as Π = eiΠi, e
i ∈ Z, and the coassociative form ∗ϕ as in (2.59),

we can finally write the Nambu-Goto term of the M5-brane action as

−M2
P e

i`i

∫
S

√
−hd2σ , (2.62)

where we have used (2.48) and (2.58). This is precisely the kinetic part of the action in (2.20),
with string tension as in (2.22) in the case of ei`i > 0. It is worthwhile noting that this result
has been obtained considering a calibrated 4-cycle Π, which, as seen previously, is the type of
cycles necessary to obtain a BPS-string in the 4-dimensional theory.

• To rewrite the second term, we perform a Kaluza-Klein (KK) reduction of the 6-form gauge field
A6

A6 =
`6M
2π

b4(X)∑
i=1

B2,i(x) ∧ ω̃i(y) . (2.63)

11The ellipses stand for terms coming from the self-dual 2-form gauge field supported by the worldvolume of the
M5-branes (see [21, 22] and references therein), which we neglect.
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Chapter 2. The structure of N = 1 effective field theories relevant to string compactifications

Here, B2,i are the 2-form gauge fields dual to the axions ai. The reason is that the former
come from the decomposition of A6, the latter from that of C3, and A6 is exactly the 6-form
potential dual to the 3-form C3. In analogy to the procedure for the Nambu-Goto term, from
the interaction term in (2.60) we obtain

ei
∫
S
B2,i , (2.64)

which is exactly the Wess-Zumino term appearing in (2.20).

To summarize, as an example of string/M-theory compactification, we have illustrated what is the
structure of the 4d EFT obtained from compactification of M-theory on a G2 manifold. This is an
N = 1 supergravity theory, characterized by exactly those ingredients which we have introduced in
Section 2.1.

We finally conclude this section by saying that the class of models arising from M-theory com-
pactifications on smooth G2 manifolds is not phenomenologically interesting, since it does not lead to
chiral matter or non-abelian gauge fields. The reason is that M-theory is a nonchiral theory and com-
pactification on a smooth manifold cannot lead to a chiral theory. To obtain a more realistic model,
we should consider singular G2 manifolds. However, a detailed analysis of this kind of compactifica-
tion goes beyond the scope of our analysis, since this section is only intended to give an example of
string/M-theory compactifications which give 4d EFTs like the ones we will focus on throughout the
thesis work.

2.4 A special class of fundamental axionic strings: the EFT strings

In Section 2.1, we emphasized the fact that, in order for the dualization procedure to be possible,
the theory should be invariant under the continuous shift symmetry (2.9). However, by one of the most
known Swampland Conjectures, i.e. the No Global Symmetry Conjecture [4, 5], global symmetries
are forbidden in a theory consistent with quantum gravity. As we will see in this Section, this means
that the continuous shift symmetry (2.9) is only present in appropriate asymptotic field-space regions,
where the axionic symmetries are understood as perturbatively preserved.

In particular, in Section 2.4 we will illustrate that, if we focus on a specific subclass of BPS axionic
strings, the so-called EFT strings [6–8], it is sufficient to assume the existence of the perturbatively
preserved axionic symmetry only at the starting point in the field space, since the backreaction induced
by the axionic strings naturally drives the saxions si towards the proper asymptotic field-space regions,
as one approaches the string itself.

Then, in Section 2.5.1 we discuss two Swampland conjectures related to the EFT strings, which
are the Distant Axionic String Conjecture (DASC) and the Integral Scaling Conjecture (ISC) [6–8].

Finally, Section 2.5.2 shows how the consistency of an EFT with a standard coupling to the axionic
sector requires the EFT string world-sheet theory to produce gauge and gravitational anomalies which
cancel the anomaly inflow from the bulk on the worldsheet induced by the axionic couplings [11].

2.4.1 Characterization of the EFT strings

Let us consider a 4d N = 1 effective field theory for a set of chiral multiplets {T i}, described by
the following action

S = M2
P

∫ (
1

2
R ∗ 1−Kīdt

i ∧ ∗dt̄̄
)
, (2.65)

where only the bosonic part is taken into account. String-like solutions of this theory can be studied
following the discussion of [23]. To find them, let us use as 4d coordinates (t, x, z, z̄) and require 2d
Poincaré invariance on (t, x). This implies that the fields ti only depend on (z, z̄). Furthermore, this
also leads us to do the following metric ansatz

ds2 = −dt2 + dx2 + e2Ddzdz̄ , (2.66)
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where D only depends on (z, z̄). If we now compute the equations of motion for the scalars ti, we find

Kı̄j∂∂̄t
j +Kı̄jk∂t

j ∧ ∂̄tk = 0 , (2.67)

with ∂ ≡ dz ∂
∂z . The simplest class of solutions correspond to holomorphic (anti-holomorphic) profiles,

∂̄ti = 0 (∂ti = 0). If we consider the holomorphic case, and look for solutions corresponding to strings
located at z = 0 and associated to a monodromy of the form (2.26), that is

ti −→ ti + ei, ei ∈ Z , (2.68)

we get

ti = ti0 +
1

2πi
ei log

(
z

z0

)
, (2.69)

where ti0, z0 ∈ C are integration constants, while e = {ei}, ei ∈ Z are the string charges. These are
the solutions we are interested in, according to what we said in Section 2.1. It is useful to decompose
ti as ti = ai + isi, and write z = reiθ so that (2.69) becomes

si = si0 + σei , with σ ≡ 1

2π
log
(r0

r

)
, (2.70)

ai =
θ

2π
ei + const . (2.71)

As suggested by the notation, the fields ai are to be interpreted as the axions of Section 2.1, whereas
si are their saxionic partners.

One may analyse how the saxionic coordinates si evolve as r changes, by either approaching or
moving away from the string. In particular, we see that they develop a logarithmic singularity as they
approach the string core, namely

si −→ ei · ∞ for r −→ 0 . (2.72)

To continue with our discussion, let us assume that the saxionic flow (2.70) takes us to a region of the
field space where the Kähler potential only depends on the saxions and therefore exhibits a continuous
axionic shift symmetry

ai −→ ai + ci , (2.73)

with ci some arbitrary constants.

It is worthwhile to mention that the solution (2.69) is not unique: one might add an arbitrary
linear combination of terms of the form

e2πimit
i
, mi ∈ Z , (2.74)

without spoiling the monodromy (2.68). These are non-perturbative contributions, generated by 1
2 -

BPS instantons charged under the axionic symmetries, with charges mi, and are typically the leading
non-perturbative corrections. Their effect is that of breaking the continuous shift symmetry (2.73) to
a discrete one, i.e. ai → ai + 1.

Therefore, in order for the solution (2.69) to be physically sensible and restore the continuous
axionic shift symmetry in an appropriate asymptotic field-space region, such terms must be negligible
in a sufficiently large disk around the string core. By considering that

|e2πmit
i | = e−2πmis

i
= e−2πmis

i
0e−2πσmie

i
, (2.75)

we see that, if we start in the perturbative region, namely at a point in field space where mis
i
0 � 1, the

instanton corrections remain negligible as r → 0 (or, equivalently, σ →∞) if and only if the following
positivity constraint is satisfied by the string and instanton charges:

eimi ≥ 0 . (2.76)
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Chapter 2. The structure of N = 1 effective field theories relevant to string compactifications

This additional requirement leads us to the definition of EFT strings, which are those axionic strings
whose flows drive the EFT towards a region in which K displays a perturbative axionic shift symmetry
and non-perturbative effects are suppressed.

What we said so far may be described in terms of some conic structures for the saxions si and the
charges ei, mi. Before going on, let us recall that, as anticipated in Section 2.1, the BPS-ness of the
solution implies that the string tension is given by

Te = M2
P |ei`i| , (2.77)

where `i stand for the dual saxions that appear in the linear multiplet description of the axionic theory.
In particular, let us focus on the case

ei`i > 0 , (2.78)

which, from here on out, will be the one associated to the 1
2 -BPS strings, which preserve a given half

of the bulk supersymmetry. Conversely, we call 1
2 -BPS anti-strings those satisfying ei`i < 0, and they

preserve the opposite half of the bulk supersymmetry.
Let us denote by CI the set of BPS instantons charges which measure the breaking of the pertur-

bative axionic shift symmetry. According to (2.75), the perturbative regime is obtained by requiring
the saxions to lie in the deep interior of the saxionic cone ∆, defined as

∆ ≡ {si ∈ R | 〈m, s〉 > 0 , ∀m ∈ CI} , (2.79)

where 〈m, s〉 ≡ mis
i represents the natural pairing between instanton charges and saxions. We now

define the cone of dual saxions `i as

P ≡
{
`i ∈ R | `i = −1

2

∂K

∂si

∣∣∣∣
s∈∆

}
, (2.80)

and the cone of BPS string charges, satisfying (2.78), as

CS ≡ P∨ ∩ EZ = {ei ∈ Z | ei`i > 0 ,∀` ∈ P} , (2.81)

where EZ is the integer lattice on which string charges take value, and P∨ is the dual cone of P. Its
definition is the following: given a vector space V , its dual V ∗ and a subset S ⊂ V , the dual cone of
S is [24]

S∨ = {u ∈ V ∗ | 〈u, v〉 ≥ 0 ,∀v ∈ S} . (2.82)

At this point, from (2.76) we finally find that the exponential suppression is present for any m ∈ CI
as σ →∞, i.e. as we approach the string, if and only if e ∈ CEFT

S , with

CEFT
S ≡ ∆ ∩ EZ = {ei ∈ Z | 〈m, e〉 ≥ 0 , ∀m ∈ CI} . (2.83)

If we further require that ei`i > 0, namely that e ∈ CS, we get

CEFT
S ⊂ CS ⇐⇒ ∆ ⊂ P∨ . (2.84)

To sum up, the EFT strings are defined as those 1
2 -BPS strings with charge vector e ∈ CEFT

S .
Their definition implies that along an EFT string flow we can neglect the non-perturbative corrections
breaking the axionic shift symmetries, and we are allowed to pass to the dual formulation of Section
2.1.

In conclusion, let us recall that in Section 2.3.3 we have seen that a 4-dimensional BPS axionic
string of charges ei arises from an M5-brane wrapped on the calibrated 4-cycle Π = eiΠi. This is an
EFT string, i.e. e ∈ CEFT

S , if the cohomology class of the Poincaré dual 3-cocycle [Π]12 admits an
associative 3-form ϕe (or a limit thereof, obtained by approaching the boundary of the corresponding
saxionic cone) as representative [7].

12This cocycle is the 3-form related to the 4-cycle Π by Poincaré duality, which, generally speaking, is an isomorphism
between Hp(X) and Hd−p(X). In this case, we have d = 7, p = 3.
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2.5. EFT strings and the Swampland Program

2.5 EFT strings and the Swampland Program

As already said at the beginning of this Section, we now review the main results concerning
EFT strings, which are the Swampland conjectures proposed in [6, 7] and the quantum gravitational
constraints discussed in [11].

2.5.1 EFT strings and Swampland Conjectures

By standard quantum gravity arguments [4, 5], we only expect to realise global continuous sym-
metries at points of infinite distance in moduli space. As a result, 4d EFTs consistent with quantum
gravity should map EFT string locations to points si∞ at infinite distance in their moduli space, and
this map is governed by the string charges. The Distant Axionic String Conjecture (DASC) [6, 7]
claims that the reverse is also true, namely that all infinite field distance limits can be realised as an
EFT string flow:

Conjecture 1 (Distant Axionic String Conjecture). Every infinite field distance limit of a 4d EFT
consistent with quantum gravity can be realised as an RG flow UV endpoint of an EFT string.

Another conjecture that deals with infinite distance limits is the Swampland Distance Conjecture
(SDC) [25], which states that points at infinity in a moduli space correspond to points where an infinite
tower of massless states appears. In particular, it predicts that an infinite tower of new light states
arises whenever an asymptotic limit of infinite distance is taken, and its lightest mass m∗ decreases
exponentially as e−α∆φ, where α is some constant and ∆φ is the geodesic field distance. Conjecture 1
provides a natural cut-off scale, given by the EFT string tension, as we will explictly see momentarily.
However, in general, this is a maximal cut-off scale, since there may be additional towers of states
whose typical scale gets light faster than the EFT string tension. The so-called Integral Scaling
Conjecture (ISC) [7, 8] elaborates on the relation between the EFT string tension T and the leading
microscopic tower scale m∗

13:

Conjecture 2 (Integral Scaling Conjecture). Along the asymptotic flow associated with an EFT string,
its tension T goes to zero. The microscopic tower mass m∗ then scales like

m2
∗ 'M2

PA

(
T
M2
P

)w
, w ∈ {1, 2, 3} , (2.85)

with A a coefficient not depending on the flowing fields.

The integer w is called scaling weight of the EFT string.

Let us now show some of the consequences of the two conjectures. First of all, one can derive,
from a bottom-up perspective, the SDC in 4d EFTs, by means of the DASC and the Weak Gravity
Conjecture (WGC) [26] for strings. The reasoning goes as follows: we first write the WGC for strings

MPQe ≥ γTe , (2.86)

where we refer to γ, which is a constant, as the extremality factor of the EFT string. On the other
hand, Qe is the physical string charge, defined as

Qe = MP

√
Gijeiej , (2.87)

with Gij the (s)axion kinetic matrix, which can be read from (2.11) and is given by

Gij ≡
1

2

∂2K

∂si∂sj
. (2.88)

13We report here its strongest version, proposed in [8], whereas in [7] the scaling weight w is free to be any positive
integer.
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Chapter 2. The structure of N = 1 effective field theories relevant to string compactifications

We can convince ourselves that this is the proper definition of string charge, by making an analogy
with a point particle coupled to the electromagnetic field Aµ. Indeed, in this case, the action reads

Sem = −m
∫
γ

ds− 1

e2

∫
F ∧ ∗F + q

∫
γ
A , (2.89)

where e is the electromagnetic coupling constant, F = dA is the electromagnetic field-strength and
γ is the worldline of a particle with mass m and charge q in units of e. If we now want to obtain a
canonically normalized kinetic term for the gauge field, we have to rescale A→ eA, thus obtaining

eq

∫
γ
A (2.90)

for the interaction term. From (2.90), we see that the physical charge of the particle is Q = eq. In our
case, as can be seen from (2.16), instead of 1/e2, there appears the gauge kinetic matrix Gij , therefore,
by calling Gij the inverse of Gij , the appropriate definition of the physical string charge is exactly given
by (2.87).

Let us now consider the BPS saxionic flow (2.70). By also recalling the expression of the tension
(2.77) and the dual saxions (2.17), we find that

dTe(σ)

dσ
= M2

Pe
id`i
dσ

= M2
Pe

i ∂`i
∂sj

∂sj

∂σ
= −M2

P

(
1

2

∂2K

∂si∂sj

)
eiej = −Q2

e < 0 , (2.91)

where we have considered 1
2 -BPS strings, defined by (2.78). This relation shows that supersymmetry

alone, which fixes the expression for the tension in terms of the string charges as in (2.77), leads to
the conclusion that the tension of a string must decrease along its own flow, as we approach the string
itself. In addition to that, this relation also allows us to compute the field space distance travelled by
the saxionic flow in terms of the corresponding tension variation:

dσ =

∫
flow

√
Gijdsidsj =

∫ σ

0
dσ
√
Gijeiej =

1

MP

∫ σ

0
Qedσ =

1

MP

∫ T 0
e

Te(σ)

1

Qe
dTe , (2.92)

from which, by using the WGC bound (2.86), we get

dσ ≤
1

γ

∫ T 0
e

Te(σ)

dTe
Te

=
1

γ
log

T 0
e

Te(σ)
. (2.93)

Therefore, the maximal EFT cut-off scale consistent with the existence of the string decreases as

Λ2
max = Te(σ) ≤ T 0

e exp (−γdσ) . (2.94)

This result shows what we anticipated, namely that the WGC for strings, combined with the DASC,
provides the exponential drop-off of the maximal EFT-breaking scale along every infinite distance
limit in moduli space, as predicted by the SDC. Furthermore, it also gives a relation between the
scaling weight w and the constant α appearing in the SDC. Indeed, (2.85) and (2.94) together imply
the exponential drop-off of the leading microscopic scale m∗:

m∗ ≤ m0
∗ exp (−αdσ) , α =

wγ

2
. (2.95)

Both Conjecture 1 and Conjecture 2 are supported by several string theory examples, as analysed in
[7], and lead to interesting results. One of the most considerable is the direct relationship between
the WGC for strings and the SDC provided by the DASC, as shown above. Furthermore, the two
Conjectures are in agreement with the Emergent String Conjecture (ESC) [27], which claims that
any equi-dimensional infinite distance limit14 in the moduli space of a d-dimensional quantum gravity
theory reduces to a weakly coupled string theory. By considering the ISC, this happens when the
scaling weight w is equal to 1, since, in this case, the leading infinite tower of asymptotically massless
states is provided by the EFT strings.

14This limit is distinguished from the so-called decompactification limit to a higher-dimensional theory, which appears,
for instance, when the leading tower of asymptotically massless states is given by the Kaluza-Klein (KK) states, which
become light as some of the directions in the compactification space of the higher-dimensional theory are taken to be
large so that the total internal volume diverges.
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2.5.2 EFT constraints from EFT strings

In Section 2.1, we saw how the presence of an axionic string of charges ei and world-sheet S leads
to the non-closure of the one-forms θi appearing in (2.13), which instead satisfy

dθi = eiδ2(S) . (2.96)

As already pointed out, this is the reason why axions undergo an integral shift

ai −→ ai + ei , (2.97)

set by the charges ei, when encircling the string. In addition to this, (2.96) generates an anomaly
inflow from the four-dimensional bulk to the string worldsheet. In particular, the anomaly inflow
discussed in [11] is valid for all such theories with a standard coupling to the axionic sector. By this,
we mean theories where the axions ai couple to the gauge field strength F and the curvature two-form
R via linear couplings of the form15

Ci

∫
ai trF ∧ F + C̃i

∫
ai trR ∧R . (2.98)

The anomaly inflow induced by such couplings consists of a contribution localized on the string world-
sheet S. Therefore, since a consistent EFT must be anomaly free, we expect this contribution to
be cancelled by a string world-sheet anomaly. In turn, this is generated by the world-sheet sector
supported by the EFT strings.

Motivated by the analysis of explicit string theory realizations, it was proposed in [11] that such
world-sheet sector admits a weakly-coupled non-linear sigma model (NLSM) description16. The NLSM
includes:

• the universal ‘center of mass’ sector, which is described by the Green-Schwarz (GS) formulation.
We will discuss the GS formalism for the universal sector of the EFT strings in Section 3.2. For
the moment, let us only say that in this formalism the string is described by the embedding of
its world-sheet, parametrized by two bosonic coordinates ξm, m = 0, 1, in the target superspace.
Thus, this embedding is determined by the fields xm(ξ), θµ(ξ) and θ̄µ̇(ξ), which describe the

bosonic and Grassmann spinor coordinates of the string in the target superspace, respectively17.
As far as the bosonic part, we may use the reparametrization invariance of the string action to
go locally in the so-called static gauge, which fixes the longitudinal directions x0 = ξ0, x3 = ξ1,
while leaving x1(ξ) and x2(ξ) as the only bosonic physical fields which describe the dynamics of
the string. Together, they can be regarded as the real and imaginary part of a complex scalar
field, u = x1 + ix2. Furthermore, we will see that in the GS formalism the EFT string action
also enjoys a local fermionic symmetry, called κ-symmetry, which is a manifestation of the fact
that an N = (0, 2) local supersymmetry is preserved on the string world-sheet18. This implies
that the complex scalar field u has a supersymmetric partner, which is given by the right-moving
component of θµ(ξ) = (θ−(ξ), θ+(ξ)), i.e. ρ+ ≡ θ+(ξ). Together, the two fields u and ρ+ can be
assembled to give the ‘universal’ N = (0, 2) two-dimensional chiral superfield

U = u+
√

2θ+ρ+ − 2iθ+θ̄+∂++u . (2.99)

• an ‘internal’ sector, which we assume to be given by19:

15This assumption is not so restrictive since non-standard couplings to the axions, such as quadratic and cubic axion
couplings to F ∧ F , although natural in non-minimal four-dimensional supergravity theories, are quite unusual in our
context.

16Generally speaking, a strongly coupled subsector may also be present. However, it would not contribute to the
anomaly cancellation and its dynamics would not interfere with the weakly coupled NLSM.

17Here, the underlined indices refer to target-space indices, while not underlined ones correspond to world-sheet indices.
18This will be manifest in Section 4.2, when we will discuss the superembedding formalism, which indeed provides the

local fermionic κ-symmetry with a geometrical meaning of local world-sheet supersymmetry.
19For a definition of these N = (0, 2) superfields, see Section 4.4 and [28, 29].
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Chapter 2. The structure of N = 1 effective field theories relevant to string compactifications

1. nC chiral multiplets;

2. nN U(1)N charged Fermi multiplets;

3. nF U(1)N neutral Fermi multiplets.

In the present thesis, we will discuss the case where the internal sector is given by a U(1)N
neutral Fermi multiplet, as we will see in Section 4.4.

At this point, one can compute the ’t Hooft anomaly associated with the world-sheet theory just
described, and its comparison with the expression obtained by imposing the cancellation of the anomaly
inflow leads to quantum gravity bounds on the axionic couplings and the possible ranks of the EFT
gauge sector20. The main results are21:

〈C̃, e〉 ∈ Z ∀e ∈ CEFT
S , (2.100a)

〈C̃, e〉+ 〈Ĉ(e), e〉 ∈ 3Z≥0 ∀e ∈ CEFT
S , (2.100b)

4〈C̃, e〉+ 〈Ĉ(e), e〉 ∈ 3Z≥0 ∀e ∈ CEFT
S , (2.100c)

r(e) ≤ r(e)max ≡ 2〈C̃, e〉+ 〈Ĉ(e), e〉 − 2 ∀e ∈ CEFT
S , (2.100d)

where r(e) is the rank of the EFT gauge sector ‘detected’ by the EFT string, given by

r(e) ≡ rank{〈CAB, e〉}+
∑

I|〈CI ,e〉>0

rk(gI) , (2.101)

where CABi appear in the axionic couplings to the gauge field strengths given by

CABi

∫
aiFA ∧ FB (2.102)

Furthermore, the couplings in Ĉ(e) appear in the following term localised on the string:

SN = − 1

24
Ĉi(e)

∫
W
hi1 ∧AN . (2.103)

This term gives an additional contribution to the U(1)N anomaly inflow and arises from the fact that
the pullback to S of δ2(S) gives a non-vanishing finite term [11].

To recapitulate, we have seen how consistency conditions of the axionic strings are turned into
non-trivial constraints on the four-dimensional effective field theory, which rule out otherwise consis-
tent supergravity theories. In particular, (2.100d) gives a non-trivial bound on the rank of the EFT
gauge sector detected by the EFT string, which may be relevant in phenomenological models. These
bounds are derived considering that EFT strings support an additional ‘internal’ sector, in addition
to the ‘universal’ one, which arises from deformations of the internal configuration of the compactifi-
cation space. However, the above analysis does not take into account the full theory describing the
interactions of this internal sector with the bulk fields. Having a way to study in a controlled way
the full theory could be interesting to find possible new constraints on the N = 1 4-dimensional EFT.
Therefore, in the present thesis, we focus on this issue, by elaborating on how to describe the full
theory in a supersymmetrically controlled way.

20To obtain such consistency conditions, we assume that the EFT string lattice CEFT
S is fully populated. This assump-

tion is realized in large classes of string theory models (see [7]) and may be more generically motivated by invoking an
EFT string version of the Completeness Hypothesis [30].

21Analogously to Section 2.4.1, 〈C̃, e〉 = eiC̃i and so on.
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Chapter 3

Supergravity theories in D = 2 and
D = 4 dimensions

In this work, we focus on describing the physics of BPS strings in 4d N = 1 EFTs. In particular,
in Chapter 4 we will analyse the world-sheet theory of EFT strings, which preserve a local N = (0, 2)
supersymmetry on their worldsheet. Therefore, the purpose of this Chapter is to discuss the main
ingredients which will be needed in the following, which are D = 4 N = 1 supergravity and D = 2
N = (0, 2) supergravity. The former is introduced in Section 3.1. This will give us the basics to build,
in Section 3.2, the supergravity Lagrangian for the axionic multiplets T i, introduced in Section 2.1,
and its dual version. Finally, in Section 3.3 we discuss in detail N = (0, 2) supergravity, which will be
necessary in the study of the world-sheet theory of the EFT strings.

3.1 N = 1 supergravity theories in 4 dimensions

This Section is dedicated to the discussion of 4-dimensional N = 1 supergravity theories. We start
in Section 3.1.1 by introducing rigid N = 1 superspace. Then, in Section 3.1.2 we build the minimal
supergravity theory in 4 dimensions, namely the theory describing the graviton and the associated
gravitino. We finally extend this theory to a supergravity also containing a set of chiral superfields in
Section 3.1.3, by means of the superspace formalism.

3.1.1 Rigid N = 1 superspace in 4 dimensions

Supersymmetry (SUSY) is a space-time symmetry mapping particles and fields of integer spin
(bosons) into particles and fields of half integer spin (fermions), and viceversa. The generators Q
schematically act as {

Q |Fermion〉 = |Boson〉
Q |Boson〉 = |Fermion〉

. (3.1)

Since it changes the spin of a particle, and hence its space-time properties, supersymmetry is a space-
time symmetry.
The usual space-time Lagrangian formulation is not the most convenient one for describing supersym-
metric field theories. This is because in ordinary space-time supersymmetry is not manifest. In fact,
an extension of ordinary space-time, known as superspace, happens to be the most natural framework
in which to formulate supersymmetric theories, at least for our purposes. Therefore, before considering
N = 1 supergravity theories in four dimensions, we briefly introduce the superspace formalism.
The basic idea of N = 1 superspace is to enlarge the ordinary space-time with coordinates xm, by
adding 2+2 anti-commuting Grassmann coordinates θα, θ̄α̇, and obtain a eight coordinate superspace
labelled by (xm, θα, θ̄α̇). A supersymmetry transformation with parameters εα, ε̄α̇ is a translation in
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superspace, given by the following infinitesimal variations of the superspace coordinates1
δxm = i(θσmε̄− εσmθ̄)
δθα = εα

δθ̄α̇ = ε̄α̇

, (3.2)

where the presence of the ε, ε̄-depending piece in δxm arises from the anticommutation relation

{Qα, Q̄α̇} = 2σmαα̇Pm , (3.3)

which, in words, expresses the fact that two subsequent supersymmetry transformations generate a
space-time translation. The σm matrices appearing in the expression for δxm are 2×2 matrices where
σ0 = −1, while σi are the Pauli matrices2.
Superfields are fields in superspace, namely functions of the superspace coordinates. Since the Grass-
mann coordinates anticommute, any product involving more than two θ’s or two θ̄’s vanishes. Hence,
the most general superfield F = F (x, θ, θ̄) can be expanded as3

F (x, θ, θ̄) = f(x) + θψ(x) + θ̄χ̄(x) + θθm(x) + θ̄θ̄n(x)+

+ θσµθ̄vµ(x) + θθθ̄λ̄(x) + θ̄θ̄θρ(x) + θθθ̄θ̄d(x) .
(3.4)

The supersymmetry variation of a superfield by parameters ε, ε̄ is represented as

δε,ε̄F = F (x+ δx, θ + δθ, θ̄ + δθ̄)− F (x, θ, θ̄) = (iεQ+ iε̄Q̄)F , (3.5)

where Q and Q̄ are the differential operators implementing the supersymmetry transformations{
Qα = −i∂α − σmαβ̇ θ̄

β̇∂m

Q̄α̇ = +i∂̄α̇ + θβσmβα̇∂m
, (3.6)

where ∂α = ∂/∂θα, ∂̄α̇ = ∂/∂θ̄α̇, ∂m = ∂/∂xm.
Let us now see how to construct supersymmetric invariant actions. The basic point is that the

integral over the superspace of an arbitrary superfield, i.e.∫
d4xd2θd2θ̄F (x, θ, θ̄) , (3.7)

is manifestly supersymmetric invariant. One can easily verify this property by observing that under
supersymmetry transformations the integrand in eq. (3.7) transforms as a total space-time derivative
plus terms which vanish because of the integration in d2θd2θ̄. Hence, supersymmetric invariant actions
are built by integrating in superspace a properly defined superfield, which, in general, will be a product
of superfields4. However, in the general expression for a superfield (3.4) there are too many field
components to correspond to an irreducible representation of the supersymmetry algebra. Therefore,
we now introduce two classes of constrained superfields, the chiral superfields and the vector superfields,
which are relevant since they are the right superfields to describe matter and gauge fields, respectively.

A chiral superfield Φ is a superfield such that

D̄α̇Φ = 0 . (3.8)

Analogously, an anti-chiral superfield Ψ is a superfield such that5

DαΨ = 0 . (3.9)

1As far as the conventions are concerned, we will follow [31].
2See Appendix B for further details.
3Throughout the thesis work, we use the convention according to which superfields are denoted by capital letters and

their lowest components by the corresponding small letters.
4A product of superfields is still a superfield.
5Notice that, if Φ is chiral, Φ̄ is anti-chiral.
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Dα and D̄α̇ are the covariant derivatives, defined as{
Dα = ∂α + iσm

αβ̇
θ̄β̇∂m

D̄α̇ = −∂̄α̇ − iθβσmβα̇∂m
. (3.10)

They satisfy the following anticommutation relations

{Dα, D̄α̇} = −2iσmαα̇∂m ,

{Dα, Dβ} = {D̄α̇, D̄β̇} = {Dα, Qβ} = {Dα, Q̄β̇} = {D̄α̇, Qβ} = {D̄α̇, Q̄β̇} = 0 .
(3.11)

In particular, they anticommute with the supersymmetry generators Qα, Q̄α̇. This implies that the
previous constraints (3.8) and (3.9) are invariant under supersymmetry transformations, because, if
F is a superfield, δε,ε̄(DαF ) = Dα(δε,ε̄F ). To find the most general expression for a chiral superfield
in terms of ordinary fields, we start from the observation that

ym = xm + iθσmθ̄, ȳm = xm − iθσmθ̄ (3.12)

satisfy Dαȳ
m = 0, D̄α̇y

m = 0. Therefore, by also using Dαθ̄β̇ = 0, D̄α̇θβ = 0, it easily follows that, in
this coordinate system, the chiral constraint (3.8) is solved by

Φ(y, θ) = φ(y) +
√

2θψ(y) + θθF (y) , (3.13)

where φ(y) is a complex scalar field, ψ(y) is a Weyl spinor, while F (y) is an auxiliary field. Eq. (3.13)
can be Taylor-expanded around x to obtain Φ(x, θ, θ̄). The expansion for Φ̄ is obtained from (3.13)
by conjugation.

Vector superfields satisfy the reality condition

V = V̄ . (3.14)

In this case, their power series expansion in θ and θ̄ is

V (x, θ, θ̄) =v(x) + iθχ(x)− iθ̄χ̄(x) +
i

2
θθ [M(x) + iN(x)] +

− i

2
θ̄θ̄ [M(x)− iN(x)]− θσmθ̄Am(x) + iθθθ̄

[
λ̄(x) +

i

2
σ̄m∂mχ(x)

]
+

− iθ̄θ̄θ
[
λ(x) +

i

2
σm∂mχ̄(x)

]
+

1

2
θθθ̄θ̄

[
D(x) +

1

2
�v(x)

]
,

(3.15)

where the component fields v, D, M , N and Am must all be real to satisfy (3.14). Imposing the reality
condition, the vector component field Am survives as a degree of freedom and becomes real, therefore
this is the superfield which accomodates a U(1) gauge field. We then introduce the supersymmetric
version of gauge transformations, which acts on the vector superfield as

V −→ V + Φ + Φ̄ , (3.16)

where Φ is a chiral superfield, and sends Am −→ Am + ∂m(2 Imφ): this is exactly how an ordinary
(abelian) gauge transformation acts on a vector field. From the transformations of the component
fields of V under (3.16), one can show that properly choosing Φ one can gauge away v, M , N , χ. This
gauge choice is called Wess-Zumino gauge6 and, in this gauge, a vector superfield can be written as

VWZ = −θσmθ̄vm(x) + iθθθ̄λ(x)− iθ̄θ̄θλ(x) +
1

2
θθθ̄θ̄D(x) . (3.17)

6Notice that the Wess-Zumino gauge is not supersymmetric. In other words, when working in this gauge, after a
supersymmetry transformation, one has to do a compensating supersymmetric gauge transformation to come back to a
vector superfield in the Wess-Zumino gauge.
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Chapter 3. Supergravity theories in D = 2 and D = 4 dimensions

We now define the supersymmetric generalization of the field strength, which is the gauge invariant
object entering the action for the dynamics of vector superfields, given by

Wα = −1

4
D̄D̄DαV, W̄α̇ = −1

4
DDD̄α̇V . (3.18)

These superfields are chiral and gauge invariant. Hence, we can work in the Wess-Zumino gauge
and find that Wα contains, among their components, the usual gauge (abelian) field strength Fmn =
∂mAn − ∂nAm, as expected.

We conclude this section by writing down the most general gauge invariant N = 1 supersymmetric
model of matter fields coupled to gauge fields. To this end, we first promote the vector superfield V
(3.14) to

V = VaT
a , a = 1, . . . , n ≡ dimG , (3.19)

where T a are hermitian generators of a non-Abelian gauge group G and Va are n vector superfields.
Then, we define the finite version of the gauge transformation (3.16), given by

eV −→ eiΛ̄eV e−iΛ , (3.20)

where Λ is a chiral superfield. Under (3.20), the chiral superfield Φ (3.13) transforms as

Φ −→ Φ′ = eiΛΦ . (3.21)

Finally, we generalize the super-field strength (3.18) as follows

Wα = −1

4
D̄D̄

(
e−VDαe

V
)
, W̄α̇ = −1

4
DD

(
eV D̄α̇e

−V ) , (3.22)

which reduces to (3.18) to first order in V . At this point, after redefining V −→ 2gV 7, the Lagrangian
describing the coupling of matter superfields to gauge fields is [32]

S =
1

32π
Im

[∫
d2θFab(Φ)WαaW b

α

]
+

∫
d2θd2θ̄K(Φ, Φ̄e2gV ) +

∫
d2θW (Φ) +

∫
d2θ̄W̄ (Φ̄) , (3.23)

where: K(Φ, Φ̄e2gV ), called Kähler potential, is a real function of the chiral superfields and determines
the kinetic term of the action; W (Φ), called superpotential, is a holomorphic gauge invariant function
of Φ and describes the interactions; Fab(Φ), called generalized complex gauge coupling, is a holomorphic
function of the chiral superfields which transforms in such a way to preserve gauge invariance. The
SUSY invariance of the second term of (3.23) has already been discussed (see (3.7)), while the SUSY
invariance of the other terms is guaranteed by the chirality of Wα, Fab(Φ) and W (Φ)8.

3.1.2 The 4d N = 1 supergravity multiplet

After having introduced the necessary ingredients of supersymmetry, we now analyse supergravity
theories. Supergravity can be defined in two independent ways that give the same result. It is a
supersymmetric theory of gravity, and it is also a theory of local supersymmetry. Having a theory
of local supersymmetry means that we need to make the constant parameter εα local. From gauge
theory, we know that, if we want to make a global symmetry local, we need to introduce a gauge field
for the symmetry. In the case of supersymmetry, since it acts on the spinorial index α, the gauge
field would be a vector-spinor of spin 3

2 denoted ψαµ , which we call gravitino. The fact that we have
a supersymmetric theory of gravity means that the gravitino must be transformed by supersymmetry
into some gravity variable and the index structure suggests us that the latter should be something with
only one curved index, namely the vielbein. Thus, the gravitino is at the same time the superpartner
of the vielbein and the “gauge field of local supersymmetry”. Moreover, due to the fact that we have

7This redefinition is performed in order to introduce explicitly the coupling constant g. For example, this leads to
have, among the components of Wα, Fmn = ∂mAn−∂nAm− ig[Am, An], which is the correct non-Abelian generalization
for the field strength, with g explicitly appearing in the non-Abelian term.

8The chirality of Fab(Φ) and W (Φ) follows from the chirality of Φ and its holomorphicity.
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3.1. N = 1 supergravity theories in 4 dimensions

spinors in the theory, we see that we need the vielbein formalism. The idea behind this is to consider
a set of coordinates that is locally inertial, namely a set of coordinates so that locally we have that

gmn(x) = em
a(x)en

b(x)ηab , (3.24)

where ηab is the flat Minkowski metric, while em
a(x) compose the so-called vielbein. The m, n indices

(which are the so-called curved indices) are subject to the action of general coordinate transformations
x 7−→ x′,

e′m
a(x′) =

∂xn

∂x′m
en
a(x) , (3.25)

while the a, b indices (which are called flat indices) are subject to the action of local Lorentz trans-
formation Λab(x):

e′m
a(x) = Λab(x)em

b(x) . (3.26)

Flat and curved indices are related by the vielbein itself. As an example, we can convert the constant
γ matrices of the inertial frame into γ matrices in the curved frame by the action of the vielbein:

γm(x) = em
a(x)γa . (3.27)

We define the Lorentz covariant derivative as

Dm ≡ ∂m +
1

2
ωm

abMab , (3.28)

where Mab are the (antisymmetric) generators of the Lorentz group SO(1, 3), which on vectors act as

MabX
c = 2δc[aXb] , (3.29)

whereas their action on spinors is given by

Mabψ =
1

2
γabψ , (3.30)

with γab = γ[aγb]. On the other hand, ωm
ab are a set of gauge fields, which together define the spin

connection ω. Starting from the vielbein and the spin connection, we can define two sets of 2-forms,
whose components are those of the torsion and the Riemann curvature9:

T a ≡ 1

2
T amndx

m ∧ dxn ≡ dea + ωab ∧ eb ,

Rab ≡
1

2
Rabmndx

m ∧ dxn ≡ dωab + ωac ∧ ωcb .
(3.31)

The spin connection is determined by requiring that the vielbein is covariantly costant, i.e. Dme
a
n −

Γpmneap = 0, and this condition leads to the following set of algebraic equations for ω:

D[men]
a =

1

2
T amn . (3.32)

A vanishing torsion implies that the spin connection can be fully computed starting from the vielbein
and, in this case, its expression is

ωm
ab[e] =

1

2
ecm

(
Ωabc − Ωbca − Ωcab

)
, Ωabc = ea

meb
n (∂menc − ∂nemc) , (3.33)

where ea
m is the inverse vielbein.

Let us use the vielbein formalism to write the supergravity Lagrangian. We start from the con-
struction of the minimal supergravity theory in four dimensions, i.e. the theory describing only the
graviton and the associated gravitino. Thus, it must contain a kinetic term for the graviton (the

9As reported in Appendix B, with the symbol ’∧’ we denote the wedge product, which will be understood henceforth.
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Chapter 3. Supergravity theories in D = 2 and D = 4 dimensions

Einstein-Hilbert Lagrangian LEH) and a kinetic term for the gravitino (the Rarita-Schwinger La-
grangian LRS). However, one can show [33] that a term quartic in the gravitino must be added to
have a supersymmetric theory. In conclusion, the minimal supergravity Lagrangian in 4 dimensions
is:

L[e, ψ] = LEH [e] + LRS [e, ψ] + Lψ4 [e, ψ] =

= −1

4
eea

meb
nRmn

ab[ω[e]] +
1

2
εmnrsψ̄mγnγ5Drψs −

1

4
e(Ka

acKb
b
c +KabcKcab) ,

(3.34)

where e stands for the determinant of the vielbein, Rmn
ab[ω[e]] are the coefficients of the curvature

tensor, given by
Rmn

ab[ω[e]] = 2∂[mωn]
ab + 2ω[m

acωn]c
b , (3.35)

while K is a quantity which depends quadratically on the gravitino:

Kabc = ebmKa
m
c = −iebm

(
ψ̄[aγc]ψm +

1

2
ψ̄aγmψ

c

)
. (3.36)

Note that eam has 6 independent degrees of freedom: in fact, it has 16 components but we have the
“gauge invariance” of general coordinate transformations and the local Lorentz invariance, which allow
us to fix 4 + 6 = 10 components of the vielbein. On the other hand, as far as the gravitino ψαm is
concerned, it has 4 · 4 components, but we can use the local supersymmetry transformation, which
acts on the gravitino as δψm = Dmε, to fix 4 components, thus we have 12 independent degrees of
freedom.
In supersymmetry, particles are organized in supermultiplets, which contain an equal number of
bosonic ad fermionic degrees of freedom, nB = nF . Therefore, we need 6 bosonic auxiliary degrees of
freedom, and they are provided by two auxiliary fields, namely a vector field ba and a complex scalar
M , which, together with the vielbein eam and the gravitino ψαm, compose the so-called supergravity
multiplet, which we will derive in the following.

3.1.3 4d N = 1 Supergravity in superspace

If we want to formulate locally supersymmetric theories in more involved cases, it is convenient
the use of the superspace formalism. Since it is our case, we now give a generalisation of what we
have just seen by using this formalism, including the presence of chiral fields in the theory [31].

Henceforth, we will denote flat superspace indices as A = (a, α, α̇) and curved superspace in-
dices as M = (m,µ, µ̇). The basic objects used to build the supergravity action in the super-
space formalism are the super-vielbein forms EA(z) = dzMEM

A(z) and the super-spin connection
ΩA

B(z) = dzMΩMA
B(z), where zM = (xm, θµ, θ̄µ̇)10. The symmetry transformations are also gener-

alised: we define the general coordinate transformations of superspace as parametrised by ξM (z)

z′M = zM + ξM (z) . (3.37)

The parameter ξ may be written with either an Einstein or a Lorentz index, by means of the super-
vielbein

ξA = ξMEM
A . (3.38)

In the following, we will consider ξA as the field-independent transformation parameter, so that ξM will
depend on the fields through the supervielbein. The lowest components of ξa(z)| = ξa(x) characterize
general coordinate transformations in the x-space, whereas ξα(z)| = εα(x), ξα̇(z)| = ε̄α̇(x) correspond
to local supersymmetry transformations11.

The generalization of the Lorentz transformations on superspace is described by LA
B(z), given by

LA
B =

Lab 0 0
0 Lα

β 0
0 0 Lα̇β̇

 , (3.39)

10For the superspace conventions on p-forms, see Appendix A.2.
11Here the vertical line means that the quantity is evaluated at θ = θ̄ = 0.
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3.1. N = 1 supergravity theories in 4 dimensions

with the three components related through the σ-matrices as

σaαα̇σ
b
ββ̇
Lab = −2εαβLα̇β̇ + 2εα̇β̇Lαβ . (3.40)

We assume a diagonal form because we want spin to be preserved by super-Lorentz transformations.
Analogously, since the spin connection is a connection (gauge field) for the local Lorentz transforma-
tions, the super-spin connection has a diagonal form:

ΩMA
B =

ΩMa
b 0 0

0 ΩMα
β 0

0 0 ΩM
α̇
β̇

 . (3.41)

The lowest component of Lab(z)| = Lab(x) gives the usual local Lorentz transformations. Their higher
components, together with those of ξa(z) and ξα(z), ξ̄α̇(z), can be used to transform away some of
the θ = θ̄ = 0 components of the vielbein and the connection. In particular, we may use higher
components of ξA to write EM

A(z)
∣∣ as [31]

EM
A(z)

∣∣ =

ema(x) 1
2ψm

α(x) 1
2 ψ̄mα̇(x)

0 δµ
α 0

0 0 δµ̇α̇

 , (3.42)

where em
a, ψm

α and ψ̄mα̇ describe the spin-2 graviton and the spin-3
2 gravitino, respectively. As far

as the superconnection is concerned, we may use higher components of LA
B to transform away some

of the components of ΩMA
B(z)

∣∣, i.e.

ΩmA
B(z)

∣∣ = ωmA
B(x) ,

ΩµA
B(z)

∣∣ = Ωµ̇
A
B(z)

∣∣ = 0 .
(3.43)

We now define the torsion components of curved superspace as the covariant exterior derivatives of
the supervielbein components

TA := DEA = dEA − EBΩB
A ≡ 1

2
EBECTCB

A , (3.44)

and the Riemann curvature components in terms of the connection as

RAB := dΩAB − ΩAC ∧ ΩC
B ≡ 1

2
ECEDRDC

AB . (3.45)

The supertorsion and the supercurvature are the only covariant tensors which may be constructed from
the supervielbein and the superconnection. Higher derivatives lead to the so-called Bianchi identities,
since dd = 0 [31]. At this point, one has to find proper constraints for the two tensors which reduce
the number of component fields as much as possible and admit flat superspace as a particular solution.
It turns out that

Tαβ̇
a = Tβ̇α

a = −2iσa
αβ̇
,

Tαβ
γ = 0, Tαβ

c = Tα̇β̇
c = 0 ,

Tαb
c = Taβ

c = 0 ,

Tab
c = 0 ,

(3.46)

are the proper constraints. Here α denotes either α or α̇. Since it is going to be useful in Section 4.2,
we only report the expression for T a, which can be immediately obtained from the constraints (3.46):

T a = −2iσaαα̇E
α ∧ Ēα̇ . (3.47)

The constraints (3.46) allow for a consistent definition of the chiral superfield in the locally super-
symmetric case (see (3.55)). Moreover, by means of them, we can express the superconnection via
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Chapter 3. Supergravity theories in D = 2 and D = 4 dimensions

the supervielbein, as in general relativity. Solving the Bianchi identities subject to the constraints
(3.46), one learns that all the components of the supertorsion and the supercurvature may be ex-
pressed in terms of the so-called ’main superfields’ [31], which are the complex chiral superfield R
and its conjugate R̄, the vector superfield Ga and the chiral superfield Wαβγ , totally symmetric in
its indices. Furthermore, once chosen the gauge (3.42) and (3.43), we may try to express the lowest
components of the main superfields in terms of em

a, ψm
α and ψ̄mα̇. However, it turns out that this

cannot be performed for the lowest components of R and Ga, and this leads to the introduction of
new component fields:

R(z)| = −1

6
M(x) ,

Ga(z)| = −
1

3
ba(x) ,

(3.48)

which are exactly the auxiliary fields which equalize the number of bosonic and fermionic degrees of
freedom within the supergravity multiplet.

We now define the proper generalization of gauge transformations, i.e. the supergauge transforma-
tions. They are a particular combination of general coordinate and structure group transformations
of superspace with the property of mapping Lorentz tensors into Lorentz tensors and reducing to
supersymmetry transformations in the limit of flat space. To be more precise, we start from the
transformation law of a generic tensor field V A

δV A = −ξM∂MV A + V BLB
A , (3.49)

and we can see that if we impose LB
A to be given by

LB
A = −ξCΩCB

A , (3.50)

we find
δV A = −ξCDCV A , (3.51)

which is manifestly covariant under local Lorentz transformations. In (3.51), we have introduced
DC = EC

MDM , with

DMVA = ∂MVA − ΩMA
BVB ,

DMV A = ∂MV
A + (−)mbV BΩMB

A ,
(3.52)

if it acts on a covariant or contravariant vector, respectively12.
Therefore, the transformation law for a tensor superfield V A may be written as a supergauge

transformation (3.51) together with an additional Lorentz transformation parametrized by LB
A:

δV A = −ξCDCV A + V ALB
A . (3.53)

Let us now consider a gauged supersymmetry transformation, parametrized by the lowest components
ξα(z)| = εα(x) and ξ̄α̇(z)

∣∣ = ε̄α̇(x), namely let us choose

ξa(z)| = 0 ,

ξα(z)| = εα(x) ,

ξ̄α̇(z)
∣∣ = ε̄α̇(x) ,

LAB(z)| = 0 ,

(3.54)

in (3.53). In order to preserve the gauge (3.42) and (3.43), one can show [31] that this transformation
must be accompanied by a field-dependent Lorentz transformation and an ε-dependent coordinate
transformation in the x-space. These transformations represent the so-called supergravity transforma-
tions, and one can find the transformation laws of the components of the supergravity multiplet under

12Here, (−)mb is +1 if one or both of the indices M , B are bosonic, while it takes value −1 if both of them are
fermionic.
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them.
We now want to write down actions which are invariant under supergravity transformations. In par-
ticular, we are going to write the most general supergravity action for a set of chiral superfields Φi.
To this aim, we define the chiral superfield Φ, which, in supergravity, is the superfield satisfying the
following condition13

D̄α̇Φ = 0 , (3.55)

which is a generalisation of the chirality condition of the global supersymmetric case, but with D̄α̇

substituted by the covariant derivative, which reduces to D̄α̇ = Ēα̇
M∂M for scalars.

As seen in the global case, chiral superfields contain three component fields. Instead of defining
them as the coefficient functions of the expansion in θ and θ̄, which are coordinate-dependent (since
θ and θ̄ carry Einstein indices), we consider the following covariant components

A = Φ| , χα =
1√
2
DαΦ| , F = −1

4
DαDαΦ| , (3.56)

whose transformation laws under supergravity transformations are found from the supergauge trans-
formation law of the superfield Φ:

δΦ = −ξADAΦ . (3.57)

One can introduce new Θ variables, carrying local Lorentz indices, so that the expansion coefficients
of chiral superfields in these new variables are exactly the covariant components (3.56):

Φ = A(x) +
√

2Θαχα(x) + ΘαΘαF (x) . (3.58)

In the Θ variables, we can rewrite the transformation law for a chiral multiplet in the following way:

δΦ = −ηM (x,Θ)∂MΦ , (3.59)

where the differential operator ∂M acts on the spacetime coordinates xm and the new variables Θα,
while the transformations parameters, whose expansion is

ηM (x,Θ) = ηM(1)(x) + ΘαηM(1)α(x) + ΘαΘαη
M
(2)(x) , (3.60)

can be written in terms of the parameters εα(x) and ε̄α̇(x) of the supergravity transformations. The
variables Θ are useful in building actions invariant under supergravity transformations. Before seeing
this, we first need to give the definition of chiral density. A chiral density ∆ is a function of superspace,
with transformation law

δ∆ = −∂M
[
ηM∆(−)m

]
. (3.61)

This is chosen so that the product of a chiral density and a chiral superfield is again a chiral density,
i.e.

δ∆Φ = −∂M
[
ηM∆Φ(−)m

]
. (3.62)

This property implies that we can build invariant actions from chiral superfields: if g(Φ) is a chiral
function of Φ, we have

δL = δ

∫
d4xd2Θ∆g(Φ) = −

∫
d4xd2Θ∂M

[
ηM∆g(Φ)(−)m

]
= 0 . (3.63)

An important chiral density, which we denote by E , can be constructed by requiring that its lowest
component is the determinant of the vielbein:

E| = 1

2
e =

1

2
det em

a . (3.64)

The higher components of E are obtained from its lowest component and its transformation law, which
is determined by the transformation law for em

a but is also given by the definition (3.61) of chiral

13This is a consistent definition only under non-trivial restrictions on the supertorsion, i.e. Tαβ
c = Tα̇β̇

c = Tαβ
γ̇ =

Tα̇β̇
γ = 0 [34], which are contained in the constraints (3.46).
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density [31]. To summarize, we have just obtained that we can build an invariant action from a
Lagrangian density as in (3.63), using the chiral density E .
We are now ready to write the most general N = 1 supergravity Lagrangian density14 describing
chiral superfields Φi coupled to gravity, which is (κ2 = 8πGN = 1):

L =

∫
d2Θ 2E

[
−1

8

(
D̄D̄ − 8R

)
Ω(Φ, Φ̄) +W (Φ)

]
+ h.c. , (3.65)

where Ω(Φ, Φ̄) = −3e−
1
3
K(Φ,Φ̄), with K(Φ, Φ̄) being the ordinary Kähler potential and W (Φ), chiral

and holomorphic in Φi, is the superpotential. The first term reproduces the Einstein and Rarita-
Schwinger Lagrangians, and the usual Kähler potential for the chiral superfields in the low-energy
limit15, whereas as far as the second term is concerned, it represents the generalisation of the super-
potential term of the flat case.

The detailed computation of the component expansion of (3.65) is discussed in Appendix C. The
result for the bosonic components of the Lagrangian is

L =
1

6
eΩR − egmnΩī∂mA

i∂nĀ
̄ + eΩīF

iF̄ ̄ +
1

9
eΩMM∗ − 1

3
eM∗Ωı̄F̄

ı̄ − 1

3
eMΩiF

i+

− 1

9
eΩbaba −

i

3
e(Ωi∂mA

i − Ωı̄∂mĀ
ı̄)baea

m − eM∗W − eMW̄ + eWiF
i + eW̄ı̄F̄

ı̄ .

(3.66)

The Lagrangian (3.66) enjoys a Kähler-Weyl invariance, which consists of the invariance under the
combined action of a Kähler and a super-Weyl transformation. A Kähler transformation acts on the
Kähler potential, the superpotential and the auxiliary fields as [10]

K(Φ, Φ̄) −→ K(Φ, Φ̄) + h(Φ) + h̄(Φ̄) , (3.67a)

W (Φ) −→ e−h(Φ)W (Φ) , (3.67b)

M −→ e−
2
3

(h(Φ)+h̄(Φ̄))M , F iΦ −→ F iΦe
− 2

3
(h(Φ)+h̄(Φ̄)) , (3.67c)

where h(Φ) is an arbitrary holomorphic function of Φi. On the other hand, a super-Weyl transforma-
tion acts on the supervielbein as [35]

EaM → eΥ+ῩEaM , EαM → e2Ῡ−Υ

(
EαM −

i

4
EaMσ

αα̇
a D̄α̇Ῡ

)
, (3.68)

with Υ an arbitrary chiral superfield. In particular, (3.68) implies that

e −→ e2Υ+2Ῡe , d2Θ 2E −→ e6Υd2Θ 2E . (3.69)

It can be easily seen that the superspace Lagrangian (3.65) is invariant if a Kähler-Weyl transformation
is performed, with h(Φ) = 6Υ.

The Lagrangian (3.65) may be rendered invariant under Kähler (3.67) and super-Weyl (3.68)
transformations separately, while still arriving at the same component Lagrangian (3.66) when a
proper gauge-fixing of the super-Weyl transformations is performed. This can be obtained with the
so-called super-Weyl invariant approach [35–37]. The latter will be particularly useful in the following
Section, therefore we provide a review on this formalism in Appendix D.

3.2 Axions in 4d Supergravity

In Section 2.1, we illustrated how to perform the dualization procedure between the axions ai

and the gauge two-forms B2,i. We also mentioned that such procedure admits a supersymmetric
generalization. Since we eventually want to consider a four-dimensional N = 1 supergravity theory,
in Section 3.2.1 we study, as an intermediate step, the model described by (2.11) in a N = 1 globally
supersymmetric framework, to finally arrive at the supergravity action given by (3.87) in Section 3.2.2.

14We are considering theories with at most two derivatives acting on the various fields.
15This can be seen by restoring in the Lagrangian the factors κ2 and working in the limit κ→ 0.
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3.2.1 Axions and linear multiplets in global supersymmetry

As already seen in the previous section, in theories enjoying supersymmetry, fields are appropriately
collected into multiplets. Therefore, we must introduce multiplets which contain, in their components,
the gauge two-forms B2,i and the axions ai. We start by introducing the real linear superfield L, which,
in rigid superspace, is a real superfield obeying the constraints

D2L = 0, D̄2L = 0 . (3.70)

Its component expansion is

L = l + iθη − iθ̄η̄ − 1

2
θσmθ̄ε

mnpq∂nBpq +
1

2
θ2θ̄σ̄m∂mη +

1

2
θ̄2θσm∂mη̄ −

1

4
θ2θ̄2�l , (3.71)

where l is a real scalar, Bmn is a rank 2 antisymmetric tensor and η is a Weyl spinor. Thus, linear mul-
tiplets contain the three-form field strengths of gauge two-forms, making them a super-field strength
completion thereof. We also recall that a chiral superfield Φ satisfies the constraint D̄α̇Φ = 0 and its
expansion in components is

Φ = φ+
√

2θψ + θ2F + iθσmθ̄∂mφ−
i√
2
θ2∂mψσ

mθ̄ +
1

4
θ2θ̄2�φ . (3.72)

Here, φ and F are complex scalar fields, while ψ is a Weyl spinor.
We note that the real linear multiplet contains the same amount of propagating scalar fields as a

chiral multiplet, namely, focusing on the bosonic sector:

• a real scalar (1 d.o.f.) and a gauge two-form (1 d.o.f.) for the former;

• a complex scalar for the latter (2 d.o.f.).

This suggests that there may exist a ‘duality’ which relates chiral and linear multiplets, and we now
show it [9, 10].

Consider a supersymmetric theory with chiral superfields Φm, m = 1, . . . , n, which we will here
treat as spectators, and some other chiral multiplets T i, i = 1, . . . ,M . Let us assume that the Kähler
potential depends on T i only via their imaginary parts:

K(Φ, Φ̄;T ) ≡ K(Φ, Φ̄; ImT ) , (3.73)

keeping generic the dependence on Φa. The Kähler potential is then invariant under the axionic shifts

T i −→ T i + ci , (3.74)

with real constant ci and we identify the lowest components ReT i| = Re ti ≡ ai as axions, the only
components influenced by the shift (3.74). For this reason, we refer to the multiplets T i as axionic
multiplets. We might trade the axions ai with gauge two-forms B2,i via the ‘electro-magnetic duality’
explained above. To implement this duality, we first relax the assumption that in (3.73) ImT i are the
imaginary parts of chiral superfields T i and rather consider them real, unconstrained superfields U i.
Then, we start with the Lagrangian

Ldual =

∫
d2θd2θ̄K(Φ, Φ̄;U) + 2

∫
d2θd2θ̄ LiU

i , (3.75)

where Li are linear multiplets. At this point, we have two possibilities:

Ordinary chiral formulation In this case, we need to integrate out the linear multiplets Li from
the Lagrangian (3.75). However, since they are constrained by (3.70), we first have to find an
expression for the linear multiplets in terms of unconstrained spinorial superfields Ψiα, Ψ̄α̇

i which
automatically solves the constraints (3.70). The expression is given by

Li = DαD̄2Ψαi + D̄α̇D
2Ψ̄α̇

i . (3.76)
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Then, the variations with respect to Ψiα, Ψ̄α̇
i of the Lagrangian (3.75) sets the following con-

straints on U i:

D̄2DαU i = 0 , D2D̄α̇U
i = 0 , (3.77)

which are solved by

U i =
1

2
(T i − T̄ i) = ImT i , (3.78)

for arbitrary chiral multiplets T i. Substituting (3.78) into (3.75), we get a Lagrangian solely
depending on the chiral multiplets Φa and T i

Lchiral =

∫
d2θd2θ̄K(Φ, Φ̄; ImT ) . (3.79)

Formulation with linear multiplets The alternative formulation where the axionic multiplets T i

are replaced by linear multiplets Li is obtained by integrating out the real multiplets U i from
(3.75). This operation leads to

Li =
1

2

∂K

∂U i
. (3.80)

Once this is plugged inside (3.75), we get

Llinear =

∫
d2θd2θ̄

(
K(Φ, Φ̄;U) +

∂K

∂U i
U i
)
≡
∫

d2θd2θ̄ F (Φ, Φ̄;L) , (3.81)

where F (Φ, Φ̄;L) is the Legendre transform of the Kähler potential K(Φ, Φ̄; ImT ).

The procedure outlined above can be followed also in the reverse direction: we may start with the
Legendre transform (3.81) and come back to the ordinary formulation. The latter is the direction we
will use when we implement the theory to a local supersymmetric one, and is achieved by considering
the following Lagrangian

Ldual =

∫
d2θd2θ̄F (Φ, Φ̄;L)− 2

∫
d2θd2θ̄ Li ImT i , (3.82)

where Li are understood to be real multiplets rather than linear multiplets.

The final step is to generalise the previous model, by formulating it in a N = 1 locally supersymmetric
framework, following [9].

3.2.2 Axions and linear multiplets in supergravity

As already mentioned at the end of Section 3.1, a useful technique to obtain supergravity La-
grangians is the super-Weyl invariant approach, which we introduce in Appendix D discussing theories
with chiral multiplets. In addition to the latter, in this section we also couple linear multiplets.

The kinetic part of the super-Weyl invariant Lagrangian reads

Lchiral =

∫
d2θd2θ̄ EK(Z, Z̄; ImT ) , (3.83)

which, as before, depends on the sector T i only through their imaginary parts. On the other hand,
no assumptions are made on the dependence of the kinetic function on the other chiral multiplets
Za = Uga(Φ), a = 1, . . . , n+ 1. As illustrated in Appendix D, U is the super-Weyl compensator : it is
an unphysical, chiral superfield, which transforms as

U −→ e−6ΥU (3.84)

under super-Weyl transformations. Conversely, ga(Φ) are functions of the physical fields only and carry
zero super-Weyl weight. Finally, consistency of super-Weyl transformation with the chirality of T i
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3.2. Axions in 4d Supergravity

requires the axionic multiplets T i to be inert under super-Weyl transformations, and the homogeneity
properties of the kinetic function are

K(λZ, λ̄Z̄; ImT ) = |λ|
2
3K(Z, Z̄; ImT ) . (3.85)

In supergravity, linear multiplets satisfy the covariant constraints

(D2 − 8R̄)Li = 0 , (D̄2 − 8R)Li = 0 , (3.86)

and, as in the globally supersymmetric case, their bosonic components are a real scalar field li and a
real field strength H3,i of a gauge two form B2,i, which can be regarded as the electro-magnetic dual
of the axions ReT i| = ai. In the dual description where the axionic multiplets T i are replaced with
linear multiplets Li, the kinetic Lagrangian (3.83) gets replaced by

Llinear =

∫
d2θd2θ̄ E F(Z, Z̄;L) , (3.87)

where F(Z, Z̄;L), similarly to F (Φ, Φ̄;L) in (3.81) for the global case, is the Legendre transform of
the kinetic function K(Z, Z̄; ImT ). Explicitly, their relation is given by

K(Z, Z̄; ImT ) = F(Z, Z̄;L)−F iLi . (3.88)

where F i = ∂F/∂Li. Unlike their chiral counterparts, the linear multiplets Li are required to have
super-Weyl weights (1

3 ,
1
3), whence the homogeneity property of the kinetic function is

F(λZ, λ̄Z̄; |λ|
2
3L) = |λ|

2
3F(Z, Z̄;L) . (3.89)

The connection between the ordinary formulation, in terms of chiral multiplets, with Lagrangian
(3.83), and the dual formulation, in terms of linear multiplets, with Lagrangian (3.87), is established
by the super-Weyl invariant Lagrangian

Ldual =

∫
d2θd2θ̄ E F(Z, Z̄;L)− 2

∫
d2θd2θ̄ E Li ImT i . (3.90)

with Li unconstrained real multiplets. The Lagrangian (3.90) represents the appropriate extension
of (3.82) to the super-Weyl invariant context. The ordinary and the dual formulations are related as
follows.

Ordinary chiral formulation To obtain this formulation, we need to integrate out the real multi-
plets Li from (3.90). Varying the latter with respect to Li, we get

ImT i =
1

2

∂F
∂Li

. (3.91)

The substitution of this relation in (3.90) gives back (3.83):

Ldual =

∫
d2θd2θ̄ E

(
F(Z, Z̄;L)− ∂F

∂Li
Li

)
=

∫
d2θd2θ̄ EK(Z, Z̄; ImT ) = Lchiral .

(3.92)

Formulation with linear multiplets Analogously to what done for Li in (3.76), before integrating
out the chiral multiplets T i, we need to solve the chirality constraints DαT̄ i = 0, D̄α̇T i = 0 and
re-express them as

ImT i =
1

2i

[
(D̄2 − 8R)Ξ̄i − (D2 − 8R̄)Ξi

]
, (3.93)

with Ξi unconstrained (complex) superfields. From the variation of (3.90) with respect to Ξi,
one obtains

(D2 − 8R̄)Li = 0 , (D̄2 − 8R)Li = 0 , (3.94)

which tell that Li are linear multiplets, retrieving (3.87).
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Chapter 3. Supergravity theories in D = 2 and D = 4 dimensions

We now focus on the dual formulation, described by the Lagrangian (3.87). In the super-Weyl
invariant formalism, it turns out that their bosonic components are [9, 10]

e−1Lbos = −1

6
F̃ R−Fab̄Dµz

aD̄µz̄b̄ +
1

4
F ij∂µli∂µlj +

1

4 · 3!
F ijHµνρ,iHµνρj

+

(
i

2 · 3!
F iāεµνρσHνρσ,iD̄µz̄

ā + c.c.

)
+ Fab̄F aZ F̄ b̄Z ,

(3.95)

where

F̃ = F − liF i , Dµz
a = ∂µz

a + iAµz
a , (3.96)

with

Aµ =
3

2(F̃ − F̃ ili)

[
i
(
F̃a∂µza − ¯̃Fā∂µz̄ā

)
+

1

3!
F̃ iεµνρσHνρσ,i

]
. (3.97)

Before gauge fixing the super-Weyl invariance, we introduce the Legendre transform of the Kähler
potential

F (ϕ, ϕ̄; `) = K + 2`i Im ti ≡ K + 2`is
i , (3.98)

where we have defined the saxions si as si ≡ Im ti and introduced the dual saxions `i

`i ≡ −
1

2

∂K

∂si
, (3.99)

related to the lowest components of the linear multiplets li as

li = M2
P `i . (3.100)

In (3.95), we may then gauge fix the super-Weyl invariance by setting

u = M3
P e

1
2
F̃ (φ,φ̄) , with F̃ = F − `iF i , (3.101)

However, we stress that gauge-fixing the super-Weyl invariance in presence of linear multiplets is a
quite involved procedure, which is discussed in [9, 10]. It turns out that, after integrating out the
fields F aZ , the bosonic components of the gauge-fixed Lagrangian reassemble into a rather simple form
(MP = 1):

e−1Lbos =
1

2
R− Fmn̄∂φm∂̄φ̄n̄ +

1

4
F ij

(
∂µ`i∂

µ`j +
1

3!
Hµνρ,iHµνρj

)
+

+

(
i

2 · 3!
F im̄ε

µνρσHνρσ,i∂µφ̄m̄ + c.c.

)
.

(3.102)

3.3 N = (0, 2) supergravity in D = 2 dimensions

As we will see in Chapter 4, the EFT strings, introduced in Section 2.4.1, preserve a local N =
(0, 2) supersymmetry on their world-sheet. Therefore, since we eventually want to study the world-
sheet theory of such strings in a manifestly supersymmetric way, it is necessary to study N = (0, 2)
supergravity in D = 2 dimensions. To this aim, we now discuss in detail this theory, by following
steps analogous to those already shown for the 4-dimensional case. In particular, we will impose
supertorsion constraints in agreement with [38, 39], and in Section 3.3.5 we will arrive at writing the
full component expansion of the supervielbein eM

A and the superconnection ΩM .

Before focusing on N = (0, 2) supergravity, let us introduce N = (0, 2) supersymmetry in rigid
superspace.
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3.3. N = (0, 2) supergravity in D = 2 dimensions

3.3.1 N = (0, 2) rigid supersymmetry in D = 2

Let us consider a (0, 2) superspace, with coordinates zM = (ξ0, ξ1, θ+, θ̄+), where ξm, m = 0, 1, are
two bosonic coordinates and θ+ is a complex Grassmann coordinate. Furthermore, let us introduce
the null coordinates y±± = ξ0 ± ξ1, and the corresponding derivatives{

∂++ = 1
2(∂0 + ∂1)

∂−− = 1
2(∂0 − ∂1)

{
∂0 = ∂++ + ∂−−

∂1 = ∂++ − ∂−−
. (3.103)

where ∂m = ∂/∂ξm, m = 0, 1, and ∂±± = ∂/∂y±±.
The fields are organized into superfields, and the most general superfield takes the form

Φ(z) = φ(x) + θ+ψ+(x) + θ̄+χ̄+(x) + θ+θ̄+ρ++(x) . (3.104)

The supersymmetry action on a superfield is given by

δζΦ(z) =
(
ζ+Q+ + ζ̄+Q̄+

)
Φ(z) , (3.105)

where Q+ and Q̄+ are the representations of the supersymmetry generators as differential operators
in field space:

Q+ =
∂

∂θ+
− 2iθ̄+∂++ , Q̄+ =

∂

∂θ̄+
− 2iθ+∂++ . (3.106)

They satisfy
Q2

+ = 0 , Q̄2
+ = 0 {Q+, Q̄+} = −4i∂++ . (3.107)

We now introduce the supercovariant derivatives

D+ =
∂

∂θ+
+ 2iθ̄+∂++ , D̄+ =

∂

∂θ̄+
+ 2iθ+∂++ , (3.108)

which anti-commute with Q+ and Q̄+, and obey the following anticommutation relations:

D2
+ = D̄2

+ = 0 , {D+, D̄+} = 4i∂++ . (3.109)

Instead of the complex Grassmann coordinates θ+ and θ̄+, we may use the real fermionic coordinates
η+q, q = 1, 2, defined in terms of the former as{

θ+ = 1
2
√

2

(
η+1 + iη+2

)
θ̄+ = 1

2
√

2

(
η+1 − iη+2

) −→

{
η+1 =

√
2
(
θ+ + θ̄+

)
η+2 = −i

√
2
(
θ+ − θ̄+

) . (3.110)

In these new coordinates, the supercovariant derivatives become

D+q = ∂+q +
i

2
η+q∂++ , (3.111)

where the relation between ∂+, ∂̄+ and ∂+q is{
∂+ =

√
2 (∂+1 − i∂+2)

∂̄+ =
√

2 (∂+1 + i∂+2)

{
∂+1 = 1

2
√

2

(
∂+ + ∂̄+

)
∂+2 = i

2
√

2

(
∂+ − ∂̄+

) . (3.112)

Starting from the supercovariant derivatives, we can compute the supervielbein, which will be the one
associated to the flat case, by requiring that it corresponds to the cotangent basis dual to DA:

dzM∂M = dy++∂++ + dy−−∂−− + dη+q∂+q = eADA = e++D++ + e−−D−− + e+qD+q . (3.113)

In the flat case, D++ = ∂++ and D−− = ∂−−, thus we find that

e++ = dy++ − i

2
dη+qη+q, e−− = dy−−, e+q = dη+q . (3.114)
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Now, by computing the supertorsion as TA = deA, we find that the only non-vanishing component is

T++ = de++ = dη+qdη+r

(
− i

2
δqr

)
=

1

2
dzMdzNTNM

++ =⇒ T+q,+r
++ = −iδqr . (3.115)

The reason why we derived the value of the supertorsion in the rigid case is that our goal is to discuss
N = (0, 2) supergravity. As we will see momentarily, to do so, we need to impose supergravity
constraints on the supertorsion, which must be compatible with the rigid case.

We are now ready to generalize the N = (0, 2) rigid supersymmetry to the corresponding local
supersymmetry in curved space.

3.3.2 2d N = (0, 2) Supergravity in superspace

Let us start by considering an N = (2, 2) supergeometry in a superspace with an SO(1, 1) tangent
space group. In this case, the superspace has coordinates zM = (ξm, θµ, θµ̄), where θµ are two complex
odd coordinates and (θµ) = θµ̄.

As we have seen in Section 3.1.3, to describe curved superspace geometry, one of the main ingre-
dients is the supervielbein eM

A, where M = (m,µ) is a curved superspace index and A = (a, α) a flat
superspace index. The inverse supervielbein is denoted by eA

M and obey the following identities

eA
MeM

B = δA
B , eM

AeA
N = δM

N . (3.116)

As we already know from the 4-dimensional case, we also need to introduce the analogue of the
connection in superspace, called superconnection, given by ΩA

B = dzMΩMA
B.

Generically, if we consider a p-superform φA
B with one covariant and one contravariant tangent

space index, the action of the tangent space group on φA
B reads

δφA
B = −LACφCB + φA

CLC
B , (3.117)

where LB
A = LMB

A, with the superfield L(z) being the boost parameter, and

Mb
a = −εba ,

Mβ
α =

1

2
(γ3)β

α ,

Mβ̄
ᾱ =

1

2
(γ3)β

α ,

(3.118)

where εb
a = ηbcε

ca, with ε01 = −ε10 = 1 and ηbc = diag(−1,+1). The γ-matrices satisfy

{γa, γb} = 2ηab1 , (3.119)

and are chosen to be

γ0 = −iσ2 =

(
0 −1
1 0

)
, γ1 = σ1 =

(
0 1
1 0

)
, (3.120)

while

γ3 = γ0γ1 =

(
−1 0
0 1

)
, (γ3)2 = 1 , {γa, γ3} = 0 . (3.121)

Starting from the supervielbein eM
A and the superconnection ΩB

A, whose explicit form is

ΩB
A = ΩMB

A = dzMΩMMB
A , (3.122)

we may define the supertorsion and the supercurvature as

TA =
1

2
eCeBTBC

A = DeA = deA + eBΩB
A ,

RA
B = dΩA

B + ΩA
CΩC

B ,
(3.123)
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where D is the supergravity covariant derivative, whose action on a covariant and contravariant vector
is given by

DMXA = ∂MX
A + (−)mbXBΩMB

A ,

DMXA = ∂MXA − ΩMA
BXB ,

DBXA = EB
MDMXA ,

DBXA = EB
MDMXA .

(3.124)

Since we are dealing with an Abelian symmetry, the supercurvature is simply RA
B = dΩA

B =
dΩMA

B. Indeed:

ΩA
CΩC

B = dzMdzNΩNΩMMA
CMC

B . (3.125)

Furthermore, we have that

ΩNΩMMA
CMC

B = (−)mnΩMΩNMA
CMC

B , (3.126)

and then

dzMdzNΩNΩMMA
CMC

B = −dzMdzNΩNΩMMA
CMC

B = 0 . (3.127)

The supertorsion and the supercurvature satisfy the Bianchi identities

DTA = eBRB
A , DRAB = 0 . (3.128)

Let us now label the fermion components as θµ = (θ−, θ+). Since we are interested in considering
N = (0, 2) supergravity, let us focus on the case in which θ− = 0. In this case, the components of
MB

A are

Mb
a = −εba ,

M+
+ =

1

2
,

M+̄
+̄ =

1

2
.

(3.129)

In terms of the null coordinates y±± = ξ0 ± ξ1, we have that:

ε++
a = η++bε

ba = η++−−ε
−−a = −1

2

(
2δa,++

)
= −δa,++ , (3.130)

as can be explicitly seen by computing ε−−a as

ε−−a =
∂y−−

∂ξb
∂ya

∂ξc
εbc . (3.131)

Conversely, ε−−
a = δa,−−. Analogously, we may rewrite M+

+ and M+̄
+̄ in the real Grassmann

coordinates η+q introduced in Section 3.3.1, and one can easily show that

M+q
+r =

1

2
δqr . (3.132)

Henceforth, we will use the indices +q,+r, . . . to indicate flat spinor indices, and +u,+v, . . . for curved
spinor indices.

To reduce the number of component fields of eM
A and ΩM , we proceed in analogy with the 4-

dimensional case discussed in Section 3.1.3. In particular, in the next section we will perform a partial
Wess-Zumino gauge-fixing, while in Section 3.3.4 we will impose constraints on the supertorsion and
solve the Bianchi identities subject to such constraints. Finally, in Section 3.3.5 we will use the
results of Section 3.3.3 and 3.3.4 to obtain the explicit expression for the component expansion of the
supervielbein and the superconnection.
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3.3.3 Gauge fixing

Under a general coordinate transformation in superspace, zM → z′M (z) = ζM (z), whose η-
expansion is given by

z′M (z) = ζM (z) = ζ(0)M (ξ) + η+uζ
(1)M
+u (ξ) +

1

2
η+uη+vζ

(2)M
+u+v(ξ) , ζ

(2)M
+u+v(ξ) = −ζ(2)M

+v+u(ξ) , (3.133)

the supervielbein transforms as

e′A
M (z′) = eA

N (z)
∂z′M

∂zN
. (3.134)

We now use the higher components in the expansion (3.133) to simplify the expressions for the super-
vielbein components.

Let us consider the transformation under the full superspace diffeomorphisms of the components
e+q

M of the inverse supervielbein:

e′+q
m(z′) = e+q

n∂nζ
(0)m + e+q

+u
(
ζ

(1)m
+u + η+vζ

(2)m
+u+v

)
,

e′+q
+u(z′) = e+q

n∂nζ
(0)+u + e+q

+v
(
ζ

(1)+u
+v + η+wζ

(2)+u
+v+w

)
.

(3.135)

By expanding the inverse supervielbein components as

eA
M (z) = e

(0)
A

M + η+ue
(1)
+uA

M +
1

2
η+uη+ve

(2)
+u+vA

M , (3.136)

we obtain that

e′+q
m =

[
e

(0)
+q

n∂nζ
(0)m + e

(0)
+q

+uζ
(1)m
+u

]
+

+ η+u
[
e

(1)
+u+q

n∂nζ
(0)m − e(0)

+q
n∂nζ

(1)m
+u + e

(0)
+q

+vζ
(2)m
+v+u + e

(1)
+u+q

+vζ
(1)m
+v

]
+ . . . ,

e′+q
+u =

[
e

(0)
+q

n∂nζ
(0)+u + e

(0)
+q

+vζ
(1)+u
+v

]
+

+ η+v
[
e

(1)
+v+q

n∂nζ
(0)+u − e(0)

+q
n∂nζ

(1)+u
+v + e

(0)
+q

+wζ
(2)+u
+w+v + e

(1)
+v+q

+wζ
(1)+u
+w

]
+ . . . .

(3.137)

Therefore, we can choose ζM+q, in order to set

e
(0)
+q

m = 0 , e
(0)
+q

+u = δ+q
+u . (3.138)

Analogously, ζM+u+v may be employed to transform the antisymmetric parts of e
(1)
+u+q

M to zero, namely

e
(1)
+q+u

m = e
(1)
+u+q

m , e
(1)
+q+v

+u = e
(1)
+v+q

+u . (3.139)

A similar procedure may be used to eliminate some components of the superconnection ΩA
B, which

we recall to be given by

ΩA
B = ΩMA

B = dzMΩMMA
B . (3.140)

To this purpose, we start from the infinitesimal transformation of ΩB
A under local Lorentz transfor-

mations, which is

δΩB
A = −dLB

A − LBCΩC
A + ΩB

CLC
A . (3.141)

In our case, since SO(1, 1) is Abelian, we have that LB
CΩC

A = ΩB
CLC

A and then

δΩM = −∂ML . (3.142)

The boost parameter L(z) is

L(z) = L(0)(ξ) + η+uL
(1)
+u(ξ) +

1

2
η+uη+vL

(2)
+u+v(ξ) , L

(2)
+u+v(ξ) = −L(2)

+v+u(ξ) , (3.143)
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where L(0)(ξ) is associated with the conventional Lorentz boosts, while L
(1)
+u, and L

(2)
+u+v can be freely

gauge fixed. Thus, by expanding ΩM as

ΩM (z) = Ω
(0)
M (ξ) + η+uΩ

(1)
+u,M (ξ) +

1

2
η+uη+vΩ

(2)
+u+v,M (ξ) , (3.144)

we find that

δΩ+u = −∂+uL = −L(1)
+u − η+vL

(2)
+u+v , (3.145)

whence

δΩ
(0)
+u = −L(1,0)

+ ,

δΩ
(1)
+v+u = −L(2)

+u+v = L
(2)
+v+u .

(3.146)

Therefore, we may set

Ω
(0)
+u = 0 , (3.147)

while L
(2)
+v+u can be used to gauge away the antisymmetric part of Ω

(1)
+v+u:

Ω
(1)
+v+u = Ω

(1)
+u+v . (3.148)

As a result, we remain with ζ(0)m(ξ), ζ(0)+u(ξ) and L(0)(ξ) as free parameters, corresponding to
bosonic diffeomorphisms, local supersymmetry transformations and local Lorentz boosts, respectively.

To summarize, in this Section we have chosen a gauge in which the components of the inverse
supervielbein and the superconnection are

Ωm(z) = ωm(ξ) + η+uρ+um(ξ) +
1

2
η+uη+vλ+u+vm(ξ) ,

Ω+u(z) = η+vρ+v+u(ξ) +
1

2
η+vη+wλ+v+w+u(ξ) , ρ+v+u(ξ) = ρ+u+v(ξ) ,

ea
m(z) = ea

m(ξ) + η+uf+u a
m(ξ) +

1

2
η+uη+vg+u+v,a

m(ξ) ,

ea
+u(z) = χa

+u(ξ) + η+vf+v a
+u(ξ) +

1

2
η+vη+wg+v+w,a

+u(ξ) ,

e+q
m(z) = η+uf+u+q

m(ξ) +
1

2
η+uη+vg+u+v,+q

m(ξ), f+u+q
m(ξ) = f+q+u

m(ξ) ,

e+q
+u(z) = δ+q

+u + η+vf+v+q
+u(ξ) +

1

2
η+vη+wg+v+w,+q

+u(ξ), f+v+q
+u(ξ) = f+q+v

+u(ξ) .

(3.149)

In particular, the lowest components of eA
M are given by

eA
M
∣∣ =

(
ea
m χa

+u

0 δ+q
+u

)
, (3.150)

and by exploiting eA
NeN

B = δA
B, we find that

eM
A
∣∣ =

(
em

a −χm+q

0 δ+u
+q

)
, (3.151)

where

ea
mem

b = δa
b ,

χm
+q = em

aχa
+uδ+u

+q .
(3.152)
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For later convenience, we also give the complete component expansion of the supervielbein eM
A:

em
a(z) = em

a(ξ) + η+uh+um
a(ξ) +

1

2
η+uη+v`+u+v,m

a(ξ) ,

em
+q(z) = −χm+q(ξ) + η+uh+um

+q(ξ) +
1

2
η+uη+v`+u+v,m

+q(ξ) ,

e+u
a(z) = η+vh+v+u

a(ξ) +
1

2
η+vη+w`+v+w,+u

a(ξ) , h+v+u
a(ξ) = h+u+v

a(ξ) ,

e+u
+q(z) = δ+u

+q + η+vh+v+u
+q(ξ) +

1

2
η+vη+w`+v+w,+u

+q(ξ) , h+v+u
+q(ξ) = h+u+v

+q(ξ) ,

(3.153)

where the symmetry of h+u+v
a and h+u+v

+q can be seen by considering that eA
NeN

B = δA
B and the

symmetry of f+u+q
m and f+q+v

+u.

3.3.4 Supergravity constraints

To reduce the number of component fields of eM
A and ΩM , we impose the following constraints

on TAB
C [12, 38, 39]:

T+q,+r
++ = −iδqr T+q,+r

+s = 0 ,

TAB
−− = 0 ∀A,B ,

T+q,++
A = 0 ∀A ,

T++,−−
++ = T+q,−−

++ = 0 .

(3.154)

They are compatible with the rigid case, where, as seen in (3.115), the only non-vanishing component
is T+q,+r

++ = −iδqr.
Let us recall that the supertorsion and the supercurvature satisfy the Bianchi identities (3.128),

which, in components, become

R[ABC}
D = D[ATBC}

D + T[AB|
FTF |C}

D , (3.155)

and
D[ERAB} + T[EA|

FRF |B} = 0 , (3.156)

respectively. Here, the square brackets denote generalised anti-symmetrization, which in our case is
performed in three indices and is given by

A[ABC} =
1

3!

(
AABC + (−)c(a+b)ACAB + (−)a(b+c)ABCA+

−(−)abABAC − (−)bcAACB − (−)ab+bc+acACBA

)
.

(3.157)

We now solve these identities subject to the supertorsion constraints in (3.154), starting from (3.155).
Utilising R[+q+r+s}

+t = . . . we find

R+q+r = 0 , ∀q, r = 1, 2 . (3.158)

The identity R[a+q+r}
d = . . . then yields

T+1,−−
+1 = T+2,−−

+2 = 0 ,

T+1,−−
+2 + T+2,−−

+1 = 0 ,
(3.159)

and if we use the latter results, together with (3.158), in the identity R[a+q+r]
+s = . . . , one obtains

R+q,++ = 0 ∀q = 1, 2 , (3.160a)

T++,−−
+1 = −2iD+2T+2,−−

+1 , (3.160b)

T++,−−
+2 = −2iD+1T+1,−−

+2 , (3.160c)

R+1,−− = iT++,−−
+1 , (3.160d)

R+2,−− = iT++,−−
+2 . (3.160e)
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On the other hand, the R[ab+q}
+r = . . . equation gives

R++,−− = 2D+1T++,−−
+1 = 2D+2T++,−−

+2 , (3.161a)

D+1T++,−−
+2 = D++T+1,−−

+2 , (3.161b)

D+2T++,−−
+1 = D++T+2,−−

+1 , (3.161c)

while the other components of (3.155) do not give additional information and are identically satisfied,
once the above relations are exploited. Let us now move to the second Bianchi identity.

Let us start from the following component:

D[aRb+q} + T[ab|
FRF |+q} = 0 , (3.162)

from which we find

D+1R++,−− = D++R+1,−− , (3.163a)

D+2R++,−− = D++R+2,−− . (3.163b)

Finally, the last condition arising from the Bianchi identities is found from the identity D[aR+q+r]+
· · · = 0 and tells us that

D+1R+2,−− +D+2R+1,−− = 0 . (3.164)

To sum up, we have found that, once we know T+1,−−
+2 = −T+2,−−

+1, we can compute all the
non-vanishing components of the supertorsion and the supercurvature.

Indeed, one can derive the expressions of T++,−−
+q and R+q,−− starting from the equations

(3.160b), (3.160c), (3.160d), (3.160e) and requiring them to satisfy (3.161b), (3.161c) and (3.164).
Finally, we may compute R++,−− using (3.161a), together with (3.163a) and (3.163b).

What we obtained is in agreement with the results of [38]. Indeed, by working in the coordinates
θ+ and θ̄+ and calling

T+,−−
+ = iT+1,−−

+2 = −iT+2,−−
+1 ≡ iG−− ,

T++,−−
+ =

1

2
√

2

(
T++,−−

+1 + iT++,−−
+2
)
≡ −Σ+ ,

R++,−− ≡ −R ,

(3.165)

we find that the previous conditions arising from the Bianchi identities become

D+G−− = 2Σ̄+ ,

D+Σ̄+ = 0 ,

R = D+Σ+ + D̄+Σ̄+ ,

D+R = 4iD++Σ̄+ .

(3.166)

3.3.5 Final results

We are now ready to derive the complete component expansion of the supervielbein and the
superconnection. The strategy is to find the supervielbein and superconnection which reproduce the
results of Section 3.3.4 for the supertorsion and the supercurvature, by using, for their η–expansions,
the expression reported at the end of Section 3.3.3.

Let us recall that:

TBC
A = (−)b(m+c)eC

MeB
NTNM

A , (3.167)

with

TNM
A = ∂NeM

A − (−)nm∂MeN
A + (−)n(m+b)eM

BΩNB
A − (−)mbeN

BΩMB
A =

= (−)n(m+b)eM
BeN

CTCB
A .

(3.168)
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In particular, we have that:

TNM
−− = (−)n(m+b)eM

BeN
CTCB

−− = 0 , (3.169)

since TCB
−− = 0. Therefore, we have that:

∂NeM
−− − (−)nm∂MeN

−− − (−)nmeM
−−ΩN + eN

−−ΩM = 0 . (3.170)

Recalling the notation introduced in (3.153) and considering the cases N = +u, M = +v and N = n,
M = +u in (3.170), one can derive the following conditions on the supertorsion and superconnection
components:

h+v+u
−− = `+v+w,+u

−− = 0 , (3.171)

ρ+v+u = λ+v+w+u = 0 , (3.172)

h−−+um = `+u+vm
−− = 0 , (3.173)

e−−n ρ+um − e−−m ρ+un = 0 , (3.174)

e−−n λ+u+vm − e−−m λ+u+v n = 0 . (3.175)

The equations (3.171) imply that e+u
−− = 0. From (3.172), it turns out that also Ω+u = 0, while

(3.173) tells us that only the lowest component of em
−− is left, i.e. em

−−(z) = em
−−(ξ).

We now move to consider eq. (3.168) with A = +q. In this case, the equation reads

∂NeM
+q − (−)nm∂MeN

+q +
1

2
(−)n(1+m)eM

+qΩN −
1

2
(−)meN

+qΩM =

= (−)nm
[
eM
−−eN

++ − eM++eN
−−]T++,−−

+q + (−)nm
[
eM
−−eN

+r − (−)neM
+reN

−−]T+r,−−
+q

(3.176)

Let us consider the case N = +u, M = +v. Since we have just obtained that e+u
−− = 0 and Ω+u = 0,

the r.h.s. is zero and only the first two terms of the l.h.s. are non-vanishing. This leads to

h+v+u
+q = `+v+w,+u

+q = 0 =⇒ e+u
+q(z) = δ+u

+q . (3.177)

For convenience, before going on with the case N = n, M = +u, we consider (3.168) with A = ++,
obtaining

∂NeM
++ − (−)nm∂MeN

++ + (−)nmeM
++ΩN − eN++ΩM = −i(−)n(1+m)eM

+qeN
+q . (3.178)

By analysing (3.178) for N = +u, M = +v and N = n, M = +u, we find

h+u+v
++ = − i

2
δuv ,

`+v+w+u
++ = 0 ,

h+um
++ = −iχm+qδuq ,

h+1m
+1 = h+2m

+2 =
1

2
ωm ,

h+2m
+1 = −h+1m

+2 ,

`+1+2m
++ = ih+2m

+1 ,

ρ+1m = −2`+1+2m
+2 ,

ρ+2m = 2`+1+2m
+1 .

(3.179)

At this point, to finish the discussion of (3.176), we define the component expansion of T+1,−−
+2

as

T+1,−−
+2 = t−− + η+vd+v,−− +

1

2
η+vη+wp+v+w,−− , (3.180)
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and we recall that in Section 3.3.4 we have shown that, starting from T+1,−−
+2, one can obtain all the

other non-vanishing supertorsion and supercurvature components. Thus, after computing the inverse
supervielbein, it turns out that (3.160b) leads to

T++,−−
+1 = 2iD+2T+1,−−

+2 = A+,−− + η+vB+v+,−− +
1

2
η+vη+wC+v+w+,−− , (3.181)

where

A+,−− = 2id+2,−− ,

B+1+,−− = 2ip+2+1,−− ,

B+2+,−− = −e++
mD̂mt−− − χ++

+ud+u,−− ,

C+1+2+,−− =
i

2
χ++

+1e++
mD̂mt−− + e++

mD̂md+1,−− + e++
mρ+1mt−−+

+
i

2
χ++

+1χ++
+ud+u,−− − h+1,++

+ud+u,−− − χ++
+up+u+1,−− ,

(3.182)

and we have defined

D̂mt−− = ∂mt−− + ωmt−− ,

D̂md+v,−− = ∂md+v,−− + ωmd+v,−− .
(3.183)

Similarly, from (3.160c) we find that

T++,−−
+2 = −2iD+1T+1,−−

+2 = D+,−− + η+vE+v+,−− +
1

2
η+vη+wF+v+w+,−− , (3.184)

with

D+,−− = −2id+1,−− ,

E+1+,−− = e++
mD̂mt−− + χ++

+ud+u,−− ,

E+2+,−− = −2ip+1+2,−− ,

F+1+2+,−− =
i

2
χ++

+2e++
mD̂mt−− + e++

mD̂md+2,−− + e++
mρ+2mt−−+

+
i

2
χ++

+2χ++
+ud+u,−− − h+2,++

+ud+u,−− − χ++
+up+u+2,−− .

(3.185)

By recalling (3.160d), (3.160e) and (3.161a), we may also obtain the component expansion of R+q,−−
and R++,−−. The results are:

R+1,−− = iT++,−−
+1 = iA+,−− + iη+vB+v+,−− +

i

2
η+vη+wC+v+w+,−− ,

R+2,−− = iT++,−−
+2 = iD+,−− + iη+vE+v+,−− +

i

2
η+vη+wF+v+w+,−− ,

R++,−− = 2D+1T++,−−
+1 = H++,−− + η+vL+v++,−− +

1

2
η+vη+wM+v+w++,−− ,

(3.186)

with

H++,−− = 2B+1+,−− ,

L+v++,−− = 2f+v+1
mD̃mA+,−− + 2f+v+1

+uB+u+,−− + 2C+1+v+,−− ,

M+v+w++,−− = 2f+v+1
mD̃mB+w+,−− − 2f+w+1

mD̃mB+v+,−− + f+v+1
mρ+wmA+,−−+

− f+w+1
mρ+vmA+,−− + 2g+v+w+1

mD̃mA+,−− + 2g+v+w+1
+uB+u+,−−+

− 2f+v+1
+uC+u+w+,−− + 2f+w+1

+uC+u+v+,−− ,

(3.187)

and

D̃mA+,−− = ∂mA+,−− +
1

2
ωmA+,−− ,

D̃mB+w+,−− = ∂mB+w+,−− +
1

2
ωmB+w+,−− .

(3.188)
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We are now ready to finish the discussion of (3.176). In particular, by considering the case N = +u,
M = m, we find

h+1m
+1 = h+2m

+2 =
1

2
ωm ,

h+1m
+2 = −h+2m

+1 = i`+1+2m
++ = em

−−t−− ,

ρ+1m = −2`+1+2m
+2 = −2em

−−d+2,−− ,

ρ+2m = 2`+1+2m
+1 = 2em

−−d+1,−− ,

λ+1+2m = −iem−−e++
nD̂nt−− − iem−−χ++

+ud+u,−− .

(3.189)

Note that the expressions of ρ+um and λ+1+2m satisfy the equations (3.174) and (3.175) we have found
before.

At this point, all supervielbein and superconnection components are completely fixed. Indeed, by
using all the results found so far, we obtain

Ωm(z) = ωm − 2η+1em
−−d+2,−− + 2η+2em

−−d+1,−−+

+ η+1η+2
(
−iem−−e++

nD̂nt−− − iem−−χ++
+ud+u,−−

)
,

Ω+u(z) = 0 ,

em
−−(z) = em

−− ,

em
++(z) = em

++ − iη+1χm
+1 − iη+2χm

+2 − iη+1η+2em
−−t−− ,

em
+1(z) = −χ+1

m +
1

2
η+1ωm − η+2em

−−t−− + η+1η+2em
−−d+1,−− ,

em
+2(z) = −χ+2

m + η+1em
−−t−− +

1

2
η+2ωm + η+1η+2em

−−d+2,−− ,

e+u
−−(z) = 0 ,

e+1
++(z) = − i

2
η+1 ,

e+2
++(z) = − i

2
η+2 ,

e+u
+q(z) = δ+u

+q ,

(3.190)

where χ++
+u = e++

mχm
+qδuq.

In (3.190), em
a, χm

+q and ωm are the vielbein, the gravitino and the Lorentz connection, re-
spectively. The latter is not an independent field, being related to the vielbein and the gravitino
by

∂nem
−− − ∂men−− = em

−−ωn − en−−ωm ,
∂nem

++ − ∂men++ + em
++ωn − en++ωm = −iχ+q

m χ+q
n ,

(3.191)

which are equations arising from the cases N = n, M = m of (3.170) and (3.178). From (3.191), one
obtains

ωn = e−−
m
(
∂nem

−− − ∂men−−
)

+ e++
m
(
∂men

++ − ∂nem++ − iχm+qχn
+q
)
. (3.192)

As far as t−− and d+u,−− are concerned, the former enters the (0, 2) supergravity multiplet, together
with the vielbein em

a and the gravitino χm
+q16, while d+u,−−, u = 1, 2, are not independent and can

be expressed as17

d+1,−− =
i

2

(
∂−−χ++

+2 − ∂++χ−−
+2 +

1

2
χ++

+2ω−− −
1

2
χ−−

+2ω++ + t−−χ++
+1

)
,

d+2,−− = − i
2

(
∂−−χ++

+1 − ∂++χ−−
+1 +

1

2
χ++

+1ω−− −
1

2
χ−−

+1ω++ + t−−χ++
+2

)
.

(3.193)

16Indeed, t−− gives exactly the bosonic degree of freedom which allows us to match the number of bosonic and fermionic
degrees of freedom of the supergravity multiplet, as requested by a supersymmetric theory.

17The equations in (3.193) originate from the case N = n, M = m of (3.178).
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In the complex coordinates θ+ and θ̄+ = θ+̄, related to η+q by the relations (3.110), (3.190) becomes

Ωm(z) = ωm − 2iθ+em
−−d+,−− + 2iθ+̄em

−−d+̄,−−+

+ 4θ+θ+̄em
−−
(
e++

nD̂nt−− + χ++
+d+,−− + χ++

+̄d+̄,−−

)
,

Ω+u(z) = 0 ,

em
−−(z) = em

−− ,

em
++(z) = em

++ − 4iθ+χm
+̄ − 4iθ+̄χm

+ + 4θ+θ+̄em
−−t−− ,

em
+(z) = −χm+ + θ+

(
1

2
ωm + iem

−−t−−

)
+ iθ+θ+̄em

−−d+̄,−− ,

em
+̄(z) = −χm+̄ + θ+̄

(
1

2
ωm − iem−−t−−

)
+ iθ+θ+̄em

−−d+,−− ,

e+
−−(z) = e+̄

−− = 0 ,

e+
++(z) = −2iθ+̄ ,

e+̄
++(z) = −2iθ+ ,

e+
+(z) = e+̄

+̄ = 1 ,

e+
+̄(z) = e+̄

+ = 0 .

(3.194)

Finally, the inverse supervielbein is

ea
m(z) = ea

m +
i

2
η+1χa

+1e++
m +

i

2
η+2χa

+2e++
m +

1

4
η+1η+2

(
χa

+1χ++
+2 + χ++

+1χa
+2
)
e++

m ,

ea
+1(z) = χa

+1 + η+1

(
i

2
χa

+1χ++
+1 − 1

2
ωa

)
+ η+2

(
i

2
χa

+2χ++
+1 + t−−δ

a,−−
)

+

+ η+1η+2

(
−d+1,−−δ

a,−− +
1

4
χa

+1χ++
+2χ++

+1 − i

4
χa

+2ω++

)
,

ea
+2(z) = χa

+2 + η+1

(
i

2
χa

+1χ++
+2 − t−−δa,−−

)
+ η+2

(
i

2
χa

+2χ++
+2 − 1

2
ωa

)
+

+ η+1η+2

(
−d+2,−−δ

a,−− +
1

4
χ++

+1χa
+2χ++

+2 +
i

4
χa

+1ω++

)
,

e+1
m(z) =

i

2
η+1e++

m − 1

4
η+1η+2χ++

+2e++
m ,

e+2
m(z) =

i

2
η+2e++

m +
1

4
η+1η+2χ++

+1e++
m ,

e+1
+1(z) = 1 +

i

2
η+1χ++

+1 +
1

4
η+1η+2χ++

+1χ++
+2 ,

e+1
+2(z) =

i

2
η+1χ++

+2 − i

4
η+1η+2ω++ ,

e+2
+1(z) =

i

2
η+2χ++

+1 +
i

4
η+1η+2ω++ ,

e+2
+2(z) = 1 +

i

2
η+2χ++

+2 +
1

4
η+1η+2χ++

+1χ++
+2 ,

(3.195)
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where ωa = ea
nωn. In the coordinates θ+ and θ+̄, it becomes

ea
m(z) = ea

m + 2iθ+χa
+̄e++

m + 2iθ+̄χa
+e++

m + 4θ+θ+̄(χa
+̄χ++

+ − χa+χ++
+̄)e++

m ,

ea
+(z) = χa

+ + θ+

(
2iχa

+̄χ++
+ − 1

2
ωa − it−−δa,−−

)
+ 2iθ+̄χa

+χ++
++

+ θ+θ+̄
(

4χa
+χ++

+χ++
+̄ − id+̄,−−δ

a,−− − iχa+ω++

)
ea

+̄(z) = χa
+̄ + 2iθ+χa

+̄χ++
+̄ + θ+̄

(
2iχa

+χ++
+̄ − 1

2
ωa + it−−δ

a,−−
)

+

+ θ+θ+̄
(

4χa
+̄χ++

+χ++
+̄ − id+,−−δ

a,−− + iχa
+̄ω++

)
e+

m(z) = (2iθ+̄ + 4θ+θ+̄χ++
+̄)e++

m ,

e+̄
m(z) = (2iθ+ − 4θ+θ+̄χ++

+)e++
m ,

e+
+(z) = 1 + 2iθ+̄χ++

+ + iθ+θ+̄(ω++ + 4iχ++
+χ++

+̄) ,

e+̄
+̄(z) = 1 + 2iθ+χ++

+̄ − iθ+θ+̄(ω++ − 4iχ++
+χ++

+̄) ,

e+
+̄(z) = 2iθ+̄χ++

+̄ ,

e+̄
+(z) = 2iθ+χ++

+ .

(3.196)

In conclusion, in this section we have studied N = (0, 2) supergravity in 2 dimensions, and the
results we have obtained will be important, in Section 4.4, to incorporate the internal sector in the
world-sheet theory of the EFT strings in a manifestly supersymmetric way.
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World-sheet theory of the EFT strings

In Section 2.2, we introduced the action for 1
2 -BPS axionic strings, and in Section 2.4.1 we illus-

trated that, if we consider a 4d N = 1 effective field theory for a set of chiral multiplets and focus
on the subclass of BPS axionic strings given by the EFT strings, their backreaction on the moduli of
the theory is such that, close to the string core, the effective theory becomes weakly coupled. Then,
in Section 2.5.1 we saw 2 conjectures related to the physics of EFT strings, while Section 2.5.2 dis-
cussed how theories with a standard coupling to the axionic sector must have, to be consistent, a
string world-sheet theory producing an anomaly which cancels the anomaly induced by the axionic
couplings.

In this Chapter, we focus on the world-sheet theory of the EFT strings. It is already known [9,
10] how to incorporate the universal sector of the EFT strings in a supersymmetric way in the target
superspace. This is achieved by means of the Green-Schwarz (GS) formalism, and will be reviewed
in Section 4.1. However, as already discussed in Section 2.5.2, models arising from string/M-theory
compactifications tell us that, besides the universal sector, an additional sector supported on the EFT
string is also present, and the Green-Schwarz formalism does not allow for the inclusion of this sector
in the theory in a supersymmetrically controlled way. An alternative approach is represented by the
superembedding formalism (see [12] and references therein), which will be introduced in Section 4.2
and provides a doubly supersymmetric theory, namely a supersymmetric theory both on the target
superspace and the string world-sheet. This is useful in order to include the additional degrees of
freedom of the EFT strings, described in terms of N = (0, 2) multiplets [11], where N = (0, 2) is the
local supersymmetry preserved by such strings.

Before including the internal sector, in Section 4.3 we rewrite the world-sheet theory of the universal
sector in the superembedding formulation. Finally, in Section 4.4 we start considering the internal
sector of the theory, by introducing N = (0, 2) Fermi multiplets, and comment about the issues that
arise when one considers the inclusion of N = (0, 2) chiral multiplets.

4.1 BPS axionic strings in the Green-Schwarz formalism

In this Section, we illustrate how to write down an action for the universal sector of the BPS
axionic strings in a supersymmetric way in the target superspace, following the discussion of [9, 10].

First of all, let us recall that the action describing a string minimally coupled to a set of gauge
two-forms B2,i is (2.20), i.e.

Sstring = −
∫
S

√
−det γ Tstring(`) + ei

∫
S
B2,i , (4.1)

where γ represents the induced metric over the string worldsheet, given by (2.21), while Tstring(`) is
completely fixed by requiring the axionic strings to be 1

2–BPS objects, and its expression is [9]

Tstring(`) ≡ Te = M2
P |ei`i| . (4.2)

To extend (4.1) to the local supersymmetric case, we first consider its global version, namely
we start from a flat target superspace. In the Green-Schwarz formalism, the fundamental string is
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described by the embedding of the string world-sheet S, parametrized by two bosonic coordinates ξm,
m = 0, 1, in the target superspace1:

ξm 7−→ S : zM (ξ) = (xm(ξ), θµ(ξ), θ̄µ̇(ξ)) . (4.3)

where xm(ξ), θµ(ξ) and θ̄µ̇(ξ) are the fields describing the bosonic and the Grassmann spinor coordi-
nates of the string in the target superspace, respectively. Consequently, we define the induced metric
on the string as

γmn ≡ EamEbnηab , (4.4)

where we have introduced the pull-backs of the target superspace supervielbein of the global super-
symmetric case

Eam(ξ) ≡ ∂mzM (ξ)EaM (z(ξ)) ,

Ea = dzMEaM (z) = dxa − idθσaθ̄ + iθσadθ̄ .
(4.5)

Furthermore, it is necessary to promote the gauge two-forms B2,i to super-gauge two-forms B2,i whose
lowest bosonic components just coincide with B2,i. The super-gauge-two-forms B2,i are defined in
terms of the linear multiplets Li introduced in Section 3.2.1, and their expression is obtained starting
from the closed super-field strength three-form

H3,i = dB2,i = 2iEa ∧ Eα ∧ Ē α̇(σa)αα̇Li

− Eb ∧ Ea ∧ Eα(σab)α
βDβLi − Eb ∧ Ea ∧ Ē α̇(σ̄ab)

β̇
α̇D̄β̇Li

− 1

24
Ec ∧ Eb ∧ Eaεabcd(σ̄d)α̇α[Dα, D̄α̇]Li ,

(4.6)

where Eα = dθα, Ē α̇ = dθ̄α̇. This is the unique closed super-three-form that can be constructed from
the linear multiplets [40]. It can be shown that its lowest bosonic component is

H3,i| = H3,i = dB2,i , (4.7)

as it should.
We are now in the position to introduce the supersymmetric action for a fundamental string:

Sstring = −
∫
S

d2ξ|eiLi|
√
−det γ + ei

∫
S

B2,i . (4.8)

It reduces to (4.1) once we restrict to the bosonic components, defining the string tension2

Te = |eili| , (4.9)

where the scalar fields li are assumed to be evaluated over the string worldsheet S.
Besides being invariant under worldsheet reparametrizations, the action (4.8) enjoys a local,

fermionic κ-symmetry specified by the parameters κα(ξ) and κ̄α̇(ξ) = (κα(ξ)), which acts on the
embedding coordinates as

δzM (ξ) = κα(ξ)EMα (z(ξ)) + κ̄α̇(ξ)EMα̇(z(ξ)) , (4.10)

which, more explicitly, reads 
δxm(ξ) = iκσmθ̄(ξ)− iθ(ξ)σmκ̄
δθµ(ξ) = κµ(ξ)

δθ̄µ̇(ξ) = κ̄µ̇(ξ)

. (4.11)

1In what follows, the underlined indices refer to target-space indices, while not underlined ones correspond to world-
sheet indices.

2Actually, as we will shortly see, the tension reported in (4.2) is recovered in the Einstein frame.
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This is a symmetry of (4.8) provided that κα(ξ) obeys the following projection conditions:

κα =
eiLi
|eiLi|

Γα
βκβ , (4.12)

where we have defined

Γα
β ≡ − 1√

−det γ
εmnEamEbn(σab)α

β , (4.13)

which satisfies
Γα

γΓγ
β = δα

β . (4.14)

The world-sheet reparametrization invariance ξm → ξ′m(ξ) can be used to go in the so-called static
gauge, which fixes the longitudinal directions x0 = ξ0, x3 = ξ1, while leaving x1(ξ) and x2(ξ) as the
only bosonic physical fields which describe the dynamics of the string. x1 and x2 can be regarded as
the real and imaginary parts of a complex scalar field u = x1 + ix2. In this gauge, the κ-symmetry op-
erator reduces to Γα

β = (σ3)α
β. Providing that we work in the case eiLi > 0, the projection condition

on κα = (κ−, κ+) then becomes κα = (σ3)α
βκβ. The latter condition imposes κ+ = 0, thus, by looking

at (4.11) and considering that κα = (κ−, κ+) = (κ+,−κ−)3, we find that the physical component of
θµ(ξ) = (θ−(ξ), θ+(ξ)) = (θ+(ξ),−θ−(ξ)) is the right-moving one, i.e. θ+(ξ), while the other one can
be set to zero by a κ-symmetry transformation. This is in agreement with what we said in Section
2.5.2, when we discussed the universal part of the world-sheet sector of the EFT strings. In particular,
this tells us that a N = (0, 2) local supersymmetry is preserved on the string world-sheet, since we are
left with κ+ = −κ− as free parameter of the κ-symmetry, and then (4.8) describes a 1

2 -BPS string.

We now want to extend the action (4.8) for a string minimally charged under some gauge two-forms
B2,i, with charges ei, to the local supersymmetric case. To this aim, in analogy with Section 3.2.2,
one may utilize the super-Weyl invariant approach [9, 10]. The final result is

Sstring = −
∫
S

d2ξ |eiLi|
√
−detγ + ei

∫
S

B2,i , (4.15)

where B2,i is the super-gauge two-form whose purely bosonic component is just the ordinary B2,i. The
procedure to define it goes along the same path as before, but now the super-three-form field-strength,
H3,i = dB2,i, is a proper covariantization of (4.6):

H3,i = 2iEa ∧ Eα ∧ Ēα̇(σa)αα̇Li

− Eb ∧ Ea ∧ Eα(σab)α
βDβLi − Eb ∧ Ea ∧ Ēα̇(σ̄ab)

β̇
α̇D̄β̇Li

− 1

24
Ec ∧ Eb ∧ Eaεabcd

[
(σ̄d)α̇α[Dα, D̄α̇] + 8Gd

]
Li .

(4.16)

Analogously to the global case, it can be seen that (4.15) reduces to (4.1) once we restrict to the
bosonic components.

In the so-called Einstein frame, the string action reads

Sstring = −M2
P

∫
S

d2ξ |eiLi|
√
−detγ + ei

∫
S

B2,i , (4.17)

where we have employed the change of variables (3.100), i.e. li = M2
P `i, and which defines the physical

string tension as
Te = M2

P|ei`i| . (4.18)

The action (4.17) naturally couples to the bulk action (3.87), which also contains the dynamics of the
linear multiplets.

Even in this case, (4.15) is invariant under κ-symmetry transformations, parametrized by κα, κ̄α̇

satisfying the projection conditions (4.12). Hence, the bulk supersymmetry, with local parameter

3This is obtained by raising and lowering the spinor indices with the antisymmetric tensor εαβ of Appendix B.
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εα(x) can be preserved, over the string worldsheet, only if the κ-parameters can be identified with
εα(x)4, namely

κα(ξ) ≡ εα(x)|string . (4.19)

Therefore, by following the same reasoning as the one done in the global supersymmetric case, which
is still valid locally, the action (4.15) describes 1

2 -BPS strings, preserving only half of the bulk super-
symmetry over their worldsheet. In particular, depending on the sign of eiLi, we may preserve a given
half of the bulk supersymmetry or the opposite one. In agreement with the notation already used in
2.4.1, we call 1

2 -BPS strings those whose tension is

Tstring = M2
Pe

i`i , (4.20)

and preserve a given half of the bulk supersymmetry. Those preserving the opposite half have Tstring =
−M2

Pe
i`i and are dubbed 1

2 -BPS anti-strings.

4.2 Superembedding formalism

In Section 4.3, we will show how to reformulate the theory for the universal sector of the funda-
mental axionic strings in the superembedding approach. Before discussing the implementation of this
formalism to that case, in Section 4.2.1 we study how this works in the case of superstrings [12]. By
’superstring’, we mean the supersymmetric extension of the bosonic string, discussed, for example, in
[15, 41], and the reason for considering this case is that it will give us the possibility of introducing
the formalism in an easier setup with respect to the one we are interested in5.

4.2.1 Superembedding approach for N = 1 superstrings

The purpose of this section is to write a doubly supersymmetric action for the N = 1 superstring,
namely a supersymmetric action both on the target superspace and the string world-sheet. However, as
a preliminary step, let us introduce the superstring in the Green-Schwarz formulation, first considering
the case of a flat Minkowski space-time.

Green-Schwarz formulation of N = 1 superstrings

In analogy with what we already know from Section 4.1, the Green-Schwarz formulation describes
the superstring as the superspace embedding of its bosonic two-dimensional world-sheet, parametrized
by the coordinates ξm, m = 0, 1, in the target superspace. In particular, the N = 1 Green-Schwarz
action for a superstring in a flat D-dimensional space-time is [41, 42]

S = −T
2

∫
d2ξ
√
−ggmnEamEbnηab + T

∫
B(2)(ξ) , (4.21)

where T is the string tension, B(2)(ξ) is the worldsheet pullback of the target superspace two-form

B(2) = idxadθ̄γaθ , (4.22)

whereas Eam are the vector components of the pullback of the supervielbein in the flat target superspace6

Ea =
(
dxm + idθ̄γmθ

)
δam = dξm

(
∂mx

m + i∂mθ̄γ
mθ
)
δam ≡ dξmEam , (4.23a)

Eα = dθµδαµ = dξm∂mθ
µδαµ ≡ dξmEαm . (4.23b)

4Indeed, as we will see in Section 4.2, the superembedding formalism provides the local fermionic κ-symmetry with a
clear geometrical meaning of local wordlsheet supersymmetry.

5Indeed, unlike the BPS axionic strings (see (4.15)), in this case the string tension is constant.
6In (4.22) and (4.23a), γa are the D-dimensional Dirac matrices. Furthermore, note that, if we focus on the case

D = 4 and choose the representation given in Appendix B for the γ-matrices, the expression for Ea coincides with (4.5).
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The first term of (4.21) contains the inverse of the worldsheet metric gmn(ξ), i.e. gmn(ξ). If we
describe the geometry of the worldsheet in terms of the zweibein ea(ξ) = dξmem

a(ξ), the worldsheet
metric and its inverse may be expressed as

gmn(ξ) = em
aen

bηab = −1

2
(em

−−en
++ + em

++en
−−) ,

gmn(ξ) = ηabea
meb

n = −2(e++
me−−

n + e−−
me++

n) ,
(4.24)

where ea
m is the inverse of em

a, and we are using the light-cone coordinates defined in Section 3.3.1.
From (4.24), we also deduce that

det gmn ≡ g = −(det em
a)2 , det em

a =
1

2
εmnem

−−en
++ . (4.25)

Therefore, by defining e ≡ |det em
a| we can rewrite the first term in (4.21) as

− T

2

∫
d2ξ
√
−ggmnEamEbnηab = T

∫
d2ξ e(e++

me−−
n + e−−

me++
n)EamEbnηab =

= T

∫
d2ξ εmnem

−−en
++Ea−−E

b
++ηab ,

(4.26)

where Ea−− = e−−
mEam and Eb++ = e++

mEbm.
Starting from (4.21), we can obtain the dynamical equations of motion of the superstring by varying

the action with respect to xm(ξ) and θµ(ξ), and the two Virasoro constraints

Ea−−E−−a = Ea++E++a = 0 , (4.27)

obtained by varying the action with respect to the worldsheet metric.
It turns out that the action (4.21) is invariant under the global N = 1 bulk supersymmetry

transformations
δθ = ε, δxa = iε̄γaθ , (4.28)

only in D = 3, 4, 6 and 10 and, since we are eventually interested in considering the superembedding
approach for the BPS axionic strings in 4 dimensions, we restrict to the case D = 4.

Besides the global N = 1 bulk supersymmetry, (4.21) also has a local worldsheet fermionic symme-
try, called κ-symmetry. In analogy with the case of the BPS axionic strings, the κ-parameter satisfies
a projection condition, which leads to have a number of independent κ-transformations that is half the
number of components of θ. Thus, in D = 4 κ-symmetry has 2 independent components, and we now
see how the superembedding approach replaces the κ-symmetry transformations of the Green-Schwarz
type superstring action with world-sheet local supersymmetry transformations, giving a theory with
a manifest N = (0, 2) local world-sheet supersymmetry. We start the discussion, by first considering
the case of flat target superspace.

Superembedding reformulation of N = 1 superstrings: flat case

To have the worldsheet and target space supersymmetry manifest, the superembedding formula-
tion should be constructed as a superfield theory on both the worldsheet superspace and the target
superspace, the former being embedded into the latter. To construct a theory with these properties
and be able to describe the dynamics of GS superstrings in this approach, we will shortly see that it is
necessary to impose a condition on the embedding of the superworldsheet into the target superspace,
which is the so-called superembedding condition, which was first found in [43] for superparticles and
then proved to be generic to all known types of superbranes.

First of all, to realize local supersymmetry on the worldsheet, we extend the latter to a supersurface
M2,2 parametrized by two bosonic coordinates ξm = (ξ0, ξ1) and 2 fermionic coordinates η+u, u = 1, 2.
We denote the full set of superworldsheet coordinates by zM = (ξm, η+u). This is exactly theN = (0, 2)
superspace introduced in Section 3.3, where we have studied in detail N = (0, 2) supergravity in 2
dimensions.
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At this point, we impose the superembedding condition for the N = 1 superstring, which prescribes
that the Grassmann component of the superworldsheet pullback of the flat target-space supervielbein
vector component Ea(Z) is zero. To write explicitly its expression, let us first write the proper extension
of (4.23a), which is

Ea(Z(z)) =
(
dXm + idΘ̄γmΘ

)
δam = dzM

(
∂MX

m + i∂M Θ̄γmΘ
)
δam =

= eA
(
DAX

m + iDAΘ̄γmΘ
)
δam ≡ eAE

a
A ,

(4.29)

where DA = eA
M∂M and eA

M represent the inverse supervielbein components, while

ZM (zM ) = ZM (ξ, η) = (Xm(ξ, η),Θµ(ξ, η)) , (4.30)

with Xm(ξ, η), Θµ(ξ, η) two world-sheet superfields, whose lowest components are the bosonic (xm(ξ))
and the Grassmann spinor coordinates (θµ(ξ)) of the string in the target superspace. Therefore, the
superembedding condition reads

Ea+q(Z(z)) = D+qX
a + iD+qΘ̄γ

aΘ = 0 . (4.31)

Taking the covariant derivative D+r of (4.31) and summing the same expression with the exchange
r ↔ q, one obtains

D+rD+qX
a + iD+r(D+qΘ̄γ

aΘ) + (r ↔ q) =

= {D+q, D+r}Xa + i{D+q, D+r}Θ̄γaΘ + 2iD+qΘ̄γ
aD+rΘ = 0 ,

(4.32)

where D+qΘ̄γ
aD+rΘ = D+rΘ̄γ

aD+qΘ because of symmetry properties of the γ–matrices [44]. If we
now take into account the results of Section 3.3, we have that

{D+q, D+r} = iδqrD++ (4.33)

and then we get

δqrEa++ ≡ δqr(D++X
a + iD++Θ̄γaΘ) = −2D+qΘ̄γ

aD+rΘ =⇒ Ea++ = −D+qΘ̄γ
aD+qΘ , (4.34)

which, in turn, implies one of the Virasoro constraints, namely

Ea++E++a = 0 , (4.35)

because of the property of the γ-matrices

(γa)µ(ν(γa)ρσ) = 0 . (4.36)

On the other hand, the superstring dynamical equations of motion and the second Virasoro con-
straint should be derived from a worldsheet superfield action in N = 1, D = 4 target superspace. We
start to construct this action by writing down the term which produces the superembedding condition
(4.31):

S0 = −i
∫
d2ξd2ηP+q

a E
a
+q , (4.37)

where the superfield P+q
a (z) is a Lagrange multiplier. However, this action is incomplete: it does

not describe the fully fledged N = 1, D = 4 superstrings, but the so-called null (or tensionless)
superstrings, extended objects characterized by having zero tension and a degenerate worldsheet metric
[45]. Let us then show how one can extend the null superstring action (4.37) to describe the standard
N = 1 superstring.

We start by introducing an ‘electromagnetic’ field Am(ξ) on the superstring worldsheet and con-
struct a worldsheet two-form which is invariant under the target space supersymmetry transformations
(4.28). The appropriate two-form is

F (2) = e−−e++Ea−−E
b
++ηab +B(2) + dA , (4.38)
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where e++ = e0 + e1 = dξmem
++(ξ) and e−− = e0 − e1 = dξmem

−−(ξ) are the light-cone components
of the zweibein ea(ξ) = dξmem

a(ξ), while B(2) is the worldsheet pullback of the Wess-Zumino form
(4.22).

Under the supersymmetry transformations (4.28), B(2) transforms as a total derivative:

δB(2) = id
[(

dxa − idθ̄γaθ
)
θ̄γaε

]
. (4.39)

Thus, to cancel its variation in (4.38), we fix the variation of Am(ξ) to be

δA = −i
(
dxa − idθ̄γaθ

)
θ̄γaε . (4.40)

The vector field Am(ξ) should not be a new propagating worldsheet field since our aim is to describe
the ordinary superstrings which do not carry such fields. Therefore, on the mass shell, it should be
expressed in terms of superstring dynamical variables. This is achieved by assuming that F (2) vanishes
on the mass shell, i.e.

dA = −e−−e++Ea−−E
b
++ηab −B(2) . (4.41)

The latter equation implies that the field strength of Am(ξ) is not independent and hence does not
describe new physical degrees of freedom.

Let us now consider the 2-form (4.38) given on the superworldsheetM2,2, in that all the quantities
in its definition depend on zM = (ξm, η+u). In other words, let us promote the 2-form (4.38) to a
2-superform. One can show that such a 2-superform is closed on M2,2 when the superembedding
condition (4.31) is satisfied [12], namely

dF (2)
∣∣∣
M2,2

= 0 . (4.42)

We do not report the proof of this statement, but the strategy would be the same as the one we will
utilize in Section 4.3.1 for the BPS axionic strings. The property (4.42) implies that the two-superform
F (2) can be written as

dF (2) = Ω+q
a E

a
+q + Ω++{qr}

a D+rEa+q , (4.43)

where Ω are some three-superforms.

Let us now consider the following action

S = S0 + ST = −i
∫

d2ξd2ηP+q
a E

a
+q + T

∫
M2

F (2) , (4.44)

where the second term is the integral of F (2) over the two-dimensional slice ofM2,2 such that η+u = 0,
that is the ordinary world-sheet M2.

By integrating out P+q
a and considering (4.38), this equation reproduces the Green-Schwarz action

(4.21), with the Nambu-Goto term expressed as in (4.26)7. Furthermore, it can be shown [12, 46]
that (4.44) possesses local N = (0, 2) world-sheet supersymmetry, although the second term is not
a full superspace integral. Indeed, the variation of F (2) under the worldsheet superdiffeomorphisms
zM −→ z′M = zM + δzM (ξ, η) reads8

δF (2) = d(iδF (2)) + iδdF (2) , (4.45)

and then (up to boundary terms)

δST = T

∫
M2

iδdF (2) , (4.46)

with dF (2) ‘proportional’ to the superembedding condition, as seen in (4.43). Therefore, once we
consider the full action (4.44), the variation (4.46) can be compensated by a proper variation of the
Lagrange multiplier of S0.

7Note that the term with Am(ξ) is a total derivative, therefore it can be neglected, at least for closed strings.
8In this expression, iδ represents the operation of interior product associated to δzM [47].
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One can also obtain a manifestly supersymmetric action, by writing ST as a full superspace integral.
To this aim, one constructs a Lagrange multiplier term [48] which produces the on-shell condition

F (2) = 0 , (4.47)

and the superstring action which includes such a term is

S = S0 + ST = −i
∫

d2ξd2ηP+q
a E

a
+q +

∫
d2ξd2ηPMNF (2)

MN , (4.48)

where9

ST =

∫
d2ξd2ηPMNF (2)

MN =

∫
d2ξd2ηPMN

[
Ea[Me

++
N} E++a +B

(2)
MN + ∂[MAN}

]
. (4.49)

The action (4.48) is invariant under the local transformations of the Lagrange multiplier PMN

δP [MN} = ∂LΛ[LMN} . (4.50)

Indeed, the variation of ST w.r.t. (4.50) is

δST =

∫
d2ξd2ηΛ[LMN}(dF (2))LMN , (4.51)

where dF (2) is ‘proportional’ to the superembedding condition (see eq. (4.43)), thus the variation
(4.51) is canceled by an appropriate variation of the Lagrange multiplier P+q

a in (4.48), which is

δP+q
a = −Λ[LMN}Ω+q

a,LMN + ∂P (e+r
PΛ[LMN}Ω++{qr}

a ) (4.52)

where the three-superforms Ω are the ones appearing in (4.43). This is analogous to what happens
for (4.44).

The variation of the action (4.49) with respect to AM gives

∂MP
[MN} = 0 , (4.53)

and its generic solution is given by

P [MN} = ∂LΛ̃[LMN}(z) +
1

2
εqrη

+qη+rδ
[M
−−δ

N}
++T , (4.54)

with T a constant. The first term may be set to zero by means of an appropriate local transformation
(4.50), while from the second term of (4.54) we obtain the string tension as an integration constant and,
upon the η-integration, the action reduces to the Green-Schwarz superstring action (4.21). Therefore,
the worldsheet superfield action (4.48) describes the N = 1, D = 4 superstrings.

Superembedding reformulation of N = 1 superstrings: curved case

The generalization of the superstring action (4.48) to describe a superstring propagating in curved
target superspace is obtained through the following steps:

• we replace the flat bulk supervielbein with the curved one, i.e. EA → EA. In particular, the
superembedding condition Ea+q = 0 becomes E

a
+q = 0;

• we consider B(2)(Z) as a two-form gauge superfield, whose leading component Bmn(X) is the
Neveu-Schwarz gauge potential entering the supergravity multiplet;

• we introduce a dilaton superfield Φ(Z) coupling by redefining F (2) as

F (2) = eΦEa ∧ e++E++a +B + dA . (4.55)
9As in Section 3.3, [, } denotes graded antisymmetrization of the superworldsheet indices: if one or both of the indices

M , N are bosonic they are antisymmetrized, and if both of them are fermionic they are symmetrized.
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The superstring action takes the form

S = S0 + ST = −i
∫

d2ξd2ηP+q
a E

a
+q + T

∫
M2

F (2) , (4.56)

or

S = S0 + ST = −i
∫

d2ξd2ηP+q
a E

a
+q +

∫
d2ξd2ηPMNF (2)

MN . (4.57)

In analogy with the discussion done in the flat case, if dF (2) has the form

dF (2) = Ω+q
a E

a
+q + Ω++{qr}

a D+rE
a
+q , (4.58)

where Ω are some super 3–forms, then (4.56) is invariant under worldsheet superdiffeomorphisms
zM → z′M = zM + δzM (ξ, η), while (4.57) enjoys an invariance under the local transformation (4.50)
of the Lagrange multiplier PMN , which leads us to reproduce the generalization of the Green-Schwarz
action (4.21) in a curved target space.

Performing the direct computation of dF (2), it turns out10 that it has the form (4.58) (and then is
closed on M2,2 when the superembedding condition is satisfied) if the superbackground satisfies the
supergravity torsion constraint11:

T
a
αβ = −2i(Cγa)αβ , (4.59)

and the components of the field strength H(3) = dB(2) of the two-form gauge superfield are constrained
as follows

Hαβa = 2ieΦ(Z)(Cγa)αβ, Hαβγ = 0 , (4.60)

which are the same supergravity constraints required in the case of the Green-Schwarz formulation to
consistently couple the superstrings to the supergravity background [40].

The procedure of integrating out the auxiliary superfield AM is somehow universal, since it relies
on the structure of the form F = ...+ dA. The solution for P [MN}, thus, is always the same, provided
that we can write dF as in the form (4.58), i.e. that F (2) is closed onM2,2 when the superembedding
condition is satisfied. Therefore, we now move to the analysis of the BPS axionic strings, having in
mind the procedure outlined in this section.

4.3 Superembedding reformulation of BPS axionic strings

In Section 4.1, we have discussed the GS formulation for the universal sector of the BPS axionic
strings. Our purpose is now to extend the discussion of Section 4.2.1 to reformulate the theory of
the BPS axionic strings in the superembedding formulation, and this will represent one of the main
results of the thesis work.

In this respect, the GS superstring action (4.21) is replaced by (4.15), i.e.

Sstring = −
∫
S

d2ξ eiLi
√
−detγ + ei

∫
S

B2,i , (4.61)

where we are considering the case eiLi > 0.

Therefore, we now want to find the two-superform F (2), which will be of the form F (2) = ...+ dA,
which reproduces the GS action (4.61). The proposed form for F (2) is

F (2) = eiLiE
a ∧ e++E++a + eiB2,i + dA . (4.62)

10In analogy with the flat case, we do not report the computation of the external differential of (4.55). However, in
Section 4.3.2 we will perform such computation in the case of the BPS axionic strings in curved target space, which
follows the same steps that should be done in the superstring case.

11Here and in (4.60), C stands for the charge conjugation matrix which can be used to raise and lower the spinor
indices.
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Chapter 4. World-sheet theory of the EFT strings

From the discussion given above on the superembedding formulation of N = 1 superstrings, we know
that we need to check that F (2) is closed on M2,2 when the superembedding condition E

a
+q = 0 is

satisfied. This will guarantee that dF (2) has the form (4.58). Therefore, once done this, in principle
one has to repeat the same steps of the derivation carried out in the case of N = 1 superstrings,
and finally arrives at the conclusion that the action for a BPS axionic string in the superembedding
approach is given by the same expression as before, i.e.

S = S0 + ST = −i
∫

d2ξd2ηP+q
a E

a
+q +

∫
M2

F (2) , (4.63)

but with F (2) given by (4.62). Note that we have written an action of the form (4.56), and not of the
type (4.57). The reason is that the electric charge appearing in (4.61) is quantized, ei ∈ Z. However,
the procedure outlined in the case of (4.48), which also holds for its curved extension (4.57), gives the
superstring tension T as an integration constant. Conversely, in the case of BPS axionic strings with
F (2) given by (4.62), this integration constant would spoil the quantization of ei, and this explains
why we have chosen to write S as in (4.63).

Let us start with the proof of (4.42), by first discussing, in Section 4.3.1, the case in which the
target superspace is the flat Minkowski space-time, and then extending the results to the general case
of a curved target superspace in Section 4.3.2.

4.3.1 Superembedding approach for BPS axionic strings: flat case

In the flat target superspace, the expression (4.62) of F (2) becomes12

F (2) = eiLiEae++E++a + eiB2,i + dA , (4.64)

where the lowest component of the world-sheet superfield Ea is given by (4.5). Furthermore, by
definition of pullback and the superembedding condition Ea+q = 0, we find that Ea can be expanded as

Ea = e−−Ea−− + e++Ea++ + e+qEa+q = e−−Ea−− + e++Ea++ , (4.65)

where we have used that if Ω is a p-form and Σ is a q-form, then d(ΩΣ) = ΩdΣ + (−)qdΩΣ (the
external differential acts from the right).

Let us start with the computation of dF (2):

dF (2) = d(eiLiEae++E++a + eiB2,i) = −d(eiLiEa)e++E++a + eiLiEad(e++E++a) + eidB2,i . (4.66)

The first two terms in (4.66) can be expanded as

− d(eiLiEa)e++E++a + eiLiEad(e++E++a) =

= +eidLiEae++E++a − eiLidEae++E++a + eiLiEad(e++E++a) =

= +eidLiEae++E++a − eiLidEae++E++a + eiLiEad(Ea − e−−E−−a) .
(4.67)

It turns out that

eiLidEae++E++a = 0, eiLiEad(e−−E−−a) = 0 . (4.68)

Before proving this, we report some relations which are useful for our aims. As already stated in the
previous section, from the superembedding condition Ea+q = 0 one can derive the relation (4.34) for
Ea++. Thanks to this expression, we have seen that one can show that Ea++E++a = 0, namely one of
the two Virasoro constraints. We now prove again this, by rewriting the relation (4.34) for Ea++ in the
2-component spinor notation, which is the notation used in Section 4.1. Furthermore, the reason why
Ea++E++a = 0 in this notation will be also useful to derive that other terms in dF are vanishing.

12From now on, we drop the symbol ∧ of wedge product.

58



4.3. Superembedding reformulation of BPS axionic strings

Let us choose for the 4-dimensional γ-matrices the representation given in the Appendix B. There-
fore:

Ea++ = −D+qΘ̄γ
aD+qΘ = −D+qΘ

†γ0γaD+qΘ =

= −
(
D+qΘα

D+qΘ̄
α̇

)†(
0 −1
−1 0

)(
0 σa

σ̄a 0

)(
D+qΘα

D+qΘ̄
α̇

)
=

= −
(
−D+qΘ

α −D+qΘ̄α̇

)( 0 σa

σ̄a 0

)(
D+qΘα

D+qΘ̄
α̇

)
=

=
(
D+qΘ̄σ̄

aD+qΘ +D+qΘσ
aD+qΘ̄

)
= 2D+qΘσ

aD+qΘ̄ ,

(4.69)

where the last equality is true since D+qΘ and D+qΘ̄ are commuting quantities, being the product of
two Grassmann-odd quantities. Therefore, we can write:

δqrEa++ = 4D+qΘσ
aD+rΘ̄ =⇒ Ea++ = 4D+1ΘσaD+1Θ̄ = 4D+2ΘσaD+2Θ̄ , (4.70)

and

Ea++E++a = 16D+1ΘσaD+1Θ̄D+1ΘσaD+1Θ̄ = 16D+1Θασ
a
αα̇D+1Θ̄α̇D+1Θβσaββ̇D+1Θ̄β̇ = 0 , (4.71)

because of the following relation of the σ–matrices

σmαα̇σmββ̇ = −2εβαεβ̇α̇ , (4.72)

which can be obtained from13

σmαα̇σ̄
β̇β
m = −2δα

βδα̇
β̇ . (4.73)

We are now ready to prove the relations in (4.68). First of all, note that in flat target superspace:

Ea = dXa − idΘσaΘ̄ + iΘσadΘ̄ , (4.74)

which reduces to (4.5) if we consider the lowest components of Xa and Θα. Therefore, we find that
the torsion component T a is

T a = dEa = −idΘσadΘ̄− idΘσadΘ̄ = −2idΘσadΘ̄ = dΘαdΘ̄β̇(−2i(σa)αβ̇) . (4.75)

Furthermore:

dΘα = e++D++Θα + e−−D−−Θα + e+qD+qΘ
α ,

dΘ̄β̇ = e++D++Θ̄β̇ + e−−D−−Θ̄β̇ + e+qD+qΘ̄
β̇ ,

(4.76)

and then

eiLidEae++E++a =eiLi(e
−−D−−Θα + e+qD+qΘ

α)

(e−−D−−Θ̄β̇ + e+rD+rΘ̄
β̇)(−2i(σa)αβ̇)e++E++a .

(4.77)

Thus, we have three terms which contribute: one ‘proportional’ to e−−e+r, another to e+qe−− and
the last one to e+qe+r. We first consider the latter:

− 2ieiLie
+qD+qΘ

αe+rD+rΘ̄
β̇(σa)αβ̇e

++E++a ∝

∝ e+qe+rD+qΘσ
aD+rΘ̄︸ ︷︷ ︸

∝δqrEa++

e++E++a = 0 , (4.78)

where we have used (4.71). Let us now consider the term with e−−e+r:

− 2ieiLie
−−D−−Θαe+rD+rΘ̄

β̇(σa)αβ̇e
++E++a ∝

∝ e−−e++(e+1D−−ΘσaD+1Θ̄ + e+2D−−ΘσaD+2Θ̄)E++a .
(4.79)

13Recall that σ̄mα̇α = εα̇β̇εαβσm
ββ̇

.
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Analogously, we can rewrite the e+qe−− term as

− 2ieiLie
+qD+qΘ

αe−−D−−Θ̄β̇(σa)αβ̇e
++E++a ∝

∝ e−−e++(e+1D+1ΘσaD−−Θ̄ + e+2D+2ΘσaD−−Θ̄)E++a .
(4.80)

One can show that both terms are zero by properly choosing the expression for E++a in each piece
and using the relation (4.72) of the σ–matrices. Indeed, in order to use (4.72), it is convenient to
write Ea++ = 4D+1ΘσaD+1Θ̄ in the first term of (4.79), and Ea++ = 4D+2ΘσaD+2Θ̄ in its second
contribution. The same happens for (4.80).

Let us now consider the second expression in (4.68), i.e.

eiLiEad(e−−E−−a) ∝ e++e−−e+qD+qE−−aEa++ . (4.81)

We observe that e−−e+qD+qE−−a can be regarded as a component of the torsion T a in the worldsheet
supervielbein basis. Indeed, if we focus on the e−−e+q component, we have:

T a = dEa ,
dEa −→ d(e−−E−−a) = e−−e+qD+qE−−a ,

T a = −2idΘαdΘ̄β̇σ
a

αβ̇
−→ −2ie−−e+q

[
D−−ΘσaD+qΘ̄−D+qΘσ

aD−−Θ̄
]
,

(4.82)

from which we obtain that

D+qE−−a ∝ D−−ΘσaD+qΘ̄−D+qΘσ
aD−−Θ̄ , (4.83)

and then

eiLiEad(e−−E−−a) ∝ e++e−−e+q
[
D−−ΘσaD+qΘ̄−D+qΘσ

aD−−Θ̄
]
Ea++ . (4.84)

The two terms have the same form as (4.79) and (4.80), respectively, therefore they also vanish. This
completes the proof of (4.68), and then (4.66) becomes

dF (2) = eidLiEae++E++a + eiLiEadEa + eidB2,i , (4.85)

where dB2,i is given by (4.6), and we report here its expression for convenience:

dB2,i = 2iEaEαĒ α̇(σa)αα̇Li+

− EbEaEα(σab)α
βDβLi − EbEaĒ α̇(σ̄ab)

β̇
α̇D̄β̇Li+

− 1

24
EcEbEaεabcd(σ̄d)α̇α

[
Dα, D̄α̇

]
Li .

(4.86)

Let us now analyse each line of (4.86).
The third line vanishes when the superembedding condition is satisfied, since Ea only has two

non-vanishing components and e++ ∧ e++ = e−− ∧ e−− = 0.
The first line cancels the second term in (4.85). Indeed, if we recall the expression (4.75) of T a,

we get

eiLiEadEa = eiLiEaTa = −2ieiLiEadΘαdΘ
α̇
σaαα̇ . (4.87)

Finally, by recalling that in flat superspace:

Eα = dΘα, Ē α̇ = dΘ̄α̇ , (4.88)

we get, for the first line of (4.86),

eidB2,i(1) = +2ieiLiEadΘαdΘ̄α̇σaαα̇ , (4.89)

which cancels (4.87).
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Therefore, at this point, dF (2) is given by

dF (2) = eidLiEae++E++a − eiEbEaEα(σab)α
βDβL

Λ − eiEbEaĒ α̇(σ̄ab)
β̇
α̇D̄β̇L

Λ . (4.90)

By using the properties of the σ–matrices reported in Appendix B, one can show that:

ηabδα
β + 2σabα

β = −
(
σbσ̄a

)
α
β ,

ηabδα
β − 2σabα

β = −
(
σaσ̄b

)
α
β ,

ηabδ
β̇
α̇ − 2σ̄ab

β̇
α̇ = −

(
σ̄aσb

)β̇
α̇ ,

ηabδ
β̇
α̇ + 2σ̄ab

β̇
α̇ = −

(
σ̄bσa

)β̇
α̇ .

(4.91)

Furthermore, we recall that:

dLi = EADALi = EaDaLi + EαDαLi + Ēα̇D̄α̇Li . (4.92)

Let us now expand the three terms in (4.90):

eidLiEae++E++a = ei(EaDaLi + EαDαLi + Ēα̇D̄α̇Li)e
−−e++E++aEa−− =

= ei(EαDαLi + Ēα̇D̄α̇Li)e
−−e++E++aEa−− =

= eie+qe−−e++E++aEa−−E
α
+qDαLi+

+ eie+qe−−e++E++aEa−−Ē
α̇
+qD̄α̇Li =

=
1

2
eie+qe−−e++

(
Ea++E

b
−− + Eb++E

a
−−

)
Eα+q

(
ηab
)
δα
βDβLi+

+
1

2
eie+qe−−e++

(
Ea++E

b
−− + Eb++E

a
−−

)
Ē α̇+q

(
ηab
)
δβ̇ α̇D̄β̇Li ,

EbEaEα = (eMeNEaNE
b
M )e+qEα+q =

= (e−−e++Ea++E
b
−− + e++e−−Ea−−E

b
++)e+qEα+q =

= e+qe−−e++
(
Ea++E

b
−− − E

b
++E

a
−−

)
Eα+q ,

EbEaĒ α̇ = (e−−e++Ea++E
b
−− + e++e−−Ea−−E

b
++)e+qĒ α̇+q =

= e+qe−−e++
(
Ea++E

b
−− − E

b
++E

a
++

)
Ē α̇+q .

(4.93)

The combination of (4.91) and (4.93) allows us to rewrite (4.90) as

dF (2) =− eie+qe−−e++Ea++E
b
−−E

α
+q

(
σaσ̄b

)
α
βDβLi+

− eie+qe−−e++Ea++E
b
−−Ē

α̇
+q

(
σ̄aσb

)β̇
α̇D̄β̇Li ,

(4.94)

and we need to prove that it vanishes. To do this, we need to use (4.70), (4.72) and

Eα+q = D+qΘ
α, Ē α̇+q = D+qΘ̄

α̇ . (4.95)

We then arrive at expressions very similar to those in (4.79) and (4.80), which vanish. Therefore, we
have just proved that dF (2) = 0 in the flat case when the superembedding condition is satisfied.

4.3.2 Superembedding approach for BPS axionic strings: curved case

Let us now extend the previous case to an EFT string propagating in curved target superspace.
In this case, we start from an expression for the 2-superform F (2) which is the same as before, but
with the flat supervielbeins replaced with curved ones Ea+q −→ E

a
+q:

F (2) = eiLiE
ae++E++a + eiB2,i + dA . (4.96)
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Furthermore, we need to consider the appropriate covariantization of the expression for dB2,i consid-
ered in the flat case. It is given by (4.16), i.e.

dB2,i = 2iEaEαĒα̇(σa)αα̇Li+

− EbEaEα(σab)α
βDβLi − EbEaĒα̇(σ̄ab)

β̇
α̇D̄β̇Li+

− 1

24
EcEbEaεabcd

(
(σ̄d)α̇α

[
Dα, D̄α̇

]
+ 8Gd

)
Li .

(4.97)

In analogy with the flat case, we now prove that dF (2) = 0 when the superembedding condition
E
a
+q = 0 is satisfied.

Let us start by noticing that the third line of (4.97) is zero also in the curved case, due to the
definition of pullback and the superembedding condition E

a
+q = 0, which give

Ea = e++E++a + e−−E−−a . (4.98)

Before considering the other two lines, let us focus on the first term of dF (2), i.e.

d(eiLiE
ae++E++a) = −d(eiLiE

a)e++E++a + eiLiE
ad(e++E++a) =

= eidLiE
ae++E++a − eiLidEae++E++a + eiLiE

ad(e++E++a) =

= eidLiE
ae++E++a − eiLidEae++E++a + eiLiE

ad(Ea − e−−E−−a) =

= eidLiE
ae++E++a − eiLidEae++E++a + eiLidE

aEa − eiLiEad(e−−E−−a) .

(4.99)

Before manipulating this expression, let us recall that, in order to reduce the number of component
fields of the target-space supervielbein EA = dZMEM

A and superconnection ΩA
B = dZMΩMA

B

to those contained in the 4d N = 1 supergravity multiplet, in Section 3.1 we have imposed the
supertorsion constraints (3.46), i.e.14

Tαβ̇
a = Tβ̇α

a = −2iσ
a

αβ̇
,

Tαβ
γ = 0, Tαβ

c = Tα̇β̇
c = 0 ,

Tαb
c = Taβ

c = 0 ,

Tab
c = 0 ,

(4.100)

In particular, we are interested in the form of T a, and from (4.100) we immediately see that it is

T a = −2iEαĒα̇σ
a
αα̇ . (4.101)

On the other hand, T a is given by

T a = DEa = dEa + EBΩB
a =⇒ dEa = T a − EBΩB

a , (4.102)

and therefore

eiLidE
aEa = −2iEαĒα̇Eaσaαα̇e

iLi − eiLiEBΩB
aEa . (4.103)

The first term cancels the first line of (4.97), therefore only the last term of this expression remains.

As far as the other term ∝ dEa in (4.99) is concerned, we get

−eiLidEae++E++a = 2iEαĒα̇e++E++aσ
a
αα̇e

iLi + eiLiE
BΩB

ae++E++a . (4.104)

14Here, α denotes either α or α̇.
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Therefore:

dF (2) = eidLiE
ae++E++a + 2iEαĒα̇e++E++aσ

a
αα̇e

iLi + eiLiE
BΩB

ae++E++a+

− eiLiEBΩB
aEa − eiLiEad(e−−E−−a)− ei

[
EbEaEα(σab)α

βDβLi +

+ EbEaĒα̇(σ̄ab)
β̇
α̇D̄β̇Li

]
=

= eidLiE
ae++E++a + 2iEαĒα̇e++E++aσ

a
αα̇e

iLi − eiLiEBΩB
ae−−E−−a+

− eiLiEad(e−−E−−a)− ei
[
EbEaEα(σab)α

βDβLi + EbEaĒα̇(σ̄ab)
β̇
α̇D̄β̇Li

]
.

(4.105)

Since the linear superfields Li do not carry indices which transform under local Lorentz transforma-
tions, we have that DALi = EA

M∂MLi, and

dLi = dzM∂MLi = dzM EM
AEA

N︸ ︷︷ ︸
δMN

∂NLi = EADALi =

= EaDaLi + EαDαLi + Ēα̇D̄α̇Li .
(4.106)

Moreover, since the non-vanishing pullback components of Ea are only E
a
−− and E

a
++ when the

superembedding condition is satisfied, we can rewrite the first term in (4.105) as

eidLiE
ae++E++a = ei(EαDαLi + Ēα̇D̄α̇Li)Eae++E++a . (4.107)

Apart from the substitution of flat quantities with curved ones, this term and the last two in (4.105) are
the same as the flat case, therefore, by following the same procedure as before, they can be rewritten
as

eidLiE
ae++E++a + ei

[
EbEaEα(σab)α

βDβLΛ + EbEaĒα̇(σ̄ab)
β̇
α̇D̄β̇L

Λ
]

=

= −eie+qe−−e++E
a
++E

b
−−E

α
+q

(
σaσ̄b

)
α
βDβLi − eie+qe−−e++E

a
++E

b
−−Ē

α̇
+q

(
σ̄aσb

)β̇
α̇D̄β̇Li .

(4.108)

Let us now consider the following term:

− eiLiEad(e−−E−−a) = −eiLiEaD(e−−E−−a) + eiLiE
aΩa

Ce−−E−−C . (4.109)

By considering Ta = DEa and (4.101), we can replace the e−−e+q term of D(e−−E−−a) (which, due
to the superembedding condition, is the only one contributing to the first term) with the e−−e+q term
of Ta, given by

2ie−−e+q
[
E
α
−−Ē

α̇
+q + E

α
+qĒ

α̇
−−

]
σaαα̇ , (4.110)

therefore

−eiLiEad(e−−E−−a) =− 2ieiLie
++E++ae

−−e+q
[
E
α
−−Ē

α̇
+q + E

α
+qĒ

α̇
−−

]
σaαα̇+

+ eiLiE
aΩa

Ce−−E−−C .
(4.111)

The final expression for dF (2) is

dF (2) =− eie+qe−−e++E
a
++E

b
−−E

α
+q

(
σaσ̄b

)
α
βDβLi+

− eie+qe−−e++E
a
++E

b
−−Ē

α̇
+q

(
σ̄aσb

)β̇
α̇D̄β̇Li + 2iEαĒα̇e++E++aσ

a
αα̇e

iLi+

− eiLiEBΩB
ae−−E−−a − 2ieiLie

++E++ae
−−e+q

[
E
α
−−Ē

α̇
+q + E

α
+qĒ

α̇
−−

]
σaαα̇+

+ eiLiE
aΩa

Ce−−E−−C .

(4.112)

The two terms containing superconnection components cancel each other, because of the fact that the
only non-vanishing components of ΩCB

a are those with B = b, therefore:

−eiLiEBΩB
ae−−E−−a + eiLiE

aΩa
Ce−−E−−C = −eiLiEbΩb

ae−−E−−a + eiLiE
aΩa

ce−−E−−c = 0 .

(4.113)
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The remaining terms are vanishing if we find an expression for E++a analogous to that of the flat case
and use the relation (4.72) of the σ-matrices. To this aim, let us write the superembedding condition
in the curved case, which reads

E
a
+q = D+qZ

ME
a
M = 0 . (4.114)

On the other hand, E
a
++ is given by

E
a
++ = D++Z

ME
a
M . (4.115)

If we take the covariant derivative D+r of (4.114) and sum the same expression with the exchange
r ↔ q, we obtain

D+r(D+qZ
ME

a
M ) +D+q(D+rZ

ME
a
M ) = 0 . (4.116)

At this point, we consider that

D+q(D+rZ
ME

a
M ) = D+qD+rZ

ME
a
M + (−)1+mD+rZ

MD+qE
a
M , (4.117)

and the anticommutation relation (4.33), finding that

δqrE
a
++ = i(−)1+m

[
D+rZ

MD+qE
a
M +D+qZ

MD+rE
a
M

]
, (4.118)

where m = 0 if M is a bosonic index, while m = 1 if M is a spinor index.
We now show that we can re-write (4.118) by considering the component T a of the torsion, in

particular its e+qe+r component

T a −→ −2ie+qe+rE
α
+qĒ

α̇
+rσ

a
αα̇ = −2ie+qe+rE+qσ

aĒ+r . (4.119)

To do this, we start from the definition of the torsion (4.102), namely

T a = dEa + EBΩB
a = dEa + EbΩb

a . (4.120)

The second term does not contribute to the e+qe+r component because of the superembedding
condition, therefore we only need to consider the first term, for which we have

dEa = dZMdZN∂NEM
a −→

(
e+qD+qZ

M
) (
e+rD+rEM

a
)

=

= (−)1+me+qe+rD+qZ
MD+rEM

a .
(4.121)

Thus, from (4.119) and (4.121) we obtain

D+qZ
MD+rEM

a = (−)m2iE+qσ
aĒ+r , (4.122)

which, if plugged into (4.118), gives

δqrE
a
++ = 2

[
E+rσ

aĒ+q + E+qσ
aĒ+r

]
. (4.123)

Therefore, we obtain that E
a
++ is given by

E
a
++ = 4E+1σ

aĒ+1 = 4E+2σ
aĒ+2 =

1

2

[
2E+qσ

aĒ+q + 2E+qσ
aĒ+q

]
= 2E+qσ

aĒ+q . (4.124)

At this point, if we recall (4.113), we see that all the remaining terms in (4.112) contain E++a, and
then, by plugging (4.124) into (4.112) and using the property (4.72) of the σ-matrices, we find that
all of them are vanishing. Therefore, we have proven that, when the superembedding condition is
satisfied, dF (2) = 0 also in the generic case.

To summarize, we have shown that we can use the superembedding formalism, described in Section
4.2.1 for the case of N = 1 superstrings, to write an action which is supersymmetric both on the
superworldsheet of the EFT string and the target superspace. Its expression is

S = S0 + ST = −i
∫

d2ξd2ηP+q
a E

a
+q +

∫
M2

F (2) , (4.125)

with F (2) given by (4.62), and where the first term of (4.125) imposes the superembedding condition
E
a
+q = 0, while the second term reproduces the Green-Schwarz action (4.61).
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4.4 Inclusion of the internal world-sheet sector of EFT strings

In Section 4.2, we have constructed the action for BPS axionic strings in the superembedding
formalism. However, this description only encodes the contribution arising from the universal sector
of the world-sheet theory, while we know, from explicit UV completions, that also an ‘internal’ sector
is present. In particular, in Section 2.5.2 we have said that such internal sector is assumed to be given
by nC chiral multiplets, nN U(1)N charged Fermi multiplets and nF U(1)N neutral Fermi multiplets.

Therefore, in this section we start from the result of Section 4.3.2 and include the internal degrees
of freedom of the EFT strings. In particular, we consider the inclusion in the theory of a U(1)N
neutral Fermi multiplet, by using the results for N = (0, 2) supergravity obtained in Section 3.3.

A general N = (0, 2) Fermi multiplet Λ− obeys the relation [28]

D+̄Λ− =
√

2E , (4.126)

with the superfield E satisfying D+̄E = 015. Typically, E = E(Φi) is a holomorphic function of some
N = (0, 2) chiral superfields Φi

16. However, since we want to consider an internal sector given by only
one Fermi multiplet, we set E = 0. Therefore, the r.h.s. of (4.126) is vanishing, while the l.h.s. is
given by

D+̄Λ− = e+̄
M
(
∂MΛ− − ΩMM−AΛA

)
. (4.127)

The expression of M−A can be read from (3.118). In particular

Mβ
α =

1

2
(γ3)β

α , (4.128)

with γ3 = diag(−1,+1). Thus, the only non-vanishing component of M−A is M−− = −1
2 , whence

D+̄Λ− = e+̄
M

(
∂MΛ− +

1

2
ΩMΛ−

)
!

= 0 . (4.129)

Let us define the component expansion of Λ− as

Λ− = λ− + θ+α+,− + θ+̄β+̄,− + θ+θ+̄γ++̄,− . (4.130)

By plugging this expansion in (4.129) and using the expressions of ΩM and e+̄
M given in (3.194) and

(3.196), we find that the component expansion of a Fermi multiplet Λ− is

Λ− = λ− + θ+G+ 2iθ+θ+̄(D++λ− + χ++
+G) , (4.131)

with

D++λ− =

(
D++ +

1

2
ω++

)
λ− , (4.132)

and D++ = e++
m∂m. Therefore, we see that the Fermi multiplet contains, among their components,

a left-moving fermion, λ−, and its supersymmetric partner, which is the complex scalar field G.
In general, to build supergravity Lagrangians within the superspace approach and write them in

terms of the fields contained in the supermultiplets of the theory, the computation of the Berezinian
(superdeterminant) of the supervielbein is needed. Therefore, let us start from its definition, which is

ẽ ≡ sdet eM
A = det

(
em

a − em+qe−1
+q

+ue+u
a
)

det
(
e+u

+q
)−1

. (4.133)

From (3.190), we see that e+u
+q = δ+u

+q, we have that e−1
+q

+u = δ+q
+u and det(e+u

+q) = 1.
Therefore, in our case, its expression is given by

ẽ = det
(
em

a − em+ue+u
a
)

=
1

2
εmnem

−−(en
++ − 2iθ+χn

+̄ − 2iθ+̄χn
+) . (4.134)

15Here, we are using the notation θ+̄ ≡ θ̄+, therefore D+̄ ≡ D̄+.
16We will give the definition of an N = (0, 2) chiral superfield and analyse its matter content later in this section.
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We are now ready to consider the simplest contribution of a Fermi multiplet to the N = (0, 2)
supergravity action, which is taken to be

SF =
1

4

∫
d2ξd2θ ẽ Λ̄−Λ− . (4.135)

By considering (4.134) and (4.131), we get∫
d2θ ẽ Λ̄−Λ− = e

[
−|G|2 + 2i(λ̄−D++λ− −D++λ̄−λ−)

]
, (4.136)

where e = det(em
a). We see that G has no kinetic term and then is a purely auxiliary field. By

plugging the equations of motion of G, we finally obtain

SF =
i

2

∫
d2ξ e

(
λ̄−D++λ− −D++λ̄−λ−

)
= i

∫
d2ξ e

(
λ̄−D++λ− −D++λ̄−λ−

)
. (4.137)

Let us consider the second term:

−eD++λ̄−λ− = −ee++
m∂mλ̄−λ− = −∂m(ee++

mλ̄−λ−) + ∂m(ee++
m)λ̄−λ− + eλ̄−D++λ− . (4.138)

In particular:

∂m(ee++
m) =

1

2
εpn∂m(ep

−−en
++e++

m) =
1

2
εpn∂m(ep

−−(en
aea

m − en−−e−−m)) =

=
1

2
εpn∂nep

−− =
1

4
εpn(∂nep

−− − ∂pen−−) .

(4.139)

On the other hand, from (3.191) we know that

∂nep
−− − ∂pen−− = ep

−−ωn − en−−ωp , (4.140)

and then

∂m(ee++
m) =

1

4
εpn(ep

−−ωn − en−−ωp) =
1

2
εpnep

−−en
aωa =

1

2
εpnep

−−en
++ω++ = eω++ . (4.141)

Therefore, the final expression of (4.135) is given by

SF = i

∫
d2ξ e λ̄−D++λ− . (4.142)

At this point, we consider the following action

S = S0 + ST + SF =

= −i
∫

d2ξd2ηP+q
a E

a
+q +

∫
M2

F (2) +
1

4

∫
d2ξd2θ ẽ Λ̄−Λ− ,

(4.143)

where F (2) is given by (4.96), i.e.

F (2) = eiLiE
ae++E++a + eiB2,i + dA . (4.144)

This action describes the theory of a 1
2 -BPS string, minimally coupled to the gauge two-forms B2,i

with charges ei, which, in addition to the fields parametrizing the string profile in the target super-
space, contains an internal sector given by a Fermi multiplet Λ−. The description is performed in
a supersymmetric way both on the superworldsheet and the target superspace. Therefore, (4.143)
provides a first example of supersymmetric world-sheet theory of an EFT string.

Finally, we report the expression of (4.143) in components:

S =

∫
d2ξεmn

[
e−−m en

++eiLiE
a
−−E++a + eiBmn,i +

i

2
em
−−en

++λ̄−D++λ−

]
. (4.145)
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which is obtained by integrating out the Lagrange multiplier P+q
a and using the superembedding

condition to write Ea as in (4.98).

In Appendix E, we compute the energy-momentum tensor associated to (4.145) and show that
the Virasoro constraint E

a
++E++a = 0, which arises from the component T++,++ of the energy-

momentum tensor, remains unchanged in the case of the inclusion in the theory of a Fermi multiplet.
This is important since, as seen in Section 4.2, the superembedding condition E

a
+q = 0 automatically

gives this constraint. Therefore, the superembedding condition is compatible with the equations of
motion in presence of a Fermi multiplet on the world-sheet of the string. The same holds if, instead
of considering only one Fermi multiplet, we consider a set of Fermi multiplets, {Λ−,i}, i = 1, . . . , nF ,
described by the following action:

S̃F =
1

4

∫
d2ξd2θ ẽM ijΛ̄−,iΛ−,j , (4.146)

where M ij are the components of a constant nF × nF matrix.

Conversely, the previous analysis is not anymore true if we try to include chiral multiplets. In
order to illustrate this point, we can focus on the simplest case in which only one (non-universal)
chiral multiplet is present.

An N = (0, 2) chiral multiplet satisfies

D+̄Φ = e+̄
m∂mΦ + e+̄

+∂+Φ + e+̄
+̄∂+̄Φ = 0 . (4.147)

Its θ expansion can be obtained by using the results at the end of Section 3.3.5, and has the following
form:

Φ = φ+ θ+ψ+ + 2iθ+θ+̄(D++φ+ χ++
+ψ+) . (4.148)

Therefore, the chiral multiplet is made up of a complex scalar field φ and a right-moving fermion,
ψ+

17.

Let us now consider the following action for the chiral multiplet:

Sch = i

∫
d2ξd2θ ẽΦ̄D−−Φ . (4.149)

If we focus on the the bosonic components of Φ, i.e. we set ψ+ = 0 in (4.148), and we compute the
component expansion of (4.149), we simply get

Sch = −
∫

d2ξ e|Daφ|2 , (4.150)

where Daφ = ea
m∂mφ.

If we follow the procedure outlined in Appendix E, one finds that, in flat indices, the energy-
momentum tensor associated to (4.150) is given by

Tab = 2ηab(D++φ̄D−−φ+D−−φ̄D++φ) + δ(b
−−(Da)φ̄D−−φ+D−−φ̄Da)φ)+

+ δ(b
++(D++φ̄Da)φ+Da)φ̄D++φ) .

(4.151)

Thus, if we now add (4.150) to (4.145) and consider the full energy-momentum tensor, it turns out
that E

a
++E++a 6= 0, i.e. this is not anymore vanishing, due to the presence of the chiral multiplet,

which gives a non-vanishing contribution to T++,++, as can be seen from (4.151). This represents an
obstruction in the inclusion of the chiral multiplets in the world-sheet theory, since the superembed-
ding condition E

a
+q = 0 leads to E

a
++E++a = 0.

17Let us recall that in Section 4.1 we have seen that, in a local frame in which the string is locally stretched along the
(x0, x3)-directions, the physical fields describing the string profile in the target superspace are the transversal embedding
coordinates x1(ξ) and x2(ξ), which can be recasted as the real and imaginary part of a complex scalar field u = x1 + ix2,
and the right-moving component of θµ(ξ), i.e. ρ+ ≡ θ+. Therefore, the universal degrees of freedom of the string can be
regarded as the components of an N = (0, 2) chiral superfield U , in agreement with what we said in Section 2.5.2.
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Together with Section 4.3, this section contains the main results of the thesis work. In particular,
we have included an N = (0, 2) Fermi multiplet in the world-sheet theory of an EFT string, and
its action is given by (4.143), or, in components, by (4.145). Then, we have moved to the case of
an N = (0, 2) chiral multiplet, and we have seen that its presence leads to a modification of the
Virasoro constraint E

a
++E++a = 0, which, on the other hand, is automatically deduced from the

superembedding condition E
a
+q = 0. This means that, in order for the superembedding approach

to be applied also in presence of chiral multiplets, a proper generalization of the superembedding
condition needs to be found. It would be interesting to elaborate on this aspect, but this is beyond
the scope of the present work.
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Conclusions

In this work we have considered particular perturbative regimes of 4-dimensional N = 1 EFTs aris-
ing from string/M-theory compactifications. An example of such effective theories has been discussed
in Section 2.3, when we have considered M-theory compactifications on G2 manifolds. Such theories
contain a set of chiral superfields, denoted by T i, whose lowest components are T i

∣∣ = ti = ai + isi,
with ai and si real scalar fields. Furthermore, they are characterized by an invariance under the global
transformations ai → ai+ ci, where ci are arbitrary constants, thus the fields ai behave as axions, and
their supersymmetric partners si are called saxions.

In this context, we have considered a class of solutions, associated with fundamental axionic strings,
around which the axions undergo a monodromy transformation ai → ai + ei, where ei are the string
charges under some gauge 2-forms B2,i. Furthermore, these strings induce a backreaction flow of the
saxionic fields, which drives them towards infinite distance limits in the field space.

In presence of the axionic shift symmetry, the theory of the axionic multiplets admit a dual
version, where the axions ai are replaced by the gauge 2-forms B2,i under which the axionic strings
are electrically charged, and the saxions si are traded for the dual saxions `i.

The axionic shift symmetry discussed so far is actually valid only at the perturbative level, being
broken by non-perturbative instanton contributions to a discrete symmetry. This is in agreement with
the No Global Symmetry Conjecture [4, 5], which claims that a theory consistent with quantum gravity
can have no exact global symmetries. However, these non-perturbative corrections get exponentially
suppressed along the saxionic flows if we consider a particular subclass of 1

2 -BPS axionic strings, given
by the so-called EFT strings. Therefore, by definition, the EFT strings drive the scalar fields towards
infinite distance field-space regions, where we can neglect the non-perturbative corrections breaking
the axionic shift symmetries.

Associated to the EFT strings, in [6–8] two Swampland Conjectures are proposed, as discussed in
Section 2.5.1, relating infinite distance field-space limits with EFT string flows and establishing a rela-
tion between the EFT string tension T and the scale m∗ of the leading infinite tower of asymptotically
massless states, predicted by the Swampland Distance Conjecture [25], which causes the EFT break-
down when considering infinite distance limits in field space. Furthermore, in Section 2.5.2 we have
shown how theories with a standard coupling to the axionic sector are characterized by an anomaly
inflow from the 4-dimensional bulk to the string world-sheet, which is cancelled by the 2-dimensional
anomalies of the world-sheet theory itself [11]. The interesting result is that this leads to constraints
on the 4-dimensional bulk theory, for example providing an upper bound on the rank of the EFT
gauge sector detected by the EFT string, which may be relevant in the building of phenomenological
models. These bounds are derived considering that, from explicit models arising from string/M-theory
compactifications, we know that EFT strings support an additional ‘internal’ sector, in addition to the
‘universal’ one, which arises from deformations of the internal configuration of the compactification
space. However, the analysis of [11] does not take into account the full theory describing the interac-
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tions of this internal sector with the bulk fields. Therefore, having a way to study in a controlled way
the full theory could be interesting to find possible new constraints on the N = 1 4-dimensional EFT.

In this context, the present thesis aims to describe the world-sheet theory of EFT strings in a
supersymmetric way. Indeed, the Green-Schwarz (GS) formulation of the EFT strings [9, 10], discussed
in Section 4.1, describes the universal sector of the world-sheet theory in a supersymmetric way in the
target superspace. However, this formulation does not possess a manifest supersymmetry on the string
world-sheet and, more importantly, is not suitable to include the internal sector of the world-sheet
theory in a supersymmetrically controlled way.

In this respect, we have proposed to use an alternative formulation, namely the superembedding
formulation (for a review see [12]). In this approach, the bosonic string world-sheet is extended to an
N = (0, 2) superworldsheet, embedded into the target superspace, and the fermionic κ-symmetry of
the GS formulation is replaced by a local N = (0, 2) local supersymmetry. To describe the embedding
of the superworldsheet in the target superspace, we need to specify the geometrical properties of the
former. To this aim, we have dedicated Section 3.3 to analyse in full detail N = (0, 2) supergravity,
finding the component expansion of the supervielbein eM

A and the superconnection ΩM .
Then, after having introduced the superembedding approach in Section 4.2 by considering the

example of N = 1 superstrings, in Section 4.3 we have used this formalism, until now applied to
superbranes [12], to reformulate the theory of the universal sector of the BPS axionic strings.

Finally, in Section 4.4 we have combined the results of Section 3.3 and Section 4.3 to write a first
example of manifestly supersymmetric action describing the world-sheet theory of an EFT string,
with an internal sector given by an N = (0, 2) Fermi multiplet. Furthermore, we have seen how the
potential inclusion of an N = (0, 2) chiral multiplet leads to an inconsistency, modifying the Virasoro
constraints in a way which is incompatible with the superembedding condition. Together, Section 4.3
and Section 4.4 contain the main results of the thesis work.

Based on our results, one may further investigate the world-sheet theory of an EFT string, by
considering a more intricate internal sector. For example, one could find a proper generalization of
the superembedding condition which allows for the inclusion of a set of N = (0, 2) chiral superfields to
the internal sector. Furthermore, according to the general formulation with three-form potentials of [9],
the two-form potentials B2,i, under which the axionic strings are electrically charged, could be gauged
under some two-form gauge transformations. This effect makes some axionic strings ‘anomalous’,
forcing them to be the boundary of membranes [9, 49, 50]. It would be interesting to extend the
results of the thesis work to this kind of strings.
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Appendix A

Conventions on differential forms

A.1 Differential forms in ordinary space-time

In generic D dimensions, we define the totally antisymmetric Levi-Civita symbol such that

ε01...D = −ε01...D = 1 . (A.1)

In the differential basis {dxµ}, with µ = 0, . . . , D − 1, a generic bosonic p-form ωp has the following
expansion

ωp =
1

p!
ωµ1...µpdx

µ1 ∧ . . . ∧ dxµp . (A.2)

The exterior derivative d acts on ωp as

dωp =
1

p!
∂[σωµ1...µp]dx

σ ∧ dxµ1 ∧ . . . ∧ dxµp , (A.3)

where the square brackets (brackets) denote antisymmetrization (symmetrization) with unit weight,
e.g.

A(αBβ)γ :=
1

2
(AαBβγ +AβBαγ) ,

A[αBβ]γ :=
1

2
(AαBβγ −AβBαγ) .

(A.4)

A p-form is said to be closed if

dωp = 0 , (A.5)

and exact if it can be written as

ωp = dωp−1 , (A.6)

with ωp−1 a globally defined (p− 1)-form. Although an exact form is always closed, the opposite may
not be true, in general. The space of closed p-forms on a manifold M is denoted by Cp(M), whereas
the space of exact p-forms on M by Zp(M). We can now define the pth de Rham cohomology group
Hp(M) as the quotient space

Hp(M) = Cp(M)/Zp(M) . (A.7)

In words, Hp(M) is the space of closed forms in which two forms which differ by an exact form are
considered to be equivalent. The dimension of Hp(M) is called the Betti number and is denoted by
bp(M).

In a similar way, but using the boundary operator δ instead of the exterior derivative d, we can
define the homology groups. The boundary operator δ acts on submanifolds of M . If N is a submanifold
of M , then δN is its boundary. Arbitrary linear combinations of submanifolds of dimension p are called
p-chains and denoted by zp. A chain is closed if it has no boundary, i.e. δzp = 0, while is exact if it is
a boundary. A closed chain zp is also called a cycle. The simplicial homology group Hp(M) is made
of equivalence classes of p-cycles.
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The Hodge-dual of a p-form ωp is the (D − p)-form defined as

∗ ω = − e

(D − p)!p!
εµ1...µDg

µ1ν1 . . . gµpνpων1...νpdx
µp+1 ∧ . . . ∧ dxµD , (A.8)

where gµiνi are the components of the inverse metric tensor. The components ωµ1...µp are defined by
raising the indices of the components of ωp with the inverse gµν of the metric as usual.

In any dimension D, we get the following useful identity

ω ∧ ∗ω = − e

p!(D − p)!
ων1...νpεµ1...µDω

µ1...µpdxν1 ∧ . . . ∧ dxνp ∧ dxµp+1 ∧ . . . ∧ dxµD

=
e

p!
ωµ1...µpωµ1...µpdx

0 ∧ . . . ∧ dxD ≡ e ωyω ,
(A.9)

and we have
∗ (∗ωp) = −(−)p(D−p)ωp . (A.10)

We define the Laplace operator as

∆p ≡ d†d + dd† = (d + d†)2 , (A.11)

where the operator d† acts as follows when applied to a p-form ωp

d†ωp = (−1)Dp+D+1 ∗ dωp . (A.12)

A p-form is called harmonic if and only if

∆pωp = 0 . (A.13)

One can show that harmonic p-forms are in one-to-one correspondence with the elements of the group
Hp(M).

A.2 Differential forms in D = 4 superspace

Let us denote the superspace coordinates by zM = (xm, θµ, θ̄µ̇). These coordinates obey the
following multiplication law:

zMzN = (−)nmzNzM , (A.14)

where n is a function of N which takes the values 0 or 1, depending on whether N is a vector or spinor
indices, respectively, and the same holds for m.

The exterior product is defined as

dzM ∧ dzN = −(−)nmdzN ∧ dzM , (A.15)

which reduces to the definition in ordinary space-time in the case N = n, M = m. With this definition,
a p-form has the following extension in superspace:

Ωp = dzM1 ∧ · · · ∧ dzMpWMp...M1(z) , (A.16)

where the indices are labeled in such a way that there is always an even number of indices between
those being summed. At this point, we introduce the exterior derivative, which maps a p-form into a
(p+ 1)-form, giving

dΩp = dzM1 ∧ · · · ∧ dzMp ∧ dzN
∂

∂zN
WMp...M1(z) , (A.17)

and have the following properties:

d(Ω + Σ) = dΩ + dΣ ,

d(ΩΣ) = ΩdΣ + (−)qdΩΣ ,

dd = 0 ,

(A.18)

where Σ is a q-form. In this work, we usually drop the symbol ∧ for exterior multiplication, since this
does not lead to ambiguities.
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Appendix B

Conventions in spinor algebra and
useful properties

Throughout the thesis work, we use the ’mostly plus metric’ ηmn = diag(−1, 1, 1, 1). The σ-
matrices σm are

σ0 =

(
−1 0
0 −1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (B.1)

They have the index structure σmαα̇. Once we introduce the antysymmetric tensors εαβ = εα̇β̇ and
εαβ = εα̇β̇ as

εαβ = εα̇β̇ =

(
0 1
−1 0

)
, εαβ = εα̇β̇ =

(
0 −1
1 0

)
, (B.2)

we can raise the indices of the σ-matrices in the following way:

σ̄mα̇α = εα̇β̇εαβσm
ββ̇
. (B.3)

The σ-matrices satisfy the following relations:

(σaσ̄b + σbσ̄a)α
β = −2ηabδα

β ,

(σ̄aσb + σ̄bσa)
α̇
β̇ = −2ηabδ

α̇
β̇ .

(B.4)

Furthermore, we introduce the matrices σab and σ̄ab, given by:

σabα
β =

1

4

(
σaαα̇σ̄

α̇β

b − σbαα̇σ̄
α̇β
a

)
,

σ̄ab
α̇
β̇ =

1

4

(
σ̄α̇αa σbαβ̇ − σ̄

α̇α
b σaαβ̇

)
.

(B.5)

Finally, recalling that
{γa, γb} = −2ηab1 , (B.6)

and looking at the relations in (B.4), we see that we can choose a representation for the 4-dimensional
Dirac γ-matrices given by

γa =

(
0 σa

σ̄a 0

)
, σa = (−1, σi), σ̄0 = σ0 = −1, σ̄i = −σi . (B.7)
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Appendix C

Derivation of (3.66)

In this Appendix, we want to prove the result for the bosonic components of the Lagrangian (3.65)
reported in (3.66).

To this aim, we start by writing the expansion in components of E , R, Ω(Φ, Φ̄) and W (Φ), whose
bosonic part is given by the following expressions

2E = e(1−ΘΘM∗) ,

R = −1

6
M + ΘΘ

[
1

12
R − 1

9
MM∗ − 1

18
baba +

i

6
ea
mDmba

]
,

Ω(Φ, Φ̄) = Ω(φ, φ̄) + ΘΘΩiF
i + Θ̄Θ̄Ωı̄F

ı̄ + ΘΘΘ̄Θ̄ΩīF
iF̄ ̄ ,

W (Φ) = W (φ) + ΘΘWiF
i ,

(C.1)

where we have denoted the partial derivatives with respect to φi or φ̄̄ by Ωi and Ω̄, respectively.
Henceforth, Ω ≡ Ω(φ, φ̄) and W ≡W (φ).

We now compute the ΘΘ-term of the two pieces in (3.65). Let us start from the second term, i.e.

2EW (Φ) = e(1−ΘΘM∗)(W + ΘΘWiF
i) ' ΘΘ(−eM∗W + eWiF

i) , (C.2)

where, from now on, ’'’ is used to indicate when we consider only the ΘΘ-term.

As far as the first term is considered, we start by noticing that
(
D̄D̄ − 8R

)
Ω(Φ, Φ̄) is chiral since(

D̄D̄ − 8R
)

is the covariant generalization of the chiral projection operator D̄D̄, therefore it can be
expanded as

(
D̄D̄ − 8R

)
Ω(Φ, Φ̄) =

(
D̄D̄ − 8R

)
Ω(Φ, Φ̄)

∣∣+ ΘαDα
(
D̄D̄ − 8R

)
Ω(Φ, Φ̄)

∣∣+
− 1

4
ΘΘDαDα

(
D̄D̄ − 8R

)
Ω(Φ, Φ̄)

∣∣ , (C.3)

and then

2E
[
−1

8

(
D̄D̄ − 8R

)
Ω(Φ, Φ̄)

]
' ΘΘ

[
1

32
eDαDα

(
D̄D̄ − 8R

)
Ω(Φ, Φ̄)

∣∣+
1

8
eM∗

(
D̄D̄ − 8R

)
Ω(Φ, Φ̄)

∣∣] .
(C.4)

Therefore, we start computing the terms we need, i.e.

D̄D̄Ω(Φ, Φ̄)
∣∣ ,

−8RΩ(Φ, Φ̄)
∣∣ ,

DαDαD̄D̄Ω(Φ, Φ̄)
∣∣ ,

−8DαDα
[
RΩ(Φ, Φ̄)

]∣∣ .
(C.5)
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We have:

D̄D̄Ω(Φ, Φ̄)
∣∣ = D̄α̇

(
∂Ω

∂Φ̄ı̄
D̄α̇Φ̄ı̄

)∣∣∣∣ =

(
∂2Ω

∂Φ̄̄∂Φ̄ı̄
D̄α̇Φ̄̄D̄α̇Φ̄ı̄ +

∂Ω

∂Φ̄ı̄
D̄α̇D̄α̇Φ̄ı̄

)∣∣∣∣ =
∂Ω

∂Φ̄ı̄
D̄α̇D̄α̇Φ̄ı̄

∣∣∣∣ ,
−8RΩ(Φ, Φ̄)

∣∣ = −8

(
1

6
M

)
Ω =

4

3
MΩ ,

−8DαDα(RΩ)| = −8 (DαDαRΩ−DαRDαΩ +DαRDαΩ +RDαDαΩ)| = −8 (DαDαRΩ +RDαDαΩ)| ,

DαDαD̄D̄Ω(Φ, Φ̄)
∣∣ = DαDα

(
∂2Ω

∂Φ̄̄∂Φ̄ı̄
D̄α̇Φ̄̄D̄α̇Φ̄ı̄ +

∂Ω

∂Φ̄ı̄
D̄α̇D̄α̇Φ̄ı̄

)∣∣∣∣ =

= Dα
(

Ωk̄̄ıDαΦkD̄α̇Φ̄̄D̄α̇Φ̄ı̄ + Ω̄̄ıDαD̄α̇Φ̄̄D̄α̇Φ̄ı̄ − Ω̄̄ıD̄α̇Φ̄̄DαD̄α̇Φ̄ı̄+

+ Ωjı̄DαΦjD̄2Φ̄ı̄ + Ωı̄DαD̄2Φ̄ı̄ (a)
=

(a)
=
(
Ω̄̄ıDαD̄α̇Φ̄̄DαD̄α̇Φ̄ı̄ − Ω̄̄ıDαD̄α̇Φ̄̄DαD̄α̇Φ̄ı̄ + Ωjı̄D2ΦjD̄2Φ̄ı̄ + Ωı̄D2D̄2Φ̄ı̄

)∣∣ (b)
=

(b)
=
(
+2Ω̄̄ıDαD̄α̇Φ̄̄DαD̄α̇Φ̄ı̄ + Ωjı̄D2ΦjD̄2Φ̄ı̄ + Ωı̄D2D̄2Φ̄ı̄

)∣∣ ,
(C.6)

where in (a) we have only reported the non-vanishing terms, while in (b) we have used the fact that

Dα = εαβDβ, Dα = εαγDγ , εαβεαγ = −δβγ . (C.7)

We now report the lowest components needed to compute the above four terms:

D̄2Φ̄ı̄
∣∣ = −4F̄ ı̄ ,

D2Φi
∣∣ = −4F i ,

DαDαR| = −
1

3
R +

4

9
MM∗ +

2

9
baba −

2

3
iea

mDmba ,

DαDαΩ| =
(
ΩjiDαΦjDαΦi + ΩiDαDαΦi

)∣∣ = ΩiD2Φi
∣∣ = −4ΩiF

i ,

DαD̄α̇Φ̄̄
∣∣ = −2iσaαα̇ea

m∂mĀ
̄ =⇒ DαD̄α̇Φ̄̄

∣∣ = −2iσ̄aα̇αea
m∂mĀ

̄ ,

D2D̄2Φ̄ı̄
∣∣ = 16ea

mDmean∂nĀı̄ +
32

3
ibaea

m∂mĀ
ı̄ +

32

3
M∗F̄ ı̄ .

(C.8)

We now have all the ingredients to write down the component expansion for the Lagrangian (3.65):

L = L1 + L2 + L3 + h.c. , (C.9)

with

L1 =
1

32
eDαDα

(
D̄D̄ − 8R

)
Ω(Φ, Φ̄)

∣∣ =

=
1

32
e
[
2Ω̄̄ı(−2iσaαα̇ea

m∂mĀ
̄)(−2iσ̄bα̇αeb

n∂nĀ
̄) + Ωjı̄(−4F j)(−4F̄ ı̄)+

+Ωı̄

(
16ea

mDmean∂nĀı̄ +
32

3
ibaea

m∂mĀ
ı̄ +

32

3
M∗F̄ ı̄

)
+

− 8

(
−1

3
ΩR +

4

9
ΩMM∗ +

2

9
Ωbaba −

2

3
iΩea

mDmba −
1

6
M(−4ΩiF

i)

)
=

= −1

4
eΩ̄̄ıσ

a
αα̇σ̄

bα̇αea
meb

n∂mĀ
̄∂nĀ

̄ +
1

2
eΩjı̄F

jF̄ ı̄ +
1

2
eΩı̄ea

mDmean∂nĀı̄+

+
1

3
iebaea

mΩı̄∂mĀ
ı̄ +

1

3
eM∗Ωı̄F̄

ı̄ +
1

12
eΩR − 1

9
eΩMM∗ − 1

18
eΩbaba +

1

6
ieΩea

mDmba −
1

6
eMΩiF

i =

=
1

2
eΩ̄̄ı∂mĀ

̄∂mĀ̄ +
1

2
eΩjı̄F

jF̄ ı̄ +
1

2
eΩı̄ea

mDmean∂nĀı̄+

+
1

3
iebaea

mΩı̄∂mĀ
ı̄ +

1

3
eM∗Ωı̄F̄

ı̄ +
1

12
eΩR − 1

9
eΩMM∗ − 1

18
eΩbaba +

1

6
ieΩea

mDmba −
1

6
eMΩiF

i ,

(C.10)
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where we have used the following relations

σaαα̇σ̄
bα̇α = −2ηab, ea

mean = gmn . (C.11)

On the other hand:

L2 =
1

8
eM∗

(
D̄D̄ − 8R

)
Ω(Φ, Φ̄)

∣∣ =
1

8
eM∗

(
−4Ωı̄F̄

ı̄ +
4

3
MΩ

)
= −1

2
eΩı̄M

∗F̄ ı̄ +
1

6
eΩM∗M , (C.12)

and

L3 = −eM∗W + eWiF
i . (C.13)

Therefore, by adding the h.c., we finally obtain

L =
1

6
eΩR +

1

2
eΩ̄̄ı∂mĀ

̄∂mĀı̄ +
1

2
eΩji∂mA

j∂mAi + eΩjı̄F
jF̄ ı̄+

+
1

2
eΩı̄ea

mDmean∂nĀı̄ +
1

2
eΩiea

mDmean∂nAi +
1

3
iebaea

m(Ωı̄∂mĀ
ı̄ − Ωi∂mA

i)+

+
1

3
eM∗Ωı̄F̄

ı̄ +
1

3
eMΩiF

i − 2

9
eΩMM∗ − 1

9
eΩbaba −

1

6
eM∗Ωı̄F̄

ı̄ − 1

6
eMΩiF

i+

− 1

2
eΩı̄M

∗F̄ ı̄ − 1

2
eΩiMF i +

1

3
eΩM∗M − eM∗W − eMW̄ + eWiF

i + eW̄ı̄F̄
ı̄ =

=
1

6
eΩR +

1

2
eΩ̄̄ı∂mĀ

̄∂mĀı̄ +
1

2
eΩji∂mA

j∂mAi+

+
1

2
eΩı̄ea

mDmean∂nĀı̄ +
1

2
eΩiea

mDmean∂nAi+

+ eΩīF
iF̄ ̄ +

1

9
eΩMM∗ − 1

3
eM∗Ωı̄F̄

ı̄ − 1

3
eMΩiF

i+

− 1

9
eΩbaba −

i

3
e(Ωi∂mA

i − Ωı̄∂mĀ
ı̄)baea

m − eM∗W − eMW̄ + eWiF
i + eW̄ı̄F̄

ı̄ .

(C.14)

We now show that, up to a total derivative

1

2
eΩji∂mA

j∂mAi +
1

2
eΩiea

mDmean∂nAi ' −
1

2
egmnΩī∂mA

i∂nĀ
̄ . (C.15)

We have that:

eΩiea
mDm

(
ean∂nA

i
)

= eΩiea
meanDm∂nAi = eΩig

mn
(
∂m∂nA

i − Γmn
p∂pA

i
)
, (C.16)

where

Γmn
p =

1

2
gp` (∂mg`n + ∂ng`m − ∂`gmn) , (C.17)

and we have used Dmean = 0. If we consider the first term in of the r.h.s., we find that:

eΩig
mn∂m∂nA

i = ∂m
(
eΩig

mn∂nA
i
)
− ∂m(egmn)Ωi∂nA

i − egmnΩij∂mA
j∂nA

i − egmnΩī∂mĀ
̄∂nA

i '
' −∂m(egmn)Ωi∂nA

i − egmnΩij∂mA
j∂nA

i − egmnΩī∂mĀ
̄∂nA

i ,

(C.18)

and then the second term cancels the first term of (C.15). At this point, let us consider that:

gmnΓmn
p = gp`∂mg`m −

1

2
gmn∂pgmn , (C.19)

and that

∂me = ∂m
√
−g =

1

2

√
−gg`p∂mg`p . (C.20)
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Therefore:

− 1

2
∂m(egmn)Ωi∂nA

i − 1

2
eΩig

mnΓmn
p∂pA

i =

= −1

2
∂meg

mnΩi∂nA
i − 1

2
eΩi∂mg

mn∂nA
i − 1

2
eΩig

p`∂mg`m∂pA
i +

1

4
eΩig

mn∂pgmn∂pA
i =

= −1

4

√
−gg`p∂mg`pgmnΩi∂nA

i − 1

2
eΩi∂mg

mn∂nA
i +

1

2
eΩi∂

mgp`g`m∂pA
i +

1

4
eΩig

mn∂pgmn∂pA
i =

= −1

4
eΩig

`p∂ng`p∂nA
i − 1

2
eΩi∂mg

mn∂nA
i +

1

2
eΩi∂`g

`p∂pA
i +

1

4
eΩig

mn∂pgmn∂pA
i =

= −1

4
eΩig

mn∂pgmn∂pA
i − 1

2
eΩi∂mg

mn∂nA
i +

1

2
eΩi∂mg

mn∂nA
i +

1

4
eΩig

mn∂pgmn∂pA
i = 0 .

(C.21)

An analogous procedure can be done for the h.c. of (C.15). Therefore, the final expression of (C.14)
is

L =
1

6
eΩR − egmnΩī∂mA

i∂nĀ
̄ + eΩīF

iF̄ ̄ +
1

9
eΩMM∗ − 1

3
eM∗Ωı̄F̄

ı̄ − 1

3
eMΩiF

i+

− 1

9
eΩbaba −

i

3
e(Ωi∂mA

i − Ωı̄∂mĀ
ı̄)baea

m − eM∗W − eMW̄ + eWiF
i + eW̄ı̄F̄

ı̄ .

(C.22)
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Appendix D

Super-Weyl invariant Lagrangians

Here we give the procedure to construct super-Weyl invariant Lagrangians in supergravity [35–37],
by focusing on the theory with chiral multiplets considered in Section 3.1.

This approach allows us to write manifestly supersymmetric invariant actions, and the components
of super-Weyl invariant Lagrangians, up to some proper covariantizations, have a striking resemblance
to those of globally supersymmetric Lagrangians.

Let us consider a set of N dimensionless chiral multiplets Φm, whose bosonic components are

Φm = {φm, FmΦ } , with m = 1, . . . , n , (D.1)

where φm are the lowest component complex scalar fields and FmΦ are the highest component auxiliary
complex scalar fields. At the core of the super-Weyl invariant formalism is the introduction of an
unphysical, chiral compensator U , which we choose to transform as

U → e−6ΥU (D.2)

under super-Weyl transformations. We recall that these act on the super-vielbeins as [35]

EaM → eΥ+ῩEaM , EαM → e2Ῡ−Υ

(
EαM −

i

4
EaMσ

αα̇
a D̄α̇Ῡ

)
. (D.3)

where (a, α) are flat superspace indices, M = (m,µ) are curved indices and Υ is an arbitrary chiral
superfield parameterizing the super-Weyl transformation. Instead, the dimensionless superfields Φm

are invariant under super-Weyl tranformations. Combining Φm and the compensator U , we introduce
new chiral superfields Za transforming as U under super-Weyl transformations:

Za = {za, F aZ} with a = 1, . . . , n+ 1 , (D.4)

where za and F aZ are understood to be functions of the components of Φm. In order to isolate the
physical fields, we assume that we can single out the compensator U as

Za = Uga(Φ) , (D.5)

where ga are functions of the physical fields only and are inert under super-Weyl transformations.
The most general supergravity Lagrangian that we can build out of the Za multiplets is

L =

∫
d4θ EK(Z, Z̄) +

(∫
d2Θ 2E W(Z) + c.c.

)
, (D.6)

where K(Z, Z̄) is the kinetic potential andW(Z) the superpotential. Additionally, however, we require
that they satisfy the following homogeneity conditions

K(λZ, λ̄Z̄) = |λ|
2
3K(Z, Z̄) , W(λZ) = λW(Z) , (D.7)

with λ an arbitrary chiral superfield.
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In order to recover the ordinary Kähler potential K(Φ, Φ̄) and superpotential W (Φ), we isolate
the compensator U as

K(Z, Z̄) = −3|U |
2
3 e−

1
3
K(Φ,Φ̄) , W(Z) = U W (Φ) , (D.8)

where

K(Φ, Φ̄) ≡ −3 log

[
−1

3
K(g(Φ), ḡ(Φ̄))

]
, W (Φ) ≡ W(g(Φ)) . (D.9)

Such homogeneity properties of K and W make the Lagrangian (D.6) manifestly invariant under
super-Weyl transformations. In particular, (D.3) implies that

E → e2Υ+2ῩE , d2Θ 2E → e6Υd2Θ 2E . (D.10)

Indeed, the Lagrangian (D.7) is also independently invariant under Kähler transformations. This is
due to the fact that the split (D.5) is not unique, since we may perform the following redefinition

U → eh(Φ)U , ga(Φ)→ e−h(Φ)ga(Φ) . (D.11)

with h(Φ) an arbitrary holomorphic function of Φi. By using the definitions (D.9) and the homogeneity
conditions (D.7), it can be easily seen that this redefinition exactly corresponds to an ordinary Kähler
transformation

K(Φ, Φ̄)→ K(Φ, Φ̄) + h(Φ) + h̄(Φ̄) , W (Φ)→ e−h(Φ)W (Φ) . (D.12)

The bosonic components of the Lagrangian (D.6) acquire a very simple form

e−1Lbos = −1

6
KR−Kab̄Dµz

aD̄µz̄b +Kab̄faf̄ b + (Waf
a + c.c.) . (D.13)

Here we have redefined
fa ≡ M̄za − F aZ , (D.14)

and introduced the U(1)-covariant derivatives

Dµz
a = ∂µz

a + iAµz
a , with Aµ =

3i

2K
(Ka∂µzb −Kb̄∂µz̄b) . (D.15)

The auxiliary fields fa may be easily integrated out from (D.13), leading to the Lagrangian

e−1Lbos = −1

6
KR−Kab̄Dµz

aD̄µz̄b −Kab̄WaW̄b̄ . (D.16)

In order to pass to the Einstein frame, we isolate the compensator u ≡ U |θ=θ̄=0 and split the index
a = (0,m), with 0 associated to the compensator u and m to the physical fields φm, i.e. we set
zm = (u, uφm). At this point, we gauge-fix the super-Weyl invariance by setting

u = M2
P e

1
2
K(φ,φ̄) ⇒ K = −3M2

P . (D.17)

Then, the kinetic matrix Kab̄ splits as

Kab̄ = e−K
(
−1

3
Kn̄
3

Km
3 Kmn̄ − 1

3KmKn̄

)
. (D.18)

As far as the last term of (D.16) is concerned, the inverse of Kb̄a is needed, and is given by

Kb̄a = eK
(
−3 +K ījKjKī K īmKī

K n̄jKj K n̄m

)
. (D.19)

Therefore, we finally arrive at1

e−1Lbos =
1

2
R−Kmn̄∂µφ

m∂µφ̄n̄ − eK
(
K n̄mDmWD̄n̄W̄ − 3|W |2

)
, (D.20)

with a canonically normalized Einstein-Hilbert term and where the last term is nothing but the well-
known Cremmer et al. potential [51].

1For simplicity, in the following formulas we will set MP = 1 (an eventual dependence on the Planck mass may be
easily reinstated by dimensional analysis).
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Appendix E

Energy-momentum tensor of (4.145)

In this Appendix, we prove that the Virasoro constraint E
a
++E++a = 0 remains unchanged in the

presence of an N = (0, 2) Fermi multiplet with action (4.135). To this aim, let us start from the action
(4.145) rewritten as1

S = 2

∫
d2ξ
√
−g
[
eiLiE

a
−−E++a +

i

2

(
λ̄−D++λ− −D++λ̄−λ−

)]
+ ei

∫
d2ξεmnBmn,i , (E.1)

and consider a variation of the world-sheet metric:

δS = −
∫

d2ξ
√
−gδgmngmn

[
eiLiE

a
−−E++a +

i

2

(
λ̄−D++λ− −D++λ̄−λ−

)]
+

+ 2

∫
d2ξ
√
−gδe++

m

[
eiLiE

a
−−Ema +

i

2

(
λ̄−∂mλ− − ∂mλ̄−λ−

)]
+

+ 2

∫
d2ξ
√
−gδe−−m

(
eiLiE

a
mE++a

)
,

(E.2)

where we have used that

δ
√
−g = −1

2

√
−gδgmngmn . (E.3)

Up to a local Lorentz transformation, we can associate a variation of the inverse vielbein δea
m to a

given δgmn, considering that

δgmn = δ(ea
meb

nηab) = 2ea
(mδeb

n)ηab . (E.4)

A possible choice is

δea
m =

1

2
δgmnen

cηac . (E.5)

Indeed:

δgmn = 2ea
(mδeb

n)ηab = ea
(mδgn)`e`

cηbcη
ab = ea

(mδgn)`e`
a = δ`

(mδgn)` = δg(mn) = δgmn . (E.6)

Therefore, from (E.5) we find that

δe++
m = −1

4
δgmnen

−− , δe−−
m = −1

4
δgmnen

++ , (E.7)

1We have used that
√
−g = e = 1

2
εmnem

−−en
++, and the expression (4.137) for the component expansion of SF ,

which is manifestly real.
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and then (E.2) becomes

δS = −
∫

d2ξ
√
−gδgmngmn

[
eiLiE

a
−−E++a +

i

2

(
λ̄−D++λ− −D++λ̄−λ−

)]
+

− 1

2

∫
d2ξ
√
−gδgmne(n

−−
[
eiLiE

a
−−Em)a +

i

2

(
λ̄−∂m)λ− − ∂m)λ̄−λ−

)]
+

− 1

2

∫
d2ξ
√
−gδgmne(n

++
(
eiLiE

a
m)E++a

)
=

= −1

2

∫
d2ξ
√
−gδgmn

{
2gmn

[
eiLiE

a
−−E++a +

i

2

(
λ̄−D++λ− −D++λ̄−λ−

)]
+

+e(n
−−
[
eiLiE

a
−−Em)a +

i

2

(
λ̄−∂m)λ− − ∂m)λ̄−λ−

)]
+ e(n

++
(
eiLiE

a
m)E++a

)}
.

(E.8)

If we now define the energy-momentum tensor as

δS ≡ −1

2

∫
d2ξ
√
−gδgmnTmn , (E.9)

we conclude that the variation with respect to the world-sheet metric gives Tmn = 0, with

Tmn = 2gmn

[
eiLiE

a
−−E++a +

i

2

(
λ̄−D++λ− −D++λ̄−λ−

)]
+

+ e(n
−−
[
eiLiE

a
−−Em)a +

i

2

(
λ̄−∂m)λ− − ∂m)λ̄−λ−

)]
+ e(n

++
(
eiLiE

a
m)E++a

)
.

(E.10)

In flat indices, it becomes

Tab = ea
meb

nTmn = 2ηab

[
eiLiE

a
−−E++a +

i

2

(
λ̄−D++λ− −D++λ̄−λ−

)]
+

+ δ(b
−−
[
eiLiE

a
−−Ea)a +

i

2

(
λ̄−Da)λ− −Da)λ̄−λ−

)]
+ δ(b

++
(
eiLiE

a
a)E++a

)
.

(E.11)

At this point, let us consider the component a = b = ++. In this case, since η++,++ = 0, only the
last term is non-vanishing:

T++,++ = eiLiE
a
++E++a , (E.12)

and this completes our proof. Indeed, T++,++ = 0 tells us that the Virasoro constraint E
a
++E++a = 0

remains unchanged in the presence of an N = (0, 2) Fermi multiplet Λ−.
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