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Introduction

The complete picture of phenomena and particles governing our Universe is far from being
clear. Not too long ago we found out that the visible sector of particle physics corresponds
to a mere 5% of the total energy budget. In fact recent data suggest that the major com-
ponents of this budget are dark matter (25%) and dark energy (70%), both of which are
nearly completely unknown to us in their composition and structure.
This kind of knowledge is relatively recent, in fact, the whole concept of dark matter is as
old as the beginning of the 20th century when it was formulated after the revolutionary
researches of the Caltech professor Fritz Zwicky in the 1930’s. Anyways today we possess
different types of evidence about the existence of dark matter at different scales: galactic,
galaxy cluster and cosmological.
Before talking about these three sectors, it could be of purely intellectual interest to delve
a little bit more into the historical aspect of the conceptual formulation of dark matter.
Throughout history numerous philosophers speculated about the existence of planets,
galaxies or cosmological systems that were too far away from us or too dim to be detected
by us, becoming indeed invisible to our searches.
A valiant force that, during the centuries, has come in help to unveil potentially existing
cosmological systems that, for some reason, were invisible to us is the gravitational inter-
action.
A classic example of this situation is the discovery of the planet Neptune by the as-
tronomers Urbain Le Verrier and John Couch Adams [5] . Both of them were able to
identify anomalies in the trajectory of Uranus confronting the results of the application
of Newton’s laws and the observational evidence. It came out that the anomaly was to
be attributed to the presence of an additional planet with a non-trivial mass that was
influencing Uranus’ motion with its gravitational field.
The discovery of Neptune is an evident example of how the laws of gravity are able to
spot the presence of what could be invisible structures to our eyes.
Thanks to his previous intuitions on Neptune, Le Verrier tried to explain the anomalous
path of Mercury around the Sun with, yet again, another invisible planet called ”Vulcan”.
It was here that his fortune came to an end since it would require Einstein’s General Rel-
ativity theory to explain Mercury’s orbit.
Even though wrongful, this is another example of the power of gravitational force as an
instrument to shed light into the darkness of astronomical data.
This is crucial since even to the present day, almost the totality of proof in our hands
concerning dark matter displays a gravitational nature. For this type of matter consid-
ered collisionless and weakly interacting with light, gravity is the only interaction that
allows us to unveil its presence. In the following section, we will examine more clearly the
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complete meaning of these sentences.
To complete this historical framework, it is curious to notice that in the late 19th century
doubts about the presence of dark regions in the sky began spreading in astronomical
circles. After the invention of astronomical photography, it was observed the presence of
dark regions inside stellar fields that enticed the idea of the existence of an undiscovered
type of matter along the line of sight responsible for the absorption of light.
It was not until some decade later that the concept of dark matter assumed the conceptual
frame that still possesses to this day, by the hands of a few pioneers like Zwicky and Vera
Rubin.
The aim of this master thesis is, as the title suggests, to analyze and discuss dark mat-
ter theories with a Z ′ vector portal and, in particular, the constraints coming from the
analysis of perturbative unitarity. The structure of the thesis is the following. In the first
chapter, we will proceed to examine the main evidence of the existence of dark matter,
starting from Zwicky’s discovery and we will try to outline constraints coming from both
experimental measures and theoretical predictions in order to narrow the field on what
really is dark matter.
Then in the second chapter we will provide a description of the main particle candidates
to constitute dark matter in WIMPs and we will try to draw an inclusive picture of the
major research fields in which our efforts on finding dark matter are concentrated.
The third and fourth chapters will be focused on Z ′ vector dark matter models and their
perturbative unitarity constraints, the most important part.
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Chapter 1

Evidence of dark matter

1 Zwicky’s discovery

Even though this would be more of a cluster scale proof, for chronological reasons we start
the conversation about dark matter talking about the man who first found out about his
existence. As said shortly before, the introduction of dark matter in the scientific commu-
nity is to be attributed to Fritz Zwicky who, like other physicists of that time, focused his
observation on the Coma cluster, which had the peculiarity of presenting a strong central
condensation and a tendency towards the spherical symmetry. It was the latter and very
peculiar trait that got Zwicky more into this atypical cluster.

The originality in Zwicky’s approach was to apply the virial theorem in a context so far
from thermodynamics like that of a group of galaxies. He was not the first to use this
theorem outside the normal area of expertise. Henry Poincarè had applied it to astronomy
a couple of decades earlier, but the Caltech professor was, to the best of our knowledge,
the first one to employ it to calculate the mass of the galaxies.
He first noticed large velocity dispersion in the galaxies composing the Coma cluster,
typically more than 1000 km/s. Despite the velocity gap between galaxies, the system
had not fallen apart: some kind of force was keeping it together. Even though this
was undoubtedly a breakthrough, it was not considered big news at the time, since large
differences in velocities of galaxies present in Coma compared to other clusters had already
been observed by Hubble years prior.

Of course, pysicists first guess in order to explain the existence of this cluster was gravity:
the strength of this interaction had to be responsible for the boundness of the system.
Zwicky’s work and discovery was the demonstration that, to hold the system together,
the amount of mass required had to be orders of magnitude superior to that inferred by
luminous measurements.
First, he counted approximately the number of galaxies in the cluster, so to extrapolate
its mass, obtaining as a result a number close to 800. He took, as suggested by Hubble,
the average mass of a galaxy to be of the order of 109M⊙.
He then proceeded to indagate the luminosity of the cluster and presented a mass-to-light

9



10 Chapter 1. Evidence of dark matter

Figure 1.1: Mosaic of the Coma cluster from [31]

factor of about M
L

∼ 400M⊙
L⊙

. Thanks to a conversion factor fixed by experiments, he
obtained a result in terms of the mass of the Coma cluster inferred by electromagnetic
measurements

M
(vis)
Coma ≃ 1, 6× 1042kg. (1.0.1)

To obtain a second term of comparison, he proceeded to calculate the same value of
mass with the virial theorem. In its simplest form it states that in a system in kinetic
equilibrium:

T = −1

2
U (1.0.2)

where T and U are respectively the kinetic energy and the gravitational potential of the
system.
He assumed spherical symmetry and kinetic equilibrium for Coma, properties that were
supported by observation, and proceeded to calculate the two terms of the equation. For
the kinetic energy he used the simple formula

T =
∑
i

1

2
miv

2
i . (1.0.3)

He assumed that the galaxies have approximately the same mass mgal and made use of
the average velocity defined as

< v2 >=

∑
i v

2
i

Ngal

=

∑
imiv

2
i

mgalNgal

=
2T

MComa

. (1.0.4)

This quantity can be easily obtained by measurements of simple Doppler effects.
For what concerns the gravitational potential, it can be written as

U = −
∑
i<j

Gmimj

rij
= −3

5

GM2
Coma

RComa

(1.0.5)
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if one makes use of the spherical symmetry and of the total mass of the cluster MComa.
Using the data he had collected, Zwicky estimated the Coma mass as

M
(grav)
Coma =

5

3

RComa < v2 >

G
≃ 2, 4× 1044kg. (1.0.6)

Even at this point is pretty clear that

M
(grav)
Coma >> M

(vis)
Coma. (1.0.7)

The easiest hypothesis that could be made to explain such a discrepancy is the presence
of additional dark mass. Indeed Zwicky presented to the scientific community in 1937
the results of his work and the final hypothesis, which by the time was more of a gamble,
talking about ”dunkle materie” [52] or dark matter and, with little if any surprise, was
largely ignored by the rest of the physicists.
Zwicky’s findings, although misregarded, were revolutionary and are considered still in
the present days as the most overwhelming evidence of the presence of Dark Matter in
the Universe.

2 Galactic scale

Let’s move on to galactic scales. We present maybe the most striking proof of DM exis-
tence after Zwicky’s one. This discovery also happened chronologically after the one that
we have just described and, even though at completely different scales, it only confirmed
and added validity to Zwicky’s claims.

2.1 Spiral galaxies

We find ourselves decades later, in the 1970’s when another incredible discovery came
with the work of Vera Rubin and her research group. Together they used the improved
technologies of those years to observe galactic velocities far away from the galactic center.
What was found was quite unexpected: the rotation curves of galaxies expressed a flat
behavior far beyond the extent of the visible galactic disk.
Even in this case, the math is quite simple: one can use Newton’s laws to calculate the
circular velocity of stars orbiting due to the weakness of gravity [44] [2].
By getting the acceleration experienced by a probe star from the equation of motion, one
can see that

v2

r
=
GM(r)

r2
(2.1.1)

this leads to

v(r) =

√
GM(r)

r
(2.1.2)

If one looks at the mathematical form of the velocity he can see that for radii inside the
galactic radius, it will be proportional to r as one can express M as M(r) = 4

3
πr3ρ(r),

with ρ(r) the density of matter.
So inside the galaxy, where M(r) ∝ r3, with the density approximately constant, the
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Figure 1.2: rotation curves of respectively: a solid body, the solar system and a spiral galaxy
from [27]
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Figure 1.3: An example of the flat behavior of the rotation curve. From [34]

formula will give us the already cited proportionality. Outside the galactic radius, the
mass of the galaxy is saturated and M(r) will not change since all the mass is inside the
galaxy. This means that v(r) would be solely proportional to 1√

r
.

v(r) ∝

{
r r << rgal

r−
1
2 r >> rgal

(2.1.3)

What was incredible was to find a flat behavior in which v(r) remains almost constant
even at distances far away from the galactic center. In 1980 they published their result
to support Zwicky’s thesis about the additional mass of the galaxies.

Today we are able to obtain precise measurements of the velocity of stars in spiral galaxies
with the help of observation of the Doppler shift of the 21 cm line transition of hyperfine
hydrogen. Moreover, spherical symmetry can be employed due to most of the matter in
spiral galaxies being concentrated in the center. This is a strong approximation but gives
us the same qualitative results.
It is to take account of the fact that even with the fast technological progress of the
last decades, the result obtained for the galactic rotation curves do not change, showing
regions with the anomalous flat behavior stretching for hundreds of parsec away from
the galactic center.
A way to explain this is MOND [25] , an acronym that stands for MOdified Newtonian
Dynamics. The idea here is to slightly correct Newton’s second law F = ma with a
factor µ to get F = maµ(a), where µ is usually close to unity apart from cases of small
acceleration where µ ∝ a

a0
.
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This way the gravitation law is modified and for a star outside a galaxy of mass M

F =
GMm

r2
= maµ (2.1.4)

and in the low acceleration limit with a << a0

a =

√
GMa0
r

. (2.1.5)

Following the above procedure, we equate this to the centrifugal acceleration

√
GMa0
r

=
v2

r
=⇒ v = (GMa0)

1
4 (2.1.6)

recovering the behavior we have already seen but without the use of additional matter.
Although in agreement with observation, MOND is not able to explain other evidence for
dark matter, like the one at cluster scales or CMB anisotropies, so this characteristical
pattern can only be explained using additional matter.

2.2 Elliptical galaxies

We can’t measure rotation curves for elliptical galaxies, which are not flat like spiral galax-
ies. Instead, we can study the mass-to-light ratio of elliptical galaxies with gravitational
lensing [6], a method that we’ll explain in the next section. As the galaxy passes between
us and a quasar, the light from the quasar is bent by the gravity of the galaxy. If the
galaxy is directly between us and the quasar, the quasar appears to be smeared out in a
ring around the galaxy, usually called an Einstein ring.
Alternatively one can use the virial theorem in the exact same way operated by Zwicky.
Also in this case it appears that there is an excess of matter compatible with that found
in the case of spiral galaxies.

3 The scale of galaxy clusters

Earlier we have extensively discussed Zwicky’s findings on the Coma cluster and of how
M
L

∼ 400M⊙
L⊙

, showing an exceeding ratio with respect to the solar neighborhood of two
odrers of magnitude.
With the knowledge of Friedman’s equations on our side, we can write an equation for
the Hubble parameter

H2 =
8πG

3
ρ− kc2

a2
(3.0.1)

where ρ is the energy density, k is the curvature factor, c is the speed of light and a
the scale factor. In a flat Universe (ours appears to be close to flat from the recent
measurements) k ∼ 0, so we can write an equation for the critical energy density

ρC =
3H(t)2

8πG
(3.0.2)
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3.1 Gravitational lensing

Another powerful instrument at these scales is gravitational lensing. Einstein’s general
theory of relativity describes how mass concentrations distort the space around them. A
gravitational lens can occur when a huge amount of matter, like a cluster of galaxies,
creates a gravitational field that distorts the light from distant galaxies that are behind
it but in the same line of sight. If an observer was located at the correct distance, the
deflected light rays from around the celestial object would converge to make a magnified
image. This is a phenomenon known as strong gravitational lensing.
In a weak gravitational lens, light rays are not deflected enough to magnify the image,
instead they introduce subtle distortions.
The simplest type of gravitational lensing occurs when there is a single concentration of
matter at the center, such as the dense core of a galaxy. The light of another distant
galaxy is redirected around this core, often producing multiple images of the background
galaxy.
More complex gravitational lensing arises in observations of massive clusters of galaxies.
Background galaxies are lensed by the cluster and their images often appear as short, thin
“lensed arcs” around the external border of the cluster.
The distribution of lensed images reflects the distribution of all matter, both visible and
dark.
Several distorted images distribute around the so-called Einstein circle which possesses
the property being related to the mass giving deflection through its angular radius

θE =

√
4GM

c2
(DS −DL)

DSDL

(3.1.1)

where M is the lens’ mass, DL is the distance of the lens and DS is the distance of the
source of light rays[2].
Gravitational lensing suggests that only 10% − 20% of the total mass is visible, the rest
is dark.

3.2 Bullet cluster

The biggest challenge of indirect dark matter observations has been the spatial coinci-
dence of DM and baryonic matter. Indeed of all the examples we have just presented,
no one shows any kind of separation between baryonic and dark matter, they blend in
an undistinguishable unique entity. A system in which DM and baryons were spatially
segregated is ideal for such a study.
Galaxy mergers are some of the most violent events in the universe. Galaxies are made
up of stars, gas and plasma for less than 10% of their matter budget, the rest should
be only dark matter. During collisions, stars rarely collide, the gas and plasma interact
through gravity as well as electromagnetic friction-like interactions, and the dark matter
is expected to be collisionless and pass right through at high velocities. Once the merger
has taken place (over a period of a few million years), an interesting result is seen. The
Bullet Cluster, discovered in 1998, is the prototypical example of galaxy merger [23] .
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Figure 1.4: Strong gravitational field
cause light that passes by to be

deflected.The distant source appear
distorted, but brighter, forming

characteristic rings of light, known as
Einstein rings. From [26]

Figure 1.5: Galaxy cluster Abell 370
composed of several hundreds of galaxies.
The blue arcs are distorted images of

remote galaxies behind the cluster. From
[32]

In a merger the stars would almost always pass by one another without individual stellar
collisions and would emerge as separate systems, in fact they can be considered as a col-
lisionless system. The more abundant gas atoms in each system, however, are bound to
collide with their counterparts in the other system the moment they crash.

If we consider the scenario in which there is no DM in the Universe, then the source of
the gravitational force in this system would be the intergalactic gas in the middle of the
picture, since, in terms of mass, the gas dominates over the stars by a factor of ten. This
means that we would observe the direction of gravitational interactions to be pointing
towards the middle of Figure 1.6, where all the intergalactic gas is concentrated.
Instead, if dark matter dominates, then it will completely disregard collisions and it will
behave as stars do and appear in two separate lumps in the right and left corners of the
image. Then we would observe the gravitational force to be pointing toward dark matter
direction, which is the center of the two stellar systems.
By looking at the orbital velocities of the stars, one can easily determine the direction
of gravity, and observers found that it is clearly pointing toward the centers of the blue
patches, the centers of the two stellar systems, and not toward the gas in between them.

We can see from Figure 1.6 the hot gas which assumes this characteristic pink shade right
in the center of the picture and contains the majority of baryonic matter. In fact the
bullet-shaped mass on the near right is nothing but hot gas from one cluster, which is
gone through the intergalactic gas of the other cluster during the collision. Here we can see
the galaxies with different colors, mostly orange and white. The interesting part instead
are the blue areas which is where astronomers find most of the mass in the clusters. We
can use gravitational lensing in order to extrapolate the mass concentration and, to our
surprise, the result is that the majority of the mass is clearly concentrated in the blue
areas and is separated from the baryonic matter in the pink area. This is not only clear
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Figure 1.6: Composite image of the
Bullet cluster. Red: hot gas observed by
the Chandra X-Ray Observatory. Blue:
major part of the mass deduced from

gravitational lensing. From [36]

Figure 1.7: Bullet cluster, mass density
contours, in green, obtained through
weak lensing, superimposed over

photograph. From [29]

proof that there is a different kind of non-baryonic matter, but also that it is dominating
in quantity with respect to the baryonic one.

Another precious hint lies here on the true nature of dark matter. Because it is composed
of baryonic matter, the intergalactic gas from the two clusters cannot help but collide
with each other, thus slowing down and accumulating near the collision area. Instead dark
matter, which is assumed to be collisionless, clearly comes out of the collision unfazed. By
avoiding completely the crash, dark matter separates completely from the intergalactic
gas during the collision and it is able to create the blue area that we have seen, gifting
us with this amazing opportunity to observe it alone. If hot gas was the most massive
component in the clusters, as proposed by alternative theories of gravity, such an effect
would not be seen. Instead, this result shows that dark matter is required.
This is clear disproof of theories that suggests that dark matter doesn’t exist, like MOND.

4 Cosmological scales

CMB is a unique and unreplaceable tool. It was emitted approximately at t ≃ 105yr after
the Big Bang and its distribution look like the one of a black body in thermal equilibrium.
It was produced at last scattering surface when matter and radiation decoupled, the
Universe became transparent to radiation. From that point in time, photons’ mean free
path stretched and can be observed today coming from every direction in the sky at a
temperature

TCMB ≃ 2, 73K ≃ 2, 4× 10−4eV (4.0.1)

CMB is essentially a picture of how the Universe was at its emission. It can serve in
innumerable ways to us as an instrument to be confronted with our predictions about
the evolution of the Universe. We do not possess any consistent data about the Universe
prior to CMB emission, this adds to the already stressed importance of this distribution.
Cosmic Microwave Background(as CMB stands for) was postulated in 1948 by Ralph
Alpher and Robert Herman, but was only detected accidentally in 1964 by Arno Penzias
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Figure 1.8: Full-sky map of the tiny
temperature anisotropies of the CMB.

From [35]

Figure 1.9: Resolution of the CMB
maps for all three satellites. From [39]

and Robert Wilson who were working with a simple radio antenna in New Jersey. This
fortunate event awarded the Nobel prize.
The first space mission specifically designed to study the cosmic microwave background
(CMB) was the Cosmic Background Explorer (COBE), launched by NASA in 1989. The
measurements show a spectrum that conforms extremely precisely to a black body with
error bars that have to be multiplied by a factor of 400 not to be visible in the plot.
CMB is almost isotropic. The reason for the use of the word almost is the fact that it
exhibits fluctuations in temperature of the order of ∆T

T
∼ 10−5.

All data we collected at smaller scales would not provide us with precise information
about the total amount of dark matter in the Universe, this comes from the analysis of
the CMB and its power spectrum.

Indeed the study of CMB anisotropies allows us to put stringent constraints on cosmo-
logical parameters. Let’s expand in spherical harmonics temperature fluctuations

δT (θ, ϕ) =
inf∑
l=2

l∑
m=−l

almYlm(θ, ϕ) (4.0.2)

where Ylm(θ, ϕ) are spherical harmonics and θ and ϕ cover the solid angle.
Here the sum starts at 2 because the term with l = 0 is the monopole contribution that
sets the overall temperature of CMB and is of no interest to us. The term with l = 1
gives us the dipole contribution which in turn depends on the Earth’s movement around
the rest frame of CMB and is again of no use to us.
We can call cl the variance of the factor alm

cl =< |a2lm| >
1

2l + 1

l∑
m=−l

|a2lm|. (4.0.3)

cl depends only on l because of isotropy. The power spectrum reads

< δT (θi, ϕi)δT (θj, ϕj) >=
∑
l

(2l + 1)clPl(cosθij) (4.0.4)
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Figure 1.10: CMB power spectrum from [37]

with Pl(cosθij) being the Legendre polynomials evaluated at the angle between the direc-
tions i and j. If one assumes the fluctuations to be gaussian as it appears to be the case
with recent measurements, it can be seen that all information about CMB is compressed
inside this power spectrum.
We are interested in the behavior of cl as function of l, but usually what is plotted is

(2l + 1)
cl
2π
. (4.0.5)

NASA’s second-generation space mission, the Wilkinson Microwave Anisotropy Probe
(WMAP) was launched in 2001 to study these very small fluctuations in much more
detail. Finally, ESA’s Planck was launched in 2009 to study the CMB in even greater
detail than ever before. It covers a wider frequency range in more bands and at a higher
sensitivity than WMAP, making it possible to make a much more accurate separation of
all of the components of the submillimeter and microwave wavelength sky. This reveals
the CMB and its tiny fluctuations in much greater detail and precision than previously
achieved.
CMB power spectrum is affected in different ways by baryonic matter and dark matter,
thus making it possible for us to separate the two contributions and get estimates of the
abundances of these two quantities [21] [6].
At the time of CMB formation, the Universe was filled with photons, neutrinos, electrons,
protons and dark matter. Electrons and protons try to combine and form hydrogen atoms,
but the pressure exerted by photons would break their bond. Photons can interact with
electrons by means of coulomb and Compton scattering and the overall effect of the
interactions is an oscillatory motion where the radiation pressure depends on the speed of
sound in the primordial plasma. Presence of baryonic matter affects this value, keeping
it smaller than cs =

c√
3
, the value assumed in a pure photonic gas.

Dark matter is believed to be decoupled from the primordial plasma by this time, so it
would interact only gravitationally, thus not contributing to the radiation pressure.
With the power spectrum one is able to spot both the overall amount of matter and that
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of baryonic one, with values at the present time of{
ΩMh

2 = 0, 1428± 0, 0011

Ωbh
2 = 0, 02233± 0, 00015

(4.0.6)

with h being a number h ≃ 0, 7. So for dark matter we have

ΩDMh
2 = 0, 1198± 00012 (4.0.7)

Here one can see dark matter presence at the time of CMB formation and that the amount
of Dark matter in the universe at that time was more or less five times the one of common
baryonic matter.

4.1 Numerical simulations

Before talking about the numerical simulations we first need to introduce the cosmological
principle, which constitutes the basis for cosmology.
It states that, at large scales, our Universe is homogeneous and isotropic. Here by large
scales we mean hundreds of Mpc. Homogeneity is confirmed by studies on galactic distri-
butions and, as we have already seen, isotropy is clearly observed in CMB analysis.
There are also philosophical reasons that support the cosmological principle, like the fact
that the Universe should appear the same to observers located in different places, as there
is no reason to suppose the opposite.
We have already talked about the time when CMB is emitted and atoms form and ex-
perience gravity. At this point, matter will experience two different and opposite effects.
For starters, it will feel the gravitational interaction, as we said, which will drag parti-
cles together and be responsible for their fall in a dense core. Secondly, we have to take
into account the fact that Universe is expanding, this is responsible for the separation of
large structures, that will be affected by the stretching of the very fabric of the Universe.
Obviously these two effects are antagonists and the Universe as we observe it today will
be the final product of a long, still-lasting process, that has these forces as main dance
partners.
Thanks to the cosmological principle we were able to create a model able to explain cos-
mological observations which we refer to as ΛCDM . Here Λ identifies the dark energy
component of our Universe which covers approximately 70% of the total energy budget
and CDM stands for cold dark matter, a model of Dark matter with the features that
better fit the observations, as we will see in the next chapter.

Here, as we have also seen previously, dark matter is considered collisionless, contrary to
baryonic matter which interacts with itself. This is a very important feature, that will
help us distinguish between visible and dark matter in our simulations.
Perhaps the most widely-used N-body simulation of cosmological structure formation to
date has been the Millennium Simulation, which followed more than ten billion particles
within a simulation volume of (500h−1Mpc)3[8].
Dark matter in Millenium simulation is analyzed as a function of redshift ad cosmological
time. The simulation starts with a uniformly distributed matter density in the primordial
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Figure 1.11: The Millennium Simulation: a n-body calculation of the formation of large-scale
and galaxy-sized structures via hierarchical clustering of primordial quantum density

fluctuations that have been stretched by the expansion of the Universe and increased in
contrast by self-gravity. From [30]

Figure 1.12: Galaxy formation obtained by studying the physics of baryonic galaxies as
embedded in the dark matter hierarchy represented here by the Millennium Simulation. From

[30]
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cosmos, then gravity starts to play its role by creating centers of mass. As time passes
one can clearly see the formation of matter filaments with a high number of structures
formed.
The goal for these simulations is to be compared to the actual data observed, but for this
to be the case, one would need a large statistic.
What is observed is that simulations reproduce a set of data very similar to what is
found in the experiments, with a good agreement between the ΛCDM model and the
observations.
In particular, it can be seen that the fraction between baryonic mass and the total mass
is

baryonic mass

total mass
∼ 15% (4.1.1)

in great agreement with what we have seen previously [2][6].

4.2 BBN

Big Bang Nucleosynthesis can actually be an indirect constraint for dark matter. BBN is
one of the best proofs we possess for the Big Bang theory, it allows us to predict the abun-
dances of light nuclei in the universe with great accuracy. The process of nuclei formation
strongly depends on the primordial plasma content, so it is obvious that the amount of
nuclei formed has its main dependence on the amount of baryon matter present in the
primordial plasma. Thanks to this information, combined to the observed abundances
of light elements in the Universe, we are able to track the percentage of baryon matter
present in the Universe at the time when BBN took place. Confronting the result with
the total amount of matter, one can clearly see that there is a solid discrepancy between
the two values explainable with the presence of dark matter.
In particular, BBN gives precise a result regarding the quantity baryon-to-photon ratio

η =
nb
nγ

(4.2.1)

where nb and nγ represent baryon and photon number densities. in particular one can see
that for baryons

Ωb =
ρb
ρcrit

=
mpnb
ρcrit

=
ηnγmp

ρcrit
(4.2.2)

with mp mass of the proton. With CMB analysis one can estimate nγ = 410.5cm−3, the
measurements give

5.8× 10−10 ≤ η ≤ 6.6× 10−10 =⇒ 0.021 ≤ Ωbh
2 ≤ 0.024. (4.2.3)

The fact that with other experiments we reach a bound for the total amount of matter

ΩM ≃ 0, 14 (4.2.4)

just adds another proof to our thesis on dark matter existence[15].
On the other side, there are various effects that influence the light element abundances.
Of particular relevance is the expansion rate H of the Universe during the time of BBN,
as it determines at which point in time protons and neutrons fall out of thermodynamic
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equilibrium and hence sets the ratio of the corresponding number densities[40]. The
Hubble rate, in turn, is fully determined by the total energy density, which receives
contributions from all particles, including those beyond the SM. In particular, even fully
decoupled dark sectors can be probed via their effect on the expansion rate. This is how
we can be sure, even if indirectly, of the presence of dark matter thanks to this highly
precise constraint.

5 What do we actually know about Dark Matter?

Aside from the gravitational evidence of dark matter, we do not know much about its
particle structure. No matter how much we search, there is no solid clue about its prop-
erties. There is a series of bounds in our hands though [10] [3], which gives more clarity
on what dark matter cannot be, cutting on the range of possible models and reducing the
otherwise almost endless list of dark matter particle wannabes.

5.1 Dark matter is stable

In chronological terms the first picture we have of the early Universe is CMB. It is the
oldest, most precise dataset in our hands that draws an accurate report about what was
happening 300000 years circa after the Big Bang. We have seen, from power spectrum
analysis, that dark matter was present in the Universe at the time of CMB formation. It
is also present today in halos around galaxies and, during all these billion years between
CMB emission and now, it has helped shape the Universe as we see it. So the conclusion
comes spontaneously to mind: dark matter is stable or, at least, it must not decay over
the Universe lifetime

τDM ≥ 14 Gyr ≃ 4× 1017sec (5.1.1)

Moreover, this bound becomes more stringent when we consider BBN. In fact dark matter
decays or annihilations could have an enormous impact on BBN by injecting into the
primordial plasma more SM particles, which in turn, affect light elements’ abundances.
As an example, DM decay in pions π± could cause the exchange

π− + p→ π0 + n (5.1.2)

which increases the fraction n
p
, thus influencing helium mass fraction.

One more at it is that the decay into electromagnetically interacting particles that rises
the previous constraint. The injection of photons could impact CMB formation and this
puts a higher bound on DM lifetime

τDM ≥ 1025−29sec. (5.1.3)

5.2 Optical darkness

Dark matter is not observed at all, thus the dark matter particles must have very weak
electromagnetic interactions. This does not mean that the electric charge and electric and
magnetic dipole moments vanish, they can exist but are forced to be very small.

qDM ≃

{
10−6 mDM = 10GeV

10−4 mDM = 10TeV
(5.2.1)
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These constraints were put looking for bound states DMe− in experiments on heavy
hydrogen.
An important consequence of this is that the dark matter can not cool by radiating
photons, and thus will not collapse to the center of galaxies as the baryons do, by radiating
their energy away electromagnetically. In other words, the dark matter is very nearly
dissipationless.

5.3 Collisionlessness

Limits on DM self-interactions are taken from Bullet cluster studies. Here we saw DM
and visible matter disentangled for the first time. Baryonic matter is highly interactive,
during the merger Standard Model particles interact with each other, the gas gets hotter
and emits X-rays. Dark matter, on the other hand, just passes through anything else,
just like stars do and can be detected, through gravitational lensing, forming the two
main mass densities outside the gas region. This behavior generates constraint on DM
self-interaction cross section

σself
m

≤ 1cm2

g
≃ 2barn

GeV
≃ 10−24 cm

2

TeV
(5.3.1)

Even though it appears as a small number, this is still huge compared to, for example,
neutron capture cross section of uranium, which is a few barns. Or 50 mb is a typical
QCD cross section like the one for pp scattering.

5.4 Coldness

Dark matter models can be divided into three main categories: hot, cold and warmth, as
we’ll see in the next chapter, according to whether or not DM was relativistic at the time
of decoupling.
The difference lies in the consequences that different types of DM have on structure
formation. Baryonic perturbations cannot form before CMB emission. Prior to that
time, photon interactions with visible matter were too frequent with the result of erasing
whatever bound state was formed between baryons. After CMB emission, baryon could
originate perturbations, little clots of matter which had the potential to grow and form
large scale structures we observe today. In order to do that baryonic matter had to fall in
DM potential wells, which in turn had to be already formed by the time of recombination.
Here the difference between models comes to play. For hot dark matter models, we
have DM particles relativistic at their decoupling. Now if the dark matter particles
have significant velocities, then the small scale structures could be erased. In this case
inhomogeneities would not be the seeds for large scale structures formations and would
not originate the Universe as we see it. For this not to occur, the particles must be
sufficiently non-relativistic temperature of the universe was roughly 1 keV . Only in this
case inhomogeneities would survive. Cold dark matter and warm dark matter models
only can explain what we see today.
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Figure 1.13: 95% C.L. upper limit of dark matter annihilation cross section into bb− (left)
and W+W− (right) as a function of the dark matter mass, derived from AMS-02 antiproton
data, for different choices of dark matter profiles (Einasto, Burkert, NFW) and propagation

models (MED, MAX). From [28]

5.5 Density profile

Numerical simulations have, amongst all the advantages, that of providing us with galactic
distribution function ρ(r) that encodes the behavior of dark matter halos around spiral
galaxies. In particular the most famous and best-fitting functions are



NFW : ρNFWDM = ρs
rs
r
(1 + r

rs
)−2

Einasto : ρEinastoDM = ρs exp
(
− 2
α
[( r
rs
)α − 1]

)
Isothermal : ρIsoDM = ρs

1+( r
rs

)2

Burket : ρBurkDM = ρs
(1+ r

rs
)(1+( r

rs
)2)

(5.5.1)

with α = 0, 17 in Einasto’s. In all models rs is the characteristic radius and depends
on the particular galaxy considered, as well as any ρi. All these are the result of N-
body simulations, where we can keep track of all bodies with their interactions (only
gravitational for DM in this case) as they form larger structures.
Here in Figure 1.13 is shown a comparison of NFW, Einasto and Burket. Notice that
the isothermal profile goes like r−2, thus respecting what we have previously seen for
spiral galaxies’ rotation curves. Also take into account that in some profiles r → 0
brings divergence, thus are not likely to represent accurately DM distribution towards the
galactic center.
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5.6 Velocity distribution

Since no DM particle has been observed yet, also its velocity distribution is not known.
What has been hypothesized is that it has a truncated Maxwellian, also known as Standard
Halo Model:

f(v) =

 1
Nesc

( 3
2πσ2

v
)
3
2 e

−3v2

2σ2
v : |v| < vesc

0 : otherwise
(5.6.1)

where the normalization constant 1
Nesc

has been chosen so that
∫
f(v)dv = 1.

Here we can notice the obvious fact that if DM acquires a velocity superior to the escape
one vesc, it evaporates.

σv is velocity dispersion, v0 =
√

2
3
σv ∼ 235km/s is the most probable velocity.

We can also estimate dark matter velocity for Milky Way’s halo with the virial theorem
as we have shown previously

2T + U = 0 (5.6.2)

then with {
U = −3

5

GM2
halo

Rhalo

T = 1
2
Mhalov

2
(5.6.3)

to obtain (obviously this is an approximated result)

v ≃ (
3

5

GMhalo

Rhalo

). (5.6.4)

5.7 Mass

Here the problem is renovated as we have not yet identified any DM particle, so we have
no substantial data on its mass. Anyway we can still impose some bounds based on the
nature of this particle.
First of all the mass cannot assume arbitrarily high values, as, at some point, quantum
gravity effects will not be negligible. For example for masses

m ≥MPL (5.7.1)

with MPL Plank mass, the particle’s wavelength would be smaller than its Swartzshild
radius

2π

M
≤ 2m

M2
PL

(5.7.2)

turning into a black hole. Thus we can safely impose that

m ≤MPL. (5.7.3)

Then a distinction has to be made whether the particle is a boson or fermion. In both
cases what comes to help are studies on dwarf galaxies. Dwarf galaxies are one of the
most important instruments for DM study, as they have relatively small mass and they
have larger DM mass fraction than other bigger galaxies to be held together.
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Bosonic

Here we can store almost an infinite number of particles in the same state. Bose-Einstein
statistic imposes a distribution function for these kinds of particles

f(E) =
g

exp
(

(E−µ)
T

)
− 1

(5.7.4)

with g number of degrees of freedom of the system, E being its energy, µ the chemical
potential and T the temperature.
We can put bounds on dwarf galaxies by studying their de-Broglie wavelength

λ =
2π

mDMv
. (5.7.5)

We can constrain this quantity to be smaller than the galactic radius

λ ≤ Rd ≃ 1kpc ≃ 3× 1019m (5.7.6)

to obtain a bound on DM particle mass

mDM ≥ 10−22eV. (5.7.7)

Of course this is a lower bound because if DM particle’s mass would be lower than this
then its wavelength would be bigger than the galactic radius.

Fermionic

The same cannot be said for fermions, which are ruled by Pauli’s exclusion principle. Here
even the statistic is quite different

f(E) =
g

exp
(

(E−µ)
T

)
+ 1

. (5.7.8)

Because of Pauli exclusion principle, fermions are constrained to fill up all energetic levels,
starting from the ground state, but there cannot be two fermions with the same quantum
numbers inside a level. This results in a simplification of the distribution function, which
now becomes

g

{
1 : E << µ

0 : E >> µ.
(5.7.9)

Here the ≤ comes from the impossibility, by Pauli’s principle, of casting more than one
fermion inside a unit volume of the phase space.
This implies that, in order to calculate the galaxy mass, we run into the bound

Mhalo = mfermV

∫
f(p)d3p ≤ mfermV

∫
d3p ∼ mfermR

3
halo(mfermv)

3 (5.7.10)
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with V = 4
3
πR3 is the volume of a spherical halo of dark matter and mferm is of course

the mass of fermionic dark matter.
We have already calculated the escape velocity of the system as

v = (
2GM

R
)
1
2 (5.7.11)

so we can substitute this result and obtain the bound

mferm ≥ (G3MhaloR
3
halo)

− 1
8 (5.7.12)

This in turn gets us the numerical result, depending of course on the particular example
we are considering,

mferm ≥ (10− 100)eV. (5.7.13)

One can take as an example a dwarf galaxy phase space density, with data in our possess
on Mhalo and Rhalo, to obtain

mferm ≥ 0, 7keV (5.7.14)

Of course after all we have said about Pauli’s exclusion principle influencing fermionic
distribution, it is obvious a posteriori to have found a bound on masses for this kind of
particles far greater than what we have seen for bosons.

5.8 Conclusions

The question of what really is dark matter is still open since it has been theorized by
Zwicky in the now distant 1937. Dark matter not only shapes the Universe we live in but
also without its existence there also would be no life. We have had the opportunity to
study fluctuation in the spectrum of the CMB and we have seen that they amount to an
amplitude of 10−5 revealing that the Universe was still quite homogeneous by the time of
its emission.
This of course raises the genuine question if after CMB emission, baryonic matter fluc-
tuation could have grown forming the Universe we see today all by themselves, with no
help whatsoever of dark matter.
Turns out that the answer to this question is negative. The perturbations will grow and,
thanks to Friedman’s laws we are able to study the dependence of their energy density
on the scale factor. We remind the reader briefly just Friedman’s equations:

ȧ
a

2
= ρ

3M2
PL

− k
a2

ρ̇ = −3H(ρ+ p)
¨̈a
a
= − 1

6M2
PL

(ρ+ 3p)

(5.8.1)

with k being the curvature constant, MPL Plank’s mass, H = ȧ
a
and a is the scale factor.

Here one can see that we omitted any cosmological constant Λ, which in fact was added
by hand. To solve this system one can use the equation of state

p = wρ (5.8.2)
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with

w =


1
3

radiation

0 Non relativistic matter

−1 V acuum energy/Cosmological constant

(5.8.3)

Now one can obtain, through some manipulation, the energy density dependence on the
scale factor

ρ ∝


a−4 Radiation

a−3 Non relativistic matter

const V acuum energy/Cosmological constant

(5.8.4)

At a temperature of approximately T ≃ 0, 8eV the Universe became matter dominated,
this means that

δρ

ρ
∝

{
ln(a) radiation domination

a matter domination
(5.8.5)

Before matter-radiation equality the perturbation growth is clearly negligible, so if the
Universe was only made of baryonic matter, perturbation would experience linear growth
only after CMB emission. In fact before recombination, matter and radiation were cou-
pled, thus sharing the same perturbations with amplitude ∝ 10−5. Being coupled to
radiation means that perturbation growth will be negligible unitill recombination. After
that perturbations will grow linearly. Now we can calculate perturbation growth from
recombination till the present with the simple equation

δρ

ρ today

≃ δρ

ρ rec

a0
arec

≃ 10−5 × 103 = 10−2 (5.8.6)

thus not explaining the highly inhomogeneous universe that we see today with δρ >> ρ
[51].
The point is that we need some decoupled matter that will enable the perturbations to
grow non-linearly. Dark matter serves this scope excellently. It has been hypnothized that
dark matter was already decoupled long before recombination time and that by this time
it would already have formed the potential wells in which baryonic matter will eventually
fall after CMB emission, thus creating the structures that we see today.
This is another striking feature of dark matter and of the fact that we need it desperately
to explain our Universe’s characteristics.
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Figure 1.14: dark matter halo representation from [33]
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Chapter 2

History of WIMPS

As we said in the previous chapter, there is plenty of models to describe dark matter,
but they can be divided into two major categories: hot and cold dark matter. The
difference lies in how relativistic they were at the time of their decoupling. Decoupling is
a process in which particles that were in thermal equilibrium with primordial plasma lose
this condition as a consequence of the expansion of the Universe.
We imagine the primordial plasma as a mixture of the fundamental constituents of the
Universe which are in thermal equilibrium. This is of course ensured by the collisions
between particles, which guarantee energetic exchanges between different species. The
point is that even here we find ourselves in the middle of two opposite factors. One side
is occupied by the number of interactions N that a species i has, the more interaction,
the better for thermal equilibrium. On the other side, the Universe’s expansion stretches
space, making it difficult for particles to find each other.
We can formalize the number of interactions of the species i as

Ni =

∫ t2

t1

dtΓ (0.0.1)

which implies, using the relation between time and temperature

Ni =

∫ T2

T1

dT
dt

dT
Γ(T ) (0.0.2)

which transforms in

Ni =

∫ T2

T1

dT

T

Γ(T )

H(T )
(0.0.3)

if one notices that deriving by the time the condition for conservation of entropy Ta, one
obtains dT

T
= −HT .

Now if we choose an infinitesimal temperature interval, we can see that the condition of
decoupling can be imposed whether or not there are collisions in the time interval of the
first integral. In particular this means that

Γ(T )
H(T )

≥ 1 species coupled

Γ(T )
H(T )

≤ 1 species decoupled.

(0.0.4)

33
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Now for what concerns dark matter, we can already introduce

Γ(T ) = nχ < σv > (0.0.5)

with nχ being the number density of the particular dark matter model we are considering
and < σv > being the thermal averaged cross section with v the particle’s velocity.
The difference we have talked about comes with nχ assuming different forms in the cases
mχ ≥ T (non-relativistic) or the opposite one, in which dark matter is relativistic. In
particular if at the time of decoupling, which we refer to as freeze out time, the former
(or the latter) condition is realized, we talk about cold(hot) dark matter.
The hot models have been studied and it has been seen that they cannot explain the
Universe, in particular the large structures present today. In fact, relativistic particles,
having more kinetic energy, are able of covering bigger distances in the primordial Universe
than the non-relativistic ones. After decoupling they spread, or free stream, across the
universe and they destroy the matter perturbations that were forming at that time. In
their motion, DM particles diffuse in underdense regions and completely erase cosmological
perturbations before the time that they can grow linearly, which, as we have already seen,
is the time of matter-radiation equality.
Having ruled out Hot dark matter models, we can focus on Cold Dark Matter. In fact, the
present cosmological model, which is what we believe to be the closest to explain reality,
is called ΛCDM , referring to these kinds of dark matter models.
Amongst Cold Dark Matter models there is a class called WIMPS which stands for
Weakly Interacting Massive Particles that have the quality of being able to reproduce
the correct relic density that we have already shown in the previous section. We analyze
the WIMP model in the following sections.

1 CDM at decoupling

We have already seen the condition for decoupling to be

Γ(T ) ≃ H(T ) (1.0.1)

with H(T ) Hubble factor. Now we know that

H(T )2 =
ρ

3M2
PL

(1.0.2)

and that Γ = nχ < σv >. For a non-relativistic species it can be demonstrated that

ρ = g∗(T )
π

30
T 4 (1.0.3)

with g∗(T ) primordial plasma’s degrees of freedom at temperature T .
This means that at decoupling or, as we say at freeze-out,

H(TFO) ≃
T 2
FO

MPL

(1.0.4)

where FO stands for freeze out.



2. Boltzmann equation 35

For a non-relativistic matter distribution, it can be proved that

nχ = gχ(
mχT

2π
)
3
2 exp

(
−mχ

T

)
(1.0.5)

with gχ the particle degrees of freedom. This allows us to obtain an approximated formula
for Γ(TFO) at decoupling in

Γ(TFO) ≃ σNRA (TFO)(
mχT

2π
)
3
2 exp

(
−mχ

T

)
(1.0.6)

By equating the two terms of H and Γ we can obtain an approximated formula for
decoupling in

σNRA (TFO)(
mχTFO
2π

)
3
2 exp

(
− mχ

TFO

)
≃ T 2

FO

MPL

(1.0.7)

The exponential factor and T 2
FO will meet when the argument of the exponential is actually

not very large. Actually we will see that m
TFO

= O(10). Here we can use TFO ≃ m in order
to prove an important result:

nχ(TFO) ≃
T 2
FO

σNRA (TFO)
. (1.0.8)

Then we know that after decoupling, the number density decreases as T 3 due to Universe
expansion so that

nχ(T ) = nχ(TFO)(
T 3

T 3
FO

) (1.0.9)

In order to obtain the DM density, we just have to multiply this expression for DM mass,
given that we are in a non-relativistic regime. So what we obtain is a formula of this kind:

ρ(T ) = mn(T ) ≃ m3

σNRA (TFO)

T 3

m3
=

T 3

σNRA (TFO)
(1.0.10)

and this just proves that the relic density is only inversely proportional to the non-
relativistic elastic cross section [21].

Let’s go back to our mission to recover DM relic density formula now. In order to do
that, we need to solve Boltzmann equation for dark matter.

2 Boltzmann equation

This is such an important element that dark matter study would be almost impossible
without it. Without further ado, let’s dive straight into it. Boltzmann equation assumes
the general form [44]

L[f ] = C[f.] (2.0.1)

Here L and C represent respectively Liouville and collision operators for dark matter
particles distributed according to the function f , which in general depends itself on the
phase space f(xµ, pµ).
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The first operator describes the spacetime geometry influencing the phase space evolution,
the latter keeps track of all particle interactions.
In the relativistic case

L[f ] =
df

dxa
dxa

dλ
+

df

dpa
dpa

dλ
(2.0.2)

with λ being the affine parameter that parametrizes the trajectory followed by a given
particle. Now using the fact that dxα

dλ
= pα combined with the geodesic equation dpα

dλ
+

Γαβγp
βpγ = 0 and that gabp

apb = p2 = −m2, we can obtain

L[f ] =
df

dxa
dxa

dλ
− Γabcp

bpc
df

dpa
=
(
pa

d

dxa
− Γabcp

bpc
d

dpa

)
f. (2.0.3)

Here of course Γabc is the Christoffel symbol which obeys to

Γabc =
1

2
gad
(dgbd
dxc

+
dgbc
dxb

− dgbc
dxd

)
. (2.0.4)

From here we have to impose the properties of homogeneity and isotropy. The former
reduces the space-time coordinates dependence only on time

pa
d

dxa
= E

d

dt
(2.0.5)

while the second implies that f can only depend on the modulus of spatial momentum
or, equivalently, on energy. For what concerns Christoffel symbols, we can examine the
Friedmann-Robertson-Walker metric to see that the only few left are

Γ0
ij = aȧδij and Γi0j = Γj0i =

ȧ

a
δij. (2.0.6)

All of this combines in the (almost) final form of the Liouville operator

L[f ] = E
df

dt
− Γ0

ijp
ipj

df

dE
= E

df

dt
−Hδijp

ipja2
df

dE
= E

df

dt
−Hp2

df

dE
(2.0.7)

So now the Boltzmann equation has become

E
df

dt
−Hp2

df

dE
= C[f(t, E)] (2.0.8)

Let’s multiply both members by the factor g
(2π)3E

∫
d3p

g

(2π)3

∫
d3p

df

dt
− g

(2π)3

∫
d3p Hp2

df

dE
=

g

(2π)3E

∫
d3p C[f(t, p)] (2.0.9)

We can already notice that the first factor on the left-handed side corresponds to ṅ, then
we can use the conservation of energy formula EdE = pdp in the second term to see that

g

(2π)3

∫
d3p Hp2

df

dE
=

g

(2π)3
H

∫
dp

p4

E

df

dE

∫
dΩ =

g

(2π)3
H

∫
dpp3

df

dp

∫
dΩ =

g

(2π)3
H([p3f ]∞0 − 3

∫
dpp2f)

∫
dΩ

(2.0.10)
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which is equal to LHS of the Boltzmann equation, apart from the multiplicative factor.
This is consistent with what we know about the number density function, which, in ab-
sence of collisions, scales as a−3. Now that we have satisfied our curiosity with this little
digression, we can carry on with our analysis of the Boltzmann equation.
Before moving on, it is interesting to examine an important mechanism capable to influ-
ence WIMPs relic density.

3 Boltzmann equation for cold relics

Let’s now apply the Boltzmann equation to the case of WIMP dark matter. For this
purpose we will suppose the existence of two particles χ and ψ connected through the
process χχ̄ → ψψ̄ which is the only one happening. This is a simple scenario that will
enable us to reconstruct nψ starting from Boltzmann equations. Suppose that we start
from a situation purely symmetric in which nψ = nψ̄ and that nχ = nχ̄, so that there
is no matter-antimatter asymmetry. Then suppose ψ to be in thermal equilibrium with
the primordial plasma. This condition, as we have already seen in the beginning of this
chapter, is achieved through a significant interaction rate with the plasma after their
production. Thermal equilibrium of course implies nψ = neqψ . Finally, the last assumption
is that ψ are taken to be massive and stable so that decays are out of the picture [44].
With all of this behind us, we can proceed to write the Boltzmann equation which takes
the following form through all of the above assumptions

ṅχ + 3Hnχ =< σv > [(neqχ )
2 − (nχ)

2] (3.0.1)

Since we are analyzing a species which has to be non-relativistic at decoupling, its number
density at equilibrium would be of the form

nχ,eq = gχ(
mχT

2π
)
3
2 e−

mχ
T (3.0.2)

with of course gχ its number of degrees of freedom.
Usually, just the appearance of it would suggest that in absence of other effects, the num-
ber density would become exponentially suppressed very fast, leaving us with a negligible
abundance. Since this is not the case, provided that we have observed that nearly 70% of
matter in the Universe is dark, there is going to be for sure an antagonist effest to reduce
the dilution of the number density. The answer will surely lie in the Universe’s expansion,
which will progressively pull particles apart, thus eventually completely shutting down
their interaction. This is the process leading to the freeze-out, as we have already had the
opportunity to get in touch with. In fact for sufficiently small temperatures, the annihi-

lation term < σv > becomes negligible compared to H =
√

ρ
3M2

PL
, which is responsible

for particle dilution, thus bringing the freeze-out.
Let’s study Boltzmann equation now. In order to do that let’s lean on comoving quan-
tities in order to avoid the relations to Universe expansion. Introducing Y = nχ

s
. This

is something that we have already encountered previously and, as we have already ex-
plained, s represents the entropy density per comoving volume, so we know that scales
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like a−3, balancing the same nχ scaling. Boltzmann equation transforms in the following
way

dY

dt
= − < σvrel > s(Y 2 − Y 2

eq) (3.0.3)

as one can easily see that, being sa3 the total entropy in a comoving volume constant,

dY

dt
=

d

dt

nχa
3

sa3
=

1

sa3
d(na3)

dt
=

1

s
(
dnχ
dt

+ 3hnχ). (3.0.4)

As it is naturally understood Yeq is the comoving number density at thermal equilibrium.
Now reintroduce x = mχ

T
and look at entropy conservation. It can be demonstrated that,

as we have already seen, s = 2π2

45
g∗st

3, hence the conservation of entropy in a comoving
volume implies g∗sT

3a3 = const. If we neglect the dependence on g∗s that can be assumed
to be constant if we consider its temperature dependence to be weak compared to the
other two factors, then conservation of entropy reads

Ta = const (3.0.5)

leading to
dT

T
+
da

a
= 0 (3.0.6)

hence implying that, through time derivation,

dT

dt
= −HT. (3.0.7)

Using mχ = xT we can see that
xdT + Tdx = 0 (3.0.8)

and using all of the above in the Boltzmann equation, we can recast it in the following
form

dY

dt
=
dY

dx

dx

dT

dT

dt
=
dY

dx

x

T
HT =

dY

dx
H (3.0.9)

so finally the Boltzmann equation reads

dY

dx
= − < σvrel >

s

Hx
[Y 2 − Y 2

eq]. (3.0.10)

This gives us the opportunity of analyzing the Boltzmann equation in different regimes,
since this equation cannot be completely solved analytically. We will then match the
results at freeze-out
Since we are talking about WIMPs, we again stress the fact that they are non-relativistic
at decoupling, so TFO ≤ mχ hence giving xFO ≥ 1. If we analyze the temperature
dependence of both H and s we’ll clearly see that H ∝ x−2 and s ∝ x−3. We can express
this by simply putting H = H(x = 1)x−2 and s = s(x = 1)x−3. Boltzmann equation now
shows the form

dY

dx
= − λ

x2
[Y 2 − Y 2

eq] (3.0.11)

with

λ =
s(x = 1) < σvrel >

H(x = 1)
(3.0.12)
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being a constant.
There is no analytic solution to this kind of equation, but we can study Y behavior in order
to hope for a numerical one. Remember that for Γ >> H we have a sufficient number
of collisions that keep DM and primordial bath particles in thermal equilibrium. The
opposite happens when Γ << H. In this situation, the Universe expansion has brought
DM particles too far apart, so they cannot meet each other in order to annihilate. This
situation is responsible for the DM freeze-out and its fall out of thermal equilibrium. Let’s
restate this using Y . The two situations can be summarized in the equation

Y (x ≤ xf ) ≃ Yeq(x) and Y (x ≥ xf ) ≃ Yeq(xf ) (3.0.13)

with xf at freeze-out. In the cold dark matter case, Y decreases exponentially before
freeze-out. Then, after freeze-out, abundance is larger than what it would be if DM were
to be at equilibrium. More clearly

Yeq(xf ) > Yeq(x > xf ). (3.0.14)

This observation can lead us to an approximate solution for Ytoday in the Boltzmann
equation

1

Ytoday
− 1

Yf
=

λ

xf
−→ Ytoday ≃

xf
λ

(3.0.15)

being Yf >> Ytoday.
With this, we can arrive at a formula for Ωχ:

Ωχh
2 =

mstodayYtoday
ρcrit
h2

(3.0.16)

4 Numerical estimation

Now we need to estimate numerically Ωχh
2 and compare it to the value we obtained from

the experiments. To achieve this, we take into consideration the same line of reasoning we
employed in a few sections above when comparing Γ and H at freeze-out. In particular
let’s use for Γ:

Γ = neqχ < σv >= gχ(
mχT

2π
)
3
2 exp

(
−mχ

T

)
< σv > (4.0.1)

and the complete formula for H:

H2 =
ρ

3M2
PL

(4.0.2)

with

ρ = g∗(T )
π

30
T 4 (4.0.3)

If we consider the situation at freeze-out with xFO = m
TFO

and just compare the two
expressions for H and Γ, reshaping everything as a function of xFO we obtain something
of the kind:

exp(−xFO)

x
1
2
FO

≃ 3
√
5

2π
5
2

gχ

g
1
2
∗ (xFO)

mχMPL (4.0.4)
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that can be reacasted in

exp(−xFO)

x
1
2
FO

≃ 3
√
5

2π2

gχ

g
1
2
∗ (xFO)

mχMPL (4.0.5)

What we want to achieve is just a qualitative estimate of xFO, so by leaving only the
exponential term on the left side and taking the logarithm of both members, we come up
with a benchmark value [44] of

xFO ≃ − ln

(
3
√
5

2π2
MPL

)
= O(10) (4.0.6)

Here there is a little detail to notice for the factor < σvrel >. There are some approxi-
mations we can make even though we do not know the specific form of this factor. Using
a wave expansion for the solution of the Schroedinger equation, one can see, after a few
manipulations, that even the scattering cross section can be approximated into a sum of
different factors in the small velocities regime. In fact the most important ones are the
so-called s−wave and p−wave which are respectively the first and the second factor in
the expression below, which are constants.

< σvrel >∼ a+ bv2 + ... (4.0.7)

In the following, the result we obtain is calculated for s-wave processes, that involve only
the first factor in the approximation above.
With WIMPs being weakly interacting, we can use a cross section of the kind< σv >∼ α2

m2 .
For a weak scale particle we can use α ∼ 0.01 and mχ ∼ 100 GeV .
We employ the previoulsy obtained result Y0 ∼ xFO

λ
.

Moreover, thanks to recent experiments we can safely use{
ρcrit(t0) ≃ 1, 05× 10−5h2 GeV cm−3

s0 ≃ 2891, 2 cm−3
(4.0.8)

Taking all of this into consideration and using xFO = 10 we arrive finally at the formula

Ωχ =
mχs0Y0
ρcrit

→ Ωχh
2 ∼ 10−26cm3/s

< σv >
≃ 0, 1(

0, 01

α
)2(

m

100 GeV
)2 (4.0.9)

obtaining the right order of magnitude suggested by Plank and WMAP [44].

5 WIMPs

So what is it with WIMPs that makes them such a great candidate in the role of dark
matter particle? First of all it must be said that any given model must be confronted
with the solid value already obtained of Ωχh

2 ≃ 0, 12. Looking for WIMPs, as the
name suggests, we must employ cross section typical of weak interactions that in general
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gravitate around a scale of 1pb as we have already seen. Then we suppose that this kind
of dark matter decouples in a regime where g∗ ≃ g∗s. This is not a terrible approximation
if we consider high temperatures, which is the case in the early Universe. Now making
use of the value xFO ≃ 25 we can obtain

Ωχh
2 ≃ 0, 12(

106, 75

g∗(TFO)
)
1
2 (

0, 7pb

< σvrel >
) (5.0.1)

thus revealing that particles with cross section typical of weak interaction(of the order
of the pico barn) can reach a value for the relic density very similar to the one we are
looking for. This is referred to as ”The WIMP miracle”, as the correct result for Ωχh

2 is
reached for mχ in the GeVs-to-Tev range.
The first WIMP consisted in a 4th generation Dirac neutrino which, for mν > MeV ,
is non relativistic at decoupling [21], thus entering the case just studied. Here a little
clarification needs to be done on the form that the cross section assumes depending on
the particle that mediates the interaction. Since the particle considered, the interaction
would be mediated by the Z boson, which will provide the Ωχh

2 plot the classic V-shape
that comes with it at the resonance for mν ∼ MZ

2
. Then whether we find ourselves in the

regime mν < MZ or mν > MZ , the cross section will assume different shapes. In the first
case, the cross section will assume the characteristic form that we encountered studying
weak interactions

< σvrel >∼ G2
Fm

2
ν ≃ (

mν

GeV
)210−26 cm

3

s
(5.0.2)

with GF Fermi’s constant. In the opposite case, the cross section will resemble more the
one of electromagnetic processes

< σvrel >∼
α2

m2
ν

≃ (
mν

TeV
)−210−26 cm

3

s
(5.0.3)

thus proving our previous claim that a mass between GeV and TeV will grant us the relic
density that we are seeking.
In all fairness this is not much of a miracle, because one can still achieve the correct relic
density with a really weak coupling α << 1 but keeping fixed α

m
, thus allowing for a wider

variety of masses to reach the result we want.
In the following section, we are going to analyze WIMPs behavior in the early Universe
making use of a powerful tool in Boltzmann equations, which will grant us more precise
results.

6 DM searches

Right now there are three major sectors in which the research activities on dark matter
are concentrated: direct, indirect searches and colliders.
Direct searches investigate collisions between dark matter and experimental targets. It is
not a subtle strategy if one thinks about it and it guarantees a wide range of probable
WIMPs candidates. In fact, we proved in previous sections that for WIMPs, the relic
density is inversely proportional to the non-relativistic annihilation cross section

ρDM ≃ 1

σA
(6.0.1)
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Figure 2.1: This picture is explicative of the three different types of searches we can employ
for dark matter. From [38]

so that the event rate would be proportional to the product between this factor and the
scattering cross section[21]

R ∼ ρσS ∼ σS
σA
. (6.0.2)

This will allow a discrete rate even for WIMPs candidates with a small relic density. In
fact, there is a crossing symmetry relating scattering and annihilation cross section, so
that even if σA is big, the same could be said for σS. On the other side, as we will ap-
preciate more in the next section, direct searches are sensitive to uncertainties related to
local dark matter halos and are completely insensitive to leptophilic dark matter models
in which DM only couples to leptons. Moreover as one can understand, direct detection
methods fail whenever DM particles are so light that their signal would not reach the
experimental threshold or in the case of a too small σS.
Indirect searches look for products of WIMPs annihilations or decay. In particular, dark
matter particles that couple with standard model particles, should be revealed through
these methods. Of course, when this condition fails to happen this strategy will lose all
of its appeals. Anyways these searches are expected to greatly improve in the next years
and, as we deepen our knowledge in this sector, we will reach higher sensitivities that will
lead us to a clearer picture regarding dark matter and its byproducts.
Finally, colliders are our personal and homemade research lab, where crashes between
standard model particles are observed and studied. In the case of a dark matter sector
non trivial coupling with SM particles, we would be able to reveal WIMPs through these
collisions by observing the missing transverse energy that characterizes them. However
hadron colliders are not that sensitive to leptophilic dark matter, but this does not un-
dermine the great importance that this instrument has and the innumerable ways it could
serve us, expecially combined with the other two. Let’s have a closer look at them all.
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7 Direct searches

The first way that comes to mind, when it comes to dark particles to be discovered, is of
course to wait for them to crash onto an experimental target and to observe the reaction
as a proof of their existence. This technique has its pros, as we can directly observe the
fruits of collisions against the detector and attribute them eventually to the presumed
dark particle. The point is we must consider the dark adjective to be totally characteriz-
ing of these particles, as we cannot observe them. Because of this, we study their reaction
with the detector. In case a dark particle would be colliding against our target, what we
would see is just the target that recoils against what is an invisible particle. We study the
recoil energy being deposited inside our target to extract information about the original
particle that caused the collision. First of all, we have to recognize that in this kind of
experiments, there is going to be a huge background that we need to come to terms with.
This is why the totality of experiments considered as direct searches have to be placed
underground, in order to protect them from the majority of cosmic rays. There is even
an idea of what kind of signal we should get. In fact, it should be just a single hit, and
the signals collected should be uniformly distributed in time. This is contrary to what
happens with neutrons, particles that tend to interact multiple times with the target [25].

We have introduced in the previous chapter what is roughly the velocity distribution of
dark matter in the halo surrounding the Milky Way, and again we reiterate the fact that
the local DM density is

ρDM ≃ 0, 3 GeV/cm3 (7.0.1)

in the Standard Halo Model. When we consider DM experiments we must come to terms
with DM motion in the galaxy. Although there can’t be a preferred direction of motion
in the galaxy, we must consider that we, as observers, are continuously in a motion state
with respect to the Sun which, in turn, rotates around the center of the galaxy. This has
to be taken into account when projecting an experimental apparatus. What is expected
is a DM shower, which intensity will be subject to an annual modulation based on the
relative motion of the Earth with respect to DM reference frame.
We expect indeed a stronger DM flux incoming towards Earth in the period of May/June
and a progressive decrease after in which the flux will eventually touch the lowest point
in intensity in the period of November/December.
This is not the only effect that influences the incoming flux though. A competing one
would be what is called ”gravitational focusing” which is caused by the Sun’s gravitational
attraction on DM particles, which may pull them away from their direction of motion and
basically shift their path towards the Sun. Here, for example, the enhancement in DM
flux is perceived at its peak in March, when the Earth is behind the Sun, and at its lowest
in September, when the opposite situation arises. The play between the two antagonizing
effects is held by DM velocity, in that the slower DM is, the more grip gravitational
focusing will exert on it.
In terms of flux, a rough estimate starts when considering

nDM =
ρDM
mDM

(7.0.2)
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hence DM flux toward Earth will be

ϕDM = nDMvDM =
ρDM
mDM

vDM (7.0.3)

which, in the case of WIMPs with mass mWIMP ≃ 100GeV becomes

ϕDM = 9× 104cm−2s−1. (7.0.4)

Not a lot to work with, considering that we started with an extremely small number in
ρDM which is less than 10−21 times the density of water! This should make us realize how
difficult it is for us to detect these particles.
Now without further ado, let’s analyze the details about the experimental apparatus.
First, we study a single collision of dark matter against the target of mass MT in an
elastic way.
By imposing the conservation of energy and momentum on the system, one can get to
the explicit equation for the recoil energy of the target nucleus

ER =
|q⃗|2

2Mnucleus

=
2µ2v2(1− cosθ)

2Mnucleus

=
m2
χMnucleusv

2(1− cosθ)

(mχ +Mnucleus)2
(7.0.5)

here we made use of q⃗ as the WIMP’s momentum, v as its velocity and µ as the reduced
mass of the nucleus-WIMP system.
WIMPs typical velocities are of the order of 300 km/s and for mχ >> Mnucleus we expect
the nucleus recoil to be ER ∼ Mnucleusv

2 ∼ 1 − 100 keV . The most general picture that
allows us to express the rate of WIMPs collisions with the target nucleus is

R ≃
∫ Emax

Emin

∫ vmax

vmin

2ρ

mχ

dσ

d|q⃗|
vf(v)dvdER (7.0.6)

with ρ being dark matter density, σ elastic scattering cross section and f(v) WIMP’s
velocity distribution. We have already talked about the maximum velocity being the
escape one vmax ≃ 650 km/s and with a quick calculus we can estimate ER,max =

2µ2v2

Mnucleus

to be the maximum recoil energy, so

vmin =

√
ER,maxMnucleus

2µ2
(7.0.7)

and this means that the detector’s energy threshold is what actually discriminates what
we can from what we cannot see.
Now two paths open in front of us, depending on the different types of scattering taking
place. Dark matter can have indeed spin-dependent or spin-independent interaction with
the target. The first case is caused by scalar or vectorial couplings of DM with the nucleus
and it can be seen that [44]

dσ

dER
=

2mN

πv2
[Zfp + (A− Z)fn]

2F 2(q). (7.0.8)

Z and A are respectively the atomic number and atomic mass of the nucleus and fp and
fn are WIMPs couplings to protons and neutrons. In the end, F (q) is a form factor that
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accounts for the finite size of the nucleus and is normalized such that F (0)2 = 1. The
scattering is coherent and the overall differential cross section is in the end proportional
to the nucleus atomic number squared.
The opposite case is represented by spin-dependent scattering which is caused by the axial
coupling of dark matter with the nucleus. In this case

dσ

dER
=

16mN

πv2
G2
FJ(J + 1)Λ2F 2

SD(q) (7.0.9)

with Λ = 1
J
(ap < Sp > +an < Sn >), ap(n) are couplings to proton(neutron) and < Sp(n) >

the average spin contribution of proton(neutron).
We can see a clear dependence on J(J + 1) where J is the total spin of the target. This
suggests that this will turn to be a smaller contribution with increasing target dimension.
The overall result is that the experimental sensitivity to spin-dependent scatterings will
be below that of spin-independent ones.
It is important to notice that the spin-dependent form factor is different from the spin-
independent one. Notice also that spin-dependent interaction is not coherent with the
nucleus anymore and does not scale as A2. This results in difficulties in analyzing exper-
imentally spin-dependent interactions.
There is a diverse array of direct detection experiments, and most of them make use of dif-
ferent target materials and techniques. DAMA/LIBRA experiments found in its dataset
an annual modulation compatible with the one expected from WIMPs [21]. CoGeNT
experiment revealed a modulation and an unexplained rate excess in its data which could
belong to WIMPs. These are all examples of experimental situations which could be
attributed to WIMPs collisions. It is of crucial importance to compare those results with
each other and with the upper bounds already in our possess. With the current experi-
ments we are investigating progressively lower cross section and the idea is to perfect our
experiments to keep going in this direction. Eventually, we will reach the neutrino floor
where the investigated cross section will be undistinguishable from the elastic neutrino
cross section. DARWIN experiment is currently working on this and the situation will be
clearer once we collect more data with more advanced experiments in the near future.

8 Indirect searches

Here we explore the alternative routes that we can take to unveil the mystery of dark
matter. It can be possible to identify dark matter by examining its annihilation products,
which we receive here on Earth and are able to detect with the help of our satellites.
Of course, dark matter annihilation rate is not what it used to be in the early universe,
but this does not mean that the annihilation rate has been nullified in the present time,
there can still be byproducts of DM self-interaction coming from places where its density
is higher, like for example the center of our galaxy.
In principle, there is plenty of particles in the Standard Model that could be residues of
DM annihilations. In the following, we are going to explore some of the most palatable
ways we can think about when it comes to indirect detection.





8. Indirect searches 49

If we consider the annihilation χχ → γX, where X = γ, Z;H, we can see that in the
non-relativistic limit, the energy conservation condition is written as

2mχ = Eγ +
√
Eγ +m2

X −→ Eγ ≃ mX(1−
m2
X

4m2
X

) (8.1.5)

If we consider as final state γγ, we can clearly see that we obtain a monochromatic energy
spectrum, in fact, it would present a monochromatic energy line at the DM mass. In the
case of X = Z the line would still be monochromatic, but it would also be shifted towards
lower energies.

Such a monochromatic line would be, if observed, astonishing proof of DM existence.
Unfortunately, γγ production is loop suppressed and with branching ratios 10−3, 10−4, so
it is unlikely to be observed.
There are also other possibilities for photon production. In particular, DM annihilations
could produce charged leptons or quarks which in turn could emit photons via final state
radiation, or in the shower of their decay products. For example pion decay π0 → γγ
would consist in a DM proof since the photon energy spectrum would have a cut-off in
correspondence of mχ. It cannot be attributed to DM only tough, since there are also
other astrophysical processes that can have the same cut-off which do not involve DM.
We can see, as a final note, that in general the final flux has a strong dependence on the
relative velocity of DM particles and on the annihilation cross section in SM particles.
The factor < σv > is the same in many models as the one that figures in the relic density
formula, so a juicy target would be the WIMP one in which < σv >= 3× 10−26 cm3s−1.

8.2 Neutrino searches

The solar system is, as previously stated, in a continuous state of motion with respect to
the center of the galaxy and, consequently, to the dark matter reference frame. It can
happen, during this motion, that we, as a system, go through dark matter which can
scatter with baryonic particles. The scattering can be hard enough to steal a consistent
part of dark particles’ energy so that they are captured by the huge gravitational field
belonging to the Sun [21]. Now, talking about capture rate ΓC , we can say that it should
be proportional to the scattering cross section and to the local DM number density, basing
ourselves on previous formulas

ΓC ∼ σSn (8.2.1)

Time goes by and the number of captured DM particles by the Sun increases N = ΓCt
and so does the annihilation rate being proportional to n2

ΓA ∼ σAn
2 (8.2.2)

so the number of WIMPs inside the Sun changes with time as

dN

dt
= ΓC − 2ΓA (8.2.3)

The capture rate should be constant in time as the process of capture should not affect
the DM density and distribution. Instead, the annihilation rate grows with time, until



50 Chapter 2. History of WIMPS

some kind of equilibrium is reached when ΓA = ΓC

2
and

dn

dt
= 0. (8.2.4)

It can be proved that this equilibrium is reached during the Sun lifetime.
Now the only product of annihilations that can escape from the Sun and reach the Earth
are neutrinos. Luckily for us, the ones produced in these types of annihilations are much
more energetic than the ones coming from other processes. The best limits in our hands
come from IceCube telescope. Moreover, if we consider a situation of equilibrium between
capture and annihilation inside the Sun, then the consequent neutrino flux will depend
only on the capture rate of WIMPs. This means that the rate will depend only on the
scattering cross section. We can see that direct detection experimental results will depend
on the same quantity so we can compare both of the measurements. This is a great way
to have two different strategies to work in a synergetic manner.

8.3 Anomalous cosmic rays

Charged particles like electrons, positrons, protons and antiprotons can very well be
byproducts of WIMPs annihilations. The difference with neutral particles is that in this
case, they interact with the galactic magnetic field, hence deviating from their original
path and losing energy during their trip toward Earth. Here they present a diffuse spec-
trum caused by the energy loss while propagating. Several experiments, like PAMELA,
are looking for charged particles that could represent a signature of DM presence, like, in
the PAMELA case, an abnormal presence of cosmic ray positron fraction above a certain
energy threshold, which could be explained by DM annihilations. All the experiments
conducted in this field reveal a local source of cosmic rays which can be attributed to
Dark Matter. The issue here is how to state that the sole cause of these phenomena
is dark matter with absolute certainty, given the fact that there are multiple plausible
explanations other than that, like, for example, emission from pulsars.
Positrons and antiprotons are useful to seek because they can be produced in DM an-
nihilation and, on top of it, there is not much antimatter in our Universe, so there is
only a handful of processes that can be responsible for their production, one of which is
WIMP annihilation. p and p̄ have the advantage to propagate for longer distances inside
the galaxy over electrons and positrons, which can interact with photons losing energy
relatively quickly.
Nevertheless in the years, there has been a consistent development of technologies that
would help us to detect such particles. In particular, the birth of balloon experiments
has revealed itself as a striking instrument in the search for cosmic positrons, finding an
excess over secondary cosmic rays fluxes. This is the case with PAMELA (Payload for
Antimatter Matter Exploration and Light-nuclei Astrophysics) which is a satellite with
a magnetic spectrometer on itself that reported in 2008 an excess of positron fraction in
the 10 to 100 GeV energy range [21]. A rise in the e+ fraction can be observed over 10
GeV that cannot be explained by collisions of cosmic rays with interstellar medium. The
positrons produced in such reactions are expected to have a spectrum that falls quite
quickly with energy, so they cannot be the cause of the excess observed by PAMELA. In
fact, it is believed that the latter would be either DM annihilation or pulsar.
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There has been no observed excess in p̄, which excludes the hypothesis of supernova
remnants behind the positron excess, and nears our interpretation of dark matter to lep-
tophilic theories, in which DM only couples with leptons. Moreover, there was no endpoint
observed in e+ excess. This is also important because it would have been a hint about
DM mass. PAMELA observations combined with HESS, another affine experiment, lead
to mDM ∼ few TeV . More at it, DM would be annihilating to 2nd or 3rd generation lep-
tons before the e+ emission. This happens through the bosonic mediator ϕ, which then
decays to µ+µ− or pions. The reason is that this chain of processes would explain the
soft decrease in energy observed in the electron plus positron spectrum by HESS around
energies from 1 to 10 TeVs. ϕ is a light particle, hence weakly coupled to baryonic matter.
This could very well be that ”dark photon” described in some of the most famous theories
of dark matter preaching a new and hidden gauge symmetry that completes the standard
model gauge group.
There are some problems linked to these theories to explain the data, like the fact that the
annihilation rate should be boosted by a factor of 10 to 103. A plausible solution would
be Sommerfeld enhancement in which the ϕ exchange generates a Yukawa potential which
traps the two annihilating particles that in turn form a bound state, hence enhancing the
cross section.
Another solution would be just to have a bigger annihilation cross section for WIMPs.
Unfortunately this, in turn, would produce a too-small relic abundance for WIMPs, but
could be a solution in the case of non-standard pre-BBN cosmology.

9 Collider searches

Colliders offer another main opportunity to search for dark matter. Several colliders aim
at revealing dark matter particles through proton, electron or positron collisions. The
Standard Model has been, through the years, highly investigated and we are actually in
possession of very precise mesurements concerning properties and decays of almost all SM
particles. Nevertheless, there remain still some underexplored areas in which dark matter
presence could be hidden. In particular Z boson, Higgs boson, top quark or hadrons could
still have some small decay rates into pairs of invisible new particles, and in particular
into DM candidates, in case their masses were smaller than half the decaying one’s.
A source of interest is definetely Higgs boson which can actually be considered a portal for
new physics. It has to be noted that Higgs invisible decays are really weakly constrained
and in some case, the branching ratio in invisible particles can reach peaks of 26%. This
is one of the main reasons extensive searches have been made to collect more data on
Higgs decays, it can still exist a coupling between Higgs and a new, maybe dark, particle,
hence the name: Higgs portal [2].
Several particle colliders are running and more are about to see the light in the near
future. An important example of the former category is LHC, in which protons collide at
the center of mass energies up to 13 TeV and it has still not reached its full potential. It
offers a high luminosity and can probe particles with mass up to a few TeVs.
On the other hand, we have lepton colliders, like LEP, that have lower luminosity and
center-of-mass energy but can provide more precise measurements.
The point with dark matter is that it should be neutral, uncolored and weakly interact-
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Figure 2.2: Scheme of a mono-X process studied at colliders. From [24]

ing. This means that it can have only very small couplings to QCD, which can be probed
thanks to the LHC’s high luminosity. Being weakly interacting and neutral, DM collider
searches are configured as looking for missing transverse energy in the collision examined.
The heavy particles produced in the collision can decay and produce DM particles, then
generate significant missing energy. Of course, the specifics of these searches are highly
model-dependent.
Other signatures can present very interesting results linked to DM existence. We can
indeed study, in the case of DM production, the particles that accompany DM. In this
category lye ”mono-X searches”, where we actually indagate X particle produced in order
to extract information about a possible dark particle. The most common search in this
case are monojet searches at LHC, where the missing transverse energy recoils against a
high energy jet, which is produced as initial state radiation. The complementary search
at LEP is monophoton one, in which the missing energy is deduced by the presence of a
hard photon.
The limits obtained by studying monophoton and monojet events have been extracted
using effective couplings between SM and DM sectors [7]. Examples of this kind of op-
erators are in 2.2 where we can see dark matter and standard model particles together
in four points contact interactions, just like Fermi’s theory for electroweak interactions
before the introduction of W and Z bosons. These operators are valid until the energy
of the process lies well below the energy scale characterizing the SM-DM interaction, as
is true for all effective field theories.

Effective field theories might be a good instrument that allows us to gather all the fun-
damental aspects characterizing WIMPs interactions like degrees of freedom and WIMP
phenomenology avoiding all the complex detail of a full theory description. The weak
point in such a line of reasoning is that at a certain point, as we should know, effective
field theories break down, and that can happen if we consider energies corresponding to
the scale of DM-SM interaction mediators. Beyond this point, a full theory is necessary
in order to describe physics.
A possibility for DM is that the mediator is a standard model particle, or has the same
couplings of a standard model boson, like simplified models in which the interaction be-
tween DM and SM particle is mediated by a Z boson-like particle. The reason we do
not choose SM particles as mediators is that these models are limited by very strong
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Figure 2.4: DM discovery prospects for direct detection, indirect detection and particle
colliders on the cross section σ(χχ → l, q, g) as a function of the WIMP mass. Here

σth = 3× 10−26cm3/s is the reference value for the annihilation cross section and it is the
value required for a thermal WIMP to account for all of DM. From [24]

Even though there could also be other interactions, the few that we have chosen here are
able to express in just a couple of terms, some of DM properties that we have described in
the previous sections. For example quark interaction can be easily seen to originate spin-
dependent scatterings, while gluon one can create spin-independent scatterings. Moreover
Mq,Ml and Mg define the strengths of the interactions and, together with the value mχ,
completely define the theory. The knowledge of these parameters allows us to precisely
calculate rates of spin-dependent and spin-independent elastic scattering, DM annihilation
rates in quarks, leptons and gluons, together with the DM production rate at colliders.
The annihilation cross section at freeze-out is seen to be completely determinant for the
relic density that we observe, so in any of the experiments we perform, we are able to
access just a fraction of the complete observed dark matter density ΩDM . If σi(Mi) is the
annihilation cross section for each individual channel for i = q, g, l, then we can normalize
it to σth that represents the value required for a thermal WIMP to account for all the DM

σi(Mi)

σth
=

fi
Ωχ/ΩDM

(10.0.2)

with

fi =
σi
σtotal

(10.0.3)

representing the contribution of the singular channel and σtotal = σ(χχ → anything). If
we make the assumption fi = 1, which means that just a single channel is responsible
for the total annihilation cross section, we can see that σth could be the target of our
experimental efforts. Indeed if we could get to the point of probing cross section σi ∼ σth,
we could discover the particle responsible for the totality of dark matter.
This example gives us the opportunity to explore the meaning of complementarity con-
cerning dark matter experiments. Of course, at first glance, we can appreciate the fact
that different experiments are sensitive to different couplings between DM and SM parti-
cles so that together they can give us a complete picture of DM interactions. Moreover,
it is apparent that the outcome that could be achieved through different experimental
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paths are also very dependent on DM mass. For example, we can see from the FIGURE
that direct searches for dark matter are very effective for masses of the order of 50 GeV
and that their power gradually decreases at lower masses, as an effect of detector issues
at lower energies.
It is precisely at low masses that colliders take the lead. In fact it can be seen from
the picture that in this area, controlled collisions offer the best solution out of the three
because they can produce light dark matter particles with really large momenta, so they
are the best probes in this type of scenario.
Finally, it is in the high mass range that indirect searches surpass the others in effective-
ness. In fact here both direct and colliders searches are out of their reach and indirect
detection searches can jump in and make up for their absence. This is a deeper way in
which we can really see the complementarity of these three experimental paths.



Chapter 3

Introduction to Z ′ physics

In the second chapter, we have seen how effective field theory can be employed in the
study of dark matter properties. Models like these take advantage of the fact that heavy
degrees of freedom are integrated out, resulting in simpler physics. It is apparent that this
cannot be an answer to the problem we are dealing with, especially if we are considering
collider searches, where the energy scales we investigate are typically near the energy
cut-off of our effective field theory. It is in this moment that the alternative of simplified
models can be really taken into account. The literature on this is really vast and explored.
These models consist of theories in which the Standard Model is extended with a dark
matter sector and the mediator between the two is fully present in the particle spectrum
of the theory and not integrated out [46] .
We are prone to consider models in which fermionic DM interacts through a bosonic me-
diator. Of course, this is not the complete solution to the dark matter problem . In fact,
these kinds of models do not come free of problems. There are all sorts of unitarity and
anomalies issues that we have to deal with. But we will be more clear about this in the
next sections.

Moreover, the aim for the grand unification of SM gauge couplings motivate the presence
of additional U(1)’ symmetries [1], which may appear as relics of larger GUT Lie groups
and which could in principle breaks down at energies on the reach of the LHC.

Indeed we start with a gauge group of the kind:

G = GSM ⊗ U(1)′ = SU(3)c ⊗ SU(2)L ⊗ U(1)Y ⊗ U(1)′. (0.0.1)

The new Z’ boson can be observed in its decay as resonance in di-lepton channel whenever
the energy scale at which the symmetry is broken is found at TeV scale. Several theories
predict the existence of this new boson, like E6, SO(10) or left-right symmetric models
and these are all GUT realizations.
There are also other things to consider when speaking of simplified models. If the Z ′

boson mass is generated through a Higgs-like mechanism, the new scalar responsible for
the symmetry breaking can play an important role in phenomenology and that will always
be omitted in effective field models. Moreover, the condition of anomaly cancellation may
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1 Z ′ physics

Of course, there are physical features that are heavily model dependent and we would need
to specify the model we are adopting in order to explore the peculiarities that constitute
its roots. Fortunately for us, there are some basic features in common among all the
physical models that revolve around the Z ′ boson, according to the classification given in
the previous paragraph. Just as a basic reminder, we are considering the following SM
extensions [4]:

U(1)X U(1)Li−Lj
U(1)B−L (1.0.1)

Here we consider models with a Z ′ spin-1 boson and a dark matter fermion χ with a
non-trivial charge under the new group. As we have already begun to see, Z ′ couplings
to SM fermions are of the kind:

Lfermion = −gZ′j′µZ
′µ (1.0.2)

with

j′µ = 0 U(1)X

j′µ = L̄iγµLi + l̄iγµli − L̄jγµLj − l̄jγµlj U(1)Li−Lj

j′µ =
1

3
Q̄γµQ+

1

3
ūRγµuR +

1

3
d̄RγµdR − L̄γµL+ l̄γµl U(1)B−L

(1.0.3)

Where naturally Q and L are respectively quarks and lepton doublets, li are lepton sin-
glets, dR and uR are right-handed quarks.
Now some consideration must be given before introducing dark matter sector. We need
dark matter to couple to the new Z ′ gauge boson. To accomplish this, a Dirac fermion
is needed. Moreover, we have to satisfy the specific condition of having no anomalies in
our theories. We can avoid adding new conditions to the ones we already have satisfied
by employing vector-like charges of DM under the new gauge group. In fact, if we choose
qχL = qχR we will obtain non-chiral fermions and the vector-like couplings to Z ′ will avoid
additional anomalies arising. We remind the reader that the new fermion should be an
SM singlet. When all of this comes into play we end up with a dark sector lagrangian of
the type:

LDM = iχ̄ ̸ Dχ−mχχ̄χ (1.0.4)

where the covariant derivative is naturally obtained as

Dµ = ∂µ − igZ′qχZ
′
µ. (1.0.5)

First, let’s introduce the lagrangian for the complex scalar that will give mass to the Z ′

boson thanks to the symmetry breaking:

Lscalar =
1

2
(DµS)(D

µS)† + µ2
SS

†S +
λS
2
(S†S)2 + λHSH

†HS†S (1.0.6)

Now the covariant derivative has the same structure of 1.0.5, with the only exception of
introducing a charge qS for the scalar particle under the new gauge group.
We make use of the fact that Higgs boson will acquire a VEV < H >= v√

2
and the complex
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scalar will also get a VEV < S >= vS√
2
. Moreover, the Higgs boson has in general mixing

with S

M2
HS =

( λHv
2 λHSvvS

λHSvvs λSv
2
S

)
(1.0.7)

that can be diagonalized through a unitary transformation(S
H

)
→
( cα sα
−sα cα

)(S
H

)
(1.0.8)

where

t2α =
2λHSvvS

λHv2 − λSv2S
(1.0.9)

and t2α = tan(2α)

The most general kinetic energy term for the two gauge bosons associated with U(1)Y
and U(1)′ includes the kinetic mixing term [42]

Lkin → −cY
4
B̂µνB̂µν −

cZ′

4
ˆZ ′µνẐ ′

µν −
c

2
B̂µνẐ ′

µν (1.0.10)

This does not spoil the gauge invariance, since both field strengths are gauge invariants.
One can put the first two terms in canonical form cY = cZ′ = 1 by rescaling the fields and
take c = sZ′ = sin θZ′ .
The consequence of this term is that the kinetic term is not canonically normalized:

Lgauge = −1

4
(B̂µν Ẑ ′

µν)
( 1 sZ′

sZ′ 1

)(B̂µν

Ẑ ′
µν

)
(1.0.11)

So we need first to normalize this and then we will rotate to reach the mass eigenstates,
which we will get in a second.
We assume sin θZ′ < 1, otherwise we will get a theory with a single propagating gauge
boson in the case of sin θZ′ = 1 or a kinetic term with the wrong sign in the case of sin θZ′ >
1. Now we get to diagonalize the kinetic term with an orthogonal transformation in the
two gauge fields. The problem here is that such transformation shifts the hypercharge
and, as a consequence, the electromagnetic current. In order to keep what we have already
found about the electromagnetic current, we operate the diagonalization by making use
of a non-orthogonal transformation:(B̂µ

Ẑ ′
µ

)
= G(θZ′)

(B̂µ

Ẑ ′
µ

)
=
(1 −sZ′/cZ′

0 1/cZ′

)(Bµ

Z ′
µ

)
(1.0.12)

This way we get a canonically normalized kinetic term.
A consequence of the rotation is that now the fermions couple with the Z ′ gauge boson
through the coupling strength

j′µ → 1

cZ′
j′µ − tZ′jYµ (1.0.13)

with jYµ being the hypercharge current.
As an additional consequence, after the normalization, we can get to the mass matrix of
the three gauge bosons Bµ, W

3
µ and Z ′

µ. Of course, we can diagonalize this mass matrix
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through procedures that we already know and arrive at the eigenvalues, the masses of the
photon, the ZSM and the new gauge boson Z ′. In the following we give an approximated
value of the three masses, based on the assumptions vS > v and mZ′ ,mS > mZ .

The masses we find for the vector bosons are

mγ = 0

m2
Z =

v2

4
(g2 + g′2)(1− v2

v2S

s2Z′g′2

8gZ′q2S
) +O(

v6

v4S
)

m2
Z′ =

g2Z′q2Sv
2
S

2cZ′
+
v2

4
g′2t2Z′ +O(

v4

v2S
)

(1.0.14)

We started from the mass matrix of the three bosons Bµ, W
3
µ and Z ′

µ. Then we diago-
nalized it with a combination of two block diagonal rotations, one with mixing angle θW
and the other with angle θ3 in the lower right. In fact, we have

tan(2θ3) =
2sZ′cZ′sWv

2(g2 + g′2)

cZ′v2(g2 + g′2)(1− s2W t
2
Z′)− 2g2Z′q2Sv

2
S

= −2sZ′cZ′sW
2g2Z′q2S

v2

v2S
(g2 + g′2) +O(

v4

v2S
)

(1.0.15)

Now if we assume that Higgs VEV and SM gauge couplings are fixed, we can use the
measurement with its associated error mZ = 91.1876± 0.0021 to get the constraint

gZ′qS
sZ′

vS ≥ 1.3 TeV at 95% CL (1.0.16)

Then, thanks to the mass matrices we obtain after normalization and rotation, we can
obtain some sort of comparison between the new complex scalar and the new vector boson
mass in the form

mS

mZ′
∼

√
λS

gZ′qS/cZ′
. (1.0.17)

Now let’s write the couplings to fermions and scalars of the mass eigenstates:

Lfermion = ejemA

−cws3tZ′ejemZ + (c3 + sws3tZ′)
e

swcw
jZZ +

s3
cZ′

gZ′jZ′Z

−cwc3tZ′ejemZ
′ + (swc3tZ′ − s3)

e

swcw
jZZ

′ +
c3
cZ′

gZ′jZ′Z ′

(1.0.18)

and

Lscalar ∋
v

8
(g2 + g′2)(cαH − sαS)ZµZ

µ

+
v

4
swtZ′(g2 + g′2)(cαH − sαS)ZµZ

′µ

+
v

8
s2wt

2
Z′ [cα(g

2 + g′2 +
4gZ′q2Stα
s2ws

2
Z′

vS
v
)H − sα(g

2 + g′2 − 4gZ′q2Stα
s2ws

2
Z′

vS
v
)S]Z ′

µZ
′µ

(1.0.19)
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also be within reach of direct searches, making it possible to test the new theory with DM
scatterings.
We should see that if we assume a chiral DM fermion, with a purely axial χ-Z ′ coupling,
one would be forced to add additional fermions to the theory and the new vector boson
would still be coupled to quarks and leptons.
Anyways one could convert the previous conditions into equations by writing them in the
same order as before:

3(2Y ′
q − Y ′

u − Y ′
d) = 0

9Y ′
q + 3Y ′

l = 0

2Y ′
q − 16Y ′

u − 4Y ′
d + 6(Y ′

l − 2Y ′
e ) = 0

6(Y ′2
q − 2Y ′2

u + Y ′2
d )− 6(Y ′2

l − Y ′2
e ) = 0

9(2Y ′3
q − Y ′3

u − Y ′3
d ) + 3(2Y ′3

l − Y ′3
e ) + TrBSM(Y ′3) = 0

9(2Y ′
q − Y ′

u − Y ′
d) + 3(2Y ′

l − Y ′
e ) + TrBSM(Y ′) = 0

(2.0.1)

Here the fermionic U(1)′ charges are Y ′
i and q and l represent the left-handed quark and

lepton doublets respectively. Moreover, we can recognize the right-handed fields in u,d and
e, while TrBSM represents the trace over additional beyond Standard Model fermions. One
can clearly see that besides BSM particles, those equations depend only on the charges
of the new U(1)′ group. There are models in which the new charges Y ′

i are taken to
be for each fermion proportional to the weak hypercharge Y . Of course, these kinds of
models are automatically anomaly free provided that TrBSM(Y ′) = TrBSM(Y ′3) = 0. The
problem here is that, since the couplings to leptons are non-trivial, these kinds of models
result heavily constrained by LHC dilepton searches, so one would need to build models
with vanishing lepton couplings.
We can notice a few points even in this preliminary analysis. Let’s look at the second
equation that imposes Y ′

l = −3Y ′
q . If we want to avoid dilepton constraints, we should

put Y ′
l = 0. This rebounds on quark charges leading to Y ′

q = 0. When we consider a
single Higgs doublet, we obtain the additional condition

Y ′
H = Y ′

q − Y ′
u = Y ′

d − Y ′
q = Y ′

e − Y ′
l (2.0.2)

with Y ′
H Higgs U(1)′ charge. Here one can see that if we require Y ′

l = 0 and Y ′
e = 0 for the

same reasons, this implies that also Y ′
d and Y ′

u are zero. This brings us to the realization
that the new vector boson coming from U(1)′ symmetry, would not even be produced at
tree level if we want to avoid dilepton constraints.
Notice that if the new dark fermion χ is also the only one we add to the Standard Model
the last two equations can bring us the information that

3(Y ′
u − 4Y ′

q )
3 + Y ′3

χ,L − Y ′3
χ,R = 0

3(Y ′
u − 4Y ′

q ) + Y ′
χ,L − Y ′

χ,R = 0
(2.0.3)

which have, as the only rational solution,

Y ′
χ,L = Y ′

χ,R (2.0.4)

so that the only solution we could employ to add a dark fermionic sector to the standard
model is the one where dark matter has only vector-like couplings.
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These conclusions were drawn under the assumption that the new charges were generation-
independent. This is the simplest hypothesis. However, many models present non uni-
versal charges. This choice can be relevant in an experimental environment since it can
lead to flavor-changing neutral-currents, some of the most important processes yet to be
observed. Hence the non-universality of charges could be very well tested in the near
future by the simple observation of these rare processes.
To summarize one can see that if we include only one dark fermion in our model, the latter
cannot be leptophobic(vanishing lepton couplings), unless it shows also vanishing quark
couplings. The new vector-like fermionic dark matter does not bring any new anomaly
equation, instead, they have been already solved by SM particles as can be seen in the
Appendix. The problem here is the non-vanishing couplings to lepton and quarks. Dilep-
ton constraints will heavily reduce the parameter space.
It also needs to be taken into account the fact that the DM couplings to the Standard
Model particles, where present, must be vectorial. This means that the cross section of
DM scattering with the nucleus will not be velocity suppressed. This will in turn enhance
the relic density for DM. In conclusion, this kind of model is almost entirely ruled out
just by LHC searches.

2.1 Axial dark matter

Now let’s say we examine the case of axial dark matter. In these models, dark matter has
only axial couplings to the Z ′. This way we will be able to lose the constraints coming
from direct searches, paying the price of introducing more fermions into the model. Of
course, axial dark matter can come into play whenever we decide to build a model where
DM is a Majorana particle. In this case, the conditions 2.0.2 are still valid, so the first
four equations of 2.0.1 are satisfied. Let’s dive more into the equations for anomalies,
which are all satisfied but the two below

3(Y ′
u − 4Y ′

q )
3 +

∑
j

(Y ′3
j,L − Y ′3

j,R) = 0

3(Y ′
u − 4Y ′

q ) +
∑
j

(Y ′
j,L − Y ′

j,R) = 0
(2.1.1)

Here Y ′
j,L/R represent the U(1)′ charges of left/right component of the new fermion species

j.
Of course, we recover what we have already seen previously if we impose Y ′

u = 4Y ′
q with

whatever number of new fermions that have vector-like couplings Y ′
j,L = Y ′

j,R. If we want
to have a non-trivial theory we must involve new fermions in order to cancel anomaly
equations, this is clear. So let’s consider a fermionic dark matter particle χ chiral with
Y ′
χ,L = −Y ′

χ,R and an additional fermion A singlet under SM and with left and right
charges Y ′

A,L and Y ′
A,R respectively. After a few mathematical procedures, we can find the

solutions

Y ′
A,L = −1 , Y ′

A,R = 1

Y ′
A,L = 0 , Y ′

A,R = −1 or Y ′
A,R = 5/4

Y ′
A,L = 0 , Y ′

A,R = −5/4 or Y ′
A,R = 1

(2.1.2)
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These are the only solutions with rational U(1)′ charges of the form p/q with |p, q| ∈ Z
and p, q ≤ 100 we can find in these kinds of models. Indeed there are other solutions,
but they imply charged SM leptons, which are not contemplated in our hypothesis. This
concludes the proof that there must be at least one additional fermion in order to solve
the anomaly equations that could be detected at LHC

2.2 Leptophobic models

By employing the same procedures used above, we consider the case of leptophobic models
in which the Z ′ has vanishing SM lepton couplings. There is plenty of examples of previous
models with leptophobic dark matter. However, even in these experimental favored cases,
the anomaly equations cannot be looked past. In fact, they impose that a new DM
fermion should be accompanied by at least two other fermions that possess non-identical
charges. Moreover, at least one of the new fermions should be SM non-singlet. Indeed, at
least one of the new fermions introduced must be a doublet under SU(2) in order to have
non-trivial solutions to the equations. Furthermore, the new fermions should be subjected
to heavy LHC constraints, limiting in a big way their parameter spaces.

3 General solution of anomaly equations

Given the fact that we expect the new U(1)′ group to be a byproduct of a greater, non-
abelian group that ensures the stability of the theory at high energies, we can always
restrict charges to be integers, provided the correct normalization of the gauge couplings.
This results in making the anomaly conservation equations as Diophantine ones[17][13].
In fact, suppose we introduce n fermions with non-trivial charges y1, ..., yn under a new
gauge group U(1). As we said, the new charges can be integers. The two equations that
solve the anomaly conditions are

y31 + ...+ y3n = 0 (3.0.1)

for [U(1)3], and
y1 + ...+ yn = 0 (3.0.2)

for the U(1) anomaly cancellation. Before getting started there are few observations that
will help us deal with this problem. Of course, if there is a pair of vector-like charges
yi = −yk, then those do not contribute and the number of fermions involved in the
equation reduces to n−2. From now on then we will consider only fermions which satisfy
chirality conditions

yi + yk ̸= 0 1 ≤ i, k ≤ n (3.0.3)

We can notice that if we possess a set of charges which are solutions of the two equations
above, then we can build another one by just flipping the signs of the charges. Moreover,
also charge permutations inside the set we have obtained can bring another set of solutions,
more precisely we are able to access to n!− 1 sets of solutions just through permutations.
This leads us to choose the set of charges in the order of decreasing absolute value of
charges, starting with a positive one. We have a canonical set of solution {y⃗ = y1, ..., yn}
only if

y1 ≥ |y2| ≥ ... ≥ |yn| ≥ 1 (3.0.4)
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Now we can also multiply the obtained set of charges by any integer and get another
solution. Thus we can consider only coprime sets of charges, in which the greatest common
divisor among all charges is 1.
We can also obtain a solution by the composition of two subsets which are already solutions
of the two equations. So finally we must consider only coprime and non-composite sets of
solutions for the two Diophantine equations. We can call such a solution as a primitive
solution
If we are able to pull out of the second equation the charge yn and substitute in the first
one, we can get the final equation

y31 + ...+ y3n−1 = (y1 + ...+ yn−1)
3 (3.0.5)

Here we want to find the n charges solutions of this equation such that they depend on at
most n−2 parameters. Then we need to prove that there is always a choice of parameters
such that we can build a primitive solution.
The observation that will lead us to the solution is that, given two sets of integers that
satisfy the two equations, {x⃗} = {x1, ..., xn} and {z⃗} = {z1, ..., zn}, we can build another
solution by the linear combination of the two we already have, employing cubic polynomial
coefficients

{x⃗} ⊕ {z⃗} = (
n∑
i

xiz
2
i ){x⃗} − (

n∑
i

x2i zi){z⃗} (3.0.6)

The new operation we have introduced, ⊕, is called merger and satisfies the properties

{x⃗} ⊕ {z⃗} = −{z⃗} ⊕ {x⃗}
{−x⃗} ⊕ {z⃗} = {x⃗} ⊕ {−z⃗} = {x⃗} ⊕ {z⃗}

(3.0.7)

At the end of the merger, we do not know whether or not the final solution will be chiral.
In fact, it can be proven that if both {x⃗} and {z⃗} are chiral, then the merged set could
be vector-like.

3.1 Solution for even n

Here the chiral solution is generated by the two vector-like sets

{v⃗+} = {l1, k1, ..., km,−l1,−k1, ..., km}
{v⃗−} = {0, 0, l1, ..., lm,−l1, ..., lm}

(3.1.1)

and the n− 2 parameters ki, li with 1 ≤ i ≤ m are integers. We can see that l1 is the only
parameter common in the two sets. The two sets {v⃗+} and {v⃗−} are vector-like, so they
are automatic solutions of the anomaly equations.
We have seen that the merger operation requires cubic polynomial coefficients, these can
be found as

S+ =
m−1∑
i=1

(ki+1 − ki)l
2
i − (l1 + km)l

2
m

S− = k21l1 +
m∑
i=2

k2i (li − li−1)− l21lm

(3.1.2)
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so that at the end of it we obtain the set of charges

{z⃗} = {l1S+, k1S+, k2S+ + l1s−, ..., kmS+ + lm−1S−,

−l1S+ + lmS−,−k1S+ − l1S−, ...,−kmS+ − lmS−}
(3.1.3)

If we want to find only primitive solutions, then we can divide the set of charges by the
gcd. We can see that each solution can be generated by several choices of parameters.
In order for the charges to be non zero we should avoid some of the possible parameter
values like l1, k1 ̸= 0, S+ ̸= 0, k2S+ ̸= −l1S− etc.

3.2 Solution for odd n

Here we still have the merger of two vector-like sets

{u⃗+} = {0, k1, ..., km+1,−k1, ...,−km+1}
{u⃗−} = {l1, ..., lm, k1, 0,−l1, ...,−lm,−k1}

(3.2.1)

with m = (n − 3)/2 ≥ 1. So we still have n − 2 parameters k1, ..., km+1, l1, ..., lm with k1
the only parameter common to both sets.
We then obtain the merger set

{z⃗} = {u⃗+} ⊕ {u⃗−}
= {l1S−.k1S+ + l2S−, ..., km−1S+ + lmS−

kmS+ + k1S−, km+1S+,−k1S+ − l1S −−, ...,
−kmS+ − lmS−,−km+1S+ − k1S−}

(3.2.2)

with

S+ =
m−1∑
i=1

ki(l
2
i+1 − l2i ) + km(k

2
1 − l2m)− km+1k

2
1

S− =
m−1∑
i=1

k2i (li − li+1) + k2m(lm − k1) + k2m+1k1

(3.2.3)

Like in the even n case, we can express the conditions for non-zero charges and chirality
to be l1, k1, km+1 ̸= 0, S+ ̸= 0, k1 ̸= lm, li ̸= li+1, Ki ̸= ki+1 etc.
The point in both cases is that, once we have obtained the set {z⃗} in any case, we should
be able to show that this is the most general solution for an even(odd) number of fermions.
In order to do that the simple strategy is to consider an arbitrary chiral set {q⃗} which is a
solution of the two Diophantine equations and to find n− 2 integers such that {z⃗} ∝ {q⃗}
up to an overall constant. It is possible to prove that we can always find those n − 2
integers that satisfy our request.
So to summarize what we have shown in this section, we can say that we started with the
problem of finding a solution to the anomaly equations. This turns out to be the solution
to two equations, one of which is a cubic Diophantine equation. We have shown that for
any number of fermions, whether even or odd, it is always possible to find such a solution
in terms of n − 2 parameters. More at it, it can also be proved that these are the most
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general solutions that one could find up to an overall rescaling. In order to do that we
have used the merger procedure starting from two vectorlike sets, which automatically
solve the anomaly equations.
In the following sections we are going to develop and analyze a bunch of models involving
the new Z ′ vector boson and we are going to examine all the peculiar aspects that come
with them.

4 Dinamycal inverse seesaw mechanism

Here we examine a model in which we make use of B − L symmetry which is broken by
a small parameter [16]. The seesaw mechanism will help us explain the smallness of SM
neutrino masses after the spontaneous symmetry breaking of the B − L symmetry. As
we have previously seen, the anomaly cancellation condition implies the presence of new
fermions, which will account for a new dark sector, charged under B − L. We should see
some interesting aspects of this model, such as the fact that the Z ′ boson interacts more
with the dark sector than with the Standard Model, thus loosening constraints on the
new dark matter relic density.
We start things off with the introduction of two right-handed neutrinos for each SM
neutrino. The two right-handed neutrinos will be called NR and N ′

R and will carry lepton
numbers 1 and −1 respectively. The mass lagrangian originating is

−L = L̄YνH̃NR + N̄ c
RMNN

′
R + N̄ ′c

RµN
′
R + h.c. (4.0.1)

Here we can recognize Yν to be the neutrino Yukawa matrix, H̃ = iσ2H
∗ and L the SM

lepton doublet. We can see that the term proportional to MN will conserve the lepton
number, which is broken by two units by the term proportional to µ.
After the right-handed neutrinos are integrated out, we can recover the masses for the
active neutrinos as

mν ∼ v2YνM
−1
N µ(MT

N)
−1Y T

ν (4.0.2)

If we choose the right-handed neutrinos to be at TeV scale, we can still obtain a Yukawa
term close to unity by choosing µ ∼ O(keV ). We seek a dynamical explanation for the
origin of the µ term, which is the only term that breaks LN, thus it will always be small
at all energy scales if we choose it to be. In order to do that, we gauge the B − L
symmetry. This symmetry, when spontaneously broken, will generate LN breaking and
neutrino masses.
In order to cancel anomalies we have to analyze triangle vertices with three U(1)B−L
vertices and the one with gravity and U(1)B−L vertices. The equations we obtain are:∑

Qi = 0 =⇒
∑

QiL −
∑

QiR = 0∑
Q3
i = 0 =⇒

∑
Q3
iL −

∑
Q3
iR = 0

(4.0.3)

4.1 Fermionic sector

Let’s introduce our fermionic particles specifying their B−L charges. We have 3 NR with
charge −1, three N ′

R with charges +1, one χR with charge +5, one χL with charge +4 and
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one ω with charge +4. This set of particles can be proved to solve the anomaly equations.
Moreover, we need to introduce two extra scalars in order to generate the masses of the
sterile fermions ( besides the right-handed neutrinos) and produce SM neutrino masses.
Because of this, we introduce the two scalar fields ϕ1 and ϕ2 with charges +1 and +2
respectively. Of course, SM leptons will have B −L charges −1 and SM quarks will have
charges 1/3. The most general lagrangian in the neutrino sector we can build with these
particles is

−Lν = L̄YνH̃NR + N̄ c
RMNN

′
R + ϕ2N̄ c

RYNNR + ϕ∗
2N̄

′c
RY

′
NN

′
R + ϕ∗

1
¯χLYχχR + h.c. (4.1.1)

The missing ϕ∗
1ω̄YωχR has been absorbed in the term ϕ∗

1χ̄LYχχR through a rotation be-
tween ω and χL.
We can identify the mass matrix in

M =


0 YνH̃ 0 0 0

Y T
ν H̃

† YNϕ2 MN 0 0
0 MT

N Y ′
Nϕ

∗
2 0 0

0 0 0 0 Yχϕ
∗
1

0 0 0 Y T
χ ϕ1 0

 (4.1.2)

which is written in the basis (νcL, NR, N
′
R, χ

c
L, χR). As we can see the parameter µ can

be associated with the factor Y ′
Nϕ

∗
2. We can also see that ϕ1 acquires a VEV and, as a

consequence, the dark fermion χ gets a mass and the massless fermion ω is created in the
dark sector. It can be shown that the contribution of ω to the Neff , or the number of
relativistic degrees of freedom in the early universe, is negligible, so it will not have an
active impact as far as the results of our measurements are concerned.
We need a v2 =< ϕ2 >∼ keV << v in order to have a correct TeV inverse seesaw
mechanism. Of course, we are considering v =< H >= 246 GeV . More at it, the new Z ′

boson mass will depend on both ϕ1 and ϕ2, so we need absolutely v1 =< ϕ1 >∼ TeV if
we want the Z ′ mass to be above the electroweak scale. We will show that it is indeed
possible to obtain a small v2 even thou v1 is on the TeV scale through the coupling ηϕ2

1ϕ
∗
2.

Then, after all, Higgs-like particles acquire a VEV, we will find ourselves with a particle
content of a B − L gauge boson, 3 pseudo-Dirac neutrino pairs, a Dirac fermion at TeV
scale(our dark particle) and a massless fermion as well. The dark fermions interact with
the Standard Model through Z ′ coupling. Another source of interaction is via ϕ and Higgs
mixing. They represent a viable WIMP candidate and interact more with the Z ′ boson
because of their large charges.

4.2 Scalar sector

We write the scalar potential as

V =
m2
H

2
H†H +

λH
2
(H†H)2 +

m2
1

2
ϕ∗
1ϕ1 +

m2
2

2
ϕ∗
2ϕ2 +

λ1
2
(ϕ∗

1ϕ1)
2 +

λ2
2
(ϕ∗

2ϕ2)
2

+
λ12
2

(ϕ∗
1ϕ1)(ϕ

∗
2ϕ2) +

λ1H
2

(ϕ∗
1ϕ1)(H

†H) +
λ2H
2

(ϕ∗
2ϕ2)(H

†H)− η(ϕ2
1ϕ

∗
2 + ϕ∗2

1 ϕ2)

(4.2.1)

Here we require m2
2 to be positive and large, so ϕ2 does not acquire VEV in a classic way

as H and ϕ1 do, but only through the term proportional to η and it will be induced by
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v and v1, so it can be small. We still can make the expansion ϕi = (vi + ϕi + iai) and
minimize the potential in order to get

m2
H = −1

2
(λ1Hv

2
1 + λ2Hv

2
2 + 2λHv

2) ≃ −1

2
(λ1Hv

2
1 + 2λHv)

m2
1 = −1

2
(2λ1v

2
1 + λ1Hv

2 − 4
√
2ηv2 + λ12v

2
2) ≃ −1

2
(2λ1v

2
1 + λ1Hv

2)

m2
2 = (

√
2η

v2
− λ12

2
)− λ2v

2
2 −

λ2H
2
v2 ≃

√
2ηv21
v2

(4.2.2)

so we can see that

v2 ≃
√
2ηv21
m2

2

(4.2.3)

and, to obtain v2 ∼ O(keV ), we could have m2 ∼ 10 TeV , v1 ∼ 10 TeV and η ∼
10−5 GeV .
Now the scalar mass matrix is given by

M2
0 ≃

 λHv
2 λ1Hv1v/2 0

λ1Hv1v/2 λ1v
2
1 −

√
2ηv1

0 −
√
2ηv1 ηv21/

√
2v2

 (4.2.4)

The mixing angle between Re(H0) and Re(ϕ0
1) is constrained to be below 30% by Higgs

data [47] . Also, the mixing between new scalars is supposed to be small, given that
η << m2, v1, so we can identify the masses of the physical particles

m2
h = λHv

2

m2
ϕ1

= λ1v
2
1

m2
ϕ2

=
m2

2

2

(4.2.5)

if we consider α1 and α2 to be the mixing angles between h− ϕ1 and ϕ1 − ϕ2 respectively

tan(α1) ≃
λ1H
λ1

v

2v1

tan(α2) ≃ 2
v2
v1
.

(4.2.6)

If we assume λ1 and λ1H to be O(1) and v1 to be on the TeV scale, then we can see that
α1 is small but non-negligible. Moreover we shall notice that the mixing angle between
Higgs and a new scalar should only reduce Higgs couplings to SM particles. In fact, we
can see that Higgs couplings to SM fermions and bosons result to be

kF = kV = cos(α1) (4.2.7)

so we can get the constrain cos(α1) > 0.92. Moreover, we know that the massless fermion
does not couple to a scalar, so we can see that the consequences on Higgs couplings are the
only testable Higgs modifications in the model, given that all other particles are heavy.
Finally, we can see that α2 is very small, being proportional to LN breaking VEV and
related to the neutrino masses, so its presence will pass undetected.
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4.3 Dark matter phenomenology

We have seen how, with this new mechanism, we can obtain two dark fermions, being
χ and ω that will constitute our dark sector. We have also seen how ω presence has no
influence, being massless and it will just add to the relativistic degrees of freedom in the
early universe. It is χ that we are after, being a viable dark matter candidate. In the
following, we will just try to speculate the possibility of χ reproducing the correct dark
matter relic density.

Relic density

Being a WIMP in the early universe we can consider the dark fermion Z ′ to be in thermal
equilibrium with the primordial plasma due to interactions mediated by Z ′. The relevant
piece of lagrangian here would be

LDM = −gBLχ̄γµ(5PR + 4PL)χZ
′
µ +

1

2
M2

Z′Z ′
µZ

′µ −mχχ̄χ (4.3.1)

where we can get the Z ′ boson mass after the VEV generation as

MZ′ = gBL

√
v21 + 4v22 ≃ gBLv1

mχ = Yχ
v1
2

(4.3.2)

We can extrapolate from this the scattering cross section of χ̄χ → f̄f , where f is a
fermion, to be at leading order in v:

< σv >ff∼ nc(qχL + qχR)
2
q2fL + q2fR

8π

g4BLm
2
χ

(4m2
χ −M2

Z′)2 + Γ2
Z′M2

Z′
+O(v2) (4.3.3)

Here, of course, nc is the eventual color factor in the final state, qf are the B−L charges
of the final fermions and qχR and qχL are of course 5 and 4 respectively.
One can estimate also the decay width of the new Z ′ into two fermions to be

ΓffZ′ = ncg
2
BL

(
6qfLqfRm

2
f + (q2fL + q2fR)(M

2
Z′ −m2

f )
)√

M2
Z′ − 4m2

f

24πM2
Z′

(4.3.4)

We can obviously see that, wheneverM2
Z′ < m2

χ there is also the possibility of χ̄χ→ Z ′Z ′.
Moreover the channel χ̄χ → ϕ1 → Z ′Z ′ is subdominant. The same destiny is shared by
the channels χ̄χ→ ϕ1ϕ1 and χ̄χ→ Z ′ϕ1. In fact, knowing that mχ = Yχ√

2v1
, mϕ1 =

√
λ1v1

and mZ′ = gBLv1, we can only get subdominant contributions to the relic density. The
annihilation channel χ̄χ→ Z ′h0 is also doomed to fail us.
With this knowledge, we are able to estimate the relic density at the temperature in which
< σv > nχ ≃ H to be

Ωχh
2 =

2.5× 1028mχ

T f.o.χ M2
PL

√
g∗ < σv >

(4.3.5)

with g∗ being the relativistic degrees of freedom at time of freeze-out and MPL is the
Planck mass.
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Conclusions

We examined the model with the Inverse Seesaw mechanism as a way to generate a dark
sector and at the same time to explain the smallness of neutrino masses. Right-handed
neutrinos have been added to the standard model in order to erase the anomaly equations
and the global SM accidental symmetry B − L has been gauged. This model gives us
the possibility to lower the seesaw scale closer with respect to the electroweak scale, thus
avoiding the Higgs hierarchy problem. There is a small parameter µ that breaks the B−L
symmetry, thus generating the neutrino masses. This very parameter is able to explain
the smallness of such masses, being small itself. This mechanism is also able to present
us with a viable dark matter candidate , which we named χ and to derive a relic density
to be confronted with the present time constraints in our hands.

5 Gauge theory with leptoquarks

This one is interesting because here we still gauge B and L separately [18]. Baryon and
lepton numbers will then be broken at low energy scales. The peculiarity here is the
introduction of the so-called leptoquarks, particles that possess non-negligible baryon and
lepton numbers in order to cancel anomalies and generate masses for all fields. There is
also a dark matter candidate in a fermion which is stable due to the spontaneous breaking
of the symmetry. Flavor violation is not contemplated in such a model as ∆L = ±2,±3
and ∆B = ±3 interactions are generated in this theory. The main advantages in this
approach are the proven stability of the proton and the possibility to avoid the large desert
problem that we mentioned above talking about the Higgs hierarchy.
Let’s start with the extended version of the Standard Model including baryon and lepton
numbers as gauged symmetries

G = SU(3)⊗ SU(2)L ⊗ U(1)Y ⊗ U(1)B ⊗ U(1)L (5.0.1)

With the introduction of the right-handed neutrinos, the particle content with their re-
spective charges under the gauge group are

QL ∼ (3, 2,
1

6
,
1

3
, 0), uR ∼ (3, 1,

2

3
,
1

3
, 0)

dR ∼ (3, 1,−1

3
,
1

3
, 0), lL ∼ (1, 2,−1

2
, 0, 1)

νR ∼ (1, 1, 0, 0, 1), eR ∼ (1, 1,−1, 0, 1).

(5.0.2)

Now the baryonic anomalies can be listed as

[SU(3)2]⊗ [U(1)B], [SU(2)
2]⊗ [U(1)B], [U(1)

2
Y ]⊗ [U(1)B]

[U(1)Y ]⊗ [U(1)2B], [U(1)B], [U(1)
3
B]

(5.0.3)

with the only non-zero values in the standard model being

[SU(2)2]⊗ [U(1)B] = −[U(1)2Y ]⊗ [U(1)B] =
3

2
(5.0.4)

For the purely leptonic anomalies we get

[SU(3)2]⊗ [U(1)L], [SU(2)
2]⊗ [U(1)L], [U(1)

2
Y ]⊗ [U(1)L]

[U(1)Y ]⊗ [U(1)2L], [U(1)L], [U(1)
3
L],

(5.0.5)
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with the only non-zero values in the standard model being

[SU(2)2]⊗ [U(1)L] = −[U(1)2Y ]⊗ [U(1)L] =
3

2
(5.0.6)

plus the mixed anomalies

[U(1)2B]⊗ [U(1)L], [U(1)
2
L]⊗ [U(1)B]

[U(1)Y ]⊗ [U(1)L]⊗ [U(1)B]
(5.0.7)

which vanish in the Standard Model.
One of the solutions that come to mind when confronting this problem is Leptoquarks,
meaning, for example, particles like FL ∼ (3, 2, 0,−1,−1) or kR ∼ (3, 1,−1

2
,−1,−1). Al-

though it is difficult to satisfy both cosmological constraints and to find a model that
avoids the large desert problem, there still are some solutions free of anomalies that
we can take into consideration. Let’s introduce in the table below the fermionic content
of our theory, then we will explore the simplest of possibilities that accomplish our wishes.

Field SU(3) SU(2) U(1)Y U(1)B U(1)L

ΨL N 2 Y1 B1 = − 3
2N

L1 = − 3
2N

ΨR N 2 Y1 B2 = + 3
2N

L2 = + 3
2N

ηR N 1 Y2 B3 = − 3
2N

L3 = − 3
2N

ηL N 1 Y2 B4 = + 3
2N

L4 = + 3
2N

χR N 1 Y3 B5 = − 3
2N

L5 = − 3
2N

χL N 1 Y3 B6 = + 3
2N

L6 = + 3
2N

So we need to introduce a doublet under SU(2) to cancel the [SU(2)2]⊗ [U(1)B] anomaly.
Because of this, we need to give our new fermions, the same quantum number of a Stan-
dard Model family under SU(2). Of course, our new fermions will be vector-like under
SM, so they will have no influence on SM anomalies. Moreover, the [SU(2)2] ⊗ [U(1)B]
condition, gives us the constraint

B1 −B2 = − 3

N
(5.0.8)

and use B1 = −B2. For the leptonic version of this, we get

L1 = −L2 = − 3

2N
. (5.0.9)

If N ̸= 1 we see that the equation for [SU(3)2]⊗ [U(1)B] gives us the condition

2(B1 −B2)− (B3 −B4)− (B5 −B6) = 0 (5.0.10)

with the help of B4 = −B5 and B5 = −B6 we get

2B1 −B3 −B5 = 0 (5.0.11)
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which is solved for
B1 = B3 = B5 (5.0.12)

For the lepton numbers, the same reasoning brings us the solutions

L4 = −L3 and L5 = −L6 and L1 = L3 = L5 (5.0.13)

For the hypercharge values we obtain solutions for the equation concerning [U(1)2Y ] ⊗
[U(1)B]

Y 2
2 + Y 2

3 − 2Y 2
1 =

1

2
(5.0.14)

so we can find the sets of solutions

(Y1, Y2, Y3) ∈ {(±1

2
,±1, 0), (±1

6
,±2

3
,±1

3
), (0,±1

2
,±1

2
)}. (5.0.15)

Anyone of the solutions proposed solves completely all anomaly equations. Moreover, we
have different models for different N . The simplest one requires N = 1. In these kinds
of models, the new fermions do not interact under color forces. The only solution we can
choose here is the one with

Y1 = ±1

2
Y2 = ±1

Y3 = 0.

(5.0.16)

These fields are the leptoquarks. Their name has nothing to do with leptons or quarks,
it stands for their property of possessing both baryon and lepton numbers.

5.1 Lagrangian

The relevant piece of lagrangian here can be written as

−L = h1Ψ̄LHηR + h2Ψ̄LH̃χR + h3Ψ̄RHηL + h4Ψ̄RH̃χL

+λ1Ψ̄LΨRSBL + λ2η̄RηLSBL + λ3χ̄rχLSBL

+a1χ̄cLχLSBL + a2χ̄cRχRS
†
BL + h.c.

(5.1.1)

With
SBL ∼ (1, 1, 0,−3,−3). (5.1.2)

The mass terms for the fermions are generated through the λi terms and are vector-like.
The terms proportional to ai allow us to recover Majorana’s mass terms through the new
field SBL.
We can also create Majorana masses for neutrinos through the seesaw mechanism by just
introducing a new Higgs-like field beside the right-handed neutrinos

SL ∼ (1, 1, 0, 0,−2) (5.1.3)

and have the lagrangian term for this to be

−Lν = Yν l̄LH̃νR +
λR
2
ν̄cRνRSL + h.c. (5.1.4)
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5.2 Symmetry breaking

The U(1)B and U(1)L are broken when SBL acquires a VEV. Instead, when SL gets his
VEV it only influences the breaking of U(1)L. If we make the classical expansions

SL =
1√
2
(vL + hL) +

i√
2
AL

SBL =
1√
2
(vBL + hBL) +

i√
2
ABL

(5.2.1)

so when the two fields acquire VEVs, two fields hL and hBL are born and mix with the
Higgs boson.

5.3 The fermionic sector

After symmetry breaking, we will be left with four neutral and four charged chiral
fermions. Notice that our leptoquarks do not couple with baryons or leptons in the
Standard Model because they already possess baryon number, so it is impossible to gen-
erate flavor violations in these two sectors. Moreover, the lightest of the fermions that
we are left with is a viable dark matter candidate, being stable. In fact, its stability is
guaranteed by the symmetry breaking.
Notice that we did not have to impose additional discrete symmetries by hand, on the
contrary, we are left, after symmetry breaking, with a discrete ζ2 symmetry as a conse-
quence. All the new fields will be charged under the new symmetry with charge −1 and
the Standard Model particles will possess charge +1, this will guarantee the difficulty of
dark matter decaying into standard model particles, thus its stability.
The right relic density can be achieved in this model and the direct detection constraints
can be met under some circumstances. In fact, the dark matter fermion that we obtain
ΨLF , couples to the new gauge bosons Z ′

1 and Z
′
2 and to the two scalars hL and hBL. We

can obtain what we are after if we find ourselves close to one of these resonances.

5.4 Conclusions

This model proposed two new Z ′ bosons coming from the two gauged symmetries U(1)B
and U(1)L and, even though a little beyond the first sections of this chapter, the main
physical points are shared and here there is also the presentation of some interesting par-
ticles, the leptoquarks, which bring lepton and baryon number together. Moreover, an
explanation for the neutrino masses has been given as well with the seesaw mechanism
and the introduction of the right-handed neutrinos. The main advantages of this model
are the fact that proton decay is not happening, given that the renormalizable opera-
tors that cause it do not occur thanks to the formulation of our theory. Moreover, the
large desert problem has also been solved, given that the two new symmetries are broken
at low energies.
It also has to be stressed the fact that the fermion introduced does not bring any source
of flavor violation in the standard model and that the lightest of these can be a viable
Dark Matter candidate meeting the direct detection constraints and satisfying the correct
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relic density.

6 Two portal dark matter

Here we bring to the knowledge a model in which a dark matter candidate is linked to the
standard model through two channels: Higgs and a new vector [22]. The peculiarity here
is that the dark sector is charged under U(1)′ and the SM has a leptophobic interaction
with the dark vector boson. Moreover, the contribution to the DM-nucleon elastic scat-
tering starts at one loop, so we are well inside the direct detection constraints provided
by LUX and XENON100. More at it the relic density constaraints provided by Planck
and WMAP are met. Let’s dive straight into it

6.1 The model

Dark matter here has interactions with the Standard Model through two different portals:
Higgs and vector. It can be shown that in this way there is no tree level DM scattering off
nuclei because the interested Feynman diagrams begin at one loop level. This is why the
theory can meet all direct detection constraints. This is on the same line as the velocity-
suppressed models. Assume that besides a scalar field that mixes with SM Higgs(Higgs
portal), we also have a vector portal interaction, as the dark sector is charged under a
new U(1)′ symmetry. Moreover, only SM quarks are charged under the new U(1)′, but
no leptons. This way we have a leptophobic model, which is more in line with the collider
constraints. There are three pieces of our complete lagrangian:

L = LSM + LDM + Lint (6.1.1)

Of course, the covariant derivative is modified to include the new boson term. We have
already seen this previously, but we will repeat it for simplicity:

DSM
µ → D′SM

µ = DSM
µ − ig′

z

2
Z ′
µ (6.1.2)

where z is the dark charge of the quarks upon which the covariant derivative acts.
The dark matter lagrangian, coupled with a new complex scalar field ϕ is given by

LDM = −1

4
F ′
µνF

′µν + χ̄(iγµD′
µ)χ+ (D′

µϕ)(D
′µϕ)∗ −m2

ϕ(ϕϕ
∗)− 1

4
λ(ϕϕ∗)2 (6.1.3)

Of course, both fields are charged under the new U(1)′ as we can see.
For the dark sector we emply the covariant derivative

D′
µ = dµ − ig′

z

2
Z ′
µ (6.1.4)

As we have already hinted in the previous part, none of the leptons couples with the new
Z ′. Z ′ is leptophobic, so the interaction lagrangian has a particle content concerning only
scalar-Higgs and Z ′-quarks interactions

Lint = −λ(ϕϕ∗)(HH†) + g′
zQL

2
Z ′
µQ̄Lγ

µQL + g′
zuR
2
Z ′
µūRγ

µuR + g′
zdR
2
Z ′
µd̄rγ

µdR (6.1.5)
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Figure 3.1

Here H is the SM Higgs, QL is the left-handed quark doublet, while uR and dR are the
right-handed quark singlets. Here the couplings zQL

, zuR and zdR are considered to be
linked only to the third family of quarks, t and b, as the couplings to light quarks are
considered negligible in this type of theory. It is this that allows one-loop contributions
to rise and the dark matter scattering off a nucleus to be suppressed.
The anomaly conditions are all met, considering only the third family of quarks to be
charged under the new U(1)′. Speaking of the t and b quarks here we need to exploit the
anomaly equations to find the appropriate charge values to assign. In fact, we get

zQL
= −2

zUR
= +2

zdR = +2

(6.1.6)

which, substituted in the lagrangian above, gives us the interaction

Lint = −λ1(ϕϕ∗)(HH†) + g′Z ′
µt̄γ

µγ5t+ g′Z ′
µb̄γ

µγ5b. (6.1.7)

Here we can see the two portals in the fact that the new scalar interacts with Higgs
quadratically and the vector boson interacts with the third family of quarks.
The scalar ϕ interacts with the new gauge boson Z ′, which in turn interacts with dark
matter. The thing to notice here is that there are two mediators between the dark sector
and the SM, which are the new scalar ϕ and the new gauge boson. In the figure below
there is a simplified scheme of the interactions occurring

Again we stress that the Higgs potential is

VHiggs = −µH(HH†)− λH(HH
†)2 (6.1.8)

and that it acquires a VEV

H =
1√
2

(
0

v + h̃

)
(6.1.9)
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The new scalar acquires a VEV too

ϕ = v′ +
1√
2
h̃′ (6.1.10)

At the moment ϕ get a VEV, the new U(1)′ is broken and the gauge boson Z ′ acquires a
mass and it turns out that

mZ′ =
g′v′√
2
. (6.1.11)

The new scalar presence affects also the Higgs mass, in fact, the two scalars masses are
obtained by diagonalization of the mass matrix

M =

(
2λHv

2
√
2λ1vv

′
√
2λ1vv

′ 1
2
λv′2 − 1

2
λ1v

2

)
(6.1.12)

Here the minimization of potential has brought us the values

m2
ϕ = −λv′2 − λ1v

2

µ2
H = −λHv2 − λ1v

′2.
(6.1.13)

Of course, what we have to do now, in order to obtain the physical masses, is to diagonalize
the mass matrix. We make use of a rotation with mixing-angle

tan(θ) =
1

1 +
√
1 + y2

(6.1.14)

where

y =
2m2

h̃h̃′

m2
h̃
−m2

h̃′

(6.1.15)

and mh̃h̃′ is the off-diagonal element of the mass matrix.
So we recover the masses of the two scalars

m2
h =

m2
h̃
+m2

h̃′

2
+
m2
h̃
−m2

h̃′

2

√
1 + y2

m2
h =

m2
h̃
+m2

h̃′

2
−
m2
h̃
−m2

h̃′

2

√
1 + y2.

(6.1.16)

Of course, we know from our measurements that mh = 125 GeV . We can also obtain the
couplings as a function of the masses we just obtained

λH =
m2
h′ sin

2(θ) +m2
h cos

2(θ)

2v2

λ =
m2
h′ cos

2(θ) +m2
h sin

2(θ)

v2/2
− v2

v′2
λ1

λ1 =
m2
h −m2

h′

2
√
2vv′

sin(2θ).

(6.1.17)

The vacuum stability condition imposes that λH > 0, λv′2 > λ1v
2 and v′2(λHλ− 2λ21) >

v2λ1λH .
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Figure 3.2

6.2 Invisible Higgs decays

It is important to recognize that there are additional decay channels for SM Higgs. Indeed
in the case of mZ′ < mh/2 there is the possibility of h → Z ′Z ′ and its estimated decay
rate is

Γ(h→ Z ′Z ′) =
v′2g′4 sin2(θ)

16πmh

(1− 4m2
Z′

m2
h

)
1
2 (6.2.1)

Furthermore if mh′ <
mh

2
there is also the open channel h→ h′h′ with

Γ(h→ h′h′) =
c2

128πmh

(1− 4m2
h′

m2
h

)
1
2 (6.2.2)

where c is a constant that can be estimated.
The Higgs total decay rate must be modified in

ΓtotHiggs = cos2(θ)ΓSMHiggs+Θ(mh− 2mZ′)Γ(h→ Z ′Z ′)+Θ(mh− 2mh′)Γ(h→ h′h′) (6.2.3)

where Θ is the step function. Of course, the two channels we have mentioned contribute
to the invisible Higgs decays. The theory leverages the fact that there is still room for
invisible Higgs decays besides neutrinos. In fact, recent estimates at LHC have

BRinv ≤ 0.35 (6.2.4)

so it is important to have a model in which all invisible decays contribute to the branching
ratio in the measure that the limit we just wrote is not surpassed.

6.3 Relic density

The model we investigated showed a dark matter particle able to account for the cold
dark matter in the Universe. This is an example of WIMP dark matter of course, so the
relic density that we observe today is an effect of the freeze-out mechanism that started
from the moment the Hubble radius began to be comparable to the decaying rate. To
get the relic density today we would have to solve numerically the Boltzmann equation,
just like we stated in the previous chapter. In particular we would have to implement
the s-channel processes χχ → b̄b, t̄t, Z ′h, Z ′h′ and the t and u channels of the process
χχ→ Z ′Z ′.
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The analysis has been carried and one can show that there are regions of the parameter
space that allow for the correct relic density today, considering as independent free vari-
ables mχ,mh′ , g

′, v′ and θ. It appears that there are regions in the parameter space that
reproduce correctly the relic density at present time and with DM elastic cross section
well below the constraints imposed by LUX and XENON100. It has been observed that
said regions are the ones with a small θ, in particular for sin θ = 0.01. It can be deduced
that for dark masses in the range from a few GeV up to 1 TeV this model is able to
escape from the direct detection constraints.

6.4 Conclusions

We have presented here a model that exihbits a viable DM candidate and that is able to
evade the direct detection constraints. The peculiarity of this model is that there are two
portals of communications between the SM and the dark sectors, which are the Higgs and
the vector portal. The couplings between the new Z ′ boson and the light quarks have
been assumed negligible, this results in an absence of tree-level interaction, making the
DM scattering off a nucleus a one-loop level process.
we have found that this model is able to reproduce the correct relic density of the present-
time dark matter for various regions of the parameter space.
One last aspect needs attention. In this model the coupling between dark matter and Z ′

boson is vectorial and the coupling between Z ′ and the third quark family is purely axial.
Moreover thanks to the new scalar mediator and to the non-universality of Z ′ coupling
to quark families, it is possible to have a spin-independent elastic cross section of dark
matter off of nuclei. This is a very important feature that was not present in previous
models that employed axial couplings of the Z ′ to quarks and it can be a tool concerning
direct detection searches.



Chapter 4

Unitarity

The concept of unitarity is a powerful tool to implement when looking for bounds in a not
completely well-navigated theory. Indeed in the past, we have made use of this theorem
to gauge masses and energy scales and, for example, put upper bounds on expected
particles, like the Higgs boson, that were forced to respect this rule. We will encounter
some example later on in this chapter.
Unitarity constraints come from the conservation of probability. For a state |Ψ; t⟩ at time
t, we can translate the conservation of probability in the obligation for the norm of this
system to be the same at every instant:

⟨Ψ; t|Ψ; t⟩ = ⟨Ψ; 0|Ψ; 0⟩ . (0.0.1)

Actually, if we expand the state |Ψ; t⟩ in

|Ψ; t⟩ = e−iHt |Ψ; 0⟩ (0.0.2)

we can see that the previous equation implies that the Hamiltonian matrix is hermitian
H† = H. If we write the matrix S as

S = e−iHt (0.0.3)

this means that S has to satisfy the requirement

S†S = 1 (0.0.4)

so we deduce that the S matrix is unitary. This, even though apparently simple, bears
heavy consequences on cross sections and scattering amplitudes for any physical model,
and it all comes together into the generalized optical theorem, a milestone in scattering
theory.
Let’s see that, if we can expand

S = 1 + iT (0.0.5)

we can also write the unitarity constraint in terms of T matrix in

1 = S†S = (1− iT †)(1 + iT ) (0.0.6)
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and
i(T † − T ) = T †T. (0.0.7)

Let’s look into the T matrix and let’s review its ties with the scattering matrix element
M(i→ f) =Mif from a random initial state to a random final. The relation is

⟨i|T |f⟩ = (2π)4δ4(pi − pf )Mif . (0.0.8)

Here instead of going for the usual way of derving the generalized optical theorem, we
proceed by analyzing the unitarity constraint in terms of the scattering matrix element.
Let’s just consider a scattering matrix element Mif (s, cos θ) where s is the Mandelstam
variable identifying the center of mass energy squared and θ is the scattering angle. Now
let’s have a partial wave expansion. This procedure can be performed in d dimensions and
employs the property of the scattering system of being Lorentz symmetric. We decompose
the T matrix into a complete set of intermediate states which transform as irreducible
representation under the group SO(1, d−1) or, in our case, SO(1, 3). In a 2 → 2 scattering
it is sufficient to characterize the whole system by the two numbers E and J which are
respectively energy and the angular momentum in the center of mass frame. It could
be noticed actually that the energy dependent factor is not relevant to the scope of our
analysis, so we will avoid it. Anyways the partial wave expansion of the T matrix has, of
course, a reflection on the scattering matrix element, as they are related by the equation
we have just seen. Indeed let’s write the J th element of the helicity scattering matrix as

MJ
if =

1

32π
βif

∫ 1

−1

d cos θdJµµ′(θ)Mif (s, cos θ) (0.0.9)

Here dJµµ′ is the J
th Wigner function and µ and µ′ are the total spins of the initial and final

states respectively [41]. Finally, βif is a kinematical factor that can be approximated to
unity as high energy scales, which is exactly the study ground for our dark matter models.
Notice that the right-hand side of the equation has to be multiplied by a factor of 1√

2
each,

if the initial or the final state particles are identical. Now here is the time when we apply
our unitarity constraint to MJ

if as

Im(MJ
ii) =

∑
f

|MJ
if |2 = |MJ

ii |2 +
∑
f ̸=i

|MJ
if |2 ≥ |MJ

ii |2 (0.0.10)

here the sum over f runs of course over all the final states. This result is true for every
J and s.
Now this relation has to be satisfied and a violation at tree-level would imply two things:
either higher order terms can come into play restoring unitarity or that our theory is
not complete and we need new terms that come and rescue us. This is such an easy
equation to get and at the same time such a powerful tool that can help us whenever
we are dealing with obscure theories about which we are not aware of every detail. The
simplified dark matter models belong to this category as we do not know with certainty
the whole particle repertoire and we might have missed something truly important in our
neediness to have the simplest theory to explain the phenomena. Since it is a law that
every scattering system has to respect, this has general importance. In the past physicists
have used this tool to discriminate masses of particles or study energy ranges at which
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theory would break down as a consequence of a downfall of unitarity. There are various
examples of this. A famous one is dated 1977 when Lee, Quigg and Thacker employed the
unitarity constraint to draw a conclusion on the Higgs boson mass [43]. That was such an
interesting article as they employed techniques in the studies of the two by two scattering
process involving weak interactions that we can still take as a model of reasoning today
in our quest for dark matter origin as we did. Let’s look more specifically at the math
involved in the process coming from the relation we have just derived. The condition
obtained can be written in the form

0 ≤ Im(MJ
ii) ≤ 1 |Re(MJ

ii)| ≤
1

2
(0.0.11)

and we now know how to operate starting from these two: we are going to restrict the
parameter space by eliminating those regions that do not respect unitarity by violating
these two relations. Let’s carry on with our analysis by studying a system in which both
initial and final states have spin zero. In fact, with this particular configuration, we know
the Wigner function to be equal to the Legendre polynomials

dJ00 = PJ(cos θ) (0.0.12)

In the following, we shall analyze just the contribution coming from the J = 0 partial
wave, as it is the most important and the one that will give the most stringent constraints.
An interesting detail of the Wigner function is that in general d0µµ′ is different from zero
only if µ = µ′ = 0 and this is why we can write the helicity scattering matrix element as

M0
if =

1

64
βifδµ0δµ′0

∫ 1

−1

d cos θMif (s, cos θ) (0.0.13)

and this is the equation we will employ really soon in our study of dark matter models
with a Z ′ mediator. But before ending this section it could be interesting to mention a
remarkable application of what we have just seen. Indeed if we go back to the study of
weak interaction we will soon stumble upon scattering processes involving four gauge W
bosons. The interesting note here comes from the particular shape of the massive boson
propagator which is of the kind

< W µ(k)W ν(−k) >= 1

k2 −m2
W

(gµν − kµkν

m2
W

) (0.0.14)

The longitudinal part of the propagator, combined with the longitudinal components of
the external vector boson legs, can give a contribution to the overall amplitude which
is proportional to

√
s . It is not difficult to imagine that at high energy scales, when√

s → ∞, this contribution will break the perturbative unitarity and consequently our
theory. In order to correct this, it can be proved that there is plenty of diagrams involving
the same external configuration but a Higgs boson exchange that are able to balance the
contribution coming from the W boson exchange. Indeed the underlying idea is that the
two different types of Feynman diagrams possess the same high-energy behavior and the
presence of both is requested in order to make the electroweak theory respect the uni-
tarity bounds that we have seen. This is a simple yet powerful idea that we will employ
in our study of dark matter. Anyways the application of the unitary bound of equation
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0.0.11 returns an upper bound on Higgs boson mass that can be no greater of 1 TeV .
The finding of a Higgs boson with a mass greater than this critical value would signify all
of the consequences we already know well. We are going to see more applications of the
unitarity to dark matter systems right in the following section.

1 Perturbative unitarity in DM model with Z ′ medi-

ator

Let’s see what happens when we describe dark matter by a Dirac fermion ψ with a mass
mDM and represent the Z ′ boson with a particle of mass mZ′ in a lagrangian

L = −
∑
f=q,l,v

Z ′µf̄ [gVf γµ + gAf γµγ
5]f − Z ′µψ̄[gVDMγµ + gADMγµγ

5]ψ (1.0.1)

This is a simple and general description of dark matter. We have included vector and
axial couplings to the new boson, so we are in the most general frame. The point is that
just the presence of the new vector boson could, in principle, violate unitarity at high
energies. The expression of the Z ′ propagator is the same as the W one:

< Z ′µ(k)Z ′ν(−k) >= 1

k2 −m2
Z′

(
gµν − kµkν

m2
Z′

)
(1.0.2)

As previously stated the dangerous part, concerning unitarity, is the longitudinal one. In
fact, it grows with direct proportionality to the four momentum carried by the propagator.
This is manifestly a hint that, on high energy scales, this very feature of the new boson
would be responsible for the breaking down of our theory. In general the longitudinal
part of a vector boson will be dominant at high energies, so we will focus our attention
on it during our analysis. Let’s have a clear example of the characteristic behavior of
the vector boson, which will also be helpful in our future analysis. Let’s consider dark
matter annihilations, the peculiar behavior of the Z ′ at high energies will translate into
just the term kµ, which we can contract with the DM current. In formulas, we have a
term describing the annihilations that has the form

kµv̄(p2)[g
V
DMγµ + gADMγµγ

5]u(p1) (1.0.3)

which corresponds to Figure 4.1

Now we can use the fact that K = p1 + p2 to write

kµv̄(p2)[g
V
DMγµ + gADMγµγ

5]u(p1) = v̄(p2)[g
V
DM (̸ p1+ ̸ p2) + gADM (̸ p2γ

5 − γ5 ̸ p1)]u(p1)
= −2gADMmDM v̄(p2)γ

5u(p1)

(1.0.4)

The final result suggests that the propagator has the same behavior as a pseudoscalar
with mass mZ′ and coupling 2gADM

mDM

mZ′
. The same is true for quarks and their couplings

that are 2gAf
mf

mZ′
. We can guess, rightfully so, that unitarity will constraint the fraction
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Figure 4.1: Example of tree-level scattering of two dark matter particles into a bosonic
propagator carrying four-momentum k = k1 + k2

Figure 4.2: Example of a dark matter scattering with a Z ′ boson propagator

gAf
mf

mZ′
besides the simple couplings gV,A. Now that we have everything in our hands,

let’s finally look at the way unitarity constraint impacts our theory by applying 0.0.11
to the self-scattering of any two fermions f with a non-trivial axial coupling. Let’s look
at a scattering process involving two fermions f as initial states and two as final states
ff̄ → ff̄ with a Z ′ boson exchange in Figure 4.2. Here

Mii = ū(k1)(g
V
f γµ + gAf γµγ

5)v(k2)
1

k2 −m2
Z′
(−gµν + kµkν

mZ ′2 )v̄(p2)((g
V
f γµ + gAf γµγ

5))u(p1)

(1.0.5)
At high energies K2 >> m2

Z′ and the longitudinal part of the propagator dominates, so

Mii = ū(k1)(g
V
f γµ + gAf γµγ

5)v(k2)
1

k2
(
kµkν

mZ ′2 )v̄(p2)((g
V
f γµ + gAf γµγ

5))u(p1). (1.0.6)

Now we can apply what we have learned a couple of equations above and write

Mii = 4g2Af m2
f ū(k1)γ

5v(k2)
1

k2
1

m2
Z′
v̄(p2)γ

5u(p1) (1.0.7)

Now we notice that k2 = s and that at high energies

ū(k1)γ
5v(k2) = v̄(p2)γ

5u(p1) ≃
√
s (1.0.8)

[50]. So now we have

Mii = 4g2Af m2
f

1

m2
Z′

(1.0.9)

And we can calculate

M0
ii =

1

64π

∫ 1

−1

d cos θ4g2Af m2
f

1

m2
Z′
. (1.0.10)

Let’s now include the multiplicity factors coming from the exchange of the initial particles,
the exchange of the final particles and the exchange of the identical final and initial states,
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Figure 4.3: t scattering process example. Here the mass insertion in the fermionic line allows
the non-trivial result.

which amount to a factor of 8 to get

g2Af m2
f

m2
Z′

≤ π

2
. (1.0.11)

So at the end of our reasoning we obtain, by taking the square root of this relation:

mf ≤
√
π

2

mZ′

gAf
. (1.0.12)

That’s the end of our calculation. Here is how powerful this tool is: we can obtain an
upper bound on the fermion mass just by imposing the unitarity constraint. This is a
simple example, but we can employ it with every dark matter model
It is clear that the bound on the fermion mass could have not been obtained only with a
non-trivial vector coupling.
Let’s take the discussion one step further and analyze what happens if we find ourselves
in a scattering process with the new Z ′ boson as an external leg. If we focus on the
scattering process ψψ̄ → Z ′

LZ
′
L in which, of course, we pay attention to the longitudinal

Z ′ component. As we already know from quantum field theory courses, at high momenta,
k2 >> m2

Z′ , the Z ′ polarization vector can be approximated by its four-momentum

ϵµL(k) =
kµ

mZ′
. (1.0.13)

From now on we will use this high-energy behavior in our description. This is why we
expect this process to have an energy dependence that grows proportionally to s

m2
Z′
, thus

destroying unitarity at high energies. Here the trick is in the fact that there are two
diagrams, t and u, which, with their opposite sign contribution, cancel and get rid of this
unwanted behavior. So the s dependence is gone, but with it, the entire contribution
of the two diagrams. In order to find a non-zero result we are forced to draw a mass
insertion along the fermionic line as we can see in Figure 4.3 . This will also regulate the
helicity of the whole diagram. In doing that we are also getting rid of the four moment
carried by the fermion and this will lead to an overall

√
s dependence. Anyways at high
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energies we can still employ the same tricks as before and cancel the gVDM contribution,
so the scattering amplitude expression we will get, for the t process, is something like

v̄(p2)[g
A
DMγνγ

5]
mDM

t−m2
DM

[gADMγµγ
5]u(p1)

kµ1
mZ′

kν2
mZ′

(1.0.14)

Here we have used the Mandelstam variables in the center of mass frame

s = (p1 + p2)
2 = (k1 + k2)

2

t = (p1 − k1)
2 = (p2 − k2)

2

u = (p1 − k2)
2 = (p2 − k1)

2.

(1.0.15)

and the u process has the same expression, only with the u variable in place of t in the
denominator of the fermion propagator. The point here is we will get the same contri-
bution from the two diagrams, with the same signs, so we will just employ a multiplicity
factor of 2 later on in the calculation.
What happens at high energies in the center of mass frame is that both t and u are
proportional to s and an angular contribution. We will just isolate the s contribution at
the denominator of the fermion propagator as it is the dominant contribution which will
set the dependence of the whole diagram. Then we exploit the growth of both the vector
bosons four momenta as

√
s to cancel the denominator one and use the same technique

of the previous example to get a scattering matrix amplitude proportional to

(gADM)2
√
s
mDM

m2
Z′
. (1.0.16)

So all in all we will get, after M0
ii calculation, an upper bound of the kind

√
s ≤ πm2

Z′

(gADM)2mDM

. (1.0.17)

Of course there is the problem: when we consider higher energies the theory breaks down.
This is an index of the fact that we must consider new physics to come and rescue us as
the situation we are in right now with the elements at our disposal does not let us cure
unitarity problems by ourselves. This is where the Higgs boson contribution comes in our
help. Indeed there is an s diagram Higgs boson exchange that has the same contribution
as the one we have just written down. The problem reflects on the Higgs boson mass as
it puts an upper limit on it obviously of the form

ms ≤
πm2

Z′

(gADM)2mDM

. (1.0.18)

Here is the unitarity in all its might: we can get to an upper bound on the Higgs boson
mass by just applying the general methods we have studied in the previous section. That’s
a sign of a powerful tool.

2 Additional Higgs field

Let’s proceed in our journey and consider the dark matter lagrangian combined with
another piece containing an additional Higgs [41] field, a complex scalar that will give
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mass to our new Z ′ by symmetry breaking. In the previous section we have seen the
need for a new complex scalar coming from the anomaly equation solutions. We have
seen how it is almost mandatory to include a new scalar field just to obtain a non-trivial
solution of the anomaly equations. So it is coming from numerous sources the request
for a new Higgs field. We fulfill the request by including a new piece to our lagrangian
which will describe a complex scalar field with the same properties of the Higgs field, but
a singlet under SU(2)L. Of course, we need the field to be complex in order to get a U(1)′

non-trivial charge.
Our lagrangian, to summarize, will be described by

L = LSM + LDM + L′
SM + LS (2.0.1)

where the third term describes the interaction between the Standard Model and the new
gauge boson and the fourth contains the improved Higgs sector.
Let’s see what happens to our dark sector. To start we first mention that it is important
to have Z ′ vectorial couplings vanish in at least one sector. We have talked about it
in abundance when treating direct detection constraints so we will not linger on this
discussion. Instead, we are just going to assume it right now. For the dark sector one
way to obtain vanishing vectorial couplings is to consider a Majorana fermion as the dark
matter particle. This will lead to a natural axial coupling between dark matter and the
new vector boson. In particular, we are going to consider a fermion whose structure is

ψ =
( χ
ϵχ∗
)

(2.0.2)

where naturally χ is a Weyl spinor. So the property we are making use of here is that
under the new U(1)′ gauge group the dark matter carries a charge qDM and the whole
lagrangian is invariant under the gauge transformation

ψ → exp
(
ig′qDMα(x)γ

5
)

(2.0.3)

with g′ being the coupling constant of the new gauge group U(1)′.
Now about the kinetic term of the new fermion, we can expand the expression for the
improved covariant derivative we have talked about in the previous chapter, which will
bring the terms

Lkin =
1

2
ψ̄(i ̸ d− g′qDMγ

5 ̸ Z ′)ψ =
i

2
ψ̄ ̸ dψ − 1

2
gADMZ

µ′ψ̄γ5γµψ (2.0.4)

and gADM = g′qDM . Now we know that in order to obtain a Majorana mass term it would
be impossible just to write it straight from the get-go as the conservation of U(1)′ charge
would be compromised. Nevertheless, we can obtain a mass term dynamically. This
happens simply by spontaneous symmetry breaking. If we choose the new Higgs, which
we will refer to as S, with a charge qS = −2qDM , this will lead us naturally to a mass
term of the form

Lmass = −1

2
yDM ψ̄(PLS + PRS

∗)ψ. (2.0.5)

It is a Yukawa mass term and of course, PR and PL are respectively the left and right
propagators. This will allow us to generate a mass for dark matter starting from the U(1)′



2. Additional Higgs field 89

SSB.
The two new pieces of lagrangian can be written in the following way:

LDM =
i

2
ψ̄ ̸ dψ − 1

2
gADMZ

µ′ψ̄γ5γµψ − 1

2
yDM ψ̄(PLS + PRS

∗)ψ (2.0.6)

and

LS = [(dµ + igSZ
µ′S)]†[(dµ + igSZ

′
µS)] + µ2

sS
†S − λs(S

†S)2. (2.0.7)

We can easily see how the new Higgs singlet acquires a VEV and gives mass to both dark
matter and the Z ′ boson. If we define

S =
1√
2
(s+ w) (2.0.8)

where w is the VEV, we can see that, through gs = g′qs = −2gADM , we will come to the
equation

L =
i

2
ψ̄ ̸ dψ − 1

2
gADMZ

µ′ψ̄γ5γµψ − 1

4
F µν′F ′

µν −
mDM

2
ψ̄ψ − yDM

2
√
2
sψ̄ψ

+
1

2
m2
Z′Zµ′Z ′

µ +
1

2
dµsdµs+ 2(gADM)2Zµ′Z ′

µ(s
2 + 2sw) +

µ2
s

2
(s+ w)2 − λs

4
(s+ w)4

(2.0.9)

and F ′
µν = dµZ

′
ν − dνZ

′
µ.

Moreover, we know that

mDM =
1√
2
yDMw (2.0.10)

and

mZ′ ≃ 2gADMw (2.0.11)

A little thing to notice is that if we decide to charge SM Higgs under U(1)′, this will
generate an additional contribution to Z ′ mass. The problem here is that we dispose
of the electroweak precision data, a sharp instrument in our hands, which requires this
contribution to be very small. So just because of that, we are going to ignore it in the
remainder of the discussion as we can safely neglect it right now.
Notice also that we can also safely obtain real masses by requiring yDM and w to be real.
This can be achieved through a simple phase redefinition in which S and ψ absorb the
complex phases.
Now let’s make use of the bound we have obtained and see that the new Higgs boson
mass must satisfy the requirement

ms ≤
πm2

Z′

(gADM)2mDM

. (2.0.12)

Also, there are other processes that need to be implemented in order to check unitarity.
For example the scattering of the kind ss→ ss are such that can influence the scattering

amplitude. We are about to examine the scattering of the states ss√
2
and

Z′
LZ

′
L√

2
of course

in the high energy limit
√
s >> ms >> mZ′ . It is the J = 0 partial wave we are after

and more specifically M0
if .
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Figure 4.4: A four s vertex.

2.1 ss√
2
→ ss√

2

Here the Lagrangian element that contributes the most is

L = −λs
4
s4. (2.1.1)

Of course, we could also consider loops, but their contribution is not as important at
the four-vertex one Figure 4.4. That being said, we need to convert this expression into
quantities we could measure or, in some way, that we could have a grasp on. Let’s remind
ourselves of the formulas

w2 =
µ2
s

2λs
mZ′ ≃ 2gADMw

m2
s = µ2

s.

(2.1.2)

Let’s use these to rewrite the lagrangian term as

L = −m
2
s(g

A
DM)2

2m2
Z′

. (2.1.3)

The point here is also to consider, in order to calculate the scattering amplitude of this
process, the multiplicity factor. In this particular case, we must employ a factor of 4! and
write

Mif = −12
m2
s(g

A
DM)2

2m2
Z′

(2.1.4)

and finally

M0
if =

1

64π

∫ 1

−1

d cos θMif . (2.1.5)

Let’s carry out the integration here and obtain eventually

M0
if = − 3

8π

m2
s(g

A
DM)2

m2
Z′

(2.1.6)

This is the result we obtain for this process at high energies. Now we have to consider
other processes too. We will see in the following subsection
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Figure 4.5: Two Z ′
L scattering process at tree level.

2.2
Z ′
LZ

′
L√

2
→ Z ′

LZ
′
L√

2

We can see an example of such a process in Figure 4.5. This time we use the results of
[43]. In fact, we can apply what is there just by translating it in the case of a new U(1)′

symmetry. We can review the reasoning made there just to give a frame of what we are
about to see in terms of the result of the scattering amplitude. First of all, among all
the graphs, we concentrate only on those that potentially constitute a threat to unitarity,
and this appears to be obvious, but saves a lot of time in calculation. Then one should
know that there are many possible cancellations among tree-level diagrams so that even
though we detect a suspicious behavior at high energies in one graph, it is not trivial
that that is going to be the overall dependence of the scattering amplitude, instead, it is
possible that that contribution will be erased by an analog in the opposite sign. Indeed
we can classify the momentum dependence of tree-level graphs by powers of k

mZ′
with k

being the four-momentum of the gauge bosons in the center of mass frame. In a tree-level
graph with four-boson as external legs, we will have a contribution that will be at worst
proportional to ( k

mZ′
)4. As a consequence, in the J partial wave expansion, each graph

will contribute with a factor

aJ = A(
k

mZ′
)4 +B(

k

mZ′
)2 + C. (2.2.1)

We can classify the coefficients as A, B and C forces. Every force will be attractive or
repulsive depending on the sign of the coefficients. At high energies in the partial wave
expansion, all the divergent behaviors are confined in the J = 0, 1, 2 partial waves, so
we will just examine them. Moreover one can see that there are cancellations between
Feynman diagrams in each case of the A forces, and the B forces as well. What happens
is that, due to these gauge cancellations, we must consider only the C forces and, in
this particular example, the only diagrams that offer a non-trivial contribution at high
energies are the s, t and u tree level diagrams.
In this case, the relevant piece of Lagrangian we are considering is

L = 4(gADM)2Zµ′Z ′
νsw (2.2.2)

and we are going to employ this to create tree-level diagrams whose contribution is of the
type

Mif = −2
m2
s(g

A
DM)2

m2
Z′

(
s

s−m2
s

+
t

t−m2
s

+
u

u−m2
s

) (2.2.3)

if we consider the cancellations we were talking about previously.
Then we consider the contribution at

√
s → ∞ we will see that, by just applying the

formula of the previous section,

M0
if = − 3

8π

m2
s(g

A
DM)2

m2
Z′

(2.2.4)
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Figure 4.6: Here it is reported a ss√
2
→ Z′

LZ
′
L√

2
process at tree-level.

where we have considered the coefficient and the multiplicities following the same line
of reasoning of the previous section. This result was derived on the basis of what we
have learned in [43], following the same type of argument as the two situations can be
overlapped and the tree-level graphs contributing to the amplitude are the same, with the
Standard Model Higgs replaced by the dark Higgs boson. We have just applied the same
principle of the crossing symmetries.

2.3 ss√
2
→ Z ′

LZ
′
L√

2

For this process, we take also inspiration from [43], as the relevant contribution comes
from the tree-level S boson exchange between initial and final states Figure 4.6. The
relevant piece of lagrangian is

L = 4(gADM)2Zµ′Z ′
νsw − λs

4
(s4 + 4s3w + 6s2w2 + 4sw3 + w4) (2.3.1)

and just starting from here we can envision, just like the previous subsection, the con-
tribution coming from the s exchange in tree level diagram describing just the s process.
Let’s create the scattering amplitude

Mif = −2(gADM)2m2
s

1

s−m2
s

kµ1
mZ′

k2ν
mZ′

(2.3.2)

we make use of the fact that at high energies

k1 · k2 =
s

2
(2.3.3)

to rewrite

Mif = −(gADM)2m2
s

m2
Z′

s

s−m2
s

(2.3.4)

Now in order to findM0
if we employ the formula we already know and add the contribution

of the two final particles exchange and the two initial particles exchange for an overall
factor of 4 in order to get

M0
if = −(gADM)2m2

s

8πm2
Z′

(2.3.5)

2.4
Z ′
LZ

′
L√

2
→ ss√

2

This process has the same result as the previous one as the elements of the Lagrangian
we are considering are exactly the same as before, we have just exchanged initial and final
states.
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2.5 Scattering matrix

Finally, we can gather all the results we have obtained in the scattering matrix that takes
the form, at high energies,

lim√
s→∞

M0
if = −(gADM)2m2

s

8πm2
Z′

(3 1
1 3

)
. (2.5.1)

Now the real part of the largest eigenvalue is required to be smaller than 1
2
by partial

wave unitarity. The largest eigenvalue corresponds to the eigenvector
(ss+Z′

LZ
′
L)

2
and thus

we obtain as a result

ms ≤
√
πmZ′

gADM
=

√
4πw (2.5.2)

This bound combined with 1.0.12 gives us an enhanced constraint on Higgs boson mass
of the kind √

π
mZ′

gADM
≥ max[ms,

√
2mDM ] (2.5.3)

3 Complete vector portal theories

Here we skip the part where we analyze the effects of the inclusion of the two new dark
sectors in the standard model and we jump directly to the most general solution for
dark matter description. Indeed we generalize the argument we were making in the
previous section by drawing a UV complete model in which we do not limit ourselves
with the numbers of new species introduced. This perspective has the attractive feature
of describing the most general model we can think of which includes dark matter and
in which its existence is explained dynamically as the product of a symmetry play that
we are about to see. Moreover, we are not imposing any kinds of limitations on our
theory, instead, we include a generic number of new particles so that our model has
the connotation of universality we are aiming for. Moreover, we also bring back to our
knowledge what we have learned in the previous chapter in matter of anomalies as we try
to build a model which is not just consistent as far as unitarity is concerned, but it has no
irregularities in matter of anomalies. We are trying to take the best of both worlds. As
far as unitarity goes we are about to use the same techniques we have seen in the previous
section, just focused on a more general context, so that what we have experienced will
come in our help and will not be neglected. We will see that even in this context unitarity
will provide us with important constraints that will have a massive impact and deep
consequences as we are about to experience. So let’s dive straight into it and introduce,
besides our Standard Model description of the elementary particles, an arbitrary number
of fermions χi and scalars ϕj [14]. Moreover, we denote the dark hypercharges of the two
different fields as dχi

and dϕj . Notice that from here on we are going to use a notation in
which all SM fermions are left handed Weyl spinors. Indeed we present quark fields as ui
and di as a part of a doublet Qi charged under the weak isospin and their counterparts uci
and dci as singlets under the same gauge group. The same is true for lepton doublets Li
and singlets eci where the index i runs over the three SM generations. Speaking of the SM
particles, we also charge them under the new gauge group U(1)′ with dark hypercharges
with the same notation as before, for example, dQ and dH etc. As we have done in the
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previous chapter we consider only flavor universal dark charges in order to avoid flavor-
changing neutral currents that could be dangerous based on our experimental results.
Eventually, as it happens in many theories that share the universal frame with this one,
the lightest fermion will serve the scope of representing our dark matter candidate χ1 = χ.
We choose proper DM charges in order to avoid renormalizable couplings like LiHχ and
respect the stability property dark matter seems to enjoy. Moreover, we can employ, as we
have already seen something similar in the model analyzed previously, a Z2 symmetry in
which we only charge the DM fermion with an odd charge and prevent it from unwanted
decays. We remind ourselves of our discussion on anomalies and dark hypercharges of the
previous chapter enough to say that we are choosing them respecting the constraints

dQ + dd = −(dQ + du)

dQ + dd = dL + de
(3.0.1)

in order to ensure gauge invariance for Yukawa terms. This bears as a consequence that
the SM Higgs boson has a non-trivial dark hypercharge dH = dQ + dd and it is neutral
only if the fermions are vector-like under U(1)′. Here we also neglect the kinetic mixing
term we introduced at the beginning of the previous chapter as it is not relevant to our
discussion. Indeed a kinetic mixing term would come out of a loop process, as we have
already seen, while we have already got interaction at tree level between SM and DM
semming from the U(1)′ gauge group, so it would not be relevant. Moreover, we also
neglect fourth-order mixing between scalars and SM Higgs. In fact terms of the type
H†Hϕ†

iϕj have been seen not to have a meaningful impact.

4 Lagrangian

After the brief introduction, now we are ready to see more in detail the mathematical
formulation of the new model. Indeed we start by introducing the new boson to the
Standard Model of particles.
So we introduce a new vector boson in our theory called V µ which will mediate U(1)′

interactions. This reflects in the covariant derivative expression for any particle with a
non-trivial charge under U(1)′ that becomes

Dµ = Dµ
SM − igddpqV

µ (4.0.1)

with gd being the dark coupling of the new symmetry, Dµ
SM represents the remaining of

the covariant derivative which, for the Standard Model particles can be found in its whole
expression in Appendix A, while for the dark fermionic sector coincides with ∂µ as these
are singlets under the Standard Model. Finally, dp is the dark charge associated with the
particle we are taking under exam. We can summarize the dark charges of the particles
involved in our model in
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Field lL lcL vL uL dL ucL dcL ϕ+ ϕ0 χ ϕj

T3 −1
2

0 1
2

1
2

−1
2

0 0 1
2

−1
2

0 0

Y −1
2

−1 −1
2

1
6

1
6

2
3

−1
3

1
2

1
2

0 0

Q −1 −1 0 2
3

−1
3

2
3

−1
3

1 0 0 0

dp dL dlcL dν dQ dQ du dd dH dH dχ dϕj

This has of course deep implications on the standard model lagrangian and the addition
brings us a final lagrangian of the type

L = LSM + LDM + L′
SM + LS. (4.0.2)

Moreover in studying the U(1)′ gauge boson Vµ we can see the mass mixing term coming
from the Lagrangian element

|DµH|2 ∈ −gwgddHv2HZSM
µ V µ. (4.0.3)

Here it is important to keep an eye on all the couplings as gw =
√
g2Y + g22, gd is the U(1)

′

gauge coupling and the SM Higgs VEV is < H >T= (0 vH). Now we can see that we
can go to the mass basis and look at the mass eigenstates with the rotation(ZSM

µ

Vµ

)
=
( cos θ sin θ
− sin θ cos θ

)(Zµ
Z ′
µ

)
. (4.0.4)

We have used ZSM
µ as the linear combination of the SU(2)L and U(1)Y gauge bosons. In

Appendix B there is the procedure on how to obtain the mixing angle θ that we limit
ourselves to write here

tan 2θ = − 4gwgddHv
2
H

4g2d(d
2
Hv

2
H + v2ϕ)− g2wv

2
H

(4.0.5)

and v2ϕ =
∑

i d
2
ϕv

2
ϕ. Let’s just mention that electroweak precision tests require θ ≤ 10−3.

This will be helpful in future calculations.
Now that we have all in our hands, let’s see sector after sector how the Standard Model
lagrangian is influenced by the brand new boson introduction and what are the conse-
quences as far as dark matter is concerned.

4.1 The dark sector

Let’s say we introduce a new fermion to the Standard Model, a Majorana one,

ψ =
( χ
ϵχ∗

)
. (4.1.1)





5. After symmetry breaking 97

4.2 Dark scalar sector

We have already introduced the scalar field S as the sum of all the ϕj, we shall see now
what is the lagrangian associated with this field

LS =
∑
j

[(dµ − igddϕjV
µ)ϕj]

†[(dµ − igddϕjVµ)ϕj] +
∑
j

µ2
ϕj
ϕ†
jϕj −

∑
j

λϕj(ϕ
†
jϕj)

2 (4.2.1)

each scalar singlet will acquire a vev ϕj = vϕj +
ϕ̃j√
2
so we can see that this will originate

the masses for the dark fermion and for the new vector boson

4.3 Visible sector interactions

The term L′
SM is generated by keeping in mind the new term in the Higgs covariant

derivative and adding a term for the interaction between the new vector boson and the
SM fermions. So

DµH = (DSM
µ + i

gw
2
Zµ − igddHVµ)H (4.3.1)

where of course gw =
√
g2Y + g22 and

L′
SM = [(DµH)†(i

gw
2
ZµH − igddHVµH) + h.c]−

∑
f=q,l,ν

gdV
µ[df f̄LγµfL] (4.3.2)

5 After symmetry breaking

We have to keep in mind that all the scalar fields acquire VEVs. We have seen that

H =
( 0
vH + h√

2

)
and ϕj = vϕj +

ϕ̃j√
2

(5.0.1)

with

v2H =
µ2

λ
and v2ϕj =

µ2
ϕj

λϕj
(5.0.2)

Since we are going to work with the sum of scalar fields we can define

w =
∑
j

vϕj s =
∑
j

ϕ̃j (5.0.3)

let’s see what this implies for each sector



98 Chapter 4. Unitarity

5.1 Dark fermionic sector

After symmetry breaking, we can find

LkinDM = iχ†σ̄µdµχ+ gddχχ
†σ̄µχVµ (5.1.1)

and

LmassDM = −1

2
yDMwχχ− 1

2
√
2
yDMsχχ+ h.c (5.1.2)

so we can see that

mDM = yDMw (5.1.3)

5.2 Dark scalar sector

We can gather the information from the previous sections into∑
j

1

2
dµϕ̃jdµϕ̃j +

1

2
(
∑
j

2g2dd
2
ϕj
v2ϕj)VµV

µ +
1

2
g2dVµV

µ(
∑
j

d2ϕj ϕ̃j
2
+ 2

√
2d2ϕj ϕ̃jvϕj)

+
∑
j

µ2
ϕj

2
(ϕ̃j +

√
2vϕj)

2 −
λϕj
4

(ϕ̃j +
√
2vϕj)

4

(5.2.1)

The important thing to grasp here is the part proportional to VµV
µ which constitutes the

first half of the new boson mass

5.3 Visible sector interactions

Here after symmetry breaking the term arise

L′
SM = −

∑
f=q,l,v

gdV
µ[df f̄LγµfL] +

g2w
4
(Zµ − 2

gddH
gw

Vµ)
2(vH +

h√
2
)2

= −
∑
f=q,l,v

gdV
µ[df f̄LγµfL] +

g2w
4
(Zµ − 2

gddH
gw

Vµ)
2(v2H +

h2

2
+ 2

vHh√
2
)

(5.3.1)

Here we can see that finally, we have

m2
Z =

g2w
2
v2H

m2
Z′ = 2g2d(d

2
Hv

2
H +

∑
j

d2ϕjv
2
ϕj
)

(5.3.2)

there is also a mass mixing term that will be helpful for later

mZZ′ = −gdgwdHv2H (5.3.3)
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5.4 Complete lagrangian

L = iχ†σ̄µdµχ+ gddχχ
†σ̄µχVµ −

1

2
yDMwχχ− 1

2
√
2
yDMsχχ

+
∑
j

1

2
dµϕ̃jdµϕ̃j +

1

2
(
∑
j

2g2dd
2
ϕj
v2ϕj)VµV

µ +
1

2
g2dVµV

µ(
∑
j

d2ϕj ϕ̃j
2
+ 2

√
2d2ϕj ϕ̃jvϕj)

+
∑
j

µ2
ϕj

2
(ϕ̃j +

√
2vϕj)

2 −
λϕj
4

(ϕ̃j +
√
2vϕj)

4

−
∑
f=q,l,v

gdV
µ[df f̄LγµfL] +

g2w
4
(Zµ − 2

gddH
gw

Vµ)
2(vH +

h√
2
)2

(5.4.1)

Let’s rotate it by ( cθ sθ
−sθ cθ

)
(5.4.2)

by means of (ZSM
µ

Vµ

)
=
( cθ sθ
−sθ cθ

)(Zµ
Z ′
µ

)
(5.4.3)

So to get

L = iχ†σ̄µdµχ− gddχχ
†σ̄µχsθZµ + gddχχ

†σ̄µχcθZ
′
µ −

1

2
yDMwχχ− 1

2
√
2
yDMsχχ

+
∑
j

1

2
dµϕ̃jdµϕ̃j

+
1

2
(
∑
j

2g2dd
2
ϕj
v2ϕj)(s

2
θZ

µZµ − 2sθcθZ
µZ ′

µ + c2θZ
µ′Z ′

µ)

+
1

2
g2d(
∑
j

d2ϕj ϕ̃j
2
+ 2

√
2d2ϕj ϕ̃jvϕj)(s

2
θZ

µZµ − 2sθcθZ
µZ ′

µ + c2θZ
µ′Z ′

µ)

+
∑
j

µ2
ϕj

2
(ϕ̃j +

√
2vϕj)

2 −
λϕj
4

(ϕ̃j +
√
2vϕj)

4

+
∑
f=q,l,v

gd[df f̄LγµfL]sθZ
µ −

∑
f=q,l,v

gd[df f̄LγµfL]cθZ
µ′

+
g2w
4
((cθ + 2

gddH
gw

sθ)
2ZµZ

µ)(vH +
h√
2
)2

+
g2w
4
((sθ − 2

gddH
gw

cθ)
2Z ′

µZ
′µ + 2(cθ + 2

gddH
gw

sθ)(sθ − 2
gddH
gw

cθ)Z
µZ ′

µ)(vH +
h√
2
)2

(5.4.4)

Now that the lagrangian is complete and under our control, we can progress from here by
studying all the relevant scatterings. In particular, we are going to list and examine here
the most relevant, then the others will be consultable in Appendix B.
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Figure 4.7: S-type process. Z boson
propagator

Figure 4.8: S-type process. Z ′ boson
propagator

6 χχ→ Zh

Right here we can already see that these kinds of models are susceptibles to the same
problems we encountered at the beginning of the chapter, as the longitudinal modes of the
vector boson always grow with energies, bringing the danger of breaking unitarity. Here
we analyze Majorana DM annihilation χχ → Zh and look for unitarity breakdown. The
reason why we are studying this particular process is that this might be the leading one
for relic abundance calculation and indirect detection. The interesting part of Lagrangian
is

Lχχ→Zh = gddχχ
†σ̄µχ(−sθZµ + cθZ

′
µ)+√

2g2w
4

vHh[(cθ +
2gddH
gw

sθ)
2ZµZµ + (sθ −

2gddH
gw

cθ)
2Z ′

µZ
µ′ ]

+2(cθ +
2gddH
gw

sθ)(sθ −
2gddH
gw

cθ)ZµZ
µ′

(6.0.1)

We can already see that the Z ′ exchange is the leading one for small θ and we can appre-
ciate the two processes in Figure 4.7 and 4.8.

It is clear that the sole Z ′ exchange will lead to unitarity breakdown. Indeed we can
see that σχχ→Zh with only a Z ′ exchange approaches a constant value at high energies,
thus revealing issues with the theory. Fortunately here comes the diagram with the Z
exchange that, if considered, can restore proper high-energy behavior and get rid of all our
problems. The neediness to consider the Z exchange diagram comes from the fact that at
small θ the two different contributions have potentially the same size as the Z ′ diagram
also disappears for θ → 0. Indeed we can see that the term containing ZZ ′h comes from
the mixing term in the Lagrangian and tan 2θ ≃ dH . Now in the following of this section,
we will demonstrate how it is possible such a cancellation between to apparently unrelated
diagrams. First, let’s review the interesting quantities we are going to work with as far
as unitarity is concerned. Another way of applying the partial waves expansion is to the
scattering amplitude of a process. Indeed if we consider two generic states i for initial
and f for the final, we can always write its scattering amplitude in terms of partial waves
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like

Mif = 16π
∞∑
J=0

(2J + 1)aJifPn(cos θ) (6.0.2)

This is just another way to put what we already know in the matter of wave analysis of
a process, but it is better to have all the notable quantities clearly right in front of us
before getting to work. The unitarity bounds are the same as before as

Re(aJif ) ≤
1

2
(6.0.3)

is what is required at high energies. Again this is just a rewriting of what we already
know in a different fashion, nothing special or different. Let’s cut to the chase and write
the full expression for the two Mif including the propagators and the external legs

M
Z′
L

χχ→ZLh
= gddχv

†(p2)σ̄µu(p1)cθ

√
2g2w
2

vH(cθ +
2gddH
gw

sθ)(sθ −
2gddH
gw

cθ)×

1

s−m2
Z′
(−gµν +

kµkν
m2
Z′

)ϵ(k1)
ν

(6.0.4)

and at the high energies we know we can make use of ϵ(k1)
ν =

kν1
mZ′

.

Instead for the other diagram the full expression is

MZL
χχ→ZLh

= gddχv
†(p2)σ̄µu(p1)(−sθ)

√
2g2w
2

vH×

(cθ +
2gddH
gw

sθ)
2 1

s−m2
Z′
(−gµν +

kµkν
m2
Z′

)ϵ(k1)
ν

(6.0.5)

We want to study the behavior at high energies considering internal and external longi-
tudinal modes of the vector bosons. So first we examine the expression of MZL

χχ→ZLh
and

see the way it transforms at high energies. We can just isolate the longitudinal part of
the propagator and use the expression for the polarization vector of the Z boson to get

MZL
χχ→ZLh

= gddχv
†(p2)σ̄µu(p1)(−sθ)

√
2g2w
2

vH(cθ +
2gddH
gw

sθ)
21

s

kµkν
m2
Z′

kν1
mZ

(6.0.6)

Now contract kµ with σ̄µ and use the identity already proven to obtain a factor of −2mχ

and contract kν with kν1 to obtain, at high energies, a factor of s
2
so

MZL
χχ→ZLh

=

√
2

4
g2wgddχv

†(p2)σ̄µu(p1)(−sθ)vH(cθ +
2gddH
gw

sθ)
2−2mχ

m3
Z

(6.0.7)

Use the fact that dH = −dχ with the parametrization chosen

MZL
χχ→ZLh

=

√
2

2
g2wgddHv

†(p2)σ̄µu(p1)(−sθ)vH(cθ +
2gddH
gw

sθ)
2mχ

m3
Z

(6.0.8)

Now we have already seen that at high energies v†(p2)σ̄µu(p1) →
√
s. This combined with

a multiplicity factor of 2 that comes from the exchange of initial identical particles gives
us, for the Z exchange,

MZL
χχ→ZLh

=
√
2g2wgddH

vHmχ

m3
Z

sθ
√
s(cθ +

2gddH
gw

sθ)
2. (6.0.9)
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By following the exact same steps we can conclude that for the diagram containing the
Z ′
L exchange vector boson

M
Z′
L

χχ→ZLh
=

√
2g2wgddH

vHmχ

m2
Z′mZ

cθ
√
s(cθ +

2gddH
gw

sθ)(
2gddH
gw

cθ − sθ) (6.0.10)

So when we approach the sum of the two diagrams we obtain something proportional to

Mχχ→ZLh ∝ [
sθ
m2
Z

(cθ +
2gddH
gw

sθ) +
cθ
m2
Z′
(
2gddH
gw

cθ − sθ)]
√
s (6.0.11)

In Appendix A we are going to see precisely how the cancellation works and explain all
the details required. Let’s just say here that this is possible by writing all the masses
involved in the calculation together with the various sθ and cθ in terms of the couplings.
So that being said we have proved that at high energies the really dangerous terms cancel
each other perfectly. This is how unitarity is achieved and why the inclusion of the Z
exchange diagram is so crucial for the theory that it absolutely cannot be neglected. This
has another consequence though, and it is what we are interested in: the unitarity bounds
coming from the application of the rules we have depicted previously in the chapter. We
can work out an inverse formula for the expression of a0ij. In particular, since we are
interested in the J = 0 partial wave [9]

a0ij =
1

32π

∫ 1

−1

d cos θMij(s, cos θ) (6.0.12)

that differs from what we have previously calculated from a factor of 1
2

So how do we calculate a0 for this kind of process is the crucial question. First, we need to
consider the expression for the amplitude of the processes considering just the transverse
part of the propagators at high energies:

M
Z′
L

χχ→ZLh
= −gddχv†(p2)σ̄µu(p1)cθ

√
2g2w
2

vH(cθ+
2gddH
gw

sθ)(sθ−
2gddH
gw

cθ)
1

s
ϵ(k1)µ (6.0.13)

and

MZL
χχ→ZLh

= −gddχv†(p2)σ̄µu(p1)(−sθ)
√
2g2w
2

vH(cθ +
2gddH
gw

sθ)
21

s
ϵ(k1)µ. (6.0.14)

If we sum the two contributions we will obtain something of the form

Mχχ→ZLh = −gddχv†(p2)σ̄µu(p1)cθ
1

s

√
2
g2w
2
vH×

[cθ(sθ −
2gddH
gw

cθ)− sθ(cθ +
2gddH
gw

sθ)](cθ +
2gddH
gw

sθ)ϵ(k1)µ

(6.0.15)

If we solve the inside of the square brackets we get out of the whole expression, while
employing ϵ(k1)µ = (k1)µ

mZ

Mχχ→ZLh = gddχv
†(p2)σ̄µu(p1)(k1)µ

1

s

√
2
g2w
2
vH(cθ + sθ

2gddH
gw

)
2gddH
gw

1

mZ

(6.0.16)
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Figure 4.9: S-type process. Vector
boson propagator(either Z or Z ′)

Figure 4.10: S-type process. Dark
scalar propagator

7 χχ→ χχ

Here we can see from the lagrangian that there are three terms contributing to this
process, one with a Z boson exchange, one with a Z ′ exchange and one with a scalar field
ϕ exchange, we can see these respectively in Figure 4.9 and 4.10. Obviously, we can obtain
a cumulative scattering amplitude by summing out all the contributions from scalar fields
exchange that will be equal, but for now, we examine just one diagram with one scalar ϕ
and then we will sum all the contributions. So the scattering amplitudes are respectively

MZ
χχ→χχ = −4g2dd

2
χχ

†σ̄µχs2θ
1

s−m2
Z

[−gµν +
kµkν
m2
Z

]χ†σ̄νχ

MZ′

χχ→χχ = −4g2dd
2
χχ

†σ̄µχc2θ
1

s−m2
Z

[−gµν +
kµkν
m2
Z′

]χ†σ̄νχ

Mϕj
χχ→χχ = −y2DMχ†χ

1

s−m2
ϕj

χ†χ

(7.0.1)

where all the factors of 4 are multiplicity factors considering the exhange between the two
initial particles, the two final and initial and final states exchange.

We see that there is no danger at high energies as

kµχ
†σ̄µχ→ −2mχχ

†σ̄µχ (7.0.2)

Here we have only considered s types diagrams because the t and u ones go to 0 thanks
to the same algebra.
At high energies

χ†σ̄µχ ≃ χ†χ→
√
s (7.0.3)

thus completely resolving any possible issue stemming from the longitudinal polarization
of the vector boson.
Let’s see the contribution coming from the longitudinal part of the vector boson propa-
gators:

M
ZL+Z

′
L

χχ→χχ = −16m2
χg

2
dd

2
χχ

†σ̄µχ
1

s
[
s2θ
m2
Z

+
c2θ
mZ′

]χ†σ̄νχ (7.0.4)

We examine the case in which there is only one dark scalar field, the generalization to n
scalar fields comes only with a sum over all the quantities describing them. Here we have
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that dϕj = −2dχ and mχ = yDMvϕj so this contribution at high energies goes like

M
ZL+Z

′
L

χχ→χχ = −2y2DMχ
†σ̄µχ

1

s
χ†σ̄νχ (7.0.5)

which now can be summed to the identical ϕj contribution. They both are constants at
high energies and will result in

M
ZL+Z

′
L+ϕj

χχ→χχ = −3y2DM (7.0.6)

Now from the transverse degrees of freedom for what concerns the a0 calculation, the
longitudinal ones are belittled by the inverse proportionality to the vector boson masses
squared. We can sum the two contributions of interests and see that

M
ZT+Z′

T
χχ→χχ = g2dd

2
χχ

†σ̄µχ
gµν
s
χ†σ̄νχ (7.0.7)

Now this amplitude dominates even on the one coming from the ϕ exchange, it can be
seen from electroweak precision data, and at high energies becomes

M
ZT+Z′

T
χχ→χχ = −2g2dd

2
χ (7.0.8)

So now

a0 = − 1

32π
(3y2DM + 2g2dd

2
χ) (7.0.9)

in which the first contribution dominates.
Being the bound

|Re(a0)| ≤
1

2
(7.0.10)

we can see that we come up with

1

32π
3y2DM ≤ 1

2
(7.0.11)

so

yDM ≤ 4

√
π

3
(7.0.12)
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Figure 4.11: S-type
process. Vector boson

propagator(either Z or Z ′)
Figure 4.12: T-type

process. Fermion
propagator

Figure 4.13: U-type
process. Fermion

propagator

8 χχ→ Z ′ϕ

So here we see the contributions

MZ
χχ→Z′ϕ = −4

√
2g3dd

2
ϕj
vϕjs

2
θcθdχχ

†σ̄µχ
1

s−m2
Z

[−gµν +
(k1 + k2)µ(k1 + k2)ν

m2
Z

]
k3µ
mZ′

(8.0.1)

MZ′

χχ→Z′ϕ = −4
√
2g3dd

2
ϕj
vϕjc

3
θdχχ

†σ̄µχ
1

s−m2
Z′
[−gµν +

(k1 + k2)µ(k1 + k2)ν
m2
Z′

]
k3µ
mZ′

(8.0.2)

Mχ
χχ→Z′ϕ = 2

√
2yDMgddχχ

†σ̄µχcθ[
1

(̸ k1− ̸ k3)−mχ

+
1

(̸ k1− ̸ k4)−mχ

]
k3µ
mZ′

(8.0.3)

where in the last scattering amplitude we have kept track of the T and U type dia-
grams(They can be seen in Figure 4.11, 4.12 and 4.13 ).

Let’s rearrange the last scattering amplitude in

Mχ
χχ→Z′ϕ = 2

√
2yDMgddχχ

†σ̄µχcθ[
(̸ k1− ̸ k3) +mχ

(k1 − k3)2 −m2
χ

+
(̸ k1− ̸ k4) +mχ

(k1 − k4)2 −m2
χ

]
k3µ
mZ′

(8.0.4)

this way we can see that even the longitudinal polarizations hold a component that is not
proportional to

√
s.

Speaking of, we see that if we sum up the contribution coming from the longitudinal
degrees of freedom of the first two scattering amplitudes they bring the result, at high
energies,
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M
ZL+Z

′
L

χχ→Z′ϕ = −8mχ

√
2g3dd

2
ϕj
vϕjcθdχ

1

s
[
s2θ
m2
Z

+
c2θ
m2
Z′
]
1

mZ′
[
S +m2

Z′ −m2
ϕ

2
]
√
s (8.0.5)

that becomes

M
ZL+Z

′
T

χχ→Z′ϕ = −2yDM
√
2gdcθdχ

1

mZ′

√
s (8.0.6)

Although this contribution grows at high energies, it is perfectly balanced and destroyed
by the same exact contribution coming from the χ exchange diagram which has an opposite
sign.
For the transverse degrees of freedom at high energies we have:

M
ZT+Z′

T

χχ→Z′ϕ = 4
√
2g3dd

2
ϕj
vϕjcθdχχ

†σ̄µχ
k3µ
mZ′

(8.0.7)

Moreover, we also need to consider the contribution coming from the dark matter ex-
change, precisely the part proportional to mχ which is summarized in the formula

Mχ
χχ→Z′ϕ = 2

√
2yDMgddχχ

†σ̄µχcθmχ[
1

(k1 − k3)2 −m2
χ

+
1

(k1 − k4)2 −m2
χ

]
k3µ
mZ′

. (8.0.8)

We can analyze the two contributions separately. Now first let’s rewrite the particle
momenta

kµ1 =

√
s

2
(1, 1, 0, 0)

kµ2 =

√
s

2
(1,−1, 0, 0)

kµ3 =

√
s

2
(1, cos γ, 0, sin γ)

kµ4 =

√
s

2
(1,− cos γ, 0,− sin γ)

(8.0.9)

and

T = −s
2
(1− cos γ)

U = −s
2
(1 + cos γ)

(8.0.10)

Now as happened for the χχ → Zϕ case, the biggest contribution to a0 from both these
terms comes with

χ†σ̄µχk3µ → s

2
sin γ (8.0.11)

Now thanks to this we can see that the T exchange term reduces to

Mχ
χχ→Z′ϕ = −2

√
2yDMgddχcθmχ[

sin γ

1− cos γ
]
1

mZ′
. (8.0.12)
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and the U term to

Mχ
χχ→Z′ϕ = −2

√
2yDMgddχcθmχ[

sin γ

1 + cos γ
]
1

mZ′
. (8.0.13)

Now in order to obtain a0 we shall sum these up with the transverse one and we will end
up, in the small angle limit with

a0 =
1

64π

∫ π

0

2
√
2

1

mZ′
[g3dd

2
ϕj
vϕjdχ−yDMgddχmχ(

1

1− cos γ
+

1

1 + cos γ
)] sin2 γdγ (8.0.14)

so

a0 =
2
√
2

64

1

mZ′
[g3dd

2
ϕj
vϕjdχ

1

2
− 2yDMgddχmχ] (8.0.15)

Now we exploit the fact that dϕ = −2dχ to impose the bound

√
2[g3dd

2
ϕj
vϕjdϕ

1

2
− 2yDMgddϕmχ] ≤ 16mZ′ (8.0.16)

which will be simplified once we remind ourselves that mZ′ =
√
2gddϕvϕ and that mχ =

yDMvϕ

[g2dd
2
ϕj

− 4y2DM ] ≤ 32 (8.0.17)
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Figure 4.14: S-type
process. Scalar propagator

Figure 4.15: T-type
process. Scalar propagator

Figure 4.16: U-type
process. Scalar propagator

9 Z ′Z ′ → Z ′Z ′

Here we can write the terms corresponding to this interaction. First we consider one dark
scalar field exchange, here we have three diagrams contributing corresponding: S,T and
U as they are the Mandelstam variables. We can see the Feynman diagrams in Figures
4.14, 4.15 and 4.16

Mϕ
Z′Z′→Z′Z′ = −4[g2dd

2
ϕj

√
2vϕjc

2
θ]

2×[ 1

S −m2
ϕj

(ϵ1 · ϵ2)(ϵ3 · ϵ4) +
1

T −m2
ϕj

(ϵ1 · ϵ3)(ϵ2 · ϵ4) +
1

U −m2
ϕj

(ϵ1 · ϵ4)(ϵ3 · ϵ2)
] (9.0.1)

to this, one must sum the terms corresponding to the Higgs boson exchange

Mh
Z′Z′→Z′Z′ = −4[

g2w
4

√
2vH(sθ − 2

gddH
gw

cθ)
2]2
[ 1

S −m2
h

(ϵ1 · ϵ2)(ϵ3 · ϵ4)+

1

T −m2
h

(ϵ1 · ϵ3)(ϵ2 · ϵ4) +
1

U −m2
h

(ϵ1 · ϵ4)(ϵ3 · ϵ2)
]
.

(9.0.2)

The polarization vectors can be written as

ϵµ1 =
kµ1
mZ′

+
2mZ′

T − 2m2
Z′
kµ3 ϵµ2 =

kµ2
mZ′

+
2mZ′

T − 2m2
Z′
kµ4

ϵµ3 =
kµ3
mZ′

+
2mZ′

T − 2m2
Z′
kµ1 ϵµ4 =

kµ4
mZ′

+
2mZ′

T − 2m2
Z′
kµ2

(9.0.3)

this ensures that kµϵ
µ
λ = 0.

Let’s write the Mandelstam variables in a generic scattering process:

S = (kµ1 + kµ2 )
2 = (kµ3 + kµ4 )

2 = 2m2
Z′ + 2k1 · k2 = 2m2

Z′ + 2k3 · k4
T = (kµ1 − kµ3 )

2 = (kµ2 − kµ4 )
2 = 2m2

Z′ − 2k1 · k3 = 2m2
Z′ − 2k2 · k4

U = (kµ1 − kµ4 )
2 = (kµ2 − kµ3 )

2 = 2m2
Z′ − 2k1 · k4 = 2m2

Z′ − 2k2 · k3
(9.0.4)
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so there are also the relations

k1 · k2 = k3 · k4 =
S

2
−m2

Z′

k1 · k3 = k2 · k4 = m2
Z′ −

T

2

k1 · k4 = k2 · k3 = m2
Z′ −

U

2

(9.0.5)

Let’s see what happens inside the brackets, in particular, we examine the case in which
there is a ϕ scalar exchange, the case with Higgs will be identical apart from a change of
notation

Mϕ
Z′Z′→Z′Z′ = −4[g2dd

2
ϕj

√
2vϕjc

2
θ]

2[ 1

S −m2
ϕj

((k1 · k2)(k3 · k4)
m4
Z′

+
2

m2
Z′(T − 2m2

Z′)
(k1 · k2 + k3 · k4)(k1 · k4 + k3 · k2)

)
+

1

T −m2
ϕj

((k1 · k3)(k2 · k4)
m4
Z′

+
2

m2
Z′(T − 2m2

Z′)
(k1 · k1 + k2 · k2)(k1 · k3 + k2 · k4)

)
+

1

U −m2
ϕj

((k1 · k4)(k2 · k3)
m4
Z′

+
2

m2
Z′(T − 2m2

Z′)
(k1 · k2 + k3 · k4)(k1 · k4 + k2 · k3)

)]
(9.0.6)

Let’s look separately at the contributions to that scattering amplitude and start with the
leading terms:

1

S −m2
ϕj

(k1 · k2)(k3 · k4)
m4
Z′

+
1

T −m2
ϕj

(k1 · k3)(k2 · k4)
m4
Z′

+
1

U −m2
ϕj

(k1 · k4)(k2 · k3)
m4
Z′

(9.0.7)

and transform it into

1

m4
Z′

[(S
2
−m2

Z′)2

S −m2
ϕj

+
(m2

Z′ − T
2
)2

T −m2
ϕj

+
(m2

Z′ − U
2
)2

U −m2
ϕj

]
(9.0.8)

and expand what is inside the brackets so that it becomes, as an example,

(S
2
−m2

Z′)2

S −m2
ϕj

=
S2

4
+m4

Z′ − Sm2
Z′

S
(1 +

m2
ϕ

S
) =

S

4
+
m2
ϕ

4
−m2

Z′ (9.0.9)

and the previous expression becomes

1

m4
Z′

[S + T + U

4
+ 3(

m2
ϕ

4
−m2

Z′)
]

(9.0.10)

and we know that
S + T + U = 4m2

Z′ (9.0.11)

so that we obtain
1

m4
Z′

[
3
m2
ϕ

4
− 2m2

Z′

]
(9.0.12)
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Now for the other terms we have

1

S −m2
ϕj

( 2

m2
Z′(T − 2m2

Z′)
(k1 · k2 + k3 · k4)(k1 · k4 + k3 · k2)

)
+

1

T −m2
ϕj

( 2

m2
Z′(T − 2m2

Z′)
(k1 · k1 + k2 · k2)(k1 · k3 + k2 · k4)

)
+

1

U −m2
ϕj

( 2

m2
Z′(T − 2m2

Z′)
(k1 · k2 + k3 · k4)(k1 · k4 + k2 · k3)

) (9.0.13)

that becomes

1

S −m2
ϕj

( 2

m2
Z′(T − 2m2

Z′)
(S − 2m2

Z′)(2m2
Z′ − U)

)
+

1

T −m2
ϕj

( 2

m2
Z′(T − 2m2

Z′)
(2m2

Z′)(2m2
Z′ − T )

)
+

1

U −m2
ϕj

( 2

m2
Z′(T − 2m2

Z′)
(S − 2m2

Z′)(2m2
Z′ − U)

) (9.0.14)

so this becomes

1

m2
Z′(T −m2

ϕj
)

( 2

(S − 2m2
Z′)

(−US)
)
+

1

m2
Z′(T −m2

ϕj
)

( 2

(T − 2m2
Z′)

− T2m2
Z′)
)
+

1

m2
Z′(T −m2

ϕj
)

( 2

(U − 2m2
Z′)

(−US)
) (9.0.15)

so what survives is

2

m2
Z′(T −m2

ϕj
)

(
−U − S

)
=

2

m2
Z′(T −m2

ϕj
)

(
−4m2

Z′ + T
)
=

2

m2
Z′

(9.0.16)

So if we consider both of them we will gather a factor of

3m2
ϕ

4m4
Z′

(9.0.17)

Now as we enter the small angle approximation we can get rid of the scattering amplitude
coming from the Higgs boson exchange as it is proportional to dH and consequently to
tan 2θ that, as stated, will reach 0. We will only keep the term originating from the dark
scalar exchange as

a0 = − 1

32π
[g2dd

2
ϕj

√
2vϕj ]

2
3m2

ϕ

m4
Z′

= − 1

32π

3m2
ϕ

v2ϕ
(9.0.18)
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10 Z ′ϕ→ Z ′ϕ

For this process, we have again three contributions like the previous ones

MZ
Z′ϕ→Z′ϕ = −4[

√
2g2dd

2
ϕj
vϕj ]

2s2θc
2
θ

[ 1

S −m2
Z

[−ϵ1 · ϵ3 +
(k1 + k2)µ(k1 + k2)ν

m2
Z

ϵµ1ϵ
ν
3]+

1

T −m2
Z

[−ϵ1 · ϵ3 +
(k1 − k3)µ(k1 − k3)ν

m2
Z

ϵµ1ϵ
ν
3]+

1

U −m2
Z

[−ϵ1 · ϵ3 +
(k1 − k4)µ(k1 − k4)ν

m2
Z

ϵµ1ϵ
ν
3]
]

(10.0.1)

MZ′

Z′ϕ→Z′ϕ = −4[
√
2g2dd

2
ϕj
vϕj ]

2c4θ

[ 1

S −m2
Z′
[−ϵ1 · ϵ3 +

(k1 + k2)µ(k1 + k2)ν
m2
Z′

ϵµ1ϵ
ν
3]+

1

T −m2
Z′
[−ϵ1 · ϵ3 +

(k1 − k3)µ(k1 − k3)ν
m2
Z′

ϵµ1ϵ
ν
3]+

1

U −m2
Z′
[−ϵ1 · ϵ3 +

(k1 − k4)µ(k1 − k4)ν
m2
Z′

ϵµ1ϵ
ν
3]
] (10.0.2)

finally the vertex contribution

MZ′ϕ→Z′ϕ = 4g2dd
2
ϕj
c2θϵ1 · ϵ3 (10.0.3)

they all can be seen in Figures 4.17,4.18,4.19 and 4.20 here we can use

ϵµ1 =
kµ1
mZ′

+
2mZ′

T − 2m2
Z′
kµ3

ϵµ3 =
kµ3
mZ′

+
2mZ′

T − 2m2
Z′
kµ1

(10.0.4)

and

S = (kµ1 + kµ2 )
2 = (kµ3 + kµ4 )

2 = m2
Z′ +m2

ϕ + 2k1 · k2 = m2
Z′ +m2

ϕ + 2k3 · k4
T = (kµ1 − kµ3 )

2 = (kµ2 − kµ4 )
2 = 2m2

Z′ − 2k1 · k3 = 2m2
ϕ − 2k2 · k4

U = (kµ1 − kµ4 )
2 = (kµ2 − kµ3 )

2 = m2
Z′ +m2

ϕ − 2k1 · k4 = m2
Z′ +m2

ϕ − 2k2 · k3
(10.0.5)

Now we can analyze the full contribution coming from the longitudinal part of the bosonic
propagator. Indeed we can see that, aligned with what we have already seen, the moment
we consider the longitudinal part of the bosonic propagator in the first two amplitudes,
and in particular the leading terms, it will appear an anomalous behavior at high energies
that will be completely destroyed by the vertex contribution.
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Figure 4.17:
S-type process.

Scalar propagator

Figure 4.18:
T-type process.

Scalar propagator

Figure 4.19:
U-type process.

Scalar propagator
Figure 4.20:

Vertex diagram.
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We can analyze this by writing the sum of the leading contributions of the first two
scattering amplitudes

M
ZL+Z

′
L

Z′ϕ→Z′ϕ = −4[
√
2g2dd

2
ϕj
vϕj ]

2 1

m2
Z′
c2θ

[
(k1 · k1 + k2 · k1)(k1 · k3 + k2 · k3)[

s2θ
m2
Z(S −m2

Z)
+

c2θ
m2
Z′(S −m2

Z′)
]

(k1 · k1 − k3 · k1)(k1 · k3 − k3 · k3)[
s2θ

m2
Z(T −m2

Z)
+

c2θ
m2
Z′(T −m2

Z′)
]

(k1 · k1 − k4 · k1)(k1 · k3 − k4 · k3)[
s2θ

m2
Z(U −m2

Z)
+

c2θ
m2
Z′(U −m2

Z′)
]
]

(10.0.6)

Here we can use the series expansion that brings, for example,

1

S −m2
Z

=
1

S
(1 +

m2
Z

S
) (10.0.7)

together with the equations that relate the scalar product of momenta to Mandelstam’s
variables.

Moreover, we can exploit the fact that

S + T + U = 2m2
Z′ + 2m2

ϕ. (10.0.8)

We also make use of the fact that

2g2dd
2
ϕj
v2ϕj [

s2θ
m2
Z

+
c2θ
m2
Z′
] = 1 (10.0.9)

and keep in mind that in the small angle approximation we have mZ′ =
√
2gddϕvϕ so the

whole contribution, in the small angle approximation. This calculation has been made by
employing Mathematica.

The vertex contribution is

MϕZ′→ϕZ′ = 4g2dd
2
ϕj
c2θϵ1 · ϵ3 = 4g2dd

2
ϕj

k1 · k3
m2
Z′

= 4g2dd
2
ϕj

2m2
Z′ − T

2m2
Z′

(10.0.10)

so summing the two we obtain

MLong
ϕZ′→ϕZ′ = −g2dd2ϕj

1

m2
Z′
[−3m2

Z′ −
m2
ϕ

2
− m2

Z′T 2

U(T + U)
] (10.0.11)

Now including the subleading contributions this becomes

MLong
ϕZ′→ϕZ′ = −g2dd2ϕj

1

m2
Z′
[−m2

Z′ −
m2
ϕ

2
] (10.0.12)
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Now in order to calculate a0 we put all contributions together

a0 =
1

64π

∫ π

0

dθ sin θ
(
g2dd

2
ϕj

1

m2
Z′
[m2

Z′ +
m2
ϕ

2
]
)

(10.0.13)

and this gives

a0 =
1

64πv2ϕ
[m2

Z′ +
m2
ϕ

2
] (10.0.14)



116 Chapter 4. Unitarity

11 ϕϕ→ Z ′Z ′

This process employs the same math as the previous, except for the polarization vectors
employed. Here we have

ϵµ3 =
kµ3
mZ′

+
2mZ′

T −m2
Z′ −m2

ϕ

kµ1

ϵµ4 =
kµ4
mZ′

+
2mZ′

T −m2
Z′ −m2

ϕ

kµ2

(11.0.1)

S = (kµ1 + kµ2 )
2 = (kµ3 + kµ4 )

2 = 2m2
ϕ + 2k1 · k2 = 2m2

Z′ + 2k3 · k4
T = (kµ1 − kµ3 )

2 = (kµ2 − kµ4 )
2 = m2

Z′ +m2
ϕ − 2k1 · k3 = m2

Z′ +m2
ϕ − 2k2 · k4

U = (kµ1 − kµ4 )
2 = (kµ2 − kµ3 )

2 = m2
Z′ +m2

ϕ − 2k1 · k4 = m2
Z′ +m2

ϕ − 2k2 · k3.
(11.0.2)

The amplitudes here are the same of the previous one except for the polarization vectors
that have to be adjusted to the new scenario

MZ
ϕϕ→Z′Z′ = −4[

√
2g2dd

2
ϕj
vϕj ]

2s2θc
2
θ

[ 1

S −m2
Z

[−ϵ3 · ϵ4 +
(k1 + k2)µ(k1 + k2)ν

m2
Z

ϵµ3ϵ
ν
4]+

1

T −m2
Z

[−ϵ3 · ϵ4 +
(k1 − k3)µ(k1 − k3)ν

m2
Z

ϵµ3ϵ
ν
4]+

1

U −m2
Z

[−ϵ3 · ϵ4 +
(k1 − k4)µ(k1 − k4)ν

m2
Z

ϵµ3ϵ
ν
4]
]

(11.0.3)

MZ′

ϕϕ→Z′Z′ = −4[
√
2g2dd

2
ϕj
vϕj ]

2c4θ

[ 1

S −m2
Z′
[−ϵ3 · ϵ4 +

(k1 + k2)µ(k1 + k2)ν
m2
Z′

ϵµ3ϵ
ν
4]+

1

T −m2
Z′
[−ϵ3 · ϵ4 +

(k1 − k3)µ(k1 − k3)ν
m2
Z′

ϵµ3ϵ
ν
4]+

1

U −m2
Z′
[−ϵ3 · ϵ4 +

(k1 − k4)µ(k1 − k4)ν
m2
Z′

ϵµ3ϵ
ν
4]
] (11.0.4)

finally the vertex contribution

Mϕϕ→Z′Z′ = 4g2dd
2
ϕj
c2θϵ3 · ϵ4 (11.0.5)

Again let’s take the leading contribution from the longitudinal part of the propagator
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M
ZL+Z

′
L

ϕϕ→Z′Z′ = −4[
√
2g2dd

2
ϕj
vϕj ]

2 1

m2
Z′
c2θ

[
(k1 · k3 + k2 · k3)(k1 · k4 + k2 · k4)[

s2θ
m2
Z(S −m2

Z)
+

c2θ
m2
Z′(S −m2

Z′)
]

(k1 · k3 − k3 · k3)(k1 · k4 − k3 · k4)[
s2θ

m2
Z(T −m2

Z)
+

c2θ
m2
Z′(T −m2

Z′)
]

(k1 · k3 − k4 · k3)(k1 · k4 − k4 · k4)[
s2θ

m2
Z(U −m2

Z)
+

c2θ
m2
Z′(U −m2

Z′)
]
]

(11.0.6)

by making use of
1

S −m2
Z

=
1

S
(1 +

m2
Z

S
) (11.0.7)

together with the equations that relate the scalar product of momenta to Mandelstam’s
variables:

Now the exact counterpart from the vertex contribution is

Mϕϕ→Z′Z′ = 4g2dd
2
ϕj
c2θϵ3 · ϵ4 = 4g2dd

2
ϕj

k3 · k4
m2
Z′

= 4g2dd
2
ϕj

S − 2m2
Z′

2m2
Z′

(11.0.8)

so summing the two we obtain

MLong
ϕϕ→Z′Z′ = −g2dd2ϕj

1

m2
Z′
[
m2
ϕ

2
−m2

Z′ +
m4
ϕ +m2

ϕm
2
Z′ −mZ′U

T
+
m4
ϕ +m2

ϕm
2
Z′ −mZ′T

U
+

4m4
ϕm

2
Z′ + 8m2

ϕm
2
Z′ + 4m6

Z′

TU
]

(11.0.9)

Now let’s consider the subleading terms too to gain the expression

MLong
ϕϕ→Z′Z′ = g2dd

2
ϕj

1

m2
Z′
[
m2
ϕ

2
+m2

Z′ ] (11.0.10)

All in all, summing all the contributions that we have gathered we obtain

a0 =
1

64π

[
m2

ϕ

2
+m2

Z′ ]

v2ϕ
(11.0.11)

12 Scattering matrix

After all the calculations we end up with the bosonic scattering matrix with the basis
( ϕϕ√

2
, Z

′Z′
√
2
, Z ′ϕ) of
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a0 = −
m2
ϕ

64πv2ϕ


3 [1 +

2m2
Z′

m2
ϕ
] 0

[1 +
2m2

Z′
m2

ϕ
] 3 0

0 0 −[1 +
2m2

Z′
m2

ϕ
]

 (12.0.1)

13 Benchmark model

Now we set up a benchmark model on the basis of our analysis on unitarity and the one,
carried out but now reported here on anomalies. First of all, we add to the SM lagrangian
with the notation we have conventionally adopted, three fermion singlets all with dχi

= 1.
There is a number of ways we can originate their mass, but as we have already seen in pre-
vious articles, the best one and the most natural and dynamic is through a Majorana mass
term coming from a Yukawa interaction with the dark scalars of the theory. Then as we
know it is the lightest one among those to rise as a dark matter candidate. SM particles can
be chosen to have dark charges {dQ, du, dd, dL, de, dH} = {0, 1,−1, 0,−1,−1} thus making
the term Lhχ renormalizable. This will require us to employ a Z2 symmetry to keep the
dark matter stable. We study only the mass region in which mZ′ > mχ ≥ 100 GeV and
can assume that DM particles only annihilate to SM final particles. The point is here
that annihilations to SM fermions are p-wave for a massive Majorana dark matter. This
means that the channel Zh can be the leading one in production.
Moreover one can calculate that the Z ′ exchange diagram has an s-wave cross section.
This does not have to confuse us as we have proved that the Z exchange diagram must
be absolutely considered to restore unitarity. What happens is a beautiful destructive
interference between the two diagrams that leaves the overall cross section p-wave sup-
pressed. This is another perk of our model. One more at it, it can be seen that the only
Z ′ diagram would lead to an inferior relic abundance with respect to the combination of
both diagrams. This is another clue that we have to use both processes. Another subtle
advantage of the p-wave suppression of DM annihilation to Zh is that this detail makes
the whole indirective search argument as ineffective.
If we set mχ = 300 GeV we can also clear the parameter space in the (mZ′ , gd) plane of
the unallowed regions. The first thing to do is to cancel the regions where gauge coupling
is non-perturbative of course. Then erase the regions where unitarity is broken. The
following step is to clear the plane from the region where the mediator width has a size
comparable to its mass.
Now reflect on the fact that we have chosen all couplings to SM and DM as universal
because of all of the reasons we have outlined previously in the third chapter. This leads
to the awareness that the searches for dark matter at LHC will involve a diverse array
of complementary decay channels. We know that dilepton constraints are the strongest
ones except for the case of a huge mediator mass (mZ′ > 4 TeV ) where EWPT bounds
dominate. So outside this region, we can see that because of the diversity and multiplicity
of decay channels, Z ′ can offer a wide resonance even in the case of perturbative coupling.
In the region with ΓZ′ over 30% of Z ′ mass dilepton constraints are not effective, so it is
necessary to consider other channels like Zh.
We are also in possession of direct detection constraints coming from PandaX-II and
PICO that offer similar constraints.
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It is important to notice that the region where DM is originated by the standard freeze-
out procedure is excluded, but there is a number of alternatives we can explore that are
motivated by non-standard cosmology. Another option would be to enhance the dark
sector to implement additional annihilation channels.
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Chapter 5

Conclusions

As we reach the end of our journey through the mysteries of dark matter it can be helpful
to look back at the different stages of our quest as they unfold in front of us revealing the
path we have traveled. In the first chapter, we have got to know dark matter since the
theorization and we have been able to study deep in detail its influence through different
scales. Straight from the get-go I personally reckon this chapter to be crucial in getting
the reader acquainted with the style of approach to this as elusive and intriguing enigma.
In fact in the second part of the chapter, guilty of our ignorance, we stumbled towards
comprehension by cornering dark matter and trying to identify what it cannot be. Playing
like toddlers, we indeed made some progress towards awareness reaching concrete bounds
on properties of dark matter like its mass or stability that definitely helped shape, in a
decisive way, our perceptions on this incredibly complex subject.

As a natural consequence of our train of thoughts, we sought a way of conceiving a theory
of dark matter that could check all the boxes listed previously. We were capable to discern
between hot and cold dark matter and, for the latter, introducing the Boltzmann equation
in order to find a relic density that could fit the experimental data. As our first crack
at dark matter particle composition, we introduced the framework of Weakly Interacting
Massive Particles or WIMPs as they can ”miraculously” oblige us with the relic density
calculation. Again as a result of our questioning a way to bring to light the truth, we
glanced at the modern experimental programs that would help us solve the arcane. Indeed
we have touched on the three main experimental areas investigated in present times. The
reader has seen how complex and diverse is the experimental scene, but at the same time
how these different experimental programs can work together as a sort of symbiosis. In
fact, the conclusive part of the chapter shows the synergy of the different procedures that
strive towards a breakthrough on the subject and the complementarity of the searches as
they can actually serve the scope only when all together consulted in the analysis of a
particular model.

The next stage consisted in trying to grasp, at particle level, the actual composition of
dark matter. In actuality, the beginning of the chapter is a summary of properties shared
by all the models unified by the same motif, which is the presence of a new vector boson
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that we have called Z ′, which constitutes the bridge between Standard Model and dark
sector. Indeed here the reader can get acquainted with the mathematics behind all the
models that share this peculiar feature. In fact, we have outlined all the common traits
of these models and there has been a thorough explanation of how they can be built
bearing in mind our intention of building one ourselves. With the Z ′ physics behind,
the major part of this chapter revolves around the concept of anomaly-free dark matter
models. Indeed the theme of the chapter here was the search for a general algorithm to
generate a solution to the anomaly equations. This is a powerful concept that has been
vastly explored in the chapter and constitutes one of the requirements for a model to be
consistent. With that being clear, we proceeded on our quest by studying three simplified
models of dark matter, each of which possesses a single peculiar characteristic that would
help blend the central theme with different and modern questions of particle physics.

Finally, the fourth chapter is the very heart of this master thesis. Unitarity takes over
the scene here as we have carefully laid the ground for this as simple as crucial property
of the scattering matrix. After an initial dissertation on this peculiar feature followed the
section in which we derived important inequalities that all scattering matrices have to
satisfy and that originate from unitarity. It is amazing to think that by just using this
simple and generic tool, we have been able to draw conclusions on our dark matter model
and reach bounds that had not been explored before.
As an appetizer, a toy model has been studied with just one dark matter particle, one
new vector boson Z ′ plus a dark scalar enabling us to create mass for the dark sector.
Indeed unitarity has been very helpful here in letting us reach bounds first for the new
dark scalar mass and then constrain the mass of the vector boson Z ′.

The following section is the original part and consists of the setup of a new model, the
most general one, with which we do not apply limitations on the particle content of the
theory. The lagrangian we have built keeps track of all the possible particles that can
be embedded in such an extension of the Standard Model. After the rules of the game
were completely set we were free to scrutinize the totality of the processes of scattering
that could stem from the particles involved in the model. This study has led to important
conclusions on the model we have built. Indeed what we have created is, first and foremost,
consistent as far as unitarity goes. This has to be intended in the sense that whatever
scattering process one considers, the model shows no breaks when high energies come to
play. What can be observed is that in each process considered the different Feynman
diagrams, although singularly divergent at high energies, interfere destructively with one
another leading to the perfect destruction of all the divergencies. This manifests the
importance to consider all the pieces of the puzzle, especially in light of relic density
calculation as we have had the pleasure to appreciate in processes such as χχ→ Zh. The
natural conclusion to the analysis was, of course, the derivation of unitarity bounds from
all of the processes considered. The novelty brought here is that the model considered has
been developed from scratch and there are no previous records of the results found during
the process of analysis. Indeed, just to make some example, processes like Z ′Z ′ → Z ′Z ′

offer some interesting constraints on the new vector boson mass. Moreover if one considers
the scattering Z ′ϕ→ Z ′ϕ will realize the constraint present in the combination of the new
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vector boson and dark scalar masses.
Taking everything into account we can confidently state that we have reached the main
purpose of this master thesis, which was to thoroughly study and analyze dark matter
theories with a new vector portal. During our journey we have dug into the subject as
deeply as we could and, in the end, we have formulated a model that could be consistent
with unitarity claims and looked at all scattering processes that could stem from it.
During our investigations we also stumbled upon new limits and constraints on dark
matter features, so we are fairly satisfied with that. We humbly thank the reader that
has been sticking with us until now and hope that this thesis has shed some light on such
an intriguing mystery that is dark matter.
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Appendix A

Details on the calculation

In this section, we are going to explain the details of chapter 4, in particular, to explain
what we have used to draw the conclusions and see why the high energy behavior of our
theory is safe when we employ the Z exchange diagram together with the Z ′ one. We go
straight for what we aim for and start talking about the flavor basis mass matrix. Here
we have three masses to consider

m2
ZF

=
g2w
2
v2H

m2
Z′
F
= 2g2d(d

2
hv

2
H + v2ϕ)

mZZ′ = −gdgwdHv2H

(0.0.1)

where mZZ′ is the mass term originating from the mixing term between Z and Z ′ coming
from the covariant derivative. Now we can see that the mass matrix term is

M2 =
(m2

ZF
mZZ′

mZZ′ m2
Z′
F

)
=
(a c
c b

)
. (0.0.2)

Now, this mass matrix can be diagonalized through an orthogonal matrix. Thus we pass
to the mass basis by diagonalization employing( cθ sθ

−sθ cθ

)
. (0.0.3)

And obtain

M2
m =

(m2
Z 0
0 m2

Z′

)
. (0.0.4)

In order to obtain a diagonal matrix the rule imposes that

tan 2θ =
2c

b− a
(0.0.5)

thus obtaining what we saw in Chapter 4. We can work out the formulas

s2θ =
2c√

(b− a)2 + 4c2
(0.0.6)
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and

c2θ =
b− a√

(b− a)2 + 4c2
(0.0.7)

and finally get
m2
Z = ac2θ − 2csθcθ + bs2θ (0.0.8)

and
m2
Z′ = as2θ + 2csθcθ + bc2θ. (0.0.9)

Now we have to prove that for

Mχχ→ZLh ∝ [
sθ
m2
Z

(cθ +
2gddH
gw

sθ) +
cθ
m2
Z′
(
2gddH
gw

cθ − sθ)]
√
s (0.0.10)

the term inside the squared brackets vanishes or rearranging

sθm
2
Z′(cθ +

2gddH
gw

sθ) + cθm
2
Z(

2gddH
gw

cθ − sθ) = 0 (0.0.11)

Let’s substitute the expression for m2
Z and m2

Z′ and see that

−c(s4θ + c4θ) + (b− a+
2c2

a
)sθcθ(c

2
θ − s2θ) + ss2θc

2
θ(2c−

bc

a
) = 0 (0.0.12)

Now we use first

c4θ + s4θ = 1− s22θ
2

(0.0.13)

and then the expressions that we wrote for s2θ and c2θ to obtain

−c((b− a)2 + 4c2) + 2c3 + c(b− a)(b− a+
2c2

a
) + (2c− bc

a
)2c2 (0.0.14)

This vanishes after the arithmetics are done. So this proves that the two diagrams per-
fectly interfere destructively. This is how unitarity is restored and the bad high energy
trend is erased.
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Figure A.1: S-type process. Vector boson propagator

Here in the following, we are going to analyze completely all the possible scattering
processes drawn from the Lagrangian from sec. 5 of the fourth chapter. The following
process can be summarized by the diagram in the figure.

In the picture, we can see two fermionic lines that represent the initial and final states,
connected by a bosonic propagator whose role will be played either by Z or by Z ′.



128 Appendix A. Details on the calculation

1 χχ→ f̄LfL

Here there are two contributions too, corresponding to the Z and Z ′ exchanges. The
scattering amplitudes are

MZ
χχ→f̄LfL

= g2ddχdfs
2
θχ

†σ̄µχ
1

s−m2
Z

[−gµν +
kµkν
m2
Z

]f̄LγµfL

MZ′

χχ→f̄LfL
= g2ddχdfc

2
θχ

†σ̄µχ
1

s−m2
Z′
[−gµν +

kµkν
m2
Z′

]f̄LγµfL

(1.0.1)

we do not see anomalous behaviors at high energies because

χ†σ̄µχkµ → −2mχχ
†σ̄µχ

f̄Lγ
µfLkµ → −2mfL f̄Lγ

µfLkµ
(1.0.2)

so this is alright because χ†σ̄µχ →
√
s and f̄Lγ

µfL →
√
s at high energy. Now summing

the contributions from the transverse degrees of freedom we obtain

M
ZT+Z′

T

χχ→f̄LfL
= −g2ddχdfχ†σ̄µχ

1

s
f̄Lγ

µfL (1.0.3)

that becomes
M

ZT+Z′
T

χχ→f̄LfL
= −g2ddχdf (1.0.4)

so

a0 = − 1

32π

∫ π

0

dθ sin θg2ddχdf = − 1

16π
g2ddχdf (1.0.5)

so for the unitarity bound

gd ≤

√
8π

dχdf
(1.0.6)
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Figure A.2: S-type process Figure A.3: T-type process

Figure A.4: U-type process

Now the next three sections share the same diagrams

Figure A.2 is a diagram that really all the processes share and represents an exchange of
a vector boson which will be either Z or Z ′ connecting the initial fermionic state with the
final one in which a vector boson and a scalar will be present.
The diagrams in Figure A.3 and Figure A.4 will not be a part of the process χχ→ Z ′h and
will represent respectively the T and U type diagrams where the propagator is exclusively
fermionic and more precisely dark matter.
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2 χχ→ Zϕ

Here we can see that there are three diagrams contributing to the process and are of the
same type of the previous scattering. This is why we are going to jump straight into
scattering amplitudes right from the bat. First, we will consider the case with one dark
scalar field, which will be simpler as far as calculations go. Processes with more fields ϕ
will be a generalization of the ones we will look at. So as we have said, let’s look at the
scattering amplitudes for the three processes

MZ
χχ→Zϕ = 2gddχχ

†σ̄µχsθg
2
d2
√
2d2ϕjvϕjs

2
θ

1

s−m2
Z

[−gµν +
kµkν
m2
Z

]
kν3
mZ

MZ′

χχ→Zϕ = 2gddχχ
†σ̄µχcθg

2
d2
√
2d2ϕjvϕjsθcθ

1

s−m2
Z

[−gµν +
kµkν
m2
Z

]
kν3
mZ

Mχ
χχ→Zϕ = −

√
2yDMgddχχ

†σ̄µχsθ[
1

(̸ k1− ̸ k3)−mχ

+
1

( ̸ k1− ̸ k4)−mχ

]
k3µ
mZ′

(2.0.1)

where we have considered for simplicity only one scalar field that we have named ϕj.
As we have stated previously, for more than one dark scalar field involved in the theory
we just generalize the amplitudes by summing on j which will now become a variable
representing the number of scalar fields. Anyways first we have to examine how these
amplitudes behave at high energies, this is why for the first two we will consider only
the longitudinal degrees of freedom, which will be growing proportional with energy. We
should remember that

χ†σ̄µχkµ → −2mχχ
†σ̄µχ (2.0.2)

and sum the first two amplitudes at high energies, which will become

M
ZL+Z

′
L

χχ→Zϕ = 2mχgddχχ
†σ̄µχsθg

2
d2
√
2d2ϕjvϕj [

s2θ
m2
Z

+
c2θ
m2
Z′
]
pν

mZ

kν (2.0.3)

now

kν3kν →
s

2
(2.0.4)

and we know that χ†σ̄µχ→
√
s so now at high energies we have

M
ZL+Z

′
L

χχ→Zϕ = mχgddχsθg
2
d2
√
2d2ϕjvϕj [

s2θ
m2
Z

+
c2θ
m2
Z′
]
1

mZ

√
s. (2.0.5)

Now one can see that at high energies this grows and threatens to break unitarity. If we
go on with our calculation here for a scalar field

mχ = yDMvϕj (2.0.6)

and one can show that

2g2dd
2
ϕj
v2ϕj [

s2θ
m2
Z

+
c2θ
m2
Z′
] = 1 (2.0.7)

so
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M
ZL+Z

′
L

χχ→Zϕ = yDMgddχsθ
√
2

1

mZ

√
s. (2.0.8)

Let’s focus on the diagram mediated by χ and see that at high energies

χ†σ̄µχkµ → s (2.0.9)

so the whole diagram gives a contribution

Mχ
χχ→Zϕ = −gddχsθ

1

mZ

√
2yDM

√
s (2.0.10)

which nullifies exactly the previous one so that out theory is safe at high energies.
Now that we have proved that everything is fine at high energies, it’s time to extract a
contribution to a0 from these graphs and see what comes out of the unitarity bound. For
this scope, we can see that the dominant contribution comes from the transverse degrees
of freedom of the first two diagrams, plus we need to consider the contribution coming
from the T and U exchanges diagrams. We follow the exact same steps for the process
χχ → Z ′ϕ and arrive at a value of a0, which, unfortunately for us, will go to 0 in the
small angle approximation, as it will be proportional to sθ.
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3 χχ→ Z ′h

Here the reasoning is completely the same as the process χχ→ Zh so here we have

M
Z′
L

χχ→Z′
Lh

= gddχχ
†σ̄µχcθ

√
2g2w
2

vH(cθ+
2gddH
gw

sθ)(sθ−
2gddH
gw

cθ)
1

s−m2
Z′
(−gµν+

kµkν
m2
Z′

)
kν3
mZ′

(3.0.1)

MZL

χχ→Z′
Lh

= gddχχ
†σ̄µχ(−sθ)

√
2g2w
2

vH(cθ +
2gddH
gw

sθ)
2 1

s−m2
Z′
(−gµν +

kµkν
m2
Z′

)
kν3
mZ′

(3.0.2)

so we already know that at high energies the sum of the longitudinal contributions goes
straight to 0. Then we know already what is the next step of the plan and write the sum
of the transverse polarizations of the the vector bosons propagators here that is, at high
energies,

M
ZT+Z′

T
χχ→ZLh

= gddχχ
†σ̄µχk3µ

1

s

√
2
g2w
2
vH(cθ + sθ

2gddH
gw

)
2gddH
gw

1

mZ′
(3.0.3)

so by writing again

k3µ =

√
s

2
(1, cos θ, 0, sin θ) (3.0.4)

we can find out that

a0χχ→ZLh
=

√
2

128

gwvH
mZ′

g2ddχdH(cθ + sθ
2gddH
gw

). (3.0.5)

this goes to 0 in the regime of small angle as tan 2θ ∝ dH
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Figure A.5: S-type process of four bosons
scattering. The propagator is a scalar particle Figure A.6: T-type process

Figure A.7: U-type process

The processes concerning four vector bosons are the same as far as Feynman diagrams
go. They all bring three diagrams as S,T and U type processes are involved. Another
common property is given by the fact that the propagator is scalar, as we can see in Figure



134 Appendix A. Details on the calculation

4 ZZ → ZZ ′

We have two contributions as well here:

Mϕ
Z′Z′→Z′Z′ = −4[g2dd

2
ϕj

√
2vϕj ]

2s3θcθ×[ 1

S −m2
ϕj

(ϵ1 · ϵ2)(ϵ3 · ϵ4) +
1

T −m2
ϕj

(ϵ1 · ϵ3)(ϵ2 · ϵ4) +
1

U −m2
ϕj

(ϵ1 · ϵ4)(ϵ3 · ϵ2)
]
.

(4.0.1)

and

Mh
Z′Z′→Z′Z′ = −4[

g2w
4

√
2vH ]

2(cθ + 2
gddH
gw

sθ)
3(sθ − 2

gddH
gw

cθ)×[ 1

S −m2
h

(ϵ1 · ϵ2)(ϵ3 · ϵ4) +
1

T −m2
h

(ϵ1 · ϵ3)(ϵ2 · ϵ4) +
1

U −m2
h

(ϵ1 · ϵ4)(ϵ3 · ϵ2)
]
.

(4.0.2)

We can use the polarization vectors

ϵµ1 =
kµ1
mZ

+
2mZ

T − 2m2
Z

kµ3 ϵµ2 =
kµ2
mZ

+
2mZ

T −m2
Z −m2

Z′
kµ4

ϵµ3 =
kµ3
mZ

+
2mZ

T − 2m2
Z

kµ1 ϵµ4 =
kµ4
mZ′

+
2mZ′

T −m2
Z −m2

Z′
kµ2

(4.0.3)

We can follow the same procedure as the previous paragraph here.

S = (kµ1 + kµ2 )
2 = (kµ3 + kµ4 )

2 = 2m2
Z + 2k1 · k2 = m2

Z +m2
Z′ + 2k3 · k4

T = (kµ1 − kµ3 )
2 = (kµ2 − kµ4 )

2 = 2m2
Z − 2k1 · k3 = m2

Z +m2
Z′ − 2k2 · k4

U = (kµ1 − kµ4 )
2 = (kµ2 − kµ3 )

2 = m2
Z +m2

Z′ − 2k1 · k4 = 2m2
Z − 2k2 · k3

(4.0.4)

and of course
S + T + U = 3m2

Z +m2
Z′ . (4.0.5)

Moreover

k1 · k2 =
S

2
−m2

Z

k3 · k4 =
S −m2

Z −m2
Z′

2

k1 · k3 = m2
Z − T

2

k2 · k4 =
m2
Z +m2

Z′ − T

2

k1 · k4 =
m2
Z +m2

Z′ − U

2

k2 · k3 = m2
Z − U

2
.

(4.0.6)
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Now with all that behind and clear, we proceed to examine the content of the brackets.
Again just focusing on the part regarding the ϕ exchange, the Higgs one will be the same

MZZ→ZZ′ ∝
[ 1

S −m2
ϕj

((k1 · k2)(k3 · k4)
m3
ZmZ′

+

2

mZmZ′(T − 2m2
Z)

[(k1 · k2)(k1 · k4) + (k2 · k3)(k3 · k4)]

+
2

(T −m2
Z −m2

Z′)
[
mZ′

m3
Z

(k1 · k2)(k2 · k3) +
1

mZmZ′
(k1 · k4)(k3 · k4)]

)
+

1

T −m2
ϕj

((k1 · k3)(k2 · k4)
m3
ZmZ′

+
2

mZmZ′(T − 2m2
Z′)

[(k1 · k1)(k2 · k4) + (k3 · k3)(k2 · k4)]

+
2

(T −m2
Z −m2

Z′)
[
mZ′

m3
Z

(k2 · k2)(k1 · k3) +
1

mZmZ′
(k4 · k4)(k1 · k3)]

)
+

1

U −m2
ϕj

((k1 · k4)(k2 · k3)
m3
ZmZ′

+
2

mZmZ′(T − 2m2
Z′)

[(k1 · k2)(k1 · k4) + (k2 · k3)(k3 · k4)]

+
2

(T −m2
Z −m2

Z′)
[
mZ′

m3
Z

(k1 · k2)(k2 · k3) +
1

mZmZ′
(k1 · k4)(k3 · k4)]

)]
(4.0.7)

The leading terms are

1

S −m2
ϕj

(k1 · k2)(k3 · k4)
m3
ZmZ′

+
1

T −m2
ϕj

(k1 · k3)(k2 · k4)
m3
ZmZ′

+
1

U −m2
ϕj

(k1 · k4)(k2 · k3)
m3
ZmZ′

(4.0.8)

which become

1

4m3
ZmZ′

[ 1
S
(1 +

m2
ϕ

S
)(S − 2m2

Z′)(S −m2
Z −m2

Z′)+

1

T
(1 +

m2
ϕ

T
)(2m2

Z′ − T )(m2
Z +m2

Z′ − T )+

1

U
(1 +

m2
ϕ

U
)(2m2

Z′ − U)(m2
Z +m2

Z′ − U)
] (4.0.9)

so summing all up it gives the contribution

1

4m3
ZmZ′

[3m2
ϕ − 2(3m2

Z +m2
Z′)]. (4.0.10)

Now concerning the subleading terms we consider only the first term in the denominator
series expansion, as it is the only one that gives a constant contribution:
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2

mZmZ′(T − 2m2
Z)

[ 1

S −m2
ϕj

(
(k1 · k2)(k1 · k4) + (k2 · k3)(k3 · k4)

)
+

1

T −m2
ϕj

(
(k1 · k1)(k2 · k4) + (k3 · k3)(k2 · k4)

)
+

1

U −m2
ϕj

(
(k1 · k2)(k1 · k4) + (k2 · k3)(k3 · k4)

)]
+

2

(T −m2
Z −m2

Z′)

[ 1

S −m2
ϕj

(mZ′

m3
Z

(k1 · k2)(k2 · k3) +
1

mZmZ′
(k1 · k4)(k3 · k4)

)
+

1

T −m2
ϕj

(mZ′

m3
Z

(k2 · k2)(k1 · k3) +
1

mZmZ′
(k4 · k4)(k1 · k3)

)
+

1

U −m2
ϕj

(mZ′

m3
Z

(k1 · k2)(k2 · k3) +
1

mZmZ′
(k1 · k4)(k3 · k4)

)]
+

(4.0.11)

now this can be converted to

2

4mZmZ′(T − 2m2
Z)

[ 1

S −m2
ϕj

(
−SU − SU

)
+

1

T −m2
ϕj

(
−2T (m2

Z +m2
Z′)
)
+

1

U −m2
ϕj

(
−SU − SU

)]
+

2

4(T −m2
Z −m2

Z′)

[ 1

S −m2
ϕj

(mZ′

m3
Z

(−SU) + 1

mZmZ′
(−SU)

)
+

1

T −m2
ϕj

(mZ′

m3
Z

(−2Tm2
Z) +

1

mZmZ′
(−2Tm2

Z′)
)
+

1

U −m2
ϕj

(mZ′

m3
Z

(−SU) + 1

mZmZ′
(−SU)

)]
+

(4.0.12)

so

MSub ∝
m2
Z′ + 3m2

Z

2m3
ZmZ′

(4.0.13)

so summing the two we gain

MLead +MSub ∝
3m2

ϕ

4m3
ZmZ′

(4.0.14)

Now we ought to calculate a0. As we already know, for the Higgs exchange case, the
proportionality to dH brings it to 0. This goes also for the dark scalar exchange case,
which is proportional to s− θ and so doomed to annihilate.



5. ZZ → Z ′Z ′ 137

5 ZZ → Z ′Z ′

The procedure is the exact same as the previous section.

Mϕ
Z′Z′→Z′Z′ = −2[g2dd

2
ϕj

√
2vϕj ]

2s2θc
2
θ×[ 1

S −m2
ϕj

(ϵ1 · ϵ2)(ϵ3 · ϵ4) +
1

T −m2
ϕj

(ϵ1 · ϵ3)(ϵ2 · ϵ4) +
1

U −m2
ϕj

(ϵ1 · ϵ4)(ϵ3 · ϵ2)
]
.

(5.0.1)

and

Mh
Z′Z′→Z′Z′ = −2[

g2w
4

√
2vH ]

2(cθ + 2
gddH
gw

sθ)
2(sθ − 2

gddH
gw

cθ)
2×[ 1

S −m2
h

(ϵ1 · ϵ2)(ϵ3 · ϵ4) +
1

T −m2
h

(ϵ1 · ϵ3)(ϵ2 · ϵ4) +
1

U −m2
h

(ϵ1 · ϵ4)(ϵ3 · ϵ2)
]
.

(5.0.2)

We can use the polarization vectors

ϵµ1 =
kµ1
mZ

+
2mZ

T −m2
Z −m2

Z′
kµ3 ϵµ2 =

kµ2
mZ

+
2mZ

T −m2
Z −m2

Z′
kµ4

ϵµ3 =
kµ3
mZ′

+
2mZ′

T −m2
Z −m2

Z′
kµ1 ϵµ4 =

kµ4
mZ′

+
2mZ′

T −m2
Z −m2

Z′
kµ2

(5.0.3)

S = (kµ1 + kµ2 )
2 = (kµ3 + kµ4 )

2 = 2m2
Z + 2k1 · k2 = 2m2

Z′ + 2k3 · k4
T = (kµ1 − kµ3 )

2 = (kµ2 − kµ4 )
2 = m2

Z +m2
Z′ − 2k1 · k3 = m2

Z +m2
Z′ − 2k2 · k4

U = (kµ1 − kµ4 )
2 = (kµ2 − kµ3 )

2 = m2
Z +m2

Z′ − 2k1 · k4 = m2
Z +m2

Z′ − 2k2 · k3
(5.0.4)

and of course

S + T + U = 2m2
Z + 2m2

Z′ . (5.0.5)

Moreover

k1 · k2 = k3 · k4 =
S

2
−m2

Z

k1 · k3 = k2 · k4 =
m2
Z +m2

Z′ − T

2

k1 · k4 = k2 · k3 =
m2
Z +m2

Z′ − U

2

(5.0.6)
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The factor inside the brackets will be

MZZ→Z′Z′ ∝
[ 1

S −m2
ϕj

((k1 · k2)(k3 · k4)
m2
Zm

2
Z′

+
2

T −m2
Z −m2

Z′
[
(k1 · k2)(k1 · k4) + (k1 · k2)(k2 · k3)

m2
Z

+

(k1 · k4)(k3 · k4) + (k2 · k3)(k3 · k4)
m2
Z′

]

1

T −m2
ϕj

((k1 · k3)(k2 · k4)
m2
Zm

2
Z′

+
2

T −m2
Z −m2

Z′
[
(k2 · k2)(k1 · k3) + (k1 · k1)(k2 · k4)

m2
Z

+

(k4 · k4)(k1 · k3) + (k3 · k3)(k2 · k4)
m2
Z′

]

1

U −m2
ϕj

((k1 · k4)(k2 · k3)
m2
Zm

2
Z′

+
2

T −m2
Z −m2

Z′
[
(k1 · k2)(k1 · k4) + (k1 · k2)(k2 · k3)

m2
Z

+

(k1 · k4)(k3 · k4) + (k2 · k3)(k3 · k4)
m2
Z′

]]
(5.0.7)

The leading terms are

1

S −m2
ϕj

(k1 · k2)(k3 · k4)
m2
Zm

2
Z′

+
1

T −m2
ϕj

(k1 · k3)(k2 · k4)
m2
Zm

2
Z′

+
1

U −m2
ϕj

(k1 · k4)(k2 · k3)
m2
Zm

2
Z′

(5.0.8)

which become

1

4m2
Zm

2
Z′

[ 1
S
(1 +

m2
ϕ

S
)(S − 2m2

Z)(S − 2m2
Z′) +

1

T
(1 +

m2
ϕ

T
)(m2

Z +m2
Z′ − T )2+

1

U
(1 +

m2
ϕ

U
)(m2

Z +m2
Z′ − U)2

] (5.0.9)

that summed give

1

4m2
Zm

2
Z′
[3m2

ϕ − 4(m2
Z +m2

Z′)]. (5.0.10)

The subleading ones are
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2

T −m2
Z −m2

Z′

[ 1

S −m2
ϕj

((k1 · k2)(k1 · k4) + (k1 · k2)(k2 · k3)
m2
Z

+

(k1 · k4)(k3 · k4) + (k2 · k3)(k3 · k4)
m2
Z′

)
+

1

T −m2
ϕj

((k2 · k2)(k1 · k3) + (k1 · k1)(k2 · k4)
m2
Z

+

(k4 · k4)(k1 · k3) + (k3 · k3)(k2 · k4)
m2
Z′

)
+

1

U −m2
ϕj

((k1 · k2)(k1 · k4) + (k1 · k2)(k2 · k3)
m2
Z

+

(k1 · k4)(k3 · k4) + (k2 · k3)(k3 · k4)
m2
Z′

)]

(5.0.11)

Let’s try to see how they sum

MSub ∝
2

4(T −m2
Z −m2

Z′)

[ 1

S −m2
ϕj

(−2SU

m2
Z

+
−2SU

m2
Z′

)
+

1

T −m2
ϕj

(−4T (m2
Z)

m2
Z

+
−4Tm2

Z′

m2
Z′

)
+

1

U −m2
ϕj

(−2SU

m2
Z

+
−2SU

m2
Z′

)] (5.0.12)

So summing them we obtain

MSub ∝
m2
Z +m2

Z′

m2
Zm

2
Z′

(5.0.13)

and

MLead+Sub ∝
3m2

ϕ

4m2
Zm

2
Z′

(5.0.14)

Unfortunately for us we reach the same conclusions of the sections before as little changes
as far as multiplication factors go.
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6 Z ′Z ′ → Z ′Z

We have

Mϕ
Z′Z′→Z′Z = −4[g2dd

2
ϕj

√
2vϕj ]

2sθc
3
θ×[ 1

S −m2
ϕj

(ϵ1 · ϵ2)(ϵ3 · ϵ4) +
1

T −m2
ϕj

(ϵ1 · ϵ3)(ϵ2 · ϵ4) +
1

U −m2
ϕj

(ϵ1 · ϵ4)(ϵ3 · ϵ2)
]
.

(6.0.1)

and

Mh
Z′Z′→Z′Z = −4[

g2w
4

√
2vH ]

2(cθ + 2
gddH
gw

sθ)(sθ − 2
gddH
gw

cθ)
3×[ 1

S −m2
h

(ϵ1 · ϵ2)(ϵ3 · ϵ4) +
1

T −m2
h

(ϵ1 · ϵ3)(ϵ2 · ϵ4) +
1

U −m2
h

(ϵ1 · ϵ4)(ϵ3 · ϵ2)
]
.

(6.0.2)

We can use the polarization vectors

ϵµ1 =
kµ1
mZ′

+
2mZ′

T − 2m2
Z′
kµ3 ϵµ2 =

kµ2
mZ′

+
2mZ′

T −m2
Z −m2

Z′
kµ4

ϵµ3 =
kµ3
mZ′

+
2mZ′

T − 2m2
Z′
kµ1 ϵµ4 =

kµ4
mZ

+
2mZ

T −m2
Z −m2

Z′
kµ2

(6.0.3)

We can follow the same procedure of the previous paragraph here.

S = (kµ1 + kµ2 )
2 = (kµ3 + kµ4 )

2 = 2m2
Z′ + 2k1 · k2 = m2

Z +m2
Z′ + 2k3 · k4

T = (kµ1 − kµ3 )
2 = (kµ2 − kµ4 )

2 = 2m2
Z′ − 2k1 · k3 = m2

Z +m2
Z′ − 2k2 · k4

U = (kµ1 − kµ4 )
2 = (kµ2 − kµ3 )

2 = m2
Z +m2

Z′ − 2k1 · k4 = 2m2
Z′ − 2k2 · k3

(6.0.4)

and of course
S + T + U = m2

Z + 3m2
Z′ . (6.0.5)

Moreover

k1 · k2 =
S

2
−m2

Z′

k3 · k4 =
S −m2

Z −m2
Z′

2

k1 · k3 = m2
Z′ −

T

2

k2 · k4 =
m2
Z +m2

Z′ − T

2

k1 · k4 =
m2
Z +m2

Z′ − U

2

k2 · k3 = m2
Z′ −

U

2
.

(6.0.6)
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Now with all that behind and clear, we proceed to examine the content of the brackets.
Again just focusing on the part regarding the ϕ exchange, the Higgs one will be the same

MZ′Z′→Z′Z ∝
[ 1

S −m2
ϕj

((k1 · k2)(k3 · k4)
mZm3

Z′
+

2

mZmZ′(T − 2m2
Z′)

[(k1 · k2)(k1 · k4) + (k2 · k3)(k3 · k4)]

+
2

(T −m2
Z −m2

Z′)
[
mZ

m3
Z′
(k1 · k2)(k2 · k3) +

1

mZmZ′
(k1 · k4)(k3 · k4)]

)
+

1

T −m2
ϕj

((k1 · k3)(k2 · k4)
mZm3

Z′
+

2

mZmZ′(T − 2m2
Z)

[(k1 · k1)(k2 · k4) + (k3 · k3)(k2 · k4)]

+
2

(T −m2
Z −m2

Z′)
[
mZ

m3
Z′
(k2 · k2)(k1 · k3) +

1

mZmZ′
(k4 · k4)(k1 · k3)]

)
+

1

U −m2
ϕj

((k1 · k4)(k2 · k3)
mZm3

Z′
+

2

mZmZ′(T − 2m2
Z)

[(k1 · k2)(k1 · k4) + (k2 · k3)(k3 · k4)]

+
2

(T −m2
Z −m2

Z′)
[
mZ

m3
Z′
(k1 · k2)(k2 · k3) +

1

mZmZ′
(k1 · k4)(k3 · k4)]

)]
(6.0.7)

The leading terms are

1

S −m2
ϕj

(k1 · k2)(k3 · k4)
mZm3

Z′
+

1

T −m2
ϕj

(k1 · k3)(k2 · k4)
mZm3

Z′
+

1

U −m2
ϕj

(k1 · k4)(k2 · k3)
mZm3

Z′
(6.0.8)

which become

1

4mZm3
Z′

[ 1
S
(1 +

m2
ϕ

S
)(S − 2m2

Z)(S −m2
Z −m2

Z′)+

1

T
(1 +

m2
ϕ

T
)(2m2

Z − T )(m2
Z +m2

Z′ − T )+

1

U
(1 +

m2
ϕ

U
)(2m2

Z − U)(m2
Z +m2

Z′ − U)
] (6.0.9)

so summing all up it gives the contribution

1

4mZm3
Z′
[3m2

ϕ − 2(m2
Z + 3m2

Z′)]. (6.0.10)

Now concerning the subleading terms we consider only the first term in the denominator
series expansion, as it is the only one that gives a constant contribution:
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2

mZmZ′(T − 2m2
Z′)

[ 1

S −m2
ϕj

(
(k1 · k2)(k1 · k4) + (k2 · k3)(k3 · k4)

)
+

1

T −m2
ϕj

(
(k1 · k1)(k2 · k4) + (k3 · k3)(k2 · k4)

)
+

1

U −m2
ϕj

(
(k1 · k2)(k1 · k4) + (k2 · k3)(k3 · k4)

)]
+

2

(T −m2
Z −m2

Z′)

[ 1

S −m2
ϕj

(mZ

m3
Z′
(k1 · k2)(k2 · k3) +

1

mZmZ′
(k1 · k4)(k3 · k4)

)
+

1

T −m2
ϕj

(mZ

m3
Z′
(k2 · k2)(k1 · k3) +

1

mZmZ′
(k4 · k4)(k1 · k3)

)
+

1

U −m2
ϕj

(mZ

m3
Z′
(k1 · k2)(k2 · k3) +

1

mZmZ′
(k1 · k4)(k3 · k4)

)]
+

(6.0.11)

now this can be converted to

2

4mZmZ′(T − 2m2
Z′)

[ 1

S −m2
ϕj

(
−SU − SU

)
+

1

T −m2
ϕj

(
−2T (m2

Z +m2
Z′)
)
+

1

U −m2
ϕj

(
−SU − SU

)]
+

2

4(T −m2
Z −m2

Z′)

[ 1

S −m2
ϕj

(mZ

m3
Z′
(−SU) + 1

mZmZ′
(−SU)

)
+

1

T −m2
ϕj

(mZ

m3
Z′
(−2Tm2

Z′) +
1

mZmZ′
(−2Tm2

Z)
)
+

1

U −m2
ϕj

(mZ

m3
Z′
(−SU) + 1

mZmZ′
(−SU)

)]
+

(6.0.12)

so

MSub ∝
3m2

Z′ +m2
Z

2mZm3
Z′

(6.0.13)

so summing the two we gain

MLead +MSub ∝
3m2

ϕ

4mZm3
Z′

(6.0.14)

Although this differs from 0 it is of little effect as the proportionality to θ of both the
scattering amplitudes dim to 0 the result.
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Figure A.8: S-type process Figure A.9: T-type process

Figure A.10: U-type process Figure A.11: Vertex interaction

Now the five diagrams that follow do have all the same structure. Indeed we start with the
usual three diagrams representing S, T and U processes in which the propagator can be
only a vector boson, Z or Z ′ depending on the case. Then there will be a third additional
diagram that will picture a vertex interaction of the four particles with no propagator.
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7 Zϕ→ Z ′ϕ

Here we are going to examine the scattering of bosons and scalar fields. For the quantities
regarding the scalar field here, we are supposing the existence of only one field, after all
the calculations are done it will be easy to generalize to n scalar fields by only summing
on the quantities presenting the subscript j.
We go ahead of ourselves as we have seen this game already:

MZ
Zϕ→Z′ϕ = 4[

√
2g2dd

2
ϕj
vϕj ]

2s3θcθ

[ 1

S −m2
Z

[−ϵ1 · ϵ3 +
(k1 + k2)µ(k1 + k2)ν

m2
Z

ϵµ1ϵ
ν
3]+

1

T −m2
Z

[−ϵ1 · ϵ3 +
(k1 − k3)µ(k1 − k3)ν

m2
Z

ϵµ1ϵ
ν
3]+

1

U −m2
Z

[−ϵ1 · ϵ3 +
(k1 − k4)µ(k1 − k4)ν

m2
Z

ϵµ1ϵ
ν
3]
] (7.0.1)

MZ′

Zϕ→Z′ϕ = 4[
√
2g2dd

2
ϕj
vϕj ]

2sθc
3
θ

[ 1

S −m2
Z′
[−ϵ1 · ϵ3 +

(k1 + k2)µ(k1 + k2)ν
m2
Z′

ϵµ1ϵ
ν
3]+

1

T −m2
Z′
[−ϵ1 · ϵ3 +

(k1 − k3)µ(k1 − k3)ν
m2
Z′

ϵµ1ϵ
ν
3]+

1

U −m2
Z′
[−ϵ1 · ϵ3 +

(k1 − k4)µ(k1 − k4)ν
m2
Z′

ϵµ1ϵ
ν
3]
] (7.0.2)

MZϕ→Z′ϕ = −4g2dd
2
ϕj
sθcθϵ1 · ϵ3 (7.0.3)

where we can see that

ϵµ1 =
kµ1
mZ

+
2mZ

T − (m2
Z +m2

Z′)
kµ3

ϵµ3 =
kµ3
mZ′

+
2mZ′

T − (m2
Z +m2

Z′)
kµ1

(7.0.4)

Now considering the longitudinal polarization degrees of freedom of the first to diagrams.
In particular the leading contributions lead us to the result by addition

M
ZL+Z

′
L

Zϕ→Z′ϕ = 4[
√
2g2dd

2
ϕj
vϕj ]

2 1

mZmZ′

[
(k1 · k1 + k2 · k1)(k1 · k3 + k2 · k3)[

s3θcθ
m2
Z(S −m2

Z)
+

sθc
3
θ

m2
Z′(S −m2

Z′)
]

(k1 · k1 − k3 · k1)(k1 · k3 − k3 · k3)[
s3θcθ

m2
Z(T −m2

Z)
+

sθc
3
θ

m2
Z′(T −m2

Z′)
]

(k1 · k1 − k4 · k1)(k1 · k3 − k4 · k3)[
s3θcθ

m2
Z(U −m2

Z)
+

sθc
3
θ

m2
Z′(U −m2

Z′)
]
]

(7.0.5)
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we see that there is an anomalous behavior at high energies. If we consider the vertex
scattering amplitude at high energies though we have

MZϕ→Z′ϕ = −4g2dd
2
ϕj
sθcθ

k1 · k3
mZmZ′

(7.0.6)

so for the rules we have already studied, they have the same exact behavior and opposite
signs and the two contributions annihilate.
Concerning the subleading contributions one can calculate them and use the equation

S + T + U = 2m2
ϕ +m2

Z +m2
Z′ (7.0.7)

to prove that they are washed away at high energies.
Now we are ready to examine the contributions coming from the transverse degrees of
freedom of the first two scattering amplitudes, those will be dominant for a0:

M
ZT+Z′

T

Zϕ→Z′ϕ = −4[
√
2g2dd

2
ϕj
vϕj ]

2sθcθϵ1 · ϵ3[
1

S
+

1

T
+

1

U
]. (7.0.8)

We can contract the two four-momentum and obtain

M
ZT+Z′

T

Zϕ→Z′ϕ = 4[
√
2g2dd

2
ϕj
vϕj ]

2sθcθ
T

2mZmZ′
[
1

S
+

1

T
+

1

U
] (7.0.9)

and

a0 =
1

32π

∫ π

0

dδ sin(δ)M(s, cos(δ)) (7.0.10)

but already here we can see that this quantity is proportional to sθ so in the end, in the
small angle approximation, it will go to 0.
We can see that the same destiny is shared by the subleading contributions of the longi-
tudinal degrees of freedom, as they all acquire a multiplication factor of sθcθ and they all
go to zero in the small angle approximation
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8 Zϕ→ Zϕ

Here we have

MZ
Zϕ→Zϕ = −4[

√
2g2dd

2
ϕj
vϕj ]

2s4θ

[ 1

S −m2
Z

[−ϵ1 · ϵ3 +
(k1 + k2)µ(k1 + k2)ν

m2
Z

ϵµ1ϵ
ν
3]+

1

T −m2
Z

[−ϵ1 · ϵ3 +
(k1 − k3)µ(k1 − k3)ν

m2
Z

ϵµ1ϵ
ν
3]+

1

U −m2
Z

[−ϵ1 · ϵ3 +
(k1 − k4)µ(k1 − k4)ν

m2
Z

ϵµ1ϵ
ν
3]
] (8.0.1)

MZ′

Zϕ→Zϕ = −4[
√
2g2dd

2
ϕj
vϕj ]

2s2θc
2
θ

[ 1

S −m2
Z′
[−ϵ1 · ϵ3 +

(k1 + k2)µ(k1 + k2)ν
m2
Z′

ϵµ1ϵ
ν
3]+

1

T −m2
Z′
[−ϵ1 · ϵ3 +

(k1 − k3)µ(k1 − k3)ν
m2
Z′

ϵµ1ϵ
ν
3]+

1

U −m2
Z′
[−ϵ1 · ϵ3 +

(k1 − k4)µ(k1 − k4)ν
m2
Z′

ϵµ1ϵ
ν
3]
] (8.0.2)

and then we have a vertex contribution

MZϕ→Zϕ = 4g2dd
2
ϕj
s2θϵ1 · ϵ3 (8.0.3)

where ϵ1 and ϵ3 can be

ϵµ1 =
kµ1
mZ

+
2mZ

T − 2m2
Z

kµ3

ϵµ3 =
kµ3
mZ

+
2mZ

T − 2m2
Z

kµ1

(8.0.4)

here the analysis is carried out in the exact same way we have seen in the previous section.
This means that if we consider the contributions coming from the first two amplitudes
, specifically, those corresponding with the leading terms on the longitudinal dof of the
vector boson propagators, and we sum them, we are going to find an anomalous behavior
at high energies that matches perfectly the one from the vertex scattering amplitude, so
the two annihilate and we do not have any sort of concern at high energies.
Moreover, the subleading terms have no impact whatsoever, that is also the case.
Now onto the transverse degrees of freedom, we can sum them and obtain a contribution
similar to the one of the previous paragraph.

Unfortunately here the contribution is also proportional to sθ so in the small angle ap-
proximation will go to 0 really fast like the one before.
Here we have omitted the contribution coming from the subleading terms of the polariza-
tion vector. Indeed, as the previous case showed they too are proportional to sθ and the
contribution goes to 0 as well in the small angle.
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9 Zh→ Z ′h

MZ
Zϕ→Z′ϕ = −4[

g2w
4

√
2vH ]

2(cθ + 2
gddH
gw

sθ)
3(sθ − 2

gddH
gw

cθ)×[ 1

S −m2
Z

[−ϵ1 · ϵ3 +
(k1 + k2)µ(k1 + k2)ν

m2
Z

ϵµ1ϵ
ν
3]+

1

T −m2
Z

[−ϵ1 · ϵ3 +
(k1 − k3)µ(k1 − k3)ν

m2
Z

ϵµ1ϵ
ν
3]+

1

U −m2
Z

[−ϵ1 · ϵ3 +
(k1 − k4)µ(k1 − k4)ν

m2
Z

ϵµ1ϵ
ν
3]
]

(9.0.1)

MZ′

Zϕ→Z′ϕ = −4[
g2w
4

√
2vH ]

2(cθ + 2
gddH
gw

sθ)(sθ − 2
gddH
gw

cθ)
3×[ 1

S −m2
Z′
[−ϵ1 · ϵ3 +

(k1 + k2)µ(k1 + k2)ν
m2
Z′

ϵµ1ϵ
ν
3]+

1

T −m2
Z′
[−ϵ1 · ϵ3 +

(k1 − k3)µ(k1 − k3)ν
m2
Z′

ϵµ1ϵ
ν
3]+

1

U −m2
Z′
[−ϵ1 · ϵ3 +

(k1 − k4)µ(k1 − k4)ν
m2
Z′

ϵµ1ϵ
ν
3]
]

(9.0.2)

MZϕ→Z′ϕ = 8(2
g2w
4
(cθ + 2

gddH
gw

sθ)(sθ − 2
gddH
gw

cθ)
1

4
)ϵ1 · ϵ3 (9.0.3)

ϵµ1 =
kµ1
mZ

+
2mZ

T − (m2
Z +m2

Z′)
kµ3

ϵµ3 =
kµ3
mZ′

+
2mZ′

T − (m2
Z +m2

Z′)
kµ1

(9.0.4)

Now considering the longitudinal polarization degrees of freedom of the first two diagrams.
In particular, the leading contributions lead us to the result by addition

M
ZL+Z

′
L

Zϕ→Z′ϕ = −4[
g2w
4

√
2vH ]

2(cθ + 2
gddH
gw

sθ)(sθ − 2
gddH
gw

cθ)
1

mZmZ′

[
(k1 · k1 + k2 · k1)(k1 · k3 + k2 · k3)[

(cθ + 2gddH
gw

sθ)
2

m2
Z(S −m2

Z)
+

(sθ − 2gddH
gw

cθ)
2

m2
Z′(S −m2

Z′)
]

(k1 · k1 − k3 · k1)(k1 · k3 − k3 · k3)[
(cθ + 2gddH

gw
sθ)

2

m2
Z(T −m2

Z)
+

(sθ − 2gddH
gw

cθ)
2

m2
Z′(T −m2

Z′)
]

(k1 · k1 − k4 · k1)(k1 · k3 − k4 · k3)[
(cθ + 2gddH

gw
sθ)

2

m2
Z(U −m2

Z)
+

(sθ − 2gddH
gw

cθ)
2

m2
Z′(U −m2

Z′)
]
]

(9.0.5)
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Again we use expansions of the kind

1

S −m2
Z

=
1

S
(1 +

m2
Z

S
) (9.0.6)

together with the equations that relate scalar product of momenta to Mandelstam’s vari-
ables:

M
ZL+Z

′
L

Zϕ→Z′ϕ = −4[
g2w
4

√
2vH ]

2(cθ + 2
gddH
gw

sθ)(sθ − 2
gddH
gw

cθ)
1

4mZmZ′

[
(S +m2

Z −m2
h)(S +m2

Z′ −m2
h)[

(cθ + 2gddH
gw

sθ)
2

m2
ZS

(1 +
m2
Z

S
) +

(sθ − 2gddH
gw

cθ)
2

m2
Z′S

(1 +
m2
Z′

S
)]

(T +m2
Z −m2

Z′)(−T +m2
Z −m2

Z′)[
(cθ + 2gddH

gw
sθ)

2

m2
ZT

(1 +
m2
Z

T
) +

(sθ − 2gddH
gw

cθ)
2

m2
Z′T

(1 +
m2
Z′

T
)]

(U +m2
Z −m2

h)(U +m2
Z′ −m2

h)[
(cθ + 2gddH

gw
sθ)

2

m2
ZU

(1 +
m2
Z

U
) +

(sθ − 2gddH
gw

cθ)
2

m2
Z′U

(1 +
m2
Z′

U
)]
]

(9.0.7)

This becomes

M
ZL+Z

′
L

Z′ϕ→Z′ϕ = −4[
g2w
4

√
2vH ]

2(cθ + 2
gddH
gw

sθ)(sθ − 2
gddH
gw

cθ)
1

4mZmZ′[
[
(cθ + 2gddH

gw
sθ)

2

m2
Z

+
(sθ − 2gddH

gw
cθ)

2

m2
Z′

](S − T + U + 2m2
Z + 2m2

Z′ − 4m2
h) + (1 + 4

g2dd
2
H

g2w
)
]

(9.0.8)

now we can exploit the fact that

S + T + U = m2
Z +m2

Z′ + 2m2
h (9.0.9)

and see that this reduces to

M
ZL+Z

′
L

Z′ϕ→Z′ϕ = −4[
g2w
4

√
2vH ]

2(cθ + 2
gddH
gw

sθ)(sθ − 2
gddH
gw

cθ)
1

4mZmZ′[
[
(cθ + 2gddH

gw
sθ)

2

m2
Z

+
(sθ − 2gddH

gw
cθ)

2

m2
Z′

](−2T + 3m2
Z + 3m2

Z′ − 2m2
h) + (1 + 4

g2dd
2
H

g2w
)
]

(9.0.10)

We also make use of the fact that

g2wv
2
H

2
[
(cθ + 2gddH

gw
sθ)

2

m2
Z

+
(sθ − 2gddH

gw
cθ)

2

m2
Z′

] = 1 (9.0.11)
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and the contribution inside the brackets becomes

M
ZL+Z

′
L

Z′ϕ→Z′ϕ = −g2w(cθ + 2
gddH
gw

sθ)(sθ − 2
gddH
gw

cθ)
1

4mZmZ′[
(−2T + 3m2

Z + 3m2
Z′ − 2m2

h)
] (9.0.12)

Now the vertex contribution is

MZϕ→Z′ϕ = g2w(cθ + 2
gddH
gw

sθ)(sθ − 2
gddH
gw

cθ)
m2
Z +m2

Z′ − T

2mZmZ′
(9.0.13)

so summing the two we obtain

M
ZL+Z

′
L

Z′ϕ→Z′ϕ = −g2w(cθ + 2
gddH
gw

sθ)(sθ − 2
gddH
gw

cθ)
1

4mZmZ′[
(m2

Z +m2
Z′ − 2m2

h)
] (9.0.14)

Moreover the subleading contribution is completely irrelevant at high energies

Now for the transversal degrees of freedom they amount to

M
ZT+Z′

T
Zϕ→Zϕ = 4[

g2w
4

√
2vH ]

2(cθ+2
gddH
gw

sθ)(sθ−2
gddH
gw

cθ)(1+4
g2dd

2
H

g2w
)ϵ1·ϵ3[

1

S
+
1

T
+

1

U
] (9.0.15)

that becomes

M
ZT+Z′

T
Zϕ→Zϕ = 4[

g2w
4

√
2vH ]

2(cθ + 2
gddH
gw

sθ)(sθ − 2
gddH
gw

cθ)×

(1 + 4
g2dd

2
H

g2w
)(
m2
Z +m2

Z′ − T

2mZmZ′
)[
1

S
+

1

T
+

1

U
]

(9.0.16)

the only term that survives is the oe proportional to T

M
ZT+Z′

T
Zϕ→Zϕ = −12[

g2w
4

√
2vH ]

2(cθ+2
gddH
gw

sθ)(sθ− 2
gddH
gw

cθ)(1+4
g2dd

2
H

g2w
)(

1

2mZmZ′
). (9.0.17)

Now in order to calculate a0 we put all contributions together and go in the small angle
approximation. Unfortunately for us, all the contributions are proportional to dH and,
by noticing that tan 2θ ∝ dH , we can see that they all go to 0 in this regime
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10 Z ′h→ Z ′h

For this process we have again three contributions like the previous ones

MZ
ϕZ′→ϕZ′ = −4[

g2w
4

√
2vH(cθ + 2

gddH
gw

sθ)(sθ − 2
gddH
gw

cθ)]
2

[ 1

S −m2
Z

[−ϵ1 · ϵ3 +
(k1 + k2)µ(k1 + k2)ν

m2
Z

ϵµ1ϵ
ν
3]+

1

T −m2
Z

[−ϵ1 · ϵ3 +
(k1 − k3)µ(k1 − k3)ν

m2
Z

ϵµ1ϵ
ν
3]+

1

U −m2
Z

[−ϵ1 · ϵ3 +
(k1 − k4)µ(k1 − k4)ν

m2
Z

ϵµ1ϵ
ν
3]
]

(10.0.1)

MZ′

ϕZ′→ϕZ′ = −4[
g2w
4

√
2vH(sθ − 2

gddH
gw

cθ)
2]2[ 1

S −m2
Z′
[−ϵ1 · ϵ3 +

(k1 + k2)µ(k1 + k2)ν
m2
Z′

ϵµ1ϵ
ν
3]+

1

T −m2
Z′
[−ϵ1 · ϵ3 +

(k1 − k3)µ(k1 − k3)ν
m2
Z′

ϵµ1ϵ
ν
3]+

1

U −m2
Z′
[−ϵ1 · ϵ3 +

(k1 − k4)µ(k1 − k4)ν
m2
Z′

ϵµ1ϵ
ν
3]
]

(10.0.2)

finally the vertex contribution

MZϕ→Z′ϕ = 4
g2w
8
(sθ − 2

gddH
gw

cθ)
2ϵ1 · ϵ3 (10.0.3)

This one follows the exact same dynamic of the previous one apart form the multiplicity
factors. Indeed the final result relies on tan 2θ as well as the previous one and this means
that is bound to go to 0 in the small angle approximation as well.

11 Zϕ→ f̄LfL

Here we can see two contributions rising, corresponding to the two vector boson exchanges:

MZ
Zϕ→f̄LfL

= 2g3d
√
2d2ϕjvϕjs

3
θ

1

s−m2
Z

[−gµν +
kµkν
m2
Z

]df
pµ1
mZ

f̄Lγ
νfL (11.0.1)

and

MZ′

Zϕ→f̄LfL
= 2g3d

√
2d2ϕjvϕjsθc

2
θ

1

s−m2
Z′
[−gµν +

kµkν
m2
Z′

]df
pµ1
mZ

f̄Lγ
νfL (11.0.2)

We can see that if we sum up the contributions from the longitudinal degrees of freedom
we end up with an expression proportional to

√
s. Unfortunately at tree-level there is no
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term that can annihilate that, so processes at one loop level must come and help us correct
this behavior. The simplest term that would come to mind is a vertex one, just like we
have seen in all previous scattering processes. Indeed if we were in possession of such a
term, it would constitute the perfect fit to eliminate longitudinal modes contribution. The
reason why this term is not present in our theory is that if we could add that term by hand
that would have repercussions on the fermion masses which were accurately measured in
the past.

After that is worked out we can analyze what happens to the transverse degrees of freedom
as their sum is constant at high energies and corresponds to

M
ZT+Z′

T

Zϕ→f̄LfL
= −2g3d

√
2d2ϕjvϕjsθ

1

s
df

pµ1
mZ

f̄LγµfL (11.0.3)

so that at high energies it becomes

M
ZT+Z′

T

Zϕ→f̄LfL
= g3d

√
2d2ϕjvϕjsθdf

1

mZ

(11.0.4)

and

a0 =
1

16π

√
2g3dd

2
ϕj
vϕjsθdf (11.0.5)

that goes to 0 in the small angle approximation
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Figure A.12: S diagram. Z/Z ′ propagator

The next three processes can be all summed up in the diagram above.
Indeed they are all S type processes with a vector boson propagator. Of course, both Z
and Z ′ are going to dress the part resulting in different scattering amplitudes. The initial
state is composed of a vector boson and a scalar colliding and the final one is a fermionic
line of Standard Model particles.
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12 Zh→ f̄LfL

We have

MZ
Zh→f̄LfL

= −2
g2w
4
(cθ+2

gddH
gw

sθ)
22
√
2sθvHgddf

1

s−m2
Z

[−gµν+
kµkν
m2
Z

]
pµ1
mZ

f̄Lγ
νfL (12.0.1)

and

MZ′

Zh→f̄LfL
= 2

g2w
4
(cθ + 2

gddH
gw

sθ)(sθ − 2
gddH
gw

cθ)×

2
√
2cθvHgddf

1

s−m2
Z′
[−gµν +

kµkν
m2
Z′

]
pµ1
mZ

f̄Lγ
νfL

(12.0.2)

so we can already see that the longitudinal modes will sum up to 0.
Then the transverse ones will contribute to a0 and will sum up to

MZ
Zh→f̄LfL

= g2w(cθ + 2
gddH
gw

sθ)2
√
2vHg

2
ddfdH

1

s

pµ1
mZ

f̄LγµfL (12.0.3)

so

a0 =

√
2

16π
g2w(cθ + 2

gddH
gw

sθ)vHg
2
ddfdH

1

mZ

(12.0.4)

that becomes

a0 =

√
2

16π
g2wvHg

2
ddfdH

1

mZ

(12.0.5)

and has the bound √
2g2wvHg

2
ddfdH ≤ 8πmZ (12.0.6)

or
g2wvHgddfdH ≤ 8πdϕvϕ (12.0.7)
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13 Z ′h→ f̄LfL

Here the two contributions are

MZ
Z′h→f̄LfL

= −4
g2w
4
(cθ + 2

gddH
gw

sθ)(sθ − 2
gddH
gw

cθ)×

√
2vHgddf f̄Lγ

µfLsθ
pµ1
mZ′

1

s−m2
Z

[−gµν +
kµkν
m2
Z

]

(13.0.1)

and

MZ′

Z′h→f̄LfL
= 4

g2w
4
(sθ − 2

gddH
gw

cθ)
2
√
2vHgddf f̄Lγ

µfLcθ
pµ1
mZ′

1

s−m2
Z′
[−gµν +

kµkν
m2
Z′

] (13.0.2)

so we know that the longitudinal part of the propagators is not a problem.
Now onto the transverse modes

M
ZT+Z′

T

Z′h→f̄LfL
= g2w(sθ − 2

gddH
gw

cθ)
√
2vHgddf f̄LγµfL

pµ1
mZ′

1

s
2
gddH
gw

(13.0.3)

that results in

a0 = − 1

32π
g2w(sθ − 2

gddH
gw

cθ)
√
2vHgddf

1

mZ′
2
gddH
gw

(13.0.4)

in the small angle limit this returns

a0 =

√
2

8π
g3dd

2
HvHdf

1

mZ′
(13.0.5)

that yelds the bound

g3dd
2
HvHdf ≤

4π√
2
mZ′ (13.0.6)

or

g2dd
2
HvHdf ≤ 4πdϕvϕ (13.0.7)
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14 Z ′ϕ→ f̄LfL

The argument is the same here of the previous section

MZ
Zϕ→f̄LfL

= 2g3d
√
2d2ϕjvϕjs

2
θcθ

1

s−m2
Z

[−gµν +
kµkν
m2
Z

]df
pµ1
mZ′

f̄Lγ
νfL (14.0.1)

and

MZ′

Zϕ→f̄LfL
= 2g3d

√
2d2ϕjvϕjsθc

3
θ

1

s−m2
Z′
[−gµν +

kµkν
m2
Z′

]df
pµ1
mZ′

f̄Lγ
νfL. (14.0.2)

Again we need here contributions at loop-level to destroy the part proportional to the
longitudinal degrees of freedom of the boson propagators that grow as

√
s.

When all of that is set and done we can examine the contribution to a0 coming from the
transverse part of the propagator

M
ZT+Z′

T

Zϕ→f̄LfL
= −2g3d

√
2d2ϕjvϕjcθ

1

s
df

pµ1
mZ′

f̄LγµfL (14.0.3)

that becomes

M
ZT+Z′

T

Zϕ→f̄LfL
= 2g3d

√
2d2ϕjvϕjcθdf

1

mZ′
(14.0.4)

so

a0 = −
√
2

8π
g3dd

2
ϕj
vϕjcθdf

1

mZ′
= − 1

8π
g2ddϕdfcθ (14.0.5)

so by the formula

|Rea0| ≤
1

2
(14.0.6)

we obtain
g2ddϕdf ≤ 4π (14.0.7)

in the small angle approximation
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Figure A.13: S-type process Figure A.14: T-type process

Figure A.15: U-type process

In the last processes we really have two types of diagrams that can be regrouped in one
single picture. The difference lies in the propagator, which is going to be either Z or Z ′.
When that is set we are going to look at S,T and U types processes in which initial and
final states are both composed of a vector boson(Z/Z ′) and a scalar (ϕ/h).
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15 Zϕ→ Zh

here we pick up the terms

MZ
Zϕ→Zh = 8g2dd

2
ϕj
vϕjs

2
θ

g2w
4
(cθ + 2

gddh
gw

sθ)
2vH×[ 1

S −m2
Z

[−ϵ1 · ϵ3 +
(k1 + k2)µ(k1 + k2)ν

m2
Z

ϵµ1ϵ
ν
3]+

1

T −m2
Z

[−ϵ1 · ϵ3 +
(k1 − k3)µ(k1 − k3)ν

m2
Z

ϵµ1ϵ
ν
3]+

1

U −m2
Z

[−ϵ1 · ϵ3 +
(k1 − k4)µ(k1 − k4)ν

m2
Z

ϵµ1ϵ
ν
3]
]

(15.0.1)

and

MZ′

Zϕ→Zh = −8g2dd
2
ϕj
vϕjsθcθ

g2w
4
(cθ + 2

gddh
gw

sθ)(sθ − 2
gddhs

gw
cθ)vH[ 1

S −m2
Z′
[−ϵ1 · ϵ3 +

(k1 + k2)µ(k1 + k2)ν
m2
Z′

ϵµ1ϵ
ν
3]+

1

T −m2
Z′
[−ϵ1 · ϵ3 +

(k1 − k3)µ(k1 − k3)ν
m2
Z′

ϵµ1ϵ
ν
3]+

1

U −m2
Z′
[−ϵ1 · ϵ3 +

(k1 − k4)µ(k1 − k4)ν
m2
Z′

ϵµ1ϵ
ν
3]
]

(15.0.2)

Here

ϵµ1 =
kµ1
mZ

+
2mZ

T − 2m2
Z

kµ3

ϵµ3 =
kµ3
mZ

+
2mZ

T − 2m2
Z

kµ1

(15.0.3)

We can already spot some things here based on our experience with previous scattering
processes. Indeed if we take both of the contributions coming from the sum of the lon-
gitudinal modes of the Z and Z ′ propagators we obtain something that grows with

√
s.

This is not a danger as the sum is proportional to the factor

sθ
m2
Z

(cθ + 2
gddhs

gw
sθ)−

cθ
m2
Z′
(sθ − 2

gddhs

gw
cθ) = 0 (15.0.4)

so that there is no threat at high energies. Of course, this is also true for the subleading
terms, as they are proportional to the same factor.

Now for transverse modes, we have that their sum corresponds to

M
ZT+Z′

T
Zϕ→Zh = −8g2dd

2
ϕj
vϕj

g2w
4
(cθ + 2

gddhs

gw
sθ)2

gddh
gw

vHϵ1 · ϵ3sθ[
1

S
+

1

T
+

1

U
] (15.0.5)

that becomes after the contraction

M
ZT+Z′

T
Zϕ→Zh = 8g2dd

2
ϕj
vϕj

g2w
4
(cθ + 2

gddhs

gw
sθ)2

gddh
gw

vH
1

m2
Z

3

4
sθ (15.0.6)
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for the sake of a0 extraction the part proportional to cos δ is negligible and we obtain an
expression for a0 that goes like

a0 =
3

32π
g2dd

2
ϕj
vϕjg

2
w(cθ + 2

gddhs

gw
sθ)

gddh
gw

vH
1

m2
Z

sθ (15.0.7)

Unfortunately, this contribution is proportional to sθ and goes to 0 in the small angle
approximation
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16 Zϕ→ Z ′h

Again we find two contributions here

MZ
Zϕ→Z′h = 8g2dd

2
ϕj
vϕjs

2
θ

g2w
4
(cθ + 2

gddH
gw

sθ)(sθ − 2
gddH
gw

cθ)vH[ 1

S −m2
Z

[−ϵ1 · ϵ3 +
(k1 + k2)µ(k1 + k2)ν

m2
Z

ϵµ1ϵ
ν
3]+

1

T −m2
Z

[−ϵ1 · ϵ3 +
(k1 − k3)µ(k1 − k3)ν

m2
Z

ϵµ1ϵ
ν
3]+

1

U −m2
Z

[−ϵ1 · ϵ3 +
(k1 − k4)µ(k1 − k4)ν

m2
Z

ϵµ1ϵ
ν
3]
]

(16.0.1)

and

MZ′

Zϕ→Z′h = −8g2dd
2
ϕj
vϕjsθcθ

g2w
4
(cθ + 2

gddH
gw

sθ)
2vH[ 1

S −m2
Z′
[−ϵ1 · ϵ3 +

(k1 + k2)µ(k1 + k2)ν
m2
Z′

ϵµ1ϵ
ν
3]+

1

T −m2
Z′
[−ϵ1 · ϵ3 +

(k1 − k3)µ(k1 − k3)ν
m2
Z′

ϵµ1ϵ
ν
3]+

1

U −m2
Z′
[−ϵ1 · ϵ3 +

(k1 − k4)µ(k1 − k4)ν
m2
Z′

ϵµ1ϵ
ν
3]
]

(16.0.2)

here again the longitudinal modes are shut down by the factor

sθ
m2
Z

(cθ + 2
gddhs

gw
sθ)−

cθ
m2
Z′
(sθ − 2

gddhs

gw
cθ) = 0 (16.0.3)

And then the contribution coming from the transverse degrees of freedom originates an
a0 term which is unfortunately proportional to sθ and thus can be neglected.



160 Appendix A. Details on the calculation

17 Z ′ϕ→ Z ′h

The two scattering amplitudes here are

MZ
Zϕ→Zh = −8g2dd

2
ϕj
vϕjsθcθ

g2w
4
(cθ + 2

gddH
gw

sθ)(sθ − 2
gddH
gw

cθ)vH[ 1

S −m2
Z

[−ϵ1 · ϵ3 +
(k1 + k2)µ(k1 + k2)ν

m2
Z

ϵµ1ϵ
ν
3]+

1

T −m2
Z

[−ϵ1 · ϵ3 +
(k1 − k3)µ(k1 − k3)ν

m2
Z

ϵµ1ϵ
ν
3]+

1

U −m2
Z

[−ϵ1 · ϵ3 +
(k1 − k4)µ(k1 − k4)ν

m2
Z

ϵµ1ϵ
ν
3]
]

(17.0.1)

and

MZ′

Zϕ→Zh = 8g2dd
2
ϕj
vϕjc

2
θ

g2w
4
(sθ − 2

gddH
gw

cθ)
2vH[ 1

S −m2
Z′
[−ϵ1 · ϵ3 +

(k1 + k2)µ(k1 + k2)ν
m2
Z′

ϵµ1ϵ
ν
3]+

1

T −m2
Z′
[−ϵ1 · ϵ3 +

(k1 − k3)µ(k1 − k3)ν
m2
Z′

ϵµ1ϵ
ν
3]+

1

U −m2
Z′
[−ϵ1 · ϵ3 +

(k1 − k4)µ(k1 − k4)ν
m2
Z′

ϵµ1ϵ
ν
3]
]

(17.0.2)

With the same tricks as before, we can manage to get rid of the longitudinal modes and
of all the possible problems at high energies.
We can use

ϵµ1 =
kµ1
mZ′

+
2mZ′

T − 2m2
Z′
kµ3

ϵµ3 =
kµ3
mZ′

+
2mZ′

T − 2m2
Z′
kµ1

(17.0.3)

The calculations are the exact same as the ones we have already carried out in the previous
sections, with the exact same variables. The only difference is placed in massive factors
that we can clearly control and substitute thanks to the Mandelstam’s variables definitions

S = (kµ1 + kµ2 )
2 = (kµ3 + kµ4 )

2 = m2
Z′ +m2

ϕ + 2k1 · k2 = m2
Z′ +m2

h + 2k3 · k4
T = (kµ1 − kµ3 )

2 = (kµ2 − kµ4 )
2 = 2m2

Z′ − 2k1 · k3 = m2
ϕ +m2

h − 2k2 · k4
U = (kµ1 − kµ4 )

2 = (kµ2 − kµ3 )
2 = m2

Z′ +m2
h − 2k1 · k4 = m2

Z′ +m2
ϕ − 2k2 · k3

(17.0.4)

Unfortunately for us, this goes exactly like all the ones bearing proportionality to dH so
it will dwindle until it goes to 0 in the small angle approximation.
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18 ϕϕ→ ϕϕ

Finally, we analyze here the purely dark scalars scattering. The truth is that here the
dominant term is purely the vertex one

Mϕϕ→ϕϕ = −λϕ
4
4! = −6λϕ (18.0.1)

we can rearrange by knowing that λϕ =
µ2ϕ
v2ϕ

and that m2
ϕ = µ2

ϕ. We have incorporated the

multiplicity factor due to the fact that the final and initial particles are identycal, we can
straight away write

a0 = − 1

32π
6
m2
ϕ

4v2ϕ
= − 3

64π

m2
ϕ

v2ϕ
(18.0.2)
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spontaneous symmetry breaking from which we recover

SU(3)c ⊗ SU(2)L ⊗ U(1)Y → SU(3)c ⊗ U(1)em (1.0.2)

Thanks to the Higgs mechanism we are able to produce this way masses for all fermions
and preserve the photon massless, given that electromagnetism stays a symmetry of this
model.
Finally, the last piece of this picture is represented by the Higgs boson ϕ which is a
complex scalar of spin 0 and a doublet of the weak isospin.
Thanks to all this information we are able to write the SM lagrangian :

LSM = Lgaugekin + Lfermionkin + LHiggskin + LHiggspot + Lyuk

= −1

4
FµνF

µν + iψ̄γµDµψ + (Dµϕ)
+Dµϕ+ µ2ϕ+ϕ− 1

2
λ(ϕ+ϕ)2 + ψ̄yϕψ

(1.0.3)

All the masses for fermions and bosons are acquired via Higgs mechanism. The sponta-
neous symmetry breaking produces a non-trivial vacuum expectation value in which

< ϕ >= v = 174 GeV. (1.0.4)

This enables the creation of masses for fermions through the Yukawa term.
For the bosons instead, masses are acquired through the same mechanism inside the
Higgs kinetic term. In fact, it makes use of the covariant derivative to couple Higgs and
electroweak bosons through

Dµ = dµ + gAµ. (1.0.5)

2 SU(3)c

Let’s dive some more into the mathematical structure of SM lagrangian [48].Here for the
gluons

Ga
µν = dµG

a
ν − dνG

a
µ + gsf

abcGµ,aGν,b. (2.0.1)

a is the color index,gs is the coupling constant and fabc are group structure constants with

[T a, T b] = ifabcT c (2.0.2)

where Ta are the generators of the SU(3)c group.
The covariant derivative for a generic quark field here has the form

Dµq = (dµ − igsG
a
µT

a)q (2.0.3)

with of course T a being the group generators in the chosen representation, in the funda-
mental one they are T a = 1

2
λa with λa being the Gell-Mann matrices.
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3 SU(2)L ⊗ U(1)Y

For the SU(2)L group

W a
µν = dµW

a
ν − dνW

a
µ + gϵabcW b

µW
c
ν (a = 1, 2, 3) (3.0.1)

The fundamental representation has T a = σa

2
with σa being the Pauli matrices. ϵ here is

the completely antisymmetric tensor. The covariant derivative for a generic left-handed
field ψL transforming under this representation is

DµψL = (dµ − igW a
µT

a)ψL (3.0.2)

For what concerns U(1)Y we have

Bµν = dµBν − dνBµ (3.0.3)

and the covariant derivative acts here on a generic field ψ as

Dµψ = (dµ − ig′Y Bµ)ψ (3.0.4)

with Y being the hypercharge of the field which is also connected to the electric charge
through the equation

Q = T3L + Y (3.0.5)

If we rewrite the covariant derivative applied to a left-handed field with hypercharge Y
in terms of W±, Zµ and Aµ it can be proved to be

DµψL = [dµ − i
g√
2
(σ+W+

µ σ
−Wµ)− ieQAµ − i

g

cosθW
(
σ3
2

−Q sin2 θW )Zµ)]ψL (3.0.6)

with the relation
g′ cos θW = g sin θW = e (3.0.7)

For a right-handed field

DµψR = [dµ − ieQAµ − i
g

cos θW
Q sin2 θWZµ]ψR (3.0.8)

So the quantum numbers are

Field lL lR vL uL dL uR dR ϕ+ ϕ0

T3 −1
2

0 1
2

1
2

−1
2

0 0 1
2

−1
2

Y −1
2

−1 −1
2

1
6

1
6

2
3

−1
3

1
2

1
2

Q −1 −1 0 2
3

−1
3

2
3

−1
3

1 0

4 The gauge and fermion lagrangian

So for the gauge sector we have

Lgauge = −1

4
Ga
µνG

aµν − 1

4
W a
µνW

aµν − 1

4
BµνB

µν (4.0.1)



166 Appendix B. The Standard Model of particles

For the fermionic part we write here only the kinetic sector, which corresponds to

LkinFermion =
∑
quarks

iq̄γµDµq +
∑
ψL

iψ̄Lγ
µDµψL +

∑
ψR

iψ̄Rγ
µDµψR (4.0.2)

in which each covariant derivative is obtained through the rules that we have explained
above.

5 The Higgs lagrangian

The Higgs doublet is included in the standard model and assumes the form

Φ =
( ϕ+

v+H+iϕZ√
2

)
(5.0.1)

so these terms figure inside the covariant derivative as

DµΦ = [dµ − i
g√
2
(σ+W+ + σ−W−)− ieQAµ − i

g

cos θW
(
σ3

2
−Q sin2 θW )Zµ]Φ (5.0.2)

since YΦ = −1
2
and for Φ we have that

Q =
(1 0
0 0

)
(5.0.3)

So as we previously have introduced, the Higgs lagrangian has the form

LHiggs = (DµΦ)
+(DµΦ) + µ2Φ+Φ− λ(Φ+Φ)2. (5.0.4)

One can see after a brief calculus that

v2 =
µ2

λ
m2
h = 2µ2 λ =

g2

8

m2
h

m2
W

(5.0.5)

So if we expand the Lagrangian using the expression that we have written previously for
Φ, we find that we recover, after the proper diagonalization, the terms

LHiggs = ...+
1

2
m2
ZZ

µZµ +m2
WW

+
µ W

µ− + interactions (5.0.6)

from this, we are able to recover the expressions for the masses of the electroweak bosons

mW =
1

2
gv mZ =

1

cos θW

1

2
gv =

1

cos θW
mW . (5.0.7)
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6 Yukawa lagrangian

This piece of the SM lagrangian combines the Higgs field with the leptons and quarks
fields. After the spontaneous symmetry breaking, where the Higgs field acquires a non-
trivial vacuum expectation value, it is this very piece of information that gives rise to the
masses for fermions. let’s see it in more detail writing the form of the Yukawa lagrangian:

Lyukawa = −LLYlΦlR −QLYdΦdR −QLYuΦ̃uR + h.c. (6.0.1)

and

Φ̃ = iσ2Φ
∗ =

(v+H−iϕZ√
2

−ϕ−

)
(6.0.2)

and Yl, Yd and Yu are 3× 3 matrices in the flavor space.
Let’s skip to mass basis through the change

uL −→ uLU
+
uL dL −→ dLU

+
dL

uR −→ UuRuR dR −→ UdRdR
(6.0.3)

so that we can employ a biunitary transformation to diagonalize the mass matrices, so
that they become

v√
2
U+
uLYuUuR =Mu = diag(mu,mc,mt)

v√
2
U+
dLYdUdR =Md = diag(md,ms,mb).

(6.0.4)

It can be seen that the Higgs coupling to quarks becomes diagonal

−LY uk,H = (1 +
h

v
)[ūMuu+ d̄Mdd]. (6.0.5)

Nothing happens to the couplings with Zµ and Aµ that continue to be diagonal. The
changes occur with the W coupling. In fact, we can see that this piece of lagrangian has
the form

−LW =
g√
2
ūLγ

µdLW
+
µ + h.c. (6.0.6)

Given that the two quarks transform with different matrices, they produce a new factor
inside this expression when we turn to mass basis:

−LW =
g√
2
ūLVCKMγ

µdLW
+
µ + h.c. (6.0.7)

with
VCKM = U+

uLUdL (6.0.8)

being the Cabibbo-Kobayashi-Maskawa matrix.
Moreover, we can see that in SM there are no right-handed neutrinos. This means that
neutrinos here can be taken as massless, hence can be rotated in order to balance the
transformation of the charged quark needed to diagonalize Yl. Thus we have in the
leptonic sector:

Yl = diag(me,mµ,mτ ) and V = 1 (6.0.9)
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7 The complete SM lagrangian

A the end we recover the expression

LSM = Lgauge + LFermion + LHiggs + LY ukawa (7.0.1)

8 Anomalies

We recognize the crucial importance that symmetries have in quantum theories. We have
talked extensively about SU(3)c ⊗ SU(2)L ⊗ U(1)Y in the previous sections to be the
symmetry whose breaking shapes the world that we experience at particle level.
Whenever a symmetry of a classical theory is not anymore a symmetry at quantum level
with the same lagrangian, that symmetry is called an anomaly. Now given the importance
that we have recognized in symmetries for QFTs, we can understand that anomalies are
important as well. We are going to show in the following paragraphs the implications of
anomalies in the standard model and how these characterize some of the most important
results studied in QFT courses.
In particular, an anomaly has the effect of making the resulting current not conserved.
There are theories like QED where the current couples to a massless spin-1 particle. Then
we can see that if the current is not conserved, the Ward identity results violated, thus
longitudinal polarizations will be produced and unitarity will be violated.
The requirement for the Standard Model to be anomaly free is actually of great importance
too, so that it leads to the quantization of the electric charge all by itself in tandem with
the quark and lepton charges to be linked.
Let’s draw the first line between the two major anomaly categories: gauge anomalies and
global anomalies.
As the name suggests, a gauge anomaly requires a gauge boson as part of the symmetry
and, on the contrary, a global anomaly does not.
Notice that global anomalies are not a problem. As it appears the Standard Model
itself is full of such anomalies and many of them are actually important to explain some
observations and do not lead to inconsistencies. For example, the symmetry associated
to the baryon number conservation is anomalous. In fact, this symmetry produces, by
Noether theorem, the current Jµbaryon =

∑
i q̄iγ

µqi., which can be proven to be anomalous.
Fortunately, there is no massless spin-1 boson coupling to this current in the Standard
Model, so, as we have said, this does not generate inconsistencies, on the contrary, baryon
number violation has its relevant importance, as it explains the overabundance of matter
over antimatter. We recognize this to be one of the only three conditions imposed by
Sakharov in order to explain matter-antimatter asymmetry.
So gauge anomalies are the only problem that can threaten Standard Model’s validity. In
the following paragraph, we are going to see first the general result linked to the divergence
of a current associated to a gauge anomaly.

9 Anomalos gauge symmetries

The history of anomalies is closely related to the pion decay π0 → γγ [49]. The importance
of this process and its study lies in the fact that by calculating its rate, we are able also
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to grasp the actual color number of quarks Nc = 3. In fact, by matching the experimental
value we obtain, with the theoretical one we estimated, which depends solely on Nc we
are also able to acquire this particular value.
The connection to anomalies lies in the historical difficulty in calculating this particular
rate. In 1969, thanks to the recent progress in quantum field theory, the scientists Alder,
Bell and Jackiw were able to relate mathematically the calculation of the rate of π0 → γγ
to anomalies.
To see this let’s first study symmetries in QED lagrangian:

LQED = ψ̄(i��d− e��A−m)ψ

= ψ̄L(i��d− e��A)ψ̄L + ψ̄R(i��d− e��A)ψ̄R −mψ̄LψR −mψ̄RψL
(9.0.1)

In the massless limit this lagrangian has vector and axial symmetries:

ψ → eiαψ ψ → eiβγ5ψ (9.0.2)

which produce respectively the vector and axial-vector currents

Jµ = ψ̄γµψ Jµ5 = ψ̄γµγ5ψ (9.0.3)

Equations of motion imply that

dµJ
µ = 0 dµJ

µ5 = 2imψ̄γ5ψ (9.0.4)

so one can see that classically the axial symmetry is only conserved in the massless limit.
It can be proven that, including quantum corrections,

dµJ
µ5 = 2imψ̄γ5ψ +

e2

16π2
ϵµνρσFµνFρσ. (9.0.5)

This result can be obtained by looking at the calculation of the loop diagram shown above
for the process π0 → γγ.
This result shows that in presence of an electromagnetic field, the axial current cannot
be conserved. This happens whether or not we are in the massless limit. So we have that
even if m = 0, we still have dµJ

µ5 ̸= 0. Instead, we have seen that classically, in the
massless limit, dµJ

µ5 = 0. This behavior can be explained only if the cause of violation
was the quantum effects. This means that the axial-vector symmetry is anomalous, based
on our previous definition.
What happens in the general case is that we want to see that dµJ

µ = 0 and dµJ
5µ = 0 are

still valid when we add quantum corrections. In order to do this we calculate the three
point function

< Jα5(x)Jµ(y)Jν(z) > (9.0.6)

and we verify that
d

dxµ
< Jα5(x)Jµ(y)Jν(z) >= 0 (9.0.7)

using Feynman diagrams.
If we move to momentum space this can be translated in

pµM
αµν
5 = 0 (9.0.8)
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where the amplitude is given by the formula

iMαµν
5 (p, q1, q2)(2π)4δ4(p− q1− q2)

=

∫
d4xd4yd4ze−ipxeiq1yeiq2z < Jα5(x)Jµ(y)Jν(z) >

=

∫
d4xd4yd4ze−ipxeiq1yeiq2z < [ ¯ψ(x)γαγ5ψ(x)][ ¯ψ(y)γµψ(y)][ ¯ψ(z)γµψ(z)] >

(9.0.9)

After a long and complex mathematical procedure what we get is

pαM
αµν
5 =

1

4π2
ϵµνρσq1ρq2σ q1µM

αµν
5 = 0 (9.0.10)

this reconfirms the fact that the vector current is conserved and the axial current not and
corresponds precisely to what we have gained in the previous equation with the new term
calculated in the equation for the axial current. In fact, the result obtained correspond
to a modification of the axial current by the factor

e2

16π2
ϵµνρσFµνFρσ (9.0.11)

It should be noticed that the result obtained is not susceptible to contributions coming
from higher order loops, but only from triangle diagrams like the one in FIGURE and
that the anomaly is independent of fermion masses and the anomalous term arises in the
massless case too.

10 Gauge anomalies in the Standard Model

Here we know that the gauge group is G = SU(3)c⊗SU(2)L⊗U(1)Y . This produces the
three currents JQCDµ , Jweakµ and JYµ . This means that, with the same reasoning as before,
we need to check that

dµ < J jµJ
k
αJ

l
ν >= 0 (10.0.1)

for j, k, l any of these forces in order for the Standard Model to be anomaly free.
It can be shown that here, like in the QED case, there is a term that needs to be added
and that is present even in the massless case, originated by quantum corrections.
In general, when it comes to non-abelian gauge theories, we always obtain conserved
currents of the type

Jαµ =
∑
ψ

ψ̄iT
α
ijγ

µψj (10.0.2)

where Tαij are the generators of the symmetry in the chosen representation.
This means that when we approach the triangle diagrams in calculation, those acquire a
factor proportional to T a. In particular, the two ways momentum can flow, give a result
of this kind:

By using our knowledge of the commutators, we can rewrite the expression inside the
brackets as

tr[T aT bT c] =
1

2
tr[[T a, T b]T c] +

1

2
tr[{T a, T b}T c] = i

1

2
TRf

abc +
1

4
dabcR (10.0.3)
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The factor proportional to fabc gives the difference between the two loops and is UV
divergent. Although this can be reabsorbed in the renormalization of the fabcAaµA

b
νdµA

c
ν

and gives no contribution. Instead, the contribution from dabcR is a totally symmetric
tensor and is a factor of the kind

dabcR = 2tr[T aR{T bR, T cR}] (10.0.4)

For SU(N) there is a unique totally symmetric three indices tensor up to a constant, so
we can rewrite this contribution as

[T aR{T bR, T cR}] = A(R)tr[T a{T b, T c}] = A(R)dabc (10.0.5)

for any representation.
A(R) is the anomaly coefficient and dabc is defined using the fundamental representation
so that A(fund) = 1. The contribution we obtain is the one that sums the two triangle
diagrams.
Consider the case U(1)3Y , we get a result of the type

dαJ
a
α =

(∑
left

A(Rl)−
∑
right

A(Rr)
) g2

128π2
dabcϵµναβF b

µνF
c
αβ (10.0.6)

where we sum over left-handed particles with the anomaly coefficient A(Rl) in their rep-
resentation Rl and do the same for the right-handed particles. Before proceeding, let’s
remind ourselves of the charges of the Standard Model particles with respect to the three
symmetry groups:

Field SU(3)c SU(2)L U(1)Y T3 Q Y = Q− T3

L =
(v
e

)
1 2 −1

2

(+1
2

−1
2

) ( 0
−1

) (−1
2

−1
2

)

Q =
(u
d

)
3 2 1

6

(+1
2

−1
2

) ( 2
3

−1
3

) (1
6
1
6

)
eR 1 1 1 0 1 1

uR 3 1 −2
3

0 −2
3

−2
3

dR 3 1 1
3

0 1
3

1
3

Let’s go back to the previous equation. We can see that for U(1)Y T
a = 1 and dabc = 4 so

dµJ
µ
y =

(∑
left

Y 3
l −

∑
right

Y 3
r

) g′2

32π2
dabcϵµναβBµνBαβ (10.0.7)

just plugging in the hypercharges, we obtain the desired result

(2Y 3
L − Y 3

e − Y 3
v ) + 3(2Y 3

Q − Y 3
u − Y 3

d ) = 0 (10.0.8)
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