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Abstract

This thesis investigates the e昀케cacy of Batch Normalization Adaptation, an unsupervised Do-
main Adaptation technique, in the context of image segmentation of mitochondria utilizing a
UNet model. The primary objective is to empirically examine the performance of Batch Nor-
malization Adaptation across di昀昀erent source and target datasets, to potentially predict its ef-
fectiveness in an unsupervised manner. Here, we illustrate the key 昀椀ndings derived from the
pursuit of this objective.
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1
Introduction

From April to October 2023, I completed my internship at the ICube Laboratory at the Uni-
versity of Strasbourg. This thesis represents the culmination of my work during that period.

The objective of my Internship was as follows: ”given a U-Net model trained for the task
of image segmentation (speci昀椀cally to segment mitochondria in microscopic cell images),
understand when the BatchNorm adaptation works and when it doesn’t on di昀昀erent
target datasets”. I will explain everything clearly below.

TheU-Net is a convolutional neural network developed for biomedical image segmentation.
It was created at the Computer Science Department of the University of Freiburg [2].

The datasets provided to me contain microscopic cell images, with the masks containing
the segmentation of mitochondria. Refer to Figures 1.1 and 1.2 for two examples.

The idea is taking a U-Net trained on one source dataset, for example the dataset FS1 from
Figure 1.1, and adapting it so that it is able to segment the images from a new target dataset,
for example the dataset FS2 from Figure 1.2. This task in machine learning is known under
the name of Domain Adaptation. One simple and intuitive Domain Adaptation technique
is the BatchNorm Adaptation, which will be explained in detail in Section 2.4.

My work is a continuation of the work of my team: speci昀椀cally, I have leveraged the ex-
periments presented in their article referenced as [1] as a foundational basis for my work. In
the mentioned article, it was discovered that there is a relationship between the following two
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quantities:

• Wasserstein distance between the distributions of some toy datasets;

• the performance of the adapted U-Net.

Consequently, our hope was to 昀椀nd a relationship between:

• Wasserstein distance between the latent spaces of the U-Net and the adapted U-Net,
both interpreted as probability distributions;

• the performance of the adapted U-Net.

Essentially we are looking for a predictor of the performance of the BatchNorm-Adapted
U-Net.

Figure 1.1: Dataset FS1 and its ground truth mitochondria segmenta琀椀on. The dataset FS1 contains images obtained via
chemical 昀椀xa琀椀on.

Figure 1.2: Dataset FS2 and its ground truth mitochondria segmenta琀椀on. The dataset FS2 contains images obtained via
cryo‐昀椀xa琀椀on.
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2
Theory

2.1 Distribution Shift andDomain Adaptation

Let us consider a labeled training dataset from a source distribution p(x,y) which we use to
昀椀t a predictive model p(y|x), and a test dataset from a target distribution q(x,y).
For context, in our case, x represents the images * , y represents the masks † . As an example,

if we set the dataset FS1 (Figure 1.1) as source and FS2 (Figure 1.2) as target, then p(x,y) is the
distribution from which the images and masks of the dataset FS1 are generated, and q(x,y)

is the distribution from which the images and masks of the dataset FS2 are generated, and the
predictive model p(y|x) learns to predict the masks y from the images x of the dataset FS1.

A distribution shift or dataset shift occurs if p ̸= q. In this case, the predictive model
p(y|x) cannot be used to predict q(y|x), unless properly adapted.

There are four main types of distribution shift [3], which are summarised in Table 2.1:

• theCovariate shiftorDomain shiftoccurswhen thedistributionof the images changes,
while that of the masks stays the same. Example: the source dataset contains images of
co昀昀ee pots, while the target dataset images of co昀昀ee pots with white noise;

• theConcept shift or annotation shift occurs when the distribution of the images is the
same, but the masks (annotations) change. This can occur in case of di昀昀erent conven-

*so if RGB images it is x ∈ {0, 1, ..., 255}W×H×3, also commonly written in papers such as [1] as the
continuous generalization x ∈ R

W×H×3

†so y ∈ {0, 1}W×H
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Discriminative: X −→ Y

p(x,y) q(x,y) p(x) ?
= q(x) p(y|x)

?
= q(y|x)

Covariate shift p(x)p(y|x) q(x)p(y|x) ̸= =

Concept shift p(x)p(y|x) p(x)q(y|x) = ̸=

Generative: X ←− Y

p(x,y) q(x,y) p(y) ?
= q(y) p(x|y)

?
= q(x|y)

Label shift p(y)p(x|y) q(y)p(x|y) ̸= =

Manifestation shift p(y)p(x|y) p(y)q(x|y) = ̸=

Table 2.1: The 4 types of distribu琀椀on shi昀琀.

tions for annotating the images. Example: given a street segmentation task, two di昀昀erent
organizationsmayormaynot consider the sidewalk as a part of the class ”street” (inmany
contexts it is in fact considered part of the street or roadway).

• the Label shift or prior shift occurs when the distribution of the label changes. For
example, in medical imaging if we are trying to predict the presence of a disease, data
gathered from a rural hospital may present a much diverse number of cases in which the
disease is present compared to data from a urban hospital.

• theManifestation shift occurs when the same label manifests in di昀昀erent images. For
example, inmedical imaging thepresenceof a tumor canmanifest indi昀昀erent areas, sowe
may have a source images with brain tumor images and target images with lung tumor.

To deal with all these di昀昀erent types of domain shift, we introduce Domain Adaptation:
formally, domain adaptation refers to the process of adapting apredictivemodel trainedondata
from one domain (source) to make accurate predictions on data from a di昀昀erent but related
domain (target).

2.2 BatchNormalization

Batch Normalization (BatchNorm) is a technique commonly used in deep neural networks
to stabilize and accelerate the training process. It’s applied as a layer within a neural network,
usually after the output of a convolutional or fully connected layer and before an activation
function.
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Figure 2.1: Simple visualiza琀椀on of the e昀昀ect of Batch Normaliza琀椀on on a distribu琀椀on.

The main purpose of Batch Normalization is to normalize the input of a layer by adjust-
ing the mean and variance of the batch of data that passes through it (see Figure 2.1). This
helps to mitigate the issue of internal covariate shift (see [4]), where the distribution of in-
put data changes throughout the training process, causing slower convergence and requiring
careful tuning of learning rates.

Computationally, this operation is realized as follows (from the o昀케cial PyTorch implemen-
tation [5]):

y =
x− E[x]

√

Var[x] + ϵ
∗ ´ + ³

Wherex and y are 4-dimensional input and output, with the usual Torch tensor dimensions
(Nbatch, C,H,W )which are respectively number of images per-batch, number of channels (3
for RGB images), width and height; E[x] and Var[x] are running estimates of the mean and
variance calculated per-dimension over mini-batches; ϵ is a value added for numerical stability
(10−5 by default); ´ and ³ are C-dimensional vectors of learnable parameters, initialized to 1
and 0 respectively.

The running estimates are calculated according to the formula:

x̂new = (1−momentum)× x̂+momentum× xt

where x̂ is the estimated statistic and xt is the new observed value, and momentum = 0.1

by default.

For more details refer to the o昀케cial PyTorch documentation [5].
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2.3 U-Net

Figure 2.2: UNet structure from [2]. In our U‐Net each blue arrow, which corresponds to conv 3x3, ReLU, has an addi琀椀onal
BatchNorm layer: conv 3x3, BatchNorm, ReLU.

As already said in the introduction, theU-Net is a convolutional neural network developed
for biomedical image segmentation. It was created at theComputer ScienceDepartment of the
University of Freiburg [2]. It was named ”U-Net” due to its U-shaped network architecture
(Figure 2.2). It was originally developed for biomedical image segmentation, but its e昀昀ective-
ness has led to its use in various other domains as well.

The U-shaped architecture of the U-Net consists of a contracting path (encoder) and an ex-
panding path (decoder). The contracting path captures context and reduces the spatial dimen-
sions of the input image, while the expanding path recovers the spatial information and gener-
ates the segmented output. It is particularly e昀昀ective for tasks where precise object boundaries
need to be detected in images, such as medical image segmentation, where it’s used to locate
and segment structures like cells, organs, or tumors.

The architecture is characterized by skip connections, where the feature maps from the con-
tracting path are combined with those in the expanding path. This helps in preserving 昀椀ne
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details during the upsampling process.
Overall, U-Net has proven to be a powerful and widely used architecture for various image

segmentation tasks in the 昀椀eld of machine learning and computer vision [6].

2.4 BatchNormAdaptation

BatchNormAdaptation is realized by taking amodel already trained on the source images, and
passing all target images through it, freezing all parameters but updating the running estimates
E[x] and Var[x] in all BatchNorm layers. So the BatchNorm layers get adapted to the target
images [7].

This is an unsupervised Domain Adaptation technique, meaning it does not require the
target masks to be applied, just the target images. The implementation takes around 10 lines
of code and the calculations a few seconds.

It was veri昀椀ed to better the performance signi昀椀cantly in certain cases, for example if the
source dataset is FS1 (Figure 1.1) and the target dataset is FS2 (Figure 1.2) as shown in the
article [1]; a sample image is shown in Figure 2.3.

Figure 2.3: Image taken from Ar琀椀cle [1]. As we can see the BatchNorm Adapted predic琀椀on (right‐most image) is much be琀琀er
than the non‐adapted U‐Net (second image from the right). In this speci昀椀c case the IoU goes from 0.556 (U‐Net source) to
0.736 (U‐Net BN‐adapted).

2.5 Wasserstein Distance

Let (M,d)be ametric space that is aRadon space. Forp ∈ [1,∞), theWasserstein p-distance
[8] between two probability measures µ and ν onM with 昀椀nite p-moments is

Wp(µ, ν) =

(

inf
γ∈Γ(µ,ν)

E(x,y)∼γd(x, y)
p

)1/p
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where Γ(µ, ν) is the set of all couplings of µ and ν. A coupling ´ is a joint probability
measure onM ×M whose marginals are µ and ν on the 昀椀rst and second factors, respectively.
That is,

∫

M

´(x, y)dy = µ(x)

∫

M

´(x, y)dx = ν(y)

The Wasserstein distance is strictly related to the solution of the problem of optimal mass
transportation; this gives a clean intuitive explanation of its de昀椀nition [8].

TheWasserstein distance between two multivariate normal distributions,

d := W2(N(m1,Σ1), N(m2,Σ2))

can be shown to have the following formula ‡ [10]:

d2 = ∥m1 −m2∥
2
2 + Tr(Σ1 + Σ2 − 2(Σ

1/2
1 Σ2Σ

1/2
1 )1/2)

One of the most known applications of the Wasserstein distance is as a metric to assess the
quality of images created by generative models such as GANs. In this context, it also is known
under the name of Fréchet Inception Distance (see [11]). Speci昀椀cally, the process in its most
general form goes as the following pseudocode:

• INPUT a function f : ΩX −→ R
n

• INPUT two datasets S, S ′ ⊂ ΩX

• Compute f(S), f(S ′) ⊂ R
n

• Fit two gaussian distributionsN(µ,Σ), N(µ′,Σ′), respectively for f(S), f(S ′)

• RETURN W 2
2 (N(µ,Σ), N(µ′,Σ′))

In the context of GANs,ΩX is the space of images, and f is an Inception v3 model without
its 昀椀nal classi昀椀cation layer (2048-dimensional activation vector).

In our case, ΩX will be the space of images, and f will be a section of the U-Net (generally
in the contracting part).

‡the square root of a matrix is not uniquely de昀椀ned, so for clarity sake we specify thatΣ1/2 refers to the prin-
cipal square root matrix [9]. Since we are dealing with covariance matrices, which are real, symmetric, positive
semide昀椀nite matrices, their principal square root matrix is also real, symmetric and positive semide昀椀nite [9].
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2.5.1 Source-Normalized Wasserstein and Target-Normalized
Wasserstein

The source-normalized Wasserstein distance [12] normalizes the means and covariance ma-
trices with respect to the source statistics. It is de昀椀ned as follows:

snW 2
2 (N(µs,Σs), N(µt,Σt)) = W 2

2

(

N(Σ−1/2
s µs, I), N(Σ−1/2

s µt,Σ
−1
s Σt)

)

=

= (µt − µs)
TΣ−1

s (µt − µs) + Tr
(

I+ ΣtΣ
−1
s − 2Σ

−1/2
t Σ−1/2

s

)

Where the subscripts s and t refer to source and target distributions, andΣ−1/2 = (Σ1/2)−1

is the inverse of the square rootmatrix of the covariancematrixΣ. Similarly, the target-normalized
Wasserstein distance normalizes the means and covariance matrices with respect to the target
statistics:

tnW 2
2 (N(µs,Σs), N(µt,Σt)) =

snW 2
2 (N(µt,Σt), N(µs,Σs))

The explicit formula is therefore the same as above, swapping the subscripts s and t.
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3
The Objective

3.1 The objective of my research Internship

As established in the Introdution, all the results in thisThesis are 昀椀nalized for the following goal:
”given a U-Net model trained for the task of image segmentation (speci昀椀cally to segment
mitochondria in microscopic cell images), understand when the BatchNorm adaptation
works and when it doesn’t on di昀昀erent target datasets”.

More in detail, we are hoping to 昀椀nd a relationship between the following two quantities:

• The BatchNorm adapted U-Net performance,

• theWasserstein distance computed on the latent spaces of the original U-Net and the
BatchNorm adapted U-Net.

This would allow to know in an unsupervised way if it’s worth to apply the BatchNorm
adaptation to our U-Net.

3.2 Motivation

This idea is shown on an experiment from the paper [1]. A neural network is used to conduct
a basic binary classi昀椀cation task (see Figure 3.1). In this demonstration, a relationship is found

11



Figure 3.1: The binary classi昀椀ca琀椀on task.

Figure 3.2: The rela琀椀onship between Rela琀椀ve Performance Ptarget/Psource and Target‐normalized Wasserstein distance
(see [13]). The light blue points ToyUDA are di昀昀erent itera琀椀on of the experiment shown in Figure 3.1, where data was
deformed according to di昀昀erent means and covariance matrices.

between the performance of a simple BN-adapted network and the Target-NormalizedWasser-
stein Distance [13] (see Figure 3.2).

12



Given the results of this experiment, the hope would be to 昀椀nd such a relationship in the
more complex case of an image segmentation task. Speci昀椀cally, we expect that after BN adap-
tation the latent space(s) of the adapted U-Net will be similar to the latent space(s) of the
original U-Net, but only if the adapted U-Net performs well on the target. The idea is that if
the features are similar after BN adaptation, then also the feature spaces are similar.

Therefore, we need to compute a distance between the latent spaces of original U-Net and
adapted U-Net. To do so, we proceed as follows: we take the latent spaces of the original U-
Net and the target adapted U-Net, consider them as two sets of samples from two distinct
probability distibutions, and compute the (target-normalized) Wasserstein distance between
them.

The reason for this is that BN adaptation is a relatively simple modi昀椀cation to the network.
So our hope is that if BN adaptation is e昀昀ective the two latent spaces will be similar, hence
the Wasserstein distance will be lower. On the other hand, if it is not, the Wasserstein distance
should be higher. Essentially, we are looking for behavior similar to that from the experiment
(Figure 3.2).

Some experiments were already done by my team with the old toy datasets. Results were
diverse (see Figure 3.3), but that far not promising yet. This was our starting point.

Figure 3.3: Some of the results are from experiments conducted by my team. The details of these experiments and the
coloring of the dots are not relevant for our purposes; however, we can see that the only graph that provides some faint
hope for a consistent pa琀琀ern is the 昀椀rst one.
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4
Generating toy datasets

To conduct new experiments big amounts of data were needed. Hence the necessity for an
algorithm to generate datasets.

4.1 The old dataset generator: Bézier curves

The code generates points randomly in 2d and then connects themwith aBézier curve, creating
the boundary of the toymitochondria. Then the region inside the curve is de昀椀ned to be white,
and the outside black; this way the mask is created. Then, by replacing 0 and 1 pixels with two
random normal white noises N(µ0, σ0) and N(µ1, σ1) we get the toy dataset; some samples
are shown in Figure 4.1.

Figure 4.1: Example of dataset created with the old toy dataset generator, using Bézier curves.

This dataset generation has some clear drawbacks: it is intricate to code thus slow, and gen-
erates only one cell at a time which makes it hard to generalize.
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4.2 The new dataset generator: Perlin noise

I decided to redo from scratch the dataset generation. My objective was to create 0/1 masks
resembling the ones from the datasets FS1 and FS2 form Figures 1.1 and 1.2. The process goes
as follows: 昀椀rst a 2d Perlin noise is generated (original code from [14]), then we set a threshold:
all values whose modulus is above this threshold are 1, otherwise they are 0. Then as before we
replace 0’s and 1’s with two random normal white noisesN(µ0, σ0) andN(µ1, σ1).

A sample is shown in Figure 4.2, the process is summed up in Figure 4.3.

Figure 4.2: Examples of images created with the new toy dataset generator, using Perlin noise. These images are 64x64
pixels but they can be generated with any width and height.

Figure 4.3: New dataset genera琀椀on process.

Pros: This process is overall simpler andmuch faster than theprevious algorithm, allowing to
generate a dataset with 10.000 images andmasks in around 40 seconds, with a randomnumber
of mitochondrias with di昀昀erent shapes, sizes and positions.

Cons: The shapes of course are similar to mitochondria to our eye but ultimately their dis-
tribution is di昀昀erent than true mitochondria masks. For example, shapes tend to be clearly de-
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tached from each other, while real mitochondria can get close to each other and almost touch.
This is accounted for: in fact we are trying to get results out of the segmentation process, so all
we need is a decent approximation of the original datasets, not a perfect procedural reconstruc-
tion.

4.2.1 More technical details

This subsection is dedicated to clarify some details about the dataset generation.

The translation correction
The Perlin noise has some constant zero-crossings: ”[...] the [Perlin] noise function will

pass through zero at every node, giving Perlin noise its characteristic look.” (from [15]). This
means that if we just generate a 64x64 Perlin noise we will end up with the zero-crossings in
the same points, and the masks will always avoid these points (see Figures 4.4 and 4.5 on the
left). This may not a problem since we are dealing with a fully convolutional network hence
invariant by translation of the input, but it does alter the shapes created and it’s generally good
practice to not have such an unbalance in our dataset. Tomake up for this instead of generating
a 64x64 Perlin Noise with 2x2 resolution we generate a 96x96 Perlin noise with 3x3 resolution
and we randomly choose a 64x64 square in it (see Figure 4.4). This randomizes the position of
the zero-crossings. With this modi昀椀cation the density of the masks across the dataset images is
homogeneous (see Figure 4.5 on the right).

Why not use the original mitochondria masks instead?
The experimentations require massive amounts of data and when I started I had only two

datasets to work with, namely FS1 and FS2 shown in Figures 1.1 and 1.2. The total number of
masks of the two combined is 11.500 + 10.000, and a huge number of them are irrelevant (seg-
mentations of very similar images, hence very similarmasks). On the other hand, my algorithm
can generate a full datasetwith 10.000 images, all completely newanddi昀昀erent fromeachother,
in around 40 seconds, making it an obvious better choice, so me and my team decided to opt
for this.
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Figure 4.4: Visual explana琀椀on of the transla琀椀on correc琀椀on. On the le昀琀, zero‐crossings are always in the same posi琀椀on
rela琀椀ve to the red square. On the right, the posi琀椀on of the red square is translated by a random amount between 0 and 31
on the x and y axis, so the zero‐crossings are in random posi琀椀ons.

Figure 4.5: Density distribu琀椀on of thewhitemask pixels before and a昀琀er adding the transla琀椀on. On the le昀琀, before correc琀椀ng,
we can see how the masks are completely absent in the black gorges, which correspond to the zero‐crossings (z‐axis ranges
from 0 to >30.000). On the right, a昀琀er correc琀椀ng, the density is more homogeneous (z‐axis ranges from 20.000 to 21.000).
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5
Experiments

Several experiments were conducted. In this thesis we present a selection of them, those which
we considered to be the most important.

5.1 Some starting results

Consider a dataset such as the one shown in Figure 4.2. A dataset of this kind has 4 parameters
we can work with: (µ0, σ0, µ1, σ1), which are the parameters of the background white noise
N(µ0, σ0) and the parameters of themaskswhite noiseN(µ1, σ1). Webeganwith some simple
experiments to establish baseline results.

5.1.1 Experiment #1: Increasing distance

As a 昀椀rst result, 10 sets of parameters were chosen. We kept σ0 = σ1 = 50 and changed µ0, µ1

in such away that 1
2
(µ0+µ1) = 128 and the distanceµ1−µ0 increased fromdataset to dataset

(see Figure 5.2). More speci昀椀cally, the parameters were chosen this way:

(µ0, µ1) ∈ {(123, 133), (121, 135), (117, 139), (113, 143), (106, 150),

(97, 159), (83, 173), (65, 191), (38, 218), (1, 255)}
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Hence:

µ1 − µ0 ∈ {10, 14, 22, 30, 44, 62, 90, 126, 180, 254}

For each of these parameter choices we generated a source dataset and a target dataset, to-
talling 20 datasets. We then trained 10 models on the 10 source datasets, and used them to
predict the 10 target datasets; then we computed the average IoU * between the ground truth
masks and the predicted masks, and we plotted it (see Figure 5.3 on the left).

Afterwards, we took each of the 10 models and adapted to each of the 10 target datasets;
this gave us 100 adapted models, which we used to predict the target datasets, get the average
IoUs between ground truth masks and predicted masks, and plotted them (see Figure 5.3 on
the right).

The results are shown in Figure 5.3.
Details: 5000 source images † , 500 test images, batch size = 1, 5 epochs, early stopping with

patience 5 ‡ and µ § = 0, percentage of validation set = 10%, learning rate = 10−5, no image
scaling, RMSprop optimizer (weight decay 10−8, momentum 0.999, gradient clipping 1.0)
with ReduceLROnPlateau scheduler. Loss function = CrossEntropyLoss + DiceLoss.

Observations:

• The 昀椀rst evident observation is the irregular behavior observedwhen the source dataset
has µ1 − µ0 = 30 in the non-adapted model (Figure 5.3, on the left). Indeed, upon re-
peating this experiment or similar ones multiple times, such irregularities arose sporad-
ically across di昀昀erent datasets. The reasons for this are di昀케cult to infer, as they do not
consistently arise, but we came up with some possible explanations: di昀昀erent conver-
gence during training, variations in dataset generation, or excessive clipping when µ1 −
µ0 ≥ 90, whichwewill discuss later. BN adaptation consistently corrects these types
of irregularities.

• Irregularities apart, the overall results are consistent with our basic intuition: from
left to right the IoU increases (fromhardest to easiest); trainingon aharder dataset (lower

*Intersection over union, common measure to quantify the goodness of a prediction in image segmentation.
In our case it is computed on the white masks.

†The train-validation split is done automatically by the training code of the U-Net
‡Because of the way the code is in [16], 5 times per epochs the accuracy is computed on the validation set; this

means that in 5 epochs there are 25 steps where the accuracy is checked. We programmed the early stopping on
these steps.

§if the current accuracy is lower than the best accuracy plus δ, the early stopping counter is reset to zero
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Figure 5.1: Samples of Experiment #1.

µ1−µ0) and testing on an easier dataset (higherµ1−µ0) generally results in better results
than the opposite way; in the diagonal (where source µ1−µ0 is equal to target µ1−µ0)
the IoU is consistently good, with no irregularities arising in any of the iterations of this
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Figure 5.2: µ0, µ1 of Experiment #1. Same colors means same dataset, from red, µ1 − µ0 = 10 (hardest dataset) to blue,
µ1 − µ0 = 255 (easiest dataset).

Figure 5.3: IoU graphs, without and with BatchNorm adapta琀椀on. The x‐axis 琀椀cks show the µ1 − µ0 of the source dataset
and the y‐axis 琀椀cks the µ1 − µ0 of the target dataset.

experiment.

5.1.2 Experiment #2: brightness shift

9 sets of parameters were chosen. We kept σ0 = σ1 = 50 and changed µ0, µ1 in such a way
that 1

2
(µ0 + µ1) = 128 and the distance µ1 − µ0 = 40 remained constant. More speci昀椀cally,

the parameters were chosen this way:

(µ0, µ1) ∈ {(10, 50), (30, 70), (50, 90), (70, 110),

(90, 130), (110, 150), (130, 170), (150, 190), (170, 210)}

22



Figure 5.4: Samples of Experiment #2.
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The resulting datasets show what we describe intuitively as a ”brightness shift” (See Figure
5.4). The results are shown in Figure 5.5.

Figure 5.5: IoU graphs, without and with BatchNorm adapta琀椀on. The x‐axis 琀椀cks show the µ1 − µ0 of the source dataset
and the y‐axis 琀椀cks the µ1 − µ0 of the target dataset.

Details: 5000 source images ¶ , 500 test images, batch size = 1, 5 epochs, early stopping
with patience 5 ‖ and µ ** = 0, percentage of validation set = 10%, learning rate = 10−5, no
image scaling, RMSprop optimizer (weight decay 10−8, momentum 0.999, gradient clipping
1.0) with ReduceLROnPlateau scheduler. Loss function = CrossEntropyLoss + DiceLoss.

Observations:

• Results of the non-adapted U-Net (Figure 5.5) are exactly what you would expect. To
understand the reason for them, see Figure 5.6: as you can see, a net trained on a given
source dataset will predict all black on darker target datasets, and all white on brighter
target datasets. Hence 0.2 IoUon full white predictions (average number of white pixels
of the masks †† ) and 0.0 IoU on full black predictions.

• The BatchNorm adaptation fully corrects for brightness shift. This is in fact a rather
trivial result, since BN-adaptation shifts the running mean µ̂ from that of the source

¶The train-validation split is done automatically by the training code of the U-Net
‖Because of the way the code is in [16], 5 times per epochs the accuracy is computed on the validation set; this

means that in 5 epochs there are 25 steps where the accuracy is checked. We programmed the early stopping on
these steps.

**if the current accuracy is lower than the best accuracy plus δ, the early stopping counter is reset to zero
††If we assume images are independent samples from a distribution p it is then expected by the strong law of

large number that the density of white pixels converges (as the number of samples tends to in昀椀nity).
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Figure 5.6: The predicted masks of the U‐Net without BN adapta琀椀on in each of the source‐target combina琀椀ons. The plot
grid follows the same pa琀琀ern as the graphs in Figure 5.5. As intui琀椀ve, if source is darker and target is brighter the predic琀椀on
is fully white, while it is fully black in the opposite case, hence the pa琀琀ern that emerges in Figure 5.5.

dataset to that of the target dataset. Nonetheless, it is a great showcase of a scenario
where this domain adaptation technique excels; this also generalizes to RGB images for
each of the colors separately (as an example, we may have two datasets where the photos
were taken with di昀昀erent devices which have di昀昀erent sensibilities to the three colors,
resulting in three distinct ”brightness shifts”-alike behaviours).

5.1.3 Experiment #3: mixed datasets

This experiment considers a wider set of datasets and combinations to account for more gener-
ality. Speci昀椀cally we have:

• 4 datasets with increasing µ1 − µ0 distance, as in Experiment #1,

• 4 datasets with brightness shift, as in Experiment #2,

• 3 miscellaneous datasets: 1 random dataset, where all parameters (µ0, σ0, µ1, σ1) are
randomized, 1 gradient dataset, where 2 distinct color patterns are applied to mask and
background, and 1 edges dataset, where we convolve the mask with an edge detection
kernel to get the images.

Samples can be seen in Figure 5.7. The results are shown in Figure 5.8.
Details: 5000 source images , 500 test images, batch size = 1, 5 epochs, early stopping with

patience 5 and µ = 0, percentage of validation set = 10%, learning rate = 10−5, no image scal-
ing, RMSprop optimizer (weight decay 10−8, momentum 0.999, gradient clipping 1.0) with
ReduceLROnPlateau scheduler. Loss function = CrossEntropyLoss + DiceLoss.
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Observations:

• Referring toFigure 5.8: wehavedrawn3 subdivisions to separate the 3 groupsof datasets,
as in the dotted list above. The top-left and central 4x4 squares show thebehaviourwe’ve
seen already from Experiments #1 and #2. The last square (bottom right, 3x3 square)
shows the three new datasets and how they interact between each others as source and
target datasets.

• A lot of di昀昀erent interactions are shown from these graphs and underlining each one
separately would require a couple pages. The most interesting cases are where the BN-
adaptation improves notably the performance in a source-target couple, but switching
source and target leads to completely di昀昀erent results (see center-bottom rectangle and
right-center rectangles, 3x4 and 4x3 respectively). Another very interesting example is
how the U-Net trained on the gradient dataset is also successful in predicting the edges
dataset even without any adaptation; on the other hand, the U-Net trained on the edges
dataset performs terribly on the gradient dataset: our assumption is that in the 昀椀rst case
the 昀椀lters take the shape of a general edge-detection-like matrix, while in the second case
the 昀椀lters are more specialized.

• As in the example just mentioned above, this experiment shows plenty of cases where
there is source-target asymmetry, whichwas oneof the keyobservations from thepaper
of my team [1].
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Figure 5.7: Samples of Experiment #3.
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Figure 5.8: IoU of Experiment #3, before and a昀琀er BN adapta琀椀on. On the y axis the source dataset, on the x axis the target
dataset.
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5.2 Latent Space Analysis

As we anticipated, we want to calculate the distance between the latent spaces of the original
U-Net and the BatchNorm-adapted U-Net. Here we explain precisely how that is done, and
all the issues encountered.

We assume our dataset contains RGB images of size 64x64. It is common in deep learning
to consider images as samples from a probability distribution; speci昀椀cally, such an input image
would be a sample x ∈ R

3×64×64 with a certain probability p̃(x).
Firstly, we analysed the latent space for seeing what information it was bringing. The dis-

tribution is 1024-dimensional which is tricky to handle. As a 昀椀rst thing we checked the 1-
dimensional projections: some very unusual behaviour was happening in some cases, for in-
stance the one shown in Figure 5.9. After some modi昀椀cations (considering before ReLU and
removing weight decay) we got consistent regular behaviour (see Figure 5.10).

We wanted to check for potential Gaussian behaviour [17], but this was clearly not the case
as shown in Figure 5.11.

Figure 5.9: From Experiment #1, three 1d projec琀椀ons of the 1024‐dimensional distribu琀椀on, before the correc琀椀ons. The
source dataset is the one from Figure 5.1 with µ1 − µ0 = 22.
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Figure 5.10: From Experiment #1, three 1d projec琀椀ons of the 1024‐dimensional distribu琀椀on, now with the correc琀椀ons.
Behaviour is regular and easier to manage.

Figure 5.11: Three 1d projec琀椀ons of the 1024‐dimensional distribu琀椀on. The source dataset is the one from Figure 5.1 with
µ1 − µ0 = 10. The red lines are 昀椀琀琀ed Gaussian: as we can see the distribu琀椀on is not gaussian in this case.

5.2.1 Wasserstein accuracy

After testing the Wasserstein measure in a couple experiments, we realized that the computed
values were relatively stable on the upper-most latent spaces, while they got unstable and unre-
liable on deeper layers, with amuchwider span of values for the same computation and sporad-
ically negative values (which is not something we want to see when computing any distance).
Consequently, we set up a test to get an estimate of how accurate theWasserstein formula is in
function of the number of samplesm and the dimensionality n. Our implementation of the
Wasserstein was taken from the stable version of the Fréchet Distance proposed by PyTorch
[18] [19].

The experiment goes as follows: we generatem samples from two identical n-dimensional
Normal Gaussian distributionsN(0, In),N(0, In), and we compute the squaredWasserstein
distance between these two sets of samples, which ideally should be equal to 0.

Results are shown in Figure 5.12. A polynomial function ferr(m,n)was 昀椀tted for all three
curves and was used to infer the expected error size for n ≥ 100. So the function ferr(m,n)
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repesent the error size of the squared Wasserstein distance form samples between two multi-
variate normal n-dimensional distributions.

We want to apply these results to the latent spaces of the U-Net, to get a rough idea of what
the error size could be for each of our latent space. In fact, the deeper we go into the contrac-
tive path of our U-Net, the less samples and the higher the dimensionality (m decreases and n
increases, both resulting in ferr(m,n) increasing). Results are summed up in Table 5.1.
These results essenitally show that Wasserstein distance may be unreliable in the last two

latent spaces ls3 and ls4, while for the other three they are expected to be more reliable. Of
course this is nothing but an example experiment, so the actual results may be di昀昀erent, but as
we will see empirically they to line up with this idea.

Figure 5.12: x‐axis is n ∈ [1, 99], y‐axis is squared Wasserstein, legend ism ∈ {103, 104, 105}.
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Figure 5.13: In red the func琀椀ons ferr(m,n) for m = 103, 104, 105. The exact func琀椀on is ferr(m,n) =
1

m
(0.502n2 + 2.596n− 4.457).

ls=0 ls=1 ls=2 ls=3 ls=4
W ×H 64× 64 32× 32 16× 16 8× 8 4× 4

m 4096000 1024000 256000 64000 16000

n 64 128 256 512 1024

ferr(m,n) < 10
3 < 10

3
0.13 2.08 33

Table 5.1: We assume 1000 input images, hencem = 1000 ×W × H . ferr(m,n) represents the error size of the
squared Wasserstein calcula琀椀on. ls=0, ls=1 etc. are the latent spaces as shown in Figure 5.14.
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Figure 5.14: U‐Net latent spaces.

5.3 The clipping issue

RGBimageshave values from0 to255 for each channel, butwhen the twowhitenoisesN(µ0, σ0)

andN(µ1, σ1) are generated values range from −∞ to∞. So for values < 0 and > 255 we
apply clipping to 0 and 255 respectively. This visually does not appear to be an issue, as shown
in Figure 5.15, but it signi昀椀cantly a昀昀ected the results. Consequently, we imposed for the new
experiments the following constraints:

• 64 ≤ µ ≤ 192

• 0 < σ ≤ 30

This guarantees that clipping involves< 2% of the pixels ‡‡ .

‡‡considering the expected number of clipped pixels.
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Figure 5.15: Some samples from a toy dataset with parameters (µ0, σ0, µ1, σ1) = (50, 50, 130, 50). Despite looking
regular and homogeneously noisy, these images have on average more than 10% of pixel values equal to 0 (full black). This
is because if we de昀椀ne X ∼ N(µ0, σ0) and call pX(x) its probability distribu琀椀on func琀椀on, then

∫
0

−∞
pX(x)dx ≈

0.158 > 15% and the background on average takes 80% of the images, resul琀椀ng in at least 15%× 80% = 12% of the
pixels of the images expected to be clipped to 0.

5.4 the 1-800 experiment

In this experiment, a single sourcemodelwas trainedonadatasetwithparameters (96, 18, 138, 18).
It was then used to predict 800 target datasets, both before and after BNadaptation. The target
datasets have the following parameters:

• µ0 ∈ {64, 80, 96, 112, 128, 144, 160}

• µ1 ∈ {µ1 + d : d ∈ {24, 32, 42, 55, 73, 97, 128} ∧ µ1 + d ≤ 192}

• σ0 ∈ {6, 12, 18, 24, 30}

• σ1 ∈ {6, 12, 18, 24, 30}

This totals to 32possible combinationsof (µ0, µ1) and25possible combinationsof (σ0, σ1),
totalling 32x25=800 target datasets. All parameter combinations respect the constraints above.
Details: 5000 source images, 1000 test images, batch size = 1, 5 epochs, early stopping with

patience 5 and µ = 0, percentage of validation set = 10%, learning rate = 10−5, no image
scaling, RMSprop optimizer (weight decay 0, momentum 0.999, gradient clipping 1.0) with
ReduceLROnPlateau scheduler. Loss function = CrossEntropyLoss + DiceLoss.
Observations:

• The results before BN adaptation (Figure 5.17) mirror our previous intuitions: values
of 0.0 where prediction is full black, 0.2 where prediction is full white, and a gradient in
between.

• We can see that BN adaptation works very well in all cases regardless of the movement
of the parameters, which is a much more surprising result than the one shown in the
brightness experiment from before. In this case in fact we are not shifting the entire
image’s mean, but we are shifting the background andmasks’ means and variances inde-
pendently.

34



• This experiment is cleanly setup for a proper latent spaces analysis. We will refer to it for
getting the main result of this Thesis.
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Figure 5.16: Results of the 1‐800 experiment before BN adapta琀椀on. Note that indexes are shi昀琀ed, (0, 1) −→ (1, 2). The
x‐axis in the subgraphs is σ2.
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Figure 5.17: Results of the 1‐800 experiment a昀琀er BN adapta琀椀on. Note that indexes are shi昀琀ed, (0, 1) −→ (1, 2). The
x‐axis in the subgraphs is σ2.
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5.4.1 Trying to predict BN adaptation performance: original
parameters

As we are trying to predict the BN adaptation performance, the 昀椀rst intuitive test is to see if
we can 昀椀nd a correlation between the original parameters (µ0, σ0, µ1, σ1) and the IoU of the
adaptedmodels. To be exact, we are dealing with 8 parameters in total: the 4 parameters of the
source (µ0s, σ0s, µ1s, σ1s) and the 4 parameters of the target (µ0t, σ0t, µ1t, σ1t), but since we
have a single source dataset we will be only using the target parameters.

We tested di昀昀erent distances between the distributionsN(µ0t, σ0t) andN(µ1t, σ1t), specif-
ically the overlap coe昀케cient[20], theWasserstein distance, the source-normalized Wasser-
stein distance, and the target-normalized Wasserstein distance (refer to Section 2.5):

• OV L(N(µ0t, σ0t), N(µ1t, σ1t)) (Figure 5.18)

• W 2
2 (N(µ0t, σ0t), N(µ1t, σ1t)) (Figure 5.19)

• snW 2
2(N(µ0t, σ0t), N(µ1t, σ1t)) (see Figure 5.20)

• tnW 2
2(N(µ0t, σ0t), N(µ1t, σ1t)) (see Figure 5.21)

Ultimately, the most representative one is the coe昀케cient of overlappingOV L, but it shows
regardless a lot of outliers from the general trend.

Figure 5.18: adapted IoU vs coe昀케cient of overlappingOV L(N(µ0t, σ0t), N(µ1t, σ1t))

These graphs gives us an idea of the di昀케culty of this task, tricky to achieve even with the
knowledge of the noise parameters. Anyways, since we want to predict BN adaptation perfor-
mance in a generalway, wewill below see if the latent spaces analysis can lead to some signi昀椀cant
result.
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Figure 5.19: adapted IoU vs log WassersteinW 2

2
(N(µ0t, σ0t), N(µ1t, σ1t))

Figure 5.20: adapted IoU vs log source‐normalized Wasserstein snW 2

2
(N(µ0t, σ0t), N(µ1t, σ1t))

Figure 5.21: adapted IoU vs log target‐normalized Wasserstein tnW 2

2
(N(µ0t, σ0t), N(µ1t, σ1t))
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5.4.2 tryingtopredictBNadaptationperformance: latentspaces

Here we discuss the graph of the BN adaptation performance vs the Wasserstein distance be-
tween the latent spaces. We show two graphs, the one relative to the log Wasserstein (see 5.22)
and the one relative to the log target-normalized Wasserstein (see 5.24) as in [1]. Both graphs
are relative to the 0-th latent space ”ls = 0”, as named in Figure 5.14.

log Wasserstein

Figure 5.22: This graph shows the log Wasserstein vs the IoU of the BN‐adapted U‐Nets.

There is unfortunately no sign of a function-like behaviour between the two quantities as
the one seen in Figure 3.2, which is anyways very unlikely to 昀椀nd. On the other hand, we can see
clearly the possibility to set a lower bound on the IoU in function of the logWasserstein. This
is great news since it gives us a criterion to assess when BN adaptation works: the smaller the
Wasserstein distance, the better the adaptation. Let us not consider the target-normalized
Wasserstein, which was the one used in [1].

log target-normalized Wasserstein
This graph o昀昀ers the opportunity for an even stricter lower bound!
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Figure 5.23: This graph shows the log target‐normalized‐Wasserstein vs the IoU of the BN‐adapted U‐Nets.

Figure 5.24: A lower Wasserstein is indicator of a be琀琀er BN adapta琀椀on performance.

Note that even if there seems to be potential for an additional upper bound for values with
log(1 +W ) ≥ 5, we assume it is just due to the scarcity of data in that region.
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This results opens a lot of paths to follow for future research. Speci昀椀cally:

• We have now established a pathway to determine a su昀케cient condition for BN adapta-
tion to work, which is already a signi昀椀cant achievement. Future research could focus on
identifying the necessary conditions for BN adaptation to be e昀昀ective. This would pro-
vide a comprehensive, unsupervised method for assessing the quality of BN adaptation.

• plotting other latent spaces, of course only if the Wasserstein computation is feasible
in such latent spaces as shown in Table 5.1, and checking if the lower bound can be
improved, or if any new pattern emerges.

• testing if the lower bound also holds on new toy datasets, or on real datasets.

The latter is currently a personal work in progress.
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5.4.3 The 1-800 experiment: triangles and circles

The 1-800 experiment presented in the previous Section is themost relevant and complete one.
Here we present one last experiment, of which we have the IoU but unfortunately not have a
latent space analysis itself since it was completed towards the end of the internship. It is similar
to the 1-800 one but with the added complexity of recognizing shapes, it was made to check if
results would drastically change or stay close to the original 1-800. Results are shown in Figure
5.26 and 5.27.

Figure 5.25: Some samples from the triangles and circles experiment

Details: 5000 source images, 1000 test images, batch size = 1, 5 epochs, early stopping with
patience 5 and µ = 0, percentage of validation set = 10%, learning rate = 10−5, no image
scaling, RMSprop optimizer (weight decay 0, momentum 0.999, gradient clipping 1.0) with
ReduceLROnPlateau scheduler. Loss function = CrossEntropyLoss + DiceLoss.
Observations:

• This experiment was redone with di昀昀erent shapes and masks and background, results
were analogous so we only showcase this one as representative.

• BNadaptation consistentlyworks, despite the task having the added complexity of shape
recognition on top of shape detection. Regardless, some exceptions are present.
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Figure 5.26: Results of the 1‐800 experiment triangles and circles, before BN adapta琀椀on. Note that indexes are shi昀琀ed,
(0, 1) −→ (1, 2). The x‐axis in the subgraphs is σ2.
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Figure 5.27: Results of the 1‐800 experiment triangles and circles, a昀琀er BN adapta琀椀on. Note that indexes are shi昀琀ed,
(0, 1) −→ (1, 2). The x‐axis in the subgraphs is σ2.
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6
Conclusion

In conclusion, the task of predicting the BatchNorm adaptation e昀케cacy on new target datasets
in an unsupervised way revealed to be a tricky task. Regardless my Internship brought new dis-
coveries and birthed new ideas for future research work on the 昀椀eld. My contributions regard
both the practical, coding side and the theoretical side. Coding-wise, I achieved the following:

• A simple and fast dataset generatorwas developed to simulate datasets withmithocon-
dria shaped masks. The images can be crafted from the masks with countless di昀昀erent
techniques, allowing for a very general landscape of distribution shift scenarios.

• The UNet code was rewritten from the original code to optimize e昀케ciency (removing
useless lines of code that would slow everything down) and readability (all hyperparam-
eters are cleanly organized in a single 昀椀le instead of being all around the code).

• Developedutility functions for image segmentation and a stable versions of theWasser-
stein formula.

All the codes mentioned are publicly available on my GitHub *. When it comes to the re-
search itself, these were the key 昀椀ndings frommy Internship:

• Upon thousands of BatchNorm adaptation trials, the cases in which it improved the
performance vastly outnumber the cases in which it decreased it. So whenever there is
an instance of domain shift, until further discoveries are done in the 昀椀eld, it is generally
better to apply BatchNorm adaptation for better results.

*https://github.com/MarcoFurlan99/Marco_code_昀椀nal
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• As an example of the point above, as we saw in Experiment #1,BatchNorm can correct
irregularities in the training: if the algorithm converges to a di昀昀erent local minima,
which does not adapt properly to new target datasets, applying BN adaptation can 昀椀x
it, making it more homogeneous with respect to the neighbourhood of similar dataset
distributions.

• In some contexts applying BatchNorm adaptation works amazingly, as in the brighness
shift example.

• The Wasserstein distance computed on latent spaces provides a lower bound on
the BN adaptation performance. Naturally, this result requires further empirical in-
vestigation for clear assessment. However, the premises established by my experiments
all convey towards this line of thought, and the underlying intuition is robust.

• If further investigations on the matter are carried, The Wasserstein distance should
always be computed on appropriate latent spaces as shown in Table 5.1. If the latent
space has small width and height but high depth (that is, features), the computation is
not reliable.
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