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What came before the Big Bang?

According to the no-boundary

proposal, asking what came before

the Big Bang is meaningless—like

asking what is south of the South

Pole—because there is no notion of

time available to refer to. The concept

of time only exists within our

universe.

— Stephen Hawking, Brief Answers

to the Big Questions
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Abstract

Background: Since the introduction of computed tomography (CT) imaging in 1971,

different algorithms have been developed to reconstruct images starting from the count-

less attenuation values acquired by the rotating detector. Such algorithms significantly

impact radiation exposure, since a reconstruction that improves image quality at a given

dose translates into the possibility of achieving the same baseline quality required for

diagnosis at a lower dose. At the time of writing, three main categories of reconstruction

methods have been developed: filtered back projection (FBP) in 1972, iterative recon-

struction (IR) in 2008 and deep learning image reconstruction (DLIR) in 2018. DLIR

has been proven effective in reducing radiation dose compared with the previous tech-

niques in both phantom studies and studies where patients were randomly assigned to

be examined using either one method or the other. However, studies regarding how far

this reduction may have an impact on the same individual in real clinical settings are

still limited.

Objective: To evaluate if there is radiation dose reduction and image quality im-

provement in the same acute patient when using DLIR in comparison to FBP and IR  in

daily clinical practice.

Methods: This retrospective study included 83 critical care patients who under-

went C T  imaging of the same anatomical region multiple times within a period of 30

days using both DLIR (TrueFidelity) and FBP or IR  (AIDR3D and ADMIRE). Regions

included were chest, abdomen and trunk (chest + abdomen). All  examinations were

performed using automatic exposure control (AEC) which modulates the tube current

and hence radiation exposure according to the algorithm applied. Radiation dose was

assessed using C T  dose index volume (CTDI volume), dose-length product (DLP) and

Effective Dose. For the quantification of image quality, Noise and Signal to Noise Ratio

(SNR) were used. All  parameters were compared across the different reconstruction

methods for each patient using both parametric and non-parametric testing. In cases

of contrast-enhanced C T  (CECT), all parameters were retrieved for every acquisition

phase (direct, arterial, venous or delayed) as well as for their total value as stated in the

patient protocol.

Results: Our analysis suggested that DLIR majorly and consistently outperformed

the traditional techniques with regards to image quality, and to a lesser extent, it corre-

lated with dose reduction.

Specifically on average, the total values for FBP were 24.67 ± 61.01 mGy for CTDI,
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1350.62 ± 1191.68 mGy * cm for DLP, 20.19 ± 17.91 mSv for Effective Dose, image

noise was 28.85 ± 32.77 HU, and SNR was 3.99 ± 1.23 HU.

Those values were improved in DLIR: 9.56 ± 5.86 mGy for CTDI, 1085.33 ± 626.30

mGy * cm for DLP, 16.13 ± 9.55 mSv for Effective Dose, image noise was 8.45 ± 3.24

HU, and SNR was 11.53 ± 9.28 HU.

Regarding IR, the total dose was not found to be affected by the use of DLIR, but

image quality was improved. The mean values for examinations with IR  were 14.00 ±

12.46 mGy for CTDI, 1235.53 ± 873.67 mGy * cm for DLP, 18.45 ± 13.16 mSv for

Effective Dose, image noise was 14.85 ± 2.73 HU, and SNR was 4.84 ± 2.74 HU.

Conclusion: According to our study, DLIR provides benefits in terms of dose and

image quality over the traditional FBP. It also outperforms IR methods for image quality,

but not for dose. Further research is needed to see if those improvements translate into

safer imaging practices, higher diagnostic confidence, and ultimately better patient care.

Keypoints:

• Compared to FBP, DLIR both reduces radiation dose and improves image quality;

• Compared to IR, DLIR doesn’t necessarily reduce radiation dose, but it improves

image quality.

xii
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Chapter 1

Principles of Computed Tomography

(CT)

1.1 Acquisition

A  Computed Tomography scan, more commonly referred to as a C T  scan, is a medical

imaging method used to visualize the internal structures of a body by reconstructing its

cross-sectional images in a non-invasive way. It was developed by South African-American

physicist Allan M. Cormack [1] and British engineer Godfrey N. Hounsfield [2], who shared

the 1979 Nobel Prize in Physiology or Medicine for their invention [3].

In a C T  scan, as shown in Figure 1.1, we have an X-ray tube, or X-ray source, that

sends X-rays towards the body. Positioned on the opposite side of the body there is a row of

detectors that measure how many of the sent rays reach the other side, and to which extent

they are attenuated by the body. The X-ray tube then rotates slightly, together with the

detectors, thanks to some rails inside the gantry, which is the circular structure around the

body. This slight rotation allows to acquire a new set of values from a different angle. This

process is repeated in a definite pattern of movement until the whole circumference of the

body is covered. The data obtained from one complete rotation allows to reconstruct the

image of that specific slice of the body, so if one wishes to examine a wider range of the

patient’s height, their body has to be moved with regards to the gantry to make new

acquisitions for every slice, until the whole volume of interest is covered [5]. In modern C T

scans, there is a motorized platform that continuously moves the patient during the rotation

3



4 CHAPTER 1. PRINCIPLES OF COMPUTED TOMOGRAPHY (CT)

Figure 1.1: Basics of a C T  scan. Image reproduced from mepids.com [4].

of the x-rays and detector, and as a result, the collected data has a helical pattern, as depicted

in Figure 1.2.

Once the C T  values are obtained, they can be projected to form what is formally known

as a sinogram. The sinogram is then processed by an algorithm to generate the reconstructed,

or tomographic, images, as shown in Figure 1.3. They are a representation of the slices of

the body.

4



CHAPTER 1. PRINCIPLES OF COMPUTED TOMOGRAPHY (CT) 5

Figure 1.2: Basics of Scan Modes: (a) axial step-and-shoot scan with table motion, (b) axial
scan without table motion, and (c) helical scan. Reproduced from Yu  [6].

Figure 1.3: Workflow of a C T  scan. Once the projections of the true object are made, it is
the algorithm that is charged to analyse the sinogram to generate the reconstructed image.

1.2 Reconstruction

Mathematically speaking, to perform an image reconstruction is to compute the spatial struc-

ture of an object that casts shadows around it using exclusively the shadows themselves as a

starting point. Being each shadow two-dimensional, it is inherently insufficient, by itself, for

determining the spatial distribution of a three-dimensional object. This is why there is the

necessity of casting shadows in multiple directions, i.e. to have the X-ray tube and the

detectors rotate around the object [7], as exemplified in Figure 1.4.

In mathematics, this type of challenge posed by C T  scans to reconstruct the original

object distribution is known as the inverse problem, as opposed to the forward problem.

Their difference is illustrated in figure 1.5.

5



6 CHAPTER 1. PRINCIPLES OF COMPUTED TOMOGRAPHY (CT)

Figure 1.4: Projection of a matrix. A  matrix is a set of numbers or equations ordered in
rows and columns. The shadow loses one dimension when it is projected, so for a 2 x 2
matrix, a second projection from θ = 90° is needed. However, even in this simple case, two
projections might not be sufficient: in the last example we see two different matrices that are
characterised by the same projections. In this case, we would need a third projection from θ
= 45° to univocally identify the object: the values projected from this additional angle
would be [2, 2, 2] in the left image, and [0, 6, 0] in the right image, giving the opportunity to
differentiate the two matrices. This model may seem trivial, but it illustrates how easily the
number of needed projections increases when the complexity of the image also increases.

More specifically, in a forward problem, the goal is to make predictions of some mea-

surements when given a comprehensive description of a system, so in our case, to predict

projections B  when given the model A. A  forward problem is in a sense very convenient

because in a deterministic system, it is characterized by a unique solution, however the same

does not hold true for its counterpart.

In an inverse problem, the aim is to infer the values of the parameters that characterize

the same deterministic system when provided with the actual results of some measurements,

so in our case, to predict model A  while only having projections B. As foreshadowed by the

description of Figure 1.5, this type of problem can have a set of multiple, and at times infi-

nite, solutions [8]. For this reason, reconstructing a unique, sharp and close-to-the-true body

image starting from a limited number of C T  attenuation values is a particularly complex and

daunting problem, and throughout the years, multiple algorithms have been developed to im-

prove the outcome. Of course, increasing the number of information gathered would simplify

the solution, however, the radiation dose to the patient would concomitantly increase.

A  curious interpretation of this is that regardless of the specific algorithm employed, the

solution to the problem (i.e., the reconstructed image), is nothing more than the most prob-

able solution among a set of many, selected by means of the algorithm, using the available

6



CHAPTER 1. PRINCIPLES OF COMPUTED TOMOGRAPHY (CT) 7

Figure 1.5: Forward and inverse problem. Some inverse problems even have infinite solu-
tions.

information, i.e., the C T  attenuation values. In other words, a C T  scan is not a photograph in

the traditional sense, or as an X-ray image might be, but it is rather a conjecture. To re-

construct an image is to predict, or to make an educated guess of, how the structures of the

body would look like if we did indeed slice it open to take direct pictures of the sections. The

accuracy of those predictions largely relies on the quantity of data we can start with, namely

the C T  attenuation values, and on the performance of our predictor, the algorithm. This is the

reason why some lesions are more easily detected using some algorithms than others [9].

1.3 Visualization

The visualization of the final image plays a crucial role in interpreting and extracting mean-

ingful information in clinical settings. This subsection aims to provide a comprehensive yet

accessible overview of the terms and concepts employed in this study when assessing and

comparing the quality of the images produced by the different algorithms:

1. Hounsfield Scale and Hounsfield Units: a Visual Interpretation;

2. Linear Attenuation Coefficient and CT-Value;

3. Image Noise;

4. Signal to Noise Ratio (SNR).

7



8 CHAPTER 1. PRINCIPLES OF COMPUTED TOMOGRAPHY (CT)

1.3.1 Hounsfield Scale and Hounsfield Units: a Visual Interpretation

To understand what Hounsfield Scale and Hounsfield Units are and why they are important,

it’s useful to first observe Figure 1.6:

Figure 1.6: Transverse Section of the Abdomen. How would you describe the colors of the
air, liver, bones and muscles?

How could the colors of the structures in the image be described? Of course, an idea

would be to employ adjectives such as white, black and grey, or to state that a structure is

darker or lighter when compared to another one. Those descriptive terms surely have the

advantage of being easily understood by a wide population, but being categorical variables,

they lack the measurability that comes with a quantitative variable. In other words, looking at

the image we see that both the liver and muscles are grey. But how grey are they? Do they share

the same shade of grey?

To answer these questions, the Hounsfield scale in Figure 1.7 was introduced. It is a scale

that conventionally sets 0HU, or Hounsfield Units, to the shade of distilled water and -1000

HU to that of the air, both acquired under standard temperature and pressure. Everything

else is then measured in relationship to them.

In theory, this scale is open ended, so reach beyond -1000 and 0. It is very understand-

able, since we can both have materials that are less dense than air (for example, if we were to

measure a helium balloon inside of a CT), and materials that are denser than water, such a

bone. In clinical practice, most values range between -1000HU and +3000HU, covering

about 4000 different shades. It is an enormously precise scale: for a comparison, the human

eye can perceive no more than around 900 shades on a grayscale, even when using high

8



CHAPTER 1. PRINCIPLES OF COMPUTED TOMOGRAPHY (CT) 9

Figure 1.7: Hounsfield scale: a visual interpretation with corresponding tissues. Reproduced
from Hartung and Cadogan [10].

brightness and high contrast displays [11]. Machines are inherently better judges of color

variation than we are.

HU values are commonly used to differentiate between different types of tissue. In the

code presented in Appendix E, the cut-off values proposed by Christianson et al. [12] and

shown in Table I  were taken into account:

Table I: HU Cut-Off Values for Different Tissue Types

HU values
<800

300 – 0
0 – 100
>300

Tissue Type
HU
HU
HU
HU

aerated tissue
fat tissue
soft tissue
bone

1.3.2 Lambert–Beer’s Law, Linear Attenuation Coefficient and CT-Value

An X-ray beam is composed of photons with higher energy and shorter wavelengths than

visible light, properties that allow them to penetrate deeper into materials and thus be used to

create diagnostic images. As these photons travel towards the detector on a pathway of

9



10 CHAPTER 1. PRINCIPLES OF COMPUTED TOMOGRAPHY (CT)

Figure 1.8: Transverse Section of the Abdomen, with HU values. How was your guess?

length η, they interact with the matter so that the initial intensity of the beam, generally

referred to as I(0) , is attenuated to a final intensity I(η ) . The relationship between η, I ( 0 )  and

I(η )  illustrated in 1.9 is described by the Lambert–Beer’s law of attenuation [13]:

I (η )  =  I ( 0 )  · e−µη

where

I(η ) is the intensity of the beam when it reaches the detector, usually measured in gray

(Gy) or roentgen (R);

I ( 0 ) is the original intensity of the beam when it was generated by the X-ray tube, mea-

sured in Gy or R;

e is the Euler’s number (approximately 2.718);

η is the length of the pathway, usually in cm;

µ is the linear attenuation coefficient, usually in cm−1. It describes the inherent ability

of a material to attenuate X-ray radiation.

Note that this formula only applies for monochromatic beams, namely beams that consist

of photons with the same energy level, as it is the case for C T  scans by virtue of the filter

[14].

In this equation, e−µη  represents the exponential function of −µη , and since it is raised

to a negative power, it indicates rapid decay. In other words, the initial intensity of the beam

10
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Figure 1.9: Lambert-Beer’s Law: this equation describes how the intensity of a beam
changes when it travels through a body. In a C T  scan, the distance η is always the same (=
the diameter of the gantry), furthermore we know the values of I ( 0 )  and I (η )  because we can
arbitrarily set the former, and read the latter at the detector. We can therefore calculate the
only unknown variable, µ, which describes how much it attenuates the beam, or how
“dense” it is.

is exponentially reduced as the distance increases and as the material it travels through is

denser.

In a C T  scan, µ is easily computed at each acquisition point, since I ( 0 )  and η are preset

values, and the detector measures the I(η ) . However, even if we know that the higher µ is, the

denser the material is [15], it’s not particularly convenient to think of density in terms of µ,

because of its narrow range of values that reach into many digits after the decimal point, with

different tissues having a similar value to each other and to water, as exemplified in Table II.

A  much more practical way to grasp the density information carried by µ is to project µ

into the Hounsfield scale. On the one hand it creates a visual feedback in form of a grayscale

that spans from white (very dense) to black (virtually intangible), as well as an easier-to-

navigate metric scale, keeping in mind that the value -1000HU is assigned to air and 0HU to

water. The value of µ converted into HU is referred to as the C T  attenuation value. It’s

calculated using the following calibration formula. It centers the value of µwater to 0HU, and

sets the value range between µwater and µair to 1000 [18]:

11
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Table II: Linear Attenuation Coefficients µ of Human Tissues, Air  and Water for Pho-
ton Energies of 60–150 keV. Adapted from Hamideen et al. [16] and National Institute of
Standards and Technology [17].

Energy 60keV 80keV 110keV 150keV
Air                            0.028       0.011         0.006         0.001
Adipose tissue        0.173       0.161         0.149         0.137
Soft tissue               0.190       0.174         0.160         0.147
Brain                        0.199       0.181         0.166         0.152
Muscle                    0.199       0.181         0.166         0.153
Lung                        0.201       0.183         0.168         0.154
Blood                       0.203       0.185         0.169         0.156
Water                      0.206       0.184         0.171         0.151
Skin                         0.208       0.191         0.175         0.161
Bone, compact       0.468       0.361         0.303         0.268
Bone, cortical         0.523       0.380         0.307         0.267

C T V alue =  
µ −  µwater     · 1000
water air

where

C T V alue

µ

µwater

µair

is the number of HU that the particular site will have;

is the linear attenuation coefficient computed at that particular site;

is the linear attenuation coefficient of water;

is the linear attenuation coefficient of air.

Note that the linear attenuation coefficient of air µair is so small that is negligible and

often omitted:

C T V alue =  
µ −  µwater · 1000

water

In brief, a C T  Value is a number that correlates both with the density of a material (the

higher the C T  Value, the denser the tissue) and the Hounsfield scale (the lighter the hue, the

denser the tissue).

It is noteworthy that the choice of the numbers 0 and -1000 in the Hounsfield scale is

arbitrary, but carefully chosen. Since practically all organs, with the exception of the bones,

have attenuation values that are relatively comparable to those of water, with the difference

being of permille, it was sensible to choose 1000 as a scaling factor [7].

12
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1.3.3 Image Noise

The term image noise refers to the impurities of a digital image that are unrelated to the

actual image itself, and accounts for the grainy texture. Over the years, several denoising

algorithms have been developed. While they surely improve the image visibility, they tend to

deliver a patchy appearance, as appreciable in Figure 1.10.

Figure 1.10: Image of a cat before and after denoising. The image was processed with the
"wdenoise2" function from MATLAB.  While the original image has a grainy appearance, its
denoised version is clearer but patchier.

To assess the quality of an image, it is always necessary to consider the extent to which

the detected signal can be regarded as true (i.e. the real image) and the degree to which it is

attributed to random background events (i.e. the grains) arising from either the detection or

transmission process. These random signals fall under the broad category of noise, and no

image is exempt [19]. Noise can result from a vast variety of sources, but in C T  scans the

principal types are [18]:

• Quantum noise: it describs the randomness in the signal derived from the randomness of

the number of photons travelling in the beam toward the patient. Since these photons are

produced by accelerated electrons that are chaotically hitting a target material, their

number inevitably fluctuates. In other words, this noise is due to the fact that the X-ray

beam is not perfectly uniform throughout the entire examination;

13
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• Anatomical noise: it describes disturbances of the signal generated from the patients

themselves, hampering a clear visualization of the other structures of interest. For ex-

ample, adipose patients absorb more radiation due to their excess fat tissue, and fewer

photons will reach the detector, generating a blurry image under the same conditions.

This is why radiation dose is higher in havier patients;

• Electronic noise: it is due to electrons originated from external events. They are a

cause of contamination because their electrical flow generates a current that deviates

the signal from their predetermined destination, transporting it to another point of the

imaging chain. Those streams of deviating electrons can arise from anywhere, but

particulary from thermal sources and shot noise, representing a serious challenge in

clinical settings, where overheating and loud devices are bread and butter. This type of

noise affects both digital and analog devices;

• Structured noise: also known as fixed pattern noise. It is due to the construction

pattern of the detector itself: usually detectors can read multiple points, or pixels, at

the same time. The information from those arrays is then conveyed through parallel

channels, and each of them has its own amplifier circuit. These circuits can’t be per-

fectly matched or tuned with respect to each other, so some detectors might read out

slightly differently than others. The noise due to this mismatch has a fixed pattern, so

it is consistent across multiple images taken with the same machine. This allows to

correct for it by taking two calibration images: a gain image, taken by exposing the

detector to radiation in the absence of an object, and an offset image, taken without

any radiation hitting the detector. The two images are then used to adjust the readout,

removing the structured noise. Because the specific pattern can vary over time, it is

important to routinely carry out recalibrations.

Mathematically speaking, the noise in a given region of interest (ROI) is quantified as the

standard deviation σROI of the C T  Values therein. It is a logical correspondence, since stan-

dard deviation is a measure of the dispersion of a set of values.

In this thesis, noise was calculated on a ROI selected in the abdominal wall fat (σf at, or

S D f a t  in Figure ??), following the indications presented by Nam et al. [20].

14
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Figure 1.11: Workflow for calculating noise and SNR. 1eV is the energy that the electron
has when it reaches the positively charge plate. Image reproduced from Nam et al. [20].

1.3.4 Signal to Noise Ratio (SNR)

The Signal to Noise Ratio (SNR) is a key indicator of system performance. The SNR mea-

sures the relationship between the strength of the signal—which represents the detected pho-

tons on a particular pixel—and the strength of the noise. [21]. The strength of the signal in a

ROI can be mathematically described as the mean C T  value therein µROI. Consequently, the

SNR can be calculated with the following equation [18]:

S N R  =  
µROI

ROI

In this study, for the compuation of SNR we followed again the indications by Nam et

al. [20], selecting two ROI in the liver, making sure that each comprised an area ≥  1 cm2, as

shown in Figure 1.11. The values were then averaged:

S N R  =  
µright liver lobe +  

µleft liver lobe

right liver lobe              left liver lobe

1.4 Dosimetry

Dosimetry is the study of the radiation doses delivered to patients, and the evaluation of the

potential risks associated with them, notably of radiation-induced cancers. In C T  scans, it is

a particularly relevant matter: despite accounting for only 12% of all imaging procedures, they

contributed to over 50% of the total radiation dose received in the United States from medical

imaging in 2009, and these numbers are alarmingly growing [22]. In this section, we will

cover the following basic concepts relevant to this study:

15
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1. X-ray Beam Energy and Electronvolts (eV);

2. Absorbed Dose and Gray (Gy);

3. Computed Tomography Dose Index (CTDI);

4. Dose Length Product (DLP);

5. Effective Dose (E), Equivalent Dose (HT ) and Sieverts (Sv);

6. Effective Dose Conversion Factor (EDLP).

1.4.1 X-ray Beam Energy and Electronvolts (eV)

In the International System of Units (SI), the unit of measure used to quantify energy is the

Joule (J) [23]. In the specific case of ionizing radiations, however, it is an established practice to

use electronvolts (eV), whereby

1 eV ≈  1.602 ×  10−19 J.

One eV represents the kinetic energy that an electron gains when moving across a potential

difference of 1 Volt in vacuum, and it can be better visualized with the help of Figure 1.12. eV

are more commonly used than J in this setting, because the order of magnitude of the X-ray

beam energy needed to generate satisfactory imaging is closer to 10−19 J than to 1 J, with the

most common values ranging between 20 keV and 140 keV [24].

Figure 1.12: Visualisation of an Electronvolt eV. 1eV is the energy that the electron has
when it reaches the positively charge plate. Image adapted from slideserve.com [25].

The necessary amount of energy required to produce conclusive medical images is influ-

enced by various factors, including scan parameters such as tube current, tube voltage, and

scan length, as well as patient size and imaging protocols [18].

16
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1.4.2 Absorbed Dose and Gray (Gy)

Absorbed dose refers to the amount of X-ray energy that is absorbed by a patient when

exposed to radiation, and its SI  unit is Gray (Gy) [23]. If a given body absorbed 1 Gy, it

would mean that on average, each kg of it acquired 1 J of energy.

Gy =  
kg

Typically, we find absorbed doses measured in one thousands of Gy, the milligray (mGy).

1.4.3 Computed Tomography Dose Index (CTDI )

To estimate the quantity of absorbed dose, Shope et al. [26] introduced the concept of C T

Dose Index (CTDI) in 1981. They proposed to calculate the dose absorbed by a phantom,

and use it as an estimate for the dose acquired by the patient. Such phantoms, as illustrated in

Figure 1.13, are commonly made of Polymethyl Methacrylate (PMMA), are cylindrical and

are found in two dimensions: one measures 32 cm in diameter and is a fairly good surrogate of

an adult body, the other measures 16 cm in diameter and is used both in pediatric settings and

to mimic the adult head.

A  PMMA phantom typically has a central hole and one or multiple peripheral holes.

These holes are designed to accommodate either a pencil with an ion chamber that can mea-

sure the radiation dose received, or a simple PMMA plug to close the hole. Only one pencil is

inserted at a time, and the other holes are plugged to assure homogeneity across the rest of the

phantom. The phantom is then layed inside the machine and an acquisition is made, so the

pencil registers the dose received on that particular position. This value is then related to the

beamwidth to calculate the dose absorbed by the ion chamber, and this dose is sometimes

referred to as CTDI100, since the pencil’s ion chamber is 100 mm long. This entire process is

then repeated moving the pencil to a hole in another position.

The central and peripheral measurements of CTDI100 are then combined to estimate the

dose absorbed by the entire phantom. There are different methodologies to achieve this goal,

but a simple, well-known equation uses the following weighting scheme [18]:

CTDIw =  
3 

CTDIcenter +  
3 

CTDIperiphery

where
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Figure 1.13: Structure of a typical PMMA Phantom. PMMA (Polymethyl Methacrylate) is
a transparent material, also known as acrylic or acrylic glass. It is commonly used as a
replacement for glass, since it is shatterproof. Other advantages are resistance to UV light
and excellent light transmission [27]. The image is reproduced from Bushberg et al. [18].

CTDIw

CTDIcenter

CTDIperiphery

is the overall CTDI of the phantom, calculated through a weighting sys-

tem;

is the CTDI100 determined by placing the pencil in the central hole of the

phantom;

is the CTDI100 determined by placing the pencil in a peripheral hole of the

phantom.

Note that since the pencil’s ion chamber is 100 mm long, the CTDIw only measures the

dose absorbed by a slice of the same thickness.

In helical scans, this CTDIw value needs to be lastly adjusted with regards to the contrac-

tion or dilation in the helical pattern, as shown in Figure 1.14:

CTDIcenter
vol pitch

where
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Figure 1.14: Pitch: in a helical scanner, the gantry and the motorized table continuously
move with regard to each other, without waiting for a whole rotation of the x-ray beam. This
results in a helical pattern, and its contraction or dilation in length is measured by the pitch.
Reproduced from Doaa et al. [28].

CTDIvol

CTDIw

pitch

is the volume CTDI of the phantom. It is a modified CTDIw that accounts for

eventual overlaps or rarifications of the X-ray beam;

is the CTDIw determined after a complete, single and monoplanar rotation of

the X-ray tube;

a measure of the spread of the helix.

Since the phantoms used to calculate the CTDI are standardized, they also enable a reli-

able comparison between different scanners and scan protocols. Nonetheless, it is important to

remember that CTDI is not equivalent to the actual dose absorbed by a patient, but just an

estimation of it. In fact, the true patient dose is influenced by various factors, including the

patient’s size, body composition and scan region [29].

CTDI is measured in Gy.

1.4.4 Dose Length Product (DLP)

As previously stated, the standard CTDIw (and hence, the adjusted CTDIvol ) only measure

the radiation dose absorbed by a cylindrical slice that measures 1cm in thickness, and either
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32 cm or 16 cm of diameter. To estimate the dose absorbed by a longer body, it is necessary

to consider the Dose Length Product (DLP) [18]:

DLP =  CTDI ×  L

where

DLP is an estimate of the total radiation absorbed by a patient during the exam;

CTDI  is either the CTDIw determined after a complete, single and monoplanar rotation

of the X-ray tube, or the CTDIvol for helical scans;

L is the length of the irradiated body.

DLP correlates better with the patient’s radiation risk, since it accounts for the whole

irradiated length, and is not standardized to 1 cm.

1.4.5 Effective Dose (E), Equivalent Dose (HT ) and Sieverts (Sv)

When different tissues are exposed to radiation, they are not affected by it to the same extent, so

their unique sensitivities must be considered when evaluating the potential risks. To ad-dress

this variability, it is helpful to consider the effective dose (E) [30]. It is a quantity that takes

into account both the amount of radiation absorbed and the sensitivity for each tissue, then

sums those values to assess the effect on the whole body:

E  =  
X

w T  · HT

T

where
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E is the effective dose in Sv;

T is the subscript that represents the different tissues in the body;

wT is the weighting factor for tissue T. Its value depends on the particular tissue, exam-

ples are found in Table III;

HT is the equivalent dose. For radiation composed of photons, such as X-rays, its nu-

merical value is identical to that of the absorbed dose in Gy, with just the measuring

unit changed to Sv. Indeed, the equivalent dose was developed to compare different

radiation types (such as neutrons, protons, alpha particles) to the dose of photons, so

it makes sense that the numerical value remains unchanged.

Since we are still considering a radiation dose, it would be correct to measure the effective

dose it in J/kg. However, as there is the fear of mistaking it with the absorbed dose (measured in

Gy, also equivalent to J/kg), the SI  recommends using the unit Sievert (Sv) instead, to stress

that it indicates a biological effect [23]:

Sv =  
kg

Approximatively, 1 Sv corresponds to a probability augmented of about 5% to develop fatal

cancer, when compared to the risk of the general population [31]. It is important to keep in

mind that this is a generic estimate of an age- and sex-averaged model of the human body,

and it does not represent the risk of any true individual [32].

Table III: Tissue Weighting Factors wT of different tissues and organs. Adapted from
Valentin et al. [31]

wT Tissue or Organ
0.01 Bone surface, Brain, Salivary glands, Skin
0.04 Bladder, Oesophagus, Liver, Thyroid
0.08 Gonads
0.12 Bone-marrow (red), Colon, Lung, Stomach, Breast, Adrenals, Extrathoracic region,

Gall bladder, Heart, Kidneys, Lymphatic nodes, Muscle, Oral mucosa, Pancreas,
Prostate, Small intestine, Spleen, Thymus, Uterus/cervix
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1.4.6 Effective Dose Conversion Factor E D L P

The effective dose conversion factor E D L P  serves to estimate the effective dose when given

the DLP and the anatomical region covered. The effective dose is calculated with the formula

[33]:

E  =  E D L P  · DLP

where

E is the estimated effective dose, previously explained;

E D L P is the effective dose conversion factor. It is specific for every anatomical region,

values are shown in Table IV;

DLP is the dose length product, previously explained.

Table IV: Effective Dose Conversion Factors E D L P  of different regions, values for adults.
Adapted from McCollough et al. [33]

Anatomical Region E D L P

Head and neck 0.0031
Head 0.0021
Neck 0.0059
Chest 0.014
Abdomen and pelvis 0.015
Trunk 0.015

Figure 1.15 provides an overview of the various dosimetry parameters.
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Figure 1.15: Overview of Dosimetry Parameters: Image reproduced from Abdulla et al.
[34].
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Chapter 2

Fundamentals of Reconstruction

2.1 Main Categories of Algorithms

At the time of writing (2023), three main categories of reconstruction methods have been

developed: Fourier-based methods, algebraic and statistical methods, and deep neuronal

network-based methods [7]:

• Fourier-based methods owe their name to the Fourier Slice Theorem, which they

rely upon. The most notable among them is Filtered Back Projection (FBP), and it has

been the method of choice for decades due to its computational efficiency. Fourier-

based methods suffer from various limitations such as sensitivity to noise and artefacts,

which inevitably translate to the necessity of higher radiation doses [35].

• Algebraic and statistical methods treat the problem as a system of linear equations,

where each equation represents a ray from the source to the detector, as represented

in figure 2.1. The first method to appear was the Algebraic Reconstruction Technique

(ART), and it was the one present in the very first C T  scan. However, since it requires

a computational effort that is too heavy for the computers that were available at the

time, it wasn’t suitable for clinical application, so it was replaced by Fourier-based

methods. With recent advancements in computational capabilities, algebraic methods

have found renewed interest.

Statistical methods, on the other hand, make use of a statistical viewpoint. The under-

lying principle is that they attempt to find an image that once projected mathematically
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Figure 2.1: Algebraic Reconstruction Technique (ART): The set of projections results in a
linear system of equations. f  represents the real, unknown attenuation value in the object
space, and p represents the projected value measured by the detector. In the image on the
left, all four attenuation values can be exactly computed using four projections from three
projection angles θ. If the matrix that is to be reconstructed is larger, more projections are
required. Image reproduced from [7].

in a simulation of the C T  scan, will produce projected values that are as close as pos-

sible to the ones that were really measured. One well-known technique among those is

the Maximum Likelihood Method, often applied when too few photons reach the

detectors and the signal to noise ratio decreases as a result. In these situations, direct

approaches such as the Fourier-based or algebraic methods may deliver images that

are unacceptably noisy, whereas a statistical method is more likely to succeed. Need-

less to say, the computational effort is accordingly more intense. In the retrospective

study presented in part I I  of this thesis, two of the C T  scans used a statistical approach to

reconstruct the images. One method was developed by Toshiba (now Canon Med-ical

Systems) and is called Adaptive Iterative Dose Reduction (AIDR3D), whereas the

other one was developed by Siemens and is called Advanced Modeled Iterative

Reconstruction (ADMIRE). It’s important to note that while these methods fall un-

der this category, they also incorporate aspects of model-based and machine learning

approaches in their design, making them more advanced and versatile than the first

techniques such as ART.

• Deep Learning approaches: in recent years, there has been a growing interest in the

application of deep learning, specifically convolutional neural networks (CNNs), for

C T  image reconstruction. These methods can be trained to learn complex features and
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structures in the data, leading to improved image quality, reduced noise and artefacts,

and potential reduction in radiation dose. However, the performance of these methods

relies heavily on the quality and quantity of the training data.

2.2 Filtered Back Projection (FBP)

To fully understand this method, it is first important to understand what a sinogram is. Its

concept is fairly simple and exemplified in Figure 2.2. A  C T  scan acquires projections from

various angles (θ) in a circular motion, and a way to represent those projections is to put

them sequentially next to each other. This process produces a new image commonly known as

the sinogram. This term comes from the fact that a circular object in the original image casts

a sinusoidal curve in this sequential representation. Because the process of producing the

sinogram is called Radon transform, sometimes the sinogram is also referred to as the Radon

space.

Since a sinogram is acquired through convolution, the simplest idea to reconstruct the

original image would be to project it backwards, rotating it in the opposite direction. This

method is known as back projection (BP), and a simulation is shown in Figure 2.3.

Although backprojection provides an insight into the true content in the object space,

its limits are evident at first glance. The produced image is extremely blurry, with halos

occupying areas where nothing should be: after all, even without truly dissecting the body

in the object space, we can see with our eyes that nothing is present in the machine on the

outside of the body. This recognition leads to the idea that it must be possible to develop

some kind of filter that can better predict the true location of the body and its components in

the object space.

The first filters that were developed are based on the Fourier transform, a mathematical

technique that breaks down complex waveform signals into a set of simple sine and cosine

waves of varying frequencies. By applying the Fourier transform to the sinogram, which is

also made of waves, we can analyze the meaningful frequencies in the set of data and

backproject only those, effectively reconstructing the image. This method is called Filtered

Back Projection (FBP), since we apply a filter to the sinogram before backprojecting it. A

simulation of FBP is shown in Figure 2.4.

FBP performs visibly better than BP, yet it still has some limits: an attentive eye will
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Figure 2.2: Making of a Sinogram: the projections of the white circle in the original image
(also called object space) draw a sinusoidal line when placed adjacent to each other, hence
the name sinogram to refer to the Radon space. In the sinogram, one can observe three
spots where the projection of the triangle (grey area in the middle) draws a sharp, perfectly
horizontal line. These correspond to the projections where the angle θ was perfectly perpen-
dicular to one of the sides of the triangle, as appreciable in the singled-out projection θ =  90.
The projections of the object and the sinogram were realized with MATLAB.

Figure 2.3: BP Simulation. The image in the object space is adapted from AMBOSS [36],
the simulation was conducted with MATLAB.
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Figure 2.4: FBP Simulation: for the making of this image, 90 projections were simulated
around the phantom in the object space. The image in the object space is adapted from
AMBOSS [36], the simulation was conducted with MATLAB.

Figure 2.5: FBP Simulation with doubled projections: for the making of this image, 180
projections were simulated around the phantom in the object space. The noise is visibly
decreased when compared to the previous reconstruction in Figure 2.4. To achieve the same
quality improvement in real life, the total radiation dose would have to be doubled. The
image in the object space is adapted from AMBOSS [36], the simulation was conducted
with MATLAB.

notice that the hue of black in the lungs of the reconstructed image in Figure 2.4 is slightly

different than the one found in the original image, meaning that the density of its tissue was

slightly miscalculated. This issue may not seem particularly relevant in everyday life, but

in clinical settings can lead to misdiagnosis. The reconstructed image is also remarkably

noisier, having a grainy texture that might impede the visualization of smaller structures.

Image noise is a major problem with FBP, and it can be significantly reduced by increas-

ing the number of the acquired projections, as illustrated in Figure 2.5. On the other hand,

this inevitably translates into an increased patient dose.

2.3 Iterative Algorithms

Whereas BP and FBP take the acquired projection data and project it back into an image

in one step, iterative algorithms approach the problem in a fundamentally different way:
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they involve an estimation process that seeks to find an image that, when projected, closely

matches the measured projection data. In other words, once they reconstruct the first image,

they execute a simulation to see how the reconstructed image would be projected in a sino-

gram, if it was in the object space. If the simulated projection and the real sinogram differ,

they adjust the reconstructed image, and simulate another projection, until the comparison

between the two sinograms is satisfactory.

Since the process of reconstructing, projecting and comparing is iteratively repeated, they

are named "iterative algorithms".

One of the earliest and simplest IR  methods employed was the Algebraic Reconstruction

Technique (ART), and it was actually the method present in the very first C T  scan. We can

roughly describe its working in the following steps, also depicted in Figure 2.6.:

1. Initialization: the start point of the algorithm is an initial guess for image A. In the

first machines, it was a blank image, but in more sophisticated approaches, the initial

image might incorporate prior information based on patient-specific data, such as a

first reconstruction with FBP;

2. Forward Projection: project the current estimate A  to create a simulation of how the

sinogram would look like, if A  was the real image in the object space;

3. Comparison: compare the simulated sinogram of A  to the actual sinogram B  that was

measured on the patient by the C T  scan. The difference between the sinogram A  and B

is the error, or residual;

4. Backprojection and Update: backproject the error into the image A, to update image

A. At this stage, a noise model can be incorporated to weigh the residuals based on the

expected noise level in the measurements.

As a result of this step, image A  is somewhat closer to how the object in the C T  scan

looked;

5. Iteration: the processes of forward projection, comparison, backprojection and update

are repeated until image A  produces a sinogram A  that is indistinguishable from the

real sinogram B;
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6. Production of final image: when the quality of the image is satisfactory. After a

certain number of iteration that is variable from specific algorithm to algorithm, the

reconstructed image doesn’t significantly improve anymore from iteration to iteration.

Figure 2.6: Iterative Reconstruction simulation. Reproduced from Beister et al. [37].

The power of iterative methods lies in their flexibility and robustness. They can incorpo-

rate sophisticated models at various steps of the imaging process, including considerations

about noise characteristics, scanner geometries, and even patient characteristics, leading to

more accurate and potentially lower-dose images.

On the other hand, their main disadvantage is the computational complexity. Each itera-

tion requires multiple projections and backprojections of the entire image, and this process

has to be repeated for every slice that makes up the C T  scan. It is intrinsically bound to be

computationally intensive. Fortunately, advances in computing power, including the use of

graphics processing units (GPUs) and parallel processing techniques, have made iterative

methods increasingly accessible for clinical use.

In this study, two specific iterative algorithms were employed since present at the univer-

sity hospital of Padua: AIDR3D and ADMIRE.
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2.3.1 A I D R 3 D

Adaptive Iterative Dose Reduction 3D (AIDR3D) is an iterative reconstruction method de-

veloped by Canon Medical Systems, previously Toshiba Medical Systems. What distin-

guishes it from other iterative reconstruction methods is the use of the "3D" or tridimensional

approach, by considering information from adjacent slices when estimating each image slice.

This can lead to more accurate image reconstruction and better noise suppression [38].

2.3.2 A D M I R E

Analogally, Advanced Modeled Iterative Reconstruction (ADMIRE) is an iterative recon-

struction method developed by Siemens Healthineers. Its distinguishing feature is, among

others, that its mathematical models allow for reducing the number of iterations, resulting in a

substantially higher acquisition speed [39].

2.4 D L I R

DLIR is the newest category of reconstruction algorithms, and as we will see in the next

chapter, they are based on artificial intelligence and machine learning methods.
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D L I R

3.1 Artificial Intelligence (AI), Machine Learning (ML) and

Deep Learning (DL)

We live in an era where likely everyone has, at least once, come across terms such as Artificial

Intelligence or Machine Learning. But what are they exactly, and what is Deep Learning? To

answer those questions, it is helpful to step back in history.

Humans have been creating machines to eliminate physical labour since the dawn of

civilisation, and today the world is filled with machines that tend to our needs: some cultivate

our crops, others build our homes, prepare and package our food, aid in the medical field, or

even amuse us. The bulk of these devices operates by carrying out a series of predetermined

steps that can also be referred to as algorithms.

In recent years, taking advantage of the increasing computing power, people have been

trying to develop more complex steps, or algorithms, that are capable of mimicking the

human intellect in their problem-solving skills, language comprehension or creativity. This

field that aims to bestow human intelligence to machines is known as Artificial Intelligence

(AI) [40].

Since A I  aims to reproduce the capabilities of the human mind, it has different branches

that reflect our diversity. The sector that tries to replicate the ability to learn new things when

presented with data is called Machine Learning (ML) [40].

To understand this concept, let us consider a case where we have a stack of pictures, some

of them representing cats and some of them representing dogs. In classical programming,
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Figure 3.1: Subcomponents of Artificial Intelligence. Reproduced from Tamoghna et al.
[40].

if we wanted the computer to automatically parse those images and assign them the right

label (“cat” or “dog”) as an output, we would have to input two things: (i) the images to be

evaluated 0, i.e. the data, and (ii) a set of hard-coded, immutable rules to make the decision. In

our example, those rules could take into account the differences in size (dogs tend to be

bigger), ear shape (cats often have pointy ears), snout size (usually bigger in dogs), other

objects in the picture (if the animal is sitting on a tree, probably it’s a cat, or if there is a

bone-shaped toy, probably it’s a dog) and so on. Then the program would be executed, and

the accuracy of its output (assigning the label “cat” to a cat image, and the label “dog” to a

dog image) would entirely depend on the slickness of the human that designed the set of

rules. For some classes of problems, the development of such rules might be simple, but

when there are a lot of potential parameters, it becomes nearly impossible for the human

mind to identify them all in order to develop a reliable algorithm.

Figure 3.2: Classical Programming vs Machine Learning. Reproduced from Tamoghna
et al. [40].
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In the case of machine learning, we still have two inputs and one output, but their nature

is different. As an input, we still need (i) the images to be evaluated, i.e. the data, but as a

second input (ii) we feed the answers themselves, so we already tell the algorithm that image

1 features a cat, image 2 a dog, image 3 a cat again, and so forth. The output that we expect

is an efficient set of rules to differentiate between the two animals, as shown in Figure 3.2.

Once this set of rules is produced, we can utilize them to differentiate future images and label

them correctly without human intervention.

In the process of finding an effective set of rules, two steps are particularly relevant.

One is feature extraction, and the other one is model evaluation. Feature extraction refers to

the process of identifying features that are highly intercorrelated (like pointy ears for cats, or

bone-shaped toys for dogs), and discarding features that are not relevant (the presence of fur

might for example be irrelevant, since both animals display it). Then the machine generates

several models that take into account all features, weighing them to a different extent: for

example, in the concomitant presence of pointy ears and a bone-shaped toy, the pointy ears

could be more relevant. After a bunch of hypothetical models are generated, a model

evaluation is performed using metrics such as true positive rate and false positive rate to assess

which model best assigns the right label to the right image, and is consequently the best

classifier.

Figure 3.3: Evaluation of classifiers: to compare the efficacy of different classifiers, the true
positive and false positive rates are considered. A  perfect classifier would display a 100%
true positive rate, and a 0% false positive rate. Reproduced from Tamoghna et al. [40].

It is important to note that during the training process, when the different features are
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identified and weighted differently, a machine generates all kinds of models, so some of the

classifiers will mainly or consistently predict the opposite of the desired result (i.e. predicting

mainly cats when dogs are in the image). In this case, they are referred to as bad classifiers.

There may be also lots of random classifier suggestions, where the predicted just randomly

assigns labels, because the features it identified are not relevant at all. It is only through

model evaluation that good classifiers are identified.

During the training period, a machine often divides the input data into two random

groups. One group is used for the training, where different models are generated, and the

second group is used for model evaluation, where all models are first applied to the images,

and then their result is compared to the true labels, to see which model correctly assigns the

most labels. In other words, first the machine tries the different methods on the second group,

and then “peeks” the answer that we initially provided to see if the model resulted in the true

answer. This process in two steps characterises classic machine learning.

A  major difficulty faced by classic machine learning in many real-world situations is the

complexity of every single piece of data. Depending on the angle of view, the ears of the cat

might not seem so pointy, and the shape of the tail might be difficult to be identified when

partially tucked under the body. In a picture taken at night, it might be even challenging to

identify the very silhouette of the animal against the background. Many of these sources of

variation are extremely hard to be picked upon at such a high level from the raw, input data: it

would require nearly human-level understanding. Starting from this consideration, it was

thought to construct a system inspired by the structure of the neurons in the human brain, and

the concept of Deep Learning (DL) was born [41]. In deep learning, the problem of finding a

rule is tackled by an artificial neural network, as depicted in Figure 3.4. To mimic our

interneurons, these artificial networks have multiple interconnected layers, hence the term

“deep”. Oftentimes they are referred to as Deep Neuronal Networks (DNN).

To obtain a general grasp of how deep learning works, it is useful to understand its basic

physical structure. Each circle in Figure 3.4 represents an artificial neuron, generally simply

called “neuron”, and it consists of a small computation unit. The first set of neurons is

charged with analysing the input data, and is thus referred to as the visible layer, because we

can physically see the input data. In this first layer, each neuron analyses a different region of

the image, making a computation, and as a result it outputs a single real number. This

number is then sent to each neuron in the following layer, which is the first of the hidden
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Figure 3.4: Classic Machine Learning vs Deep Learning: In classic machine learning,
model evaluation follows feature extraction. In Deep Learning, the two steps are carried out
simultaneously.
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layers. The term “hidden” refers to the fact that their values are not present in the original

data itself. If we concentrate on a single neuron in this hidden layer, we see that it receives an

input, i.e. a number, from each of the neurons in the visible layer. Based on those inputs, it also

makes a random calculation, obtaining a single real number, and then sends it to every single

neuron in the next hidden layer. This process of receiving, computing and sending continues

through the available layer: the more layers available, the “deeper” the neuronal network is.

Finally, the last layer produces an object identification, such as the labels “cat” or “dog”. A

point to notice is that this system enables a hierarchical understanding of the data: higher

levels (deeper layers) are the result of the composition of lower levels, and most importantly,

this hierarchy is generated completely automatically.

One may ask, what is the point of computing so many random calculations? How is the

right sequence of calculations found? The answer lies in the sheer power of their numer-

ousness. Just in our diagram, we have 4 ×  6 ×  6 ×  2 =  288 unique pathways that start

from the input layer to arrive at the output. Among those many pathways, some of them will

consistently reproduce a result that is relatively close to the truth. Those pathways will be

majorly taken into account, i.e. they will weigh more, and the other pathways that produce

random or opposite results will weigh less and thus be ignored and subsequently replaced

during the process of learning. The computations carried out by each neuron are namely the

result of adaptative, parametrized, non-linear basis functions, and their parameters are the

ones that are modified during training of the neural network, until the best fitting parameters

are found. Since it is a trial-and-error approach, feature extraction and model evaluation

occur at the same time.

As we can see in Figure 3.5, deep learning allows us to take into account many more

parameters than classical programming can.

Currently, we dispose of different arrangements of the layers in the neuron, and depend-

ing on their architecture, we distinguish different topologies. Depending on the real-world

problem to solve, it might be in fact sensible to choose a different number of layers, or neu-

rons per layer, or the basis functions carried out in these layers, not to mention the parameters

in it. The main types of neuronal networks are illustrated in Figure 3.6 and are [40]:

1. Artificial Neural Networks (ANN): the name of this category might be misleading,

since many people interpret the term ANN as a synonym for neural networks that are
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Figure 3.5: Number of parameters in M L  and DL: In Classic Programming, the number of
parameters is limited by the human capability of finding efficient rules and coding them. In
Deep Learning, this task is automatised and much more efficient. Reproduced from Hsieh et
al. [42].

Figure 3.6: ANN, CNN and RNN: In ANN, the information travels forward from the input to
the output. In CNN, each neuron analyzes a small neighbourhood of data, called kernel, and
slides its window until the whole data is covered. The information stays unidirectional. In
RNN, neurons also backproject information creating a looping mechanism. Reproduced
from Xiang et al. [43].

artificial. But ANNs are in fact a specific type of those, characterised by a feed-forward

system: every layer receives an input, processes it, and outputs it to the next layer, with

the information proceeding from one layer to the other without passing twice through

the same node. Previously, in our diagram we considered an ANN.

Due to this tiered layering, ANNs excel in fields where the main focus is pattern recog-

nition, such as the interpreting of handwriting in pictures to automatically convert it

into machine-written text, or weather prediction. A  disadvantage is that it typically

requires an enormous amount of data to be effectively trained;

2. Convolutional Neural Network (CNN): their key feature is the presence of convolu-

tional layers that performs convolutional operations. In this special type of operation,

the neuron works by applying a filter, also known as a kernel, to an input matrix such
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as an image. This filter consists of a small transformation matrix, made up of weights,

and when it is applied to a single neighbourhood of the input matrix, it produces a

number that is momentaneously stored by the neuron. The filter then slides across the

entire input matrix, covering its width and height, computing the result at each position

and saving it as well, before moving to the next point. Once the whole input matrix is

covered, all these momentaneously saved products are summed up to give a single

output value, which is the final rational number produced by that single neuron in the

convolutional layer, and that is to be sent to the neurons in the next layer.

But how are the weights in the kernel chosen? Those are also learnable parameters.

During the training process, the network learns by trial and error the most useful filters

for the task at hand.

CNNs are excellent for tasks like image and video recognition, segmentation and gen-

eration. It can be for example used to identify suspicious items like tumours in medical

imaging. The downside of CNN is mainly that it is computationally very demanding,

and that it has difficulties processing an object’s orientation in space;

3. Recurrent Neural Nets (RNN): they are characterized by a looping mechanism that

retains and feeds information to the next analysis. This gives RNNs a kind of memory

that allows them to be effective in tasks like language modelling, speech recognition

and translation.

3.2 Deep Learning Image Reconstruction (DLIR)

Deep Learning Image Reconstruction (DLIR) is a type of reconstruction algorithm that uses

deep learning. At the time of writing, three popular DLIR methods have been developed by

leading manufacturers [44]:

• TrueFidelity, developed by GE Healthcare [45];

• A iCE  (Advanced intelligent Clear-IQ Engine), developed by Canon Medical Systems

[46];

• Pixelshine, developed by AlgoMedica [47].
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3.2.1 TrueFidelity

In this thesis, the specific DLIR algorithm in analysis is TrueFidelity, since it was the one

installed in the C T  scan at the university hospital of Padua.

Figure 3.7: TrueFidelity Algorithm by G E  Healthcare. Reproduced from Hsieh et al. [42].

Its workflow is depicted in Figure 3.7. The Ground Truth images are the training data

sets, and were selected from high-dose, low-noise FBP images for supervised training. They

come together with an input, low-dose sinogram, labelled in the Figure as raw data.

First, the DLIR engine, which is made of a CNN, generates a C T  image from a low-

dose, raw-data sinogram. The generated image is indicated as output CT image. Then, this

output image is compared mathematically to the ground truth image to find any differences in

terms of image noise, texture, spatial resolution and other metrics. These differences are

used to fine-tune the CNN in a process known as backpropagation, with the goal to reduce

the difference between the DLIR output and the ground truth, until the two virtually match.

During the learning period, backpropagation commonly uses the gradient descent

optimization algorithm to adjust the weight of neurons.

This training process on a single image is then repeated on millions of ground truth

training data sets, all displaying FBP images that faithfully represent the scanned object.

After the training process, the DLIR engine undergoes an extensive testing phase of

inferencing, where the trained neuronal network is used to check its performance on a large

validation dataset that was not previously used. During this process, real-world conditions

are tested, so the step of backpropagation is not included [42].
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The difference in image quality that results from reconstructing the same sinogram with

FBP, an iterative algorithm and DLIR is shown in Figure 3.8.

Figure 3.8: Image reconstruction with FBP vs I R  vs DL IR .  The grainy appearance, or
image noise, is visibly reduced when switching from one algorithm to the next. Reproduced
from GE Healthcare [45].
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Main Body of the Study
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Chapter 4

Ojectives

As illustrated in the introduction, from a theoretical point of view, DLIR should perform

better than both FBP and Iterative Algorithms in reconstructing an image when given the

same attenuation values. We therefore expect two main consequences:

• Image quality should be improved when dose exposition is the same. Evidence sup-

porting this notion was found both in a phantom study by Zhong et al. [48], and in a

retrospective study by Alagic et al. [49];

• Radiation dose should automatically be reduced when using DLIR. This reduction is

carried out by automated exposure control systems. They are meant to automati-cally

modulate the tube current to ensure constant diagnostic image quality across all

anatomical regions of patients of different sizes, all the while guaranteeing a mini-

mization of the radiation dose. Their calibration is usually carried out by obtaining a

traditional 2-dimensional X-ray image [50]. Evidence supporting this dose reduction

was found for example in a phantom study by Greffier et al. [51] and in a prospective

study by Benz et al. [52].

In the abovementioned studies, the reconstructions were either carried out on phantoms,

or reconstructed applying different algorithms but on the very same data, or the C T  scans

were purposely taken a second time immediately after, but using a lower dose. In all those

cases, a real-world situation is not necessarily recreated. In this study, we aim to assess the

impact of DLIR on daily clinical practice.

This impact will be evaluated in terms of:
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• radiation dose reduction, quantified as CTDI, DLP and Effective dose;

• image noise reduction, quantified as Image noise and SNR.
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Materials and Methods

This retrospective study has been approved by the regional ethics committee.

5.1 Sudy Design

Figure 5.1: Study Design. Probably due to preferential patterns of mobilisation of patients
within the hospital (for example, patients in the ICU tend to be scanned with the same ma-
chine), the number of patients included in the study is limited when compared to the initial
pool.

As illustrated in Figure 5.1, we retrospectively pooled 15.205 unique patients who col-

lectively underwent a total of 35.497 C T  examinations at the University Hospital of Padua in

the timeframe between 16 October 2021 and 28 February 2023, covering an observational

period of 15 months, or 501 days. This initial pool of patients was selected because it was

known that the imaging was performed by one of the 4 scanners of interest, 1 of them with

DLIR, 1 with FBP, and 2 with an iterative algorithm (AIDR3D or ADMIRE), as illustrated in

Table V.
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Table V: C T  scanners at the University Hospital of Padua

Vendor

GE Health-
care
Siemens
Healthineers

Canon Med-
ical Systems
(Previously
Toshiba)
Siemens
Healthineers

Scanner
Name

Revolution
EVO
Somatom
Sensation 64

Aquillion
ONE

Somatom
Definition
Edge

Algorithm
Name

TrueFidelity

FBP

AIDR 3D

ADMIRE
(Advanced
Modeled
Iterative
REconstruc-
tion)

Algorithm
Type

DLIR

Fourier
Based
Method
Iterative Re-
construction
(Hybrid)

Iterative Re-
construction
(Hybrid)

Total Pat.

3.666

1.904

5.596

7.741

Also D L I R
within 30
Days
—

142

239

633

Using Python 3 [53] running on a Jupyter Notebook [54], it was determined which pa-

tients had been examined with both DLIR and one of the other algorithms within a timeframe of

30 days, to ensure that they did not significantly alter their physical characteristics such as

weight in this short period.

Data regarding all those 1.014 patients were manually retrieved on the hospital computers

to ensure that they covered the same anatomical region in both examinations, and if it was

the case, the patient was included in the study. For each included patient, the following

information was registered in an Excel sheet [55] using the following nomenclature:

• Patient ID, abbreviated as ID;

• Date of birth, abbreviated as DoB;

• Gender, abbreviated as sex;

• Body region scanned, abbreviated as reg;

• Use of contrast medium, abbreviated as wcm;
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• Date of the scan specific to the algorithm, abbreviated as FBP_date, Aq_date, DE_date,

DLIR_date;

• Number of days between the two dates, abbreviated as diff;

• CTDI and DLP relative to each acquisition phase for each algorithm, abbreviated

as dir_CTDI_FBP, art_CTDI_FBP, ven_CTDI_FBP, art_CTDI_FBP; dir_DLP_FBP,

art_DLP_FBP, ven_DLP_FBP, art_DLP_FBP; dir_CTDI_Aq, art_CTDI_Aq, ven_CTDI_Aq,

art_CTDI_Aq; dir_DLP_Aq, art_DLP_Aq, ven_DLP_Aq, art_DLP_Aq; dir_CTDI_DLIR,

art_CTDI_DLIR, ven_CTDI_DLIR, art_CTDI_DLIR; dir_DLP_DLIR, art_DLP_DLIR,

ven_DLP_DLIR, art_DLP_DLIR;

• Total dose resulted from the C T  examination, abbreviated as tot_FBP, tot_Aq, tot_DE,

tot_DLIR;

• µ (mean in HU) and σ (Standard Deviation) in abdominal wall fat, right liver lobe

(1) and left liver lobe (2), for each acquisition phase of each algorithm, abbreviated as

dir_SD_fat_FBP, dir_HU_lvr1_FBP, dir_SD_lvr1_FBP, dir_HU_lvr2_FBP, dir_SD_lvr2_FBP,

art_SD_fat_FBP, art_HU_lvr1_FBP, art_SD_lvr1_FBP, art_HU_lvr2_FBP, art_SD_lvr2_FBP,

ven_SD_fat_FBP, ven_HU_lvr1_FBP, ven_SD_lvr1_FBP, ven_HU_lvr2_FBP, ven_SD_lvr2_FBP,

tard_SD_fat_FBP, tard_HU_lvr1_FBP, tard_SD_lvr1_FBP, tard_HU_lvr2_FBP, tard_SD_lvr2_FBP;

dir_SD_fat_Aq, dir_HU_lvr1_Aq, dir_SD_lvr1_Aq, dir_HU_lvr2_Aq, dir_SD_lvr2_Aq,

art_SD_fat_Aq, art_HU_lvr1_Aq, art_SD_lvr1_Aq, art_HU_lvr2_Aq, art_SD_lvr2_Aq,

ven_SD_fat_Aq, ven_HU_lvr1_Aq, ven_SD_lvr1_Aq, ven_HU_lvr2_Aq, ven_SD_lvr2_Aq,

tard_SD_fat_Aq, tard_HU_lvr1_Aq, tard_SD_lvr1_Aq, tard_HU_lvr2_Aq, tard_SD_lvr2_Aq;

dir_SD_fat_DE, dir_HU_lvr1_DE, dir_SD_lvr1_DE, dir_HU_lvr2_DE, dir_SD_lvr2_DE,

art_SD_fat_DE, art_HU_lvr1_DE, art_SD_lvr1_DE, art_HU_lvr2_DE, art_SD_lvr2_DE,

ven_SD_fat_DE, ven_HU_lvr1_DE, ven_SD_lvr1_DE, ven_HU_lvr2_DE, ven_SD_lvr2_DE,

tard_SD_fat_DE, tard_HU_lvr1_DE, tard_SD_lvr1_DE, tard_HU_lvr2_DE, tard_SD_lvr2_DE;

dir_SD_fat_DLIR, dir_HU_lvr1_DLIR, dir_SD_lvr1_DLIR, dir_HU_lvr2_DLIR, dir_SD_lvr2_DLIR

art_SD_fat_DLIR, art_HU_lvr1_DLIR, art_SD_lvr1_DLIR, art_HU_lvr2_DLIR, art_SD_lvr2_DLIR

ven_SD_fat_DLIR, ven_HU_lvr1_DLIR, ven_SD_lvr1_DLIR, ven_HU_lvr2_DLIR,

ven_SD_lvr2_DLIR, tard_SD_fat_DLIR, tard_HU_lvr1_DLIR, tard_SD_lvr1_DLIR,

tard_HU_lvr2_DLIR, tard_SD_lvr2_DLIR.
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For the body region scanned, only the chest, abdomen and trunk (chest + abdomen) were

included. Other regions such as the head, neck or limbs were excluded.

The total dose resulting using DLIR, includes also the dose needed to create the topogram

and the monitoring, so it is not a pure addition of the DLP in the various phases for that

examination.

After the acquisition of this data, it was decided to transform all values ending in “_Aq”

(Aquillion ONE using AIDR3D) and those ending in “_DE” (Definition Edge, using AD-

MIRE) to the same ending “_IR” (Iterative Reconstruction) in order to lose information

about the difference between the two machines.

If you are curious about the data kept split between these two methods, delve deeper into

data in Appendix A.

5.2 Patient Population

As a result of these selections, a total of 83 patients were included in the study. All patients are

unique and appear only once in the database. For patients who had repeated the scans

multiple times (for example, DLIR on day 1, FBP on day 3, AIDR3D on day 4), only the

comparison between the two closest dates was considered (in our example, DLIR on Day 1

and FBP on day 3).

5.3 C T  Protocol

The C T  scans were performed using four different scanners:

• GE Healthcare: Revolution Evo (DLIR). The following imaging parameters were

used: Tube voltage: 100.00 kV, Tube current: 190.00 mA, Slice thickness: 1.25 mm,

Spiral Pitch Factor: 0.5156, Matrix size: 512 x 512.

• Siemens Healthineers: Somatom Sensation 64 (FBP). The following imaging param-

eters were used: Tube voltage: 120.00 kV, Tube current: 359.00 mA, Slice thickness:

3.00 mm, Spiral Pitch Factor: 0.8000, Matrix size: 512 x 512.

• Canon Medical Systems (Previously Toshiba): Aquillion ONE (AIDR3D). The fol-

lowing imaging parameters were used: Tube voltage: 120.00 kV, Tube current: 88.00
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mA, Slice thickness: 3.00 mm, Spiral Pitch Factor: 0.8130, Matrix size: 512 x 512.

• Siemens Healthineers: Somatom Definition Edge (ADMIRE). The following imaging

parameters were used: Tube voltage: 120.00 kV, Tube current: 200.00 mA, Slice

thickness: 3.00 mm, Spiral Pitch Factor: 0.6000, Matrix size: 512 x 512.

5.4 Quantitative Dose Analysis

They were assessed through CTDI, DLP and total dose, as shown in the Patient Protocol. The

effective dose was calculated on DLP using the conversion factor illustrated in subsection

1.4.6.

5.5 Quantitative Image Quality Analysis

Initially, a program with M AT L A B  [56] was written to automatically compute image noise

con DICOM images with the Global Noise Level method presented by Christianson et al.

[57], following the instructions in the paper by Malkus et al. [58]. However, due to local

regulations that prohibit the exportation of DICOM data, even when anonymised, it was not

possible to apply it to the patients in this study.

It was therefore chosen to follow the calculations also used by Nam et al. [20].

5.6 Data Analyses

Data analyses were performed using Python 3 [53] running within a Jupyter Notebook [54]

environment. The libraries employed for data manipulation and statistical testing were Pan-

das [59], NumPy [60], and SciPy [61]. Additionally, the datetime module [62] was em-

ployed.

Pandas was used for data structuring and preprocessing, while NumPy provided support

for numerical operations. SciPy was utilized for statistical testing, and the datetime module

was used to handle date and time data. These allowed for robust and reproducible analyses.

51



52 CHAPTER 5. MATERIALS  AND METHODS

5.7 Statistical Analyses

In the main body of the study, the only applied statistics were mean, standard deviation and

Wilcoxon signed-rank test, calculated on an overall mean of all parameters computed across

each phase.

The more detailed approach that is described in this section was originally applied but

then eliminated due to the belief that the results lacked readability. The results of these

analyses are still present in Appendix A.

Please feel free to skip the analytical part if you think that it is too complicated or that

you have never heard of those tests. They are not relevant to the main body of the study, and

only appear in Appendix A. If you know what mean, standard deviation and signed-rank

test are, you are good to skip to the next section.

For statistical analyses, we first employed the Saphiro-Wilk test to see if our data was

normally distributed, and consequently decide if it was best to proceed with parametric tests

(that is, tests that assume a normal distribution) or non-parametric tests (that is, tests that

don’t assume a normal distribution) to assess if there was a statistically significant difference

between the paired groups (FBP vs DLIR, AIDR3Dvs DLIR, ADMIRE vs DLIR).

When the distribution of our data was found not to be normal, we executed the Wilcoxon

signed-rank test.

If the distribution of the data was found to be normal, we executed both the Paired t-Test

and the Wilcoxon signed-rank test, since the sample size was limited.

For the effect sizes, we computed the Cohen’s d in both cases.

5.7.1 Saphiro-Wilk Test

The Shapiro-Wilk test is one of the most powerful tests for assessing normality, particularly

when dealing with small sample sizes [63].

In this test, the null hypothesis is that the data comes from a normally distributed popu-

lation. If the calculated p-value is lower than the chosen α (in our case 0.05), we reject the

null hypothesis, indicating that the data isn’t, probably, normally distributed.

For the computation, the function scipy.stats.shapiro [64] was used.
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5.7.2 Paired t-Test

The paired t-test [65], also known as the dependent t-test, investigates whether there is a

significant difference in the mean values of the same group on two different occasions. This

test is used when the samples are dependent; that is, when there is a natural pairing of

observations in the data, and the data is normally distributed.

In this test, the null hypothesis states that there is no significant difference between the

paired observations. In our study, we used the one-sided version of the test, under the al-

ternative hypothesis that one group (FBP or iterative algorithms) had larger values than the

other group (DLIR). Therefore, if the p-value is lower than the chosen α (in our case, again

0.05), we reject the null hypothesis, suggesting a significant difference.

5.7.3 Wilcoxon Signed-Rank Test

The Wilcoxon signed-rank test [65] is a non-parametric test, meaning that it makes no as-

sumptions about a population’s parameters, such as normal distribution. It is used to de-

termine whether there are differences between two sets of paired observations when the

conditions to conduct a paired t-test are not met.

In our case, an example of paired observation was an examination with DLIR paired with

an examination with ADMIRE by means of the same patient ID.

The test first computes the absolute values of the differences between paired observations,

then ranks them and tests whether the distribution of these ranks is symmetric about zero, in

which case it would imply that there is no observable difference between the paired groups. In

our study, we used the one-sided version of the test, under the alternative hypothesis that one

group (FBP or iterative algorithms) typically had larger values than the other (DLIR). The

significance level α for all tests was set to 0.05, again under the null hypothesis that there is

no significant difference between the paired observations.

For the computation, the function scipy.stats.wilcoxon [66] was used.

5.7.4 Cohen’s d

Cohen’s d [65] is a measure of effect size that quantifies the difference between two means

in standard deviation units. In other words, it gives a measure of how far two distributions
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are with regard to each other, as illustrated in Figure 5.2. It is calculated by subtracting the

mean of one group from the mean of another and dividing the result by the pooled standard

deviation of the two groups.

There are no hard rules to interpret the Cohen’s d, but a commonly accepted rule of

thumb is that values smaller than 0.20 indicate a small effect size, those between 0.20 and

0.75 show a moderate effect, and those over 0.75 are considered to be large.

For the computation, the code presented in Appendix F was used.

Figure 5.2: Cohen’s d. Image reproduced from statisticshowto.com [67].
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Results

6.1 Patient Demographics

Of the 83 selected patients, 56 are males (67%), and 27 are females (33%). The difference in

prevalence between the two genders is maybe not so surprising: notably, males more often

receive critical care than women [68], and all our patients were in a situation where they

had to be scanned multiple times within a short period. Of those patients, 14 underwent

examination of the chest, 51 of the abdomen, and 18 of the trunk (chest + abdomen).

The mean age of the patient when they underwent the DLIR was 58.9 years old, with a

standard deviation of 15.8 years. The youngest patient was 31 years old, and the oldest was

84.

The mean number of days that intercurred between the two examinations was 10.8 days,

with a standard deviation of 8.6 days. The minimum delay was of 1 day, and the maximum

difference was 30 days.

6.2 Quantitative Dose Analyses

Quantitative Dose Analyses are reported in Table VI.  The study as it was conducted only

supported a dose reduction for FBP when stratification according to body region was not

undertaken. This may be due to the very limited patients’ number in this study group (n =

12). Consequently, some regions were heavily underrepresented, for example patients for

the trunk group were just 2.
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The study couldn’t find any improvement in dose with regard to iterative algorithms.
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58 CHAPTER 6. RESULTS

6.3 Quantitative Image Quality Analyses

Table VII:  Image Quality Results. * indicates a p-value < 0.05 for that cell, when compared to
the same values in DLIR. Therefore, we expect the p-value in DLIR not to be significant, since
the comparison is with its own population.

Noise in HU SNR in HU
Mean ± SD Range p Mean ± SD Range p

FBP 14.85 ± 2.73 (11.50, 18.94) * 3.99 ± 1.23 (2.37, 6.15) *
D L I R 8.45 ± 3.24 (4.29, 18.19)              11.53 ± 9.28 (6.55, 30.30)
I R 28.85 ± 32.77 (7.33, 105.50) * 4.84 ± 2.74 (0.21, 8.71) *

Noise and SNR were significantly improved with regards to both FBP and IR, as shown

in Table VII.  We therefore conclude that the advantage offered by DLIR was mainly invested

in improving image quality, rather than lowering radiation dose.
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Discussion

In this retrospective study, we have performed a thorough comparison of different image

reconstruction methods (DLIR versus FBP, AIDR3D or ADMIRE), each implemented on a

different C T  machine, across four different phases of acquisition (direct, arterial, venous, and

delayed), for patients in critical care who needed multiple C T  scans within a short period of

time. The theory behind DLIR supposes an improvement in both dose parameters (CTDI,

DLP, and Effective Dose) and image quality metrics (noise and SNR) when compared to the

more traditional methods. Our goal was to evaluate if and to which extent this new

technology has impacted the imaging of critical care patients who had to undergo multiple

C T  scans within a brief period of time (30 days).

From the analyzed data, we noticed that over the past year and a half, ever since the ac-

quisition of the DLIR machine at our hospital, there has been a significant decrease in the use of

FBP. This limited the number of patients included in this category (n= 12). Nonetheless, we

found that DLIR ’s performance significantly surpassed FBP: image noise was reduced, on

average, by 14.85 ± 2.73 HU (specifically by 50.97% in the direct phase, 48.54% in ar-terial

phase, 52.74% in venous phase). The value of SNR was, on average, increased by 3.99 ±

1.23 HU, which translated to an astonishing improvement of 107.41% in the direct phase,

137.83% in the arterial phase, 129.37% in the venous phase, and 108.82% in the tar-dive

phase. We could also describe a substantial reduction in radiation dose: overall, CTDI

volume was reduced by 14.00 ± 12.46 mGy, DLP by 1085.33 ± 626.30 mmGy, and Effective

Dose by 16.13 ± 9.55 mSv. Specifically, in the direct phase, CTDI was reduced by 40.94%,

DLP by 38.1%, and the effective dose by 36.52%. A  radiation dose reduction for the phases
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with contrast medium could not be confirmed, but the results in the direct phase were signif-

icant enough to have an impact on the total dose of the examination, which was lowered by

19.58% on average. These results mirror the efficiency of DLIR over FBP reported by other

studies.

Comparing DLIR with the general group of iterative reconstructions also resulted in a

significant improvement in image quality: image noise was improved on average by 28.85 ±

32.77 HU, and SNR by 4.84 ± 2.74 HU. For this general group however, our study could not

observe a significant dose reduction.

On the other hand, if we consider just the group of the iterative algorithm AIDR3D versus

DLIR, we have noticed a similar pattern as FBP. It was calculated on a subset of patients that

coincidentally had the same number (n= 12). Specifically, DLIR yielded a 31.12% reduction in

image noise in the direct phase, 25.14% in the arterial phase and 40.63% in the venous

phase. It also increased the signal-to-noise ratio (SNR) by 52.57% in the direct phase and

85.65% in the venous phase. For this patient group, we could describe a radiation dose

reduction in three phases. Specifically, in the direct phase, the reductions were 41.77% in

CTDI, 38.19% in DLP, and 38.19% in effective dose. For the arterial phase we saw a

reduction of 34.10% in CTDI, 33.31% in DLP, and 33.31% in effective dose. For the venous

phase the extent was somewhat smaller: 18.64% in CTDI, 14.98% in DLP, and effective dose

14.98%. These reductions accounted for a reduction of the total dose of examination by an

average of 25.13%. These findings also align with the results of other studies.

Lastly, for the comparison group (n=59) between ADMIRE and DLIR, an improvement

of the dose was found but to a much more moderate degree, and only in the direct phase:

CTDI was reduced by 21.83%, DLP by 19.89% and effective dose by 19.26%. However,

image quality improvement had a consistent impact across all phases: image noise was re-

duced by 68.28%, 73.49%, 79.35% and 78.19% respectively for direct, arterial, venous and

tardive phase, and SNR was improved by 134.14%, 100.76%, 119.49% and 163.70% each.

Overall we can say that we found consistency in noise reduction, and above all in image

quality improvement, which emphasizes the robustness of the DLIR approach and its poten-

tial in daily clinical practice. However, further evaluation is needed to investigate potential

differences in other anatomical locations such as the head or limbs, or specific to a given

pathology. It would be also interesting to investigate the extent to which these quantitative

improvements reflect on clinicians, and particularly radiologists, in daily clinical practice,
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to quantify if the image quality significantly affects parameters such as subjective quality, or

the impact on workflow and efficiency, for example in terms of time needed to read the

images or correctly diagnose pathologies.

In conclusion, our study contributed to the growing body of evidence that deep learning-

based C T  reconstruction methods like TrueFidelity can not only provide significant benefits in

terms of dose reduction and image quality over the traditional FBP, but also outperform other

iterative reconstruction methods. The expectation is that those advantages will trans-late into

safer imaging practices, higher diagnostic confidence, and ultimately better patient care.

Considering the increasing computational power and the growing wealth of healthcare

institutions, we anticipate a broader implementation of DLIR in the foreseeable future.
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Conclusion

In conclusion, we found evidence that the reconstruction power of DLIR is mainly used to

improve image quality, and to a lesser extent, to lower C T  dose.
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Appendix A

Delve Deeper into Data

During the drafting of the thesis, a more complex analysis was performed. In this section,

first we present the main findings that had a significant value, with a p < 0.05. Every other

non-reported parameter was found not to be significant, with a p > 0.05. At the end of the

section are then listed patient demographics and analysis of normality results. If you wish for

more specific results of the tests, please contact the author. They were abridged to provide a

better overview.

A.1 Results stratified by acquisition phase

A.1.1 Results in F B P  vs D L I R

Our alternative study could find a dose reduction due to DLIR for parameters in the direct

and arterial phases.

Table VIII:  Dose reduction results for FBP vs DLIR: an alternative quantification
Phase Estimated %  Re- Mean Reduction Cohen’s d

duction
dir_CTDI                        40.94%                           4.39 ± 5.64 mGy           1.05 (large effect)
dir_DLP                          38.01%                           178.56     ±     285.14     0.84 (large effect)

mGy * cm
Effective Dose in art 36.52% 2.51 ± 3.33 mSv 1.02 (large effect)
art_CTDI 26.63% 2.73 ± 3.98 mGy 0.87 (large effect)
tot 19.58% 212.54 ± 929.73 0.31 (moderate ef-

mGy fect)
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Table IX:  Quality improvement results in FBP vs DLIR: an alternative quantification
Phase Parameter Estimated %  Im- Mean Improvement Cohen’s d

provement
Noise 50.97% 7.09 ± 3.31 HU 2.81 (large effect)
SNR 107.41% 2.87 ± 1.69 HU 2.22 (large effect)
Noise 48.54% 7.35 ± 3.23 HU 2.87 (large effect)
SNR 137.83% 5.12 ± 2.35 HU 2.76 (large effect)
Noise 52.74% 8.03 ± 3.33 HU 3.16 (large effect)
SNR 129.37% 6.99 ± 3.40 HU 2.69 (large effect)
Noise – – –
SNR 108.82% 5.90 ± 1.69 HU 4.03 (large effect)

A.1.2 Results in A I D R 3 D  (iterative) vs D L I R

Under both parametric and non-parametric testing, the DLIR superiority in terms of radiation

dose could be detected for both CTDI and DLP in direct and arterial phases, CTDI in the

venous phase, and total dose derived from the examination. Cohen’s d values often above

0.75 suggest that this reduction had a remarkable value, and it was enough to impact the total

dose as well.

Furthermore, parametric testing suggested that there is a reduction of dose for the DLP

during the venous phase as well. Since data regarding this phase was determined to be

normally distributed, we can confidently accept this result.

Table X:  Dose reduction results for AIDR3D vs DLIR: an alternative quantification
Phase Estimated %  Re- Mean Reduction Cohen’s d

duction
dir_CTDI                          41.77%                           4.61 ± 6.44 mGy          0.97 (large effect)
dir_DLP                            38.19%                           205.67     ±     334.62     0.83 (large effect)

mGy * cm
Effective Dose in dir 38.19% 3.08 ± 4.67 mSv 0.89 (large effect)
art_CTDI 34.10% 3.75 ± 3.60 mGy 1.36 (large effect)
art_DLP 33.31% 176.46 ± 206.52 1.12 (large effect)

mGy * cm
Effective Dose in art 33.31% 2.65 mSv 1.57 (large effect)
ven_CTDI 18.64% 1.99 ± 2.78 mGy 0.96 (large effect)
ven_DLP 14.98% 86.06 ±      179.25 0.64 (moderate ef-

mGy * cm fect)
Effective Dose in ven 14.98% 1.29 ± 2.06 mSv 0.84 (large effect)
tot 25.13% 369.90 ± 906.98 0.55 (moderate ef-

mGy fect)

About the quality improvement:
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Table XI :  Quality improvement in AIDR3D vs DLIR: an alternative quantification
Phase Parameter Estimated %  Im- Mean Improve- Cohen’s d

provement ment
Noise 31.12% 2.98 ± 1.72 HU 2.34 (large effect)
SNR 52.57% 2.43 ± 1.27 HU 2.58 (large effect)
Noise 25.14% 2.45 ± 1.98 HU 1.62 (large effect)
SNR – – –
Noise 40.63% 4.67 ± 3.35 HU 1.86 (large effect)
SNR 85.65% 7.45 ± 13.67 HU 0.73 (moderate effect)

A.1.3 Results in A D M I R E  (iterative) vs D L I R

Under non-parametric testing, the DLIR superiority in terms of radiation dose could only be

detected in the direct phase. Cohen’s d value slightly greater than 0.2 suggests that this

reduction had a moderate effect.

Again for this patients’ group, the results of the testing did not change even when strati-

fication was made according to the body region (chest, abdomen or trunk).

Table XII :  Dose reduction results for ADMIRE vs DLIR: an alternative quantification
Phase Estimated %  Reduc- Mean Reduction Cohen’s d

tion
dir_CTDI              21.83%                               2.30 ± 8.60 mGy              0.37 (moderate effect)
dir_DLP                19.89%                               108.44 ± 486.08 mGy     0.31 (moderate effect)

* cm
Effective Dose 19.26% 1.56 ± 5.97 mSv 0.37 (moderate effect)

Table XII I :  Quality improvement in ADMIRE vs DLIR: an alternative quantification
Phase Parameter Estimated %  Im- Mean Improvement Cohen’s d

provement
Noise 68.28% 19.66 ± 23.68 HU 1.14 (large effect)
SNR 134.14% 3.75 ± 2.78 HU 1.86 (large effect)
Noise 73.49% 28.84 ± 35.18 HU 1.13 (large effect)
SNR 100.76% 3.96 ± 3.65 HU 1.50 (large effect)
Noise 79.35% 38.16 ± 50.63 HU 1.04 (large effect)
SNR 119.49% 6.49 ± 5.13 HU 1.74 (large effect)
Noise 78.19% 34.33 ± 40.89 HUU 1.16 (large effect)
SNR 163.70% 6.51 ± 4.24 HU 2.12 (large effect)

69



70 APPENDIX A. DELVE  DEEPER INTO DATA

A.2 Patient Demographics

A.2.1 Patient Demographics in F B P  vs D L I R

Of all the patients included, if we consider only those that were selected to compare FBP and

DLIR, we found 12 patients. 9 of them are males (75%), and 3 females (25%).

Of those, 4 underwent examination of the chest, 5 of the abdomen, and 3 of the complete

trunk (chest + abdomen).

The mean age of the patient when they underwent the DLIR was 58.0 years old, with a

standard deviation of 8.48 years. The youngest patient was 52 years old, and the oldest was

64.

The mean number of days that intercurred between the two examinations was 17.0 days,

with a standard deviation of 9.7 days. The minimum delay was of 2 days, and the maximum

difference was 29 days.

A.2.2 Patient Demographics in A I D R 3 D  (iterative) vs D L I R

Similarly, if out of all the included patients we consider only those that were selected to

compare AIDR3D and DLIR, we found 12 patients. 10 of them are males (83%), and 2

females (17%).

Of those, none underwent examination of the chest, 11 of the abdomen, and just 1 of the

complete trunk (chest + abdomen).

The mean age of the patient when they underwent the DLIR was 50.5 years old, with a

standard deviation of 27.5 years. The youngest patient was 31 years old, and the oldest was

70.

The mean number of days that intercurred between the two examinations was 11.3 days,

with a standard deviation of 8.7 days. The minimum delay was of 2 days, and the maximum

difference was 27 days.

A.2.3 Patient Demographics in A D M I R E  (iterative) vs D L I R

Finally, if out of all the included patients we consider only those that were selected to com-

pare ADMIRE and DLIR, we found 59 patients. 37 of them are males (63%), and 22 are

females (37%).
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Of those, 10 underwent examination of the chest, 35 of the abdomen, and 14 of the

complete trunk (chest + abdomen).

The mean age of the patient when they underwent the DLIR was 61.3 years old, with a

standard deviation of 15.8 years. The youngest patient was 34 years old, and the oldest was

84.

The mean number of days that intercurred between the two examinations was 9.5 days,

with a standard deviation of 8.0 days. The minimum delay was of 1 day, and the maximum

difference was 30 days.

A.3 Assessing Normality of the Distribution

A.3.1 Assessing Normality in F B P  vs D L I R

Overall, in FBP vs DLIR the distribution seemed to be normal, so we proceeded to apply

parametric testing and accept its results. The only exceptions to the normal distribution

were:

• venous CTDI;

• venous DLP;

• venous noise;

• tardive noise.

For those parameters, we only considered results from non-parametric testing.

A.3.2 Assessing Normality in A I D R 3 D  (iterative) vs D L I R

Overall, the data seemed to be normally distributed with the exception of:

• direct DLP;

• venous noise;

• venous SNR.

Only in those cases, we considered results from non-parametric testing.
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A.3.3 Assessing Normality in A D M I R E  (iterative) vs D L I R

Overall, the Saphiro-Walk test’s results strongly suggested a departure from a normal distri-

bution, with regard to each parameter in each acquisition phase. Therefore, for this patient

group the study was continued with non-parametric analyses.

The only exception was SNR, which was found to have a normal distribution in all

phases, so we used parametric testing.

72



Appendix B

Foreword to the Source Code Appendices

Coming from a medical background, it may seem challenging to gather up the courage to

approach coding, especially since it can be, at times, an incredibly frustrating experience.

Nonetheless, it is an extraordinarily powerful and fascinating tool that enables one to con-

duct hands-on experiments and gain a better insight into what and how various things are

computed.

In the hope of rendering service to at least one other fellow amateur coder, some of the

source code written during the drafting of this thesis is listed here on the following pages.

Kindly note that this work was authored by a non-professional, and there is therefore no

guarantee of the correctness or efficacy of the computations.
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BP Simulation in M AT L A B

1 %% BP S i m u l a t i o n

2

3 % Load t h e  image i n t o  t h e  o b j e c t  sp a c e  and c o n v e r t  i t  t o

g r a y s c a l e

4 phantom_image =  imread( 'C :\ U sers\ Documents\MATLAB\

C r e a t i n g _ p i c t u r e s \ t r a n s v e r s a l s c h n i t t . p n g ' ) ;

5 phantom_image =

6 phantom_image =

7

rgb2gray(phantom_image) ;

im2double(phantom_image);

8 % S p e c i f y  t h e  a n g l e  r a n g e  f o r  t h e  p r o j e c t i o n s

9 t h e t a  =  0:179;  % F o r  example i n  t h s i  c a s e ,  we c o n s i d e r  t h e t a

from 0 t o  179 i n  s t e p s  o f  one ( 0 ,  1 ,  2 ,  3 . . . )

10

11 % Compute t h e  Radon Transform t o  g e n e r a t e  t h e  s inogram

12 [ R ,  x p ]  =  radon(phantom_image,  t h e t a ) ;

13

14

15 % Perform t h e  i n v e r s e  radon t r a n s f o r m  w i t h o u t  f i l t e r i n g

16 r e c on s t r u c t e d _ i m a g e  =  i r a d o n ( R ,  t h e t a ,  ' l i n e a r ' ,  ' n o n e ' ,  1 . 0 ,

s i z e ( ph a n t o m _ i m a g e ,  1 ) ) ;

17
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18 % D i s p l a y  t h e  o r i g i n a l  phantom image

19 s u b p l o t ( 1 ,  3 ,  1 ) ;

20 imshow(phantom_image, [ ] ) ;

21 t i t l e ( ' O r i g i n a l  Image ( O b j e c t  S p a c e ) ' ) ;

22

23 % D i s p l a y  t h e  s inogram

24 s u b p l o t ( 1 ,  3 ,  2 ) ;

25 imsho w (R ,  [ ] ) ,  t i t l e ( ' S i n o g r a m  (Radon S p a c e ) ' ) ;

26

27 % D i s p l a y  t h e  r e c o n s t r u c t e d  image

28 s u b p l o t ( 1 ,  3 ,  3 ) ;

29 i m s ho w ( r e c o n s t r u c t e d _ i m a g e ,  [ ] ) ,  t i t l e ( ' B a c k p r o j e c t i o n  (no

f i l t e r s ) ' ) ;

30

31 % S a v e  t h e  f i g u r e

32 s a v e a s ( g c f ,  ' B P _ s i m u l a t i o n . p n g ' )
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FBP Simulation in M AT L A B

1 %% FBP s i m u l a t i o n

2

3 % Load t h e  image i n t o  t h e  o b j e c t  sp a c e  and c o n v e r t  i t  t o

g r a y s c a l e

4 phantom_image =  imread( 'C :\ U sers\ Documents\MATLAB\

C r e a t i n g _ p i c t u r e s \ t r a n s v e r s a l s c h n i t t . p n g ' ) ;

5 phantom_image =

6 phantom_image =

7

rgb2gray(phantom_image) ;

im2double(phantom_image);

8 % S p e c i f y  t h e  a n g l e  r a n g e  f o r  t h e  p r o j e c t i o n s

9 t h e t a  =  0 : 2 : 179 ;  % F o r  example i n  t h i s  c a s e ,  we c o n s i d e r

t h e t a  from 0 t o  179 i n  s t e p s  o f  two ( 0 ,  2 ,  4 ,  6 . . . )

10

11 % Compute t h e  Radon Transform t o  g e n e r a t e  t h e  s inogram

12 [ R ,  x p ]  =  radon(phantom_image,  t h e t a ) ;

13

14 % Perform 2D F o u r i e r  T ransform

15 F  =  f f t 2 ( p h a n t o m _ i m a g e ) ;

16

17 % S h i f t  t h e  z e r o - f r e q u e n c y  component t o  t h e  c e n t e r  o f  t h e

spectrum
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18 F _ s h i f t e d  =  f f t s h i f t ( F ) ;

19

20 % Compute t h e  i n v e r s e  Radon t r a n s f o r m  from t h e  f i l t e r e d

s inogram

21 r e c o n s t r u c t i o n _ w f  =  i r a d o n ( R ,  t h e t a ,  ' l i n e a r ' ,  ' R a m - L a k ' ,

1 . 0 ,  s i z e ( ph a n t o m _ i m a g e ,  1 ) ) ;

22

23 % D i s p l a y  t h e  o r i g i n a l  phantom image

24 s u b p l o t ( 1 ,  4 ,  1 ) ;

25 imshow(phantom_image, [ ] ) ;

26 t i t l e ( ' O r i g i n a l  Image ( O b j e c t  S p a c e ) ' ) ;

27

28 % D i s p l a y  t h e  s inogram

29 s u b p l o t ( 1 ,  4 ,  2 ) ;

30 imsho w (R ,  [ ] ,  ' X d a t a ' , t h e t a , ' Y d a t a ' , x p , ' I n i t i a l M a g n i f i c a t i o n '

, ' f i t ' ) ;

31 t i t l e ( ' S i n o g r a m  (Radon S p a c e ) ' ) ;

32

33 % D i s p l a y  t h e  a b s o l u t e  v a l u e  o f  t h e  F o u r i e r  T ransform ( l o g

s c a l e )

34 s u b p l o t ( 1 ,  4 ,  3 ) ;

35 i m s h o w ( l o g ( a b s ( F _ s h i f t e d )  +  1 ) ,  [ ] ) ,  t i t l e ( ' F r e q u e n c y

a n a l y s i s  ( F o u r i e r  S p a c e ) ' )

36

37 % D i s p l a y  t h e  r e c o n s t r u c t e d  image

38 s u b p l o t ( 1 ,  4 ,  4 ) ;

39 i m s h o w ( r e c o n s t r u c t i o n _ w f ,  [ ] ) ;

40 t i t l e ( ' R e c o n s t r u c t e d  Image ( f r o m  f i l t e r e d  s i n o g r a m ) ' ) ;

41

42 % S a v e  t h e  f i g u r e

43 s a v e a s ( g c f ,  ' F B P _ s i m u l a t i o n . p n g ' )
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Global Noise Level in M AT L A B

In this section, two sets of code are presented.

The first set illustrates, in a step-by-step approach, how to determine the noise level in a

single image, calculated on the soft tissue as illustrated by Christianson et al. [57], inspired by

the explanations presented in the paper by Malkus et al. [58]. During this stuy, it was

chosen to calculate the noise level on air, as it is the usual place of choice. However, as it

provides better visual feedback to calculate it on soft tissue first, the code for soft tissue was

included. To switch from soft tissue to air, it will suffice to change the segmentation range in

the mask (as stated in the code).

The second set illustrates how to automatically iterate through the whole dicom folder,

determining the GNL in a more precise way, since noise is not equally distributed across the

C T  scan. When running this second code, it is recommended to disable the displaying of the

images shown in the step-by-step approach to speed up the computing process.

Sadly, due to local regulations that prohibit the exportation of dicom files from the hos-

pital computers, even when anonymized, and at the same time prohibits the installation of

programs such as M AT L A B  on their computers, these codes could never be executed on the

real patient data in this thesis. It was nonetheless entertaining to develop the code, and it was

tried on a training set kindly provided at dicomlibrary.com [69].

E.1 For a single image

1 %% G l o b a l  Noise  L e v e l  ( G N L )  i s  assessed through f o l l o w i n g
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s t e p s :

2 % S t e p  0 :  impor t  t h e  image

3 % S t e p  1 :  segment t h e  image t o  s e l e c t  a  s p e c i f i c  t i s s u e  t y p e

4 % S t e p  2 :  c r e a t e  a  n o i s e  map

5 % S t e p  3 :  g e n e r a t e  a  h i s t o g r a m  w i t h  t h e  s t and a r d  d e v i a t i o n s

6 % S t e p  4 :  compute t h e  GNL

7

8

9 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

10

11 %% STEP 0 :  IMPORT THE IMAGE ( v e r s i o n  f o r  one s i n g l e  image)

12

13 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

14

15

16 % S p e c i f y  t h e  f o l d e r  where t h e  DICOM f i l e s  a r e  s t o r e d

17 f o l d e r  =  " C : \ U s e r s \ D o c u m e n t s \ D L I R \ A s s e s s i n g _ i m a g e _ n o i s e \

s e r i e s - 0 0 0 0 0 " ;

18

19 % Read t h e  DICOM f i l e  i n  t h e  f o l d e r

20 i n f o  =  d i c o m i n f o ( f u l l f i l e ( f o l d e r ,  ' i m a g e - 0 0 1 1 5 . d c m ' ) ) ;  %

choose an image t o  c a l c u l a t e  t h e  n o i s e

21 img =  d i c o m r e a d ( i n f o ) ;

22

23 % D i s p l a y  t h e  image

24 i m sho w ( i m g ,  [ ] ) ;

25

26

27

28 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

29
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30 %% STEP 1 :  SEGMENT THE IMAGE TO SELECT SOFT T I S S U E  (0-100HU)

31

32 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

33

34

35 % E x t r a c t  t h e  s l o p e  and i n t e r c e p t  v a l u e s  from t h e  m e t a d a t a :

36 s l o p e  =  i n f o . R e s c a l e S l o p e ;

37 i n t e r c e p t  =  i n f o . R e s c a l e I n t e r c e p t ;

38

39 % Convert  t h e  image d a t a  t o  H o u n s f i e l d  U n i t s  ( H U ) :

40 img_hu = doub l e ( i m g )  * s l o p e  +  i n t e r c e p t ;

41

42 % C r e a t e  a  b i n a r y  mask o f  t h e  a r e a s  between 0 and 100 H U:

43 mask =  ( img_hu >= 0 )  & ( img_hu <= 100 ) ;

44 % s e t  ‘ ‘m a s k  =  imb_hu < - 8 0 0 ' '  t o  c a l c u l a t e  n o i s e  l e v e l  on

a i r

45

46 % Apply  t h e  mask t o  t h e  o r i g i n a l  image

47 img_segmented =  img_hu . * m a s k ;

48

49 % F i nd  connected components

50 CC =  bwconncomp(mask);

51

52 % Remove s m a l l  o b j e c t s .  Keep o n l y  t h e  l a r g e s t  connected

component ( a s s u m i n g  i t ' s  t h e  body,  t o  e x c l u d e  f o r  example

t h e  c u s h i o n .  I t  a l s o  w o r k s  on a i r ,  s i n c e  t h e  l a r g e s t

connected r e g i o n  i n  t h e  p i c t u r e  should be t h e  a i r  i t s e l f ,

cushion e x c l u d e d )

53 numPixe l s  =  c e l l f u n ( @ n u m e l , C C . P i x e l I d x L i s t ) ;

54 [ ~ , i d x ]  =  m a x ( n u m P i x e l s ) ;

55 mask =  f a l s e ( s i z e ( m a s k ) ) ;
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56 m a s k ( C C . P i x e l I d x L i s t { i d x } )  =  t r u e ;

57

58 % Apply  a g a i n  t h e  new mask t o  t h e  o r i g i n a l  image

59 img_segmented =  img_hu . * m a s k ;

60

61 % D i s p l a y  masked image

62 i m sho w p a i r ( i m g _ hu,  img_segmented,  ' m o n t a g e ' )

63

64

65

66 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

67

68 %% STEP 2 :  CREATE A N O I S E  MAP OF THE SOFT T I S S U E

69

70 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

71

72 % D e f i n e  t h e  s i z e  o f  t h e  neighborhood k e r n e l  i n  p i x e l s

73 k e rne l _ s i z e _ m m  = 7 ; % S i z e  o f  k e r n e l  i n  m i l l i m e t e r s

74 p i x e l _ s i z e _ m m  = 25.4/96; % S i z e  o f  p i x e l  i n  m i l l i m e t e r s ,  i f

96ppi

75 k e r n e l _ s i z e _ p x  = round(kerne l_s i ze_mm /  p i x e l _ s i z e _ m m ) ; %

S i z e  o f  k e r n e l  i n  p i x e l s

76 i f  m o d ( k e r n e l _ s i z e _ p x ,  2 )  == 0

77 k e r n e l _ s i z e _ p x  =  k e r n e l _ s i z e _ p x  +  1

78 end

79

80 % Apply  s t d f i l t  f u n c t i o n  t o  t h e  masked image w i t h  t h e  d e f i n e d

k e r n e l  s i z e

81 s td _ i m a g e  =  s t d f i l t ( i m g _ s e g m e n t e d ,  t r u e ( k e r n e l _ s i z e _ p x ) ) ;

82 i m s ho w ( s t d _ i m a g e ,  [ ] )

83 s td _ i m a g e  =  s t d _ i m a g e  . * m a s k ;
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84

85 % D i s p l a y  t h e  heatmap

86 f i g u r e ;

87 i m a g e s c ( s t d _ i m a g e ) ;

88 colormap j e t ;

89 c o l o r b a r ;

90

91

92

93 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

94

95 %% STEP3:  GENERATE A HISTOGRAM WITH THE CORRESPONDING SDs

96

97 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

98

99

100 % E x t r a c t  s t d  v a l u e s  on l y  i n  t h e  masked r e g i o n

101 s t d _ v a l u e s  =  s t d _ i m a g e ( m a s k ) ;

102

103 % Round them t o  t h e  n e a r e s t  i n t e g e r

104 s t d _ v a l u e s _ i n t  =  r o u n d ( s t d _ v a l u e s )

105

106 % P l o t  them i n  a  h i s t o g r a m

107 b i n s  =  m a x ( s t d _ v a l u e s _ i n t )

108 i f  mod(b ins ,  2 )  == 1

109 b i n s  =  b i n s  +  1

110 end

111

112 h i s t o g r a m ( s t d _ v a l u e s ,  b i n s ) ;

113 t i t l e ( ' S t a n d a r d  d e v i a t i o n  h i s t o g r a m ' ) ;

114 x l a b e l ( ' S D  i n  H U ' ) ;
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115 y l a b e l ( ' F r e q u e n c y ' ) ;

116

117

118

119 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

120

121 %% STEP 4 :  DETERMINE GLOBAL N O I S E  LE V EL

122

123 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

124

125

126 % We do t h i s  by i d e n t i f y i n g  t h e  mode o f  t h e  h i s t o g r a m  peak

corresponding  t o  homogeneous t i s s u e

127 g n l  =  m o d e ( s t d _ v a l u e s _ i n t )

128

129 % P r i n t  t h e  b i n  w i t h  t h e  h i g h e s t  count

130 f p r i n t f ( ' T h e  G l o b a l  N o i s e  L e v e l  o f  t h i s  s i n g l e  image i s  % d\n '

,  g n l ) ;

E.2 Iterative version

1 %% GLOBAL N O I S E  LE V EL  ( G N L ) :  I T E R A T I V E  VERSION THROUGH WHOLE

DICOM FOLDER

2

3 % Feedback o f  i n i t i a t e d  e x e c u t i o n

4 f p r i n t f ( " C o d e  i n  e x e c u t i o n . . . " )

5

6 % STEP 0 :  IMPORT THE IMAGES ( i t e r a t i v e  v e r s i o n )

7

8 f o l d e r  =  " C : \ U s e r s \ D o c u m e n t s \ D L I R \ A s s e s s i n g _ i m a g e _ n o i s e \

s e r i e s - 0 0 0 0 0 " ;
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9 % G e t  a  l i s t  o f  a l l  DICOM f i l e s  i n  t h e  d i r e c t o r y

10 f i l e l i s t  =  d i r ( f u l l f i l e ( f o l d e r ,  ' * . d c m ' ) ) ;

11

12 % I t e r a t e  o v e r  a l l  DICOM f i l e s

13 g n l _ l i s t  =  [ ] % I n i t i a l i z e  an empty l i s t  t o  s t o r e  t h e  i m a g e -

s p e c i f i c  g n l s

14 f o r  i  =  1 : l e n g t h ( f i l e l i s t )

15

16 % Read t h e  DICOM f i l e s  i n  t h e  f o l d e r

17 img =  d i c o m r e a d ( f u l l f i l e ( f o l d e r , f i l e l i s t ( i ) . n a m e ) ) ;

18 i n f o  =  d i c o m i n f o ( f u l l f i l e ( f o l d e r , f i l e l i s t ( i ) . n a m e ) ) ;

19

20 % I t e r a t e  t o  f i n d  out GNL w i t h i n  image

21  I m a g e _ n o i s e _ s t e p 1 ( ) ;  % STEP 1 ,  i f  t h e  code we p r e v i o u s l y

sa w  i n  S t e p  1 i s  saved  a s  ‘ ‘ I m a g e _ n o i s e _ s t e p 1 . m ' '  i n  t h e

same d i r e c t o r y .  Cons ider  i mpr ov in g  computat iona l  speed by

d i s a b l i n g  t h e  d i s p l a y i n g  o f  t h e  s i n g l e  i m a g e s  i n  t h e  code

w i t h i n  t h e  f i l e .

22  I m a g e _ n o i s e _ s t e p 2 ( ) ;  % STEP 2 ,  a pp l y  same c o n s i d e r a t i o n s

a s  i n  S t e p  1 .  F i l e  name must be ‘ ‘ I m a g e _ n o i s e _ s t e p 2 . m ' '

23  I m a g e _ n o i s e _ s t e p 3 ( ) ;  % STEP 3 ,  a pp l y  same c o n s i d e r a t i o n s

a s  i n  S t e p  1 .  F i l e  name must be ‘ ‘ I m a g e _ n o i s e _ s t e p 3 . m ' '

24  I m a g e _ n o i s e _ s t e p 4 ( ) ;  % STEP 4 ,  a pp l y  same c o n s i d e r a t i o n s

a s  i n  S t e p  1 .  F i l e  name must be ‘ ‘ I m a g e _ n o i s e _ s t e p 4 . m ' '

25 g n l _ l i s t ( e n d + 1 )  =  g n l ;

26 end

27

28 mean_gnl =  m e a n ( g n l _ l i s t )

29 f p r i n t f ( ' T h e  G l o b a l  N o i s e  L e v e l  o f  t h e  whole CT s c a n  i s  % . 2 f \

n H U ' ,  m e a n _ g n l ) ;
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Cohen’s d computation in Python

1 d e f  cohens_d(column):

2 data_FBP = df [column + ’ _ F B P ’ ] . d r o p n a ( )

3 d a t a _ D L I R  =  df [column + ’ _ D L I R ’ ] . d r o p n a ( )

4

5  #  E n s u r i n g  p a i r e d  d a t a  ( t o  a u t o m a t i c a l l y  f i l t e r  out I D s  where e i t h e r

i s  NaN)

6 common_ids =  s e t ( d a t a _ F B P . i n d e x ) . i n t e r s e c t i o n ( s e t ( d a t a _ D L I R . i n d e x ) )

7 data_FBP = data_FBP. loc[common_ids]

8 d a t a _ D L I R  =  da t a _ D L I R . l o c [ c om m on_ i ds ]

9

10 #  Proceed w i t h  t he  c a l c u l a t i o n  i f  t h e r e  i s  d a t a  r e m a i n i n g

11 i f  len(common_ids)  >  0 :

12 d i f f  =  data_FBP -  d a t a _ D L I R

13 n =  l e n ( d i f f )

14 d =  d i f f . m e a n ( )  /  d i f f . s t d ( d d o f = 1 )

15 p r i n t ( f " C o h e n ’ s  d f o r  { c o l u m n } :  { d } " )

16                      e l s e :

17 p r i n t ( f " N o t  enough d a t a  f o r  the  c a l c u l a t i o n  o f  Cohen ’s  d f o r  {

co lumn} :  " )

18

19 #  Apply  the  t e s t s  f o r  each parameter

20 pa r a m e t e r s  =  [ ’ d i r _ C T D I ’ ,  ’ d i r _ D L P ’ ,  ’ a r t _ C T D I ’ , ’ a r t _ D L P ’ ,  ’ v e n _ C T D I ’ ,  ’

v e n _ D L P ’ ,  ’ t a r d _ C T D I ’ ,  ’ t a r d _ D L P ’ ,  ’ t o t ’ ]

21

22 f o r  param i n  p a r a m e t e r s :

23 cohens_d(param)
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