
Università degli Studi di Padova

DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE

Corso di Laurea Magistrale in Ingegneria Informatica

Tesi di Laurea

On the use of the Rademacher complexity in mining
sequential patterns

Candidato:

Diego Santoro
Relatore:

Prof. Fabio Vandin

Anno Accademico 2018–2019



Abstract

A sequential pattern is a sequence of sets of items. Mining sequential patterns
from very large datasets is a fundamental problem in data mining. The
Rademacher complexity, a key concept of statistical learning theory, is a
measure of the expressiveness of a set of real-valued functions. This thesis
formally proves the �rst rigorous and e�ciently computable bound on the
Rademacher complexity of sequential patterns. This result is then applied
to two key tasks in mining sequential patterns. First, it is used to develop
an e�cient progressive sampling algorithm for mining frequent sequential
patterns, which are sequential patterns that appear in fraction at least θ of
the transactions of a dataset, where θ is a parameter provided by the user.
Second, the Rademacher complexity is used to design an e�cient algorithm
for mining true frequent sequential patterns, which are sequential patterns
that appear with probability at least γ in a transaction from an unknown
generative process, by analyzing a sample generated by the process.
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Chapter 1

Introduction

The common de�nition of data mining is the discovery of models for data,
where, thinking in an algorithmic manner, a model of the data can be viewed
as the answer to a complex query about it [6]. A very common query is the
extraction of patterns that frequently appear in a given dataset. Exact algo-
rithms for this issue require multiple scanning of the dataset, which become
impractical for massive datasets. Thus, a research direction that has drawn
a lot of interest is to �nd a high-quality approximation of the set of frequent
patterns. In this thesis we use the framework provided by the statistical
learning theory for gaining meaningful information from data, where the ob-
servations (i.e., data organized in a dataset) are assumed to be generated
independently from the same probability distribution on the the universe of
patterns (i.e., observations are i.i.d).

An itemset is a set of items and a sequential pattern is a sequence of
itemsets. A sequential dataset T is a bag of transactions, which are sequen-
tial patterns. In e-commerce scenario, itemsets can be thought as sets of
purchased objects, or on-line purchases, and a sequential pattern can be con-
sidered as a sequence of on-line purchases of a customer during a time period.
In a sequential dataset each transaction is a sequence of on-line purchases
associated to a customer.

The task of frequent sequential pattern mining from a given dataset T
consist in extracting all sequential patterns that appear in at least θ trans-
actions of T , where θ is a given frequency threshold. For the e-commerce
scenario this means to �nd all sequences of itemsets that are frequently pur-
chased by customers in T . Exact algorithms have been developed for solving
this issue, however they become impractical for very large dataset. Instead
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CHAPTER 1. INTRODUCTION

of searching for the exact set of frequent sequential patterns, we can extract
its approximation using a sampling technique. This approach consist in us-
ing a sample S, i.e., a small subset of transactions of T , in order to mine
from S an high-quality approximation of the exact set of frequent sequential
patterns of T . This can be obtained using a progressive sampling approach,
which uses a sequence of samples of T of progressively increasing size until
a suitable stopping condition is veri�ed. A key challenge with this approach
is to derive a rigorous bound on the number of samples needed to extract
rigorous approximations of the set of frequent sequential patterns.

Now let consider the dataset T as a sample of transactions independently
drawn from a probability distribution π on the universe of sequential pat-
terns. The task of true frequent sequential pattern mining from an unknown
generative process consist in �nding all sequential patterns that are frequently
generated from π. Again, for the e-commerce scenario, this means to �nd
all sequences of itemsets that are frequently purchased by the entire popu-
lation of customers and not just by customers of a given dataset. Current
approaches for mining frequent sequential patterns completely ignore the fact
that the dataset is obtained from a generative process.

In this thesis we propose

• the �rst algorithm based on a (progressive) sampling approach for min-
ing frequent sequential patterns from a given dataset, and

• the �rst algorithm for mining true frequent sequential patterns from an
unknown generative process

using the Rademacher complexity, a key concept of statistical learning the-
ory which represents a measure of the expressiveness of a set of real-valued
functions [10, 5]. These two algorithms are based on another key contribu-
tion of this thesis: the �rst rigorous and e�ciently computable bound on the
Rademacher complexity of sequential patterns.

1.1 Related work

The problem of frequent sequential pattern mining has been introduced in
[2]. Several exact algorithms [4, 11] have been designed to extract the set
of frequent sequential patterns. ProSecCo [9] represents the �rst algorithm
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for mining high-quality approximations of frequent sequential patterns from
a given dataset. It is based on another key concept of statistical learning
theory, the VC-dimension. However, ProSecCo is not a sampling algorithm,
since it progressively processes the dataset in blocks. When a new block is
processed, it outputs a more accurate approximation set of frequent sequen-
tial patterns. After the last block has been analyzed, ProSecCo returns the
exact collection of frequent sequential patterns, since the entire dataset is
processed. The VC-dimension is also used in [8] for mining the set of true
frequent itemsets from an unknown generative process. The authors formally
de�ne the true frequent itemset mining problem and develop and analyze an
algorithm to solve it. They identify a frequency threshold ω such that, with
high probability, all itemsets that appear in at least ω transactions of a given
dataset have probability to appear in a transaction sampled from a distri-
bution π at least ω, for a given threshold ω. In [7] the authors proposed
an upper bound on the Rademacher complexity of itemsets, which is used
for developing a progressive sampling algorithm for extracting an approxi-
mation of the set of frequent itemsets from a given dataset. We describe this
algorithm more in detail in Chapter 4.

Looking at the state of the art in the sequential pattern mining scenario,
there is no upper bound on the Rademacher complexity of sequential pat-
terns. Moreover, there are not a progressive sampling algorithm for solving
the frequent sequential pattern mining problem and an algorithm for solving
the true frequent sequential pattern mining problem. The objective of this
thesis is to close this gap.

1.2 Contributions

The following are the contributions of this thesis to the state of the art:

• a di�erent (and more accurate) analysis of the algorithm for mining
frequent itemsets presented in [7];

• an improvement of the computation of an upper bound to the Rademacher
complexity of itemsets proposed in [7];

• the �rst rigorous and e�ciently computable upper bound for the Rademacher
complexity of sequential patterns;
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CHAPTER 1. INTRODUCTION

• the �rst rigorous progressive sampling-based algorithm for mining fre-
quent sequential patterns from a given dataset;

• the �rst rigorous algorithm for mining true frequent sequential patterns
from an unknown generative process.

1.3 Outline

Chapter 2 introduces some preliminary concepts such as patterns (itemsets
and sequential patterns), the frequent pattern mining problem, and a pro-
gressive sampling technique to solve it. Chapter 3 presents the Rademacher
complexity and some theoretical results about it. In Chapter 4 we describe
the progressive sampling approach for mining frequent itemsets presented in
[7], which is the basis for our progressive sampling algorithm for sequential
pattern mining. Here we propose a di�erent analysis of the algorithm and
an improvement of the computation of an upper bound to the Rademacher
complexity of itemsets compared to what has been done by the authors. In
Chapter 5 we formally prove the �rst rigorous and e�ciently computable up-
per bound for the Rademacher complexity of sequential patterns. In Chapter
6 we use this result for developing an algorithm for mining frequent sequen-
tial patterns using the progressive sampling technique and an algorithm for
mining true frequent sequential patterns. At the end, in Chapter 7 there are
some �nal considerations and future works.
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Chapter 2

Preliminaries

In this chapter we introduce some preliminary de�nitions.

2.1 Itemsets

Let I = {i1, i2, . . . , id} be a set of d items for which there is a total ordering,
and let a transaction t be a subset of I: t ⊆ I. Let T = {t1, t2, . . . , tN} be
a bag of N transactions called transactional dataset, or simply dataset, over
I. An itemset X is a set of items from I, X ⊆ I, and its size |X| is the
number of items in it. Note that transactions of T are itemsets. Let consider
an arbitrary transaction t ∈ T : we say that an itemset X appears in t, and
t contains X, if X ⊆ t. Thanks to the total ordering of items, transactions
and itemsets can be represented as sorted vectors. Given an itemset X, we
de�ne its support set TX ⊆ T as the subset of transactions of T that contain
X, and its support SuppT (X) = |TX |/N as the fraction of transactions of
T that contain X. Given a support threshold θ ∈ (0, 1], the set FI(T, θ)
represents all itemsets with support at least θ, i.e., the set of all frequent
itemsets (and their supports), in T with respect to (w.r.t.) θ:

FI(T, θ) = {(X,SuppT (X)) : X ⊆ I ∧ SuppT (X) ≥ θ}.

A key property of itemset support is the anti-monotonicity support property :
given two itemsets X, Y ⊆ I,

X ⊆ Y =⇒ SuppT (X) ≥ SuppT (Y ).

This property implies the following two consequences (w.r.t. a given support
threshold):
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1. itemset X is frequent =⇒ ∀Y ⊆ X, Y is frequent;

2. itemset X is not frequent =⇒ ∀Y ⊇ X, Y is not frequent.

In words: if X is frequent, each of its subsets is frequent and if X is not
frequent, each of its supersets is not frequent.

Note that, given two itemsets X, Y ⊆ I, if X ⊂ Y and X,Y have the
same support, then it makes sense to report Y only. In order to de�ne this
kind of lossless succint representation of the set of frequent itemsets, it is
necessary to introduce the concept of closed itemset. An itemset X ⊆ I is
closed w.r.t. T (i.e., X is a closed itemset) if for each superset Y ⊃ X we have
SuppT (Y ) < SuppT (X), or, equivalently, none of its supersets has support
equal to SuppT (X). Let CI(T ) = {X ⊆ I : X is closed w.r.t. T} be the set
of closed itemsets w.r.t. T , and CFI(T, θ) = {X ∈ CI(T ) : SuppT (X) ≥ θ}
be the set of frequent closed itemsets w.r.t. T and θ. CFI(T, θ) provides
a succint representation of FI(T, θ): the set of all subsets of the frequent
closed itemsets coincides with the set of all frequent itemsets. In addition,
the representation provided by CFI(T, θ) is lossless: the support of any
frequent itemset X can be extrapolated by taking the maximum support
over all frequent closed itemsets that are supersets of X, i.e., SuppT (X) =
max{SuppT (Y ) : Y ⊇ X ∧ Y ∈ CFI(T, θ)}.

2.2 Sequential patterns

A sequential pattern (or sequence) x = 〈X1, X2, . . . , X`〉 is a �nite ordered
list of itemsets. Let U be the (in�nite) universe of sequences that we can
build using I. The number of itemsets of a sequence x is its length |x|, i.e.,
|x| = `. The item-length ‖x‖ of a sequence x is the sum of the sizes of the
|x| itemsets that occur in it:

‖x‖ =

|x|∑
i=1

|Xi|.

Let x = 〈X1, X2, . . . , X`〉 and y = 〈Y1, Y2, . . . , Ym〉 be two sequences. We say
that x is a subsequence of y, or y is a super-sequence of x, denoted by x v y,
if there exists an increasing sequence of indexes 1 ≤ i1 < i2 < · · · < i` ≤ m
such that X1 ⊆ Yi1 , X2 ⊆ Yi2 , . . . , X` ⊆ Yi` .
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In a sequential pattern scenario, a (sequential) dataset T = {t1, t2, . . . , tN}
is a bag of N sequences. Thus, transaction ti is a sequence, for 1 ≤ i ≤ N .
Given a sequence x, we de�ne its support set Tx as the bag of transactions
where x appears, i.e., Tx = {t ∈ T : x v t}. The support SuppT (x) of x
in T is the fraction of transactions that contain x, i.e., SuppT (x) = |Tx|/N .
The anti-monotonicity support property for support sequences follows: if two
sequences x, y ∈ U are such that x v y, then SuppT (x) ≥ SuppT (y). Given
a support threshold θ ∈ (0, 1], the set FS(T, θ) represents all sequences with
support at least θ, i.e., the set of all frequent sequences (and their supports)
in T w.r.t. θ:

FS(T, θ) = {(x, SuppT (x)) : x ∈ U ∧ SuppT (x) ≥ θ}.

A sequence x is closed with respect to (w.r.t.) T if for each of its super-
sequences y A x we have SuppT (y) < SuppT (x), or, equivalently, none of its
super-sequence has support equal to SuppT (x). Let CS(T ) be the set of all
closed sequences in T . The set CFS(T, θ) is made of all frequent sequences
of CS(T ).

2.3 Frequent pattern mining problem

Let consider a generic pattern p be either an itemset or a sequence (sequential
pattern) and P be the universe of all patterns. Given two patterns p1,p2 (both
itemsets or both sequences) we say that p1 is a sub-pattern of p2, denoted
with p1 b p2, when p1 ⊆ p2 if we are in the itemset scenario, or p1 v p2 in
the sequence scenario. The frequent pattern mining problem follows: given
a set of items I, a support threshold θ and a dataset T , we are interested in
�nding the set of frequent patterns in T w.r.t. θ, i.e., FP (T, θ). Note that,
in itemset scenario, P is the power set of I, transactions of T are itemsets
and FP (T, θ) = FI(T, θ), instead, in sequence scenario, P = U , transactions
of T are sequences and FP (T, θ) = FS(T, θ). Exact algorithms for this issue
require access to the entire dataset T , thus for big data purposes (i.e., T is
very large) they become impractical and one can use the following sampling
approach.
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2.3.1 Progressive sampling approach

The idea of the sampling approach is the following: considering only a small
sample of T , mine from it a set of frequent patterns, showing that it is a good
approximation of the set of frequent patterns (and their supports) FP (T, θ)
w.r.t. T and θ.

We have to de�ne more precisely the concept of sample of T and the
meaning of a good approximation of FP (T, θ). Let S ⊆ T be a sample drawn
at random with uniform probability and with replacement. Note that in a
given dataset it is possible to �nd sets of identical transactions. The draw
is made with replacement, so a speci�c transaction of T can appear multiple
times in S. In order to de�ne a good approximation of FP (T, θ), we need
the following de�nition:

De�nition 1. (Def.1 of [7] for itemsets, Def.1 of [9] for sequences)
Let ε ∈ (0, 1) be the accuracy parameter, T be a dataset over a set of items I
and θ ∈ (0, 1] be a support threshold. A set C = {(p, sp) : p ∈ P, sp ∈ (0, 1]}
is an ε-approximation to FP (T, θ) if the following conditions hold:

1. For each (p, SuppT (p)) ∈ FP (T, θ) there exists a pair (p, sp) ∈ C;

2. For each (p, sp) ∈ C, SuppT (p) ≥ θ − ε;

3. For each (p, sp) ∈ C, |SuppT (p)− sp| ≤ ε/2.

From the previous de�nition we can observe some facts. Condition 1 tells us
that C contains all frequent patterns (and their supports) of T with even-
tually some false positives, but there are no false negatives. Condition 2
ensures that any pattern contained in the approximation set C has support
on T that could be lower than θ, but in this case it is not too far from θ
(in particular, within a gap of ε). Finally, from condition 3 we have that for
each pattern p such that (p, sp) ∈ C, sp is a good estimate of the support
SuppT (p) (in fact sp − ε/2 ≤ SuppT (p) ≤ sp + ε/2).

Let δ ∈ (0, 1) be a con�dence parameter. The following procedure returns
an ε-approximation to FP (T, θ) with probability (w.p.) at least 1− δ when
Lemma 1 below is satis�ed (consider in Lemma 1 δi = δ, Si = S):

• let S, as previously mentioned, be a sample of T drawn at random with
uniform probability and with replacement;

8



2.3. FREQUENT PATTERN MINING PROBLEM

• return C = {(p, sp = SuppS(p)) : p ∈ FP (S, θ′)}, where θ′ < θ is a
properly lower support threshold and FP (S, θ′) is the set of frequent
patterns w.r.t. the sample S and θ′.

M. Riondato and E. Upfal [7] used the progressive sampling approach for
mining an ε-approximation to the set of frequent itemsets FI(T, θ) with high
probability. The same approach could be used in sequential pattern scenario.
Algorithm 1 represents the pseudocode of this approach applied to a generic
a pattern.

Algorithm 1: Progressive sampling approach

Data: : a dataset T built on alphabet I, parameters θ,ε,δ ∈ (0, 1), a
sampling schedule (|Si|)i≥1 of increasing sample sizes

Result: an ε-approximation to FP (T, θ) w. p. ≥ 1− δ
i← 0;
do

i← i+ 1;
if |Si| ≥ |T | then return FP (T, θ);
Si ← sample of T of some prede�ned size |Si|;

while stopping condition is not satis�ed;
θ′ ← θ − ε/2;
return FP (Si, θ

′);

A progressive sampling approach uses a sequence of samples of T of pro-
gressively increasing size. Let δ ∈ (0, 1) be the con�dence parameter. Our
goal is to mine an ε-approximation to FP (T, θ) w. p. at least 1 − δ. If we
take into account a generic iteration i of the algorithm, let Si and δi = δ/2i

be respectively the sample and the con�dence parameter for iteration i. At
the end of iteration i we check a stopping condition, in order to establish if
it is possible to extract an ε-approximation to FP (T, θ) from Si w. p. at
least 1 − δi. Is this not the case, i is increased and we repeat this process
for Si+1, otherwise we return FP (Si, θ

′), where θ′ = θ − ε/2 as justi�ed by
Lemma 1. However, when |Si| ≥ |T | we stop the procedure and return the
set FP (T, θ).

Lemma 1. (Lemma 1 of [7] for itemsets, Lemma 2 of [9] for sequences)
Let ε,δ,θ ∈ (0, 1). For i ∈ N, i ≥ 1, let Si be a sample of a dataset T . Let

9
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us consider the event

ESi : “|SuppT (p)− SuppSi(p)| ≤ ε/2 ∀p ∈ P”.

If
P (ESi) ≥ 1− δi

then FP (Si, θ
′) is an ε-approximation to FP (T, θ) w. p. at least 1−δi, where

θ′ = θ − ε/2 and δi = δ/2i.

Proof. In order to prove this lemma, assuming that the event ESi is veri�ed
with probability at least 1−δi, we show that the three points of De�nition 1,
with C = FP (Si, θ

′), are satis�ed. First, by |SuppT (p) − SuppSi(p)| ≤
ε/2 ∀p ∈ P , we have that ∀p ∈ P :

• (a) SuppSi(p)− ε/2 ≤ SuppT (p) ≤ SuppSi(p) + ε/2, and

• (b) SuppT (p)− ε/2 ≤ SuppSi(p) ≤ SuppT (p) + ε/2

Now:

1. For each (p, SuppT (p)) ∈ FP (T, θ), we have SuppT (p) ≥ θ. Thus, by
(b) we have SuppSi(p) ≥ SuppT (p) − ε/2 ≥ θ − ε/2 = θ′ and this
implies that the pair (p, SuppSi(p)) belongs to FP (Si, θ

′). The point 1
of De�nition 1 is veri�ed;

2. For each (p, SuppSi(p)) ∈ FP (Si, θ
′), we have SuppSi(p) ≥ θ′. By using

(a) we have SuppT (p) ≥ SuppSi(p) − ε/2 ≥ θ′ − ε/2 = θ − ε. Thus,
SuppT (p) ≥ θ − ε and the point 2 of De�nition 1 is satis�ed;

3. For each (p, SuppSi(p)) ∈ FP (Si, θ
′), by hypothesis |SuppT (p)−SuppSi(p)| ≤

ε/2. Thus, the point 3 of De�nition 1 holds.

Since every point of Def.1 is satis�ed for C = FP (Si, θ
′), FP (Si, θ

′) is an
ε-approximation to FP (T, θ) w. p. at least 1− δi.

In the next chapters we will de�ne a stopping condition with an e�cient
procedure to check it. If we consider every iteration of Algorithm 1 and not
only a generic one, the theoretical guarantee achieved by this approach is
that the output of the algorithm is an ε-approximation to FP (T, θ) w. p. at
least 1− δ, as stated by the proof of correctness of Theorem 1.

10



2.3. FREQUENT PATTERN MINING PROBLEM

Theorem 1. The algorithm returns an ε-approximation to FP (T, θ) with
probability at least 1− δ.

Proof. Let Ei be the event �at iteration i, for Si and ∀ pattern p ∈ P it
holds that |SuppT (p) − SuppSi(p)| ≤ ηi �, where ηi is a quantity related to
the stopping condition that we will de�ne in the following chapters. Thus,

P (output is an ε-approximation) ≥ P

(
+∞⋂
i=1

Ei

)
=

= 1− P

(
+∞⋃
i=1

Ēi

)
≥ 1− δ,

since

P

(
+∞⋃
i=1

Ēi

)
u.b.

≤
+∞∑
i=1

P (Ēi) ≤
+∞∑
i=1

δ

2i
= δ,

by using the union bound (u.b.). Note that, by adopting a progressive sam-
pling strategy, we do not know a priori when the stopping condition is ver-
i�ed. This implies that the event Ei must be satis�ed with probability at
least 1 − δi at each iteration i, stopping the procedure the �rst time that
ηi ≤ ε/2. Thus, we obtain an ε-approximation to FP (T, θ) w. p. at least
1− δ by mining FP (Si, θ

′), where θ′ = θ − ε/2.

Note that if δi's were set to δ for every iteration i, then we would have

P (output is an ε-approx.) ≥ 0 (2.1)

which does not give us any theoretical guarantees.
In this chapter we presented some basic notions. The key point is that if,

with high probability, the maximum di�erence between the support on the
dataset T of a pattern p and its support on a sample Si is lower or equal
than ε/2, i.e.

sup
p∈P
|SuppT (p)− SuppSi(p)| ≤ ε/2 (2.2)

then we can extract an ε-approximation to FP (T, θ) from Si with high prob-
ability.
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Chapter 3

The Rademacher complexity and

its use in pattern mining

Checking the condition supp∈P |SuppT (p)−SuppSi(p)| ≤ ε/2 is computational
expensive because it requires to mine all patterns that appear in a sample Si
of T . In this chapter we go through some theoretical results related to the
Rademacher average, which is a crucial concept of statistical learning theory
[10, 5]. These results will be useful for the next chapters, where we de�ne a
quantity ηi, easy to compute, which is an upper bound to supp∈P |SuppT (p)−
SuppSi(p)| with high probability. This implies that when ηi ≤ ε/2, we can
extract an ε-approximation to FP (T, θ) from Si with high probability.

Note that the concepts and results presented in this chapter have been
introduced by [7] for itemsets, while this thesis is the �rst time they are
introduced for sequential patterns.

We de�ne, for each pattern p ∈ P , the indicator function φp : P → {0, 1}
as

φp(t) =

{
1 if p b t

0 otherwise

where t is a transaction. If we consider t as a transaction of a dataset T
(|T | = N), φp(t) is 1 if p appears in t, otherwise it is 0. The support of p in
T can be de�ned using the indicator function φp:

SuppT (p) =
1

N

∑
t∈T

φp(t).

13
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PATTERN MINING

The same consideration can be done for

SuppS(p) =
1

n

∑
t∈S

φp(t),

where S is a sample of T with |S| = n. For each transaction ti ∈ S, 1 ≤ i ≤ n,
let σi be a Rademacher random variable which takes value 1 or −1, each
with probability 1/2 and the σi's are independent. The (sample) conditional
Rademacher average RS is de�ned as:

RS = Eσ

[
sup
p∈P

1

n

n∑
i=1

σiφp(ti)

]
,

where the expectation is taken w.r.t. the Rademacher random variables σi,
i.e., conditionally on the sample S. The naïve computation of the exact
value of RS is expensive since it requires to mine all patterns from S and to
generate all possible 2n combination values of the Rademacher variables for
the computation of the expectation.

Now, let us recall some basic concepts of machine learning theory from
[10]. Let X be a domain set, Y be a label set, D be a probability distribution
over X×Y (not known to the learner), and h be a prediction rule h : X→ Y.
Let H be a set of prediction rules. The generalization error LD(h) follows:

LD(h) = P(x,y)vD[h(x) 6= y].

Let S be a �nite sequence of pairs (x, y) from X × Y, the so called training
set (known to the learner). The generalization error LS(h) follows:

LS(h) =
|{i, 1 ≤ i ≤ |S| : h(xi) 6= yi}|

|S|
.

The following theorem is a key result from statistical learning theory (The-
orem 3.2 from [3]):

Theorem 2. With probability at least 1− δ:

sup
h∈H
|LD(h)− LS(h)| ≤ 2RS +

√
2 ln (2/δ)

n
.

The following fundamental theorem connects (2.2) with the Rademacher av-
erage:

14



Theorem 3. With probability at least 1− δ:

sup
p∈P
|SuppT (p)− SuppS(p)| ≤ 2RS +

√
2 ln (2/δ)

n
. (3.1)

Proof. The proof requires just an interpretation of SuppT (p) and SuppS(p)
as generalization and empirical measure, respectively. Let us associate a very
large dataset T (but with �nite size) with the probability distribution D and
let t be a transaction drawn uniformly at random from T . If we consider a
pattern p ∈ P , the true support SuppT (p) of p on T can be referred to as the
probability that the transaction t contains p

SuppT (p) =
|{t ∈ T : t contains p}|

|T |
= E [φp(t)] = PtvT [φp(t) = 1],

that can be considered as a generalization measure, where φp(t) represents
a Bernoulli random variable. Now, let us associate a sample S of T to the
training set S. Taking into account a pattern p ∈ P , the support SuppS(p)
of p on S is just the fraction of transactions of S which contain p:

SuppS(p) =
1

|S|
∑
t∈S

1[t contains p],

which can be seen as an empirical measure, where 1 denotes the indicator
function. Thus, the bound holds from Theorem 2.

Theorem 3 gives us an intuition to the usefulness of the Rademacher
average for our purpose: if RS is small, then also the r.h.s. of (3.1) is small.
Thus, we expect that the sample S has a su�ciently large size to ensure good
estimates of the true support SuppT (p) for every pattern p ∈ P , which implies
a small value of supp∈P |SuppT (p)−SuppS(p)|. Note that, in order to satisfy
Lemma 1, we want a su�ciently small value for supp∈P |SuppT (p)−SuppS(p)|
which is lower or equal than ε/2 with high probability.

In a progressive sampling scenario the right thing to do is to weigh the
con�dence parameter δ with the iteration index i, di�erently from [7] where
δ is constant for every iteration. Let Si be the sample considered in iteration

i ≥ 1 of Algorithm 1, and δi =
δ

2i
. The reason of this claim aims to guarantee

the proof of correctness of Theorem 1. Thus, we use the following revised
version of Theorem 3:

15
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Theorem 4. (Revised Theorem 3) With probability at least 1− δi

sup
p∈P
|SuppT (p)− SuppSi(p)| ≤ 2RSi +

√
2 ln (2/δi)

|Si|
,

where δi =
δ

2i
, for any iteration i ≥ 1.

In order to de�ne a stopping condition that is computationally reasonable
to verify, we need to introduce some other theoretical results. Let Si be the
sample involved in the iteration i of Algorithm 1. Theorem 4 gives us a �rst
bound to supp∈P |SuppT (p) − SuppSi(p)|. It would require to compute RSi

which, if done naïvely, is computationally expensive, since we need to mine
all patterns from Si (i.e., FP (Si, 1/|Si|)) and compute the expectation over
the σ Rademacher random variables. We focus on �nding an upper bound
to RSi that is easy and fast to compute. For any pattern p ∈ P , let de�ne
the following |Si|-dimensional vector

vSi(p) = (φp(t1), . . . , φp(t|Si|))

and let VSi = {vSi(p), p ∈ P}, where t1, t2, . . . , t|Si| are the |Si| transactions
of Si. In itemsets scenario, we have that the number of all possible itemsets
is 2d. In sequential patterns scenario, note that all the in�nite sequences of
the universe U which does not appear in Si are associated with the vector
(0, . . . , 0) of |Si| zeros. The two fact combined imply the �niteness of the size
of VSi : |VSi | < ∞. The following two theorems derive from Thm 3.3 of [3].
Their adaptations for the itemsets scenario can be found in [7], instead they
are contibutions of this thesis for the patterns scenario. For their proofs we
need to use the Jensen inequality and the Hoe�ding's inequality. The Jensen
inequality (theorem 2.4 from [5]) states that if f is a convex function and X
is a random variable, then

E[f(X)] ≥ f(E[X]).

The Hoe�ding's inequality (lemma 4.13 from [5]) states that if X represents
a bounded random variable with E[X] = 0 and a ≤ X ≤ b then, for any
s > 0,

E[exp(sX)] ≤ exp

(
s2(b− a)2

8

)
.

16



Theorem 5. (Massart's Lemma)

RSi ≤ max
p∈P
||vSi(p)||

√
2 ln |VSi |
|Si|

where || · || indicates the Euclidean norm.

Proof. (by Lemma 26.8 of [10]) First of all, note that maxp∈P ||vSi(p)|| =
maxv∈VSi ||v||. Let λ > 0 and let A′ = {λv1, . . . , λv|VSi |}. Now,

|Si|RA′ = Eσ
[
max
a∈A′
〈σ, a〉

]
= Eσ

[
log

(
max
a∈A′

e〈σ,a〉
)]
≤

Eσ

[
log

(∑
a∈A′

e〈σ,a〉

)]
J.

≤ log

(
Eσ

[∑
a∈A′

e〈σ,a〉

])
= log

∑
a∈A′

|Si|∏
i=1

Eσi [eσiai ]

 ,

where the last inequality holds by using the linearity of the expectation and
the independence of σi's. Since, by using Lemma A.6 of [10],

Eσi [eσiai ] =
exp(ai) + exp(−ai)

2
≤ exp(a2i /2)

we have that

|Si|RA′ ≤ log

∑
a∈A′

|Si|∏
i=1

exp

(
a2i
2

) = log

(∑
a∈A′

exp
(
||a||2/2

))
≤

log

(
|A′|max

a∈A′
exp(||a||2/2)

)
= log(|A′|) + max

a∈A′
(||a||2/2).

Now, since RSi =
1

λ
RA′ , we obtain

RSi ≤
log(|A′|) + maxa∈A′(||a||2/2)

λ|Si|
=

log(|VSi |) + λ2 maxv∈VSi (||v||
2/2)

λ|Si|
.

and, setting λ =

√
2 log(|VSi |)

maxv∈VSi ||v||
2
, the thesis is true by rearranging the

terms.
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The following theorem is a stronger version of the previous one.

Theorem 6. Let w : R+ → R+ be the function

w(s) =
1

s
ln
∑
v∈VSi

exp

(
s2||v||2

2|Si|2

)

then

RSi ≤ min
s∈R+

w(s).

Proof. Let n = |Si|. For any s > 0 and for any p ∈ P , by using the
independence of σi's and the Hoe�ding's inequality, we have that

Eσ

[
exp

(
s

1

n

n∑
i=1

σiφp(ti)

)]
ind.
=

n∏
i=1

Eσ
[
exp

(
s

1

n
σiφp(ti)

)]
H.

≤
n∏
i=1

exp

(
s2φp(ti)

2

2n2

)
= exp

(
s2||vSi(p)||2

2n2

)

where we have applied the Hoe�ding's inequality using
1

n
σiφp(ti) as ran-

dom variables which take value in
1

n
φp(ti) [−1, 1]. The last equality follows

because
n∑
i=1

φp(ti)
2 = ||vSi(p)||2.

Thus,

Eσ

[
exp

(
s

1

n

n∑
i=1

σiφp(ti)

)]
≤ exp

(
s2||vSi(p)||2

2n2

)
. (3.2)

Now, using the above inequality and the Jensen inequality, we have that

esRSi = exp

(
sEσ

[
max
p∈P

1

n

n∑
i=1

σiφp(ti)

])
= exp

(
sEσ

[
max
v∈VSi

1

n

n∑
i=1

σivi

])

J.

≤ Eσ

[
exp

(
smax
v∈VSi

1

n

n∑
i=1

σivi

)]
≤
∑
v∈VSi

Eσ

[
exp

(
s

1

n

n∑
i=1

σivi

)]
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≤
∑
v∈VSi

exp

(
s2||v||2

2n2

)
where the last and the second to last inequality holds respectively using
equation 3.2 and by taking into account that:

E
[
emaxv g(v)

]
≤
∑
v

E
[
eg(v)

]
.

Thus,

esRSi ≤
∑
v∈VSi

exp

(
s2||v||2

2n2

)
.

Now if we take the logarithm on both sides and divide by s, we obtain

RSi ≤ w(s)

and, since every inequality described is true for any s > 0, we can take the
one that minimizes w(s) in order to reach the thesis.

Note that the function w is de�ned as a sum over elements in VSi and not over
all patterns p ∈ P . In general, we have potentially |VSi | � |P |. Indeed, there
may be two or more patterns with the same vector vSi ∈ VSi associated (i.e.,
these patterns appear exactly in the same transactions). However, the upper
bound on RSi of Theorem 6 is not directly applicable since it requires to
determine the entire set VSi , which is connected to the set of closed patterns
on Si as we present in the next chapters.

In this chapter we presented some basic concepts from data mining and
statistical learning theory, which are crucial for understanding the next chap-
ters.
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Chapter 4

Mining frequent itemsets using

progressive sampling approach

This chapter is dedicated to the progressive sampling approach for mining
frequent itemsets presented in [7]. The authors describe an e�ciently com-
putable upper bound on RSi and then to supX⊆I |SuppT (X) − SuppSi(X)|.
In section 4.3, which is a contribution of this thesis, we improve the computa-
tion of an upper bound to the Rademacher complexity of itemsets proposed
in [7]. In addition, this thesis proposes a di�erent analysis of the algorithm
compared to what has been done in [7]. We set the con�dence parameter
to be δi = δ/2i, i.e., dependent on the iterations of the progressive sampling
approach. This leads to the proof of correctness of Theorem 1. Instead, in
[7] the authors used the same con�dence parameter regardless the iterations
of the procedure, i.e., δi = δ, which does not give any theoretical guarantees
as stated in inequality 2.1.

4.1 Stopping condition

The following two results show that the upper bound to RSi of Theorem 6 is
not su�cient to de�ne an e�ciently computable stopping condition.

Lemma 2. Let H ⊆ Si. There is at most one closed itemset X in Si whose
support set in Si is SiX = H.

Proof. Suppose that the statement is not true, i.e., there could be two closed
itemsets C and D with the same support set H. If we consider the itemset
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C ∪D, its support set in Si would be exactly H. So, there exists a superset
of both the itemsets with the same support set and, consequently, the same
support. This implies that C and D cannot be closed, which lead to a
contradiction. Thus, the thesis is true.

Lemma 3. The set VSi contains all and only the vectors vSi(X) for all X ∈
CI(Si), i.e.,

VSi = {vSi(X), X ∈ CI(Si)}, and |VSi | = |CI(Si)|.

Proof. Let X ∈ CI(Si), and let HX be the set of subsets of X with the same
support SuppSi(X):

HX = {B ⊆ X : SuppSi(B) = SuppSi(X)}.

We observe the following two facts:

• in HX there are the itemsets, subsets of X, which appear in all and
only the transactions of the support set SiX . This implies that, for all
B ∈ HX , vSi(B) = vSi(X). Thus, each set HX where X ∈ CI(Si) is
represented by vSi(X) in VSi ;

• note that Lemma 2 tells us that for each pair of closed itemsets C and
D in Si there must be vSi(C) 6= vSi(D).

Thus, each element of VSi is associated with a di�erent closed itemset in
Si.

The previous lemma shows that the computation of the function w de�ned
in Theorem 6 is not advisable because it requires to know the set VSi , i.e., to
extract all the closed itemsets of Si.

Now we introduce some de�nitions and results which allow us to de�ne
a function w̃ that is an upper bound to w. Let ISi be the set of items that
appear in the sample Si and <o be its increasing ordering by their support
in Si (ties broken arbitrarily). Given an item a, let Si{a} be its support set
on Si. Let <a denote the increasing ordering of the transactions Si{a} by the
number of items contained that come after a w.r.t. the ordering <o. Let
CI1 = CI(Si)∩ ISi and CI2+ be the set of closed itemsets of size one and at
least two, respectively. Let us focus on partitioning CI2+. Let A ∈ CI2+ and
let a ∈ A be the item in A which comes before any other item in A w.r.t.
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the order <o. Let τ be the transaction containing A which comes before any
other transaction containing A w.r.t. the order <a (clearly, a ∈ τ). We assign
A to the set CIa,τ . Now, let us consider a transaction τ ∈ Si{a} assuming
that it contains exactly ka,τ items that come after a in <o. In the ordering
<a, τ comes

• before every transaction containing more than ka,τ items that come
after a in <o, and

• before zero or more of the transactions with exactly ka,τ items that
come after a in <o (the exact number depends on the tie-breaking
criteria).

For each r ≥ 1, let ga,r be the number of transactions in Si{a} that contain
exactly r items located after a in the ordering <o. Let χa = max{r : ga,r >
0}, i.e., the maximum r for which there exists at least one transaction in
Si{a} containing exactly r items that come after a in <o. Let

ha,r =

χa∑
j≥r

ga,j

be the number of transactions in Si{a} that contain at least r items that come
after a in <o. A graphical representation of the quantities just described is
depicted in �gure 4.1.

Figure 4.1: Graphical representation of ka,τ , ga,r, ha,r and χa
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Now, let τ be the `a,τ -th transaction of all such transactions in <a that
contain exactly ka,τ items that come after a in <o. The following lemma
gives us an upper bound to the size of CIa,τ .

Lemma 4. We have

|CIa,τ | ≤ 2min{ka,τ ,ha,ka,τ−`a,τ}

.

Proof. The quantity 2ka,τ corresponds to the number of subsets B of τ such
that B = {a}∪C, where C is any subset of τ which contains only items that
come after a in <o. Note that CIa,τ contains only those itemsets that appear
in τ and are in the form of B. Thus, |CIa,τ | ≤ 2ka,τ .

Now, consider an itemset A ∈ CIa,τ (A = {a} ∪ C, for C as above). Let
Θ be the set of the transactions in which A could appear (a part from τ),
i.e., every transaction τ ′ ∈ Si{a} such that τ <a τ

′, then |Θ| = ha,ka,τ − `a,τ .
Lemma 2 tells us that there is at most one closed itemset for each set D =
{τ} ∪ F of transactions, where F ⊆ Θ. Thus, there are at most 2ha,ka,τ−`a,τ

closed itemsets in CIa,τ (i.e., the number of all possible subsets of Θ). Since
|CIa,τ | ≤ 2ka,τ and |CIa,τ | ≤ 2ha,ka,τ−`a,τ , then the thesis is true.

Now, we can represent the set of closed itemsets as

CI(Si) = CI1 ∪ CI2+ = CI1 ∪

 ⋃
a∈ISi

⋃
τ∈Si{a}

CIa,τ

 (4.1)

and by taking into account the previous lemma we have

|CI(Si)| ≤ |ISi |+
∑
a∈ISi

∑
τ∈Si{a}

2min{ka,τ ,ha,ka,τ−`a,τ}.

In the following lemma we de�ne the function w̃ and an upper bound to RSi

which will be used in the stopping condition.

Lemma 5. Let w̃ : R+ → R+ be the function

w̃(s) =
1

s
ln
∑
a∈ISi

(1 +

χa∑
r=1

ga,r∑
j=1

2min{r,ha,r−j}

)
e

s2SuppSi({a})
2|Si|

.
Then

RSi ≤ min
s∈R+

w̃(s).
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Proof. Let us consider the function w from Theorem 6:

w(s) =
1

s
ln
∑
v∈VSi

exp

(
s2||v||2

2n2

)
,

where n = |Si|. By using the de�nition of Euclidean norm, we have that, for
any itemset X ⊆ I,

||vSi(X)|| =

√√√√ n∑
i=1

φX(ti)2 =

√√√√ n∑
i=1

1[ti contains X] =
√
nSuppSi(X).

From Lemma 3 we can write the sum over VSi as the sum over CI(Si) which
can be broken by using the equation (4.1) . Thus, we can rewrite w as

w(s) =
1

s
ln
∑
v∈VSi

exp

(
s2||v||2

2n2

)
=

1

s
ln

∑
X∈CI(Si)

exp

(
s2SuppSi(X)

2n

)

=
1

s
ln

∑
a∈CI1

exp

(
s2SuppSi({a})

2n

)
+
∑
a∈ISi

∑
τ∈Si{a}

∑
A∈CIa,τ

exp

(
s2SuppSi(A)

2n

).
Now, since CI1 ⊆ ISi , we have∑

a∈CI1

exp

(
s2SuppSi({a})

2n

)
≤
∑
a∈ISi

exp

(
s2SuppSi({a})

2n

)
.

By using lemma 4 which gives us an upper bound to the size of CIa,τ and
the fact that, for any X ⊆ CIa,τ , SuppSi(X) ≤ SuppSi({a}) by the anti-
monotonicity support property, we have∑

τ∈Si{a}

∑
A∈CIa,τ

exp

(
s2SuppSi(A)

2n

)
≤

∑
τ∈Si{a}

2min{ka,τ ,ha,ka,τ−`a,τ} exp

(
s2SuppSi({a})

2n

)
.

Finally, the right-hand side of the last inequality can be rewritten as

χa∑
r=1

ga,r∑
j=1

2min{r,ha,r−j} exp

(
s2SuppSi({a})

2n

)
.
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Thus, we de�ne

w̃(s) =
1

s
ln
∑
a∈ISi

(1 +

χa∑
r=1

ga,r∑
j=1

2min{r,ha,r−j}

)
e

s2SuppSi({a})
2|Si|

,
and by using the above arguments we have that w(s) ≤ w̃(s) for any s ∈ R+.
Since RSi ≤ mins∈R+ w(s) (by Theorem 6) and w(s) ≤ w̃(s), we conclude
that

RSi ≤ min
s∈R+

w̃(s).

Note that the function w̃ is not expensive to compute. Indeed, it requires to
know just the support of each item in ISi and some additional information
achievable with a single scan of Si (ga,r and ha,r for each a ∈ ISi and for
each r, 1 ≤ r ≤ χa). In addition, since w̃ is convex and has �rst and second
derivatives w.r.t. s everywhere in R+, its global minimum can be computed
using a non-linear optimization solver (NLopt in [7]).
Thus, by combining Theorem 4 and Lemma 5, at each iteration i ≥ 1 we
have that

sup
X⊆I
|SuppT (X)− SuppSi(X)| ≤ 2 min

s∈R+
w̃(s) +

√
2 ln (2/δi)

|Si|
= ηi

with probability at least 1 − δi, where δi =
δ

2i
. We stop the procedure as

soon as the stopping condition

ηi ≤ ε/2

is veri�ed, in order to output an ε-approximation to FI(T, θ) with probability
at least 1− δ, as stated by the Theorem 1.

4.2 The algorithm

In [7] the sampling schedule adopted is automatic, i.e., the size of the next
sample depends only on some information about the current sample. In such
way we avoid to de�ne additional parameters for this purpose. First of all,
we have to select the initial sample size |S1|, i.e., the minimum sample size
for which it is possible to satisfy the stopping condition.
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Lemma 6. (Initial sample size). Let

|S1| =
8 ln (2/δ1)

ε2
.

The stopping condition cannot be satis�ed on sample with size smaller than
|S1|.

Proof. Assume that, by contradiction, there exists a sample S with |S| < |S1|
for which the stopping condition can be satis�ed. We have

|S| < 8 ln (2/δ1)

ε2

which implies √
2 ln (2/δ1)

|S|
> ε/2.

Clearly, the left-hand side of the previous inequality plus 2 mins∈R+ w̃(s) rep-
resents a quantity greater than ε/2, since 2 mins∈R+ w̃(s) ≥ 0. Thus, the
stopping condition is not satis�ed and we can conclude that the thesis is true
since a contradiction is reached.

Assume to be at the end of the iteration i ≥ 1 of the progressive sampling
procedure. Let |Si| be the current sample size and

ηi = 2 min
s∈R+

w̃(s) +

√
2 ln (2/δi)

|Si|
,

i.e., the l.h.s. of the stopping condition. If the stopping condition is not
satis�ed, then we compute the next sample size as follows:

|Si+1| =
(

2ηi
ε

)2

|Si|.

Note that |Si+1| depends only on the current sample size |Si| and ηi, i.e.,
information about the quality of Si. However, there are not theoretical guar-
antees about the optimality of this kind of schedule.

Algorithm 2 represents the pseudocode of the progressive sampling algo-
rithm for mining frequent itemsets by using Rademacher Average presented
in [7], which follows the general progressive sampling approach illustrated in
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Algorithm 1. The revised minimum frequency threshold θ′ is θ − ε/2, the

stopping condition is ηi ≤ ε/2, and |S1| =
8 ln (2/δ1)

ε2
, |Si+1| =

(
2ηi
ε

)2

|Si| as

sampling schedule. As previously mentioned, the computation of the function
w̃ requires to know ga,r and ha,r for each a ∈ ISi and for each r, 1 ≤ r ≤ χa,
which can be done with a single scan of the sample. The support of each item
and consequently the ordering <o are obtained during the sample creation.
Thus, we look at each transaction τ , sort its items according to <o, and for
each item a in τ , increase by one ga,ka,τ and all counters ha,r for 1 ≤ r ≤ ka,τ .
In the following algorithm the function random_sample(T,m) returns m
transactions drawn uniformly at random with replacement from T .
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Algorithm 2: Progressive sampling algorithm for mining frequent itemsets

Data: : a dataset T built on alphabet I, parameters θ,ε,δ ∈ (0, 1), a sampling
schedule (|Si|)i≥1 of sample sizes

Result: an ε-approximation to FI(T, θ) w. p. at least 1− δ
i← 0;
S0 ← ∅, |S0| ← 0;
do

i← i+ 1;
if |Si| ≥ |T | then return FI(T, θ);
S∗ ← random_sample(T, |Si| − |Si−1|);
Si ← Si−1 ∪ S∗;
/* the supports of the items are computed during the sample

creation */

ga,r ← 0, ∀a ∈ ISi , r ∈ N;
ha,r ← 0, ∀a ∈ ISi , r ∈ N;
for τ ∈ Si do

for a ∈ τ do
ka,τ ← number of items in τ that come after a in the order <o;
ga,ka,τ ← ga,ka,τ + 1;
for j ← 1, . . . , ka,τ do

ha,j ← ha,j + 1;
end

χa ← max{r : ga,r > 0};
end

end

w̃(s)← 1

s
ln
∑
a∈ISi

(1 +

χa∑
r=1

ga,r∑
j=1

2min{r,ha,r−j}

)
e

s2SuppSi({a})
2|Si|


s∗ ← arg mins∈R+w̃(s);

ηi ← 2w̃(s∗) +

√
2 ln (2/δi)

|Si|
;

while ηi > ε/2;
θ′ ← θ − ε/2;
return FI(Si, θ

′);
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4.3 An improvement to the algorithm

In each iteration of Algorithm 2 ka,τ , ga,r, and ha,r are computed from scratch,
without taking into account information that is already known. This section
presents how these parameters can be computed using their values of the
previous iteration.

Let consider a generic iteration i of the algorithm, for which the sample
Si is considered. Given a transaction τ ∈ Si and an item a ∈ τ , let consider:

• <i
o be the increasing ordering of the items ISi w.r.t. their support in

Si (ties broken arbitrarily) at iteration i;

• kia,τ is the number of items of τ that come after a in the ordering <i
o;

• gia,r is the number of transactions in Si{a} that contain exactly r items
located after a in the ordering <i

o;

• hia,r is the number of transactions in Si{a} that contain at least r items
that come after a in <i

o.

The sample Si+1 at iteration i + 1 is composed by the previous sample
Si and S∗, i.e., Si+1 = Si ∪ S∗, where S∗ is a set of transactions drawn
uniformly at random with replacement from T . At iteration i+1 the support
set size of each item increases of a natural number in the range [0, . . . , |S∗|],
since additional |S∗| transactions are considered. This leads to the updated
ordering <i+1

o . Now, for a generic item a, let Ai and Ai+1 be the set of items
that come before a in <i

o and <
i+1
o , respectively. Considering the transition

from <i
o to <

i+1
o , let

−→
A = Ai+1 \ Ai be the set of items surpassed by a, and

←−
A = Ai \ Ai+1 be the set of items that have surpassed a. Note that: (a) if

|
−→
A | > |

←−
A | then the position of a in <i+1

o is greater than its position in <i
o;

(b) if |
−→
A | < |

←−
A | then the position of a in <i+1

o is lower than its position in

<i
o; (c) |

−→
A | = |

←−
A | the positions of a in <i

o and <
i+1
o are the same.

The following procedure avoids to compute the parameters ka,τ , ga,r, and
ha,r from scratch at iteration i+ 1:

• for each additional transaction of S∗ compute ka,τ , ga,r, and ha,r as in
Algorithm 2;
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• for each transaction τ of the sample Si of the previous iteration i and
for each item a of τ compute

xa,τ = |
−→
A ∩ τ | − |

←−
A ∩ τ |,

i.e., the di�erence between the number of items of τ surpassed by a
and the number of items of τ that have surpassed a. There are three
di�erent cases: xa,τ = 0,xa,τ > 0, and xa,τ < 0.

If xa,τ = 0, then ki+1
a,τ = kia,τ since the number of items of τ that

come after a in the ordering <i+1
o is not changed w.r.t the ordering <i

o.
Consequently, there is no need to update ga,r and ha,r.

If xa,τ > 0, then ki+1
a,τ = kia,τ − xa,τ since there are xa,τ additional items

of τ that come before a in the ordering <i+1
o w.r.t <i

o. This implies that
there is one less transaction with exactly kia,τ items located after a in the

ordering <i+1
o , i.e., gi+1

a,kia,τ
= gia,kia,τ − 1, and one more transaction with

exactly ki+1
a,τ items located after a in the ordering <i+1

o , i.e., gi+1

a,ki+1
a,τ

=

gi
a,ki+1

a,τ
+ 1. Consequently, hi+1

a,r = hia,r − 1 ∀r = ki+1
a,τ + 1, . . . , kia,τ .

If xa,τ < 0, then ki+1
a,τ = kia,τ+|xa,τ | since there are |xa,τ | additional items

of τ that come after a in the ordering <i+1
o w.r.t <i

o. Thus, gi+1
a,kia,τ

=

gia,kia,τ−1, gi+1

a,ki+1
a,τ

= gi
a,ki+1

a,τ
+1, and hi+1

a,r = hia,r+1 ∀r = kia,τ +1, . . . , ki+1
a,τ .

The computation of xa,τ requires to sort the items of each transaction
according to the order <o, as in [7]. Thus, this procedure does not improve
the computational complexity of the portion of the while iteration which
computes the parameters mentioned above. Instead, we expect a little im-
provement for the average running time since the case xa,τ = 0 does not
lead to any update of the parameters. However, this procedure represents an
intelligent way to avoid the computation of ka,τ , ga,r, and ha,r from scratch.

In this chapter we presented the progressive sampling algorithm for min-
ing frequent itemsets by using the Rademacher average proposed in [7] with a
slightly di�erent analysis of its guarantees and an improvement in computing
some parameters.

31



CHAPTER 4. MINING FREQUENT ITEMSETS USING

PROGRESSIVE SAMPLING APPROACH

32



Chapter 5

A bound for the Rademacher

complexity of sequential patterns

In this chapter we formally prove the �rst rigorous and e�ciently computable
bound for the Rademacher complexity of sequential patterns.

Let S be a sample of the sequential dataset T . The following two results
give us an upper bound to the size of VS which depends on the number of
closed sequential patterns of S.

Lemma 7. Consider a subset W of the sample S, W ⊆ S. Let CSW (S)
be the set of closed sequential patterns in S whose support set in S is W ,
i.e., CSW (S) = {x ∈ CS(S) : Sx = W}, with C = |CSW (S)|. Then the
number of closed sequential patterns in S with W as support set satis�es:
0 ≤ C ≤ |CS(S)|.

Proof. The proof is organized in such a way: �rst, we show that the basic
cases C = 0 and C = 1 hold, second, we prove that the cases for which
2 ≤ C ≤ |CS(S)| could happen, providing a toy example for C = 2.

Let us consider the case where W is a particular subset of S for which
no sequence has W as support set in S. Thus, CSW (S) is an empty set and
C = 0. The case C = 1 is trivial, since it could happen that only one closed
sequential pattern has W as support set in S.

Now, in order to prove the cases for a generic value of C in [2, . . . , |CS(S)|],
we start with an example for C = 2. Let x1,x2 be two sequences with W
as support set. Assume that each super-sequence of x1 but not of x2 has
support lower than the support of x1, and each super-sequence of x2 but
not of x1 has support lower than the support of x2. Now, let us focus on
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super-sequences of both x1 and x2. Let τ ∈ W be a transaction of W . We
de�ne yτ = τx1,x2 as the subsequence of τ restricted to only the sequences
x1 and x2, preserving the relative order of the their itemsets. For instance,
let x1 = 〈A,B〉, x2 = 〈C,D〉 and τ = 〈A,C, F,D,B〉, where A,B,C,D, F
are itemsets: thus, yτ = 〈A,C,B,D〉. Now, if the support set of yτ in W
does not coincide with W , i.e., Wyτ

⊂ W , then for each transaction t ∈ W
we have |Wyτ

| < |Wx1| = |Wx2| = |W |. Note that this could happen be-
cause the set of itemsets of x1 and x2 may not appear in the same order in
all transactions. Hence each super-sequence of both x1 and x2 has support
lower than the support of x1 (that is equal to the support of x2). Thus, each
super-sequence of xi has a lower support compared to the support of xi, for
i = 1, 2. This implies that x1 and x2 are closed sequences in S and since
their support set is W , they belongs to CSW (S). Thus, the case C = 2 could
happen. A simple example is depicted in Figure 5.1. Note �rst of all that
x1 and x2 are closed sequences in S. Then we can see that yτ1 = yτ3 6= yτ2
which implies |Wyτ1

|, |Wyτ2
|, and |Wyτ3

| be lower than |Wx1| = |Wx2 |.

Figure 5.1: Graphical representation of the case CSW (S) = 2

Now we generalize this concept for a generic number C of closed sequential
patterns, where 2 ≤ C ≤ |CS(S)|. Let H = {x1,x2, . . . ,xC} be a set
of C sequential patterns with W as support set. Assume that each super-
sequence of xi but not of xk has support lower than the support of xi, for
each i, k ∈ [1, . . . , C] with k 6= i. Let Hp be the power set of H without
the empty set and the sets made of only one sequence, i.e., Hp = P(H) \
{{∅}, {x1}, {x2}, . . . , {xC}}. So, in Hp there are every possible subset of
H of size greater than one. For a transaction τ ∈ W and hp ∈ Hp, we
de�ne yτ (hp) = τhp as the subsequence of τ restricted to hp, i.e., to only
the sequences x ∈ hp, preserving the relative order of the their itemsets.
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If ∀hp ∈ Hp there exits a transaction τ ∈ W such that the support set of
yτ (hp) in W does not coincide with W , i.e., Wyτ (hp) ⊂ W , then for each
transaction t ∈ W we have |Wyτ (hp)| < |Wx1| = · · · = |WxC

| = |W |. Hence
each super-sequence made of only sequences of hp has support lower than the
support of xi, for i = 1, . . . , C. Thus, each super-sequence of xi has a lower
support compared to the support of xi, for i = 1, . . . , C. This implies that
all sequences of H are closed sequence in S and since their support set is W ,
they belongs to CSW (S). Thus, the generic case 2 ≤ C ≤ |CS(S)| happens
and the thesis holds.

Note that the previous lemma represents a sequential patterns version
of Lemma 3 for itemsets, where the upper bound to the number of closed
itemsets in S with W as support set is one (this holds by the nature of the
itemsets where the notion of �ordering� is not de�ned).

Lemma 8. VS = {vS(x) : x ∈ CS(S)}∪{(0, . . . , 0)} and |VS| ≤ |CS(S)|+1,
i.e., each vector of VS di�erent from (0, . . . , 0) is associated to at least one
closed sequential pattern in S.

Proof. Let VS = V S ∪ {(0, . . . , 0)}, where V S = {v ∈ VS : v 6= (0, . . . , 0)}.
Let x ∈ U be a sequence of non-empty support set in S, i.e., vS(x) 6=
(0, . . . , 0). There are two possibilities: x is or is not a closed sequence in S.
If x is not a closed sequence, then there exists a closed super-sequence y A x

with support equal to the support of x, so with vS(x) = vS(y). Thus, vS(x)
is associated with at least one closed sequence. Combining this with the fact
that each vector v ∈ V S is associated to at least one sequence x ∈ U and
Lemma 7, then each vector of VS di�erent from (0, . . . , 0) is associated to at
least one closed sequential pattern of S. To conclude our proof is su�cient to
show that there are no closed sequences associated to the vector (0, . . . , 0).
Let SP∞ = {x ∈ U : vS(x) = (0, . . . , 0)}. Note that |SP∞| = ∞. For each
x ∈ SP∞, there always exists a super-sequence y A x such that SuppS(x) =
SuppS(y) = 0. This implies that each sequence of SP∞ is not closed. Thus,
V S = {vS(x) : x ∈ CS(S)} and |VS| = |V S|+ 1 ≤ |CS(S)|+ 1.

Combining a partitioning of CS(S) with the previous lemma we can de�ne
a function w̃∗, an upper bound to the function w of Theorem 6, which is
e�cient to compute with a single scan of S.

Let IS be the set of items that appear in the sample S and <o be its
increasing ordering by their support in S (ties broken arbitrarily). Given
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an item a, let S〈{a}〉 be its support set on S. Let <a denote the increasing
ordering of the transactions S〈{a}〉 by the number of items contained that
come after a w.r.t. the ordering <o (ties broken arbitrarily). Let CS(S) =
C1 ∪ C2+, where C1 = {x ∈ CS(S) : ||x|| = 1} and C2+ = {x ∈ CS(S) :
||x|| ≥ 2}. Let us focus on partitioning C2+. Let x ∈ C2+ and let a be the
item in x which comes before any other item in x w.r.t. the order <o. Let
τ be the transaction containing x which comes before any other transaction
containing x w.r.t. the order <a. We assign x to the set Ca,τ . Remember
that an item can appear multiple times in a sequence. Given a transaction
τ ∈ S〈{a}〉, ka,τ is the number of items in τ (counted with their multiplicity)
equal to a or that come after a in <o. Let ma,τ be the multiplicity of a in
τ . For each r,m ≥ 1, m ≤ r, let ga,r,m be the number of transactions in
S〈{a}〉 that contain exactly r items (counted with their multiplicity) equal to
a or located after a in the ordering <o, with exactly m repetition of a. Let
χa = max{r : ga,r,m > 0}. The following lemma gives us an upper bound to
the size of Ca,τ .

Lemma 9. We have

|Ca,τ | ≤ 2ka,τ−ma,τ (2ma,τ − 1).

Proof. Ca,τ represents a subset of the set Φ of all those subsequences of τ
that are made of only items equal to a or that come after a in <o, with item-
length at least two and with at least one occurrence of a. Let us focus on
�nding an upper bound to |Φ|. In order to build such a generic subsequence
of τ , it is su�cient to select i occurrences of a among the ma,τ available, with
1 ≤ i ≤ ma,τ , and choose j items among the remaining ka,τ − ma,τ items
di�erent from a. Note that if i = 1, then j > 0. Thus, using the fact that
the sum of

(
n
k

)
for k = 0, . . . , n is equal to 2n, we have

|Φ| ≤
(
ma,τ

1

) ka,τ−ma,τ∑
j=1

(
ka,τ −ma,τ

j

)
+

+

ma,τ∑
i=2

[(
ma,τ

i

) ka,τ−ma,τ∑
j=0

(
ka,τ −ma,τ

j

)]

≤ 2ka,τ−ma,τ
ma,τ∑
i=1

(
ma,τ

i

)
=
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= 2ka,τ−ma,τ (2ma,τ − 1),

where the �rst inequality holds because some sequences of Φ are counted
more times. Since |Ca,τ | ≤ |Φ|, the thesis holds.

Combining the partitioning of CS(S)

CS(S) = C1 ∪ C2+ = C1 ∪

⋃
a∈IS

⋃
τ∈S{〈a〉}

Ca,τ

 (5.1)

with the previous lemma, we have

|CS(S)| ≤ |IS|+
∑
a∈IS

∑
τ∈S{〈a〉}

2ka,τ−ma,τ (2ma,τ − 1).

Now we are ready to de�ne the function w̃∗, an e�ciently computable up-
per bound to RS. The following lemma represents the analogous of Lemma 5,
adjusted for sequential patterns.

Lemma 10. Let w̃∗ : R+ → R+ be the function

w̃∗(s) =
1

s
ln
∑
a∈IS


1 +

χa∑
r=1

r∑
m=1

ga,r,m∑
j=1

2r−m(2m − 1)

 e

s2SuppS(〈{a}〉)
2|S| + 1

.

Then

RS ≤ min
s∈R+

w̃∗(s).

Proof. Let us consider the function w from Theorem 6:

w(s) =
1

s
ln
∑
v∈VS

exp

(
s2||v||2

2n2

)
,

where n = |S|. By using the de�nition of Euclidean norm, we have that, for
any sequence x ∈ U ,

||vS(x)|| =

√√√√ n∑
i=1

φx(ti)2 =
√
nSuppS(x).
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From Lemma 8 we can use the the sum over CS(S) as an upper bound on
the sum over VS. Thus,

w(s) ≤ 1

s
ln

 ∑
x∈CS(S)

exp

(
s2SuppS(x)

2n

)
+ 1

.
Note that the vector (0, . . . , 0) of VS provides a +1 in the logarithm.

The sum over CS(S) can be broken using the equation (4.1) in the sum
over C1 ∑

x∈C1

exp

(
s2SuppS(x)

2n

)
plus the sum over C2+∑

a∈IS

∑
τ∈S〈{a}〉

∑
x∈Ca,τ

exp

(
s2SuppS(x)

2n

)
.

Since the set of items of the sequences in C1 is a subset of IS, we have∑
x∈C1

exp

(
s2SuppS(x)

2n

)
≤
∑
a∈IS

exp

(
s2SuppS(〈{a}〉)

2n

)
.

By using Lemma 9 which gives us an upper bound to the size of Ca,τ and
the fact that, for any x ∈ Ca,τ , SuppS(x) ≤ SuppS(〈{a}〉)) by the anti-
monotonicity support property for sequential patterns, we have∑

τ∈S〈{a}〉

∑
x∈Ca,τ

exp

(
s2SuppS(x)

2n

)
≤

∑
τ∈S〈{a}〉

2ka,τ−ma,τ (2ma,τ − 1) exp

(
s2SuppS(〈{a}〉)

2n

)
.

Finally, the right-hand side of the last inequality can be rewritten as

χa∑
r=1

r∑
m=1

ga,r,m∑
j=1

2r−m(2m − 1) exp

(
s2SuppS(〈{a}〉)

2n

)
.

Thus, rearranging all the terms we reach the de�nition of w̃∗. Using the
above arguments we have that w(s) ≤ w̃∗(s) for any s ∈ R+. Since RS ≤
mins∈R+ w(s) (by Theorem 6), we conclude that RS ≤ mins∈R+ w̃∗(s).
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The function w̃∗ can be compute with a single scan of the sample, since
it requires to know ga,r,m for each a ∈ IS and for each r,m, 1 ≤ r ≤ χa,
1 ≤ m ≤ r. The support of each item and consequently the ordering <o are
obtained during the sample creation. Thus, it is su�cient to look at each
transaction τ , sorting Iτ according to <o, and, for each item of Iτ , keep track
of its multiplicity ma,τ , compute ka,τ and increase by one ga,ka,τ ,ma,τ . Finally,
since w̃∗ is convex and has �rst and second derivatives w.r.t. s everywhere
in R+, its global minimum can be computed using a non-linear optimization
solver (e.g., NLopt).
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Chapter 6

Mining sequential patterns using

the Rademacher complexity

The bound on the Rademacher complexity we presented in the previous chap-
ter can be used for the following two scenarios:

• extract a good approximation of the frequent sequences from a given
sequential dataset, using the progressive sampling technique;

• mine a good approximation of the true frequent sequences of a gener-
ative process.

We now present such applications.

6.1 Mining frequent sequences using progres-

sive sampling approach

In this section we present the �rst progressive sampling algorithm for mining
frequent sequential patterns using the Rademacher average. Algorithm 3 rep-
resents the analogous of Algorithm 2, adjusted for sequential pattern mining
scenario.

Given a sequential dataset T , we use the progressive sampling technique
described in Algorithm 1 in order to extract a good approximation of the set
of frequent sequences. Let Si be the sample of iteration i in Algorithm 1.
As for the itemset scenario of Chapter 4, the focus is to �nd an e�ciently
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computable bound to sup
x∈U |SuppT (x)−SuppSi(x)|. Combining Theorem 4

and Lemma 10, at each iteration i ≥ 1 we have that

sup
x∈U
|SuppT (x)− SuppSi(x)| ≤ 2 min

s∈R+
w̃∗(s) +

√
2 ln (2/δi)

|Si|
= ηi

with probability at least 1 − δi, where δ = δ/2i. We stop the procedure as
soon as the stopping condition

ηi ≤ ε/2

is veri�ed, in order to output an ε-approximation to FS(T, θ) with probability
at least 1− δ, as stated by the proof of correctness of Theorem 1.

We have already mentioned that the bound of Lemma 10 is e�ciently
computable with a single scan of the sample. Now we present how the pa-
rameters ka,τ and ga,r,m can be computed using their values of the previous
iteration, avoiding to recomputing them from scratch, similarly to what we
have done for the itemset scenario.

Let consider a generic iteration i of the algorithm. Given a transaction
τ ∈ Si and an item a ∈ τ , let consider:

• <i
o be the increasing ordering of the items ISi w.r.t. their support in

Si (ties broken arbitrarily) at iteration i;

• kia,τ is the number of items in τ (counted with their multiplicity) equal
to a or that come after a in <i

o;

• ma,τ is the multiplicity of a in τ ;

• gia,r,m is the number of transactions in S〈{a}〉 that contain exactly r
items (counted with their multiplicity) equal to a or located after a in
the ordering <i

o, with exactly m repetition of a.

The sample Si+1 at iteration i+ 1 is composed by the previous sample Si
and S∗, i.e., Si+1 = Si∪S∗, where S∗ is a set of transactions drawn at random
with uniform probability and with replacement from T . At iteration i + 1
the support set size of each item increases of a natural number in the range
[0, . . . , |S∗|], since additional |S∗| transactions are considered. This leads to
the updated ordering <i+1

o . Now, for a generic item a, let Ai and Ai+1 be the
set of items that come before a in <i

o and <
i+1
o , respectively. Considering the

42



6.1. MINING FREQUENT SEQUENCES USING PROGRESSIVE

SAMPLING APPROACH

transition from <i
o to <

i+1
o , let

−→
A = Ai+1\Ai be the set of items surpassed by

a, and
←−
A = Ai \Ai+1 be the set of items that have surpassed a. Considering

a transaction τ , let bτ be the bag of items that are in τ .

The following procedure avoids to compute the parameters ka,τ and ga,r,m
from scratch at iteration i+ 1:

• for each additional transaction τ of S∗ compute ka,τ andma,τ , increasing
by one ga,ka,τ ,ma,τ ;

• let
−→
X a,τ and

←−
X a,τ be two bag of items as follows: an item a of bτ is

added to
−→
X a,τ or

←−
X a,τ respectively if a ∈

−→
A or a ∈

←−
A . Then, for each

transaction τ of the sample Si of the previous iteration i and for each
item a of τ compute

xa,τ = |
−→
X a,τ | − |

←−
X a,τ |,

i.e., the di�erence between the number of items of bτ surpassed by a
and the number of items of τ that have surpassed a. There are three
di�erent cases: xa,τ = 0, xa,τ > 0, and xa,τ < 0.

If xa,τ = 0, then ki+1
a,τ = kia,τ since the number of items of bτ that

come after a in the ordering <i+1
o is not changed w.r.t the ordering <i

o.
Consequently, there is no need to update ga,r,m.

If xa,τ > 0, then ki+1
a,τ = kia,τ − xa,τ since there are xa,τ additional items

of bτ that come before a in the ordering <i+1
o w.r.t <i

o. This implies
that: (a) there is one less transaction with exactly kia,τ items (counted
with their multiplicity) equal to a or located after a in the ordering
<i+1
o with exactly ma,τ repetitions of a, i.e., g

i+1
a,kia,τ ,ma,τ

= gia,kia,τ ,ma,τ −1;

(b) there is one more transaction with exactly ki+1
a,τ items (counted with

their multiplicity) equal to a or located after a in the ordering <i+1
o with

exactly ma,τ repetitions of a, i.e., g
i+1

a,ki+1
a,τ ,ma,τ

= gi
a,ki+1

a,τ ,ma,τ
+ 1.

If xa,τ < 0, then ki+1
a,τ = kia,τ + |xa,τ | since there are |xa,τ | additional

items of bτ that come after a in the ordering <i+1
o w.r.t <i

o. Thus,
gi+1
a,kia,τ ,ma,τ

= gia,kia,τ ,ma,τ − 1 and gi+1

a,ki+1
a,τ ,ma,τ

= gi
a,ki+1

a,τ ,ma,τ
+ 1.

Thus, the algorithm follows.
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Algorithm 3: Progressive sampling algorithm for mining frequent sequences

Data: : a sequential dataset T built on alphabet I, parameters θ,ε,δ ∈ (0, 1), a
sampling schedule (|Si|)i≥1 of sample sizes

Result: an ε-approximation to FS(T, θ) w. p. at least 1− δ
i← 0;
S0 ← ∅, |S0| ← 0;
ga,r,m ← 0, ∀a ∈ I, r,m ∈ N, m ≤ r;
do

i← i+ 1;
if |Si| ≥ |T | then return FS(T, θ);
S∗ ← random_sample(T, |Si| − |Si−1|);
Si ← Si−1 ∪ S∗;
/* the support of the items are computed during the sample creation

*/

for τ ∈ S∗ do
for a ∈ τ do

ka,τ ← number of items in τ (counted with their multiplicity) equal to a
or that come after a in <o;
ma,τ ← number of repetitions of a in τ ;
ga,ka,τ ,ma,τ+ = 1;

end

end

for τ ∈ Si do
for a ∈ τ do
−→
A ← set of items surpassed by a;
←−
A ← set of items that have surpassed a;
bτ ← the bag of items that are in τ ;

compute
−→
X a,τ ,

←−
X a,τ ;

xa,τ ← |
−→
X a,τ | − |

←−
X a,τ |;

if xa,τ == 0 then continue;
ga,ka,τ ,ma,τ− = 1;
if xa,τ > 0 then ka,τ− = xa,τ ;
else ka,τ+ = |xa,τ |;
ga,ka,τ ,ma,τ+ = 1;

end

end

/*

sum(a)←
χa∑
r=1

r∑
m=1

ga,r,m∑
j=1

2r−m(2m − 1), a ∈ ISi

exp(a)← e

s2SuppSi(〈{a}〉)
2|Si| , a ∈ ISi

*/

w̃∗(s)← 1

s
ln
∑
a∈ISi

[(1 + sum(a))exp(a) + 1]

s∗ ← arg mins∈R+w̃∗(s);

ηi ← 2w̃∗(s∗) +

√
2 ln (2/δi)

|Si|
;

while ηi > ε/2;
θ′ ← θ − ε/2;
return FS(Si, θ

′);
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6.2 Mining true frequent sequences

In the previous section, using the progressive sampling technique, we extract
a high-quality approximation of the frequent sequences of a sequential dataset
T . Let consider the latter as a sample of transactions independently drawn
from a probability distribution on the universe of sequences. Now we want
to use the dataset T to learn frequent sequences of the unknown process that
generates them. This section is the dedicated to present the �rst algorithm
for mining true frequent sequential patterns of their underlying generative
process.

Let U be the universe of sequences and π be a probability distribution on
U . Note that we do not make any assumption about the unknown process
π that generates sequences. Thus, the approach we present in this section is
distribution-free. The (observed) sequential dataset T is a bag of |T | inde-
pendent identically distributed (i.i.d.) transactions drawn from π. We de�ne
πx as the true support of the sequence x w.r.t. π, i.e., the probability that x
appears in a transaction sampled from π.

Lemma 11. The support SuppT (x) of x in T is an unbiased estimator for
πx (SuppT (x) is the empirical average of πx):

E [SuppT (x)] = πx.

Proof. Since SuppT (x) = |Tx|/|T |, then

E [SuppT (x)] =
1

|T |
E [|Tx|] =

1

|T |
∑
τ∈T

E [1[x ∈ τ ]] = πx,

where 1 denotes the indicator function and the second equality holds by the
linearity of the expectation. Note that E [1[x ∈ τ ]] represents the probability
that x appears in a transaction of T drawn from π, i.e., πx.

Given a support threshold θ ∈ (0, 1], the set TFS(π, θ) represents all se-
quences with true support at least θ, i.e., the set of all true frequent sequences
(and their supports) of π w.r.t. θ:

TFS(π, θ) = {(x, πx) : x ∈ U ∧ πx ≥ θ}.

The following theorem represents Theorem 3 for the true frequent sequence
mining scenario.
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Theorem 7. With probability at least 1− δ:

sup
x∈U
|πx − SuppT (x)| ≤ 2RT +

√
2 ln (2/δ)

|T |
. (6.1)

Proof. The theorem directly derives from Theorem 2 just considering πx
and SuppT (x) as generalization and empirical measure, respectively. Let
associate π with the probability distribution D and let τ be a transaction
drawn uniformly at random from T . The true support πx of a sequence x is
the probability that τ contains x, which can be considered as a generalization
measure. Now, let us associate the sequential dataset T to the training set
S. Taking into account a sequence x ∈ U , the support SuppT (x) of x in T is
just the fraction of transactions of T which contain x, which can be seen as
an empirical measure.

This theorem tell us that if the r.h.s. of equation 6.1 is small then we can
approximate the true supports of the sequences with their observed support
in the dataset T . Lemma 10 gives us an e�ciently computable upper bound
to RT :

RT ≤ min
s∈R+

w̃∗(s),

where

w̃∗(s) =
1

s
ln
∑
a∈I

(1 +

χa∑
r=1

r∑
m=1

ga,r,m∑
j=1

2r−m(2m − 1)

)
e

s2SuppT (〈{a}〉)
2|T | + 1

.
Thus, combining Theorem 7 and Lemma 10, and de�ning

µ = 2 min
s∈R+

w̃∗(s) +

√
2 ln (2/δ)

|T |
,

we have
sup
x∈U
|πx − SuppT (x)| ≤ µ (6.2)

i.e.,
SuppT (x)− µ ≤ πx ≤ SuppT (x) + µ, ∀x ∈ U

with probability at least 1− δ.
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Let lb(x) and ub(x) be respectively SuppT (x)−µ and SuppT (x) +µ, i.e.,
the lower and upper bound to πx for a generic sequence x. Given a support
threshold θ, the support SuppT (x) and the lower bound lb(x), the sequence
x is considered to be a true frequent sequential pattern if lb(x) ≥ θ, i.e.,
πx ≥ θ. Thus, Algorithm 4 returns, with high probability, the set TFS =
{x ∈ FS(T, θ) : lb(x) ≥ θ} which is an approximation to the set of true
frequent sequences, as stated by Theorem 8. This theorem tells us that with
probability at least 1− δ the set TFS does not contain false positives, which
are sequential patterns x of FS(T, θ) with lb(x) ≥ θ but with true support
πx < θ.

Algorithm 4: Algorithm for mining true frequent sequences

Data: : a sequential dataset T built on alphabet I, parameters θ,δ ∈ (0, 1)
Result: an approximation to TFS(T, θ) w. p. at least 1− δ
ga,r,m ← 0, ∀a ∈ I, r,m ∈ N, m ≤ r;
/* the support of the items are computed during the scan of T */

for τ ∈ T do

for a ∈ τ do
ka,τ ← number of items in τ (counted with their multiplicity) equal to a or
that come after a in <o;
ma,τ ← number of repetitions of a in τ ;
ga,ka,τ ,ma,τ+ = 1;

end

end

/*

sum(a)←
χa∑
r=1

r∑
m=1

ga,r,m∑
j=1

2r−m(2m − 1), a ∈ I

exp(a)← e

s2SuppT (〈{a}〉)
2|T | , a ∈ I

*/

w̃∗(s)← 1

s
ln
∑
a∈I

[(1 + sum(a))exp(a) + 1]

s∗ ← arg mins∈R+w̃∗(s);

µ← 2w̃∗(s∗) +

√
2 ln (2/δ)

|T |
;

compute FS(T, θ);
lb(x)← SuppT (x)− µ for each x ∈ FS(T, θ);

compute TFS = {x ∈ FS(T, θ) : lb(x) ≥ θ};
return TFS;
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Theorem 8. With probability at least 1− δ, the set TFS provided by Algo-
rithm 4 contains only sequences x such that πx ≥ θ, i.e., TFS contains no
false positives.

Proof. As stated for the inequality 6.2, combining Theorem 7 and Lemma 10
we have

sup
x∈U
|πx − SuppT (x)| ≤ µ

with probability at least 1− δ, where

µ = 2 min
s∈R+

w̃∗(s) +

√
2 ln (2/δ)

|T |

and

w̃∗(s) =
1

s
ln
∑
a∈I

(1 +

χa∑
r=1

r∑
m=1

ga,r,m∑
j=1

2r−m(2m − 1)

)
e

s2SuppT (〈{a}〉)
2|T | + 1

.
This leads to de�ne for each sequence x the lower bound lb(x) to πx

πx ≥ SuppT (x)− µ = lb(x),

which hold with probability at least 1 − δ. Since the set TFS is made of
frequent sequences x of T such that lb(x) ≥ θ, then we have πx ≥ θ with
probability at least 1− δ and the thesis holds.
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Conclusions

In this thesis we present the �rst rigorous and e�ciently computable upper
bound for the Rademacher complexity of sequential patterns. Then, we pro-
pose the �rst algorithm based on a progressive sampling approach for mining
frequent sequential patterns from a given dataset and the �rst algorithm for
mining true frequent sequential patterns from an unknown generative pro-
cess.

Now, some considerations can be done about the upper bound on the
Rademacher complexity of sequential patterns. The �rst future work will
be computing such bound in practice on real sequential datasets, in order
to verify how tight it is. In fact, the tighter the upper bound is, the more
accurate the algorithms we propose are in identifying frequent sequential
patterns. Thus, a possible future work consists in improving the bound
presented in this thesis, which represents, to the best of our knowledge, the
�rst bound on the Rademacher complexity of sequential patterns.

Another future work will be the adaptation of the bound on the Rademacher
complexity of sequential patterns to the statistically signi�cant pattern min-
ing scenario, where the criterion for which a pattern is �agged as meaningful
is the statistical signi�cance (as measured by some statistical test) and not
just the frequency. Assume to label each transaction with a binary value
(i.e., class) and de�ne a null model as the independence among patterns and
binary labels. We will design e�cient and rigorous algorithms to identify
associations between patterns and class labels. Let consider a pattern p and
a class label c. We consider them as associated if the result we found on a
given dataset is far from the expected result under the null model. Thus, we
reject the null model, i.e. the independence between p and c.
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Other future directions consist in �nding a way for adjusting the bound
on the Rademacher complexity of sequential patterns to design e�cient al-
gorithms to rigorously mine sequential patterns in other types of sequential
data, such as biological data. In DNA sequencing a very large number of
DNA subsequences (a.k.a. reads) are produced. A substring of length k of a
read is called k-mer. We will adapt the techniques developed in this thesis
for mining meaningful k-mers. In this way we will extract a high-quality
approximation of the set of frequent k-mers from the dataset of reads, which
are crucial to identify infrequent k-mers that are usually sequencing errors.
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