
UNIVERSITÀ DEGLI STUDI DI PADOVA

FACOLTÀ DI INGEGNERIA

CORSO DI LAUREA IN INGEGNERIA GESTIONALE

TESI DI LAUREA MAGISTRALE

OPTIMIZATION OF
DRONE-ASSISTED
PARCEL DELIVERY

Relatore italiano: Prof.ssa DARIA BATTINI

Relatore danese: Prof. STEFAN RØPKE

Laureando: ANDREA PONZA

Matricola 1079510

ANNO ACCADEMICO 2015-2016

To my family

Solutions nearly always come from the direction you
least expect, which means there’s no point trying to look in

that direction because it won’t be coming from there.

— Douglas Noël Adams, The Salmon of Doubt

Abstract

Cooperation between a truck and a drone for last-mile delivery is gaining momentum and
is shaping up to be a key aspect to look into for a competitive and innovative company in
the courier business. Among the various ways a problem involving drone-assisted parcel
delivery can be formulated, the FSTSP by Murray and Chu [Murray and Chu, 2015] de-
scribes a variant of the classical traveling salesman problem where the drone is launched
from the truck, goes to deliver goods to a customer and then rendezvouses with the truck
in a third customer location. While the drone flies the sortie, the truck is free to deliver
to other customers so long as the drone has enough battery to hover waiting for the ve-
hicle. This mixed integer programming formulation of the problem is here solved with
the Simulated Annealing metaheuristic, an algorithm proven to be able to provide good
solutions for real world applications. Furthermore a numerical analysis helps investigate
the tradeoffs of using faster drones or drones with longer autonomy, more iterations in the
algorithm and also an analysis on the distribution of the objective function. A comparison
is also made with Record-to-Record Travel to better assess the differences in performance
for the SA versus the RRT. All these analyses show that significant savings are associated
with using the combination of truck and drone instead of truck-only delivery.

vii

Contents

Abstract vii

Contents ix

List of Tables xi

List of Figures xiii

List of Algorithms xv

1 Introduction 1

1.1 Thesis plan . 4

2 Literature review 5

2.1 Delivery applications . 5

2.2 Surveillance applications . 7

2.3 Military applications . 8

3 Flying Sidekick Traveling Salesman Problem 11

3.1 Model notation . 11

3.2 Mathematical Model . 12

3.3 Model description . 14

3.4 Changes from the original model . 15

3.5 Further considerations on the variables . 15

3.6 Visual example of a timeline . 16

4 Simulated Annealing 19

4.1 Possible solution approaches . 19

4.1.1 Simulated Annealing . 19

4.1.2 Ant Colony Optimization . 21

4.1.3 Näıve approach . 22

4.2 Implementation of the Simulated Annealing 24

4.2.1 Data structures . 25

4.2.2 Moves in the Simulated Annealing 27

4.2.3 Solution evaluation . 34

5 Computations and results 39

5.1 Test instances . 39

5.2 Parameter tuning . 40

5.2.1 Problem selection . 41

5.2.2 Temperature selection . 43

5.3 Experiments and results . 44

5.3.1 Main reference experiment . 44

5.3.2 Endurance changes . 50

5.3.3 Top speed changes . 50

5.3.4 Different number of iterations . 51

5.3.5 Distribution of the objective function 52

5.3.6 Record-to-Record Travel . 54

ix

x CONTENTS

Conclusions 59

Bibliography 61

List of Tables

1.1 Drones and trucks exhibit complementary features 3

2.1 Overview of the various formulations for the drone delivery problem 7
2.2 Summary table of the literature reviewed 9

5.1 Aggregate results for the problem selection: 10 runs × 25 instances 42
5.2 Results ordered over cv for the problem selection 42
5.3 Instances’ results whose optimal solutions can be computed in acceptable

time . 45
5.4 Instances’ results whose TSP tour can be obtained with Concorde 47
5.5 Results of all the simulations for Record-to-Record Travel 55

xi

List of Figures

1.1 History of the search results for “drone delivery” in the past years 1

1.2 HorseFly’s drone and truck combo . 2

1.3 Amazon’s Prime Air service . 2

1.4 DHL’s Paketkopter . 2

1.5 Google X’s Project Wing . 2

1.6 Difference between a normal TSP and the FSTSP (by Murray and Chu) . . 3

3.1 Visual representation of a PM of the first type 14

3.2 Visual representation of a PM of the second type 15

3.3 Timeline for the optimal solution of the self-generated Instance 010.4 . . 16

4.1 How the 2-opt algorithm works . 23

4.2 Solution structure of Instance 008.1 for the Simulated Annealing 26

4.3 Visual example for the inner workings to generate random sorties 26

4.4 Generic solution for the explanation of the move relocateCustomer() . . . 27

4.5 The three configurations of a mixed customer (i, j and k) 30

4.6 Possibilities for mixed customers with a launchSortie in relocateCustomer() 30

4.7 Visual description of how relocateCluster() works 33

4.8 Visual description of how swapCustomers() works 33

4.9 Visual description of how crossPath() works 34

4.10 Example of truck-only to truck for delta evaluation 35

4.11 Example of truck-only to drone for delta evaluation 35

4.12 Example of normal launch sortie for delta evaluation 36

4.13 Example of normal launch sortie for delta evaluation 37

5.1 Generic instance map . 39

5.2 Pre-tuning on Instance 050.1 . 40

5.3 Temperature tuning for Instance 050.3 . 43

5.4 Temperature tuning for Instance 100.4 . 43

5.5 Temperature tuning for Instance 100.3 . 43

5.6 Results matrix for the temperature tuning 44

5.7 Runtime for mathematical model and related runtime for the SA 46

5.8 Saving between optimal TSP tour and best SA solution found in 10 runs . . 47

5.9 Average number of sorties for a given number of customers 48

5.10 Use of the drone’s endurance for a given number of customers 48

5.11 Usage of drones with respect to total and truck time for a number of customers 49

5.12 Runtime for mathematical model versus runtimes for the SA 49

5.13 Comparison of SA solution and optimal TSP tour for Instance 010.3 . . . 49

5.14 Comparison of SA solution and optimal TSP tour for Instance 100.4 . . . 50

5.15 Changes in the average objective if the drone’s endurance is modified 50

5.16 Changes in the average objective if the drone’s top speed is modified 51

5.17 Changes in the average objective if the number of iterations for the SA is
modified . 52

5.18 Distribution of the sample data over the mean plus or minus three standard
deviations . 53

5.19 Boxplot and bell curve for the sample data 53

5.20 Distribution of the sample data over different binning techniques: 54

5.21 Freedman-Diaconis choice for bins . 54

xiii

xiv LIST OF FIGURES

5.22 Square-root choice for bins . 54
5.23 Calculation and results for the initial threshold value in RRT 54
5.24 Ratios of average RRT and average SA objective 56
5.25 Time ratios (RRT/SA) for the smaller instances 56
5.26 Time ratios (RRT/SA) for the bigger instances 56

List of Algorithms

4.1 Main method for the implemented Simulated Annealing 24
4.2 Main relocateCustomer() algorithm . 28
4.3 How a truck-only to truck move is performed 29
4.4 How a drone-only to truck move is performed 29
4.5 How to perform a mixed customer to truck move 30
4.6 performMixedLR() pseudocode . 31
4.7 performMixedL() pseudocode . 31
4.8 performMixedR() pseudocode . 32
4.9 How to generate a valid random sortie . 32

xv

Chapter 1

Introduction

In Chapter 2.7 of the book “Development strategies for the postal sector: an economic
perspective” [Union, 2014] a thorough explanation of the parcel post sector is presented
with data starting from 2006 and ending in 2011. Most of the book is centered towards
finding current trends in the postal sector, build models to represent how data could
behave in the future and show opportunities for the evolution of the market itself.

An important slice of the market is shown to be shifting its logistics towards new
positionings to take advantage of the recent growths lead by globalization and e-commerce,
to further develop some of the segments of their business such as packets, parcels and
express deliveries.

Looking at the data collected by UPU, it can be seen that the even during the finan-
cial crisis of 2008, the global parcel-post volume for domestic and international service
continued its positive development across all the world regions and particularly in Eastern
Europe. Expansion is the keyword in these years for this business, with an increment
of almost 30% for ordinary domestic and international parcels. A definite slowdown is
present in the increments starting from 2008, and recent figures show that this could even-
tually take to a stagnation of postal revenues. Fact is, that this would not be the case
if countermeasures were taken to maybe try and reinvent the current business models to
respond to the fast-changing postal business environment.

One of the most innovative ideas was proposed by Amazon’s CEO Jeff Bezos, who
announced on December 1st, 2013 that the world’s largest e-commerce company was test-
ing drone parcel delivery. Nobody was at the time expecting an announcement involving
drone deliveries, and there was really minor talk surrounding the topic prior to that event,
as can be seen by a quick search done in Google Trends, visible in Fig. 1.1.

Fig. 1.1: History of the search results for “drone delivery” in the past years

The market was pushing towards quicker delivery times and lower courier costs, as
indicated by the migration of customers towards more cost-effective and non-premium
services [Cobweb Information Ltd, 2013]. Hardly ever, in the B2C side of the business
at least, a customer would choose to pay for same-day and next-day courier and express
services for its online order. Even more so, the online side of the business was showing
year-on-year growth rates around 14% [Onl, 2012], and DHL reported that a good 25% of
its parcels resulted from online retailiing [Onl, 2008].

With this in mind, a drone doesn’t seem to be the first thing to come to mind to
solve these necessity of reducing costs and speeding up delivery times. In those years,
drones were almost always used for military or surveillance purposes, and only in very
recent times they made it to the consumer market for civilian applications. Nonetheless,
or maybe due to this very reason, drones have evolved to have price tags two orders of

1

2 Introduction

magnitude inferior to the price of a truck or a tir, and show average and top speeds well
above the ones provided by these slow means of road-constrained transportation. Due to
these reasons, it can be inferred that savings coming from the usage of drones must be
significant, both in terms of truck cost and in terms of delivery times.

When Bezos’ announcemente was made, however, many still rushed in dismissing it as
a PR stunt carefully devised for Cyber Monday [Little, 2013, Ball, 2013]. After little more
than a couple of years, contrary to Bezos’s predictions in that same announcement, drone
deliveries are already a reality like it can be seen in DHL’s [Hern, 2015], or Matternet’s
case [French, 2015a, Evans, 2015]. Technology, competition, research and commoditiza-
tion have driven the market for these Unmanned Aerial Vehicles (UAVs) to over 6 billions
and in continuous growth [Cap, 2015, French, 2015b]. Companies all over the world have
started meddling with drone deliveries [Smiley, 2015]: among these are also the previously
cited German courier company and world’s largest DHL, with its Parcelcopter, Google
with its X-Labs’ “Project Wing” [Madrigal, 2014], FedEx [Bermingham, 2014] and many
more (see Fig. 1 for some examples).

Fig. 1.2: HorseFly’s drone and truck combo Fig. 1.3: Amazon’s Prime Air service

Fig. 1.4: DHL’s Paketkopter Fig. 1.5: Google X’s Project Wing

Harmless as they might seem, drones have also occupied the news for controversial
events:

• Human-less aircraft serve well in some countries as military drones, and are mainly
used in “missions characterized by the three Ds: dull, dirty, and dangerous”, as was
already done in the in the 90s [Capt. Tice, 1991];

• Over to the civilian side, drones have been armed with guns, machine guns, and even
flamethrowers to “test the technology” in some recent events that made the news
[Popper, 2015b, Koebler, 2013];

• Weapon use is certainly the biggest concern, but on the side of privacy, the high
tech Peeping Tom has also hit the news by starting to use drones to his advantage
[Tremonti, 2015].

3

In all this controversy, FAA has tried to regulate the problem in multiple ways, only
recently agreeing to give delivery services some airspace [Duncan, 2015a, Duncan, 2015b]
to permit limited testing that will still provide ground for many companies to grow a
business out of.

Tab. 1.1: Drones and trucks exhibit complementary features

truck drone

speed low high
weight heavy light

capacity many one
range long short

Success came after a yearlong struggle, but it was surely worth it: as noted by
[Agatz et al., 2015], drones offer a service complementary to the one offered by trucks
(see Tab. 1.1) without requiring a costly human pilot, and are moreover detached from
the constraint of journeys thorugh the road network system. Overall, the advantages
displayed outsize the drawbacks, making drone delivery an interesting topic for further
research. As a matter of fact this work aims to find better and improved methods to solve
the problems concerned with the scheduling of combined truck and drone deliveries by
using the Simulated Annealing (SA) metaheuristic framework to find good delivery tours
in a reasonable amount of time. Results are expected to show an improvement over the
optimal truck-only tour for the same nodes, other than computations done in a reasonable
amount of time and iterations of the SA to have practical use for this method.

Fig. 1.6: Difference between a normal TSP and the FSTSP (by Murray and Chu)

To sum up and quickly give an outline of the problem with whom this thesis is con-
cerned, it all starts with Murray and Chu (Fig. 1.6) and their FSTSP. There it is described
a variant of the classical TSP where the drone is firstly launched from the truck, proceeds
to deliver goods to a customer and finally joins back the truck in a third location. While
the drone flies in a sortie, the truck can move to deliver to other customers on the map,
but it has to stop and go catch the drone at the rendezvous node before this one finishes its
endurance. Combinations of drone sorties and truck deliveries make it possible to cover
all the customers, defining thus the problem in a way such that the drone is a “flying
sidekick” to the truck, hence the name. The problem is therefore one of minimizing the

4 Introduction

total duration of the tour that can be built with these two building blocks.

1.1 Thesis plan

The thesis is organized as follows:

IN CHAPTER 2 can be found an analysis of previous works on drones and drone
deliveries: the literature is still in its early phases, but it is growing. Likewise,
related literature is also discussed.

IN CHAPTER 3 the mathematical model, inspired by [Murray and Chu, 2015], is de-
scribed starting from the notation utilized and progressing with the model itself and
a thorough explanation of the constraints adopted. After briefly touching the main
changes from the original version, a subsection is dedicated to further understanding
of how an example timeline is computed from top to bottom for both the truck and
the drone.

IN CHAPTER 4, after briefly reviewing different interesting solution approaches, meta-
heuristics are discussed, leading ultimately to the reasoned choice of the Simulated
Annealing as the solution method to attempt. The SA implementation is then
painstakingly described from the data structures chosen to how the solutions are
accepted, and then also how a move is picked and how it is executed. The most
detail-oriented sections are in this case the ones describing in toto one of the identi-
fied moves and, subsequently, how the solution is evaluated via a process called delta
evaluation.

IN CHAPTER 5 the reader can first and foremost find an explanation of the instances
used in the experimental phase that follows and how they were generated. The chap-
ter then goes on with the parameter tuning: to work better, a Simulated Annealing
needs parameters like number of iterations, start temperature, final temperature,
etc. to be adapted to suit the scale of the problems that will be solved. Firstly, some
pre-tuning will give a rough idea of where the parameters should stay at. Then, those
approximate parameters are used to find a number of representative problems, for
higher precision. With the problems chosen, it is ultimately time to set in stone the
best temperatures for the representative instances, which will serve for all of them
in the main experiment. After a good set of parameters is successfully obtained,
the experiments can be performed on all the instances: following the tuning is an
explanation of which examinations were performed, what the results are and how
they can be interpreted.

Chapter 2

Literature review

The literature review is articulated in three sections: Delivery applications 2.1 is concerned
with parcel delivery in the Operations Research sense, Surveillance applications 2.2 is
about two examples of disaster management which can also be applied to surveillance,
and Military applications 2.3 deals with drone usage in the army and for general military
use.

2.1 Delivery applications

A substantial body of literature exists on the TSP and the VRP. Although neither of the
problems is applicable as-is to the examined problem, the FSTSP is a generalization of
the TSP and future work could expand it based on the VRP. Notably, the TSP has many
variants, like the TSP with Time Windows or the TSP with Precedences: the FSTSP is
nothing less than another one of the possible variants.

A particularly interesting read on the Traveling Salesman Problem is certainly the
work of [Applegate et al., 2011] which brilliantly sums up what the TSP is and describes
classical and exotic methods for its solution. The discussion in this paper, written by the
creators of the TSP solver Concorde, begins from the definition of the problem, but quite
sharply takes a turn to the artistic side of it and before digressing about exact methods
and heuristics, it takes an interesting sidestep in the analysis of how a solution should
look like and on sociological and biological perspectives on finding solutions. For a more
strictly focused read, [Jünger et al., 1995] would be the book to go to: here all the solution
methods are given more detailed and thorough theoretical and practical explanations.
Some heuristic methods to solve the TSP are further discussed by [Nilsson, 2003], who
briefly highlights constructive heuristics, improvement methods and also metaheuristics
in his paper.

Another well-known problem, the Vehicle Routing Problem, is extensively presented
along with many of its variants in [Toth and Vigo, 2014]. It isn’t directly related to this
work, but should be definitely taken in consideration for further research on the topic since
most real-life applications involve multiple trucks, which in light of the work done here,
could consider having one or multiple drones each on board to expand their delivery range
and shorten their delivery times.

A specific VRP variant that can be associated with the study is VRP with Synchro-
nization Constraints: in [Drexl, 2012] a thorough review of some of the possibilities for
these constraints undergo an intensive study, as they represent a topic of growing interest
in the field. In particular the paper involves a threefold objective of classifying the differ-
ent types of synchronization, discussing exact and heuristic solutions to the problem and
identifying promising algorithmic solution approaches. The main influence of this VRP
variant in this thesis is evidently shown in the synchronization constraints devised to make
drone launches and rendezvous work as intended by the problem’s ideators. According to
Drexl, the type of synchronization in the Murray’s and Chu’s work would be classified in
“operation synchronization” as the drone launch would be the operation to facilitate the
drone delivery at a different location, and the rendezvous with the truck would facilitate
the use of the drone for further deliveries.

As a concrete example of synchronization, the paper also enstablishes what is known as
the Vehicle Routing Problem with Trailers and Transshipments or also Truck and Trailer

5

6 Literature review

VRP. In this specific problem, there is an important distinction with two different types
of vehicles: trucks and trailers. Trucks can move freely, they are autonomous vehicles,
and instead trailers are nonautonomous vehicles, which can move only if pulled by an
autonomous vehicle. This last constraint can, with a stretch of imagination, resemble the
semiautonomous nature of the drone, constrained to only be able to fly for short distances
(compared to the truck) due to a limited endurance given by the battery.

The work which seems to be most closely related to the problem at hand without
directly involving drones is the VRP variant presented by [Lin, 2011]: she addresses a
pickup and delivery problem, using a heavy resource (e.g. a truck) which may carry both
delivery items and one or more units of the lighter resource (in her case, she was referring
to foot couriers and scooters) on its route assignment. Other than using more trucks at a
time, this problem differs from the one examined here in that, due to its limited payload
, the drone can only visit one customer per flight and some of the deliveries might be
infeasible due to too heavy parcels. Moreover, drones have a limited battery supply which
translates to flight endurance.

This thesis is based on the FSTSP formulation by [Murray and Chu, 2015]: the prob-
lem as thereby defined describes the optimization of a single truck – single drone scenario
where the total time spent in the tour has to be minimized. The reader can refer to
Sec. 3.4 for the main changes from that model to the one presented in this work. In the
same paper a different problem is also defined, the Parallel Drone Scheduling TSP, which
acts as a complementary idea to the FSTSP: when a lot of customers are located in the
vicinity of the depot and only some of them are at a greater distance, then the drone
can serve the former set and the truck can independently work the latter one. Murray
and Chy also devise one heuristic for each of the two formulations: regarding the one for
the FSTSP, some of the possible improvements that could be made to it are treated in
Sec. 4.1.3.

A different formulation for the problem is the TSP-D by [Agatz et al., 2015] where the
main difference is that they assume that truck and drone travel both on the road network.
This has multiple advantages and also some drawbacks. The main advantages are that
they manage to develop heuristics with approximation guarantees and provide a bound on
the maximum possible gains of the truck and drone coupling over a tradition truck-only
system. With the ability to get a lower bound on the optimal solution there is the double
edge of tying the drone to the ground network, without taking full advantage of its speed
and ability to take shortcuts via euclidean distances. Moreover, on a neutral note, another
difference between the two formulations is that the TSP-D allows the drone’s launch and
rendezvous to be the same point, whereas the FSTSP bounds them to be different nodes.
For this new formulations new heuristics, as previously anticipated, are built using the
route first cluster second procedure.

The name TSP-D is also used in [Ha et al., 2015], albeit with a formulation that ex-
cludes the possibility to have a launch and rendezvous in the same customer node. In
this paper, a pair of heuristics are provided: a cluster first route second and a route first
cluster second. They also compare their formulation and heuristics with both optimal TSP
tours and the FSTSP on their instances : results show that out of 8 instances, the FSTSP
outperforms their TSP-D 6 times with an average gap (Gap % =

TSP−DObj−FSTSPObj

FSTSPObj
)

of 30%. In the two instances that outperform the FSTSP, the gap is instead respectively
4.42% and 0.49%.

Lastly, on the side of closely related papers on this subject, [Mathew et al., 2015]
discusses a Heterogeneous Delivery Problem (HDP) as a discrete optimal path planning
problem that seeks to minimize the total cost of deliveries in routes computed for a truck
and a quadrotor. The authors seem to be unaware of the existence of the previously
cited body of work and thus devise a conversion for their HDP to obtain a Generalized

2.2 Surveillance applications 7

Traveling Salesman Problem (GTSP) and be able to use already available solvers. An
important difference in the paper is in splitting the objective function to take into three
sums of costs: one for quadrotor flight edges, one for truck street edges and one for when
the drone is docked on the truck and they travel together. They also define the Multiple
Warehouse Delivery Problem (MWDP), a variant to the HDP which only considers drones
and their ability to fulfill warehouse requests to exchange parts between themselves. They
also provide a conversion for this problem to a GTSP to solve this problem with known
solvers.

[Boone et al., 2015] creates a new clustering approach and analyzes the method for
solving the cluster. This leads to much better results over their baseline method, K-means
clustering. They use this knowledge to solve a variation of the Multiple TSP (MTSP)
which involves many UAVs. It doesn’t seem to be directly relatable to the work done
here, and the commonalities end at the mention of UAVs, but it is nonetheless a way to
optimize drone-assisted parcel delivery. It is not clear if the paper refers to military or
civil drones, and due to this ambiguity it might be usable in both scenarios.

Tab. 2.1 presents an overview of all the formulations with delivery application. In
it, “Formulation” highlights the one or two models proposed in the respective paper, or
the type they belong to if no name is provided. The third and fourth columns regard the
number of vehicles of each type that are allowed by that formulation, while the “Launch =
Rendez” column specifies if the formulation allows a sortie to have launch and rendezvous
in the same node. “Proposed solution” sums up the method(s) the author suggests to use
for solving their formulation.

Tab. 2.1: Overview of the various formulations for the drone delivery problem

Paper Formulation
#

trucks
#

drones
Launch =

Rendez
Proposed solution

[Murray and Chu, 2015]

FSTSP 1 1 Not Avail
Integer Programming,

Savings, Nearest
Neighbour, Sweep

PDSTSP 1 n Avail

Combination of (Integer
Programming, Savings,

Nearest Neighbour) with
(Integer Programming,

Longest Processing Time)

[Agatz et al., 2015] TSP-D 1 1 Avail Route first cluster second

[Ha et al., 2015]
Column

Generation
1 1 Not Avail Cluster first route second,

Route first cluster second

[Mathew et al., 2015]
HDP 1 1 Avail Reduction to GTSP

MWDP 0 1 Not Avail Reduction to TSP

[Boone et al., 2015] MTSP 0 n Not Avail Clustering with Nearest
Neighbour and 2-Opt

2.2 Surveillance applications

The two next papers, [Quaritsch et al., 2010, Shang et al., 2014], delve in the field of dis-
aster management, and use civil drones primarily as a means to obtain pictures of disaster
areas. The first paper provides a first formulation of the minimum problem to generate an
overview map of an area, which incidentally is similar to the problem of covering the area
with a sensor network. The second paper builds on the research done in the first one and
provides improved results using the shortest path algorithm. Their problem is a different
one from the one argued in this thesis, but these papers provide nonetheless an insight on
a possible promising and applicable solution method.

8 Literature review

2.3 Military applications

The next papers are specifically about military drones, where the literature is much more
ample and exploration has been active for decades now. The main non obvious difference
of military drones from civil ones is that they are provided with a fuel supply instead of
a rechargeable battery, so both endurance and speed are vastly superior.

[Savuran and Karakaya, 2015] is the closest military application to the ones discussed
here with a combination of drone and truck. In particular their problem is about a UAV
and its carrier that have to visit a set of targets: the calculation of the drone take-off and
land-on locations is crucial in minimizing the total tour length. The drone in this case
has multiple target nodes, and the carrier moves continuously while the drone flies. The
problem is solved via Genetic Algorithm and compared to Nearest Neighbour solutions:
the solutions obtained with the former are around 90% shorter overall.

The final four papers are specifically related to Wireless Sensor Network and provide
methods to avoid radars or communicate with low-energy beacons so as to preserve their
battery life to optimize their usage duration. In particular, Bortoff [Bortoff, 2000] gen-
erates stealthy drone-only paths through enemy radars via a two step algorithm. The
algorithm itself could be useful in avoiding obstacles in parcel deliveries while still mini-
mizing path length and time duration. A similar issue is tackled in [Zheng et al., 2005],
who builds a planner for single and multiple UAV missions to also comply with a set of
given constraints to the tours: minimum route length, minimum flight altitude to avoid
obstacles or radars, and others.

The problem [Kashuba et al., 2015] analyze is that of performing sensor data gathering
in an efficient way that minimizes route cost while providing adequate coverage. The
provided Path Planning algorithm, based on the Shortest Path algorithm, could be used
in parcel delivery with drones similar in structure to the ones developed in Google X’s
Project Wing, which have a vertical delivery configuration that seems to replicate how a
military drone behaves, only adding a slight pause for the delivery to actually take place.

Finally [Richards et al., 2002] addresses trajectory planning for a fleet of UAVs devis-
ing two methods to solve the problem: a combined method which tackles the solution the
problem with a single MILP formulation combining the need for trajectory designing and
task assignment; the second method, an approximate one, yields a solution in much faster
times by using euclidean distances to estimate finishing times. They could both relate to
the FSTSP in the obstacle avoiding part of it and could provide interesting insight on the
use of multiple drones per truck.

Tab. 2.2 summarizes the review, categorizing the papers to show their main differences.

2.3 Military applications 9

Tab. 2.2: Summary table of the literature reviewed

Categories

Paper
Civil
drones

Military
drones

Parcel
delivery

Wireless
Sensor

Network

Drone
Only

Drone
and

Truck

[Applegate et al., 2011] X
[Jünger et al., 1995] X

[Nilsson, 2003] X
[Toth and Vigo, 2014] X

[Drexl, 2012] X
[Lin, 2011] X

[Murray and Chu, 2015] X X X
[Agatz et al., 2015] X X X

[Ha et al., 2015] X X X
[Mathew et al., 2015] X X X X
[Boone et al., 2015] X X X X

[Quaritsch et al., 2010] X X X
[Shang et al., 2014] X X

[Savuran and Karakaya, 2015] X X
[Bortoff, 2000] X X X

[Zheng et al., 2005] X X X
[Kashuba et al., 2015] X X X
[Richards et al., 2002] X X

Chapter 3

Flying Sidekick Traveling Salesman Problem

In this chapter the mathematical model to the problem at hand gets introduced. First of
all in Model notation (3.1) there is a brief explanation of the notation used in the model
later presented. Then in Mathematical Model (3.2) the actual model is presented. In
Model description (3.3) is provided a brief description of every constraint in the model.
This is followed by Changes from the original model (3.4) where some important changes
and modifications from the original model, on which this is very strongly based upon, are
thorougly discussed.

In Further considerations on the variables (3.5) some space is dedicated to how part
of the variables are calculated and to related assumptions. Finally, in Visual example
of a timeline (3.6), the reader is provided with a timeline visual example as well as a
step-by-step evaluation of a the solution.

3.1 Model notation

This is the notation used here to describe the mathematical model and the same used in
the Mixed Integer Linear Programming (MILP) formulation in OPL:

• C = {1, 2, ..., c}: set of all customers;

• CD ⊆ C: set of the serviceable customers for the drones;

• N = {0, 1, ..., c+ 1}: set of all nodes (0, c+1 are the depot);

• N0 = {0, 1, ..., c}: departure nodes for a vehicle;

• N+ = {1, 2, ..., c+ 1}: arrival nodes for a vehicle;

• τT
i,j : travel time from node i ∈ N to node j ∈ N for vehicles;

• τD
i,j : travel time from node i ∈ N to node j ∈ N for drones;

• SL: service time before the drone’s launch;

• SR: service time after the drone’s rendezvous;

• E: flight endurance of the drone, that is the time it can stay afloat on a full battery
charge;

• M : big enough number;

• 〈launch,deliv, rendez〉: tuple used to represent feasible drone sorties, comprised of
two flight paths respectively from launch to delivery and from delivery to rendezvous,
such that launch ∈ N0, deliv ∈ {CD : deliv 6= launch} and rendez ∈

{
N+ : rendez 6=

launch, rendez 6= deliv, τD
launch,deliv + τD

deliv,rendez ≤ E
}

;

• F : set of all the possible tuples defined in the previous bullet point; as such, it
represents all the possible sorties the drone can feasibly make;

• xi,j : binary decision variable that equals 1 if and only if the vehicle travels from
i ∈ N0 to j ∈ N+ with i 6= j;

11

12 Flying Sidekick Traveling Salesman Problem

• yi,j,k: binary decision variable that equals 1 if and only if the drone travels from
i ∈ N0 to j ∈ CD and back to k ∈ N+ with 〈i, j, k〉 ∈ F

• tTj : decision variable for the time at which the vehicle is ready to leave j ∈ N ;

• tDj : decision variable for the time at which the drone is ready to leave j ∈ N ;

• pi,j : auxiliary binary decision variable that equals 1 if and only if i ∈ N0 is visited
by the truck before j ∈ C (with i 6= j);

• ui: auxiliary integer variable that specifies the position of node i ∈ N+ in the
vehicle’s path.

3.2 Mathematical Model

Here’s the adapted mathematical model heavily inspired by Murray and Chu’s FSTSP
[Murray and Chu, 2015].

min tTc+1 (3.2.1)

s.t.:
∑
i∈N0
i 6=j

xi,j +
∑
i∈N0
i 6=j

∑
k∈N+

〈i,j,k〉∈F

yi,j,k = 1 ∀j ∈ C (3.2.2)

∑
j∈N+

x0,j = 1 (3.2.3)

∑
i∈N0

xi,c+1 = 1 (3.2.4)

ui − uj + 1 ≤ (c+ 2) (1− xi,j) ∀i ∈ C, j ∈ N+, j 6= i (3.2.5)∑
i∈N0
i 6=j

xi,j =
∑
k∈N+
k 6=j

xj,k ∀j ∈ C (3.2.6)

∑
j∈CD

j 6=i

∑
k∈N+

〈i,j,k〉∈F

yi,j,k ≤ 1 ∀i ∈ N0 (3.2.7)

∑
i∈N0
i 6=k

∑
j∈CD

〈i,j,k〉∈F

yi,j,k ≤ 1 ∀k ∈ N+ (3.2.8)

2yi,j,k ≤
∑
h∈N+
h6=i

xi,h +
∑
l∈N0
l 6=k

xl,k ∀i ∈ N0, j ∈ CD, k ∈ N+ (3.2.9)

y0,j,k ≤
∑
h∈N0
h6=k

xh,k ∀j ∈ CD, k ∈ N+, 〈0, j, k〉 ∈ F (3.2.10)

tDi ≥ tTi −M

1−
∑
j∈CD

j 6=i

∑
k∈N+

〈i,j,k〉∈F

yi,j,k

 ∀i ∈ C (3.2.11)

tTi ≥ tDi −M

1−
∑
j∈CD

j 6=i

∑
k∈N+

〈i,j,k〉∈F

yi,j,k

 ∀i ∈ C (3.2.12)

3.2 Mathematical Model 13

tDk ≥ tTk −M

1−
∑
i∈N0
i 6=k

∑
j∈CD

〈i,j,k〉∈F

yi,j,k

 ∀k ∈ N (3.2.13)

tTk ≥ tDk −M

1−
∑
i∈N0
i 6=k

∑
j∈CD

〈i,j,k〉∈F

yi,j,k

 ∀k ∈ N (3.2.14)

tTk ≥ tTh + τT
h,k + SL

∑
l∈CD

l 6=h

∑
m∈N+

〈h,l,m〉∈F

yh,l,m

+ SR

∑
i∈N0
i 6=k

∑
j∈CD

〈i,j,k〉∈F

yi,j,k

+

−M (1− xh,k) ∀h ∈ N0, k ∈ N+, k 6= h (3.2.15)

tDj ≥ tDi + τD
i,j + SL−M

1−
∑
k∈N+

〈i,j,k〉∈F

yi,j,k

 ∀j ∈ CD, i ∈ N0, i 6= j (3.2.16)

tDk ≥ tDj + τD
j,k + SR−M

1−
∑
i∈N0
〈i,j,k〉∈F

yi,j,k

 ∀j ∈ CD, k ∈ N+, k 6= j (3.2.17)

tDk − tDi ≤ E +M

1−
∑
j∈CD

〈i,j,k〉∈F

yi,j,k

 ∀k ∈ N+, i ∈ N0 (3.2.18)

ui − uj ≥ 1− (c+ 2) pi,j ∀i ∈ C, j ∈ C, j 6= i (3.2.19)

ui − uj ≤ −1 + (c+ 2) (1− pi,j) ∀i ∈ C, j ∈ C, j 6= i (3.2.20)

pi,j + pj,i = 1 (3.2.21)

tDl ≥ tDk −M

3−

∑
j∈CD

〈i,j,k〉∈F
j 6=l

yi,j,k −
∑
m∈CD

m 6=i
m 6=k
m6=l

∑
n∈N+
n6=i
n6=k

〈l,m,n〉∈F

yl,m,n − pi,l

∀i ∈ N0, k ∈ N+, l ∈ C, k 6= i, l 6= i, l 6= k (3.2.22)

tT0 = 0 (3.2.23)

tD0 = 0 (3.2.24)

p0,j = 1 ∀j ∈ C (3.2.25)

xi,j ∈ {0, 1} ∀i ∈ N0, j ∈ N+, j 6= i (3.2.26)

yi,j,k ∈ {0, 1} ∀i ∈ N0, j ∈ CD, k ∈ N+, j 6= i, 〈i, j, k〉 ∈ F (3.2.27)

1 ≤ ui ≤ c+ 2 ∀i ∈ N+ (3.2.28)

tTi ≥ 0 ∀i ∈ N (3.2.29)

tDi ≥ 0 ∀i ∈ N (3.2.30)

pi,j ∈ {0, 1} ∀i ∈ N0, j ∈ C, j 6= i (3.2.31)

14 Flying Sidekick Traveling Salesman Problem

3.3 Model description

The objective function (3.2.1) is equivalent to min
{

max
{
tTc+1, t

D
c+1

}}
due to the imple-

mentation of constraints (3.2.13) and (3.2.14) that link the times for rendezvous; its aim
is thus to minimize the latest possible time of arrival to depot for either the drone or the
vehicle.

Constraint (3.2.2) serves to have one and only one visit to each customer, made by
either the drone or the vehicle. Constraints (3.2.3) and (3.2.4) ensure respectively that the
truck departs and arrives from and to the depot only once. Constraint (3.2.5) provides
the model with a way to eliminate subtours, with further bounds to auxiliary decision
variable ui set by constraint (3.2.28). Constraint(3.2.6) enforces the flow conservation for
the truck.

Constraints (3.2.7) and (3.2.8) ensure that the drone can respectively launch and ren-
dezvous at most once from every particular node. Constraint (3.2.9) couples the drone’s
and truck’s movements between customers, because if the drone flies from i to j to k, then
the truck needs to pass in i to launch it and in k to collect it. Constraint (3.2.10) is for
the special case where i is the depot.

Constraints (3.2.11) and (3.2.12) are imposed for the coordination of launch time of
drone and truck, for customer i, in such a way that only the biggest of the two elapsed
times for the sortie is chosen. (3.2.13) and (3.2.14) are the analogous for rendezvous time.
Both sets ensure that truck and drone depart or arrive at the same time from/to node i
or k.

Constraint (3.2.15) takes into account the passing of time for the truck: arriving in
node k means the new time is the previous time plus the travel time from h to k plus
the service time for the drone if applicable (the last term ensures that if the truck doesn’t
travel from h to k, the value for the time doesn’t get increased). (3.2.16) and (3.2.17)
analogously keep account of the drone’s flights’ times from launch to delivery and from
delivery to rendezvous. They essentially are apt to give the correct values to variables tTj
and tDj .

The drone’s flight endurance is addressed in (3.2.18): tDk − tDi is the total flight time,
which must be lower or equal to the endurance if the drone travels from i to k delivering to
a generic node j. Constraints (3.2.19), (3.2.20) and (3.2.21) determine the proper values
for the precedences of the truck. Constraints (3.2.23) and (3.2.24) represent the earliest
time at which the truck and drone may leave the depot, respectively. Constraints (3.2.26),
(3.2.27), (3.2.28), (3.2.29), (3.2.30) and (3.2.31) specify the domains for the decision vari-
ables.

Finally, constraint (3.2.22) prevents launches in l from preceding a rendezvous in k
and, to work as intended, it also requires (3.2.25). It is also important to notice that
constraint (3.2.22) helps avoiding two dangerous situations in a generic solution, which
are in this work dubbed Prohibited Move 1 and Prohibited Move 2 (later on PM1 and
PM2).

PM1 happens when a drone is launched before it has had a rendezvous, and is visually
represented in Figure 3.1.

i

j

kl

m

n

Fig. 3.1: Visual representation of a PM of the first type

3.4 Changes from the original model 15

If this were to happen, then the M would be nullified since yi,j,k = 1, yl,m,n = 1 and
pi,l = 1. This would make the disequation become tDl ≥ tDk − M (3− 1− 1− 1), thus
enforcing tDl ≥ tDk and rendering this situation infeasible.

PM2 happens when a drone has both a launch and a rendezvous preceded by a launch,
and is visually represented in Figure 3.2.

i

j

kl

m

n

Fig. 3.2: Visual representation of a PM of the second type

If this were to happen, the situation would be the same described for PM1, and the
constraint would enforce tDl ≥ tDk , creating a contradiction that would render the situation
infeasible.

3.4 Changes from the original model

This model is different from [Murray and Chu, 2015]’s model in many ways: to better
reflect the author’s interpretation of the examined problem, some of the definitions and
some of the constraints have been modified. Following is a brief explanation of the most
impacting changes apported to that model.

A series of changes were performed to constraints (3.2.15) and (3.2.16) for time ac-
counting. In particular, now SL is added to tk if the generic sortie 〈h, l,m〉 is performed,
instead of 〈k, l,m〉: this changes the interpretation of both time variables tTk and tDk to be
the ready-time of respectively the truck and the drone. Time management is thus more
consistent and realistic. Moreover, SL is added to (3.2.16) to reflect the change in the
previous constraint and give an overall more consistent nature to the model and to how
one would expect to account for time passing during the tour.

Constraint (3.2.18) is strengthened by changing tDj −τD
i,j with the equivalent tDi for clear-

liness and simplicity of reading, thus making the reduction of the number of constraints
possible by summing on the generic delivery j performed during the sortie.

3.5 Further considerations on the variables

SL and SR are service times to account for package loading, battery changing, drone
recovery, inspection and possibly light service. Due to package loading being the main
time-consuming bit, SL is always assumed to be slightly bigger than SR, and for all self
generated instances it is assumed SL = 40 s and SR = 30 s.

Travel time τT
i,j is calculated starting from a symmetrical distance matrix and assuming

a constant average speed of 35 mph. Similarly, τD
i,j is calculated from the same distance

matrix assuming a constant average speed of 50 mph. Any τ is calculated beginning from
a euclidean n+2×n+2 distance matrix D of element di,j as such: τT,D

i,j = di,j/speed
T,D ∗ ν

where ν is a generic coefficient to account for accelerations, decelerations, traffic lights and
road network, assumed to be ν = 0.8 for all of the examined instances. It isn’t a precise
way to treat the problem, and precision could be improved by getting the real distances
in the road network, getting more precise timings for the drone, etc. However, such a
precision is deemed unnecessary and uninteresting at this level of research: although it
can be done, it is also true that at this stage, this level of approximation seems more

16 Flying Sidekick Traveling Salesman Problem

appropriate and still gives meaningful and precious insight into the problem. Deliveries
are assumed to be done in constant time for both trucks and drones and are assumed to
be accounted for in τ times. The speeds used reflect the best case scenario according to
current state of art. In particular, for drone deliveries many standards exist: in the US, the
FAA sets a maximum allowed speed of 100 mph [Duncan, 2015a], although for example
Amazon wants to use drones of speeds of up to 50 mph [Giz, 2015], and HorseFly (which
received the same exemption as Amazon’s just months later [Duncan, 2015b]) plans on
using similarly powerful drones (see [Hor, 2015, Zito, 2016]). In the UK, FPS seems to
have a lower top speed, reported as 35 mph also [FPS, 2015] for drone speeds). Given the
constant evolution of technology and competition that will form in such a market, it only
seems reasonable to assume the top speeds showed by Amazon and HorseFly as data for
the problem.

In a similar fashion, E is calculated starting from Amazon’s data [Giz, 2015] where it
is stated that its drones will fly in a 10 mi radius from the warehouse: this means that
the drone will be able to go a full roundtrip, thus making the conversion from distance
units to time units be E = Etime = 2 ∗Edist/speed. If the speed is irrealistically assumed
to be always the top speed, the result is E = 1440 s (24 min) which is still not an
irrealistic number, since for example HorseFly states its endurance to be 1800 s (30 min
in [Hor, 2015]).This is probably due to Amazon accounting also for some safety factor and
approximations in its estimate of 10 mi, thus making E = 1440 s be the realistic choice
in this work.

M needs a constructive process to find a suitable value to enforce constraints from
(3.2.11) to (3.2.18) and (3.2.22). Since it should be greater or equal to the latest possible
return time for the drone and the vehicle, the Nearest Neighbour heuristic was used to
determine an upper bound on the time required to complete a TSP tour. A route gets
built from the depot (i = 0) and then visiting the nearest customer to the previous visited
until all of them have been visited. In the end the vehicle completes the tour by going
back to the depot (j = c+ 1). M is set to be the total time to do this tour.

3.6 Visual example of a timeline

The timeline for an instance’s solution is shown in Figure 3.3 (times are rounded to nearest
integer value), in particular the one for Instance 010.4’s optimal solution.

0

6

1 7

4

5 10 9 3 8 2 11

tD[s]

tT [s]

0 449 2158

0 1219 2269 2385 2626 4450 5577 5765 7121 8378

Fig. 3.3: Timeline for the optimal solution of the self-generated Instance 010.4

Beginning from the depot, the starting times are set at 0, as per constraints (3.2.23)
and (3.2.24). The drone is launched from 0 and travels to 6, which means that the drone
time at 6 is the sum of the service at launch plus the time to fly from 0 to 6 (see constraint

3.6 Visual example of a timeline 17

(3.2.16)). The drone then travels to 1 to complete the sortie.
Concurrently to this all, the truck has gone from 0 to 1. The time set by the model

to be the ready time in 1 for both drone and truck is the maximum between the times to
go from 0 to 1 for both vehicles (see constraints (3.2.13) and (3.2.14)). This means that
the drone would add to its time at 6, the time to travel from 6 to 1 and receive service
once there (constraint (3.2.17) sets this). For the truck, instead, this means adding to its
time in 0, the time for the service at launch, the time to travel to 1 via land, and then the
service at rendezvous as per constraint (3.2.15).

Only keeping the maximum of the two makes either the drone or the truck wait for
the other vehicle, and that’s also why this time can’t exceed the drone endurance: the
UAV can’t hover endlessly, it has to be catched before the battery runs out. In this case,
the drone has to wait for the truck for the difference between the two members in the
max, which is

[
tT0 + SL+ τT

0,1 + SR
]
−
[
t66 + τD

6,1 + SR
]

= [0 s+ 40 s+ 1149 s+ 30 s] −
[449 s+ 665 s+ 30 s] = 1219 s− 1144 s = 75 s.

tT0 = tD0 = 0 s

tD6 = SL+ τD
0,6 = 40 s+ 409 s = 449 s

tT1 = tD1 = max
{
t66 + τD

6,1 + SR, tT0 + SL+ τT
0,1 + SR

}
=

= max {449 s+ 665 s+ 30 s, 0 s+ 40 s+ 1149 s+ 30 s} = 1219 s

The same can be said for the second sortie, which starts from node 1 for both truck
and drone. The truck launches the drone after the service, and travels to 7. Then it
proceeds to 5 adding to the time in 7 the travel time to its destination. Finally in 10 it is
joined once again by the drone which has since travelled to 4 and delivered its goods there.
Once again it is the drone which has to wait for the truck to arrive, for approximately
2626 s− 2579 s = 47 s.

tD4 = tD1 + SL+ τD
1,4 = 1219 s+ 40 s+ 899 s = 2158 s

tT7 = tT1 + SL+ τT
1,7 = 1219 s+ 40 s+ 1010 s = 2269 s

tT5 = tT7 + τT
7,5 = 2269 s+ 116 s = 2385 s

tT10 = tD10 = max
{
tD4 + τD

4,10 + SR, tT5 + τT
5,10 + SR

}
=

= max {2158 s+ 391 s+ 30 s, 2385 s+ 211 s+ 30 s} = 2626 s

After the second sortie, this solution has only truck deliveries. This means that each
truck time that follows is calculated based on the time at the previous node, and adding
to that the time to travel from the previous node to the current one as per constraint
(3.2.15).

tT9 = tT10 + τT
10,9 = 2626 s+ 1824 s = 4450 s

tT3 = tT9 + τT
9,3 = 4450 s+ 1127 s = 5577 s

tT8 = tT3 + τT
3,8 = 5577 s+ 188 s = 5765 s

tT2 = tT8 + τT
8,2 = 5765 s+ 1356 s = 7121 s

tT11 = tT2 + τT
2,11 = 7121 s+ 1257 s = 8378 s

Chapter 4

Simulated Annealing

Some of the possible methods to heuristically solve the FSTSP are introduced in Pos-
sible solution approaches (4.1): the Simulated Annealing (4.1.1), Ant Colony Optimiza-
tion (4.1.2) and the Näıve approach (4.1.3).

Out of all three, it is explained that the former is the preferred one, and in Imple-
mentation of the Simulated Annealing (4.2) it is thoroughly explained how the SA was
implemented. In Data structures (4.2.1) the reader will find a description of the data struc-
tures adopted in the implementation, and why they were preferred over other structures.
In Moves in the Simulated Annealing (4.2.2) the ideated moves are presented and the
move relocateCustomer() is analyzed down to the last detail, while the other three are
presented in a broader way. Finally, in Solution evaluation (4.2.3) the solution evaluation
process is outlined in both the possible ways it can be executed.

4.1 Possible solution approaches

Any instance of the TSP [Karp, 1972] can be transformed to an instance of the FSTSP with
a polynomial time transformation (by disallowing the use of drone sorties) so, since the
TSP is NP-hard, it follows that the flying sidekick TSP is NP-hard as well. Test runs with
the smaller self-generated instances described in 5.1 indicate that the problem is difficult to
solve using the mathematical model. For example Instance 010.2 has shown to require
almost a full day to be solved to optimality, and the average for 10-customers instances is
several hours, making infeasible the generation of optimal solutions for practical use-cases.

As discussed in [Rosenkrantz et al., 2009, Nilsson, 2003], several heuristic approaches
exist for the TSP. Nilsson categorizes them in constructive and improvement algorithms.
As a part of the improvement algorithms and later chapters, he also discusses metaheuris-
tics, such as Tabu Search, Simulated Annealing, Genetic Algorithms, and Ant Colony
Optimization.

Exploring the possibilities to find a good heuristic solution, there are three approaches
that seem interesting and also promising enough to be candidates for further investigations:
Simulated Annealing (4.1.1), Ant Colony Optimization (4.1.2), and näıve approach (4.1.3).
The second and third methods have not been implemented and they are addressed in this
section because they were still analyzed as options to a certain extent, making them
effectively be part of this study.

4.1.1 Simulated Annealing

Simulated Annealing (SA) [Kirkpatrick et al., 1983, Černỳ, 1985] is an iterative meta-
heuristic based on the Monte Carlo algorithm that was conceived in the 80s and has
since then seen widespread use to find approximate solutions to the TSP and many other
discrete optimization problems.

Simulated Annealing draws similarities between statistical mechanics, that is the be-
haviour of many degrees of freedom systems in thermal equilibrium at a determined tem-
perature, with combinatorial optimization, which consists in finding the mininmum of a
given function depending on many parameters. Each permutation of the nodes in the TSP
tour is a configuration of the statistical system, where the length of the trip represents
its energy in that particular configuration. But large systems at a given temperature are

19

20 Simulated Annealing

known to approach spontaneously an equilibrium state with minimal energy in relation to
the current temperature. The system starts at a very high temperature. By simulating its
change of configuration and gradually decreasing the temperature, one can find progres-
sively smaller mean energy values, thus leading the system to progressively lower energy
states.

In OR terms, this translates to being able to traverse the solution space by generating
neighboring solutions of the current one. These are generated by means of different types
of so-called moves performed on the current path. Acceptance of new solutions works as
follows: while a better tour is always accepted, a worse one is accepted based probabilis-
tically on the difference in quality and on a temperature parameter. The temperature is
decreased according to a cooling schedule as the algorithm progresses, in order to alter the
nature of the search, allowing at first for more bad solutions to be accepted and gradually
moving onto accepting only the better ones. This way the algorithm has also the ability
to escape local optima and possibly converge on the true optimum.

The algorithm can be described as follows:

1. Generate the initial solution s0;

2. Let s = s∗ = s0;

3. Perform a randomly selected move on s to obtain snew;

4. If the probability of acceptance for snew (usually e
f(snew)−f(s)

T) is bigger than a
randomly generated number, let s = snew;

5. If the objective of solution snew is smaller than the objective of the best solution s∗,
let s∗ = snew;

6. Update the temperature according to the cooling schedule α: Tnew = α ∗ T ;

7. If the stopping criterion is not yet met, go back to step 3.

The criteria to stop the algorithm can be of multiple nature, some examples include
reaching a fixed number of iterations, spending a certain amount of time, not having
improved the best solution for a certain number of iterations, and more.

As with other metaheuristics, the outcome of this method is heavily dependent on the
parameter setting. Typical parameters include the start and end temperatures and the
number of iterations to perform, based on which one can compute the necessary cooling
schedule, and also the probability with which a given move can be chosen among the
others. Parameters must thus be tuned for a specific problem. Even though an absolute
best set of parameters doesn’t exist, there are strategies to converge to a good enough
choice.

It is also worth noting that, since it is a stochastic algorithm, each execution of the SA
can produce a different solution. That is why it is usually necessary to run the algorithm
many times to get a good idea of the mean and standard deviation of the best solution
found.

Simulated Annealing has the advantages of being able to deal with highly nonlinear
models with many constraints, and it is a robust and general technique. With respect
to other local search methods, it is more flexible (see [Busetti, 2003]), and it has been
proven to be able to find the global optimum with a careful control of the cooling rate
(see [Johnson and Jacobson, 2002]: the optimum will be found with as high a set probabil-
ity as one desires, requiring longer runtime as the main drawback). The biggest drawbacks
to using this method regard the necessary tradeoff between solution quality and computa-
tion time, the hard tailoring work required to account for different classes of constraints,

4.1 Possible solution approaches 21

fine tuning of parameters and choices necessary to turn the metaheuristic into an actual
algorithm.

Seeing that SA has, to the author’s knowledge, never been tried before on the FSTSP
or drone-related problems, and seeing that it doesn’t seem to show a high entrance barrier,
it shall have the top priority in trying to find optimal solutions to the FSTSP.

4.1.2 Ant Colony Optimization

Ant Colony Optimization is an iterative metaheuristic that takes inspiration from the
behaviour of ants foraging for a colony. This kind of ants deposit a special type of
pheromone on the ground to mark favourable paths that ought to be followed by other
ants. The metaheuristic maintains that idea to solve combinatorial optimization problems
[Dorigo et al., 2006].

For the TSP, ACO translates to a number of solutions to the problem being generated
by artificial ants (or agents) moving on the instance’s graph. Each edge of the graph has
a linked value of pheromone that can be read and modified by the ants. In every iteration
a different number of ants build one solution each by walking from node to node without
visiting previously visited nodes. The node selection to build the solution is governed by
a stochastic mechanism guided by the pheromone: the more pheromone present in one of
the edges going out of that vertex to a not-yet-visited one, the more likely that ant will
traverse that edge. At the end of every iteration, the pheromone values on the edges are
updated in order to bias future ants to construct new solutions similar to the best ones
previously built.

For the FSTSP the ACO approach would most likely be to have two kinds of pheromone,
one for truck and one for drone paths, and then follow the basic framework of the meta-
heuristic:

1. Initialize the whole structure setting parameters like number of ants per iterations,
initial position of the ants on the nodes and initial pheromone values;

2. Generate the new ants’ solutions;

3. Improve found solutions (optional);

4. Increase pheromone values associated with promising solutions and decrease values
for the bad ones;

5. If termination condition is not reached, go back to 2.

ACO can be run continuously and can react in real time and relatively quickly to
changes in the graph, which is ideal for real world vehicle routing. This seems also
promising for drone use, since a drone can be quickly displaced from any point in the
route, making last minute deliveries of consumables faster and easier (e.g. frequently
requested SKUs like Amazon’s Add-on Items). Moreover, it has proven to produce near-
optimal solutions for TSP instances and has the advantage over Simulated Annealing (and
other metaheuristics) of seemingly being better at escaping local optima.

This is the second most interesting approach in need of analysis: it is never been tried
before for the FSTSP or drone-related problems, has very promising characteristics, but
it is slightly more difficult to approach as a metaheuristic than SA and more experience
with similar methods is needed before attempting this algorithm’s implementation.

22 Simulated Annealing

4.1.3 Näıve approach

The näıve approach consists of combining a constructive algorithm coupled with an im-
provement algorithm, to generate a feasible truck tour, with a way to insert drone deliveries
on this tour in the best way possible, according to different metrics.

This approach was eventually postponed to after other approaches as it has already
been partially treated by both [Murray and Chu, 2015, Shang et al., 2014], and as such
would need a more in-depth analysis to improve their results. Still, a few of the possibilities
were explored in the preliminary studies.

Constructive algorithms The basic truck tour can be any tour as long as it is feasible.
The two main ideas to generate the basic tours were to use either a heuristic method,

or to generate the optimal TSP tour. Since no method has yet been proven to lead directly
to the truck path underlying the optimal solution in an FSTSP scenario, both seem to be
equally good starting points for subsequent sortie insertion.

The heuristic method of choice is the Nearest Neighbor algorithm, which constructs a
path as follows:

1. Select a random node in the graph;

2. Find the nearest unvisited node to the last added node and add to the path the edge
connecting these two nodes;

3. Are there any unvisited nodes left? If yes, go back to step 2;

4. Add to the path the edge connecting the last node to the first node.

This is possibly the simplest and most straightforward TSP heuristic, it can be coded
to have time complexity O

(
n2
)

and generates relatively poor solutions, often 25% from
optimality [Nilsson, 2003].

It is also important to note that the Nearest Neighbour solution can already be im-
proved by running the algorithm starting from every node and picking as the initial con-
structed tour the one with minimal cost among these. It is however still of dubious
relevance the necessity to get a better initial tour.

To generate the optimal TSP tour a solver like Concorde [Applegate et al., 2006] can
be used. Concorde is a state of the art solver for the TSP, and although the time
needed for it to solve a given instance can vary considerably with the number of nodes
[Applegate et al., 2007], for a use-case like the ones that are analyzed in this thesis, it is
perfectly suitable.

Improvement algorithms The simplest way to improve a non-optimal truck solution
is the 2-opt algorithm.

It is the simplest form of the k -opt local search algorithm, that works by removing two
edges from the tour and reconnecting the two paths created in the only possible way so
as to keep a valid tour (see Figure 4.1).

The main idea, as such, is to take a route which crosses over itself and reorder it so
that it doesn’t. The method to construct a new path is:

1. add to the new path the portion of old path going from the beginning to node A;

2. add to the new path in reverse order the portion of old path going from node C to
node B;

3. add to the new path the portion of old path from node D to the end.

4.1 Possible solution approaches 23

A B

CD

A B

CD

Fig. 4.1: How the 2-opt algorithm works

Insertion of drone deliveries The insertion of drone deliveries can be done in different
ways, and here two of them are shown.

The first method consists of inserting step-by-step the sortie that saves the most until
no more sorties have a positive saving value. It can be summarized like so:

1. Compute all the savings for every sortie still in F ;

2. Continue if at least one sortie has positive saving;

3. Order the list in decreasing savings order and start with the first in the list;

4. If that sortie is feasible, add it to the solution and remove it from F , otherwise go
to the next biggest saving sortie and repeat this step;

5. Go back to step 1.

This method provides a quick and easy way to find a feasible solution, and is loosely
based on Clarke & Wright’s Savings Algorithm. The solution found can also serve as a
base solution for further improvements via other methods discussed later on (see 4.1.1 and
4.1.2).

However, this approach is very similar to what [Murray and Chu, 2015] do in their
FSTSP heuristic, so other methods are prioritized, leaving this one an option for further
considerations after other never-before-tried approaches will have been tested. Among
the näıve approaches, it should be the last to receive further investigations, as the other
method seems to be more promising in terms of results and time complexity.

The second method consists of finding the optimal savings insertion by conceiving a
mathematical model. The objective function should be the one in Eq. (4.1.1), where si,j,k
is the saving associated with flight 〈i, j, k〉 ∈ F .

max
∑

〈i,j,k〉∈F

si,j,k ∗ yi,j,k (4.1.1)

There should be a set of constraints to ensure solution feasibility: prohibiting PM1
and PM2, and enforcing an analogous version of the endurance constraint from the main
mathematical model (Constraint (3.2.18)). There should also be a set of constraints to
calculate the savings for F .

This method would be a considerable improvement over the savings heuristic presented
in the previous paragraph. Being still tied to the same idea as [Murray and Chu, 2015]’s
FSTSP heuristic, this approach should be left as an option for further investigations only
after other approaches will have been tested. Among the näıve approaches, it should be
the preferred to be considered for in-depth analyses, since it should give better results
than the simplistic first method.

24 Simulated Annealing

4.2 Implementation of the Simulated Annealing

As discussed in Possible solution approaches (4.1) the first approach that should be exam-
ined is the Simulated Annealing metaheuristic. This was done with an implementation of
the algorithm in Java SE 8.

Algorithm 4.1 Main method for the implemented Simulated Annealing

1: INITIALIZE startTemperature, endTemperature, maxNumberIterations
2: coolingRate = eˆ(log(endTemperature/startTemperature)/maxNumberIterations)
3: INITIALIZE dataStructures
4: COMPUTE initialSolution
5: INITIALIZE currentSolution, bestSolution, currentObjective, bestObjective
6: currentTemperature = startTemperature ∗ initialObjective
7: globalIteration = 0
8: WHILE currentTemperature > endTemperature ∗ initialObjective DO
9: currentTemperature = currentTemperature ∗ coolingRate

10: EXECUTE randomMove(movesWeight, currentSolution)
11: tentativeObjective = currentObjective + moveCost
12: accept = eˆ(currentObjective − tentativeObjective)/currentTemperature)
13: IF random([0,1]) ≤ accept THEN
14: currentSolution = tentativeSolution
15: IF tentativeObjective < bestObjective THEN
16: bestSolution = tentativeSolution
17: END IF
18: END IF
19: globalIteration = globalIteration +1
20: END WHILE
21: PRINT bestSolution, bestObjective

The Simulated Annealing’s main method (see Alg. 4.1), closely resembles the loose
description provided in 4.1.1.

Some considerations can be made on the pseudocode, starting with the decision on the
stopping condition for the while loop. In this implementation of the SA that condition
is tied to the maximum number of iterations N set by the user, and chosen as best as
possible during the parameter tuning phase together with the start temperature Ts and
the end temperature Tf . The cooling schedule’s coefficient 0 < α < 1 is then calculated
to reflect this decision by simple means of algebra manipulations which eventually lead to
Eq. (4.2.1) (see Line 2). The temperature is updated constantly throughout iterations, as
can be seen in Line 9.

α = e

log
Tf
Ts

N (4.2.1)

Step 1 of the algorithm in 4.1.1 is done in Line 4 and is implemented as a Nearest
Neighbour algorithm, with starting point the depot, and which provides the starting tour
for the SA. The initial objective is also given after a conversion from distance to time, iden-
tical to the one used in calculating the travel time matrices (see Sec. 3.5). The valid flights
are also computed in the initialization phase (see Line 3) and stored for fast validation on
sorties.

It is worth noting that the actual temperatures between which the Simulated Annealing
will run are also proportional to the initial objective, as seen in Lines 6 and 8. This doesn’t

4.2 Implementation of the Simulated Annealing 25

influence the running time of the algorithm, which is still going to be the maximum number
of iterations mentioned a couple of paragraphs earlier, but it will influence the acceptance
of solutions. Moreover, this allows the temperature to adjust to the size of the objective:
instances with huge starting objectives have larger start temperatures, instances with
smaller ones have smaller temperature values.

As a matter of fact, the acceptance probability is a value in the real interval (0, 1) and
is calculated in Line 12 with Eq. (4.2.2). It is then compared to a random number between
0 and 1 in Line 13.

accept = e

Objcurr −Objtent
Tcurr (4.2.2)

This formula returns a number greater or equal to one for any tentative objective
smaller or equal to the current objective. This ensures that better objective values are
always accepted. In case of tentative objectives strictly greater than the current one, the
returned number is instead influenced by the current temperature which is a function of
the initial objective, as previously discussed. e’s exponent is inversely proportional to
the temperature, linking the acceptance probability to the size of the instance, effectively
allowing for a bigger — albeit marginally — chance of accepting worse solutions for bigger
instances at higher temperatures.

Following, the reader can find an in-depth analysis of the developed moves (see 4.2.2)
and the solution evaluation process (see 4.2.3). But first, a comment on the data structures
adopted in this implementation.

4.2.1 Data structures

To have a fast working algorithm, able to run millions of iterations in a reasonable amount
of time, the program must be coded with the right data structures used in the right
processes. Time complexity plays an important role in being able to have an efficient
process, and starting out with the right abstract representation form can go a long way
in saving time in the long run.

The distance matrix is read from an external Instance nnn.x.txt file (where nnn is
the number of customers and x is the progressive number of the instance) and stored as
an int[][] integer array. It is only used twice, for the calculation of both travel time
matrices and the generation of the Nearest Neighbour solution: in both cases it is needed
to access the data, and every access done in O (1) thanks to this structure.

After being initialized, the time matrices τT for the truck and τD for the drone are
only used for access, so a double[][] floating point array is a perfect fit for both, having
access in O (1).

The set of serviceable customers CD is generated starting from the excludedCustomers
Set<Integer> and transformed into the serviceableCustomers int[] that is included in .
This process was summed up in the pseudocode as Line 3 because it is more meaningful
to keep track of the customers excluded from drone delivery rather than the ones allowed.
In addition to that, the final result is the same since, even though this initialization is
done in O (n), it is only done once per execution, so the overall impact is minimal. The
integer array choice for serviceableCustomers is due to having the need for both access,
which is the prevalent use and is done in O (1), and for searching over it: being generated
as already sorted, the method applied for searching is binarySearch, which is O (log n).

The generic solution is stored in a triplet of ArrayList<Integer>, and it is shown in
Fig. 4.2. The choice to use an integer array for the truck solution (T) comes from the fact
that access is called for many more times than insertion or deletion, since many tentative
moves end up being rejected. Thus, having O (1) access is a priority. That said, the same
choice done to represent the drone solution wasn’t an immediate and evident choice.

26 Simulated Annealing

0 4 8

3

5 1

7

6

2

9

T 0 4 8 5 1 6 9

DD 3 7 2

DR 5 6 9

is ↓ 3

Fig. 4.2: Solution structure of Instance 008.1 for the Simulated Annealing

Any sortie can be generically represented by a triplet of values, so either a tuple or a
triplet of arrays would serve for this purpose. However, considering the latter, the “launch”
array would constitute redundant information, as it is already stored in the truck solution.
Thus, the drone sorties can be represented by a pair of arrays, containing respectively the
drone delivery solution (DD) and the drone rendezvous solution (DR). In such a way,
access is O (1), and adding and removing are done in O (n). In Fig. 4.2 blank spaces
are substituted to −1, which is the actual value stored in the implementation, for easier
readability.

This choice is to be preferred to the tuple because the second would require a sup-
plemental indexOf() call every time a sortie needs to be added, removed, or anyhow
manipulated during a move, and that call would be O (n) complexity-wise.

Together with the solution, the ArrayList<Integer> isUnder (is ↓) is used to keep
track of truck visits done between the launch and the rendezvous of the UAV. It is used
mainly for checks, so the array implementation is, again, a perfect match, and it serves
as a facilitator in many of the computations. In it, are stored either the value −1 or the
index of the launch of the sortie to which this node is “under”. For example, in Fig. 4.2
customer 1 is under sortie 〈5, 7, 6〉 which starts at index 3 in the truck solution (T).

0 1 2 3 4 5 6

orderedSorties 2, 1, 3 3, 1, 5 4, 1, 3 4, 2, 5 5, 2, 1 3, 4, 6 7, 4, 6

0 1 2 3 4

orderedSortiesIndex 0 3 5

Fig. 4.3: Visual example for the inner workings to generate random sorties

To facilitate and improve the SA’s performances, three structures are implemented
and initialized before the start of the SA (see Line 3 in Alg. 4.1):

• validFlights: a boolean[][][] used only to check if a particular combination of
launch, delivery and rendezvous is a validly defined sortie;

• orderedSorties: an ArrayList<Sortie> used to create orderedSortiesIndex;

• orderedSortiesIndex: an ArrayList<Integer> used for random valid sortie gen-
eration.

The Sortie object is a Java Object defined with a launch, a delivery and a rendezvous
that can be sorted by increasing delivery customer value. In Fig. 4.3 the reader can see

4.2 Implementation of the Simulated Annealing 27

a small example of how orderedSorties and orderedSortiesIndex would be after the
whole initialization is done. orderedSorties is an array that stores all the valid sorties
defined also in validFlights, and has them ordered by delivery. orderedSortiesIndex

is an ArrayList<Integer> computed right after orderedSorties which further facilitates
sortie generation by storing at position x the index at which the first sortie with delivery
customer x appears in orderedSorties. This eliminates the need for continuous calls of
indexOf() on orderedSorties which gets very taxing on performances extremely quickly.

4.2.2 Moves in the Simulated Annealing

Moves are needed to make a Simulated Annealing work. In Line 10, Alg. 4.1 the call is
made to perform a random move on the current solution.

Before a move can be performed, one has to be randomly chosen, and this is done
by using the weights initialized in Line 3 of Alg. 4.1: the choice is implemented as a
Roulette-Wheel Selection [Lipowski and Lipowska, 2012], but what this ultimately means
is that if a weight was given for each move, for example 50 20 20 10, then the first move
would be chosen five times more than the fourth one. The weight effectively represents
the probability of a move being chosen.

Once a move has been chosen, it has to be performed. Four moves are here presented:
relocateCustomer(), relocateCluster(), swapCustomers() and crossPath(). Even
though four were the moves originally conceived, only one made it in the final implemen-
tation. After a thorough explanation of relocateCustomer(), the other three are briefly
discussed in their main idea.

Move relocateCustomer() This moves a random customer in any random position in
the tentative solution. The move is fairly complex, and permits a good exploration of
the neighborhood overall. The main part of the algorithm for this move can be seen in
Alg. 4.2 but before that, a moment is taken to analyze what this move means for a generic
solution.

0 3 2 4 1

6

5 7

0 1 2 3 4 5 6

T 0 3 2 4 1 5 7

DD 6

DR 5

is ↓ 3

Fig. 4.4: Generic solution for the explanation of the move relocateCustomer()

In a generic solution, a generic customer can be truck-only (3, 2, 1 in Fig. 4.4), drone-
only (6 in Fig. 4.4) or mixed (4, 5 in Fig. 4.4). Mixed customers are the truck customers
that have a launch or a rendezvous of the drone, drone-only customers are the customers
served with a drone delivery, and finally truck-only customers are the remaining truck
customers.

For truck-only customers, the move is fairly straightfoward: if the randomly chosen
delivery method is the truck, that customer positioned in the truck path, and wether it

28 Simulated Annealing

goes under a sortie or it doesn’t, changes only the feasibility of the move via the endurance
constraint. This would mean moving for example customer 1 in position 6 (between 5 and
7) or customer 2 in position 4 (between 4 and 1). In the second example, the truck path
between launch and sortie increases, so the endurance constraint might be violated since
the drone could possibly have to wait hovering for too long for the arrival of the truck in
5. If instead the picked delivery method is the drone, then that customer is setup as a
drone delivery whose launch and rendezvous are randomly initialized. This would mean
for example moving customer 3 in sortie 〈0, 3, 2〉 or 〈5, 3, 7〉 or customer 1 in sortie 〈2, 1, 4〉
or 〈0, 1, 4〉, provided they are feasibly defined sorties and don’t violate the endurance
constraint. The example sorties were picked so as not to incur in Prohibited Moves (see
Sec. 3.3): if customer 2 was to be moved in sortie 〈3, 2, 1〉 (PM1) or in sortie 〈4, 2, 7〉 (PM2)
it would make the solution infeasible and the move would be retried.

Drone-only customers are similarly straightforward: it would mean moving customer
6 to a truck delivery (any position between 1 and 6 is valid) or a (different) drone delivery,
for example 〈0, 6, 3〉 or 〈1, 6, 7〉.

Algorithm 4.2 Main relocateCustomer() algorithm

1: REPEAT
2: deliveryMethod = random(truck,drone)
3: REPEAT
4: tentativeSolution = copyOf(currentSolution)
5: fixedVehicleIt = fixedVehicleIt + 1
6: INITIALIZE randomCustomer
7: IF deliveryMethod = truck THEN
8: REPEAT
9: INITIALIZE randomPosition

10: UNTIL randomPosition is different from original randomCustomer position
11: IF randomCustomer is a mixed customer THEN
12: performMixedToTruck(tentativeSolution)
13: ELSE IF randomCustomer is a drone-only customer THEN
14: performDroneToTruck(tentativeSolution)
15: ELSE IF randomCustomer is a truck-only customer THEN
16: performTruckToTruck(tentativeSolution)
17: END IF
18: ELSE
19: IF randomCustomer isn’t an excluded customer THEN
20: randomSortie = generateRandomSortie(randomCustomer)
21: IF randomCustomer is a mixed customer THEN
22: performMixedToDrone(tentativeSolution)
23: ELSE IF randomCustomer is a drone-only customer THEN
24: performDroneToDrone(tentativeSolution)
25: ELSE IF randomCustomer is a truck-only customer THEN
26: performTruckToDrone(tentativeSolution)
27: END IF
28: END IF
29: END IF
30: UNTIL move isn’t feasible AND fixedVehicleIt < MAX FIXED VEHICLE IT
31: UNTIL move isn’t feasible

The same can’t hold true for mixed customers, as the situations that arise are vastly
different. If the customer were to be moved to a drone delivery, the move would require a
number of strict conditions to hold true to make the move feasible. If instead the customer

4.2 Implementation of the Simulated Annealing 29

is set for a truck delivery, then the sortie is also affected by the move, in that it can expand
the number of customers under it, or it can be reversed. This would mean for example
moving 4 in any position, so that between position 1 and 5 the sortie would stay in the
same 〈4, 6, 5〉 configuration, whereas if 4 were to be moved in position 6 the sortie would
be reversed into 〈5, 6, 4〉. To see all the possible cases and how the move is implemented
for mixed customers, refer to Alg. 4.5.

Now back to the analysis of how relocateCustomer() is performed, as per Alg. 4.2.
The move is coded so that it only returns feasible solutions (see Line 31) but to allow a
little bit of leeway there is also a counter to check that the code doesn’t get stuck for too
long (see Line 30) while trying to keep the same deilvery method (see Line 2). Once inside
this second loop the tentative solution gets initialized as a copy of the current solution
(see Line 4) and a random customer gets generated between 1 and c (see Line 6).

Now, if the delivery is to be performed via truck, then a random position where to put
the new truck customer is generated as an integer value between 1 and the length of the
truck solution −1 (one over and one under to avoid inserting customers before the initial
depot or after the final depot). This is repeated until the random position is different from
the previous position of the random customer, to avoid null moves (see Lines 8–10).

The algorithm then proceeds to split the move execution depending on the type of
random customer drawn: if it is a mixed customer it proceeds in Line 12 which is treated
in Alg. 4.5, if it is a drone-only customer it proceeds in Line 14 which is treated in Alg. 4.4,
and finally if it is a truck-only customer it goes to Line 16, seen in Alg. 4.3.

Algorithm 4.3 How a truck-only to truck move is performed

1: removeTruckCustomerFromPosition(randomCustomer)
2: addTruckCustomerToPosition(randomCustomer, randomPosition)
3: updateTentativeIsUnderSortie()
4: IF endurance constraint isn’t violated THEN
5: isMoveFeasible = true
6: END IF

Alg. 4.3 is called from Line 16 and moves randomCustomer to randomPosition by
removing it from its current position and adding it to the new one. The only check needed
is for the endurance constraint: if the truck-only customer goes under a sortie, and the
drone has to wait for more than what its battery is worth, the solution is infeasible.

Algorithm 4.4 How a drone-only to truck move is performed

1: removeSortieWithDelivery(randomCustomer)
2: addTruckCustomerToPosition(randomCustomer, randomPosition)
3: updateTentativeIsUnderSortie()
4: IF endurance constraint isn’t violated THEN
5: isMoveFeasible = true
6: END IF

Alg. 4.4 is called from Line 14 and moves randomCustomer to randomPosition by
removing its current sortie and adding the customer to the new position in the solution.
The only check needed is again for the endurance constraint, for the same reason as for
the truck-only to truck move.

Alg. 4.5 is called from Line 12 and is not as simple as the two preceding bits. The
algorithm has to split up again right at the beginning due to the three possible config-
urations a mixed customer can be in: it can be the launch of a sortie, the rendezvous
of another sortie or both. All three configurations are illustrated in Fig. 4.5: node i has

30 Simulated Annealing

i

a

j

b

k

Fig. 4.5: The three configurations of a mixed customer (i, j and k)

a launchSortie (i, a, j), node k has a rendezSortie (j, b, k) and node j has both a launch
(j, b, k) and a rendezvous sortie (i, a, j).

Algorithm 4.5 How to perform a mixed customer to truck move

1: IF randomCustomer has a launchSortie THEN
2: IF randomCustomer has a rendezSortie THEN
3: performMixedLR(tentativeSolution)
4: ELSE
5: performMixedL(tentativeSolution)
6: END IF
7: ELSE
8: performMixedR(tentativeSolution)
9: END IF

To clarify the mixed customer move, it is first better to take a look at Fig. 4.6, which
presents the three main situations that can happen with a customer that has a launch
sortie. The same can simmetrically happen for a customer with a rendezvous sortie. In
(a) the customer has also a rendezvous sortie, so the code to execute is the one Line 3
of Alg. 4.5, later described in Alg. 4.6. Both in (b) and (c) the situation is described in
Alg. 4.7 and is called in Line 5 of Alg. 4.5, but in the case of (b) the sortie isn’t reversed,
whereas in (c) it is.

0 3

7

2 4 1

6

5 8

(a)

0

7

4 3 2

6

1 5 8

0 3 2 4 1

6

5 7

0 3 4 2

6

1 5 7(b)

(c) 0 3 2 1 5

6

4 7

Fig. 4.6: Possibilities for mixed customers with a launchSortie in relocateCustomer()

Back to the pseudocode, if the mixed customer has both launch and rendezvous sortie
(Alg. 4.6), the only way the move can be feasible is if randomPosition is between the
launch of the rendezvous sortie and the rendezvous of the launch sortie (Line 1). In the
context of Fig. 4.5, this means i < rP < k, whereas in Fig. 4.6 (a) this means 0 < rP < 5,
with an appropriate translation of customers to indices. Once this condition is verified,
then the move consists of removing randomCustomer from its position, adding it back to the
new randomPosition and finally adding back the launch sortie that would have otherwise
been lost. No Prohibited Moves are possible with such a move so, before confirming the

4.2 Implementation of the Simulated Annealing 31

Algorithm 4.6 performMixedLR() pseudocode

1: IF rendezSortie.launch < randomPosition < launchSortie.rendez THEN
2: removeTruckCustomerFromPosition(randomCustomer)
3: addTruckCustomerToPosition(randomCustomer, randomPosition)
4: addSortieBackToCustomer(launchSortie)
5: updateTentativeIsUnderSortie()
6: IF endurance constraint isn’t violated THEN
7: isMoveFeasible = true
8: END IF
9: END IF

feasibility of the move, only the endurance constraint violation has to be verified.

The only big difference between the moves seen until now and the ones for mixed
customers with just a launch or rendezvous sortie is that in this case the sortie can be
reversed by having randomPosition relocated respectively after the rendezvous or before
the launch. This is checked for, respectively, in Line 3 Alg. 4.7 and in Line 3 Alg. 4.8.
Their feasibility is checked with the validFlight boolean matrix. After that the move is
performed and checked for feasibility with regards to both the endurance constraint and
the Prohibited Moves.

Algorithm 4.7 performMixedL() pseudocode

1: removeTruckCustomerFromPosition(randomCustomer)
2: addTruckCustomerToPosition(randomCustomer, randomPosition)
3: IF launchSortie isn’t reversed THEN
4: addSortieBackToCustomer(launchSortie)
5: updateTentativeIsUnderSortie()
6: IF endurance constraint isn’t violated AND isn’t a Prohibited Move THEN
7: isMoveFeasible = true
8: END IF
9: ELSE

10: IF revLaunchSortie is feasible AND isn’t double launch THEN
11: addSortieBackToCustomer(revLaunchSortie)
12: updateTentativeIsUnderSortie()
13: IF endurance constraint isn’t violated AND isn’t a Prohibited Move THEN
14: isMoveFeasible = true
15: END IF
16: END IF
17: END IF

If, instead, the drone has to complete the delivery, then the sortie generation process
is called for (see Line 20), which can be seen in Alg. 4.9.

To generate a valid random sortie, as stated in Sec. 4.2.1 some structures have been
put in place. Computing indexOfFirstSortie (see Line 1) is just a matter of access-
ing the array orderedSortiesIndex in the random customer’s position. Same goes for
indexOfLastSortie (see Line 2), which is found via an access to the same array in the
next customer’s position.

If that particular random customer doesn’t have a sortie available, either because it is
an excluded customer or it simply is out of reach from the drone’s perspective, the method
returns a null value, which issues a change of random customer. If, instead, at least one
sortie exists, then a while loop ensures that a valid one is picked among the available ones,
again with a failsafe number of iterations to go through before changing customer (see

32 Simulated Annealing

Algorithm 4.8 performMixedR() pseudocode

1: removeTruckCustomerFromPosition(randomCustomer)
2: addTruckCustomerToPosition(randomCustomer, randomPosition)
3: IF rendezSortie isn’t reversed THEN
4: updateTentativeIsUnderSortie()
5: IF endurance constraint isn’t violated AND isn’t a Prohibited Move THEN
6: isMoveFeasible = true
7: END IF
8: ELSE
9: IF revRendezSortie is feasible AND isn’t double rendezvous THEN

10: removeSortieWithDelivery(rendezSortie.deliv)
11: addSortieBackToCustomer(revRendezvousSortie)
12: updateTentativeIsUnderSortie()
13: IF endurance constraint isn’t violated AND isn’t a Prohibited Move THEN
14: isMoveFeasible = true
15: END IF
16: END IF
17: END IF

Algorithm 4.9 How to generate a valid random sortie

1: COMPUTE indexOfFirstSortie
2: COMPUTE indexOfLastSortie
3: IF customer has at least one sortie available THEN
4: WHILE haven’t found a valid sortie AND fixedCustIt < MAX FIXED CUST IT

DO
5: fixedCustIt = fixedCustIt +1
6: COMPUTE randomSortie
7: IF passTestrandomSortie THEN
8: foundValidSortie = true
9: RETURN randomSortie

10: END IF
11: END WHILE
12: END IF
13: RETURN null

Line 4).
Finally the random sortie is generated (see Line 6) as a random integer between

indexOfFirstSortie and indexOfLastSortie. This is eventually used as an index to
access orderedSorties. In this way, the whole process is done in constant time, like the
generation of the random position for the truck customer.

The generated sortie is returned for further computations if and only if all the common
possible compatibility problems with the current solution, addressed in passTest() (see
Line 7), aren’t verified:

• If randomCustomer is a drone customer, randomSortie might be a null move;

• randomSortie might create a double launch or a double rendezvous from or to a
singular node;

• It might have what currently is a drone customer as launch or rendezvous;

• randomSortie might have a rendezvous before the launch in the current solution for
the truck.

4.2 Implementation of the Simulated Annealing 33

If the drawn deliveryMethod is instead the drone, the situation is extremely similar
to the one for the truck in case of truck-only or drone-only customers: the only difference
is that instead of adding randomCustomer back to the solution in randomPosition, it is
randomSortie that gets added to the solution.

The unfortunate case of having a mixed customer, instead, makes the move impractical
to the point that feasibility is possible only for extremely specific conditions. Since this is
the case, a mixed customer being drawn for the drone would mean many wasted tries to
actually achieve a feasible tentative solution. The method exists but has been disallowed
to be performed due to performance degradation and limited neighborhood improvement.

Move relocateCluster() This non implemented move was set to relocate a random
cluster of nodes of the same type (i.e. uninterrupted pieces of truck path or a full drone
sortie) in any random position in the tentative solution. It would complete only as long
as this relocation resulted in a feasible move: it mustn’t create a PM1 or PM2, and the
endurance constraint must not be violated.

It is visually represented in Fig. 4.7 where in (a) the truck cluster (3, 2) gets moved in
position 5, whereas in (b) the drone cluster (4, 6, 5) gets moved with the launch in position
1 and the rendezvous in position 4.

0 3 2 4 1

6

5 7

(a)

0 4 1

6

5 3 2 7

0 3 2 4 1

6

5 7

(b)

0 4 3 2

6

5 1 7

Fig. 4.7: Visual description of how relocateCluster() works

Move swapCustomers() This non implemented move is set to swap a random customer
with another random one in the tentative solution. It would complete only as long as this
swap resulted in a feasible move: the endurance constraint must not be violated.

It is visually represented in Fig. 4.8 where in (a) the truck-only customer 3 gets swapped
with the mixed customer 5, whereas in (b) the drone-only customer 6 gets swapped with
1, which is under that same sortie.

0 3 2 4 1

6

5 7

(a)

0 5 2 4 1

6

3 7

0 3 2 4 1

6

5 7

(b)

0 5 2 4 6

1

3 7

Fig. 4.8: Visual description of how swapCustomers() works

Move crossPath() This final non implemented move is a 2-opt move performed on the
solution: two edges are removed from the tentative solution and the two paths created are
reconnected in the only possible way so as to keep a valid tour.

34 Simulated Annealing

0 3 2 4 1

6

5 7 0 3 5 1

6

4 2 7

Fig. 4.9: Visual description of how crossPath() works

To be feasible, the move requires that if there are sorties in the reversed path, the
reversed sorties must be feasible endurance-wise. Moreover, the removed edges must be
between truck-only or mixed nodes, and in both cases none of the edges must be with a
customer who is under a sortie.

The move is visually represented in Fig. 4.9 where edges 3− 2 and 5− 8 are removed,
so edges 3− 5 and 2− 8 are created, reversing the path between 5 and 2.

4.2.3 Solution evaluation

The last thing that remains to discuss about the implementation is the way to evaluate
the solution.

There are two ways to evaluate a solution, that is, to compute the time at which both
truck and drone are at the final depot:

• A complete evaluation of the solution from the starting depot to the end depot;

• Delta evaluation to find the cost of the move performed.

The complete evaluation method is easier to code and provides consistent results from
the get go. It is, however, by its own nature redundant, in that it computes times for bits
of the solution that stay untouched. This very characteristic makes it O (n) both in best
and worst case scenario.

On the other hand, the delta evaluation is only in the worst case scenarioO (n), whereas
in the best case it is O (1). It is possible to evaluate the sole cost of the move, generalizing
it starting from the way it is generically performed and going more and more into detail
until all possible cases are covered in the cost computation.This is what has been done,
and in Alg. 4.1 Line 11 the final way to compute the cost of a tentative solution is by
means of the cost of its predecessor plus the cost of the move.

Following is a list of cases that might happen after a move relocateCustomer() and
how the cost for that particular case is computed.

A common notation for all these cases will be having i = previous node in the old
solution, j = moved node, k = next node in the old solution, α = previous node in the
new solution and β = next node in the new solution. For the mixed customers, moreover,
A = launch node of a rendezvous sortie and B = rendezvous node of a launch sortie. The
old solution will be denoted with oldS and the new one with newS. There is tT,D (sortie)|S
which stands in for the max formulas seen in Sec. 3.6 to calculate the truck and drone
times for the path from the sortie’s launch to its rendezvous in solution S and which is
shown in Eq. (4.2.3). Finally tT (x, y)|S is just an abbreviated form to indicate the truck’s
time between nodes x and y in the denoted solution S, which is shown in Eq. (4.2.4).

tT,D (sortie)|S = max
{
τD
sortie.l,sortie.d + τD

sortie.d,sortie.r + SR, (4.2.3)

τT
sortie.l,... + τT

...,... + τT
...,sortie.r + SR

}
evaluated in solution S

tT (x, y)|S =τT
x,... + τT

...,... + τT
...,y evaluated in solution S (4.2.4)

4.2 Implementation of the Simulated Annealing 35

Truck-only to truck This kind of move is the one that resembles the most classical
TSP delta evaluation: the main difference in this case is that the moved node can be under
a sortie either in the old or in the new solution, so different contributions are added to the
final cost based on that.

If j in the old solution isn’t under a sortie (oldOS), the final cost has contribution c1

added to it, else it has c2. Similarly, if j in the new solution isn’t under a sortie (newOS),
the final cost has contribution c3 added to it, else it has c4. The final cost is thus always
comprised of two contributions.

c1 = [τT
i,k]− [τT

i,j + τT
j,k]

c2 = [max {tT,D (oldOS)|newS}]− [max {tT,D (oldOS)|oldS}]
c3 = [τT

α,j + τT
j,β]− [τT

α,β]

c4 = [max {tT,D (newOS)|newS}]− [max {tT,D (newOS)|oldS}]

In the case of Fig. 4.10, for example, customer j is moved from a position not under a
sortie (use c1) to one which is in this condition (use c4), thus the cost for this move would
explicitly be (newOS being the blank delivery with launch in k and rendezvous in β):

c = [τT
i,k + max {tT,D (newOS)|newS}]− [τT

i,j + τT
j,k + max {tT,D (newOS)|oldS}]

D i j k α β D D i k α j β D

Fig. 4.10: Example of truck-only to truck for delta evaluation

Truck-only to drone In this case there are three possible situations in total:

1. Node j in the old solution is under a sortie (oldOS);

2. The edge i− k is under the newly created drone sortie (newDS);

3. The edge i− k is anywhere else in the solution.

For each one of these situations a corresponding c is here elencated:

c1 = [SL+ max {tT,D (newDS)|newS}+ max {tT,D (oldOS)|newS}]+
− [tT (α, β)|oldS + max {tT,D (oldOS)|oldS}]

c2 = [SL+ max {tT,D (newDS)|newS}]− [tT (α, β)|oldS]

c3 = [τT
i,k + SL+ max {tT,D (newDS)|newS}]− [τT

i,j + τT
j,k + tT (α, β)|oldS]

In the case of Fig. 4.11, for example, customer j is moved from a position not under a
sortie (excluded the use c1) to a drone sortie which has i − k under it (use c2), thus the
cost for this move would explicitly be c2, where newDS is 〈α, j, β〉).

D α i j k β D D α i

j

k β D

Fig. 4.11: Example of truck-only to drone for delta evaluation

36 Simulated Annealing

Drone-only to truck In this case as well there are three possible situations in total,
but different from the previous ones:

1. Node j in the new solution is under a sortie (newOS);

2. Node j is between i and k in the new solution;

3. Node j is not in the two previous conditions.

For each one of these situations a corresponding c is here elencated:

c1 = [max {tT,D (newOS)|newS}+ tT (i, k)|newS]+

− [max {tT,D (newOS)|oldS}+ SL+ max {tT,D (oldDS)|oldS}]
c2 = [tT (i, k)|newS]− [SL+ max {tT,D (oldDS)|oldS}]
c3 = [τT

α,j + τT
j,β + tT (i, k)|newS]− [τT

α,β + SL+ max {tT,D (oldDS)|oldS}]

Drone-only to drone The cost of this move can only be calculated in one way, and
the computation is based on the old and the new drone sortie (respectively oldDS and
newDS):

c = [max {tT,D (newDS)|newS}+ tT (oldDS)|newS]+

− [max {tT,D (oldDS)|oldS}+ max {tT,D (newDS)|oldS}]

Launch sortie and rendezvous sortie A mixed customer with both a launch and a
rendezvous sortie has a straightforward formula for its move cost:

c = [max {tT,D (A, j)|newS}+ max {tT,D (j, B)|newS}]+
− [max {tT,D (A, j)|oldS}+ max {tT,D (j, B)|oldS}]

Normal launch sortie For a launch sortie which hasn’t been reversed, either edge i−k
is before the launch of the launch sortie in the new solution (i.e. j), so c1 is the cost to
use, or else c2 should be used.

c1 = [tT (i, j)|newS + max {tT,D (j, B)|newS}]− [τT
i,j + max {tT,D (j, B)|oldS}]

c2 = [τT
α,j + max {tT,D (j, B)|newS}]− [tT (α, j)|oldS + max {tT,D (j, B)|oldS}]

In the case of Fig. 4.12, for example, customer j is moved to position 1 in the solution,
which makes edge i− k be under the launch sortie, thus the cost for this move would be
c2. Please note that in this case α is the initial depot.

D β i j k B D D j β i k B D

Fig. 4.12: Example of normal launch sortie for delta evaluation

Reversed launch sortie If the launch sortie is reversed, the formula changes instead
to:

c = [tT (i, B)|newS + max {tT,D (B, j)|newS}+ τT
j,β]+

− [τT
i,j + max {tT,D (j, B)|oldS}+ tT (B, β)|oldS]

In the case of Fig. 4.13, for example, customer j is moved in a position that makes the
sortie reverse (position 6). Please note that in this case β coincides with the end depot.

4.2 Implementation of the Simulated Annealing 37

D i j k B α D D i k B α j D

Fig. 4.13: Example of normal launch sortie for delta evaluation

Normal rendezvous sortie These formulas are perfectly symmetrical to the ones de-
vised for launch sorties, and are written for completeness’ sake. For a non-reversed ren-
dezvous sortie, either edge i−k is after the rendezvous of the rendezvous sortie in the new
solution (which means j), so c1 shall be used in the computations, or else the choice must
go on c2.

c1 = [max {tT,D (A, j)|newS}+ tT (j, k)|newS]− [max {tT,D (A, j)|oldS}+ τT
j,k]

c2 = [max {tT,D (A, j)|newS}+ τT
j,β]− [max {tT,D (A, j)|oldS}+ tT (j, β)|oldS]

Reversed rendezvous sortie This formula is perfectly symmetrical to the reversed
launch sortie case, and is reported for exhaustiveness:

c = [τT
α,j + max {tT,D (j, A)|newS}+ tT (A, k)|newS]+

− [tT (α,A)|oldS + max {tT,D (A, j)|oldS}+ τT
j,k]

Chapter 5

Computations and results

Test instances (5.1) discusses in detail the generated instances used for testing. As any
other Simulated Annealing implementation, the coded SA needs a parameter tuning, de-
scribed in Sec. Parameter tuning (5.2). In particular the tuning is divided in two main
steps: Problem selection (5.2.1) and Temperature selection (5.2.2).

Finally all the experiments run on the model are reviewed in Experiments and re-
sults (5.3), with an explanation of the setup of each experiment and the analysis of the
results found.

5.1 Test instances

Test instances have been generated to reflect the following criteria.

The number of customers in the instances were chosen to analyze the difference between
optimal solutions found by the mathematical model and the results of the Simulated
Annealing and to reflect real world scenarios: the smaller instances (5, 6, 7, 8, 9 and 10
customers) are the ones also solvable to optimality, the bigger ones (50, 100, 150 and 200
customers) reflect real world cases. For each of these number of customers, 5 instances
were generated, for a total of 50 different instances.

Every instance has a map of 20 mi × 20 mi (see Fig. 5.1), to reflect the idea that
Amazon and HorseFly drones have a 10 mi endurance and thus be able to get a sufficient
amount of feasible drone sorties. In the map, the x and y coordinates are randomly
generated numbers for every node except the depot, which is always set in (0, 0).

Fig. 5.1: Generic instance map

Such a map covers a rather big area and it is not unrealistic to think that it could
contain 200 daily customers for some package delivery service. It is however somewhat
unlikely that 200 customers can be feasibly served within one working day with one vehicle

39

40 Computations and results

only, even if accompanied by its own drone. In this sense, the instances with 150 and 200
customers are only to be thought of as tests for the limit of the model.

A matrix of euclidean distances between the nodes is then calculated and all other
measurements are dependent on this matrix, in particular the time matrices for the drone
and the truck are calculated based on this and according to Sec. 3.5’s formula.

The customers excluded from drone delivery are randomly generated numbers such that
for every instance there are 80% serviceable customers and 20% excluded customers. The
reason for their exclusion was deemed unimportant, but it might be due to geographical
limitations, too heavy parcels to deliver, or other criteria.

These instances have also been run through Concorde to find the optimal TSP tour
for the resulting graph, giving a value to test against in the final analyses.

The naming found throughout this work is built to show the number of customers in
the instance (XXX) and the progressive number of it (Y) such that the generic name is
Instance XXX.Y.

5.2 Parameter tuning

As previously discussed in Sec. 4.1.1, the Simulated Annealing needs to have its parameters
tuned to work as best as possible. It is unfeasible time-wise to tune the parameters on all
the instances, and it would overfit them, so a small representative sample is going to be
chosen in Sec. 5.2.1 that will undergo further testing.

Some pre-tuning was done to not have terrible starting points for the necessary pa-
rameters by means of looking at the resulting graphs for iterations and current objective.

For example, after some testing it was shown that the shape of the graph looks ad-
equate with starting temperature of 0.01 and end temperature of 0.001. Upon setting
those numbers, some other simulation runs were done to find a suitable number of iter-
ations. As an example, in Fig. 5.2 one can see that the situation doesn’t really change
much after 3 million iterations: tentativeObjective represent attempted solutions, while
currentObjective stands for the accepted solutions.

Fig. 5.2: Pre-tuning on Instance 050.1

To allow for some leeway, the number of iterations is thus set to 4 million. This is also
a compromise number chosen to be able to explore an adequate amount of the solution

5.2 Parameter tuning 41

space even for the 200-customers instances in a reasonable amount of time. A rough
estimate for the neighborhood size often used in the TSP field is to square the number
of nodes in a graph. This means that a 200 nodes graph has a neighborhood size of
roughly 40·000, which consequently means that 4 million iterations could fully explore 100
neighborhoods. This is a slight overestimation for TSP neighbourhoods, since they are
exacty large n×n− 1, whereas for the FSTSP it is probably an underestimation: the real
value for the neighborhood size would lie between n2 and n3 due to the possibility of also
having drone sorties as possible positions for the customers.

The main ideas in parameter tuning are to find a set of representative instances among
all the supplied ones, and tune all the other parameters on those selected few. Since the
smaller instances are more of a reference for the mathematical model than a real struggle
to find the optimal solution for, only the 10-customer ones will be considered in the
population of instances for tuning, out of those: the final population will thus consist of
the instances with 10, 50, 100, 150 and 200 customers, five of each type.

The parameter tuning will follow this hard criteria, regardless of the results obtained
in each step:

1. Start with It = 4·000·000, Ts = 0.01 and Tf = 0.001;

2. Run ten times each instance, to obtain ten objective values describing how Simulated
Annealing works on every one of them;

3. Given µ = sample mean and σ = sample standard deviation, compute for each
instance the Coefficient of Variation cv = σ/µ;

4. Order the instances in decreasing cv values and pick the three quartiles as the chosen
representative instances; since the data set is made of 25 instances, the chosen ones
will be #7, #13, and #19 in the ordered list;

5. Briefly search for a good enough pair of (Ts, Tf) for each of the three instances;

6. Create 3 matrices A1, A2 and A3 (one for each instance) where every element is the
average objective out of ten runs with a pair of parameters from the 5× 5 set;

7. Given that the smallest objective found for an instance in all the 250 runs is named

z∗∗, create the final R matrix with generic element ri,j =

a1
i,j

z∗∗1
+
a2
i,j

z∗∗2
+
a3
i,j

z∗∗3
3

− 1;

8. The smallest value in R defines the final pair of (Ts, Tf).

Steps 1 − 4 are treated in Problem selection (5.2.1) and steps 5 − 8 in Temperature
selection (5.2.2).

5.2.1 Problem selection

Three out of the twentyfive instances have to be chosen as a representative sample to
tune the start and end temperature for the algorithm. The deciding factor should be
the difficulty of a given instance: an instance is considered difficult if all the computed
objectives for that instance are widely different from one another (no clear objective value
seems to possibly represent the global minimum) and is on the other hand considered easy
if all the computed objectives are equal to each other, since this seems to mean that that
value is also the global minimum.

However, there is a problem: the instances have a different scale, that is to say, they
present widely different mean objective. Hence the need for an objective and standardized

42 Computations and results

indicator, a dimensionless number representative of each instance’s difficulty level, apt to
compare them in a meaningful way.

The Coefficient of Variation (see Eq. (5.2.1)), also known as Relative Standard Devia-
tion, is a standardized measure showing the variability (represented by standard deviation
σ) of a probability distribution in relation to the mean of the population (µ), and is
expressed as a percentage value.

cv =
σ

µ
(5.2.1)

The actual value of the cv is dimensionless, in that it is independent of the unit in
which the measurement has been taken. This is why one should use the coefficient of
variation instead of the standard deviation as such a means of comparison between data
sets with widely different means.

The aggregate results of these ten runs for the twentyfive instances are shown in Ta-
ble 5.1, whereas in Table 5.2 the reader can see the list of instances ordered over cv in
a decreasing fashion. As it can be seen in the table by the bold highlighting, the repre-
sentative instances are Instance 050.3 as the first quartile (#7), Instance 100.4 as the
median (#13), and finally Instance 100.3 as the third quartile (#19).

Instance Obj µ Obj σ

010.1 5986,71 0,00
010.2 6394,39 0,00
010.3 6310,60 0,00
010.4 8377,92 0,00
010.5 9108,50 120,13
050.1 12548,87 260,52
050.2 12213,58 227,19
050.3 12480,34 155,06
050.4 12847,23 265,74
050.5 12159,30 326,97
100.1 18077,53 537,73
100.2 17261,93 458,88
100.3 17280,89 383,73
100.4 18506,22 323,94
100.5 17354,73 371,76
150.1 22946,84 245,12
150.2 22524,38 561,41
150.3 23326,29 555,44
150.4 22576,28 562,23
150.5 23304,92 367,70
200.1 27136,32 435,50
200.2 28769,93 264,42
200.3 27292,17 366,51
200.4 28668,55 476,89
200.5 27976,75 517,83

Tab. 5.1: Aggregate results for the problem
selection: 10 runs × 25 instances

Instance Obj cv

1 010.1 0,00%
2 010.2 0,00%
3 010.3 0,00%
4 010.4 0,00%
5 200.2 0,92%
6 150.1 1,07%
7 050.3 1,24%
8 010.5 1,32%
9 200.3 1,34%
10 150.5 1,58%
11 200.1 1,60%
12 200.4 1,66%
13 100.4 1,75%
14 200.5 1,85%
15 050.2 1,86%
16 050.4 2,07%
17 050.1 2,08%
18 100.5 2,14%
19 100.3 2,22%
20 150.3 2,38%
21 150.4 2,49%
22 150.2 2,49%
23 100.2 2,66%
24 050.5 2,69%
25 100.1 2,97%

Tab. 5.2: Results ordered over cv for the
problem selection

5.2 Parameter tuning 43

5.2.2 Temperature selection

Some good enough values for Ts and Tf give a headstart on where to focus more on the
search for the temperature tuning. With those, two equally distributed ranges of five
temperatures are produced: [0.0080, 0.0090, 0.0100, 0.0110, 0.0120] for Ts and [0.0006,
0.0007, 0.0008, 0.0009, 0.0010] for Tf .

Every combination of the Ts and Tf is run ten times. The average objective of every
combination is used to fill a 5× 5 matrix, as can be seen in Fig. 5.3 for Instance 050.3

(A1), Fig. 5.4 for Instance 100.4 (A2), and Fig. 5.5 for Instance 100.3 (A3). In those
figures, the conditional formatting highlights the best results as the darkest shade of green.

Fig. 5.3: Temperature tuning for Instance 050.3

Fig. 5.4: Temperature tuning for Instance 100.4

Fig. 5.5: Temperature tuning for Instance 100.3

To finally choose the set of definitive temperatures, let z∗∗ be the minimum objective
value of the 25 × 10 runs for each matrix. The three values of z∗∗ are found to be
z∗∗1 = 11907.865, z∗∗2 = 17743.975, z∗∗3 = 16669.008.

With these three values and the three old matrices A1, A2, and A3, the matrix R can
be created, where every element is represented in Eq. (5.2.2).

ri,j =

a1
i,j

z∗∗1
+
a2
i,j

z∗∗2
+
a3
i,j

z∗∗3
3

− 1 (5.2.2)

The final matrix is presented in Fig. 5.6, where it is seen that the best pair of parameters
is Ts = 0.0120 and Tf = 0.0008. The numbers in it, represent the mean gap between the

44 Computations and results

average result for that combination of parameters and the overall best objective obtained
from the 250 runs. Lower average gap is better.

Fig. 5.6: Results matrix for the temperature tuning

5.3 Experiments and results

With a tuned set of parameters, it is possible to run some experiments:

1. Main reference experiment (5.3.1): run the algorithm ten times on every instance;

2. Endurance changes (5.3.2): what would happen if the drone’s endurance was changed;

3. Top speed changes (5.3.3): investigation of what to expect if the drone’s top speed
is changed;

4. Different number of iterations (5.3.4): exploring the possibility of having set another
number of iterations;

5. Distribution of the objective function (5.3.5): analysis on how is the objective func-
tion statistically distributed;

6. Different acceptance probability (5.3.6): study on how the algorithm would work if
the acceptance function was the one of Record-to-Record Travel.

5.3.1 Main reference experiment

The main contribution of this thesis is to ultimately see if Simulated Annealing can be a
feasible means of finding a good solution to the FSTSP. To test this hypotesis and provide
some evidence to this claim, the main experiment aims at running the SA over an ade-
quate enough number of instances with different customer numbers that were previously
described in Sec. 5.1.

In particular, the experiment will be done by running the SA ten times for every one of
the 50 self-generated instances. For every instance the average best objective of each run
is calculated and compared with both the optimal results from the Mathematical Model
and, for the bigger instances, with the optimal TSP tour. Doing only ten runs will provide
only a rough estimate of the results, but good enough to be able to see trends in the
outcomes.

Results for the first 30 instances are presented in Tab. 5.3. From the table’s column

ObjGAP%, which is calculated as
Objµ−ObjOPT

ObjOPT

for each instance, it appears evident that

the SA can certainly reach optimality even with only 20 min of total runtime (runtime
that can of course be improved with a better implementation). The handful of cases in
which the column displays a number different from 0 is due to one “bad-run” in every case:
since the average is greatly influenced by outliers the resulting gaps are relatively big, but

5.3 Experiments and results 45

the outlier can easily be identified as such in these cases, so nothing is to be feared from
this.

For every 10-run batch T SA
toBest µ (s) represents the time in seconds required to the SA

to get to the best solution found and T SA
total µ (s) is the total execution time. The time for

the execution of the Mathematical Model is instead showed in column TMM
total (s). The ratio

T SA/TMM , is thus shown in the last two columns, respectively for the runtime to get to
the best solution and for the total runtime.

Looking in parallel at Tab. 5.3 at Fig. 5.7, where ratios are presented in a logarithmic
scale, the reader can see both ratios follow the same trend, with the average gap between
ratios decreasing with an increase in instance size. That trend appears to be one of a clear
and strong increase in the time saved by running the SA instead of the MM. For the very
small instances ratios are substantial, but this is due to both having parameters tuned for
larger instances and to the fact that the total runtime is taken into consideration. If the
focus is switched to the runtime to best, then the difference drastically decreases even at
small sizes: the best solution is found in very little time for these smaller instances, even
if slightly bigger than the time used by CPLEX.

Tab. 5.3: Instances’ results whose optimal solutions can be computed in acceptable time

Instance Obj µ TSA
toBest µ (s) TSA

total µ (s) ObjOPT TMM
total (s) ObjGAP% T ratio

toBest T ratio
total

005.1 4456,832 5,48 280,15 4456,83 0,98 0,00% 5,59 285,87
005.2 3507,068 62,97 373,59 3507,07 0,83 0,00% 75,87 450,11
005.3 3275,689 0,01 20,59 3275,69 0,98 0,00% 0,01 21,01
005.4 5312,468 0,05 57,35 5312,47 0,42 0,00% 0,11 136,55
005.5 5510,165 16,90 578,54 5510,17 0,64 0,00% 26,40 903,97
006.1 7080,942 0,01 18,42 7080,94 0,94 0,00% 0,01 19,60
006.2 6147,956 1,30 125,26 6147,96 0,92 0,00% 1,41 136,16
006.3 6835,158 0,01 49,43 6835,16 0,86 0,00% 0,01 57,48
006.4 4402,083 3,65 322,42 4402,08 1,23 0,00% 2,97 262,13
006.5 5392,079 32,83 590,80 5392,08 1,46 0,00% 22,49 404,66
007.1 5533,853 0,46 39,12 5533,85 6,94 0,00% 0,07 5,64
007.2 5342,682 1,98 104,96 5342,68 8,54 0,00% 0,23 12,29
007.3 7783,901 8,79 47,54 7725,89 2,17 0,75% 4,05 21,91
007.4 7610,377 0,40 106,97 7610,38 2,33 0,00% 0,17 45,91
007.5 7010,989 9,05 28,49 7010,99 7,44 0,00% 1,22 3,83
008.1 6709,019 1,07 143,56 6709,02 36,78 0,00% 0,03 3,90
008.2 6587,178 0,10 48,26 6587,18 55,44 0,00% 0,00 0,87
008.3 5780,115 53,24 79,41 5780,12 47,14 0,00% 1,13 1,68
008.4 6914,785 0,10 38,84 6505,12 52,02 6,30% 0,00 0,75
008.5 5953,510 7,61 66,87 5953,51 70,61 0,00% 0,11 0,95
009.1 7338,773 0,76 42,56 7338,77 333,33 0,00% 0,00 0,13
009.2 6204,630 39,82 64,12 6204,63 377,46 0,00% 0,11 0,17
009.3 7698,112 16,80 31,96 7698,14 418,6 0,00% 0,04 0,08
009.4 6817,718 0,06 70,04 6817,72 245,47 0,00% 0,00 0,29
009.5 7802,665 6,64 38,99 7802,67 495,74 0,00% 0,01 0,08
010.1 5986,712 1,07 73,62 5986,71 18541,91 0,00% 0,00 0,00
010.2 6394,386 37,42 81,68 6394,39 80298,63 0,00% 0,00 0,00
010.3 6585,438 56,06 134,14 6310,60 25097,39 4,36% 0,00 0,01
010.4 8377,917 1,23 249,87 8377,92 3791,53 0,00% 0,00 0,07
010.5 8984,151 4,47 34,26 8934,41 6970,96 0,56% 0,00 0,00

An attentive reader might notice that runtimes show weird spikes in the smaller in-
stances, in particular in Tab. 5.3 with instances 005.1, 005.2, 005.5, 006.4, 006.5, for
example. These very high values for T SA

total µ are to be ascribed to a simple but unac-
counted for phenomenon. In running Simulated Annealing for these smaller instances,
the combination of possible feasible flights are extremely limited, due to the nature of
the maps: they have very few customers distributed in a very large area, so the drone is
very limited in its flight possibilities. This leads the algorithm to get stuck in loops that
are theoretically infinite when the chosen move is moveRelocateCustomer and the chosen
transportation means is the drone, in some configurations. What happens is that SA tries
to find a feasible sortie for a given customer that only has one or two sorties theoretically

46 Computations and results

feasible but probably infeasible in a given permutation of the customers due to mostly the
endurance constraint, or maybe even the chance of having prohibited moves. What this
meant was infinite loops. To break this behaviour, a counter was implemented to block
the tries that lead to these loops and change delivery method at first, and customer after
some more tries. The limit to the looping was set by the author to be 42. This number
wasn’t chosen by chance, but it was at the time observed that most loops would eventually
solve themselves, if actually feasible, in 30-40 iterations, and would otherwise proceed into
an infinite loop otherwise. Due to lack of time in the possibilities of testing, a rigorous
paramter tuning was not performed. It can be however inferred that this wouldn’t have
changed much, since a smaller number would have of course limited the time elapsed in
these “broken loops” for these smaller instances, but it would have severely limited the
chances of a sortie to be found in the bigger instances! A bigger limit to the iterations,
would have instead meant even longer total runtimes for smaller instances but maybe
more chances of finding usable sorties in bigger instances, and thus an improved solution
quality. This parameter tuning and testing is left to future research, but might reveal
itself to be quite promising, as the problem is not a small one.

Fig. 5.7: Runtime for mathematical model and related runtime for the SA

Tab. 5.4 presents the results for the bigger 20 instances. The table’s column ObjTSP

is splitted in two where the first represents the total distance of the TSP tour in miles,
whereas the second column converts that result in seconds using the usual formula t =

d

top speed ∗ ν
.Column Saving % shows the saving from the TSP tour to the SA average

solution of ten runs.

This value, calculated as
ObjTSP −Objµ

ObjTSP

, is also plotted in Fig. 5.8 where the final

plot assumes quite the interesting shape. There seems to be a maximum saving in the
instances with 50 and 100 customers. This result is to be taken with a grain of salt, as the
sample size is relatively small and more testing should be done to gain a better insight,
but anyways there are a few ideas that could explain such a result, if confirmed. First
of all, the temperatures were tuned exactly on those two sizes of instances, and for how
much they should be representative of the whole population, the method used still ended
up favoring — if just for a bit — instances with that number of customers. Moreover,
it can be speculated that, since the map stays the same size for all the instances, those
customer quantities might be the ones that “fill” the map in a better way so as to favour
the contributions of drone deliveries in the best way possible. On the opposite hand, this
would mean that the 10 customer instances are too filled with void between the customers,

5.3 Experiments and results 47

Tab. 5.4: Instances’ results whose TSP tour can be obtained with Concorde
Instance Obj µ TSA

toBest µ (s) TSA
total µ (s) ObjTSP (dist) ObjTSP (time) Saving %

010.1 5986,712 1,07 73,62 77.972 6229,23 3,89%
010.2 6394,386 37,42 81,68 85.314 6815,79 6,18%
010.3 6585,438 56,06 134,14 103.555 8273,07 20,40%
010.4 8377,917 1,23 249,87 106.595 8515,94 1,62%
010.5 8984,151 4,47 34,26 120.319 9612,35 6,54%
050.1 12518,933 71,54 213,87 179.629 14350,67 12,76%
050.2 12475,138 91,11 208,36 180.980 14458,60 13,72%
050.3 12664,646 102,77 191,04 179.221 14318,07 11,55%
050.4 12908,182 98,72 184,85 184.566 14745,09 12,46%
050.5 12164,831 91,46 189,86 182.311 14564,93 16,48%
100.1 17974,852 247,24 267,42 247.879 19803,20 9,23%
100.2 17342,184 244,04 272,35 246.779 19715,32 12,04%
100.3 17181,877 240,67 265,45 245.895 19644,69 12,54%
100.4 18538,033 249,87 266,75 256.098 20459,82 9,39%
100.5 17407,425 287,34 312,77 248.568 19858,24 12,34%
150.1 22823,376 346,52 365,04 306.910 24519,22 6,92%
150.2 22549,553 373,08 383,72 304.745 24346,26 7,38%
150.3 23114,136 368,01 379,99 313.624 25055,60 7,75%
150.4 22650,995 366,37 382,67 300.891 24038,36 5,77%
150.5 22807,414 366,77 384,69 308.441 24641,53 7,44%
200.1 26991,206 446,85 456,74 339.843 27150,26 0,59%
200.2 27848,141 439,72 452,88 354.284 28303,95 1,61%
200.3 27143,783 493,69 510,11 345.488 27601,24 1,66%
200.4 28503,176 507,95 517,44 360.906 28832,99 1,14%
200.5 27875,865 498,87 515,30 356.213 28458,06 2,05%

Fig. 5.8: Saving between optimal TSP tour and best SA solution found in 10 runs

which shouldn’t be a problem, and the biggest instances would be too filled with customers.
Regarding both statements, more insight can be gained by finding data on the usage of the
drone for the different instance sizes, the average number of drone sorties per solution, the
total and average distance flown by the drone compared to the total and average distance
travelled by the truck, and the closeness to the endurance limit set for the drone.

In Fig. 5.9, Fig. 5.10 and Fig. 5.11 these critical points are analyzed and shown to
confirm the prediction made in the previous paragraph. Fig. 5.9 shows that the number
of sorties per instance size increases in a quasi-parabolic fashion, while the instance size
remains the same. This hints at a saturation of the map with too many customers for the
larger sizes, especially if Fig. 5.10 is also taken into account.

In this second graph, what earlier seemed to be a parabola is here found to have an
asymptote, or what really looks like one. Bigger instances, as the ones here created, cram
the customers more, leading to a worsening of the drone usage with bigger sizes. It seems

48 Computations and results

Fig. 5.9: Average number of sorties for a given number of customers

clear that the marginal gain for the use of drones decreases the more a map is filled with
customers, for the way they are built in this study. The endurance limit, which was almost
reached for smaller instances, is now far from saturation. In fact, the drone is used for less
than 50% of its battery for 100, 150 and 200 customers. This means that shorter flights
are performed, because the distance between the customers is now shorter due to having
the same map size with more customers. Despite this, the savings graph (Fig. 5.8) shows
still a nice saving for the 100 customer instances, and degrades a lot only at the 150 and
especially the 200 mark.

Fig. 5.10: Use of the drone’s endurance for a given number of customers

In Fig. 5.11, what can instead be seen is that the flight time over both the total
objective time and the truck-only time decreases as well. This further seems to confirm
that instances with more customers are built in somewhat of a wrong way, as customers
should have more space between them to benefit more of the usage of a drone. It can be
speculated that this actually mostly resembles a real-life scenario, in which deliveries are
surely grouped together by area, but are still well distributed in such area.

In Fig. 5.12 runtimes are presented, and the graph matches perfectly with time com-
plexity predictions: the Mathematical Model is solved in what appears to be non poly-
nomial time, whereas the results for the SA resemble constant time complexity O (n). In

5.3 Experiments and results 49

Fig. 5.11: Usage of drones with respect to total and truck time for a number of customers

particular it is also shown that the total runtime is worse for smaller instances, as also
shown earlier with Fig. 5.7, but asymptotically catches up with the time needed to find
the best solution in that run.

Fig. 5.12: Runtime for mathematical model versus runtimes for the SA

Finally in Fig. 5.13 and Fig. 5.14 are presented two solutions found by the SA, respec-
tively for Instance 010.3 and Instance 100.4 so that the reader can best appreciate
how sorties and truck would combine their work to deliver parcels together. They are
compared side-by-side with the optimal TSP tour for the instance.

Fig. 5.13: Comparison of SA solution and optimal TSP tour for Instance 010.3

50 Computations and results

Fig. 5.14: Comparison of SA solution and optimal TSP tour for Instance 100.4

5.3.2 Endurance changes

A second factor of interest would be seeing if and how the objective changes with a
different drone endurance. Ten runs of the three representative instances for three different
endurance values should highlight a trend, if there is one. The three endurance values
chosen for the test are the classical E = 1440 s (24 min), E′ = 900 s (15 min) and E′′ =
1980 s (33 min).

In Fig. 5.15 the reader can see that there appears to be an inversely proportional trend
going on: the more the endurance the less the average objective function seems to be. The
red line with a double arrow represents moreover the duration in seconds of the optimal
TSP tour, for reference.

It can moreover be calculated that the average improvement from the smallest to
the biggest value for the endurance is respectively 3.04% for Instance 050.3, 1.32% for
Instance 100.4, and 2.97% for Instance 100.3. Considering the limited sample size,
the statistical significance of these numbers is rather small, but it appears that an almost
doubling of the endurance produces an average 2.5% improvement in the solution quality.

Fig. 5.15: Changes in the average objective if the drone’s endurance is modified

5.3.3 Top speed changes

Along with endurance changes, another technology-influenced parameter for the drone
that if changed could produce interesting results is the drone top speed. This is tested

5.3 Experiments and results 51

for in the same way as for the endurance: ten runs of the three representative anstances
for three different top speed values. The top speed of the drone is changed to speed′ =
40 mph and speed′′ = 60 mph, other than the classical value of speed = 50 mph.

Fig. 5.16 seems to highlight an inverse proportionality between objective function and
drone speed. In fact, the less the drone speed, the worse the total time spent in the tour,
and viceversa. Again, the red line with a double arrow represents the optimal TSP tour’s
duration in seconds, as a reference.

Fig. 5.16: Changes in the average objective if the drone’s top speed is modified

The average improvement from the slowest to the fastest drone is estimated to be 4.80%
for Instance 050.3, 3.87% for Instance 100.4, and 1.93% for Instance 100.3. On
average, this means that a 50% increase in drone speed could imply a 3.5% improvement
in the solution quality. Of course, the statistical significance of such a small sample
only indicates a possible trend, and further investigation is required to enstablish proper
correlation. However, with these two results, it could also be argued that improving drone
speed is more important than improving its endurance, as it seems to lead to greater
improvements in the solution quality.

5.3.4 Different number of iterations

An important aspect of the Simulated Annealing is the relation between number of iter-
ations for which the algorithm runs and solution quality. In fact, with more iterations
comes a more thorough neighborhood exploration, and this leads to better chances of
finding a better solution. It is however a trade-off with computation time. To check if
this holds true here as well, the algorithm is run ten times the algorithm over the three
problems from the tuning sample, with the number of iterations changed to 2 millions and
8 millions other than the reference result with 4 millions.

As expected, the trend shows up in this case as well, with Fig. 5.17 showing that
both box and wiskers in the boxplot move to smaller objectives if the number of iteration
increases. For reference, there is once again a plot of the TSP optimal duration for each
instance, depicted as a red double arrow.

The improvement shown from 2 million to 8 million iterations is that of a 2.77% for
Instance 050.3, 4.73% for Instance 100.4, and 3.51% for Instance 100.3. An average
figure for the improvement provided by increasing the number of iterations is again of
3.5%, but with respect to the same value found for changing the speed, this time the
variance is smaller. It is a small sample, but it is showing that this seems to be the most

52 Computations and results

Fig. 5.17: Changes in the average objective if the number of iterations for the SA is
modified

consistent method of the three to obtain better solutions.

While the two previous methods imply real-world technological advancement, this one
relies barely on increasing the iterations for the SA, and with it, the runtime dedicated to
finding a solution. The trade-off seems to be worth it, and the sacrifices to make to get a
better solution can also be further limited by improving the algorithm.

5.3.5 Distribution of the objective function

Running the SA enough times on the same instance makes it possible to have a statistically
significant sample of the objective function. 250 runs should be an adequate sample size
to show how the objective is distributed in a proper way. For the analysis, the median
among the problems in Tab. tab:probSelOrdered is chosen, that is Instance 100.4, and
the parameters are all the ones from the parameter tuning performed in Sec. 5.2.

Since the distribution isn’t known a priori, some descriptive statistics is used on the
data from the 250 runs. Fig. 5.18 shows the data in terms of sample mean and sample
standard deviation, which are respectively µ = 18625.67 s and σ = 385.25 s. This first
graph shows that only 4 of the 250 data points are out of the ±3σ range and the results
seem to be slightly positively skewed.

The boxplot in Fig. 5.19 confirms the positive skewness of the sample, and it can be
argued that this means that the SA struggles to find very good solutions, which is to
be expected from a tough minimization problem: if more moves were implemented and
more time was available, a better tuning in accord with a more thorough neighborhood
exploration would simplify the issue a little. On top of the boxplot is how the data would
look if the distribution was a perfect fit for a normal curve, to be used in comparison with
the following figures.

In fact for a more thorough analysis of the data and to visually verify if the data
is normally distributed, two frequency bin plots are generated. In Fig. 5.21 the reader
can find the plot using the bin size given by the Freedman-Diaconis rule: given IQR =

interquartile range and n = sample size, the bin size should be h =
2 ∗ IQR

3
√
n

. This measure

returns a bin size of approximately h = 164.5 which leads to

⌈
max−min

h

⌉
= 13 bins .

This rule is usually preferred to others due to the IQR being less sensitive to outliers than
the sample standard deviation and due to the inverse proportionality to the cube root

5.3 Experiments and results 53

Fig. 5.18: Distribution of the sample data over the mean plus or minus three standard
deviations

Fig. 5.19: Boxplot and bell curve for the sample data

of the sample. The resulting graph is difficult to interpret: no clear peak exists and is
highlighted by the subdivision, but the data still seems to assume a quasi-bell shape.

To try and have a different point of view on the data, the simpler square root rule is
used to determine the bin number instead of their size, calculating the squared root of
the sample size and rounding up. This leads to 2

√
n = 16 bins. The resulting histogram is

shown in Fig. 5.22 where it can be seen that the uncertainty in the previous graph might
be due to a double peak. This might also, however, be due to overfitting thanks to the
high number of bins this second rule proposes. Except from the first and higher peak, the
data would be perfectly bell-like. No reason seems to evidently explain the presence of
the peak in the fifth bin.

It is also interesting to note that all the solutions in the sample are better than the
optimal TSP tour time for this instance, which is 20460 s. The minimum value found in
the sample, 17851 s, is 12.75% smaller than its TSP counterpart, while the maximum one,
19771 s, is 3.37% smaller.

54 Computations and results

Fig. 5.20: Distribution of the sample data over different binning techniques:

Fig. 5.21: Freedman-Diaconis choice for bins Fig. 5.22: Square-root choice for bins

5.3.6 Record-to-Record Travel

The Simulated Annealing metaheuristic can easily be changed to what is called Treshold
Accepting or Record-to-Record Travel (RRT) [Dueck, 1993, Li et al., 2007] with mainly
a change of the acceptance function. The main method would be quite similar to the
main method for SA (see Alg. 4.1), but a tentative solution would be accepted only if
tentativeSolution < bestSolution+threshold%∗bestSolution which can be easily rewritten
as tentativeSolution−bestSolution

bestSolution < threshold%.

One of the implementations of the RRT, the one implemented here, makes the threshold
linearly decrease in value until at the very end of the iterations it gets to be 0: current-

Threshold = currentThreshold − initialThreshold

MaxNumberIterations
.

Fig. 5.23: Calculation and results for the initial threshold value in RRT

By having only one threshold and no lower limit greater than zero to stop at, there
is only one parameter to tune, and tuning is done with ten runs of every one of the
representative instances, with a similar process to temperature tuning. In fact, Fig 5.23
presents a table very similar to the ones seen for temperature tuning in Sec. 5.2.2, but
instead of having three matrices 5×5 here there are three columns 5×1. z∗∗ have the lowest
objective value per instance found overall between temperature and threshold tuning, so
that results are comparable. As a matter of fact, the gaps seen here between z∗∗ and the
average value per ten runs, are worse by more than 1% in every cell of the matrices. This
has mainly to do with not having done any pre-tuning for this problem, and can only yet
be partly attributed to the algorithm being worse than SA. The chosen initial value for
the threshold will still be the one with smallest R in that table (also seen in the same
figure), which is in this case 0.100.

The results of the execution of ten runs for each instance are then shown in Tab. 5.5.
In it, the first four columns resemble the ones in the SA tables, whereas the final three
are calculated as the ratio between the value for the RRT and the one for the SA (gotten

5.3 Experiments and results 55

from Tab. 5.3 and Tab. 5.4).

Tab. 5.5: Results of all the simulations for Record-to-Record Travel
Instance ObjRRTµ TRRT

toBestµ (s) TRRT
totalµ (s) ObjRATIO TRATIO

toBest TRATIO
total

005.1 4464,88863 0,0038 85,521 1,00 0,00 0,31
005.2 3507,06846 10,2804 61,7012 1,00 0,16 0,17
005.3 3275,68949 16,6099 65,9183 1,00 1496,39 3,20
005.4 5312,46792 0,004 170,773 1,00 0,09 2,98
005.5 5510,16502 3,4739 671,5124 1,00 0,21 1,16
006.1 7080,94194 0,3193 18,5943 1,00 41,47 1,01
006.2 6147,95563 0,3881 15,6865 1,00 0,30 0,13
006.3 6835,15844 3,5902 30,9453 1,00 579,06 0,63
006.4 4452,5966 0,0604 662,3267 1,01 0,02 2,05
006.5 5392,07871 0,0185 209,018 1,00 0,00 0,35
007.1 5533,85258 0,309 162,5837 1,00 0,67 4,16
007.2 5342,68241 0,0007 87,0119 1,00 0,00 0,83
007.3 8015,94111 11,318 55,9334 1,03 1,29 1,18
007.4 7610,37708 0,0379 90,232 1,00 0,10 0,84
007.5 7010,98949 37,5402 50,5544 1,00 4,15 1,77
008.1 6709,01894 0,0323 172,8448 1,00 0,03 1,20
008.2 6587,17795 0,2168 112,3159 1,00 2,28 2,33
008.3 5852,48659 64,2363 183,6886 1,01 1,21 2,31
008.4 6914,78538 0,0063 50,4008 1,00 0,06 1,30
008.5 5961,25119 35,6739 79,1291 1,00 4,69 1,18
009.1 7338,77256 0,0739 150,4852 1,00 0,10 3,54
009.2 6204,62976 51,7431 89,5329 1,00 1,30 1,40
009.3 7698,11241 26,8548 34,6861 1,00 1,60 1,09
009.4 6828,5752 0,015 1222,9561 1,00 0,24 17,46
009.5 7802,66509 0,0087 68,3035 1,00 0,00 1,75
010.1 5989,05712 0,1674 51,4537 1,00 0,16 0,70
010.2 6394,38587 14,5645 73,2005 1,00 0,39 0,90
010.3 7073,14733 68,3544 234,87 1,07 1,22 1,75
010.4 8377,91735 1,3925 276,0546 1,00 1,13 1,10
010.5 9183,11056 3,5051 49,3717 1,02 0,78 1,44
050.1 12676,5095 151,3596 224,6151 1,01 2,12 1,05
050.2 12293,3567 121,8595 212,8452 0,99 1,34 1,02
050.3 12513,9777 162,4965 247,0578 0,99 1,58 1,29
050.4 13136,4954 136,4423 182,989 1,02 1,38 0,99
050.5 12330,8456 133,9005 193,6886 1,01 1,46 1,02
100.1 18135,1372 306,2095 323,0247 1,01 1,24 1,21
100.2 17561,3743 301,1968 319,045 1,01 1,23 1,17
100.3 17556,9235 318,2933 339,7488 1,02 1,32 1,28
100.4 18827,64 286,5011 299,1983 1,02 1,15 1,12
100.5 17752,5932 308,1234 318,3444 1,02 1,07 1,02
150.1 22789,6625 430,0093 434,0195 1,00 1,24 1,19
150.2 22573,2789 454,6185 459,2116 1,00 1,22 1,20
150.3 23373,0017 469,7369 473,0695 1,01 1,28 1,24
150.4 22445,3613 434,7686 436,9038 0,99 1,19 1,14
150.5 23354,2395 425,6604 432,8136 1,02 1,16 1,13
200.1 26128,6034 775,5805 776,9429 0,97 1,74 1,70
200.2 28076,4362 824,3249 825,4466 1,01 1,87 1,82
200.3 26755,4297 595,9597 597,4263 0,99 1,21 1,17
200.4 27871,901 506,5174 507,3796 0,98 1,00 0,98
200.5 27519,7059 610,158 610,8755 0,99 1,22 1,19

Apart from a few outliers (Instances 005.3, 006.1, 006.3 and 009.4, which are cut off
from the next graphs) all the values stay between very well defined and reasonable bounds.

The objective ratios can be seen in Fig. 5.24 where it can be seen that results for the
smaller instances are mostly clustered around the unity, which means that the solutions
are the exact same or very close-by. For the 50 and 150 customer instances results are
again around one, but with more variance. For 100 customers instances all results are
slightly above, which means that the RRT results are worse than the SA, whereas for 200
customer instances results are mostly under one, which means that the RRT outperforms
the SA.

As can be seen in Fig. 5.26, however, computation times are vastly superior for the
RRT on the bigger instances, even up to and more than 1.5x. Conversely, time ratios for

56 Computations and results

Fig. 5.24: Ratios of average RRT and average SA objective

Fig. 5.25: Time ratios (RRT/SA) for the smaller instances

Fig. 5.26: Time ratios (RRT/SA) for the bigger instances

5.3 Experiments and results 57

the smaller instances show mostly to be much more in favour of the RRT, at least until 8
customers per instance. Then the situation returns to show that RRT is definitely slower
than SA.

All in all, considering that much less time was spent in tuning and working with RRT,
results are not to be overlooked as with a longer computation time comes also a seeming
improvement in the solution quality output.

Conclusions

In this thesis, Simulated Annealing was shown to be a good way to find solutions for the
FSTSP such that it could be practical to use in real-world applications. Moreover, the
possible savings of using a truck and drone combination are once again shown among the
computational results. Drones seem to be shaping up as an important way to perfrom
last-mile delivery in an efficient way.

Chapter 1 briefly introduced the problem to the reader, such that the real-world ties are
clear. Chapter 2 explores the existing literature on drone usage in the delivery business,
but also with focus on sureillance and military operations. Chapter 3 completely defines
the problem with a mathematical model heavily based on the FSTSP by Murray and
Chu [Murray and Chu, 2015]. In Chapter 4 different possible solutions to the problem are
discussed and this can only lead to using the Simulated Annealing metaheuristic to solve
the problem. It is shown thoroughly how it is implemented in its only move and how
evaluation of a solution is performed, case by case. Finally, after a complete tuning for
the parameters of the SA, Chapter 5 shows numerical analyses on it.

There, it is shown with 6 experiences that the use of drones permits to save a consid-
erable amount of time in touring a set of nodes, and that they should be considered as a
feasible way to improve and streamline parcel delivery. The SA is shown to be finding good
solutions for the instances provided in linear time. Changes in the operating conditions
are shown to be somewhat related in a meaningful way to the objective function, such
that if drone endurance or drone top speed or the number of iterations the SA is let run
increase, then the time it takes to complete the tour decreases. The objective function is
also shown to be somewhat normally distributed by means of descriptive statistics. Finally
a comparison with Record-to-Record Travel highlights the pros and cons of using the one
or the other method.

First and foremost, future research should finish developing the three moves not imple-
mented in this thesis, and possibly could explore the other approaches described together
with the SA for the solution of the problem. It would be feasible also to shave some time
off of the current implementation to be able to increase the maximum iterations and give
a better chance to the SA to explore a neighborhood. An analysis on possible correlation
between the optimal TSP tour for any instance and the optimal truck tour in the FSTSP
is surely to be beneficial and insightful on how to build better heuristics for finding better
solutions to the problem. A lower bound for the FSTSP could also be an interesting topic
of research, as [Agatz et al., 2015] have found one for their TSP-D but it doesn’t seem to
be directly applicable to the FSTSP since TSP-D has the drone tied to the road network
exactly to be able to have that lower bound defined. The important branch of research
that is the VRP area of this problem should be explored as it would lead to even more
practical and real-world use cases.

While future research on the technical side of it is still underway, from the technological
point of view many innovations are quickly coming to the market for drones. Hydrogen fuel
cells seems to be a promising way to be able to safely and steadily increase the endurance
of a drone from the current standards of 20-30 min to over two hours [Popper, 2015a],
greatly improving the already good case in favour of drones. Moreover, refueling would
be even faster, and even if in the model it is counted as an independent task (batteries
are thought to be available in a steady supply) it would improve things even further.
Advancements in obstacle detection and avoidance technology will make it also possible
for drone to fly completely autonomously very soon [Nicas and Bensinger, 2015].

All in all, the future seems to be shaping up so that drone deliveries will have a very
bright one.

59

60 Computations and results

Bibliography

[Onl, 2008] (2008). The future of CEP services.

[Onl, 2012] (2012). Online Retail Sales hit £50bn.

[Giz, 2015] (2015). Amazon to begin testing new delivery drones in the US.

[FPS, 2015] (2015). FPS Takes Flight with First Commercial UK Drone Delivery.

[Hor, 2015] (2015). HorseFly UAV Specifications.

[Cap, 2015] (2015). Volare alto con i droni.

[Agatz et al., 2015] Agatz, N., Bouman, P., and Schmidt, M. (2015). Optimization Ap-
proaches for the Traveling Salesman Problem with Drone. Technical Report ERS-2015-
011-LIS, Erasmus Research Institute of Management (ERIM).

[Applegate et al., 2006] Applegate, D., Bixby, R., Chvatal, V., and Cook, W. (2006).
Concorde TSP solver.

[Applegate et al., 2007] Applegate, D., Bixby, R. E., Chvátal, V., and Cook, W. J. (2007).
Concorde TSP solver - Home Page.

[Applegate et al., 2011] Applegate, D. L., Bixby, R. E., Chvatal, V., and Cook, W. J.
(2011). The Traveling Salesman Problem: a Computational Study. Princeton University
Press.

[Ball, 2013] Ball, J. (2013). Amazon to deliver by drone? Don’t believe the hype.

[Bermingham, 2014] Bermingham, F. (2014). FedEx Researching Drone Delivery But Not
For Widespread Use.

[Boone et al., 2015] Boone, N., Sathyan, A., and Cohen, K. (2015). Enhanced Approaches
to Solving the Multiple Traveling Salesman Problem. AIAA Infotech at Aerospace,
SciTech.

[Bortoff, 2000] Bortoff, S. A. (2000). Path Planning for UAVs. Proceedings of the Ameri-
can Control Conference, 1(6):364–368 vol.1.

[Busetti, 2003] Busetti, F. (2003). Simulated Annealing Overview. JP Morgan, Italy.

[Capt. Tice, 1991] Capt. Tice, B. P. (1991). Unmanned Aerial Vehicles: The Force Mul-
tiplier of the 1990s. Airpower Journal, V(1).

[Černỳ, 1985] Černỳ, V. (1985). Thermodynamical Approach to the Traveling Salesman
Problem: an Efficient Simulation Algorithm. Journal of Optimization Theory and Ap-
plications, 45(1):41–51.

[Cobweb Information Ltd, 2013] Cobweb Information Ltd, . (2013). Uk market synopsis
- courier and parcel services.

[Dorigo et al., 2006] Dorigo, M., Birattari, M., and Stützle, T. (2006). Ant Colony Opti-
mization. IEEE Computational Intelligence Magazine, 1(4):28–39.

[Drexl, 2012] Drexl, M. (2012). Synchronization in Vehicle Routing – A Survey of VRPs
with Multiple Synchronization Constraints. Transportation Science, Transport Science,
46(3):297–316.

61

62 BIBLIOGRAPHY

[Dueck, 1993] Dueck, G. (1993). New Optimization Heuristics - The Great Deluge Algo-
rithm and the Record-to-Record Travel. Journal of Computational Physics, 104(1):86–
92.

[Duncan, 2015a] Duncan, J. S. (2015a). Exemption No. 11290, Regulatory Docket No.
FAA–2014–0474.

[Duncan, 2015b] Duncan, J. S. (2015b). Exemption No. 13564, Regulatory Docket No.
FAA–2015–3055.

[Eppstein, 1998] Eppstein, D. (1998). Finding the k Shortest Paths. Siam Journal on
Computing, Siam J. Comput, Siam J Comp, Siam J Comput, Siam J. Computing,
28(2):652–673.

[Evans, 2015] Evans, O. (2015). Matternet, named Technology Pioneer 2015 by the World
Economic Forum, appoints ex-Chief Cargo Officer of Swiss International Air Lines as
new Head of Global Business Development.

[French, 2015a] French, S. (2015a). Drone delivery is already here — and it works.

[French, 2015b] French, S. (2015b). The Apple Store now sells drones.

[Ha et al., 2015] Ha, Q. M., Deville, Y., Pham, Q., and Hà, M. H. (2015). Heuristic
methods for the Traveling Salesman Problem with Drone. CoRR, abs/1509.08764.

[Hern, 2015] Hern, A. (2015). DHL launches first commercial drone ’parcelcopter’ delivery
service.

[Johnson and Jacobson, 2002] Johnson, A. and Jacobson, S. (2002). On the Convergence
of Generalized Hill Climbing Algorithms. Discrete Applied Mathematics, 119(Issues
1–2):37 – 57. Special Issue devoted to Foundation of Heuristics in Combinatoria l
Optimization.

[Jünger et al., 1995] Jünger, M., Reinelt, G., and Rinaldi, G. (1995). Chapter 4 The trav-
eling salesman problem. Handbooks in Operations Research and Management Science,
7:225–330.

[Karp, 1972] Karp, R. M. (1972). Complexity of Computer Computations: Proceedings of
a symposium on the Complexity of Computer Computations, held March 20–22, 1972,
at the IBM Thomas J. Watson Research Center, Yorktown Heights, New York, and
sponsored by the Office of Naval Research, Mathematics Program, IBM World Trade
Corporation, and the IBM Research Mathematical Sciences Department, chapter Re-
ducibility among Combinatorial Problems, pages 85–103. Springer US, Boston, MA.

[Kashuba et al., 2015] Kashuba, S. V., Lysenko, O. I., Novikov, V. I., and Alekseeva,
I. V. (2015). Optimization of UAV Path for Wireless Sensor Network Data Gathering.
Actual Problems of Unmanned Aerial Vehicles Developments (APUAVD), 2015 IEEE
International Conference, pages 280–283.

[Kirkpatrick et al., 1983] Kirkpatrick, S., Gelatt, C. D. J., and Vecchi, M. P. (1983). Op-
timization by simulated annealing. Science, 220(4598):671–680.

[Koebler, 2013] Koebler, J. (2013). The Next Gun Debate? Armed Drones Could Be
Protected By the Second Amendment.

[Li et al., 2007] Li, F., Golden, B., and Wasil, E. (2007). A Record-to-Record Travel
Algorithm for solving the Heterogeneous Fleet Vehicle Routing Problem. Computers
and Operations Research, 34(9):2734–2742.

BIBLIOGRAPHY 63

[Lin, 2011] Lin, K. Y. C. (2011). A vehicle routing problem with pickup and delivery
time windows, and coordination of transportable resources. Computers and Operations
Research, 38(11):1596–1609.

[Lipowski and Lipowska, 2012] Lipowski, A. and Lipowska, D. (2012). Roulette-Wheel
Selection via Stochastic Acceptance. Physica A: Statistical Mechanics and its Applica-
tions, 391(6):2193 – 2196.

[Little, 2013] Little, K. (2013). Did Amazon just pull off the best PR stunt ever?

[Madrigal, 2014] Madrigal, A. C. (2014). Inside Google’s Secret Drone-Delivery Program.

[Mathew et al., 2015] Mathew, N., Smith, S. L., and Waslander, S. L. (2015). Planning
Paths for Package Delivery in Heterogeneous Multirobot Teams. IEEE Transactions
on Automation Science and Engineering, 12(4):1298–1308.

[Murray and Chu, 2015] Murray, C. C. and Chu, A. G. (2015). The flying sidekick trav-
eling salesman problem: Optimization of drone-assisted parcel delivery. Transportation
Research Part C: Emerging Technologies, 54:86–109.

[Nicas and Bensinger, 2015] Nicas, J. and Bensinger, G. (2015). Delivery Drones Hit
Bumps on Path to Doorstep.

[Nilsson, 2003] Nilsson, C. (2003). Heuristics for the traveling salesman problem. Technical
report, Tech. Report, Linköping University, Sweden.

[Popper, 2015a] Popper, B. (2015a). Hydrogen fuel cells promise to keep drones flying for
hours.

[Popper, 2015b] Popper, B. (2015b). The teenager behind the drone gun now has a drone-
mounted flamethrower.

[Quaritsch et al., 2010] Quaritsch, M., Kruggl, K., Wischounig-Strucl, D., Bhattacharya,
S., Shah, M., and Rinner, B. (2010). Networked UAVs as Aerial Sensor Network for
Disaster Management Applications. Elektrotechnik Und Informationstechnik, Elektr.
Inf. Tech, 127(3):56–63.

[Richards et al., 2002] Richards, A., Bellingham, J., Tillerson, M., and How, J. (2002).
Coordination and Control of Multiple UAVs. In AIAA guidance, navigation, and control
conference, Monterey, CA. American Institute of Aeronautics and Astronautics.

[Rosenkrantz et al., 2009] Rosenkrantz, D. J., Stearns, R. E., and Lewis, P. M. (2009).
An analysis of several heuristics for the traveling salesman problem. Fundamental Prob-
lems in Computing: Essays in Honor of Professor Daniel J. Rosenkrantz, Fundamental
Probl. in Comp.: Essays in Honor of Prof. Daniel J. Rosenkrantz, pages 45–69.

[Savuran and Karakaya, 2015] Savuran, H. and Karakaya, M. (2015). Route Optimization
Method for Unmanned Air Vehicle Launched from a Carrier. Lecture Notes on Software
Engineering, 3(4):279.

[Shang et al., 2014] Shang, B., Wu, C., Hu, Y., and Yang, J. (2014). An Algorithm
of Visual Reconnaissance Path Planning for UAVs in Complex Spaces. Journal of
Computational Information Systems, 8(1):1–8.

[Smiley, 2015] Smiley, L. (2015). These drones are already atarting to deliver medicine,
books, and pizza.

64 BIBLIOGRAPHY

[Toth and Vigo, 2014] Toth, P. and Vigo, D. (2014). Vehicle routing: problems, methods,
and applications, volume 18. Siam, second edition.

[Tremonti, 2015] Tremonti, A. M. (2015). Curbing Voyeurism: Peeping Toms go high
tech but not undetected.

[Union, 2014] Union, U. P. (2014). Development Strategies for the Postal Sector: an
Economic Perspective. Eburon Academic.

[Zheng et al., 2005] Zheng, C., Li, L., Xu, F., Sun, F., and Ding, M. (2005). Evolutionary
Route Planner for Unmanned Air Vehicles. IEEE Transactions on Robotics, 21(4):609–
620.

[Zito, 2016] Zito, D. (2016). First Test Delivery of the Workhorse Group HorseFly Drone
Featured on NBC-TV Affiliate.

	Abstract
	Contents
	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Thesis plan

	Literature review
	Delivery applications
	Surveillance applications
	Military applications

	Flying Sidekick Traveling Salesman Problem
	Model notation
	Mathematical Model
	Model description
	Changes from the original model
	Further considerations on the variables
	Visual example of a timeline

	Simulated Annealing
	Possible solution approaches
	Simulated Annealing
	Ant Colony Optimization
	Naïve approach

	Implementation of the Simulated Annealing
	Data structures
	Moves in the Simulated Annealing
	Solution evaluation

	Computations and results
	Test instances
	Parameter tuning
	Problem selection
	Temperature selection

	Experiments and results
	Main reference experiment
	Endurance changes
	Top speed changes
	Different number of iterations
	Distribution of the objective function
	Record-to-Record Travel

	Conclusions
	Bibliography

