
UNIVERSITÀ DEGLI STUDI DI PADOVA

FACOLTÀ DI INGEGNERIA

Dipartimento di Ingegneria dell’Informazione

TESI DI LAUREA MAGISTRALE IN BIOINGEGNERIA

DEVELOPMENT OF A SOFTWARE TOOL

FOR ANNOTATING VASCULAR FEATURES

IN IMAGES OF THE RETINAL FUNDUS

Relatore: Prof. ALFREDO RUGGERI

Correlatore: Prof. EMANUELE TRUCCO

Laureando: ILARIA PIERETTI

ANNO ACCADEMICO 2012-2013

II

Index

Abstract V

Acknowledgements VII

1 Introduction 1

2 Related works 5

3 Annotation tool development 7

3.1 Requirements Analysis . 7

3.2 Software architecture and design . 10

3.3 Implementation of the tool . 13

3.3.1 Start menu . 13

3.3.2 Optic Disc Annotation Tool . 17

3.3.3 Fovea Annotation Tool . 21

3.3.4 Junctions Annotation Tool . 26

3.3.5 Widths Annotation Tool . 31

3.3.6 Info environment . 33

3.3.7 Functions to write outputs . 34

3.3.8 Functions to read the data . 37

3.4 Documentation . 37

4 Application: the study about Sarcopenia 39

5 Conclusions 47

Appendix A I

Appendix B XV

Bibliography XLIX

Abstract

Nowadays, the analysis of the images of the retinal fundus palys a key role in the prevention

and the diagnosis of diseases of different kind, such as diabete and cerebrovascular diseases.

The purpose of this thesis is to present the development and the use of a software for the

manual annotation of retinal features (optic disc, fovea, junctions and widths of the blood

vessels). The VAMPIRE-Annotation Tool, developed with the Matlab GUI, presents a user-

friendly graphical interface, allows the user to upload previously recorded data and also saves,

for each measure taken, additional information that need to be able to better characterize it.

This tool is essential for the creation of ground truth for the validation of automatic algorithms.

A study that aims to identify possible retinal biomarkers for Sarcopenia is reported. During

this study, some annotations are performed with the VAMPIRE-Annotation Tool, thanks to

which the significance of the additional information recorded for each measure, with respect to

the measure itself, is analyzed.

Acknowledgements

I wish to express my gratitude to all the members of the VAMPIRE team, Manuel, Lucia, Enrico,

Kris, Tom, Devanjali and Gavin, without whom this thesis would not have been possible. I want

to especially thank my supervisor Prof. Manuel Trucco for having welcomed me in the team

and in the CVIP group of the University of Dundee with great hospitality, and for allowing

me to participate in both prestigious academic meetings and lively intercultural dinners. Deep

gratitude is also due to Lucia Ballerini, my guardian angel during my six months in Scotland,

whose knowledge, assistance and patience saved me in times of distress during this study. Special

thanks also to Doctor Peter Wilson who has enlightened us with his knowledge, and for helping

us with great patience, professionalism and enormous kindness.

Chapter 1

Introduction

The retina is the innermost membrane of the eye and it is a vascularised tissue. Its vascular

network consists of arterial and venous ramifications that originate from the optic disc and

progressively bifurcate into smaller branches that spreadout across the retina. This is the only

place in the whole body where blood vessels are clearly visible on the surface, and therefore

their visualization can be done non-invasively and in vivo [1]. This is extremely important

because the vascular network of the retina is believed to be governed by physiological principles

that optimize its efficiency [2] and so the monitoring of its geometry plays a key role in the

diagnostics and the prevention of many diseases, not only eyepieces, but also systemic [1] and in

the brain [3]. For this reason, over the past years it has been heavily invested in digital imaging

systems, which are in constant and rapid evolution [1].

In order to efficiently identify in a large set of images the areas related to pathologies, an

automatic system must first be able to identify the landmarks on the retinal surface:

- the optic disc, a small blind spot on the surface where the fibers of the retina leave the

eye and become part of the optic nerve

- the fovea, region of the retina with maximum density of photoreceptors

- the entire vascular system, where you must be able to measure the widths and the bifur-

cation angles of the vessels in each point.

Once these reference points are identified you can get all those values and indices that act as

biomarkers for the various diseases. An important example of biomarker is the arteriolar-to-

venular diameter ratio (AVR), which is the ratio between the widths of arterioles and venules,

whose variations are associated with stroke, cerebral atrophy, cognitive decline, and myocardial

infarct [4]. Other examples of biomarkers are the bifurcation angles and the tortuosity of the

vessels.

2 1. INTRODUCTION

It is precisely in this context of identification of landmarks and computation of biomarkers

that the semi-automatic software VAMPIRE was born in 2011 and it is still in continuous

development. VAMPIRE offers a public and user-frendly platform, with which users can quantify

optic disc, fovea, widths of the vessels and bifurcations angles of junctions in a large set of fundus

camera images, in order to produce data about tortuosity, bifurcation coefficients and fractal

analysis [5]. Regarding the detection of the optic disc and fovea two algorithms have recently

been developed [6], based on two very simple concepts: the OD is the brighter area of the retina

and with the higher concentration of blood vessels, the macula instead is the darkest area and it

is located in an avascular zone. The algorithm for the quantification of the optic disc, developed

by Giacchetti et al. [7], converts the image to grayscale, from which the vascular network is

then identified using standard techniques of segmentation. The vascular map is then removed

from the picture, on which then inpainting algorithms are applied. The Fast Radial Symmetry

transform is applied to the inpainted image, generating a map of bright symmetries on which,

by exploiting the gradient of brightness on four different scales, the contour of the optic disc,

assumed elliptical, is found [7]. The results obtained with this algorithm are very good (although

in some cases there are still errors, even in good quality images as showed in Figure 1.1) and so

it was officially included into the VAMPIRE software. Regarding the fovea, an algorithm very

similar has been implemented, with focus on the symmetry of dark structures instead of those

bright [6]. The results in this case are not great, and then, for now, the VAMPIRE software has

not yet incorporated this technique, and therefore remaining without the possibility of fovea’s

automatic annotation. As regards the identification of the retinal vascular network, VAMPIRE

uses segmentation techniques with Soares’ method [8], to which a procedure of refinement of

vessels’ contours obtained from vascular binary map was then added [9]. The Soares’ method

with this improvement produces excellent results with small images (800x600 pixels) because the

training was executed precisely on this kind of databases (ie REVIEW, STARE and DRIVE),

but when applied on larger images (ie 3500x2300 pixels) the technique fails in many areas as

can be seen in Figure 1.2. For now, there are no better alternative techniques for mapping

vessels, then this is what is currently used in VAMPIRE, and in these binary maps is where

junctions are selected. Regarding widths instead, an alternative technique has been included

in VAMPIRE, just as default. This method, developed by Lupascu et al. [10], is based on the

construction of a parametric surface model of local cross-sectional intensities, and then using

decision trees for regression to estimate width from the parameters of the best-fit surface. This

3

Figure 1.1: Automatic wrong detection of the optic disc

method, as it is based on techniques that do not involve training, works well for images of any

size. In the VAMPIRE software the user clicks on a point inside the vascular network and on

that point the width of the vessel is estimated using the method explained above. As regards

the A/V classification, despite the development of new algorithms is in progress, VAMPIRE is

not yet able to automatically perform this classification.

The VAMPIRE software therefore needed a manual annotation tool included in the package

for the validation of these new algorithms [6] but also to take the place of the automatic software,

if it does not meet cernatin needs. There were already some other manual tools developed by

the team, but each of them only allowed the annotation of one or two features, the data storage

was completely different between the different tools, and they were not very user-friendly and

therefore used only by the members of the team or by clinicians very closed to it.

In light of this, the VAMPIRE-Annotation Tool, in addition to satisfying requirements that

instead the old ones did not, it should also be supportive of VAMPIRE in what it is still

incomplete (i.e. fovea, A/V classification) or when it produces errors (i.e. OD mistakenly iden-

tified, wrong segmentation). In parallel to all this, ophthalmologists of the Ninewells Hospital

of Dundee have exposed to the VAMPIRE team a new vision for the treatment of data in the

statistical context, to which underlies the need to attach to the data some additional informa-

tion. This additional information is seen as an “adjustment” that has to be applied to the raw

4 1. INTRODUCTION

Figure 1.2: Failure of segmentation technique in some areas

measure. For this reason the tool has been designed in such a way that it is not limited only to

the simply quantification of the features (location and size of OD and fovea, widths values in

a point and Cartesian coordinates of that point, the values of bifurcation angles for a junction

and Cartesian coordinates of the junction), but that it adds even more additional information

(which are going to be exposed in Chapter 3) to characterize them in a really complete way.

In this thesis, after a brief overview of other manual tools for the analysis of images of

the retina developed by other teams (Chapter 2), all the steps taken for the development of

VAMPIRE-Annotation Tool are shown in Chapter 3, describing in detail all the various compo-

nents with the aid of code fragments and images. Afterwards, in Chapter 4, the use of the tool

in the context of the clinical study “Does the European Working Group on Sarcopenia in Older

People algorithm detect all those vulnerable?” is described, ending then, in the last Chapter,

with some conclusions and discussions about the work done and the future one.

Chapter 2

Related works

In view of the automated software, many teams make use of manual tools to validate the

algorithms and to address some possible gaps. However, there are few specific and detailed

publications about the manual tools used, which are only indirectly mentioned in some papers

regarding validation. In order to have a reliable validation of automatic algorithms is necessary

to have appropriate instruments for manual annotation [19], which can be both very complex,

but in some cases also extremely simple and specific. An example of the latter case is the tool

used in the study [18] for the validation of the Computer Assisted Image Analysis of the Retina

(CAIAR) program, in which two observers were asked to assign a value of tortuosity from 0 to 5

to blood vessels of the 14 subjects involved in the study. Also in other studies involving CAIAR

hand instruments were used: for example, in a study about the retinopathy of prematurity

(ROP) performed by Shah, Wilson et al. [17] at the Division of Epidemiology and Genetics of

the Institute of Ophthalmology in London, they have used the annotations of four ROP experts

who used a tool for the manual measure of width and tortuosity of the vessels. Thanks to this

ground truth, perform statistical comparative analysis both with CAIAR and also between the

four subjects involved has been possible for the authors.

A specific tool for the geometry of the bifurcation has been implemented by Al-Diri et al.

[20]. Regarding the bifurcation angles, these are obtained by first selecting the central point

of the junction and then clicking at the end of the three segments of the vessels involved.

Immediately after, the three segments that follow the central axis of the vessel are shown on

the screen (similar to what happens in VAMPIRE-Annotation Tool). For the measure of the

widths, small rectangles aligned along the vessel are used: to place a rectangle is requested to

the user to select two points on the central axis of the vessel and then a point on one of the

two edges of the vessel, near the central points. The rectangle is positioned according to the

location of these three points. For both the junctions and the widths, the first selections can be

changed and adapted to the structure of the vessel until they are believed to be correct.

6 2. RELATED WORKS

The Laboratory of Biomedical Imaging of the Department of Information Engineering of

the University of Padua has developed a tool for manual tracking of the retinal vessels [16]. The

instrument ROPnet is a web-based tool that allows the quantification of width and tortuosity

of vessels, thanks to the manual tracking of the vascular axis. The tool allows the upload of a

single image at a time, on which the entire procedure is completed before going to the next.

ROPnet allows the user to choose whether to display the image in the RGB or in the green

channel format and to zoom in on it. During the use of the tool a online guide is always easily

accessible. First, the annotation of the optic disc is required and starts clicking at the center

of the OD. From here a circle with fixed center and moving boundary is formed and has to be

adapted to the contours of the real OD. Later, the tool prompts you to select on the image

the two extreme points of the vessel segment that has to be analyzed. A straight line passing

through the two points appears. The line can be changed (keeping the ends fixed) by clicking

on other points inside the vessel to make sure that it fits its particular shape. On this curve,

automatic algorithms for the calculation of width and tortuosity are then applied.

As previously stated, the amount of manual tools for the annotation of retinal fundus images

that are documented in the literature is poor compared to what really exists. Taking into account

this fact, we try to do a little summary about the completeness of these tools with respect to

the number of features that can be annotated. As you can see from the table in Figure 2.1

the general tendency is to create specific tools according to the request of a certain study. The

VAMPIRE-Annotation Tool instead is designed in a different perspective, with the aim to be

multifunctional and suitable for every type of study, in order to be able, independently of the

context, to produce data congruent and connected also between the different features.

Figure 2.1: Features analyzed with the manual tools reported

Chapter 3

Annotation tool development

For the development of the VAMPIRE-Annotation Tool, it was decided to partially follow the

“Waterfall model”, convenient for small and relatively easy software projects. The “flow” of

the development stages (Requirements Analysis, Software architecture and design, Implemen-

tation, Documentation) is described in this chapter. As regards the part of Testing, this has

been developed thanks to the use of the tool during the study described in Chapter 4.

3.1 Requirements Analysis

Compared to the older manual tools mentioned in Chapter 2, the VAMPIRE-Annotation Tool

has to allow a complete annotation of all the features (optic disc, fovea, vessels’ width and

bifurcation angles of the junctions), saving the related data in a consistent way between them.

Being the production of ground truth one of the two main purposes of this tool, and being the

ground truth the more reliable the more detected by a specialist (then a doctor), it must lodge a

simple and immediate interface for the user. One of the most innovative characteristics the tool

has to have is saving all the useful information for the application of what in Chapter 1 we called

“adjustments” to the data, not saving only the Cartesian coordinates and the final measure as

the old ones. As mentioned in the introduction, these adjustments are additional information

that must be saved during the annotation. The basic information until now considered essential

was:

- for OD and fovea: the size and the position expressed in Cartesian coordinates

- for widths and junctions: the Cartesian coordinates of the measuring point, measure and

type of vessel (artery or vein).

8 3. ANNOTATION TOOL DEVELOPMENT

Figure 3.1: Representation of the polar coordinates of a point of interest (green cross): the

black arrow represents the linear coordinate, in blue the angular coordinate with respect to the

reference axis (in red)

The most important adjustment are definitely the polar coordinates of a point on the retinal

surface. In fact, while those Cartesian give a pure information of position within the image,

polar ones situate the point in the context of the retinal surface, and especially in relation to the

features of reference. As can be seen from the Figure 3.1, the polar coordinates that are saved

are special and have a pole in the optic disc. The radial distance from the OD is “classical”,

while the angular one has particular characteristics: first of all it has opposite direction for the

right (counterclockwise) and left eye (clockwise); this is because in nature eyes are symmetrical

with respect to the central part of the face, and thanks to this choice of angular coordinate, nasal

structures and temporal structures of the two eyes have congruent angles. Another important

fact is that the angle is not calculated from an axis parallel to image’s contours, but from

the one perpendicular to the one that connects fovea and optic disc. The polar coordinates so

are not related to the image (such as Cartesian), but to the physiology of the retina of that

particular patient.

Knowing that the fovea in many images is difficult to accurately locate (as in Figure 3.2, and

being the fovea, as explained above, an important point of reference, save information about its

visibility becomes vital to understand the quality of the annotation. If the fovea is not clearly

visible, its annotation will be very rough, and therefore the polar coordinate of that point can be

3.1. REQUIREMENTS ANALYSIS 9

quite incorrect, with obvious disastrous consequences in the subsequent data analysis. During

the annotation of the widths, the user is asked to specify the generation of the segment of the

vessel in which the measure is performed. This is an important adjustment to the measure of

width, which may strongly depend on the number of times the vassel bifurcates downstream.

Figure 3.2: On the left side a fovea well visible; on the right side an image with the fovea clearly

individuable

In addition to the functions of a manual tool, the VAMPIRE-Annotation Tool has to remain

an auxiliar package for the VAMPIRE software, and thus the production of interchangeable data

and comparable with automatic ones is required. In order to meet this need, the points at which

the measures have to be taken must be identified thanks to coordinates referred to the same

origin (for the Cartesian the upper left corner of the image, for the polar ones the optic disc)

and that is why we chose to enter the automatic annotation of the OD found with the same

algorithm of VAMPIRE [7] (described in Chapter 1). As an adjustment to the annotation of

the optic disc, saving the annotation type (automatic or manual) it was considered util to be

able, at a later time, to evaluate the quality of the annotation made. In a broad view of “data

library”, we also felt the need of a tool that not only produces data from scratch, but that could

also interact with data from previous annotations. So the tool has to allow the loading of old

data and allow different uses that will be explained in the following paragraphs.

10 3. ANNOTATION TOOL DEVELOPMENT

3.2 Software architecture and design

The tool has been designed and developed with the Graphical User Interface (GUI) of Matlab,

using its basic elements such as buttons, panels, etc. [14]. The annotation mode of features is in-

trinsically different for each of them, so the design of different environments of interaction with

the user was necessary. The basic structure of the tool has to consist of five different environ-

ments (and thus five different screens): one at the beginning where to insert user identification

and planning of the work, and then other four, one for each feature. These five environments

are represented by the five columns of the scheme of Figure 3.3, which shows and describes the

structure of the tool.

As explained in the previous paragraph, the tool has to meet some requirements, and to

ensure this happens, a precise structure of the tool itself is needed. To make the job of the

user less burdensome as possible, the tool should provide an initial planning of the annotation,

excluding any image in the set that could not be annotated, and immediately choosing the type

of annotation. In the first part then the possibility of having an overview of all the images has

to be present, so the user can already exclude those damaged or otherwise not suitable for the

annotation; in this way they should not then appear again and unnecessarily every time during

the annotation of the features (thus wasting time for the user). In addition, selecting the type

of path for the annotation is necessary to do immediately:

- if the need is for a complete annotation, then the tool has to give only the possibility to

upload the images, and after that it has to require the annotations of optic disc and fovea,

and to leave optional the ones of junctions and widths.

- if the need is to continue a previous annotation using optic disc and fovea already anno-

tated, then the tool would automatically allow not only the loading of images, but also

of the old data contained in the text files, and then it has automatically to prohibit the

annotations of OD and fovea, and to leave optional the ones of junctions and widths. If

the purpose was to take measures in points other than those of the previous annotation,

then the tool has simply to plot on screen the points of the old annotation, allowing a

complete annotation of junctions and/or widths; but if the purpose is to measure angles

and/or widths in the same points of the previous annotation, then the tool would auto-

matically load the “old” points and would allow the user the only measure without adding

additional points.

3.2. SOFTWARE ARCHITECTURE AND DESIGN 11

Figure 3.3: Scheme of the architecture of the VAMPIRE-Annotation Tool

12 3. ANNOTATION TOOL DEVELOPMENT

Another property the program has to possess in order to facilitate the use, is to make

permanent the order of annotation of the various features. In fact, in order to measure junctions

and widths, OD and fovea has to be already annotated (by a previous user or the current one),

then the tool has to create a sort of forced path the user has to follow and could not do in a

different way (otherwise errors would be generated). These paths are reported in the diagram

of Figure 3.3 with red, green and yellow arrows; specifically the red arrows indicate the path

that the tool get the user to follow for a new annotation, the green arrows indicate the path for

an annotation with OD and fovea loaded by a previous one and junctions and widths measured

in new points, and finally the yellow arrows indicate the path for an annotation with OD, fovea

and measuring points loaded by a previous one.

The tool has also to save the information useful for the application of the adjustments

(explained in Chapter 1). In the following paragraphs the various functions used for processing

this information (i.e polar coordinates, visibility of the fovea, generation of a vessel, etc.) will

be described.

As regards the structure of the tool specifically, the understanding can be facilitated looking

carefully the scheme of Figure 3.3, knowing that each block represents a portion of code (con-

sisting of one or more functions) that aims to produce the same result. As one can easily see,

the environment START has its own particular structure, and instead OD and fovea between

them and junctions and widths between them have very similar structures, with the presence of

the same blocks in the same order. Indeed, even though at first glance the OD-fovea structure

and the junctions-widths one may seem totally different, as we will see later, actually this is

not entirely true. The environments of OD and fovea show an initial part that loads all the

necessary information for the graphics (logos, names, etc), the data for the annotation and

those related to the images. In both the environments, these pieces of code are very similar,

with few parts slightly different because the graphical interface and some required data are

different, but essentially they are the same in substance. The second block of each environment

instead represents that part of the code that allows the actual annotation of OD and fovea,

and therefore is inherently different for the two features. The last four blocks represent those

parts of the code related to the management of the screen display containing the image (block

three), to the elimination of the annotation just performed to be able to redo it (block four),

saving the data through the functions explained in the paragraph 3.3.7 and loading of the next

picture (block five), and finally to the management of the activation of buttons and panels

3.3. IMPLEMENTATION OF THE TOOL 13

(block six). They are very similar in substance even if different in some parts, just like blocks

one. Regarding the environments of junctions and widths, the first blocks are structured like

those of OD and fovea, while the second ones consist in selecting of the points where you want

to measure angles and widths (pay attention, the actual measure is not performed here, but

in block six). The third and the fourth blocks respectively represent the code related to the

menagement of the screen and to the elimination and remaking of the points just annotated

and have the same structure of block four in OD and fovea’s environments. The fifth blocks

are special because they contain a piece of code that allows you to go to the actual measure

of angles and widths, saving the selected points and moving the annotation on a small screen

that is automatically zoomed in on the points. The blocks six contain the code that allows

the measurement of angles and widths on the points previously annotated and are intrinsically

different for the two environments. The last three blocks have the same functions as the last

three of OD and fovea and are structurally similar.

3.3 Implementation of the tool

In this section the various environments of the tool will be described in detail. The related code

is reported in Appendix B.

3.3.1 Start menu

The first environment of the tool is made up of four sections. In the first section the user is

asked to enter his identifying information (Figure 3.4). The name has to be written inside the

edit-text box [14] controlled by the functions Name_CreateFcn() and Name_Callback(), which

respectively manage the appearance of the box and save the text entered by the user.

Than the user is asked to specify if he belongs or not to the category of clinicians. It

is considered important to save this information as an attached of the output data because

the clinical knowledge possessed by clinicians may affect their annotation. This information is

managed by a panel of buttons, controlled by the function uipanelClinician(), which saves

the strings ‘Clinician’ and ‘Not a clinician’ (depending on whether the user selected ‘YES’ or

‘NO’), that will then be printed on the output file.

14 3. ANNOTATION TOOL DEVELOPMENT

In the second section the user starts his annotation path. First he is asked to indicate

which is going to be his annotation, that could be a whole new one, the continuation of a

previous one with the addition of new junctions and/or widths, and the importation of points

previously annotated on which measure again bifurcation angles and widths. The user can

choose one of these three options using a pop-up menu (Figure 3.5) controlled by the functions

popupmenu_Callback() and popupmenu_CreateFcn(). Depending on which selection the user

made, the function popupmenu_Callback(), thanks to the use of set(), activates or not the

push-buttons that will be used to upload images and text files.

Figure 3.4: User’s identification phase

After this, the user has to select the folder that contains the set of images he wants to

annotate and eventually the text files where the data of previous annotation are saved. This

operation is done through the use of two push-buttons (Figure 3.6) controlled by the functions

openFolderButton() and openFileButton().

When the user presses the button to choose the set of images, a window, where the user

has to find and select the folder containing the set, will appear (Figure 3.7) thanks to the

command uigetdir(). When the folder is selected, the images contained are saved in the

structure (handles) and the folder “RESULTS” is created by mkdir(); right there the text files

with the outputs, one for each image, are produced (fopen()). Then all the retinal images

are read and saved in the structure (imread()), and the first one is plotted on the screen

3.3. IMPLEMENTATION OF THE TOOL 15

Figure 3.5: Process of choosing the annotation type

Figure 3.6: Loading images and data

16 3. ANNOTATION TOOL DEVELOPMENT

(imshow()).

In the same way a window appears when the user presses the button to select the text files

with the output data of an old annotation (uigetfile()). He can select all the files at once,

or select one at a time, and their path is stored (in the variable ‘FileName’) by the program in

order to be recovered in the later stages.

In the third section the user has an overview of all the images contained in the folder

previously selected (Figure 3.8). With this overview the user can assess the quality of the

images of the set and decide which ones to include or reject from his annotation. The user

can express his choice selecting one of the two radio-buttons “Yes” or “No”, regulated by the

functions YesProcess() and NoProcess().

Figure 3.7: Search for the folder of the images to be annotated

These two functions respectively save the strings “PROCESSED” and “NOT PROCESSED”,

that will then be printed in the output text file. After making the choice, the user presses the

push-button “Next Image”, which activates the function NextImage(), which, despite the long

code, simply writes in the text file all the information so far obtained (thanks to the function

write_GeneralInformations() described in paragraph 3.3.7), plots the next image and resets

the processing panel. If the user has decided to upload data from previous annotations, at this

moment of the program, they are stored in a structure in order to be better managed later

thanks to the function readTextFile() (described in paragraph 3.3.8).

3.3. IMPLEMENTATION OF THE TOOL 17

Figure 3.8: Overview of images and selection

When the overview of images is finished, the actual annotation can finally begin. In the

fourth phase, the user has to select from a menu, consisting of four check-boxes, what features

he wants to annotate (Figure 3.9). As already mentioned above, depending on whether he

decided to do a completely new annotation or continue a previous one, the boxes of optic disc

and fovea will already be automatically selected or deselected (and the user can not modify

them). Those of junctions and widths will instead let be checkable. All this is handled by the

function ChooseAnnotationsButton(), thanks to get() that reads the status of the check-

boxes.

For each selected check-box, a push-button is activated (Figure 3.10), which, once pressed,

will bring the user in the annotation section of the corresponding feature. The push-buttons

are activated thanks to the function MenuAnnotationSelection().

3.3.2 Optic Disc Annotation Tool

This section is executed only if the user began the annotation of a new set of images ever

annotated before, otherwise the OD for these images is uploaded from the output data of a

previous annotation. In this section, as in the next ones, only the images not rejected in the

initial overview are displayed (and so accessible to be annotated).

The first block consists of the function AnnotateOD_OutputFcn() containing the lines of code

18 3. ANNOTATION TOOL DEVELOPMENT

Figure 3.9: The check-menu of the features

Figure 3.10: The buttons that bring to the screens of the different features

3.3. IMPLEMENTATION OF THE TOOL 19

that set the initialization data for the graphics (eg. imread(‘logo’)) and for the annotation,

and load the images to be processed. In addition, at the end of the function, the first image

to be processed is loaded on the screen and the buttons of interaction with the user are set

(thanks to setButtonStateFor_ChoseAnnotation()) so that the annotation can begin.

Figure 3.11: Choice of automatic or manual annotation of the OD

Two modes of annotation of the OD are available for the user (block two): a manual one

and an automatic one that is the VAMPIRE’s one [7] (explained in Chapter 2). The choice to

insert an automatic part (which is the only one in the whole tool) in a manual tool, arises from

the need to have a fixed reference point (the OD center) that has to be the same one calculated

with the VAMPIRE automatic software, so that the same point in a certain image has the same

polar coordinate referred to the OD. This means that the measures for example of the width

of the vessel in that point made with VAMPIRE and the one made with this manual tool can

be comparable in terms of position in the whole vasculature.

The automatic detection starts by pressing the push-button “Automatic OD” (Figure 3.11)

regulated by the function autolocateButton(). The VAMPIRE’s function automaticODlocation()

calculates the OD, and then the function drawCircles() plots the circle that represents the

OD and other four respectively distant 0.5ODD, 1ODD, 1.5ODD and 2ODD (ODD=diameter

of the OD) from the border of the OD (Figure 3.12).

The manual annotation begins instead by pressing the push-button “Manual OD” managed

20 3. ANNOTATION TOOL DEVELOPMENT

Figure 3.12: The OD calculated and plotted with the circles that delimit the zones

by the function locateButton(). The user is asked to take five points on the OD’s border

(Figure 3.13). The command that detects the user’s input and allows to save it is ginput()

that memorizes the Cartesian coordinates of the point selected. When all the points on the

border are taken, the function fitellip() calculates the ellipse that fits on the input points

and then the function drawellip() plots it. Then the function fitellipse() returns the OD

center and its two radius. With this information the function drawCircles() plots the OD and

the circles that delimit the zones around it.

Once the Optic Disc (manual or automatic) is calculated and plotted, the tool allows the

user to zoom in and/or to see the green channel image, so that he can better evaluate the

quality of the computed OD and then decide whether to do it again or go to the next image

(this part of code is represented by the third block of OD’s column in the scheme of Figure

3.3). The functions that manage the image’s screen view are zoomOUT() and zoomIN(), which

control the activation of two push-bottons respectively for the decrease and the increase of the

zoom on the image, and uipanelC_G() which controls a panel consisting of two radio-buttons

that allow the visualization of the image in RGB format or in green channel format (Figure

3.14).

If the user decides to redo the OD (block four of OD’s column in the scheme of Figure 3.3) he

has to press the push-button “Redo OD” that produces the run of the function clearButton()

3.3. IMPLEMENTATION OF THE TOOL 21

in which all the data related to the wrong OD are deleted and the image replotted.

Figure 3.13: Manual selection of the five points on the border of the OD

When the OD is believed to be accurate, the user can go to the next one pressing the push-

button “Next image”. Before plotting the image, the tool saves all the data for the current

image in the text file (block five). The data are saved with the use of the function write_OD()

which is described together with all the other functions with this aim in paragraph 3.3.7.

If the current image was not the last one, the user follows the same protocol used for the

annotation of the OD of the previous image. If it was instead the last one, the push-button

“Finish” runs the function finish() (also included in block five) that closes the “Optic Disc

Annotation Tool” screen and takes the user to the START menu.

The last block represents all those functions that regulate the activation of buttons and pan-

els, which are each time called in the code. In Appandix B just one is reported as an example

because they are all structurally similar.

3.3.3 Fovea Annotation Tool

As for the section of the OD, even that of the fovea is executed only if the user has chosen

a set of images not previously annotated, otherwise the data of the fovea are loaded directly

from the output file of another annotation. The first block in this case represents two functions,

22 3. ANNOTATION TOOL DEVELOPMENT

Figure 3.14: The green channel view of the image

one similar to the one of the first block of the OD (here called AnnotateFovea_OutputFcn()),

and another one called uipanelFovea_SelectionChangeFcn(). This function activates a panel

(Figure 3.15) that controls two radio-buttons with which the user is forced to specify whether

the fovea in the current image is clearly visible or not, essential information for the reasons

explained in paragraph 3.1.

After specifying the visibility of the fovea, the user has to do its outright annotation, by

pressing the push-button “Set center and contour” (Figure 3.16) that activates the function

setCenterContour().

After pressing the button, he has to select consecutively two points, the first in the center

of the fovea and the other one on the contour (Figure 3.17). This selection is managed by the

function getUserInput() that saves the Cartesian coordinates of the points thanks to ginput()

and plots them on the image.

As already repeated several times before, the tool also saves the polar coordinates of each

point (therefore also of fovea’s center and contour), and it is done thanks to the function

polar_coordinates(). This function requires eight input values: the Cartesian coordinates

of the point, the size of the image (height and width), the Cartesian coordinates of OD and

fovea. The polar coordinates with pole in the OD (angular distance with respect to both the

vertical axis and to the one perpendicular to the OD-fovea axis) and those with pole in the

3.3. IMPLEMENTATION OF THE TOOL 23

Figure 3.15: Specification panel of the visibility of the fovea

Figure 3.16: Start of fovea’s annotation

24 3. ANNOTATION TOOL DEVELOPMENT

Figure 3.17: Selection of fovea’s center and contour

center of the image are given as outputs. Please refer to paragraph 3.1 for the explanation of

these parameters in detail. The algorithm used for the calculation of the polar coordinates from

Cartesian ones is shown in Figure 3.18.

At this stage the tool calculates the radius of the fovea and runs the function drawcirclefovea()

which calculates the circle with center in the center of the fovea and radius just calculated, and

then plots this circle to help the user evaluating if the selection is well taken or not (Figure

3.19).

As in the OD section the user can now use the zoom panel and/or switch the RGB image

in the green channel one for better evaluate his selection (block three). If he is not satisfy of

the annotation he toke, he is allowed to redo the selection of the two points pressing the push-

button “Redo selection” (block four) . The function RemoveButton() regulates this operation

deleting the values of center and contour of the fovea of the current image and then plotting

again the image without the incorrect fovea.

If instead the user believes the fovea annotated matches with the real one, he can go to

the next image by pressing the push-button “Next image”. The function nextImageButton()

(block five) ensures that the data of the fovea are saved in the text file (function write_Fovea()

described in paragraph 3.3.7), and then plots the next image if the current one is not the last

one, otherwise the function finish() (also block five) runs, taking the user to the main menu.

3.3. IMPLEMENTATION OF THE TOOL 25

Figure 3.18: Algorithm for calculating of polar coordinates

26 3. ANNOTATION TOOL DEVELOPMENT

Figure 3.19: The circle which delimits the fovea as selected by the user

Even in the environment of the fovea the functions of block six, those who manage the activa-

tion of the graphical components, can be found at the end. The code of these functions is not

reported in Appendix B as it is substantially the same as the one of the OD.

3.3.4 Junctions Annotation Tool

The annotation section of the junctions can be divided into two big parts. The first one con-

sists of the annotation of the points where the user wants to perform the measurement of the

bifurcation angles, the second one is the execution of their actual measure.

The first part is shown schematically by the first four blocks in the fourth column of Figure

3.3, which have a structure very similar to those of OD and fovea: the first block consists of

the code that loads all the necessary information, the second one handles the annotation of the

points in a big screen where the entire image can be seen, a third block for the management of

zoom and color of the image, and the fourth one that is involved in changing and/or removing

the annotated points. In Appendix B, only the code of the functions of block two is shown

because the other three are very similar to those fully described in the OD’s section. The

annotation of the points is managed by the function setJunctionButton() that runs when the

user presses the push-button “Set junction” (Figure 3.20).

3.3. IMPLEMENTATION OF THE TOOL 27

Figure 3.20: Start of junctions’ annotation

First, the function getUserInputJunction() is called: it allows the user to select a point

in the retinal image, memorizing its Cartesian coordinates. One of the essential things the tool

should allow is the rescue on the type of vessel (vein or artery) in which each point is selected.

This is possible thanks to the use of the Shift key: if the user presses simultaneously the Shift

key while clicking on the image, then the point will appear blue indicating a vein (Figure 3.21);

if instead the selection is made with a simple click without the Shift key pressed, then the point

(plotted in red) belongs to an artery. To manage all this, the property “SelectionType” is used,

which reads the state of a key (in this case Shift), which can be then extrapolated thanks to

get(). Finally, the polar coordinates of the selected point are calculated and stored, using the

function polar_coordinates() explained in the previous paragraph.

After the annotation of the points on big picture, the function setVesselsPointsButton()

allows the passage to the second part. This function is run by the user pressing the push-button

“Branch points selection”, thus indicating the end of the first phase and the need to move to

the second one. During the second phase all the points just annotated are loaded one at a time

on a small screen zoomed in on the current one, in order to allow a more accurate measure the

angles. In order not to lose the general view, however, at the same time in the main screen you

can see all the points, and a yellow box appears around the one in which the annotation is in

progress (Figure 3.22). As you can see in Figure 3.22, the function setVesselsPointsButton()

28 3. ANNOTATION TOOL DEVELOPMENT

activates the small screen and the buttons related to it, loads the image, plots the first point

annotated and makes an automatic zoom in on the area having as its center the point itself.

This feature also contains the code to plot the yellow box on the main screen.

The function PointsForNextJunctionButton() is the one that manages the measure of

bifurcation angles , and when it runs the tool has already loaded the current point on which

to perform the measure. This function immediately calls the function getUserInputPoints()

that allows the user the selection of three points (by saving their Cartesian coordinates), which

must be taken within the three vessels involved in the junction chosen (as centrally as possible),

as shown in Figure 3.22. After the selection of the first point in the mother vessel, the function

drawcirclefovea() (described in the previous paragraph) plots a circle centered in the junction

and with radius equal to the distance between the center and the point in the vein mother.

Thanks to this expedient, the user is facilitated in the selection of the two points in the children

vessels, thus increasing the accuracy. Subsequently, inside PointsForNextJunctionButton(),

the function calculateAngles() is invoked, whom plots the three segments along the mother

vessel and the children ones (Figure 3.23), and automatically calculates the value of the three

angles of bifurcation taking into account the fact that the user may have made the selection of

the points either clockwise or counterclockwise.

After making the selection of the three points, the user can choose whether to continue

the annotation with next junction pressing the push-button “Next”, or to redo the selection

just made pressing the push-button “Redo”. These two buttons respectively run the functions

nextJunction() and removeLastVesselsPointsButton(), of whom the code will not be re-

ported. The function nextJunction()partially coincides with the function PointsForNextJunct

ionButton(), but obviously without the part of the initialization of the small screen, and so

having only the code that plots the yellow box on the main screen, and those that automatically

zoom and plot the new point in the small screen . The function removeLastVesselsPointsButton()

is basically very similar to all the “Remove” functions previously seen and described.

When the points for the current image are finished, the user goes to the next one pressing

the push-button “Next Image”, which controls the function nextImageButton(), very similar

to the functions with the same task in the environments of OD and fovea. If the images are

finished, the function finish(), regulated by the push-button “Finish”, is always the one that

returns the user to the START menu. Even in the environment of the junctions the last block

consists of all those functions that regulate the activation of the graphical buttons.

3.3. IMPLEMENTATION OF THE TOOL 29

Figure 3.21: Selection of a junction by the user, indicating the vessel of belonging as a vein

30 3. ANNOTATION TOOL DEVELOPMENT

Figure 3.22: On the right side the small screen where to select the points in the branches, and

on the left side, at the same time, the whole image in which the current junction is indicated

by the yellow box.

Figure 3.23: The three segments on which the angles of bifurcation are calculated

3.3. IMPLEMENTATION OF THE TOOL 31

3.3.5 Widths Annotation Tool

As regards the environment of the widths, its structure is extremely similar to the one of

the junctions just seen. The code of the first big phase, which has the aim to select only the

measuring points (and not to do the actual measure), coincides largely with the corresponding

one in the junctions environment, and therefore it will not be reported again. The only great

difference between these two environments in the first phase consists in the fact that, for the

widths, an additional information is required: the generation of the vessel. After the selection

of each point, the user, if desired, could indicate the generation of the vessel in which the point

has been selected. This is done by a panel containing an edit-text box (Figure 3.24) where the

user can enter a numeric value that indicates the generation. The edit-text is managed by two

functions, Generation_CreateFcn() and generation_Callback (), which respectively handle

the graphics of the text-edit box and its contents. The number entered by the user is stored in

a variable thanks to the function get(), considering as default (generation not specified) the

number zero.

Even the second phase is very similar to the one of the junctions and has the same execution

modes: yellow box on the main screen indicating the current point, measurement made in

small screen with zoom fixed on that point, etc. What obviously changes is the function that

handles the actual measure (ContoursForNextPointButton()) which, at the beginning, calls

the function GetUserInputContours(). This allows the user to select in the small screen two

points, one on each contour of the vessel close to the point selected in the first phase (Figure

3.25). After selecting the first point on one contour, the function GetUserInputContours()

plots a line passing through the central point and the one just clicked (Figure 3.25), so that

the point on the second contour is taken with precision on the direction of the other two. This

direction is that perpendicular to the one passing through the center of the vessel, which is

automatically plotted on the screen, in red if the vessel is an artery, in blue if it is a vein. Then

the function ContoursForNextPointButton() then calls calculateWidths() which calculates

the simple linear distance between the two points just selected on the contours of the vessel,

that is its width.

32 3. ANNOTATION TOOL DEVELOPMENT

Figure 3.24: Input from the user of the generation of the vessel to which the newly selected

point belongs

3.3. IMPLEMENTATION OF THE TOOL 33

Figure 3.25: Selection of the two points on the vessel’s contours

3.3.6 Info environment

Within each screen of the tool, in the upper right corner you can find a push button with the

shape of an “i” (Figure 3.26) with which the program opens a new screen that you can see in

Figure 3.27. Within this screen you can find information about the software, but also the links

to the “.pdf file” containing the Standard Operating Procedure (SOP) and, on the right side, a

video with a demo of the program. In this way the user, at any time during the use of the tool,

can easily access a sort of “Help”.

With regard to the part of the code, the video with the demo appears directly on the screen

thanks to the command actxcontrol() which creates an ActiveX control, or rather opens the

link to a program, which in this case is one for video playback. The command actxcontrol()

returns a handle h to the control, and the video is played thanks to the use of h.URL and

h.controls.play. For the SOP file instead the procedure is very simple: the user, pressing a

push button, automatically opens the “.pdf file” thanks to the command open().

Figure 3.26: The logo on the button that brings to the screen containing information and help

34 3. ANNOTATION TOOL DEVELOPMENT

Figure 3.27: The screen containing information about the program, a link to the SOP document

and, on the right side, the video with the demo

3.3.7 Functions to write outputs

The Vampire Annotation Tool produces as output, for each image belonging to the annotation,

a text file containing all the information recorded and the measures performed during the

annotation. The operation of writing a text file involves three instructions:

1. Create a new file or open an existing one: fileID=fopen(fileName, permission). The

function fopen() wants as input the name of the file to create/open, and produces as output

a numeric variable that represents the identifier of this file. The string permission describes the

type of access you want for the current file: read, write, append or update. In this specific code

‘a+’ is always used, because it allows to open or create a new file for reading and writing on it

and, every time it is re-opened, append data to its end.

2. Write the file: fprintf(fileID, formats, data). The function fprintf() writes in

the text file identified by fileID the information contained in the variable data. What are called

formats, consist in a string delimited by single quotation marks, inside which are the conversion

specifications (always preceded by a “%” that indicate the formats of the input data) and some

literal text to print (in the specific case of this code it are the data labels.). The available formats

are various, but in the code of this program only the follows have been used: %s (string), %c

3.3. IMPLEMENTATION OF THE TOOL 35

(single character), %.1f (floating-point number with one decimal place), %u (unsigned integer

in base ten). Only one of the escape characters was used: \n (new line).

3. Close the file: fclose(fileID).

In the first line of the text file is always displayed if the image has been excluded or not from

the annotation. Specifically, this information is recorded printing “PROCESSED” or “NOT

PROCESSED” in the text file. In the second line, information about the image (its name),

the user who made the annotation (the name and if he belongs to the category of clinician

or not), and the data that uniquely identify the record itself (date and time in which was

made) are always present. The function write_GeneralInformations() wants as inputs the

identifier of the text file (fileID), the variable that contains the string “PROCESSED” or “NOT

PROCESSED”, the names of the image and the annotator, the string “CLINICIAN” or “NOT

CLINICIAN”, the variable containing the information of date and time.

The third line always contains the data related to the Optic Disc: Cartesian coordinates of

its center, the two radii and the coefficient theta of the ellipse that fits the OD, and these are

also the inputs of the function write_OD() that writes this line.

In the fourth line you can always found all the information about the Fovea, written by the

function write_Fovea() that requires as inputs Cartesian and polar coordinates of its center,

the radius and its visibility.

From fifth line onwards you can find information about junctions and widths (depending on

the case the number of junctions and widths could range from zero to many). Lines concerning

the junctions are written by the function write_Junctions() that requires as inputs: Cartesian

and polar coordinates of the point in the center of the junction, the type of the vessel (vein

or artery) where the junction is, Cartesian coordinates of the three points belonging to the

three vessels involved in the junction and the three bifurcation angles. For widths instead the

function write_Widths_Generation() that writes the text line has as input the Cartesian and

polar coordinates of the point within the vessel where you have measured the width, the type

of the vessel (vein or artery) where the point is, the width and the generation of this vessel.

For the widths was written a further function (write_Widths()) to write text lines when

the generation was not indicated by the user.

In Figure 3.28 you can see two examples of the text file the VAMPIRE-Annotation Tool

produces, one for an unprocessed image, and one for an image on which all the features have

been annotated.

36 3. ANNOTATION TOOL DEVELOPMENT

Figure 3.28: The output text files with the data of the annotation printed

3.4. DOCUMENTATION 37

3.3.8 Functions to read the data

In order to get data from the text files and bring them into a Matlab’s structure, the function

readTextFile(), which reads the outputs created by the tool, is used. The syntax for saving

data is always the same: “label” + “:” + “data” + “,”. Between label and data type there is a

one to one relationship, i.e. to each type of data corresponds one and only one label, and vice

versa. To read the data, and “recognize” this one-to-one correspondence is then exploited: the

label is read and then immediately proceeds the corresponding data. The procedure is always

the same for any data, then only a single example is shown in Appendix B.

Thanks to the command regexp(), the position of the label within the row is extracted.

The label, if it exists in that row, is found and its length is stored. The position of the string

containing the data is then within a range whose lower limit is the end of the label after the

“:” (then: start of the label + label’s length + 1) and the upper limit is the character before

the next comma, whose position is found always with regexp().

3.4 Documentation

With the idea of distributing the program also to clinicians not directly related to the VAMPIRE

team, we saw the need to produce a documentation as complete as possible. For this reason we

have created both a text file containing the Standard Operating Procedure and a video with a

demo. The text file describes in detail, with the aid of figures, which procedure the user must

follow, explaining carefully step by step what to do (you can find the file in Appendix A). The

video shows an example of utilization of the program, trying to reproduce a wide range of use

cases. Both of these documents are delivered to clinicians together with the package of the tool,

and the user can also directly connect to them through the environment “INFO” described

above.

Chapter 4

Application: the study about

Sarcopenia

As explained in Chapter 1, by monitoring the retinal vascular network, prevent or diagnose

certain particular diseases is now possible. Precisely with this regard, Deepa et al. have decided

to examine retinal biomarkers for Sarcopenia in the context of the study “Does the European

Working Group on Sarcopenia in Older People algorithm detect all those vulnerable?” [11].

Sarcopenia is that condition associated with the loss of muscle mass and function, and the

authors in this study wanted to determine, with the use of standard methods and involving 75

elderly patients (>65 years), the effectiveness of the algorithm developed by Cruz-Jentoft AJ

et al. [12] to screen and identify people affected by this disease. In parallel, retinal scans were

Figure 4.1: On the left side a blurred image and on the right one an image with a wrong scale

done in these patients (selected so that no one had visual impairemets) in order to evaluate also

potential retinal biomarkers for Sarcopenia. These fundus camera images of the 75 subjects were

40 4. APPLICATION: THE STUDY ABOUT SARCOPENIA

examined and 12 of them, of which two examples can be seen in the Figure 4.1, were excluded

from the analysis because too damaged or collected with a wrong scale factor. We decided to

focus on vessels’ width and AVR, because they were considered the most significant values in

the first stage. From the images of the 63 patients not excluded, the widths of the vessels and

the AVR were automatically measured with the previous version of the VAMPIRE software (the

one based on the binary map, resulting from the segmentation with Soares’ algorithm [8],[9]).

The measuring points for the calculation of AVR were recorded following the same protocol used

by Knudtson et al. in [13]. The results obtained, visible in the scatter plot of Figure 4.2 and in

the Bland-Altman plot of Figure 4.3, show a low correlation (Pearson’s coefficient) between the

two eyes of the same patient especially for vessels’ width (0.42 for veins and 0.61 for arteries),

which instead according to the literature should be around 0.74 for veins and 0.71 for arteries

[15]. For the AVR instead the correlation, equal to 0.47, is very close to that reported in the

literature (0.49) [15]. In the first analysis we have assumed three possible causes for this low

correlation obtained:

1. because of the bad segmentation, some vascular areas have not been mapped and then

the measuring points were chosen “forcedly” in certain areas, but that do not always

correspond to the best ones in terms of position

2. the information about the measure was too “poor” and needed what we called “adjust-

ments”.

Even if the first hypothesis was very plausible and definitely, at least in part, responsible

for the bad results, we realized that a complete description of the data was required to be

able to correlate data truly corresponding between them. And this correspondence could be

well evaluated only through further key information. Precisely at this stage of the study the

VAMPIRE-Annotation Tool has been planned and implemented, and, when finished, used to

extract new data from the images of the study about Sarcopenia.

There have been two different techniques of data collection with the VAMPIRE-Annotation

Tool:

- one completely manual

- one consisting of a phase of manual annotation of the measuring points (using the VAMPIRE-

Annotation Tool and then saving also all the adjustments) and a second phase where the

algorithm in [10] was used for automatic measure of the widths in those points.

41

Figure 4.2: From the top: scatter plot of widths’ values in veins (left vs right eyes), widths’

values in arteries and AVR, elaborated with the automatic algorithms in VAMPIRE

42 4. APPLICATION: THE STUDY ABOUT SARCOPENIA

Figure 4.3: From the top: Bland-Altman plot of widths’ values in veins, widths’ values in arteries

and AVR, elaborated with the automatic algorithms in VAMPIRE

43

Following will be described only the data obtained with the second method as the results of the

two techniques were very similar. First of all, a simple operation of correlation was performed on

the data, without the use of the adjustments. Predictably a poor correlation was again obtained

for the widths in both veins and arteries and for the AVR (0.26, 0.46 and 0.17 respectively) as

can be seen in Figures 4.5 and 4.6. This result was another confirm of what we thought: the

main problem to be solved was that of higher characterization of the data. Then operations

of “simple” correlation have been performed between the width value in a point and each

adjustment (linear distance from OD that is the polar radial coord., vessel type, generation

of the vessel, quadrant with respect to OD-fovea system that is related to the polar angular

coordinate, OD radius) in order to evaluate which of these are geometrically and clinically

significant. The results of these correlations are shown in figure 4.4.

Taking into account the fact that the data set is very small (about 1400 measuring points)

and that therefore results must be interpreted in this perspective, the linear distance from OD,

the vessel type and the quadrant can be considered highly significant variables because they

show a level of significance ρ ≤ 0.001, the OD radius can be considered almost significant, and

the generation instead not significant. The first reflections lead to say that as regards the type

of the vessel, it is believed to be key information since many years in the literature, and also

the distance from the optic disc is intuitively easy to understand (vessels become smaller with

increasing distance from the OD). A positive innovation instead is the quadrant of belonging.

This can be explained from the clinical point of view by introducing the concept of drainage

and knowing that the macula is the most metabolically active area of the retina: this should

correspond, at the vascular level, in vessels branching out from the side of the fovea having

greater caliber than those branching off from the opposite side. Surprisingly little significance

in this dataset is instead the generation, which apparently has little effect on the magnitude

of the width. The phase of study of the correlation between the two eyes using adjustments’

information is still in progress and therefore no definitive result can be reported, and also it is

considered appropriate, before drawing any conclusion, to apply this idea even at larger dataset.

Without any doubt, however, regardless of the results that will be obtained with this technique,

the need to find a way of characterizing in detail the measures is certain.

44 4. APPLICATION: THE STUDY ABOUT SARCOPENIA

Figure 4.4: Level of significance of each adjustment

45

Figure 4.5: From the top: scatter plot of widths’ values in veins (left vs right eyes), widths’

values in arteries and AVR, elaborated with the VAMPIRE-Annotation Tool

46 4. APPLICATION: THE STUDY ABOUT SARCOPENIA

Figure 4.6: From the top: Bland-Altman plot of widths’ values in veins, widths’ values in arteries

and AVR, elaborated with the VAMPIRE-Annotation Tool

Chapter 5

Conclusions

This thesis, after a first overview about the manual tools reported in the literature, proposed

the development of a manual annotation tool for the features of the retina in fundus camera

images, to be included in the package of the VAMPIRE software as a tool for the production

of ground truth for the validation of the automatic algorithms, but also as a support to the

software itself when it fails. Subsequently, the protocol used in a study whose purpose was the

analysis of retinal biomarkers for Sarcopenia, has been reported.

The VAMPIRE-Annotation Tool has three important characteristics: ease of use thanks

to a user-friendly graphical, completeness and flexibility of use, deep characterization of the

measures. The first two allow the use of the tool also externally to the team that developed it.

In fact, thanks to its immediacy it can be used by clinicians, and thanks to the possibility of

both annotate all the features and choose the path most appropriate for the purpose, it can

also be used in very different studies. The characterization of the measures instead allows a new

view on the data analysis and, thanks also to the ongoing study described in chapter 4, we can

select all the information considered more or less significant to a certain measure. In the future

we will try to save even more information that we consider important (distance along the vessel

between a point and the optic disc, distortion due to both the sphericity of the retina and the

image itself, etc.), although this will require more automatic techniques, and we will go on to

analyze their level of significance, as done in the context of the study about Sarcopenia.

About the data storage, some decisions have been taken with the intention, at the interna-

tional community level, to create common, accessible, and representative datasets [21]; all this

in a vision of a future library “data-centered” and no longer dependent instead on the task

or the measuring tool used. Because there is still no general agreement on the structure and

content of these datasets, it was decided to use as a support for the output data simple text

files, fast and easy both to write and to read, but above all without any restriction about the

operating system used.

48 5. CONCLUSIONS

We can say that the manual tool, with regard to both the adjustments and the way of sav-

ing/reading data, has been a forerunner compared to the main software. The team VAMPIRE

in the next months will focus on adapting the automatic software to what are the innovations

introduced by the VAMPIRE-Annotation Tool.

Appendix A

II Appendix A

Appendix A III

IV Appendix A

Appendix A V

VI Appendix A

Appendix A VII

VIII Appendix A

Appendix A IX

X Appendix A

Appendix A XI

XII Appendix A

Appendix A XIII

XIV Appendix A

Appendix B

Code of paragraph 3.3.1

% −−− Executes during ob j e c t c r ea t i on , a f t e r s e t t i n g a l l p r op e r t i e s .

function Name CreateFcn (hObject , eventdata , handles)

i f i s p c && i s e qua l (get (hObject , ‘ BackgroundColor ’) , get (0 , ‘

de fau l tUicontro lBackgroundColor ’))

set (hObject , ‘ BackgroundColor ’ , ‘white ’) ;

end

function Name Callback (hObject , eventdata , handles)

handles . Annotator .Name = get (hObject , ‘ Str ing ’) ;

% update handles

guidata (hObject , handles) ;

% −−− Executes when s e l e c t e d ob j e c t i s changed in u i p an e lC l i n i c i a n .

function u ipane lC l in i c i an Se l e c t i onChangeFcn (hObject , eventdata , handles)

i f hObject==handles . YesC l in i c i an

% i f user check t h i s button save ‘ C l i n i c i an ’

handles . Annotator . C l i n i c i a n=‘C l i n i c i an ’ ;

e l s e i f hObject==handles . NoCl in ic ian

% i f user check t h i s button save ‘Not a c l i n i c i a n ’

handles . Annotator . C l i n i c i a n=‘Not a c l i n i c i a n ’ ;

end

% i f the user in fo rmat ion i s not f u l l y inputted , e x i t

i f isempty (handles . Annotator .Name) | | isempty (handles . Annotator . C l i n i c i a n)

return

end

XVI Appendix B

% update handles

guidata (hObject , handles) ;

% −−− Executes during ob j e c t c r ea t i on , a f t e r s e t t i n g a l l p r op e r t i e s .

function popupmenu CreateFcn (hObject , eventdata , handles)

i f i s p c && i s e qua l (get (hObject , ‘ BackgroundColor ’) , get (0 , ‘

de fau l tUicontro lBackgroundColor ’))

set (hObject , ‘ BackgroundColor ’ , ‘white ’) ;

end

% −−− Executes on s e l e c t i o n change in popupmenu .

function popupmenu Callback (hObject , eventdata , handles)

contents=c e l l s t r (get (hObject , ‘ Str ing ’)) ;

As e l e c t i on=contents {get (hObject , ‘ Value ’) } ;

i f strcmp (Ase l ec t i on , ‘ANNOTATE NEW SET OF IMAGES’)

set (handles . openFileButton , ‘ Enable ’ , ‘ o f f ’ , ‘ BackgroundColor

’ , [0 . 9 4 1 , 0 . 9 4 1 , 0 . 9 4 1]) ;

set (handles . openFolderButton , ‘ Enable ’ , ‘ on ’ , ‘ BackgroundColor

’ , [1 , 0 . 3 4 5 , 0 . 1 3 7]) ;

e l s e i f strcmp (Ase l ec t i on , ‘ANNOTATE NEW POINTS IN ALREADY ANNOTATED SET’)

set (handles . openFolderButton , ‘ Enable ’ , ‘ on ’ , ‘ BackgroundColor

’ , [1 , 0 . 3 4 5 , 0 . 1 3 7]) ;

set (handles . openFileButton , ‘ Enable ’ , ‘ on ’ , ‘ BackgroundColor

’ , [1 , 0 . 3 4 5 , 0 . 1 3 7]) ;

e l s e i f strcmp (Ase l ec t i on , ‘ANNOTATE EXISTING POINTS IN ALREADY ANNOTATED

SET’)

set (handles . openFolderButton , ‘ Enable ’ , ‘ on ’ , ‘ BackgroundColor

’ , [1 , 0 . 3 4 5 , 0 . 1 3 7]) ;

set (handles . openFileButton , ‘ Enable ’ , ‘ on ’ , ‘ BackgroundColor

’ , [1 , 0 . 3 4 5 , 0 . 1 3 7]) ;

e l s e i f strcmp (Ase l ec t i on , ‘ S e l e c t . . . ’)

set (handles . openFolderButton , ‘ Enable ’ , ‘ o f f ’ , ‘ BackgroundColor

’ , [0 . 9 4 1 , 0 . 9 4 1 , 0 . 9 4 1]) ;

Appendix B XVII

set (handles . openFileButton , ‘ Enable ’ , ‘ o f f ’ , ‘ BackgroundColor

’ , [0 . 9 4 1 , 0 . 9 4 1 , 0 . 9 4 1]) ;

end

% update handles

guidata (hObject , handles) ;

% −−− Executes on button pr e s s in openFolderButton .

function openFolderButton Cal lback (hObject , eventdata , handles)

% Get f o l d e r :

d i r e c t o r y=u i g e t d i r (handles . f i l e s . d i r e c t o r y) ;

% I f the user pre s sed cance l l ed , then e x i t :

i f d i r e c t o r y==0

return

end

% c l e a r prev ious r e s u l t s :

handles . f i l e s = [] ;

% upload images and save handles :

handles=openFi lesFromDirectory (d i r e c to ry , handles) ;

handles . imageID=1;

% c r ea t e the f o l d e r RESULTS and the text f i l e f o r the cur rent image

resFo ld=‘RESULTS’ ;

mkdir (d i r e c to ry , re sFo ld) ;

f i l e ID=fopen (s t r c a t (d i r e c to ry , ‘\ ’ , resFold , ‘\ ’ , c e l l 2mat (handles . f i l e s . name(

handles . imageID)) , ‘ ’ , ‘RESULTS’ , ‘ ’ , dateNtime , ‘ . ’ , ‘ txt ’) , ‘ a+’) ;

f c l o s e (f i l e ID) ;

% open image

handles . image=imread ([handles . f i l e s . d i r e c t o r y f i l e s e p ce l l 2mat (handles .

f i l e s . name(handles . imageID))]) ;

% p lo t image

axes (handles . mainFigure)

imshow(handles . image) ; hold on ;

% d i sp l ay the number o f images and f i l e ’ s name

XVIII Appendix B

c=s t r c a t (‘ Image : ’ , num2str (handles . imageID) , ‘/ ’ ,num2str(handles . f i l e s .

nF i l e s)) ;

set (handles . d i sp lay2 , ‘ Str ing ’ , c) ;

c1=handles . f i l e s . name(handles . imageID) ;

set (handles . text25 , ‘ Str ing ’ , c1) ;

setButtonStateFor NextOFFProcessON (handles) ;

% updating handles

guidata (hObject , handles) ;

% −−− Executes on button pr e s s in openFileButton .

function openFi leButton Cal lback (hObject , eventdata , handles)

[FileNameTemp , PathName , F i l t e r I ndex]=uiget f i l e (‘ ∗ . txt ’ , ‘ S e l e c t one or more

text f i l e s ’ , ‘ Mu l t i s e l e c t ’ , ‘ on ’) ;

% add t h i s d i r e c t o r y to path and ex t r a c t f i l e ’ s name

idx=s t r f i n d (PathName , ‘\ ’) ;

idx2=idx (end−1) ;

my path=PathName (1 : idx2) ;

my dir=PathName(idx2+1:end) ;

my dir=my dir (1 : end−1) ;

addpath my dir ;

i f i s c h a r (FileNameTemp)

FileNameTemp=s t r r e ad (FileNameTemp , ‘% s ’ , ‘ whitespace ’ , ‘ ’ ’ {} ‘) ’ ;

end

FileLIST={FileName {1 , :} , FileNameTemp { 1 , : } } ;

FileName=FileLIST ;

% update handles

guidata (hObject , handles) ;

% −−− Executes on button pr e s s in YesProcess .

function YesProcess Cal lback (hObject , eventdata , handles)

% l a b e l the image as proce s sed

handles . Processed (handles . imageID) . Processed=‘PROCESSED’ ;

Appendix B XIX

%proces sed i s a vec to r that conta in s 0 and 1 , one f o r each image . 1 means

the image has to be processed , 0 not to be .

proce s sed (handles . imageID)=1;

setButtonStateFor NextONProcessOFF (handles) ;

% update handles

guidata (hObject , handles) ;

% −−− Executes on button pr e s s in NoProcess .

function NoProcess Cal lback (hObject , eventdata , handles)

% l a b e l the image as not proce s sed

handles . Processed (handles . imageID) . Processed=‘NOT PROCESSED’ ;

%proces sed i s a vec to r that conta in s 0 and 1 , one f o r each image . 1 means

the image has to be processed , 0 not to be .

proce s sed (handles . imageID)=0;

setButtonStateFor NextONProcessOFF (handles) ;

% update handles

guidata (hObject , handles) ;

% −−− Executes on button pr e s s in NextImage .

function NextImage Callback (hObject , eventdata , handles)

i f strcmp (Ase l ec t i on , ‘ANNOTATE NEW SET OF IMAGES’)

f i r s tAnno ta t o r=handles . Annotator .Name ;

f i r s tDa t e=dateNtime ;

%save f i r s t data in the text f i l e (user in format ions , name o f image ,

e t c)

re sFo ld=‘RESULTS’ ;

f i l e ID=fopen (s t r c a t (d i r e c to ry , ‘\ ’ , resFold , ‘\ ’ , c e l l 2mat (handles . f i l e s

. name(handles . imageID)) , ‘ ’ , ‘RESULTS’ , ‘ ’ , dateNtime , ‘ . ’ , ‘ txt ‘)

, ‘ a+’) ;

wr i t e Gene ra l In fo rmat i ons (f i l e ID , handles . Processed (handles . imageID) .

Processed , ce l l 2mat (handles . f i l e s . name(handles . imageID)) , num2str (

XX Appendix B

handles . Annotator .Name) , handles . Annotator . C l i n i c i an , num2str (

handles . dateNtime) , f i r s tAnnota to r , f i r s tDa t e) ;

f c l o s e (f i l e ID) ;

e l s e i f strcmp (Ase l ec t i on , ‘ANNOTATE EXISTING POINTS IN ALREADY ANNOTATED

SET ’) | | strcmp (Ase l ec t i on , ‘ANNOTATE NEW POINTS IN ALREADY ANNOTATED SET

’)

%read f i l e f i l e

for r f =1: s ize (FileLIST , 2)

nametemp=FileLIST {1 , r f } ;

i f strcmp (handles . f i l e s . name{handles . imageID , 1} , nametemp (1 , 1 : s ize (

handles . f i l e s . name{handles . imageID , 1} , 2)))

f i leName=nametemp ;

end

end

cd (PathName)

%save in s t r u c tu r e :

r e s=readTextFi l e (f i leName) ;

f i r s tAnno ta t o r=char (r e s {2 ,4}) ;

f i r s tDa t e=char (r e s {2 ,7}) ;

data=[s t r2doub l e (r e s {3 ,3}) , s t r2doub l e (r e s {3 ,5}) , s t r2doub l e (r e s {3 ,7}) ,

s t r2doub l e (r e s {3 ,9}) , s t r2doub l e (r e s {3 ,11})] ;

c en t e r =[s t r2doub l e (r e s {4 ,3}) , s t r2doub l e (r e s {4 ,5}) , s t r2doub l e (r e s {4 ,7})

, s t r2doub l e (r e s {4 ,9}) , s t r2doub l e (r e s {4 ,11}) , s t r2doub l e (r e s {4 ,13}) ,

s t r2doub l e (r e s {4 ,15})] ;

r ad iu s=st r2doub l e (r e s {4 ,17}) ;

%save f i r s t data in the text f i l e (user in format ions , name o f image ,

e t c) and a l s o OD and fovea in fo rmat ion in the text f i l e

re sFo ld=‘RESULTS’ ;

f i l e ID=fopen (s t r c a t (d i r e c to ry , ‘\ ’ , resFold , ‘\ ’ , c e l l 2mat (handles .

f i l e s . name(handles . imageID)) , ‘ ’ , ‘RESULTS’ , ‘ ’ , dateNtime , ‘ . ’ , ‘

txt ’) , ‘ a+’) ;

wr i t e Genera l In fo rmat i ons (f i l e ID , handles . Processed (

handles . imageID) . Processed , ce l l 2mat (handles . f i l e s . name(

handles . imageID)) , num2str (handles . Annotator .Name) ,

handles . Annotator . C l i n i c i an , num2str (handles . dateNtime) ,

Appendix B XXI

f i r s tAnnota to r , f i r s tDa t e) ;

write OD2 (f i l e ID , data) ;

wr ite Fovea2 (f i l e ID , center , r ad iu s) ;

f c l o s e (f i l e ID) ;

end

%r e s e t the YES/NOprocess buttons

s e t (handles . YesProcess , ‘ Value ’ , 0) ;

set (handles . NoProcess , ‘ Value ’ , 0) ;

% read the next image

handles . imageID=handles . imageID+1;

i f handles . imageID > handles . f i l e s . nF i l e s %no more images

c=‘Al l images have been seen ’ ;

set (handles . d i sp lay2 , ‘ Str ing ’ , c , ‘ Enable ’ , ‘ o f f ’) ;

c1=‘ ’ ;

s e t (handles . text25 , ‘ S t r ing ’ , c1) ;

image2process=s ize (find (proce s sed==1) ,2) ;

i f image2process==0 % no images to proce s s

% d i sp l ay worning i f the user didn ’ t s e l e c t any image

w=‘WARNING: you have r e j e c t e d a l l the images in t h i s f o l d e r ! ! ! ’ ;

s e t (handles . warning , ‘ V i s i b l e ’ , ‘ on ’ , ‘ Str ing ’ ,w) ;

s2=‘ I f you have DONE a l l the annotat ions for t h i s set o f images

you can choose a NEW one or EXIT ’ ;

set (handles . textNewSetOrExit , ‘ V i s i b l e ’ , ‘ on ’ , ‘ Str ing ’ , s2) ;

setButtonStateFor FinishGoToMainMenu (handles) ;

% h i gh l i g h t e x i t buttons

set (handles . ExitButton , ‘ Enable ’ , ‘ on ’ , ‘ BackgroundColor

’ , [1 , 0 . 3 4 5 , 0 . 1 3 7]) ;

set (handles . NewSetImagesButton , ‘ Enable ’ , ‘ on ’ , ‘ BackgroundColor

’ , [1 , 0 . 3 4 5 , 0 . 1 3 7]) ;

set (handles . NextImage , ‘ Enable ’ , ‘ o f f ’ , ‘ BackgroundColor

’ , [0 . 9 4 1 , 0 . 9 4 1 , 0 . 9 4 1]) ;

% de l a t e r e t i n a l images and r ep l o t vampire logo

XXII Appendix B

imageLogo=imread (‘ eyeLogo . png ’) ;

axes (handles . mainFigure)

cla

axis auto

imshow(imageLogo) ;

return ;

end

setButtonStateFor ImageFinishedWhatAnnotate (handles) ;

return ;

end

%images not f i n i s h e d :

c=s t r c a t (‘ Image : ’ , num2str (handles . imageID) , ‘/ ’ ,num2str(handles . f i l e s .

nF i l e s)) ;

set (handles . d i sp lay2 , ‘ Str ing ’ , c) ;

c1=handles . f i l e s . name(handles . imageID) ;

set (handles . text25 , ‘ Str ing ’ , c1) ;

% open image

handles . image = imread ([handles . f i l e s . d i r e c t o r y f i l e s e p ce l l 2mat (handles .

f i l e s . name(handles . imageID))]) ;

% updates handles

guidata (hObject , handles) ;

% p lo t image

axes (handles . mainFigure)

imshow(handles . image) ; hold on ;

setButtonStateFor NextOFFProcessON (handles) ;

% −−− Executes on button pr e s s in ChooseAnnotationsButton .

function ChooseAnnotationsButton Cal lback (hObject , eventdata , handles)

setButtonStateFor FinishGoToMainMenu (handles) ;

Appendix B XXIII

% save a l l the e x i t o f the checkbox in one matrix so that in MainMenu i t ’ s

s imp le r s e t buttons on/ o f f :

global annotateButtonsMainMenu ;

annotateButtonsMainMenu = [] ;

annotateButtonsMainMenu (1)=get (handles . ODButton , ‘ Value ’) ;

annotateButtonsMainMenu (2)=get (handles . FoveaButton , ‘ Value ’) ;

annotateButtonsMainMenu (3)=get (handles . WidthsButton , ‘ Value ‘) ;

annotateButtonsMainMenu (4)=get (handles . JunctionsButton , ‘ Value ’) ;

i f get (handles . ODButton , ‘ Value ’)==get (handles . FoveaButton , ‘ Value ’)==get (

handles . WidthsButton , ‘ Value ’)==get (handles . JunctionsButton , ‘ Value ’)==0

set (handles . ExitButton , ‘ Enable ’ , ‘ on ’ , ‘ BackgroundColor ’ ,

[1 , 0 . 3 4 5 , 0 . 1 3 7]) ;

set (handles . NewSetImagesButton , ‘ Enable ’ , ‘ on ’ , ‘ BackgroundColor ’ ,

[1 , 0 . 3 4 5 , 0 . 1 3 7]) ;

end

% PUSH−BUTTONS MENU:

MenuAnnotationSelection (hObject , eventdata , handles) ;

function MenuAnnotationSelect ion (hObject , eventdata , handles)

i f annotateButtonsMainMenu (1)==1 && annotateButtonsMainMenu (2)==1 &&

annotateButtonsMainMenu (3)==0 && annotateButtonsMainMenu (4)==0

setButtonStateFor OD F (handles)

e l s e i f annotateButtonsMainMenu (1)==1 && annotateButtonsMainMenu (2)==1 &&

annotateButtonsMainMenu (3)==1 && annotateButtonsMainMenu (4)==0

setButtonStateFor OD F W(handles) ;

e l s e i f annotateButtonsMainMenu (1)==1 && annotateButtonsMainMenu (2)==1 &&

annotateButtonsMainMenu (3)==0 && annotateButtonsMainMenu (4)==1

setButtonStateFor OD F J (handles) ;

e l s e i f annotateButtonsMainMenu (1)==1 && annotateButtonsMainMenu (2)==1 &&

annotateButtonsMainMenu (3)==1 && annotateButtonsMainMenu (4)==1

setButtonStateFor ALL (handles) ;

e l s e i f annotateButtonsMainMenu (1)==0 && annotateButtonsMainMenu (2)==0 &&

annotateButtonsMainMenu (3)==1 && annotateButtonsMainMenu (4)==0

XXIV Appendix B

setButtonStateFor W (handles) ;

e l s e i f annotateButtonsMainMenu (1)==0 && annotateButtonsMainMenu (2)==0 &&

annotateButtonsMainMenu (3)==0 && annotateButtonsMainMenu (4)==1

setButtonStateFor J (handles) ;

e l s e i f annotateButtonsMainMenu (1)==0 && annotateButtonsMainMenu (2)==0 &&

annotateButtonsMainMenu (3)==1 && annotateButtonsMainMenu (4)==1

setButtonStateFor W J (handles) ;

end

Code of paragraph 3.3.2

% −−− Outputs from th i s func t i on are returned to the command l i n e .

function varargout = AnnotateOD OutputFcn (hObject , eventdata , handles)

% Get d e f au l t command l i n e output from handles s t r u c tu r e

varargout {1} = handles . output ;

%save d i r e c t o r y

handles . f i l e s . d i r e c t o r y=d i r e c t o r y ;

% number o f images

handles . f i l e s . nF i l e s = 0 ;

handles . imageID=1;

% load VAMPIRE logo

l i t t l e L o g o=imread (‘ l i t t l e L o g o . png ’) ;

axes (handles . l ogo) ;

imshow (l i t t l e L o g o) ;

%load zoom button ’ s logo

zoomin=imread (‘ zoomin . png ’) ;

set (handles . zoomIN , ‘ CData ’ , zoomin) ;

zoomout=imread (‘ zoomout . png ’) ;

set (handles . zoomOUT, ‘ CData ’ , zoomout) ;

%load i n f o button ’ s logo

info=imread (‘ in foLogo . png ’) ;

set (handles . in fo but ton , ‘ CData ’ , info) ;

% c l e a r prev ious r e s u l t s i f any

handles . f i l e s = [] ;

Appendix B XXV

% upload images and save handles

handles=openFi lesFromDirectory (d i r e c to ry , handles) ;

% number o f the se images to be proce s sed

handles . image2process=0;

handles . f i l e s . nF i l e s 2p r o c e s s=s ize (find (proce s sed==1) ,2) ; %proces sed loaded

from START code

% read f i r s t image

while handles . imageID<=handles . f i l e s . nF i l e s

i f proce s sed (handles . imageID)==0 %imageID not to be annotated so don ’ t

open i t

handles . imageID=handles . imageID+1;

else % imageID has to be annotated so open i t

handles . image2process=handles . image2process+1;

% d i sp l ay the number o f images

c=s t r c a t (‘ Image : ’ , num2str (handles . image2process) , ‘ / ’ ,num2str(

handles . f i l e s . nF i l e s 2p r o c e s s)) ;

set (handles . d i sp lay , ‘ Str ing ’ , c) ;

c1=handles . f i l e s . name(handles . imageID) ;

set (handles . d i sp lay1 , ‘ Str ing ’ , c1) ;

handles . image=imread ([handles . f i l e s . d i r e c t o r y f i l e s e p ce l l 2mat (

handles . f i l e s . name(handles . imageID))]) ;

% p lo t image

axes (handles . mainFigure)

imshow(handles . image) ; hold on ;

setButtonStateFor ChoseAnnotat ion (handles) ;

% updates handles

guidata (hObject , handles) ;

break

end

end

% i f the images are f i n i s h e d

i f handles . imageID > handles . f i l e s . nF i l e s

c=‘Al l images have been annotated ’ ;

set (handles . d i sp lay , ‘ Str ing ’ , c) ;

XXVI Appendix B

c1=‘ ’ ;

s e t (handles . d i sp lay1 , ‘ S t r ing ’ , c1) ;

s=‘Press ” F in i sh ” to go to Star t Menu ’ ;

set (handles . sugge s t i ons , ‘ Str ing ’ , s) ;

% remove r e t i n a l image from sc r een and r ep l o t vampire logo

imageLogo=imread (‘ eyeLogo . png ’) ;

axes (handles . mainFigure)

cla

axis auto

imshow(imageLogo) ;

s e tButtonStateFor F in i sh (handles) ;

return ;

end

% updates handles

guidata (hObject , handles)

% −−− Executes on button pr e s s in auto locateButton .

function auto locateButton Cal lback (hObject , eventdata , handles)

c=‘Wait , l o c a t i n g OD . . . ’ ;

set (handles . sugge s t i ons , ‘ Str ing ’ , c) ;

s e tButtonStateFor InProces s (handles) ;

% Mark s e l e c t e d image as non−l o ca t ed OD

handles . r e s u l t s (handles . image2process) . ODborders=0;

handles . r e s u l t s (handles . image2process) . ODel l ipse=0;

handles . r e s u l t s (handles . image2process) . ODcenter=0;

handles . r e s u l t s (handles . image2process) . C o e f f i c i e n t =0;

handles . r e s u l t s (handles . image2process) . Res idua l =0;

handles . r e s u l t s (handles . image2process) . ODradius=0;

% run the VAMPIRE’ s func t i on automaticODlocation

handles=automaticODlocation (handles) ;

% show loca t ed OD (draw the c i r c l e s)

i f handles . image2process>0

i f handles . r e s u l t s (handles . image2process) . ODradius>0

Appendix B XXVII

[cx1 , cy1 , cx2 , cy2 , cx3 , cy3]= drawCirc l e s (handles , handles .

image2process) ;

end

end

% lab e l the OD of t h i s image as ”Automatic”

handles . r e s u l t s (handles . image2process) . AnnotType=‘Automatic ’ ;

setButtonStateFor ClearOrNext (handles) ;

c=‘Redo the OD for t h i s image or go to next image . Zoom and RGB/Green

channel are a c t i v e . ’ ;

set (handles . sugge s t i ons , ‘ Str ing ’ , c) ;

% update handles :

gu idata (hObject , handles) ;

% −−− Executes on button pr e s s in locateButton .

function l o cateButton Ca l lback (hObject , eventdata , handles)

c=‘ S e l e c t FIVE po in t s on the border o f the OD’ ;

set (handles . sugge s t i ons , ‘ Str ing ’ , c) ;

set (handles . u ipane lFig , ‘ BorderWidth ’ , 2 , ‘ ShadowColor ’ , [1 , 0 . 3 4 5 , 0 . 1 3 7] , ‘

High l ightColor ’ , [1 , 0 . 3 4 5 , 0 . 1 3 7]) ;

s e tButtonStateFor InProces s (handles) ;

% Mark s e l e c t e d image as non−l o ca t ed OD

handles . r e s u l t s (handles . image2process) . ODborders=0;

handles . r e s u l t s (handles . image2process) . ODel l ipse=0;

handles . r e s u l t s (handles . image2process) . ODcenter=0;

handles . r e s u l t s (handles . image2process) . C o e f f i c i e n t =0;

handles . r e s u l t s (handles . image2process) . Res idua l =0;

handles . r e s u l t s (handles . image2process) . ODradius=0;

% Obtain borders coo rd ina te from the user

for i =1:5 % f i v e po in t s

OD borders (i , :) = ginput (1) ;

XXVIII Appendix B

plot (OD borders (i , 1) , OD borders (i , 2) , ‘ ko ’) ;

end

% Fit the e l l i p s e

a=f i t e l l i p (OD borders (: , 1) , OD borders (: , 2)) ;

% Calacu la te the r e s i d u a l o f e l l i p s e

ResSum=0;

for i =1: length (OD borders)

x=OD borders (i , 1) ;

y=OD borders (i , 2) ;

r e s i d u a l=a (1) ∗x∗x + a (2) ∗x∗y + a (3) ∗y∗y + a (4) ∗x + a (5) ∗y + a (6) ;

ResSum=ResSum+r e s i d u a l ;

end

% e conta in s e l l i p s eXc en t e r , e l l i p s eYcen t e r , Radius1 , Radius2 , theta

e=f i t e l l i p s e (OD borders (: , 1) , OD borders (: , 2)) ;

%Save r e s u l t s

handles . r e s u l t s (handles . image2process) . ODborders=OD borders ;

handles . r e s u l t s (handles . image2process) . ODel l ipse=e ;

handles . r e s u l t s (handles . image2process) . ODcenter=handles . r e s u l t s (handles .

image2process) . ODel l ipse (1 : 2) ;

handles . r e s u l t s (handles . image2process) . C o e f f i c i e n t=a ;

handles . r e s u l t s (handles . image2process) . Res idua l=ResSum ;

% Save R=rad ius1 + rad ius2

handles . r e s u l t s (handles . image2process) . ODradius=(handles . r e s u l t s (handles .

image2process) . ODel l ipse (3)+handles . r e s u l t s (handles . image2process) .

ODel l ipse (4)) /2 ;

% Draw E l l i p s e

d rawe l l i p (a , OD borders , handles) ;

% show loca t ed OD (draw the c i r c l e s)

i f handles . image2process>0

i f handles . r e s u l t s (handles . image2process) . ODradius > 0 %&& handles .

showOD

[cx1 , cy1 , cx2 , cy2 , cx3 , cy3]= drawCirc l e s (handles , handles .

image2process) ;

end

end

Appendix B XXIX

% lab e l the OD of t h i s image as ”Manual”

handles . r e s u l t s (handles . image2process) . AnnotType=‘Manual ’ ;

setButtonStateFor ClearOrNext (handles) ;

c=‘Redo the OD for t h i s image or go to next image . Zoom and RGB/Green

channel are a c t i v e . ’ ;

set (handles . sugge s t i ons , ‘ Str ing ’ , c) ;

set (handles . u ipane lFig , ‘ BorderWidth ’ , 1 , ‘ ShadowColor ’ , ‘ k ’ , ‘ H igh l ightColor

’ , ‘w’) ;

% updates handles

guidata (hObject , handles) ;

% −−− Executes on button pr e s s in zoomOUT.

function zoomOUT Callback (hObject , eventdata , handles)

bu t ton s ta t e = get (hObject , ‘ Value ’) ; % save the s t a t e o f the button (

pre s sed or not)

i f but ton s ta t e == get (hObject , ‘Max’) % togg l e button i s pre s sed

zoom on ; % ac t i v a t e zoom

get (zoom , ‘ D i rec t ion ’) ;

set (zoom , ‘ D i rec t ion ’ , ‘ out ’) ; % s e t d i r e c t i o n o f the zoom = zoom out

e l s e i f but ton s ta t e == get (hObject , ‘Min ’) % togg l e button i s not

pre s sed

disp (‘ o f f ’) ;

end

% −−− Executes on button pr e s s in zoomIN .

function zoomIN Callback (hObject , eventdata , handles)

bu t ton s ta t e = get (hObject , ‘ Value ’) ; % save the s t a t e o f the button (

pre s sed or not)

i f but ton s ta t e == get (hObject , ‘Max’) % togg l e button i s pre s sed

zoom on ; % ac t i v a t e zoom

get (zoom , ‘ D i rec t ion ’) ;

XXX Appendix B

set (zoom , ‘ D i rec t ion ’ , ‘ in ’) ; % s e t d i r e c t i o n o f the zoom = zoom in

e l s e i f but ton s ta t e == get (hObject , ‘Min ’) % togg l e button i s not

pre s sed

disp (‘ o f f ’) ;

end

% −−− Executes when s e l e c t e d ob j e c t i s changed in uipanelC G .

function uipanelC G Select ionChangeFcn (hObject , eventdata , handles)

i f hObject==handles . co lourButton %user chose RGB image

axes (handles . mainFigure)

imshow(handles . image) ; hold on ;

e l s e i f hObject==handles . Gbutton %user chose green channel image

handles . imageG=handles . image (: , : , 2) ;

axes (handles . mainFigure)

imshow(handles . imageG) ; hold on ;

end

% plo t again what nece s sa ry

[cx1 , cy1 , cx2 , cy2 , cx3 , cy3]= drawCirc l e s (handles , handles . image2process) ;

% updates handles

guidata (hObject , handles)

% −−− Executes on button pr e s s in c learButton .

function c l ea rButton Ca l lback (hObject , eventdata , handles)

%r e s e t the OD data f o r t h i s image :

handles . r e s u l t s (handles . image2process) . ODborders = [] ;

handles . r e s u l t s (handles . image2process) . ODel l ipse = [] ;

handles . r e s u l t s (handles . image2process) . ODcenter = [] ;

handles . r e s u l t s (handles . image2process) . C o e f f i c i e n t = [] ;

handles . r e s u l t s (handles . image2process) . Res idua l = [] ;

handles . r e s u l t s (handles . image2process) . ODradius = [] ;

set (handles . colourButton , ‘ Value ’ , 1) ;

set (handles . Gbutton , ‘ Value ’ , 0) ;

Appendix B XXXI

% re−p lo t the image without the wrong OD ju s t c a l c u l a t ed

axes (handles . mainFigure) ;

imshow (handles . image) ; hold on ;

setButtonStateFor ChoseAnnotat ion (handles) ;

s=‘ F i r s t , i f you want , zoom in on the area o f i n t e r e s t and see the green

channel image , then choose the annotat ion mode . ’ ;

set (handles . sugge s t i ons , ‘ Str ing ’ , s) ;

% updates handles

guidata (hObject , handles) ;

% −−− Executes on button pr e s s in nextImageButton .

function nextImageButton Callback (hObject , eventdata , handles)

% once next button i s pressed , the in fo rmat ion o f the prev ious image

should be saved

r e s u l t I n f o (handles . image2process , :) =[handles . r e s u l t s (handles . image2process

) . ODel l ipse] ;

r e s u l t I n f oAdd i t i o n a l (handles . image2process , :) =[handles . r e s u l t s (handles .

image2process) . Co e f f i c i e n t ’ , handles . r e s u l t s (handles . image2process) .

Res idua l] ;

% save r e s u l t s in . txt f i l e

f i l e ID=fopen (s t r c a t (d i r e c to ry , ‘\ ’ , ‘RESULTS ’ , ‘\ ’ , c e l l 2mat (handles . f i l e s .

name(handles . imageID)) , ‘ ’ , ‘RESULTS’ , ‘ ’ , dateNtime , ‘ . ’ , ‘ txt ’) , ‘ a+’) ;

write OD (f i l e ID , r e s u l t I n f o (handles . image2process , :) , handles . r e s u l t s (

handles . image2process) . AnnotType) ;

f c l o s e (f i l e ID) ;

zoom out ;

% read next image

handles . imageID=handles . imageID+1;

whi l e handles . imageID<=handles . f i l e s . nF i l e s

i f p roce s sed (handles . imageID)==0 %imageID doesn ’ t have to be annotated

so don ’ t open i t

handles . imageID=handles . imageID+1;

XXXII Appendix B

else %imageID has to be annotated so open i t

handles . image2process=handles . image2process+1;

% d i sp l ay the number o f images

c=s t r c a t (‘ Image : ’ , num2str (handles . image2process) , ‘ / ’ ,num2str(

handles . f i l e s . nF i l e s 2p r o c e s s)) ;

set (handles . d i sp lay , ‘ Str ing ’ , c) ;

c1=handles . f i l e s . name(handles . imageID) ;

set (handles . d i sp lay1 , ‘ Str ing ’ , c1) ;

handles . image = imread ([handles . f i l e s . d i r e c t o r y f i l e s e p ce l l 2mat (

handles . f i l e s . name(handles . imageID))]) ;

% p lo t image

axes (handles . mainFigure)

imshow(handles . image) ; hold on ;

setButtonStateFor ChoseAnnotat ion (handles) ;

s=‘ F i r s t , i f you want , zoom in on the area o f i n t e r e s t and see the

green channel image , then choose the annotat ion mode . ’ ;

set (handles . sugge s t i ons , ‘ Str ing ’ , s) ;

% updates handles

guidata (hObject , handles) ;

break ;

end

end

% i f the images are f i n i s h e d

i f handles . imageID > handles . f i l e s . nF i l e s

c=‘Al l images have been annotated ’ ;

set (handles . d i sp lay , ‘ Str ing ’ , c) ;

c1=‘ ’ ;

s e t (handles . d i sp lay1 , ‘ S t r ing ’ , c1) ;

s=‘Press ” F in i sh ” to go to Star t Menu ’ ;

set (handles . sugge s t i ons , ‘ Str ing ’ , s) ;

% de l a t e r e t i n a l images and r ep l o t vampire logo

imageLogo=imread (‘ eyeLogo . png ’) ;

axes (handles . mainFigure)

cla

axis auto

Appendix B XXXIII

imshow (imageLogo) ;

s e tButtonStateFor F in i sh (handles) ;

return ;

end

% updates handles

guidata (hObject , handles) ;

% −−− Executes on button pr e s s in f i n i s h .

function f i n i s h Ca l l b a c k (hObject , eventdata , handles)

close ;

function setButtonStateFor ChoseAnnotat ion (handles)

set (handles . locateButton , ‘ Enable ’ , ‘ on ’ , ‘ BackgroundColor

’ , [1 , 0 . 3 4 5 , 0 . 1 3 7]) ;

set (handles . c learButton , ‘ Enable ’ , ‘ o f f ’ , ‘ BackgroundColor

’ , [0 . 9 4 1 , 0 . 9 4 1 , 0 . 9 4 1]) ;

set (handles . autolocateButton , ‘ Enable ’ , ‘ on ’ , ‘ BackgroundColor

’ , [1 , 0 . 3 4 5 , 0 . 1 3 7]) ;

set (handles . zoomIN , ‘ Enable ’ , ‘ on ’ , ‘ BackgroundColor ’ , [1 , 0 . 3 4 5 , 0 . 1 3 7]) ;

set (handles . zoomOUT, ‘ Enable ’ , ‘ on ’ , ‘ BackgroundColor ’ , [1 , 0 . 3 4 5 , 0 . 1 3 7]) ;

set (handles . uipanelZoom , ‘ ShadowColor ’ , [1 , 0 . 3 4 5 , 0 . 1 3 7]) ;

set (handles . uipanelC G , ‘ ShadowColor ’ , [1 , 0 . 3 4 5 , 0 . 1 3 7]) ;

set (handles . colourButton , ‘ Enable ’ , ‘ on ’) ;

set (handles . Gbutton , ‘ Enable ’ , ‘ on ’) ;

set (handles . nextImageButton , ‘ Enable ’ , ‘ o f f ’ , ‘ BackgroundColor

’ , [0 . 9 4 1 , 0 . 9 4 1 , 0 . 9 4 1]) ;

set (handles . f i n i s h , ‘ Enable ’ , ‘ o f f ’ , ‘ BackgroundColor ’ , [0 . 9 4 1 , 0 . 9 4 1 , 0 . 9 4 1])

;

Code of paragraph 3.3.3

% −−− Executes when s e l e c t e d ob j e c t i s changed in uipanelFovea .

function uipanelFovea Select ionChangeFcn (hObject , eventdata , handles)

global countV ;

XXXIV Appendix B

i f countV==0

i f hObject==handles . YESvis ib le

handles . r e s u l t s (handles . image2process) . v i s i b l e =‘YES ’ ;

e l s e i f hObject==handles . NOvis ib le

handles . r e s u l t s (handles . image2process) . v i s i b l e =‘NO’ ;

end

countV=countV+1;

s=‘Now you have to s e l e c t c on s e cu t i v e l y f i r s t the center , then a po int

on the contour o f the fovea so as to obta in a c i r cumfe rence that

surrounds i t . F i r s t , i f you want , zoom in on the area o f i n t e r e s t

and see the green channel image , then pr e s s ” Set cen te r and contour

” . ’ ;

set (handles . sugge s t i ons , ‘ Str ing ’ , s) ;

setButtonStateFor setCenterContour (handles) ;

else

i f hObject==handles . YESvis ib le

handles . r e s u l t s (handles . image2process) . v i s i b l e =‘YES ’ ;

e l s e i f hObject==handles . NOvis ib le

handles . r e s u l t s (handles . image2process) . v i s i b l e =‘NO’ ;

end

countV=countV+1;

end

% update handles :

gu idata (hObject , handles) ;

function setCenterContour Cal lback (hObject , eventdata , handles)

getUserInput () ;

% c a l c u l a t i o n o f the po l a r c oo rd ina t e s , f o r c en te r :

[thetaODc , thetaODfovc , rhoODc , thetaICc , rhoICc]= po l a r c o o rd i n a t e s (xFOV, yFOV

, x image s i z e , y image s i z e , xOD, yOD, xFOV, yFOV) ;

handles . r e s u l t s (handles . image2process) . FoveaCenter=[c en te r (handles .

image2process , :) , polarFoveaCenter (handles . image2process , :)] ;

% f o r contour :

[thetaODb , thetaODfovb , rhoODb , thetaICb , rhoICb]= po l a r c o o rd i n a t e s (xContour ,

Appendix B XXXV

yContour , x image s i z e , y image s i z e , xOD, yOD, xFOV, yFOV) ;

handles . r e s u l t s (handles . image2process) . FoveaContour=[contour (handles .

image2process , :) , polarFoveaContour (handles . image2process , :)] ;

% c a l c u l a t e rad iu s :

r (handles . image2process)=sqrt ((c en te r (handles . image2process , 1)−contour (

handles . image2process , 1)) ˆ2+(cente r (handles . image2process , 2)−contour (

handles . image2process , 2)) ˆ2) ;

handles . r e s u l t s (handles . image2process) . FoveaRadius=r (handles . image2process

) ;

% draw c i r c l e :

d r awc i r c l e f ov ea (cente r (handles . image2process , 1) , c en t e r (handles .

image2process , 2) , r (handles . image2process)) ;

function getUserInput ()

hold on

% cente r :

c=ginput (1) ;

plot (c (1) , c (2) , ‘ . g ’) ;

c en t e r =[cente r ; c] ;

% contour :

b=ginput (1) ;

plot (b (1) ,b (2) , ‘ . b ’) ;

contour=[contour ; b] ;

function [thetaOD , thetaODfov , rhoOD , thetaIC , rhoIC]= po l a r c o o rd i n a t e s (xp , yp ,

xpix , ypix , xod , yod , xfov , yfov)

%s h i f t the o r i g i n in OD:

xpod=xp−xod ;

ypod=yod−yp ;

%s h i f t the o r i g i n in the cente r o f the image :

xp ic=xp−(xpix /2) ;

yp ic=(ypix /2)−yp ;

%%po la r coord r e l a t e d to the p o s i t i v e ho r i z on t a l ax i s (ang le

coun t e r c l o ck e rw i s e)

%po le in OD:

XXXVI Appendix B

[tODrad , rhoOD]=cart2pol (xpod , ypod) ;

tOD=tODrad∗180/pi ;

%po le in IC :

[tICrad , rhoIC]=cart2pol (xpic , yp ic) ;

tIC=tICrad ∗180/pi ;

%%ro t a t i on o f 90 so that the po la r ax i s i s the p o s i t i v e v e r t i c a l one

%pole in OD:

i f tOD<90

thetaOD=270+tOD;

e l s e i f tOD>=90

thetaOD=tOD−90;

end

%pole in IC :

i f tIC<90

thetaIC=270+tIC ;

e l s e i f tIC>=90

thetaIC=tIC−90;

end

%r i gh t eye i s OK, change r o t a t i on f o r l e f t eye :

i f xfov>xod

thetaOD=360−thetaOD ;

thetaIC=360−thetaIC ;

end

%% thetaODfov :

%c a l c u l a t e the ang le d i f f e r e n c e between the ho r i z on t a l ax i s o f the

image and the OD−fovea ax i s :

% hor=vecto r // ho r i z on t a l ax i s o f the image

hor=[xfov−xod 0] ;

% odfov=vector from OD to fovea

odfov=[xfov−xod yfov−yod] ;

% alpha=angular d i f f e r e n c e between these 2 ve c t o r s

alpha=−(180/pi) ∗atan2 (hor (1) ∗ odfov (2)−hor (2) ∗ odfov (1) , hor (1) ∗ odfov (1)

+hor (2) ∗ odfov (2)) ;

alpha=abs (alpha) ;

Appendix B XXXVII

% ca l c u l a t e thetaODfov

i f yfov>yod

tODfov=thetaOD−alpha ;

i f tODfov<0

thetaODfov=thetaOD−alpha+360;

else

thetaODfov=tODfov ;

end

e l s e i f yfov<yod

tODfov=thetaOD+alpha ;

i f tODfov>360

thetaODfov=thetaOD+alpha −360;

else

thetaODfov=tODfov ;

end

e l s e i f yfov==yod

thetaODfov=thetaOD ;

end

end

function d rawc i r c l e f ov ea (xc , yc , r)

theta=linspace (0 ,2∗pi , 4 0) ;

x c i r c l e=r ∗cos (theta) ;

y c i r c l e=r ∗ sin (theta) ;

cx=x c i r c l e+xc ;

cy=y c i r c l e+yc ;

plot (cx , cy , ‘−c ’) ;

function RemoveButton Callback (hObject , eventdata , handles)

c en te r (end , :) = [] ; %remove l a s t item .

contour (end , :) = [] ;

%update the ax i s by re−p l o t t i n g the image

cla ;

imshow (handles . image) ;

XXXVIII Appendix B

Code of paragraph 3.3.4

%−−− Executes on button pr e s s in setJunct ionButton .

function se tJunct ionButton Cal lback (hObject , eventdata , handles)

se tButtonStateFor InProces s (handles) ;

getUserInputJunct ion () ;

j=j +1; %counter o f the j unc t i on s

% check i f s h i f t key i s pre s sed

sh i f tVa lu e=get (handles . f i gu r e1 , ‘ Se lect ionType ’) ;

hold on ;

i f strcmp (sh i f tVa lue , ‘ extend ’) %i f s h i f t pre s s ed=ve in

vesse lType = ‘V’ ;

plot (j unc t i on s (j , 1) , j un c t i on s (j , 2) , ‘ . b ’) ;

else

vesse lType = ‘A’ ; %i f s h i f t not pre s sed=ar t e ry

plot (j unc t i on s (j , 1) , j un c t i on s (j , 2) , ‘ . r ’) ;

end

%% po l a r c o o rd i n a t e s input : xp , yp , xpix , ypix , xod , yod , xfovea , yfovea

[thetaOD , thetaODfov , rhoOD , thetaIC , rhoIC]= po l a r c o o rd i n a t e s (j unc t i on s (j , 1) ,

j un c t i on s (j , 2) , s ize (handles . image , 2) , s ize (handles . image , 1) ,

r e s u l t I n f o (handles . image2process , 1) , r e s u l t I n f o (handles . image2process , 2)

, xFovea (handles . image2process) , yFovea (handles . image2process)) ;

tempPolar (j , :) =[thetaOD , thetaODfov , rhoOD , thetaIC , rhoIC] ;

handles . Junct ions (handles . image2process) . Junct ions=[j unc t i on s tempPolar

VeinOrArt ’] ;

setButtonStateFor ReadyJunct ions (handles) ;

s=‘Now you can redo the l a s t junct ion , or set another junc t i on p r e s s i n g ”

Set junc t i on ” , or , i f you have s e l e c t e d a l l the j unc t i on s o f i n t e r e s t

for t h i s p i c ture , s t a r t the c a l c u l a t i o n o f the ang l e s p r e s s i n g ”Branch

po in t s s e l e c t i o n ” . Zoom and RGB/Green channel are a c t i v e . ’ ;

Appendix B XXXIX

set (handles . sugge s t i ons , ‘ Str ing ’ , s) ;

% updates handles

guidata (hObject , handles)

function getUser InputJunct ion ()

ju=ginput (1) ;

j un c t i on s =[j unc t i on s ; ju] ;

% −−− Executes on button pr e s s in se tVes s e l sPo int sBut ton .

function s e tVes s e l sPo in t sBut ton Ca l lback (hObject , eventdata , handles)

i =0;

zoom out ;

i f i==size (junct i ons , 1) % junc t i on s f o r t h i s image are f i n i s h e d

setButtonStateFor NextImage (handles) ;

set (handles . u ipane lL i t t l e Image , ‘ BorderWidth ’ , 1 , ‘ ShadowColor ’ , ‘ k ’ , ‘

High l ightColor ’ , ‘w’) ;

s=‘The annotat ion o f t h i s image i s f i n i s h ed , go to the next one ’ ;

set (handles . sugge s t i ons , ‘ Str ing ’ , s) ;

return ;

end

s=‘Now, IN THE PANEL BELOW ON THE RIGHT, you have to set the po in t s in the

branches . Press ‘ ‘ Set po ints ’ ’ to s t a r t . ’ ;

set (handles . sugge s t i ons , ‘ Str ing ’ , s) ;

i=i +1;

%p lo t r e c t ang l e on Main Figure

axes (handles . mainFigure)

imshow(handles . image) ; hold on ;

for temp=1: s ize (junct i ons , 1)

i f strcmp (char (VeinOrArt (temp)) , ‘V’)

plot (j unc t i on s (temp , 1) , j un c t i on s (temp , 2) , ‘ . b ’) ;

XL Appendix B

else

plot (j unc t i on s (temp , 1) , j un c t i on s (temp , 2) , ‘ . r ’) ;

end

end

w=100; %width o f the r e c t ang l e

h=100; %high o f the r e c t ang l e

xr=junc t i on s (i , 1)−(w/2) ;

yr=junc t i on s (i , 2)−(h/2) ;

r e c t ang l e (‘ Pos i t ion ’ , [xr , yr ,w, h] , ‘ Curvature ’ , [0 , 0] , ‘ LineWidth ’ , 2 , ‘

L ineSty le ’ , ‘− ’ , ‘ EdgeColor ’ , ‘ y ’) ;

%p lo t OLD junc t i on s :

i f not (isempty (o ldJunct i ons))

for k=1: s ize (o ldJunct ions , 1)

i f o ldJunct i ons (k , 3)==1

plot (o ldJunct i ons (k , 1) , o ldJunct i ons (k , 2) , ‘ bx ’) ;

e l s e i f o ldJunct ions (k , 3)==0

plot (o ldJunct i ons (k , 1) , o ldJunct i ons (k , 2) , ‘ rx ’) ;

end

end

end

% plo t image on l i t t l e F i g u r e

axes (handles . l i t t l e F i g u r e)

imshow(handles . image) ; hold on ;

plot (j unc t i on s (i , 1) , j un c t i on s (i , 2) , ‘ . c ’) ;

%zoom in on po int l o c a t i o n

xmin = junc t i on s (i , 1) −100;

xmax = junc t i on s (i , 1) +100;

ymin = junc t i on s (i , 2) −100;

ymax = junc t i on s (i , 2) +100;

axis ([xmin xmax ymin ymax]) ;

setButtonStateFor ReadyPoints (handles) ;

% updates handles

Appendix B XLI

guidata (hObject , handles)

% −−− Executes on button pr e s s in PointsForNextJunctionButton .

function PointsForNextJunct ionButton Cal lback (hObject , eventdata , handles)

s=‘Now, IN THE PANEL BELOW ON THE RIGHT, c l i c k f i r s t on the mother v e s s e l

and then on the two ch i l d r en (always in the middle o f the v e s s e l) . After

s e l e c t i n g the mother a c i r c l e that w i l l help you to c l i c k on the

ch i l d r en w i l l appear . ’ ;

set (handles . sugge s t i ons , ‘ Str ing ’ , s) ;

s e tButtonStateFor InProces s (handles) ;

getUser InputPoints () ;

s=‘Now you can redo l a s t s e l e c t i o n or go to next junc t i on . ’ ;

set (handles . sugge s t i ons , ‘ Str ing ’ , s) ;

setButtonStateFor RedoOrNext (handles) ;

% c a l l the func t i on ca l cu l a t eAng l e s

ang l e s (i , :)=ca l cu l a t eAng l e s (j unc t i on s (i , :) ,m(i , :) , p1 (i , :) , p2 (i , :)) ;

handles . Junct ions (handles . image2process) . Ves s e lPo in t s =[m p1 p2] ;

handles . Junct ions (handles . image2process) . Angles=ang l e s ;

% updates handles

guidata (hObject , handles)

function getUser InputPoints ()

hold on

pointm=ginput (1) ; %mother

plot (pointm (1) , pointm (2) , ‘ . b ’) ;

r j=sqrt ((j unc t i on s (i , 1)−pointm (1)) ˆ2+(junc t i on s (i , 2)−pointm (2)) ˆ2) ; %

rad iu s

d r awc i r c l e f ov ea (j unc t i on s (i , 1) , j un c t i on s (i , 2) , r j) ; %c i r c l e with cente r in

j unc t i on s (i , :) and rad iu s r j

m=[m; pointm] ;

po int1=ginput (1) ; %ch i l d r en 1

XLII Appendix B

plot (po int1 (1) , po int1 (2) , ‘ . g ’) ;

p1=[p1 ; po int1] ;

po int2=ginput (1) ; %ch i l d r en 2

plot (po int2 (1) , po int2 (2) , ‘ . r ’) ;

p2=[p2 ; po int2] ;

%func t i on to c a l c u l a t e ang l e s

function phi=ca l cu l a t eAng l e s (ju ,m, p1 , p2)

mother vector=[m(1)−ju (1) m(2)−ju (2)] ;

c h i l d 1 v e c t o r =[p1 (1)−ju (1) p1 (2)−ju (2)] ;

c h i l d 2 v e c t o r =[p2 (1)−ju (1) p2 (2)−ju (2)] ;

%Plot ve c to r s

plot ([m(1) ju (1)] , [m(2) ju (2)] , [p1 (1) ju (1)] , [p1 (2) ju (2)] , [p2 (1) ju

(1)] , [p2 (2) ju (2)]) ;

%c a l c u l a t e ang l e s :

a1=−(180/pi) ∗atan2 (mother vector (1) ∗ c h i l d 1 v e c t o r (2)−mother vector (2) ∗

c h i l d 1 v e c t o r (1) , mother vector (1) ∗ c h i l d 1 v e c t o r (1)+mother vector (2) ∗

c h i l d 1 v e c t o r (2)) ;

a2=−(180/pi) ∗atan2 (c h i l d 1 v e c t o r (1) ∗ c h i l d 2 v e c t o r (2)−c h i l d 1 v e c t o r (2) ∗

c h i l d 2 v e c t o r (1) , c h i l d 1 v e c t o r (1) ∗ c h i l d 2 v e c t o r (1)+ch i l d 1 v e c t o r (2) ∗

c h i l d 2 v e c t o r (2)) ;

a3=−(180/pi) ∗atan2 (c h i l d 2 v e c t o r (1) ∗mother vector (2)−c h i l d 2 v e c t o r (2) ∗

mother vector (1) , c h i l d 2 v e c t o r (1) ∗mother vector (1)+ch i l d 2 v e c t o r (2) ∗

mother vector (2)) ;

i f a2>0 %the user has s e l e c t e d the ve c to r s counte r c l o ckw i s e

i f abs (a3)>abs (a1)

phi1=abs (a1) ;

phi2=abs (a2) ;

phi3=360−phi1−phi2 ;

else %abs (a3)<abs (a1)

phi2=abs (a2) ;

phi3=abs (a3) ;

phi1=360−phi2−phi3 ;

Appendix B XLIII

end

e l s e i f a2<0 %the user has s e l e c t e d the ve c to r s c l o ckw i s e

i f abs (a3)>abs (a1)

phi2=abs (a2) ;

phi3=abs (a1) ;

phi1=360−phi2−phi3 ;

else %abs (a3)<abs (a1)

phi1=abs (a3) ;

phi2=abs (a2) ;

phi3=360−phi1−phi2 ;

end

end

phi=[phi1 , phi2 , phi3] ;

Code of paragraph 3.3.5

% −−− Executes during ob j e c t c r ea t i on , a f t e r s e t t i n g a l l p r op e r t i e s .

function generat ion CreateFcn (hObject , eventdata , handles)

i f i s p c && i s e qua l (get (hObject , ‘ BackgroundColor ’) , get (0 , ‘

de fau l tUicontro lBackgroundColor ’))

set (hObject , ‘ BackgroundColor ’ , ‘white ’) ;

end

function gene ra t i on Ca l lback (hObject , eventdata , handles)

handles . Widths (handles . image2process) . Generat ion (j)=get (hObject , ‘ Str ing ’) ;

% updating handles

guidata (hObject , handles) ;

% −−− Executes on button pr e s s in ContoursForNextPointButton .

function ContoursForNextPointButton Callback (hObject , eventdata , handles)

XLIV Appendix B

s=‘Now, IN THE PANEL BELOW ON THE RIGHT, c l i c k on the contours o f the

v e s s e l . ’ ;

set (handles . sugge s t i ons , ‘ Str ing ’ , s) ;

s e tButtonStateFor InProces s (handles) ;

% c a l l the func t i on getUserInputContours

getUserInputContours () ;

s=‘Now you can redo l a s t s e l e c t i o n or go to next po int . ’ ;

set (handles . sugge s t i ons , ‘ Str ing ’ , s) ;

setButtonStateFor RedoOrNext (handles) ;

% po in t s on the contour

global contour1 ;

global contour2 ;

% c a l l the func t i on ca lcu lateWidths

widths (i , :)=ca lcu lateWidths (contour1 (i , :) , contour2 (i , :)) ;

handles . Widths (handles . image2process) . Contours=[contour1 contour2] ;

handles . Widths (handles . image2process) . Widths=widths ;

% updates handles

guidata (hObject , handles)

function getUserInputContours ()

hold on

b1=ginput (1) ;

plot (b1 (1) , b1 (2) , ‘ . y ’) ;

contour1=[contour1 ; b1] ;

% vec tor from current po int to c en t r a l po int

v=b1−po in t s (i , :) ;

v=v . /norm(v) ; % normal ized

vp=[−v (2) v (1)] ; % perpend i cu la r

% p lo t l i n e along v e s s e l

i f VeinOrArt (i)==86

co l ou rS t r = ‘−b ’ ;

else

co l ou rS t r = ‘−r ’ ;

end

Appendix B XLV

plot ([po in t s (i , 1) po in t s (i , 1)+v (1) ∗ 3 0] , [po in t s (i , 2) po in t s (i , 2)+v (2) ∗30] ,

‘−g ’) ;

plot ([po in t s (i , 1) po in t s (i , 1)+vp (1) ∗ 1 0] , [po in t s (i , 2) po in t s (i , 2)+vp (2) ∗10]

, c o l ou rS t r) ;

% p lo t l i n e ac ros v e s s e l (other s i d e)

plot ([po in t s (i , 1) po in t s (i , 1)−v (1) ∗ 3 0] , [po in t s (i , 2) po in t s (i , 2)−v (2) ∗30] ,

‘ : g ’) ;

% point on the other contour

b2=ginput (1) ;

plot (b2 (1) , b2 (2) , ‘ . y ’) ;

contour2=[contour2 ; b2] ;

% func t i on to c a l c u l a t e widths

function w=calcu lateWidths (p1 , p2)

w=sqrt ((p2 (1)−p1 (1)) ˆ2+(p2 (2)−p1 (2)) ˆ2) ;

Code of paragraph 3.3.6

h=ac tx con t r o l (‘WMPlayer .OCX. 7 ’ , [4 2 8 8 846 587]) ;

f i l ename=‘videodemo .mp4 ’ ;

pathname=‘C : \ . . . \ ’ ;

h .URL=[pathname f i l ename] ;

h . c on t r o l s . play ;

% −−− Executes on button pr e s s in SOPbutton .

function SOPbutton Callback (hObject , eventdata , handles)

open (‘C : \ . . . \ SOPdocument . pdf ’) ;

Code of paragraph 3.3.7

function wr i t e Gene ra l In f o rmat i ons (f i l e ID , processed , img , annotator ,

c l i n i c i a n , dateNtime , f i r s tAnnota to r , f i r s tDa t e)

XLVI Appendix B

fpr intf (f i l e ID , ‘%s \nImage:%s , annotator name:%s , %s , date and time :%s ,

OD and fovea annotator :%s , date and time OD and fovea annotat ion :%s \n ’ ,

processed , img , annotator , c l i n i c i a n , dateNtime , f i r s tAnnota to r ,

f i r s tDa t e) ;

function write OD (f i l e ID , data , annotType)

fpr intf (f i l e ID , ‘OD: Xc :%.1 f , Yc:%.1 f , rad ius1 :%.1 f , rad ius2 :%.1 f ,

theta :%.1 f , annotationType :%s \n ’ , data , annotType) ;

function write Fovea (f i l e ID , center , radius , v i s i b l e)

fpr intf (f i l e ID , ‘FOVEA: Xc :%.1 f , Yc:%.1 f , thetaOD :%.1 f , thetaODfov :%.1 f ,

rhoOD:%.1 f , thetaIC :%.1 f , rhoIC :%.1 f , r ad iu s :%.1 f , v i s i b l e :%s \n ’ ,

center , radius , v i s i b l e) ;

function wr i t e Junc t i on s (f i l e ID , junctionsNva , v e s s e l p o i n t s , ang l e s)

fpr intf (f i l e ID , ‘JUNCTION: Xj :%.1 f , Yj :%.1 f , thetaOD :%.1 f , thetaODfov

:%.1 f , rhoOD:%.1 f , thetaIC :%.1 f , rhoIC :%.1 f , vesse lType :%c , Xm:%.1 f

, Ym:%.1 f , Xc1 :%.1 f , Yc1 :%.1 f , Xc2 :%.1 f , Yc2 :%.1 f , phi1 :%.1 f , phi2

:%.1 f , phi3 :%.1 f \n ’ , junctionsNva , v e s s e l p o i n t s , ang l e s) ;

function write Widths Generat ion (f i l e ID , pointNva ,w, gene ra t i on)

fpr intf (f i l e ID , ‘WIDTH: Xw:%.1 f , Yw:%.1 f , thetaOD :%.1 f , thetaODfov :%.1 f ,

rhoOD:%.1 f , thetaIC :%.1 f , rhoIC :%.1 f , vesse lType :%s , width :%.1 f ,

g ene ra t i on :%u\n ’ , pointNva , w, gene ra t i on) ;

function write Widths (f i l e ID , pointNva ,w)

fpr intf (f i l e ID , ‘WIDTH: Xw:%.1 f , Yw:%.1 f , thetaOD :%.1 f , thetaODfov :%.1 f ,

rhoOD:%.1 f , thetaIC :%.1 f , rhoIC :%.1 f , vesse lType :%s , width :%.1 f \n

’ , pointNva , w) ;

Code of paragraph 3.3.8

%data with l a b e l L :

lp=regexp (l ine , L) ; % l a b e l p o s i t i o n

Appendix B XLVII

i f not (isempty (lp))

r e s { i , cc}=L ; % re s i s the s t r u c tu r e

cc=cc+1;

l s=s ize (L , 2) ; % l a b e l s i z e

s s i=l s+lp ; % s t a r t s t r i n g i n t e r v a l

v i r=regexp (l ine , ’ , ’) ;

c=0;

for v=1: s ize (v i r , 2)

i f v i r (v)>lp

e s i=v i r (v)−1; % end s t r i n g i n t e r v a l

c=1;

break

end

end

i f c==0

r e s { i , cc}=l ine (s s i : end) ; % the data i s the l a s t one o f i t s e l i n e

e l s e i f c==1

r e s { i , cc}=l ine (s s i : e s i) ; % the data isn ’ t the l a s t one o f i t s l i n e

end

end

XLVIII Appendix B

Bibliography

[1] N. Patton, T. M. Aslam, T. J. MacGillivray, I. J. Deary, B. Dhillon, R. H. Eikelboom, K.

Yogesan, and I. J. Constable, “Retinal image analysis: concepts, applications and poten-

tial,” in Prog. Retin. Eye Res., vol. 25, no. 1, pp. 99127, 2006.

[2] B. Al-Diri, A. Hunter, D. Steel and M. Habib, “Manual Measurement of Retinal Bifurcation

Features,” in Engineering in Medicine and Biology Society (EMBC) Annual International

Conference of the IEEE, 2010.

[3] N. Patton, T. Aslam, T. J. MacGillivray, A. Pattie, I. J. Deary, and B. Dhillon, “Retinal

vascular image analysis as a potential screening tool for cerebrovascular disease,” in Journal

of Anatomy, vol. 206, pp. 318348, 2005.

[4] M. Niemeijer, X. Xu, A. V. Dumitrescu, P. Gupta, B. van Ginneken, J. C. Folk and

M. D. Abrmoff, “Automated Measurement of the Arteriolar-to-Venular Width Ratio in

Digital Color Fundus Photographs,” in IEEE Trans on Medical Imaging, vol. 30, no. 11,

pp. 19411950, 2011.

[5] A. Perez-Rovira, T. MacGillivray, E. Trucco, K. S. Chin, K. Zutis, C. Lupascu, D. Tegolo,

A. Giachetti, P. J. Wilson and A. Doney, “Vampire: Vessel assessment and measurement

platform for images of the retina,” in Proc. IEEE Engineering in Medicine and Biology

Society, pp. 33913394, 2011.

[6] E. Trucco, L. Ballerini, D. Relan, A. Giachetti, T. MacGillivray, K. Zutis, C. Lupascu,

D. Tegolo, E. Pellegrini, G. Robertson, P. J. Wilson, A. Doney and B. Dhillon, “Novel

VAMPIRE algorithms for quantitative analysis of the retinal vasculature,” in Biosignals

and Biorobotics Conference (BRC), 2013.

[7] A. Giachetti, K. S. Chin, E. Trucco, C. Cobb, and P. J. Wilson, “Multiresolution local-

ization and segmentation of the optical disc in fundus images using inpainted background

and vessel information,” in ICIP, pp. 21452148, 2011.

L BIBLIOGRAPHY

[8] J. V. B. Soares, J. J. G. Leandro, R. M. Cesar, H. F. Jelinek and M. J. Cree, “Retinal

vessel segmentation using the 2-D Gabor wavelet and supervised classification,” in IEEE

Trans. on Med. Im., vol. 25, pp. 12141222, Sept. 2006.

[9] A. Cavinato, L. Ballerini, E. Trucco and E. Grisan, “Spline-based refinement of vessel

contours in fundus retinal images for width estimation,” in ISBI, Apr. 2013.

[10] C. A. Lupascu, D. Tegolo and E. Trucco, “Ensembles of bagged decision trees for mea-

suring retinal vessels using an extended multiresolution Hermite model,” submitted for

publication.

[11] D. Sumukadas, R. Price, G. P. Leese, E. Trucco, M. E. T. McMurdo, “Does the European

Working Group on Sarcopenia in Older People algorithm detect all those vulnerable?,” to

appear in Age and Ageing.

[12] A. J. Cruz-Jentoft, J. P. Baeyens, J. M. Bauer, Y. Boirie, T. Cederholm, F. Landi, F.

C. Martin, J. P. Michel, Y. Rolland, S. M. Schneider, E. Topinkov, M. Vandewoude and

M. Zamboni, “Sarcopenia: European consensus on definition and diagnosis: Report of the

European Working Group on Sarcopenia in Older People,” in Age and Ageing, vol. 39,

issue 4, pp. 412-23, Jul 2010.

[13] M. D. Knudtson, K. E. Lee, L. D. Hubbard, T. Y. Wong, R. Klein and B. E. K. Klein,

“Revised formulas for summarizing retinal vessel diameters,” in Curr. Eye Res, vol. 27, no.

3, pp.143149, 2003.

[14] http://www.mathworks.co.uk/help/matlab/index.html

[15] T. Y. Wong, M. D. Knudtson, R. Klein, B. E. . Klein, S. M. Meuer and L. D. Hubbard,

“Computer-assisted measurement of retinal vessel diameters in the Beaver Dam Eye Study:

methodology, correlation between eyes, and effect of refractive errors,” Ophthalmology, vol.

111, no. 6, pp. 11831190, Jun. 2004.

[16] D. Fiorin and A. Ruggeri, “Computerized analysis of narrow-field ROP images for the

assessment of vessel caliber and tortuosity,” in Engineering in Medicine and Biology Society

EMBC Annual International Conference of the IEEE, pp.2622-2625, 2011.

BIBLIOGRAPHY LI

[17] D. N. Shah, C. M.Wilson, G. S. Ying, K. A. Karp, K. D. Cocker, J. Ng, E. Schulenburg,

A. R. Fielder, M. D. Mills and G. E. Quinn, “Comparison of expert graders to computer-

assisted image analysis of the retina in retinopathy of prematurity,” in British Journal of

Ophthalmology, vol. 95, issue 10, p.144, Oct 2011.

[18] C. G. Owen, A. R. Rudnicka, R. Mullen, S. A. Barman, D. Monekosso, P. H. Whincup,

J. Ng and C. Paterson, “Measuring Retinal Vessel Tortuosity in 10-Year-Old Children:

Validation of the Computer-Assisted Image Analysis of the Retina (CAIAR) Program,” in

IOVS, vol. 50, No. 5, May 2009.

[19] C. G. Owen, T. J. Ellis and E. G. Woodward, “A comparison of manual and automated

methods of measuring conjunctival vessel widths from photographic and digital images,”

in Ophthalmic Physiol Opt., vol. 24, issue 2, pp.74-81, Mar 2004.

[20] B. Al-Diri, A. Hunter, D. Steel and M. Habib, “Manual Measurement of Retinal Bifurcation

Features,” in Engineering in Medicine and Biology Society (EMBC) Annual International

Conference of the IEEE, 2010.

[21] E. Trucco, A. Ruggeri, T. Karnowski, L. Giancardo, E. Chaum, J. P. Hubschman, B. al-Diri,

C. Y. Cheung, D. Wong, M. Abramoff, G. Lim, D. Kumar, P. Burlina, N. M. Bressler, H.

F. Jelinek, F. Meriaudeau, G. Quellec, T. MacGillivray and B. Dhillon, “Validating Retinal

Fundus Image Analysis Algorithms: Issues and a Proposal,” in IOVS, vol. 54, No. 0, May

2013.

