UNIVERSITA DEGLI STUDI DI PADOVA
FACOLTA DI INGEGNERIA
DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE

TESI DI LAUREA MAGISTRALE IN BIOINGEGNERIA

DEVELOPMENT OF A SOFTWARE TOOL
FOR ANNOTATING VASCULAR FEATURES
IN IMAGES OF THE RETINAL FUNDUS

RELATORE: PrOF. ALFREDO RUGGERI
CORRELATORE: ProF. EMANUELE TRUCCO

DUNDEE

LAUREANDO: ILARIA PIERETTI

ANNO ACCADEMICO 2012-2013

II

Index

Abstract
Acknowledgements
1 Introduction

2 Related works

3 Annotation tool development

3.1 Requirements Analysis
3.2 Software architecture and design
3.3 Implementation of the tool
3.3.1 Startmenu L.
3.3.2 Optic Disc Annotation Tool
3.3.3 Fovea Annotation Tool
3.3.4 Junctions Annotation Tool
3.3.5 Widths Annotation Tool
3.3.6 Info environment
3.3.7 Functions to write outputs
3.3.8 Functions to read the data

3.4 Documentationo

4 Application: the study about Sarcopenia
5 Conclusions

Appendix A

Appendix B

Bibliography

VII

XV

XLIX

Abstract

Nowadays, the analysis of the images of the retinal fundus palys a key role in the prevention
and the diagnosis of diseases of different kind, such as diabete and cerebrovascular diseases.
The purpose of this thesis is to present the development and the use of a software for the
manual annotation of retinal features (optic disc, fovea, junctions and widths of the blood
vessels). The VAMPIRE-Annotation Tool, developed with the Matlab GUI, presents a user-
friendly graphical interface, allows the user to upload previously recorded data and also saves,
for each measure taken, additional information that need to be able to better characterize it.
This tool is essential for the creation of ground truth for the validation of automatic algorithms.
A study that aims to identify possible retinal biomarkers for Sarcopenia is reported. During
this study, some annotations are performed with the VAMPIRE-Annotation Tool, thanks to
which the significance of the additional information recorded for each measure, with respect to

the measure itself, is analyzed.

Acknowledgements

I wish to express my gratitude to all the members of the VAMPIRE team, Manuel, Lucia, Enrico,
Kris, Tom, Devanjali and Gavin, without whom this thesis would not have been possible. I want
to especially thank my supervisor Prof. Manuel Trucco for having welcomed me in the team
and in the CVIP group of the University of Dundee with great hospitality, and for allowing
me to participate in both prestigious academic meetings and lively intercultural dinners. Deep
gratitude is also due to Lucia Ballerini, my guardian angel during my six months in Scotland,
whose knowledge, assistance and patience saved me in times of distress during this study. Special
thanks also to Doctor Peter Wilson who has enlightened us with his knowledge, and for helping

us with great patience, professionalism and enormous kindness.

Chapter 1

Introduction

The retina is the innermost membrane of the eye and it is a vascularised tissue. Its vascular
network consists of arterial and venous ramifications that originate from the optic disc and
progressively bifurcate into smaller branches that spreadout across the retina. This is the only
place in the whole body where blood vessels are clearly visible on the surface, and therefore
their visualization can be done non-invasively and in vivo [1]. This is extremely important
because the vascular network of the retina is believed to be governed by physiological principles
that optimize its efficiency [2] and so the monitoring of its geometry plays a key role in the
diagnostics and the prevention of many diseases, not only eyepieces, but also systemic [1] and in
the brain [3]. For this reason, over the past years it has been heavily invested in digital imaging
systems, which are in constant and rapid evolution [1].

In order to efficiently identify in a large set of images the areas related to pathologies, an

automatic system must first be able to identify the landmarks on the retinal surface:

- the optic disc, a small blind spot on the surface where the fibers of the retina leave the

eye and become part of the optic nerve
- the fovea, region of the retina with maximum density of photoreceptors

- the entire vascular system, where you must be able to measure the widths and the bifur-

cation angles of the vessels in each point.

Once these reference points are identified you can get all those values and indices that act as
biomarkers for the various diseases. An important example of biomarker is the arteriolar-to-
venular diameter ratio (AVR), which is the ratio between the widths of arterioles and venules,
whose variations are associated with stroke, cerebral atrophy, cognitive decline, and myocardial
infarct [4]. Other examples of biomarkers are the bifurcation angles and the tortuosity of the

vessels.

2 1. INTRODUCTION

It is precisely in this context of identification of landmarks and computation of biomarkers
that the semi-automatic software VAMPIRE was born in 2011 and it is still in continuous
development. VAMPIRE offers a public and user-frendly platform, with which users can quantify
optic disc, fovea, widths of the vessels and bifurcations angles of junctions in a large set of fundus
camera images, in order to produce data about tortuosity, bifurcation coefficients and fractal
analysis [5]. Regarding the detection of the optic disc and fovea two algorithms have recently
been developed [6], based on two very simple concepts: the OD is the brighter area of the retina
and with the higher concentration of blood vessels, the macula instead is the darkest area and it
is located in an avascular zone. The algorithm for the quantification of the optic disc, developed
by Giacchetti et al. [7], converts the image to grayscale, from which the vascular network is
then identified using standard techniques of segmentation. The vascular map is then removed
from the picture, on which then inpainting algorithms are applied. The Fast Radial Symmetry
transform is applied to the inpainted image, generating a map of bright symmetries on which,
by exploiting the gradient of brightness on four different scales, the contour of the optic disc,
assumed elliptical, is found [7]. The results obtained with this algorithm are very good (although
in some cases there are still errors, even in good quality images as showed in Figure 1.1) and so
it was officially included into the VAMPIRE software. Regarding the fovea, an algorithm very
similar has been implemented, with focus on the symmetry of dark structures instead of those
bright [6]. The results in this case are not great, and then, for now, the VAMPIRE software has
not yet incorporated this technique, and therefore remaining without the possibility of fovea’s
automatic annotation. As regards the identification of the retinal vascular network, VAMPIRE
uses segmentation techniques with Soares’ method [8], to which a procedure of refinement of
vessels’ contours obtained from vascular binary map was then added [9]. The Soares’ method
with this improvement produces excellent results with small images (800x600 pixels) because the
training was executed precisely on this kind of databases (ie REVIEW, STARE and DRIVE),
but when applied on larger images (ie 3500x2300 pixels) the technique fails in many areas as
can be seen in Figure 1.2. For now, there are no better alternative techniques for mapping
vessels, then this is what is currently used in VAMPIRE, and in these binary maps is where
junctions are selected. Regarding widths instead, an alternative technique has been included
in VAMPIRE, just as default. This method, developed by Lupascu et al. [10], is based on the
construction of a parametric surface model of local cross-sectional intensities, and then using

decision trees for regression to estimate width from the parameters of the best-fit surface. This

Figure 1.1: Automatic wrong detection of the optic disc

method, as it is based on techniques that do not involve training, works well for images of any
size. In the VAMPIRE software the user clicks on a point inside the vascular network and on
that point the width of the vessel is estimated using the method explained above. As regards
the A/V classification, despite the development of new algorithms is in progress, VAMPIRE is
not yet able to automatically perform this classification.

The VAMPIRE software therefore needed a manual annotation tool included in the package
for the validation of these new algorithms [6] but also to take the place of the automatic software,
if it does not meet cernatin needs. There were already some other manual tools developed by
the team, but each of them only allowed the annotation of one or two features, the data storage
was completely different between the different tools, and they were not very user-friendly and
therefore used only by the members of the team or by clinicians very closed to it.

In light of this, the VAMPIRE-Annotation Tool, in addition to satisfying requirements that
instead the old ones did not, it should also be supportive of VAMPIRE in what it is still
incomplete (i.e. fovea, A/V classification) or when it produces errors (i.e. OD mistakenly iden-
tified, wrong segmentation). In parallel to all this, ophthalmologists of the Ninewells Hospital
of Dundee have exposed to the VAMPIRE team a new vision for the treatment of data in the
statistical context, to which underlies the need to attach to the data some additional informa-

tion. This additional information is seen as an “adjustment” that has to be applied to the raw

4 1. INTRODUCTION

Figure 1.2: Failure of segmentation technique in some areas

measure. For this reason the tool has been designed in such a way that it is not limited only to
the simply quantification of the features (location and size of OD and fovea, widths values in
a point and Cartesian coordinates of that point, the values of bifurcation angles for a junction
and Cartesian coordinates of the junction), but that it adds even more additional information
(which are going to be exposed in Chapter 3) to characterize them in a really complete way.
In this thesis, after a brief overview of other manual tools for the analysis of images of
the retina developed by other teams (Chapter 2), all the steps taken for the development of
VAMPIRE-Annotation Tool are shown in Chapter 3, describing in detail all the various compo-
nents with the aid of code fragments and images. Afterwards, in Chapter 4, the use of the tool
in the context of the clinical study “Does the European Working Group on Sarcopenia in Older
People algorithm detect all those vulnerable?” is described, ending then, in the last Chapter,

with some conclusions and discussions about the work done and the future one.

Chapter 2

Related works

In view of the automated software, many teams make use of manual tools to validate the
algorithms and to address some possible gaps. However, there are few specific and detailed
publications about the manual tools used, which are only indirectly mentioned in some papers
regarding validation. In order to have a reliable validation of automatic algorithms is necessary
to have appropriate instruments for manual annotation [19], which can be both very complex,
but in some cases also extremely simple and specific. An example of the latter case is the tool
used in the study [18] for the validation of the Computer Assisted Image Analysis of the Retina
(CAIAR) program, in which two observers were asked to assign a value of tortuosity from 0 to 5
to blood vessels of the 14 subjects involved in the study. Also in other studies involving CAIAR
hand instruments were used: for example, in a study about the retinopathy of prematurity
(ROP) performed by Shah, Wilson et al. [17] at the Division of Epidemiology and Genetics of
the Institute of Ophthalmology in London, they have used the annotations of four ROP experts
who used a tool for the manual measure of width and tortuosity of the vessels. Thanks to this
ground truth, perform statistical comparative analysis both with CAIAR and also between the
four subjects involved has been possible for the authors.

A specific tool for the geometry of the bifurcation has been implemented by Al-Diri et al.
[20]. Regarding the bifurcation angles, these are obtained by first selecting the central point
of the junction and then clicking at the end of the three segments of the vessels involved.
Immediately after, the three segments that follow the central axis of the vessel are shown on
the screen (similar to what happens in VAMPIRE-Annotation Tool). For the measure of the
widths, small rectangles aligned along the vessel are used: to place a rectangle is requested to
the user to select two points on the central axis of the vessel and then a point on one of the
two edges of the vessel, near the central points. The rectangle is positioned according to the
location of these three points. For both the junctions and the widths, the first selections can be

changed and adapted to the structure of the vessel until they are believed to be correct.

6 2. RELATED WORKS

The Laboratory of Biomedical Imaging of the Department of Information Engineering of
the University of Padua has developed a tool for manual tracking of the retinal vessels [16]. The
instrument ROPnet is a web-based tool that allows the quantification of width and tortuosity
of vessels, thanks to the manual tracking of the vascular axis. The tool allows the upload of a
single image at a time, on which the entire procedure is completed before going to the next.
ROPnet allows the user to choose whether to display the image in the RGB or in the green
channel format and to zoom in on it. During the use of the tool a online guide is always easily
accessible. First, the annotation of the optic disc is required and starts clicking at the center
of the OD. From here a circle with fixed center and moving boundary is formed and has to be
adapted to the contours of the real OD. Later, the tool prompts you to select on the image
the two extreme points of the vessel segment that has to be analyzed. A straight line passing
through the two points appears. The line can be changed (keeping the ends fixed) by clicking
on other points inside the vessel to make sure that it fits its particular shape. On this curve,
automatic algorithms for the calculation of width and tortuosity are then applied.

As previously stated, the amount of manual tools for the annotation of retinal fundus images
that are documented in the literature is poor compared to what really exists. Taking into account
this fact, we try to do a little summary about the completeness of these tools with respect to
the number of features that can be annotated. As you can see from the table in Figure 2.1
the general tendency is to create specific tools according to the request of a certain study. The
VAMPIRE-Annotation Tool instead is designed in a different perspective, with the aim to be
multifunctional and suitable for every type of study, in order to be able, independently of the

context, to produce data congruent and connected also between the different features.

oD Fovea Junctions Width Tortuosity
Owen et al. (CAIAR) X
Shah, Wilson et al. (CAIAR) X X
Al-Dirietal. X X
Ruggeri et al. X X X
VAMPIRE -Annotation Tool X X X X

Figure 2.1: Features analyzed with the manual tools reported

Chapter 3

Annotation tool development

For the development of the VAMPIRE-Annotation Tool, it was decided to partially follow the
“Waterfall model”, convenient for small and relatively easy software projects. The “flow” of
the development stages (Requirements Analysis, Software architecture and design, Implemen-
tation, Documentation) is described in this chapter. As regards the part of Testing, this has

been developed thanks to the use of the tool during the study described in Chapter 4.

3.1 Requirements Analysis

Compared to the older manual tools mentioned in Chapter 2, the VAMPIRE-Annotation Tool
has to allow a complete annotation of all the features (optic disc, fovea, vessels’ width and
bifurcation angles of the junctions), saving the related data in a consistent way between them.
Being the production of ground truth one of the two main purposes of this tool, and being the
ground truth the more reliable the more detected by a specialist (then a doctor), it must lodge a
simple and immediate interface for the user. One of the most innovative characteristics the tool
has to have is saving all the useful information for the application of what in Chapter 1 we called
“adjustments” to the data, not saving only the Cartesian coordinates and the final measure as
the old ones. As mentioned in the introduction, these adjustments are additional information
that must be saved during the annotation. The basic information until now considered essential

was:

- for OD and fovea: the size and the position expressed in Cartesian coordinates

- for widths and junctions: the Cartesian coordinates of the measuring point, measure and

type of vessel (artery or vein).

8 3. ANNOTATION TOOL DEVELOPMENT

Figure 3.1: Representation of the polar coordinates of a point of interest (green cross): the
black arrow represents the linear coordinate, in blue the angular coordinate with respect to the

reference axis (in red)

The most important adjustment are definitely the polar coordinates of a point on the retinal
surface. In fact, while those Cartesian give a pure information of position within the image,
polar ones situate the point in the context of the retinal surface, and especially in relation to the
features of reference. As can be seen from the Figure 3.1, the polar coordinates that are saved
are special and have a pole in the optic disc. The radial distance from the OD is “classical”,
while the angular one has particular characteristics: first of all it has opposite direction for the
right (counterclockwise) and left eye (clockwise); this is because in nature eyes are symmetrical
with respect to the central part of the face, and thanks to this choice of angular coordinate, nasal
structures and temporal structures of the two eyes have congruent angles. Another important
fact is that the angle is not calculated from an axis parallel to image’s contours, but from
the one perpendicular to the one that connects fovea and optic disc. The polar coordinates so
are not related to the image (such as Cartesian), but to the physiology of the retina of that
particular patient.

Knowing that the fovea in many images is difficult to accurately locate (as in Figure 3.2, and
being the fovea, as explained above, an important point of reference, save information about its
visibility becomes vital to understand the quality of the annotation. If the fovea is not clearly

visible, its annotation will be very rough, and therefore the polar coordinate of that point can be

3.1. REQUIREMENTS ANALYSIS 9

quite incorrect, with obvious disastrous consequences in the subsequent data analysis. During
the annotation of the widths, the user is asked to specify the generation of the segment of the
vessel in which the measure is performed. This is an important adjustment to the measure of

width, which may strongly depend on the number of times the vassel bifurcates downstream.

Figure 3.2: On the left side a fovea well visible; on the right side an image with the fovea clearly

individuable

In addition to the functions of a manual tool, the VAMPIRE-Annotation Tool has to remain
an auxiliar package for the VAMPIRE software, and thus the production of interchangeable data
and comparable with automatic ones is required. In order to meet this need, the points at which
the measures have to be taken must be identified thanks to coordinates referred to the same
origin (for the Cartesian the upper left corner of the image, for the polar ones the optic disc)
and that is why we chose to enter the automatic annotation of the OD found with the same
algorithm of VAMPIRE [7] (described in Chapter 1). As an adjustment to the annotation of
the optic disc, saving the annotation type (automatic or manual) it was considered util to be
able, at a later time, to evaluate the quality of the annotation made. In a broad view of “data
library”, we also felt the need of a tool that not only produces data from scratch, but that could
also interact with data from previous annotations. So the tool has to allow the loading of old

data and allow different uses that will be explained in the following paragraphs.

10 3. ANNOTATION TOOL DEVELOPMENT

3.2 Software architecture and design

The tool has been designed and developed with the Graphical User Interface (GUI) of Matlab,
using its basic elements such as buttons, panels, etc. [14]. The annotation mode of features is in-
trinsically different for each of them, so the design of different environments of interaction with
the user was necessary. The basic structure of the tool has to consist of five different environ-
ments (and thus five different screens): one at the beginning where to insert user identification
and planning of the work, and then other four, one for each feature. These five environments
are represented by the five columns of the scheme of Figure 3.3, which shows and describes the
structure of the tool.

As explained in the previous paragraph, the tool has to meet some requirements, and to
ensure this happens, a precise structure of the tool itself is needed. To make the job of the
user less burdensome as possible, the tool should provide an initial planning of the annotation,
excluding any image in the set that could not be annotated, and immediately choosing the type
of annotation. In the first part then the possibility of having an overview of all the images has
to be present, so the user can already exclude those damaged or otherwise not suitable for the
annotation; in this way they should not then appear again and unnecessarily every time during
the annotation of the features (thus wasting time for the user). In addition, selecting the type

of path for the annotation is necessary to do immediately:

- if the need is for a complete annotation, then the tool has to give only the possibility to
upload the images, and after that it has to require the annotations of optic disc and fovea,

and to leave optional the ones of junctions and widths.

- if the need is to continue a previous annotation using optic disc and fovea already anno-
tated, then the tool would automatically allow not only the loading of images, but also
of the old data contained in the text files, and then it has automatically to prohibit the
annotations of OD and fovea, and to leave optional the ones of junctions and widths. If
the purpose was to take measures in points other than those of the previous annotation,
then the tool has simply to plot on screen the points of the old annotation, allowing a
complete annotation of junctions and/or widths; but if the purpose is to measure angles
and/or widths in the same points of the previous annotation, then the tool would auto-
matically load the “old” points and would allow the user the only measure without adding

additional points.

11

SOFTWARE ARCHITECTURE AND DESIGN

3.2

START

Start by loading m:/
the information
needed for the
graphic (logos,
names, etc), the
data for the
annotation and those
related to the
//swomm (if any).

Identification of
the user

OPTIC DISC

Start by loading all
the information
needed for the
graphic (logos,

names, etc), the
data for the
annotation and those
related to the
images (if any).

Management of the
image's screen view

Uploading images and
files with old data

Selecting the images
to be involved in
the annotation

Saving data and

moving to the next
image (loading the
data relating to it)

Choice of the
features to
annotate

14

/" Managing of user

// interaction /

Write general
information in text

file

4

OD's annotation

-y

/“Possible removal and \
| remake of the op's |
\ annotation e

L 4

Saving data and
moving to the next
image (loading the
data relating to it)

1

(Managing of user
// interaction \

Write OD's data in
text file

FOVEA

Start by loading all
the information
needed for the
graphic (logos,
names, etc), the
data for the
annotation and those
related to the
images (if any).

Management of the
image's screen view

4

Fovea's annotation

I

/“Possible removal and \
remake of the Fovea's |
AN annotation /

A

saving data and
moving to the next
image (loading the
data relating to it)

I

/~ Managing of user)

\ interaction

.

\

Write fovea's data in
text file

OUTPUT: TEXT FILE

JUNCTIONS

Start by loading all
the information
needed for the
graphic (logos,
names, etc), the
data for the
annotation and those

related to the
images (if any).

Management of the
image's screen view

Selection of the
points where, in the
next phase, the
bifurcation angles
will be measured

4

/ Possible removal and \
remake of the points'
_ annotation /

e

/" start of the
\ measures' phase
J

S B

Bifurcation angles'
annotation

[~ Possible removal
i and remake of the
N junction's

Saving data and
moving to the next

WIDTHS

Start by loading all
the information
needed for the

graphic (logos,
names, etc), the
data for the
annotation and those

related to the
images (if any).

Management of the
image's screen view

Selection of the
points where, in the
next phase, the width

will be measured

/"Possible removal and
remake of the points'
\ annotation

e

Width's annotation

/" Possible removal
and remake of the

Saving data and
moving to the next

image (loading the
data relating to it)

,\ Managing of user
\ interaction \,

.

image (loading the
data relating to it)

Managing of user

Write junctions'
in text file

OUTPUT:TEXT FILE

data

f measures' phase \

)

J

\ Start of the /

N

\ ‘ans s annotation)

interaction \

Write widths'
text file

OUTPUT : TEXT FILE

data in

itecture of the VAMPIRE-Annotation Tool

Scheme of the arch

Figure 3.3

12 3. ANNOTATION TOOL DEVELOPMENT

Another property the program has to possess in order to facilitate the use, is to make
permanent the order of annotation of the various features. In fact, in order to measure junctions
and widths, OD and fovea has to be already annotated (by a previous user or the current one),
then the tool has to create a sort of forced path the user has to follow and could not do in a
different way (otherwise errors would be generated). These paths are reported in the diagram
of Figure 3.3 with red, green and yellow arrows; specifically the red arrows indicate the path
that the tool get the user to follow for a new annotation, the green arrows indicate the path for
an annotation with OD and fovea loaded by a previous one and junctions and widths measured
in new points, and finally the yellow arrows indicate the path for an annotation with OD, fovea

and measuring points loaded by a previous one.

The tool has also to save the information useful for the application of the adjustments
(explained in Chapter 1). In the following paragraphs the various functions used for processing
this information (i.e polar coordinates, visibility of the fovea, generation of a vessel, etc.) will

be described.

As regards the structure of the tool specifically, the understanding can be facilitated looking
carefully the scheme of Figure 3.3, knowing that each block represents a portion of code (con-
sisting of one or more functions) that aims to produce the same result. As one can easily see,
the environment START has its own particular structure, and instead OD and fovea between
them and junctions and widths between them have very similar structures, with the presence of
the same blocks in the same order. Indeed, even though at first glance the OD-fovea structure
and the junctions-widths one may seem totally different, as we will see later, actually this is
not entirely true. The environments of OD and fovea show an initial part that loads all the
necessary information for the graphics (logos, names, etc), the data for the annotation and
those related to the images. In both the environments, these pieces of code are very similar,
with few parts slightly different because the graphical interface and some required data are
different, but essentially they are the same in substance. The second block of each environment
instead represents that part of the code that allows the actual annotation of OD and fovea,
and therefore is inherently different for the two features. The last four blocks represent those
parts of the code related to the management of the screen display containing the image (block
three), to the elimination of the annotation just performed to be able to redo it (block four),
saving the data through the functions explained in the paragraph 3.3.7 and loading of the next

picture (block five), and finally to the management of the activation of buttons and panels

3.3. IMPLEMENTATION OF THE TOOL 13

(block six). They are very similar in substance even if different in some parts, just like blocks
one. Regarding the environments of junctions and widths, the first blocks are structured like
those of OD and fovea, while the second ones consist in selecting of the points where you want
to measure angles and widths (pay attention, the actual measure is not performed here, but
in block six). The third and the fourth blocks respectively represent the code related to the
menagement of the screen and to the elimination and remaking of the points just annotated
and have the same structure of block four in OD and fovea’s environments. The fifth blocks
are special because they contain a piece of code that allows you to go to the actual measure
of angles and widths, saving the selected points and moving the annotation on a small screen
that is automatically zoomed in on the points. The blocks six contain the code that allows
the measurement of angles and widths on the points previously annotated and are intrinsically
different for the two environments. The last three blocks have the same functions as the last

three of OD and fovea and are structurally similar.

3.3 Implementation of the tool

In this section the various environments of the tool will be described in detail. The related code

is reported in Appendix B.

3.3.1 Start menu

The first environment of the tool is made up of four sections. In the first section the user is
asked to enter his identifying information (Figure 3.4). The name has to be written inside the
edit-text box [14] controlled by the functions Name_CreateFcn() and Name_Callback(), which
respectively manage the appearance of the box and save the text entered by the user.

Than the user is asked to specify if he belongs or not to the category of clinicians. It
is considered important to save this information as an attached of the output data because
the clinical knowledge possessed by clinicians may affect their annotation. This information is
managed by a panel of buttons, controlled by the function uipanelClinician(), which saves
the strings ‘Clinician’ and ‘Not a clinician’ (depending on whether the user selected ‘YES’ or

‘NQ’), that will then be printed on the output file.

14 3. ANNOTATION TOOL DEVELOPMENT

In the second section the user starts his annotation path. First he is asked to indicate
which is going to be his annotation, that could be a whole new one, the continuation of a
previous one with the addition of new junctions and/or widths, and the importation of points
previously annotated on which measure again bifurcation angles and widths. The user can
choose one of these three options using a pop-up menu (Figure 3.5) controlled by the functions
popupmenu_Callback() and popupmenu_CreateFcn(). Depending on which selection the user
made, the function popupmenu_Callback(), thanks to the use of set(), activates or not the

push-buttons that will be used to upload images and text files.

" pir2 Annotation Tool @

PHASE 1 —PHASE 3.

Do you want to REJECT this image?
ANNOTATOR NAME: ILARIA PIERETTI ARE YOU A CLINICIAN? © YES GNO - N

—PHASE 2

= = = | _ Vompir

\/ -
DO=@=z5 QrF @2
i et e B

&

Figure 3.4: User’s identification phase

After this, the user has to select the folder that contains the set of images he wants to
annotate and eventually the text files where the data of previous annotation are saved. This
operation is done through the use of two push-buttons (Figure 3.6) controlled by the functions
openFolderButton() and openFileButton().

When the user presses the button to choose the set of images, a window, where the user
has to find and select the folder containing the set, will appear (Figure 3.7) thanks to the
command uigetdir(). When the folder is selected, the images contained are saved in the
structure (handles) and the folder “RESULTS” is created by mkdir (); right there the text files
with the outputs, one for each image, are produced (fopen()). Then all the retinal images

are read and saved in the structure (imread()), and the first one is plotted on the screen

3.3. IMPLEMENTATION OF THE TOOL

15

Yamplire Annotation Tool

PHASE 3

PHASE 1: ALREADY DONE:

Next image

——— Do you want to REJECT this image?
ANNOTATOR NAME: | ILARIA PIERETTI YES @ NO e -
. PHASE 2,
Select ;
Select
ANNOTATE NEW PONTS N ALREADY ANNOTATED SET
ANNOTATE EXISTING POINTS IN ALREADY ANNOTATED SET
— PHASE 4
Optic Disc (m]
o — @ m D [@
Junctions \/
Widths = . b
=8 @

New set of images EX

ﬁ NHS NHS
=~

Figure 3.5: Process of choosing the annotation type

\Yeampfra Annotation Tool

PHASE 3.

PHASE 1: ALREADY DONE:

Browse

OPEN IMAGES FOLDER -

(—PHASE 4
Optic Disc
Fovea made my choce
Junctions —
Widths

Do you want to REJECT this image?
ANNOTATOR NAME: | ILARIA PIERETTI YES @ NO = B Next image
e PHASE 2,
ANNOTATE NEW SET OF MAGES v

Figure 3.6: Loading images and data

16 3. ANNOTATION TOOL DEVELOPMENT

(imshow (D).

In the same way a window appears when the user presses the button to select the text files
with the output data of an old annotation (uigetfile()). He can select all the files at once,
or select one at a time, and their path is stored (in the variable ‘FileName’) by the program in
order to be recovered in the later stages.

In the third section the user has an overview of all the images contained in the folder
previously selected (Figure 3.8). With this overview the user can assess the quality of the
images of the set and decide which ones to include or reject from his annotation. The user
can express his choice selecting one of the two radio-buttons “Yes” or “No”, regulated by the

functions YesProcess () and NoProcess().

N"x pir2 Annotation Tool

’rPHASE 1: ALREADY DONE:

Do you want to REJECT this image?
ILARIA PIERETTI YES @ NO v

— PHASE 2: ALREADY DONE:

—~PHASE 4

4). ANNOTATION
I IMAGES
J. OLD ANNOTATIONS

Figure 3.7: Search for the folder of the images to be annotated

These two functions respectively save the strings “PROCESSED” and “NOT PROCESSED”,
that will then be printed in the output text file. After making the choice, the user presses the
push-button “Next Image”, which activates the function NextImage (), which, despite the long
code, simply writes in the text file all the information so far obtained (thanks to the function
write_GeneralInformations() described in paragraph 3.3.7), plots the next image and resets
the processing panel. If the user has decided to upload data from previous annotations, at this
moment of the program, they are stored in a structure in order to be better managed later

thanks to the function readTextFile() (described in paragraph 3.3.8).

3.3. IMPLEMENTATION OF THE TOOL 17

V‘ Annotation Tool

{PNASE 1: ALREADY DONE:

YES @ NO

Do you want to REJECT this image? Image: 13

—PHASE 2: ALREADY DONE:

—PHASE 4

Figure 3.8: Overview of images and selection

When the overview of images is finished, the actual annotation can finally begin. In the
fourth phase, the user has to select from a menu, consisting of four check-boxes, what features
he wants to annotate (Figure 3.9). As already mentioned above, depending on whether he
decided to do a completely new annotation or continue a previous one, the boxes of optic disc
and fovea will already be automatically selected or deselected (and the user can not modify
them). Those of junctions and widths will instead let be checkable. All this is handled by the
function ChooseAnnotationsButton(), thanks to get() that reads the status of the check-
boxes.

For each selected check-box, a push-button is activated (Figure 3.10), which, once pressed,
will bring the user in the annotation section of the corresponding feature. The push-buttons

are activated thanks to the function MenuAnnotationSelection().

3.3.2 Optic Disc Annotation Tool

This section is executed only if the user began the annotation of a new set of images ever
annotated before, otherwise the OD for these images is uploaded from the output data of a
previous annotation. In this section, as in the next ones, only the images not rejected in the
initial overview are displayed (and so accessible to be annotated).

The first block consists of the function Annotate0D_OutputFcn() containing the lines of code

18 3. ANNOTATION TOOL DEVELOPMENT

‘zvx:"l"lpffi;z Annotation Tool

’rPHﬁSE 1: ALREADY DONE-

PHASE 3: ALREADY DONE:

ILARIA PIERETTI YES @ NO ‘

—PHASE 2: ALREADY DONE:-

ANNOTATE NEW SET OF MAGES

o o) @ [ﬁm @ D [P@

. Q()*%: u Cher “ NHS WS

Figure 3.9: The check-menu of the features

yampire Annotation Tool

[ME 1: ALREADY DONE:

ILARIA PIERETTI YES @ NO |

—PHASE 2: ALREADY DONE-

ANNOTATE NEW SET OF MAGES

Start the annotation following the sequence, from top o bottom

Fovea made my choce
Widths

Figure 3.10: The buttons that bring to the screens of the different features

3.3. IMPLEMENTATION OF THE TOOL 19

that set the initialization data for the graphics (eg. imread(‘logo’)) and for the annotation,
and load the images to be processed. In addition, at the end of the function, the first image
to be processed is loaded on the screen and the buttons of interaction with the user are set
(thanks to setButtonStateFor_ChoseAnnotation()) so that the annotation can begin.

‘ G

: : . First, f you want, 200m in on the area of interest and see the green |
O ptic Disc Annotation Tool channel image, then choose the annatation mode @ |
‘I

image:12
53L0.jpg

zoom &

%
|

® aGs

Green channel

Figure 3.11: Choice of automatic or manual annotation of the OD

Two modes of annotation of the OD are available for the user (block two): a manual one
and an automatic one that is the VAMPIRE’s one [7] (explained in Chapter 2). The choice to
insert an automatic part (which is the only one in the whole tool) in a manual tool, arises from
the need to have a fixed reference point (the OD center) that has to be the same one calculated
with the VAMPIRE automatic software, so that the same point in a certain image has the same
polar coordinate referred to the OD. This means that the measures for example of the width
of the vessel in that point made with VAMPIRE and the one made with this manual tool can
be comparable in terms of position in the whole vasculature.

The automatic detection starts by pressing the push-button “Automatic OD” (Figure 3.11)
regulated by the function autolocateButton(). The VAMPIRE’s function automaticODlocation()
calculates the OD, and then the function drawCircles() plots the circle that represents the
OD and other four respectively distant 0.50DD, 10DD, 1.50DD and 20DD (ODD=diameter
of the OD) from the border of the OD (Figure 3.12).

The manual annotation begins instead by pressing the push-button “Manual OD” managed

20 3. ANNOTATION TOOL DEVELOPMENT

ey =

o~ Redo the OD for this image or go to next image. Zoom and

veamplire Optic Disc Annotation Tool = @

Image:122
59L0 jog

200w K| 5

° aGs

Green channel

Figure 3.12: The OD calculated and plotted with the circles that delimit the zones

by the function locateButton(). The user is asked to take five points on the OD’s border
(Figure 3.13). The command that detects the user’s input and allows to save it is ginput ()
that memorizes the Cartesian coordinates of the point selected. When all the points on the
border are taken, the function fitellip() calculates the ellipse that fits on the input points
and then the function drawellip() plots it. Then the function fitellipse() returns the OD
center and its two radius. With this information the function drawCircles() plots the OD and

the circles that delimit the zones around it.

Once the Optic Disc (manual or automatic) is calculated and plotted, the tool allows the
user to zoom in and/or to see the green channel image, so that he can better evaluate the
quality of the computed OD and then decide whether to do it again or go to the next image
(this part of code is represented by the third block of OD’s column in the scheme of Figure
3.3). The functions that manage the image’s screen view are zoom0OUT () and zoomIN(), which
control the activation of two push-bottons respectively for the decrease and the increase of the
zoom on the image, and uipanelC_G() which controls a panel consisting of two radio-buttons
that allow the visualization of the image in RGB format or in green channel format (Figure
3.14).

If the user decides to redo the OD (block four of OD’s column in the scheme of Figure 3.3) he
has to press the push-button “Redo OD” that produces the run of the function clearButton()

3.3. IMPLEMENTATION OF THE TOOL 21

in which all the data related to the wrong OD are deleted and the image replotted.

Ry

Select FIVE points on the border of the 0D

\Yempirz Optic Disc Annotation Tool

Image:212
53RO jpg

£

Green channe!

Figure 3.13: Manual selection of the five points on the border of the OD

When the OD is believed to be accurate, the user can go to the next one pressing the push-
button “Next image”. Before plotting the image, the tool saves all the data for the current
image in the text file (block five). The data are saved with the use of the function write_0D()
which is described together with all the other functions with this aim in paragraph 3.3.7.

If the current image was not the last one, the user follows the same protocol used for the
annotation of the OD of the previous image. If it was instead the last one, the push-button
“Finish” runs the function finish() (also included in block five) that closes the “Optic Disc
Annotation Tool” screen and takes the user to the START menu.

The last block represents all those functions that regulate the activation of buttons and pan-
els, which are each time called in the code. In Appandix B just one is reported as an example

because they are all structurally similar.

3.3.3 Fovea Annotation Tool

As for the section of the OD, even that of the fovea is executed only if the user has chosen
a set of images not previously annotated, otherwise the data of the fovea are loaded directly

from the output file of another annotation. The first block in this case represents two functions,

22 3. ANNOTATION TOOL DEVELOPMENT

Redo the OD for this image or go to next image. Zoom and

SN 2 Optic Disc Annotation TQ o RGB/Green channel are active @

Image-172
53L0.jpg

zoom K| =

L
k

£

@\Green chamnei

Figure 3.14: The green channel view of the image

one similar to the one of the first block of the OD (here called AnnotateFovea_0OutputFcn()),
and another one called uipanelFovea_SelectionChangeFcn (). This function activates a panel
(Figure 3.15) that controls two radio-buttons with which the user is forced to specify whether
the fovea in the current image is clearly visible or not, essential information for the reasons
explained in paragraph 3.1.

After specifying the visibility of the fovea, the user has to do its outright annotation, by
pressing the push-button “Set center and contour” (Figure 3.16) that activates the function

setCenterContour ().

After pressing the button, he has to select consecutively two points, the first in the center
of the fovea and the other one on the contour (Figure 3.17). This selection is managed by the
function getUserInput () that saves the Cartesian coordinates of the points thanks to ginput ()
and plots them on the image.

As already repeated several times before, the tool also saves the polar coordinates of each
point (therefore also of fovea’s center and contour), and it is done thanks to the function
polar_coordinates(). This function requires eight input values: the Cartesian coordinates
of the point, the size of the image (height and width), the Cartesian coordinates of OD and
fovea. The polar coordinates with pole in the OD (angular distance with respect to both the

vertical axis and to the one perpendicular to the OD-fovea axis) and those with pole in the

23

3.3. IMPLEMENTATION OF THE TOOL

Now you have to select consecutively first the center, then a point on the -
contour of the fovea s0 as to obtain a circumference that sumounds it \L

First, if you want, oom in on the area of interest and see the green

channel image, then press "Set center and contour”

v ir@ Fovea Annotation Tool

Image: 172
59L0 jpg

e
%VES NO
oom R] 3

® RGe
Green channel

Figure 3.15: Specification panel of the visibility of the fovea

~ NsTRucON
N Now you have to select consecutively first the center, then a point on the —
y contour of the fovea so as to obtain a circumference that surrounds it d/
First, if you want, Zoom in on the area of interest and see the green
channel image, then press “Set center and contour”

Fovea Annotation Tool

Image:12
59L0 jpg

o
@ YES NO
oom K| 3

© ko
Green channel

Figure 3.16: Start of fovea’s annotation

24 3. ANNOTATION TOOL DEVELOPMENT

———
E—)

Now you have to select consecutively first the center, then a point on the —
contour of the fovea o as to obtain a circumference that sumounds it @

Fovea Annotation Tool a1 o

‘ channel image, then press “Set center and contour”

Image: 172
59L0.jpg

[o
oom [l B

Figure 3.17: Selection of fovea’s center and contour

center of the image are given as outputs. Please refer to paragraph 3.1 for the explanation of
these parameters in detail. The algorithm used for the calculation of the polar coordinates from
Cartesian ones is shown in Figure 3.18.

At this stage the tool calculates the radius of the fovea and runs the function drawcirclefovea()
which calculates the circle with center in the center of the fovea and radius just calculated, and
then plots this circle to help the user evaluating if the selection is well taken or not (Figure
3.19).

As in the OD section the user can now use the zoom panel and/or switch the RGB image
in the green channel one for better evaluate his selection (block three). If he is not satisfy of
the annotation he toke, he is allowed to redo the selection of the two points pressing the push-
button “Redo selection” (block four) . The function RemoveButton() regulates this operation
deleting the values of center and contour of the fovea of the current image and then plotting
again the image without the incorrect fovea.

If instead the user believes the fovea annotated matches with the real one, he can go to
the next image by pressing the push-button “Next image”. The function nextImageButton()
(block five) ensures that the data of the fovea are saved in the text file (function write_Fovea()
described in paragraph 3.3.7), and then plots the next image if the current one is not the last

one, otherwise the function finish() (also block five) runs, taking the user to the main menu.

3.3. IMPLEMENTATION OF THE TOOL

Inputs:
1. cCartesian coordinates of the point
2. Cartesian coordinates of the OD
3. Cartesian coordinates of the fovea
4. High and width of the image

Outputs:
1 thetaOD: polar coordinate (angle) of Xc;Yc with pole in OD and
vertical axis parallel to the vertical axis of the image

2. thetaODfov: polar coordinate (angle) of Xc;Yc with pole in OD and
vertical axis perpendicular to the direction OD-FOVEA

3. rhoOD: polar coordinate (distance) of Xc¢;Yc with pole in OD

4. thetalIC: polar coordinate (angle) of Xc;Yc with pole in the center of
the image and vertical axis parallel to the vertical axis of the
image

5. rholIC: polar coordinate (distance) of Xc¢;Yc with pole in the center
of the image

Algorithm to calculate thetaOD, rhoOD, thetaIC, rhoIC:
- shift the origin in OD/image's center

— calculation of polar coordinates related to the positive horizontal
axis (angle counterclockerwise) using the function eart2pol (input:
Cartesian coordinates; output: theta and rho polar coordinates)
$here the first two outputs rhoOD and rhoIC

- transformation of the angle theta from radians to degrees

— rotation of 90° so that the polar axis is the positive vertical one
if point in I quadrant
add 270 degrees to theta
else if point in quadrant II,III,IV
subtract 90 degrees to theta
end
%$here other two outputs thetaOD and thetalIC if the eye is a right eye

— change the direction of the angles (from counterclockwise to
clockwise) if the eye is a left eye
if the fovea is on the right side of the OD
theta=its explementary angle
end
%$here other two outputs thetaOD and thetalIC if the eye is a left eye

Algorithm to calculate thetaODfov:

— calculate the angle difference alpha between the horizontal axis of
the image and the OD-fovea axis using the formula:
180°Yfov —Yod
alpha = ———————
m Xfov—Xod
- calculate thetaODfov using alpha and thetaOD calculated with the
previous algorithm
if fovea is located higher than the OD
thetaODfov=thetaOD-alpha
if thetaODfov is negative (physical nonsense), nesd to fix it
thetaODfov=thetaODfov+360°;
end
else if fovea is located lower than the OD
thetaODfov=thetaOD+alpha
if thetaODfov is > 360° (physical nonsense), need to fix it
thetaODfov=thetaODfov-360°;
end
end
%$here other last output thetaODfov

Figure 3.18: Algorithm for calculating of polar coordinates

26 3. ANNOTATION TOOL DEVELOPMENT

—w———

R Redo the OD for this image or go to next image. Zoom and RGB/Green —
Fovea Annotation Tool el)

Image:12
59L0jpg

Is foves wel visible? —

r. s ©w

. o 8] &
@ RGB

Green channel

Figure 3.19: The circle which delimits the fovea as selected by the user

Even in the environment of the fovea the functions of block six, those who manage the activa-
tion of the graphical components, can be found at the end. The code of these functions is not

reported in Appendix B as it is substantially the same as the one of the OD.

3.3.4 Junctions Annotation Tool

The annotation section of the junctions can be divided into two big parts. The first one con-
sists of the annotation of the points where the user wants to perform the measurement of the
bifurcation angles, the second one is the execution of their actual measure.

The first part is shown schematically by the first four blocks in the fourth column of Figure
3.3, which have a structure very similar to those of OD and fovea: the first block consists of
the code that loads all the necessary information, the second one handles the annotation of the
points in a big screen where the entire image can be seen, a third block for the management of
zoom and color of the image, and the fourth one that is involved in changing and/or removing
the annotated points. In Appendix B, only the code of the functions of block two is shown
because the other three are very similar to those fully described in the OD’s section. The
annotation of the points is managed by the function setJunctionButton() that runs when the

user presses the push-button “Set junction” (Figure 3.20).

3.3. IMPLEMENTATION OF THE TOOL 27

\ ' pez=2 o 4 Now you have to set the first junction of this image. First, if you want,
yampire Junction Annotation Tool 200m in on the area of interest and see the green channel image, then @

Image:1/2 press "Set junction”
59L0.jpg

© e

Green Channel oom K| F

wém@ﬁm@

N e
0= = @z . G

i

Figure 3.20: Start of junctions’ annotation

First, the function getUserInputJunction() is called: it allows the user to select a point
in the retinal image, memorizing its Cartesian coordinates. One of the essential things the tool
should allow is the rescue on the type of vessel (vein or artery) in which each point is selected.
This is possible thanks to the use of the Shift key: if the user presses simultaneously the Shift
key while clicking on the image, then the point will appear blue indicating a vein (Figure 3.21);
if instead the selection is made with a simple click without the Shift key pressed, then the point
(plotted in red) belongs to an artery. To manage all this, the property “SelectionType” is used,
which reads the state of a key (in this case Shift), which can be then extrapolated thanks to
get (). Finally, the polar coordinates of the selected point are calculated and stored, using the

function polar_coordinates() explained in the previous paragraph.

After the annotation of the points on big picture, the function setVesselsPointsButton()
allows the passage to the second part. This function is run by the user pressing the push-button
“Branch points selection”, thus indicating the end of the first phase and the need to move to
the second one. During the second phase all the points just annotated are loaded one at a time
on a small screen zoomed in on the current one, in order to allow a more accurate measure the
angles. In order not to lose the general view, however, at the same time in the main screen you
can see all the points, and a yellow box appears around the one in which the annotation is in

progress (Figure 3.22). As you can see in Figure 3.22, the function setVesselsPointsButton()

28 3. ANNOTATION TOOL DEVELOPMENT

activates the small screen and the buttons related to it, loads the image, plots the first point
annotated and makes an automatic zoom in on the area having as its center the point itself.

This feature also contains the code to plot the yellow box on the main screen.

The function PointsForNextJunctionButton() is the one that manages the measure of
bifurcation angles , and when it runs the tool has already loaded the current point on which
to perform the measure. This function immediately calls the function getUserInputPoints ()
that allows the user the selection of three points (by saving their Cartesian coordinates), which
must be taken within the three vessels involved in the junction chosen (as centrally as possible),
as shown in Figure 3.22. After the selection of the first point in the mother vessel, the function
drawcirclefovea() (described in the previous paragraph) plots a circle centered in the junction
and with radius equal to the distance between the center and the point in the vein mother.
Thanks to this expedient, the user is facilitated in the selection of the two points in the children
vessels, thus increasing the accuracy. Subsequently, inside PointsForNextJunctionButton(),
the function calculateAngles() is invoked, whom plots the three segments along the mother
vessel and the children ones (Figure 3.23), and automatically calculates the value of the three
angles of bifurcation taking into account the fact that the user may have made the selection of

the points either clockwise or counterclockwise.

After making the selection of the three points, the user can choose whether to continue
the annotation with next junction pressing the push-button “Next”, or to redo the selection
just made pressing the push-button “Redo”. These two buttons respectively run the functions
nextJunction() and removeLastVesselsPointsButton(), of whom the code will not be re-
ported. The function nextJunction () partially coincides with the function PointsForNextJunct
ionButton(), but obviously without the part of the initialization of the small screen, and so
having only the code that plots the yellow box on the main screen, and those that automatically
zoom and plot the new point in the small screen . The function removeLastVesselsPointsButton()

is basically very similar to all the “Remove” functions previously seen and described.

When the points for the current image are finished, the user goes to the next one pressing
the push-button “Next Image”, which controls the function nextImageButton(), very similar
to the functions with the same task in the environments of OD and fovea. If the images are
finished, the function finish(), regulated by the push-button “Finish”, is always the one that
returns the user to the START menu. Even in the environment of the junctions the last block

consists of all those functions that regulate the activation of the graphical buttons.

3.3. IMPLEMENTATION OF THE TOOL

29

“‘;', 7

Vialan

o2 Junction Annotation Tool ——
| 5910 jpg

® RG8

Green Channe

Finish

Junction Annotation Tool e
59L0jpg

Now you can redo the last junction, or set another junction pressing
“Set junction”, or, if you have selected all the junctions of interest for
this picture, start the calculation of the angles pressing "Branch points
selection”. Zoom and RGB/Green channel are active.

Finish

Figure 3.21: Selection of a junction by the user, indicating the vessel of belonging as a vein

30 3. ANNOTATION TOOL DEVELOPMENT

, [Now, IN THE PANEL BELOW ON THE RIGHT, click first on the mother

ampire Junction A ation Tool vessel and then on the two children (ahways in the middle of the vessel). |
SN S o nnot o Image:122 W After selecting the mother a circle that will help you to click on the d/
59L0jpg children will appear.

—
zoov [l

reen Chan

Figure 3.22: On the right side the small screen where to select the points in the branches, and

on the left side, at the same time, the whole image in which the current junction is indicated

by the yellow box.

5 & Now you can redo last selection or go to next junction.
AmMPIF2 Junction Annotation Tool

Ir Image:1/2 (L

59L0 jpg

zoor;t B’ G\I

Figure 3.23: The three segments on which the angles of bifurcation are calculated

3.3. IMPLEMENTATION OF THE TOOL 31

3.3.5 Widths Annotation Tool

As regards the environment of the widths, its structure is extremely similar to the one of
the junctions just seen. The code of the first big phase, which has the aim to select only the
measuring points (and not to do the actual measure), coincides largely with the corresponding
one in the junctions environment, and therefore it will not be reported again. The only great
difference between these two environments in the first phase consists in the fact that, for the
widths, an additional information is required: the generation of the vessel. After the selection
of each point, the user, if desired, could indicate the generation of the vessel in which the point
has been selected. This is done by a panel containing an edit-text box (Figure 3.24) where the
user can enter a numeric value that indicates the generation. The edit-text is managed by two
functions, Generation_CreateFcn() and generation_Callback (), which respectively handle
the graphics of the text-edit box and its contents. The number entered by the user is stored in
a variable thanks to the function get (), considering as default (generation not specified) the

number zero.

Even the second phase is very similar to the one of the junctions and has the same execution
modes: yellow box on the main screen indicating the current point, measurement made in
small screen with zoom fixed on that point, etc. What obviously changes is the function that
handles the actual measure (ContoursForNextPointButton()) which, at the beginning, calls
the function GetUserInputContours(). This allows the user to select in the small screen two
points, one on each contour of the vessel close to the point selected in the first phase (Figure
3.25). After selecting the first point on one contour, the function GetUserInputContours()
plots a line passing through the central point and the one just clicked (Figure 3.25), so that
the point on the second contour is taken with precision on the direction of the other two. This
direction is that perpendicular to the one passing through the center of the vessel, which is
automatically plotted on the screen, in red if the vessel is an artery, in blue if it is a vein. Then
the function ContoursForNextPointButton() then calls calculateWidths () which calculates
the simple linear distance between the two points just selected on the contours of the vessel,

that is its width.

3. ANNOTATION TOOL DEVELOPMENT

\Y:&]Zi‘l[}of:’é Width Annotation Tool

Image:12
Generation of current vessel. i] | ":,_.,"“,‘.‘.(,‘.,:I,,.c i

59L0jpg

%Eﬁﬁ]@ﬁ[“@

RO= 8= 5 @~ s s

Redo Next

Next image Finish

Now you can redo the last point, or set another point pressing “Set

Y@[ﬁ@t‘?—j Width Annotation Tool paint in the vesser",or. i you have selected all the paints where you
' - e
[Generston o curent vesset: 1 || 2 imcossted e 310jpg e el aroactive.

Finish

Next mage

Figure 3.24: Input from the user of the generation of the vessel to which the newly selected

point belongs

3.3. IMPLEMENTATION OF THE TOOL 33

Now, IN THE PANEL BELOW ON THE RIGHT, click on the contours

V_H Width Annotation Tool o i vesot
- Image:122
Generation of current vessel: 2 | 5930 g
~VA annel ‘ ZOOM:

Figure 3.25: Selection of the two points on the vessel’s contours

3.3.6 Info environment

Within each screen of the tool, in the upper right corner you can find a push button with the
shape of an “i” (Figure 3.26) with which the program opens a new screen that you can see in
Figure 3.27. Within this screen you can find information about the software, but also the links
to the “.pdf file” containing the Standard Operating Procedure (SOP) and, on the right side, a
video with a demo of the program. In this way the user, at any time during the use of the tool,
can easily access a sort of “Help”.

With regard to the part of the code, the video with the demo appears directly on the screen
thanks to the command actxcontrol() which creates an ActiveX control, or rather opens the
link to a program, which in this case is one for video playback. The command actxcontrol ()
returns a handle h to the control, and the video is played thanks to the use of h.URL and
h.controls.play. For the SOP file instead the procedure is very simple: the user, pressing a

<

push button, automatically opens the “.pdf file” thanks to the command open().

Figure 3.26: The logo on the button that brings to the screen containing information and help

34 3. ANNOTATION TOOL DEVELOPMENT

Varpira Annotation Tool
Version 1.0 =) '

March, 2013 E
\/ A »tation Tool @
Annotation Too
Technical Developers: Priase 3

" s

o e e U v er e e i[5 el e [Padeva |-.y.‘,mng T B T YT l 00 7wkt RELECT b e

~Ludia Balleriri, University of Dundee -

—Emanuele Trucco, Unlversity of Dundee

Clinical Collaborators:

~Dr Peter) Wilson, Ophthalmol ogy, NHS Ninewells Hospital
and Medical School, Dundee

~PHASE 7
You can contact us at:
vampire@computing.dundee.ac.uk

v/ o
y MAMYN Y e
- i Y empire
’ Click here to see the SOP document } ® O=g)zT" gﬁf‘ D s wns
e BT
S . P
v @ <. I
DUNDEE
DUNDEE « — o
G= “» —e

Figure 3.27: The screen containing information about the program, a link to the SOP document

and, on the right side, the video with the demo

3.3.7 Functions to write outputs

The Vampire Annotation Tool produces as output, for each image belonging to the annotation,
a text file containing all the information recorded and the measures performed during the
annotation. The operation of writing a text file involves three instructions:

1. Create a new file or open an existing one: fileID=fopen(fileName, permission). The
function fopen() wants as input the name of the file to create/open, and produces as output
a numeric variable that represents the identifier of this file. The string permission describes the
type of access you want for the current file: read, write, append or update. In this specific code
‘a+’ is always used, because it allows to open or create a new file for reading and writing on it
and, every time it is re-opened, append data to its end.

2. Write the file: fprintf(fileID, formats, data). The function fprintf() writes in
the text file identified by fileID the information contained in the variable data. What are called
formats, consist in a string delimited by single quotation marks, inside which are the conversion
specifications (always preceded by a “%” that indicate the formats of the input data) and some
literal text to print (in the specific case of this code it are the data labels.). The available formats

are various, but in the code of this program only the follows have been used: %s (string), %c

3.3. IMPLEMENTATION OF THE TOOL 35

(single character), %.1f (floating-point number with one decimal place), %u (unsigned integer
in base ten). Only one of the escape characters was used: \n (new line).

3. Close the file: fclose(fileID).

In the first line of the text file is always displayed if the image has been excluded or not from
the annotation. Specifically, this information is recorded printing “PROCESSED” or “NOT
PROCESSED” in the text file. In the second line, information about the image (its name),
the user who made the annotation (the name and if he belongs to the category of clinician
or not), and the data that uniquely identify the record itself (date and time in which was
made) are always present. The function write_GeneralInformations() wants as inputs the
identifier of the text file (fileID), the variable that contains the string “PROCESSED” or “NOT
PROCESSED”, the names of the image and the annotator, the string “CLINICIAN” or “NOT
CLINICTAN”, the variable containing the information of date and time.

The third line always contains the data related to the Optic Disc: Cartesian coordinates of
its center, the two radii and the coefficient theta of the ellipse that fits the OD, and these are
also the inputs of the function write_0D() that writes this line.

In the fourth line you can always found all the information about the Fovea, written by the
function write_Fovea() that requires as inputs Cartesian and polar coordinates of its center,
the radius and its visibility.

From fifth line onwards you can find information about junctions and widths (depending on
the case the number of junctions and widths could range from zero to many). Lines concerning
the junctions are written by the function write_Junctions() that requires as inputs: Cartesian
and polar coordinates of the point in the center of the junction, the type of the vessel (vein
or artery) where the junction is, Cartesian coordinates of the three points belonging to the
three vessels involved in the junction and the three bifurcation angles. For widths instead the
function write_Widths_Generation() that writes the text line has as input the Cartesian and
polar coordinates of the point within the vessel where you have measured the width, the type
of the vessel (vein or artery) where the point is, the width and the generation of this vessel.

For the widths was written a further function (write_Widths()) to write text lines when
the generation was not indicated by the user.

In Figure 3.28 you can see two examples of the text file the VAMPIRE-Annotation Tool
produces, one for an unprocessed image, and one for an image on which all the features have

been annotated.

36

3. ANNOTATION TOOL DEVELOPMENT

File Edt Tet Go Tools Debug Desktop Window Help.
DSR2 IC P - Hewfi |8 -ARDAVUY BB |sucone -|| K)

OD and fovea annotator:ILARIA PIERETTI, date and time OD and fovea amnotation:2l 03 2013 10.40 AM

P cx caocess: B
annocator name:ILARIA PIERETTI, Mot a clinician, date and time:21 03 2013 10.40 A,

1 =
St | 59L0jpg.RESULTS 210... X| $9ROjpg.RESULTS 210... (B4ROpg RESULTS 210.. %

Fle Edt Tet Go Toos Debug Deskiop Window Hep anx
DEW B IC L% - Aedfi | E-ADRQUN BB succ[tne - | f B08e0)

(L] v [+)
. d .
2 , annotator name:ILARIA PIZRETTI, Not a clinician, date and time:2l 03 2013 10.40 AM, OD and fovea annotacor:ILARIA PIERETTI, date and time OD and fovea annotation:2l 03 2013 10.40 R

3 0:2189.4, radiusiil 2 chetaio.s,

‘ Ye:1289.3, theca0D:97.2, thecaODEov:sn.o, checalc:99.3, rmoIcieaz.s, 2.8, visibie

s 95.5, thecaODi326.3, thetaODEGVIdNo.0, FhODISST.S, Thetall vesseiTypesa, YRI728.9, Xel:2199.1, Yoli6Ss.6, Xe2iaa47.1, Yc2i€84.3, PhALI136.8, PRi2i1.0, Phi3i132.2
s v3:z61.2, 5.7, o : L 293., Xe1:2201.1, Yel:sis.s, Xe2:2239.6, Ye2 20.5, pniz: pasies.a
i .2, - i, widen:10.

. sec.e, . widehil6.e, generatior

H

Statm_ 59L0jpg. RESULTS 210... » (S9R0pg. RESULTS 210] 84R0jpg RESULTS 210..

Figure 3.28: The output text files with the data of the annotation printed

3.4. DOCUMENTATION 37

3.3.8 Functions to read the data

In order to get data from the text files and bring them into a Matlab’s structure, the function
readTextFile (), which reads the outputs created by the tool, is used. The syntax for saving
data is always the same: “label” + “” + “data” 4+ “)”. Between label and data type there is a
one to one relationship, i.e. to each type of data corresponds one and only one label, and vice
versa. To read the data, and “recognize” this one-to-one correspondence is then exploited: the
label is read and then immediately proceeds the corresponding data. The procedure is always
the same for any data, then only a single example is shown in Appendix B.

Thanks to the command regexp(), the position of the label within the row is extracted.
The label, if it exists in that row, is found and its length is stored. The position of the string
containing the data is then within a range whose lower limit is the end of the label after the
“7” (then: start of the label + label’s length + 1) and the upper limit is the character before

the next comma, whose position is found always with regexp().

3.4 Documentation

With the idea of distributing the program also to clinicians not directly related to the VAMPIRE
team, we saw the need to produce a documentation as complete as possible. For this reason we
have created both a text file containing the Standard Operating Procedure and a video with a
demo. The text file describes in detail, with the aid of figures, which procedure the user must
follow, explaining carefully step by step what to do (you can find the file in Appendix A). The
video shows an example of utilization of the program, trying to reproduce a wide range of use
cases. Both of these documents are delivered to clinicians together with the package of the tool,
and the user can also directly connect to them through the environment “INFO” described

above.

Chapter 4

Application: the study about

Sarcopenia

As explained in Chapter 1, by monitoring the retinal vascular network, prevent or diagnose
certain particular diseases is now possible. Precisely with this regard, Deepa et al. have decided
to examine retinal biomarkers for Sarcopenia in the context of the study “Does the European
Working Group on Sarcopenia in Older People algorithm detect all those vulnerable?” [11].
Sarcopenia is that condition associated with the loss of muscle mass and function, and the
authors in this study wanted to determine, with the use of standard methods and involving 75
elderly patients (>65 years), the effectiveness of the algorithm developed by Cruz-Jentoft AJ

et al. [12] to screen and identify people affected by this disease. In parallel, retinal scans were

Figure 4.1: On the left side a blurred image and on the right one an image with a wrong scale

done in these patients (selected so that no one had visual impairemets) in order to evaluate also

potential retinal biomarkers for Sarcopenia. These fundus camera images of the 75 subjects were

40 4. APPLICATION: THE STUDY ABOUT SARCOPENIA

examined and 12 of them, of which two examples can be seen in the Figure 4.1, were excluded
from the analysis because too damaged or collected with a wrong scale factor. We decided to
focus on vessels’ width and AVR, because they were considered the most significant values in
the first stage. From the images of the 63 patients not excluded, the widths of the vessels and
the AVR were automatically measured with the previous version of the VAMPIRE software (the
one based on the binary map, resulting from the segmentation with Soares’ algorithm [8],[9]).
The measuring points for the calculation of AVR were recorded following the same protocol used
by Knudtson et al. in [13]. The results obtained, visible in the scatter plot of Figure 4.2 and in
the Bland-Altman plot of Figure 4.3, show a low correlation (Pearson’s coefficient) between the
two eyes of the same patient especially for vessels’ width (0.42 for veins and 0.61 for arteries),
which instead according to the literature should be around 0.74 for veins and 0.71 for arteries
[15]. For the AVR instead the correlation, equal to 0.47, is very close to that reported in the
literature (0.49) [15]. In the first analysis we have assumed three possible causes for this low

correlation obtained:

1. because of the bad segmentation, some vascular areas have not been mapped and then
the measuring points were chosen “forcedly” in certain areas, but that do not always

correspond to the best ones in terms of position

2. the information about the measure was too “poor” and needed what we called “adjust-

ments”.

Even if the first hypothesis was very plausible and definitely, at least in part, responsible
for the bad results, we realized that a complete description of the data was required to be
able to correlate data truly corresponding between them. And this correspondence could be
well evaluated only through further key information. Precisely at this stage of the study the
VAMPIRE-Annotation Tool has been planned and implemented, and, when finished, used to
extract new data from the images of the study about Sarcopenia.

There have been two different techniques of data collection with the VAMPIRE-Annotation
Tool:

- one completely manual

- one consisting of a phase of manual annotation of the measuring points (using the VAMPIRE-
Annotation Tool and then saving also all the adjustments) and a second phase where the

algorithm in [10] was used for automatic measure of the widths in those points.

41

Scatterplot: widths in veins

29
0
27 (]
°
o C
25 J d L 2
L px
) °
- e
— 'Y
CRES o o
X °
=) hol [®
» e L d
o ® o °
T | o <
= °
=) /o"(® .
=
L
el o
° »
19 L] °
°
* D L iod
.
17
o J
15

left eyes [pixels]

Scatterplot: widths in arteries

22
L} o0
20
» L)
18 d TS
L)
z . o, 3 o“~ o ©
g 16 Y ..- .
8) pey ey
8 I <, Y, s |®
B‘ 14 .. L d [] *
E ®e ®
= o - * e
12 .
L 2
L 4
10
8
8 10 12 14 16 18 20 22
left eyes [pixels]
Scatterplot: AVR
0,75
0,7
o
065 * °®
] e%
[°® :l °

06

right eyes
..
\\-
°

055
g ®
L] °) o
o o ']
05 L S oo 1
X ® -
() PR °
K)
d L
045 L)
04
04 045 05 055 06 0,65 07 075
left eyes

Figure 4.2: From the top: scatter plot of widths’ values in veins (left vs right eyes), widths’
values in arteries and AVR, elaborated with the automatic algorithms in VAMPIRE

42 4. APPLICATION: THE STUDY ABOUT SARCOPENIA

Bland-Altman: widths in veins

10
s °
[]
s ()
=
3 .
2 | a Ca——
4 >
z 2 r) = - 2 o ®
= [
S ® L) *
S o i . o f 1 - { -
& © . *® °p * ®
& oo *
3 2 ° ry)
) ! o ° L
@ o o | [}
(=3
= -4 [
= () .
o -6
8 L]
-10
16 18 20 22 24 26 28
Average of left eyes and right eyes [pixels]
Bland-Altman: widths in arteries
3
25 L)
z @ s
) °
2 15+ ®
) ™S
L]
g LI R SN
z ® ® °
= ° . % o * © L ..
_9 05 C. ® 3
i L4 0 o © Y
E 0 —————1— L dm— .- 1’ B B B —— — — — — ———
= L] ol o
i LJ . L d - L]
@Q L}
o 05 L
3 *ie® 3
',:05) 1 [} o °
[a)
v
15
L]
2
10 12 14 16 18 20 22
Average of left eyes and right eyes [pixels]
Bland-Altman: AVR
02 |
015 }
- I
1 L J
$ o1 e e 1
> . I
2 ° |
= .) PY | .
g 005 ° & [] L] L
= P |
2 ® ®e o o . Po
@ ° ? @ e |
= rEng ® s |
9 e o |o |
3 e ® e |
o 005 ~ » & ~ o ° T
5 ' *
= L] |
g o oo L) ® |
()
-0,15
®
L]
-0,2 1
043 048 053 0,58 0,63

Average of left eyes and right eyes

Figure 4.3: From the top: Bland-Altman plot of widths’ values in veins, widths’ values in arteries

and AVR, elaborated with the automatic algorithms in VAMPIRE

43

Following will be described only the data obtained with the second method as the results of the
two techniques were very similar. First of all, a simple operation of correlation was performed on
the data, without the use of the adjustments. Predictably a poor correlation was again obtained
for the widths in both veins and arteries and for the AVR (0.26, 0.46 and 0.17 respectively) as
can be seen in Figures 4.5 and 4.6. This result was another confirm of what we thought: the
main problem to be solved was that of higher characterization of the data. Then operations
of “simple” correlation have been performed between the width value in a point and each
adjustment (linear distance from OD that is the polar radial coord., vessel type, generation
of the vessel, quadrant with respect to OD-fovea system that is related to the polar angular
coordinate, OD radius) in order to evaluate which of these are geometrically and clinically
significant. The results of these correlations are shown in figure 4.4.

Taking into account the fact that the data set is very small (about 1400 measuring points)
and that therefore results must be interpreted in this perspective, the linear distance from OD,
the vessel type and the quadrant can be considered highly significant variables because they
show a level of significance p < 0.001, the OD radius can be considered almost significant, and
the generation instead not significant. The first reflections lead to say that as regards the type
of the vessel, it is believed to be key information since many years in the literature, and also
the distance from the optic disc is intuitively easy to understand (vessels become smaller with
increasing distance from the OD). A positive innovation instead is the quadrant of belonging.
This can be explained from the clinical point of view by introducing the concept of drainage
and knowing that the macula is the most metabolically active area of the retina: this should
correspond, at the vascular level, in vessels branching out from the side of the fovea having
greater caliber than those branching off from the opposite side. Surprisingly little significance
in this dataset is instead the generation, which apparently has little effect on the magnitude
of the width. The phase of study of the correlation between the two eyes using adjustments’
information is still in progress and therefore no definitive result can be reported, and also it is
considered appropriate, before drawing any conclusion, to apply this idea even at larger dataset.
Without any doubt, however, regardless of the results that will be obtained with this technique,

the need to find a way of characterizing in detail the measures is certain.

4. APPLICATION: THE STUDY ABOUT SARCOPENIA

Adjustment P
linear distance from OD .000
vessel type: vein or artery .000
quadrant .001
OD radius .051
generation .662

Figure 4.4: Level of significance of each adjustment

45

Scatterplot: widths in veins

25

24 -
23 oTe o
22 [] e Y

° /

- 2

v ® 9T

] o ¢ g ° pe

%zo e ° g 3

%19 To vt A'° P

£ Y (o0 ® »

& Kt

. SZab oty J§EEEC

17 .

16

15 17 19 21 23 25

left eyes [pixels]

Scatterplot: widths in arteries

22
21
20
®
%. 19 [0 ~
°
3 . . ®
% 18 : Y /‘ s .
: o £
: IS
16 * e,
< ;
15 °
14
14 15 16 17 18 19 20 21 22
left eyes [pixels]
Scatterplot: AVR

09

08

. o,
»
o 075 g @ e 74
o o ®g @ []
) % e
z ~ o oo~ 8 .
2 od
= ° L
2 b .
ole o0 P2
oss o %% (%
Ll
06 °
055
055 06 0,65 07 0,75 08 0,85 09
left eyes

Figure 4.5: From the top: scatter plot of widths’ values in veins (left vs right eyes), widths’
values in arteries and AVR, elaborated with the VAMPIRE-Annotation Tool

46 4. APPLICATION: THE STUDY ABOUT SARCOPENIA

Bland-Altman: widths in veins

0
4
LARE ¥
o L PR
[] L]
z r) >
2 o o® o] ®) L]
% ° ® %0 . ° °
- °
) hlod ® i
= 0 [) °
2 o o % .
s e o0 .
5 e
5 * > ® ° °
§ 2 L] * .
e .
o
@
=
5 L]
-4
0
5
17 18 19 20 21 22 23 2
Average of left eyes and right eyes [pixels]
Bland-Altman: widths in arteries
4
5
@ 4
[}
X
=
» 3
3
>
@
52
=3 ° - .
E .
& 1 . r
g o o € T
= >y o_o o
[
. ° .
§ > l o:} oot
< ® °)
o -1
£ ® o L
o L
2 []
(]
-3
15 15,5 16 16,5 17 175 18 185 19 195 20
Average of left eyes and right eyes [pixels]
Bland-Altman: AVR
015
01
b ®
i *
0,05 ®
.. ' [] L] -
§. N [d of o *
2 » . *
S - v
= o [)
LSy e 2
&= 005
o) *
o o LILARC) *
=] 4 e
§ 01 o Ld
o e
&)
[a)
0,15
o

Average of left eyes and right eyes

Figure 4.6: From the top: Bland-Altman plot of widths’ values in veins, widths’ values in arteries

and AVR, elaborated with the VAMPIRE-Annotation Tool

Chapter 5

Conclusions

This thesis, after a first overview about the manual tools reported in the literature, proposed
the development of a manual annotation tool for the features of the retina in fundus camera
images, to be included in the package of the VAMPIRE software as a tool for the production
of ground truth for the validation of the automatic algorithms, but also as a support to the
software itself when it fails. Subsequently, the protocol used in a study whose purpose was the
analysis of retinal biomarkers for Sarcopenia, has been reported.

The VAMPIRE-Annotation Tool has three important characteristics: ease of use thanks
to a user-friendly graphical, completeness and flexibility of use, deep characterization of the
measures. The first two allow the use of the tool also externally to the team that developed it.
In fact, thanks to its immediacy it can be used by clinicians, and thanks to the possibility of
both annotate all the features and choose the path most appropriate for the purpose, it can
also be used in very different studies. The characterization of the measures instead allows a new
view on the data analysis and, thanks also to the ongoing study described in chapter 4, we can
select all the information considered more or less significant to a certain measure. In the future
we will try to save even more information that we consider important (distance along the vessel
between a point and the optic disc, distortion due to both the sphericity of the retina and the
image itself, etc.), although this will require more automatic techniques, and we will go on to
analyze their level of significance, as done in the context of the study about Sarcopenia.

About the data storage, some decisions have been taken with the intention, at the interna-
tional community level, to create common, accessible, and representative datasets [21]; all this
in a vision of a future library “data-centered” and no longer dependent instead on the task
or the measuring tool used. Because there is still no general agreement on the structure and
content of these datasets, it was decided to use as a support for the output data simple text
files, fast and easy both to write and to read, but above all without any restriction about the

operating system used.

48 5. CONCLUSIONS

We can say that the manual tool, with regard to both the adjustments and the way of sav-
ing/reading data, has been a forerunner compared to the main software. The team VAMPIRE
in the next months will focus on adapting the automatic software to what are the innovations

introduced by the VAMPIRE-Annotation Tool.

Appendix A

Appendix A

\ /

Y ampire)

Document name: SOP_VAMPIRE_ANNOTATION_TOOL
Title: VAMPIRE-Annotation Tool
Author: llaria Pieretti

Version: 1.0

1.0 Background:

VAMPIRE (Vascular Assessment and Measurement Platform for Images of the Retina) is an international collaboration
developing a software suit for efficient semi-automatic analysis of digital retinal images in clinical research. The project is
coordinated by two leading groups, Dundee and Edinburgh. The VAMPIRE suite includes interfaces for annotating
images, e.g., tracing regions or marking locations in digital retinal images. This is essential to allow clinicians to generate
ground truth against which to compare the results of VAMPIRE algorithms. The process of comparing automatic and
manual answers is called validation.

2.0 Purpose:

The purpose of this document is to describe the procedure that the user must follow when using "VAMPIRE-Annotation
Tool ".

This Tool allows the manual annotation of the following retinal features:

-Optic Disc: small blind spot on the surface of the retina where the fibers of the retina leave the eye and become part of
the optic nerve. It is the only part of the retina that is insensitive to light.

-Fovea: region of the retina with maximum density of photoreceptors.

-Junction: bifurcation of the blood vessels.

-Width: caliber of the blood vessels.

Attached to this document there is a video with a demo of the "VAMPIRE Annotation Tool: OD, Fovea, Junctions,
Widths".

3.0 Procedure:

3.1 User identification

RO #r s Qe 5 vens

On the main screen top left side enter your name and specify if you are a clinician or not.

3.2 Selection of the annotation

Immediately below by using a pop-up menu you have to indicate which is going to be your annotation path:
(a) annotate a new set ofimages

{(b) annotate new points in already annotated set

(c) annotate existing points in already annotated set

Appendix A

11

\ /

Valnpliie

Clp

DUNDEE

3.3 (a) Annotate new set of images

Annotation To

LI

|

east

@O~ #2 s Qi s

If you want to do a completely new annotation choose the first option of the menu.

3.4 (a) Choice of the set of images

&
——

@O=tz o @~ Grous

| —
On the main screen on the right side open the folder that contains the images to annotate pressing "Browse..".

3.5 (a) Selection of the images to annotate
i Annotation Toc _‘l

——

-

L

Now choose which images of this set you want to exclude from the annotation (their quality is too low, they are not
centered, etc.) ticking YES or NO. To go to the next image press "Next image".

3.6 (a) What do you want to annotate?

(~

{| @o-w-soi gmm=

ILARIA PIERETTI 25.03.2013

age 2 of 13

I\Y Appendix A

)\ /S Cp
Mapl DUNDEE
When you have completed the selection on the images of this set, you have to choose what to annotate of these images

ticking the checkboxes on bottom left side of the screen. The annotation of OD and fovea for choice (a) is compulsory so
their checkboxes are already ticked. Once the choice has been made press "l made my choice".

3.7 (a) Go to the sections of annotation

Annotation Toc a4

————— \ /

= O
— EEmmt| eo-w»-:ad e==
et
——— -
This will activate a menu just to the right, from which the user will be led to the screens of the annotations of OD, Fovea,

Junctions and Widths.

3.8 (a) Optic Disc Annotation Tool
3.8.1(a)

In this section you have to annotate the optic disc. You can choose to do it automatically. For the automatic mode press
"Automatic OD" and wait until the calculated OD appears.

3.8.2 (a)

For the manual mode press "Manual OD" and then select five points on the edge ofthe OD.

ILARIA PIERETTI 25.03.2013
Page 3 of 13

Appendix A \%

\ /i

Y ampire)

3.8.3(a)

When the ellipse appears, if you do not like it you can redo it (press "Redo OD"), otherwise you can go to the next image
pressing "Next image".

3.8.4 (a)

In this section (and also in the fovea, junctions and widths ones) at any time you can see the green channel image using
the appropriate panel.

3.9 (a) Fovea Annotation Tool
3.9.1(a)

In this section you have to annotate the center and the contour of the fovea.
First of all, you are asked if the fovea in this image is well visible or not. In this way you save the accuracy of the
annotation you are going to do.

3.9.2 (a)

VI

Appendix A

Before the selection of center and contour you have the possibility to zoom on the area of the image where the fovea is
and/or see the green channel image.
To select the center and the contour of the fovea press "Set center and contour” ...

3.9.3 (a)

... and then click on the image first on the center then on the contour.

3.9.4 (a)

When the circle appears, if you do not like it can redo it (press "Redo Selection"), otherwise you can go to the next image
pressing "Next image".

ILARIA PIERETTI 25.03.2013

Appendix A VII

%ﬁﬁn@ﬁm@ <

DUNDEE

3.10 (a) Junctions Annotation Tool
3.10.1 (a)

Y

The first step is to select all the junctions of interest of this image.
Before the selection of each point you have the possibility to zoom on the area of the image where the junction is and/or
see the green channel image. To select each junction press "Set junction”.

3.10.2 (a)

Then click on the image in the point you have chosen (to indicate a point belonging to a vein press simultaneously shift
key while clicking and the point will appear blue, to indicate an artery do a simple click and the point will appear red).

3.10.3 (a)

| mm—— el

A \ - -

—
- _—

ILARIA PIERETTI 25.03.2013
Page 6 of 13

VIII Appendix A

%m[@ﬁﬁ@ WCNQQ{

If you want to redo the last junction/s press "Redo last junction”, otherwise set another junction on this image (press "Set
junction") or, if you have selected all the junctions for this picture start the calculation of the angles (press "Branch points

selection").

3.10.4 (a)

To calculate the bifurcation's angles you have to select (within the little screen just appeared on the right side) the three
points belonging to the vessels involved in the bifurcation (first click on the mother vessel, then on the two children).
At the same time a yellow square will appear in the big screen on the left to show you the junction you are working on.

3.10.5 (a)

If you do not like how you selected the three points you can redo them (press "Redo"), otherwise go to the next junction
of this image (press "Next").

3.11 (a) Widths Annotation Tool

Appendix A X

\!émmg@ﬁm@ Cp

DUNDEE

3.11.1(a)

Y.

Width Annotation Tool

Q0 ® @ @mm

The first step is to select all the points where you want to measure widths in this image.
Before the selection of each point you have the possibility to zoom on the area of the image where the vessel is and/or
see the green channel image. To select each point press "Set point in the vessel".

3.11.2 (a)
s A W - -
Y Width Annotation Tool M oo oo e
| s e e

Then click on the image in the point you have chosen (to indicate a point belonging to a vein press simultaneously shift
key while clicking and the point will appear blue, to indicate an artery do a simple click and the point will appear red).

3.11.3(a)

After selecting the point on the image, you can specify the generation of the vessel (where the point is) in the box above
the picture.

3.11.4 (a)

ILARIA PIERETTI 25.03.2013
Page 8 of 13

Appendix A

%mg@ﬁm@ Clp

DUNDEE

If you want to redo last point/s press "Redo last point", otherwise set another point on this image (press "Set point in the
vessel ") or, if you have selected all the points for this picture start the measurement of the widths (press "Contour points
selection™).

3.11.5 (a)

To annotate the width you have to select (within the little screen just appeared on the right side) two points on the edges
of the vessel near the point previously selected. A green line will appear through the selected points. It should match with
the cross section of the vessel passing through the point within it; if not, it is advisable to reselect the points on the
contour to have a better measure of width. At the same time a yellow square will appear in the big screen on the left to
show you the point you are working on.

3.11.6 (a)

If you do not like how you selected the two points you can redo them (press "Redo"), otherwise go to the next point of
this image (press "Next").

ILARIA PIERETTI 25.03.2013

Page 9 of 13

Appendix A XI

%Uﬁﬂ@ﬁﬁ@ <

DUNDEE

3.3 (b) Annotate new points in already annotated set

Annotation To

If you want to continue an annotation previously done adding new junctionsiwidths, choose the second option of the
menu.

3.4 (b) Choice of the text files and the set of images

Annotation T

e
e
pa— {"ﬁ
‘ E:w’,;w'"\?‘" o)
e ' v/ SIUUU UL 2
DO 2 Qv Fuous
TESERITEIRE
e ATy

On the main screen on theirigihtisidé upload the text files containing the old annotations pressing "Browse.." and
selecting the files in their folder.
Look at the 3.4 (a) to see the part concerning the set of images.

3.5 (b) Selection of the images to annotate
The same as for the choice (a) so look at the 3.5 (a).

3.6 (b) What do you want to annotate?
The same as for the choice (a) so look at the 3.6 (a). The only difference is that in this case the annotation of OD and
fovea should NOT be taken so their checkboxes are NOT ticked.

3.7 (b) Go to the sections of annotation
The same as for the choice (a) so look at the 3.7 (a).

3.8 (b) Junctions Annotation Tool
3.8.1(b)-3.8.3(b)

The same as for the choice Eai so look at the 3.10.1 iaa -3.10.3 iai. The onli difference is that on the big screen the
\ T ———

| - 1

junctions annotated in the old annotation will appear shown as small crosses (instead the new ones always as dots).

ILARIA PIERETTI 25.03.2013
Page 10 of 13

XII

Appendix A

%m@ﬁm@ Clp

DUNDEE

3.8.4 (b) -3.8.5(b)
The same as for the choice (a) so look at the 3.10.4 (a) - 3.10.5 (a).
Note: only the new junctions are uploaded into the small screen on the right to measure the branching angles.

3.9 (b) Widths Annotation Tool
3.9.1(b) -3.9.4 (b)

The same as for the choice (a) so look at the 3.11.1 (a) - 3.11.4 (a). The only difference is that on the big screen the
points annotated in the old annotation will appear shown as small crosses (instead the new ones always as dots).

3.8.5 (b) - 3.8.6 (b)
The same as for the choice (a) so look at the 3.11.5 (a) - 3.11.6 (a).
Note: only the new points are uploaded into the small screen on the right to measure the width.

3.3 (c) Annotate existing points in already annotated set

@Otz s Qw

If you want to redo an annotation previously done measuring again angles and widths in the old points, choose the third
option ofthe menu.

3.4 (c) Choice of the text files and the set of images
The same as for the choice (b) so look at the 3.4 (b).

3.5 (c) Selection of the images to annotate
The same as for the choice (a) so look at the 3.5 (a).

3.6 (c) What do you want to annotate?
The same as for the choice (a) so look at the 3.6 (a). The only difference is that in this case the annotation of OD and
fovea should NOT be taken so their checkboxes are NOT ticked.

3.7 (c) Go to the sections of annotation
The same as for the choice (a) so look at the 3.7 (a).

ILARIA PIERETTI 25.03.2013
Page 11 of 13

Appendix A XTIT

\ /i

Y ampire)

3.8 (c¢) Junctions Annotation Tool
Here the junctions on the big images are automatically uploaded (and plotted) from an old annotation so the tool skips
directly to the part of the selection of the branching points on the little screen on the right.

3.8.1(c)-3.8.2(c)
The same as for the choice (a) so look at the 3.10.4 (a) - 3.10.5 (a).

3.9 (c) Widths Annotation Tool

Here the points on the big images are automatically uploaded (and plotted) from an old annotation so the tool skips
directly to the part of the selection of the points on the vessels' contour on the little screen on the right.

3.9.1(c)-3.9.2(c)
The same as for the choice (a) so look at the 3.11.5 (a) - 3.11.6 (a).

3.12 Chose anothg'r set of images or EXIT the Tool

sans il L ssssssas -

v e]

\/

— amrre ' RO @ s Qo ¢g=
———— =L

After the whole annotation of the first set of images, you can select another set of images (press "New set of images") or
you can exit the tool (press "EXIT").

4.0 The output text file:
The program returns in output one text file for each image of the set. This files are automatically saved in a folder called
"RESULTS" created automatically in the folder of the images.

The name of the file is always like: /mageName_RESULTS_DateAndTime.txt

The file contains information about the user, the image and the annotations taken.

In the first line it is always shown if the image has been processed (PROCESSED) or if it has been rejected (NOT
PROCESSED') by the user.

In the second line you can always find the name of the image, information about the user (name and belonging to the
clinicians), date and time of the annotation, information about the annotation of OD and fovea (annotator and date and
time that can coincide with the first -choice (a)- or not -choice (b) and (c)).

Ifthe image has been processed by the user, from third line onwards you can find:

-third line: always information about the OD. Cartesian coordinates of its center, the two radii and the coefficient theta of
the ellipse that fits the OD.

-fourth line: always information about the fovea. Cartesian and polar coordinates of its center, the radius.

From fifth line onwards you can find information about junctions and widths (depending on the case the number of

X1V Appendix A

Y ampire Cp

DUNDEE

junctions and widths could range from zero to many):

- junctions: Cartesian and polar coordinates of the point in the center of the junction, the type of the vessel (vein or
artery) where the junction is, Cartesian coordinates of the three points belonging to the three vessels involved in the
junction, the three bifurcation angles.

-widths: Cartesian and polar coordinates of the point within the vessel where you measured the width, the type of the
vessel (vein or artery) where the point is, the width and the generation of this vessel.

Fe Bt Tt Gu Tews Owbuy Dekiop Wadiw Hep - oax
TER LD C L 9- e B-BOARE BB sud te -| & ENGEN:]
LK +a % e,

1

. annotater mame:IZARIA PIERETTI, No: & clinician, dste anc time:d

. date ama vime 0D and fovas armotarion:2l 03 2013 10,40 AM

Stelm %) 38L0pg RESULTSZL0... | S8R0 pg FESULTS Z1G.. % [BARO,pg RESULTS 0. =]

fle G4t Tot Go Tosh Detug Doktsp Wirdonw o

IEH EREIC LW A, H ADRRN AR s - K

1 H &0
e+ EEAL)
i
H dase and tine D and foves aseotazionizi O3 2013 16.47 2
)
H
. yer v vea oM, e, pmiNLg
. voirmse seatsrs.o, pn smatue.s, pms

Martan % QR ML TG, ¥ (SRS pg WSLUIS 2 T | WRCp BAILLISI0-. ¢

ILARIA PIERETTI 25.03.2013
> 13 of 13

Appendix B

Code of paragraph 3.3.1

% —— Executes during object creation, after setting all properties.

function Name_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject, ‘BackgroundColor’), get(0,*
defaultUicontrolBackgroundColor 7))
set (hObject , ‘ BackgroundColor ’ , ‘ white’) ;

end

function Name_Callback (hObject, eventdata, handles)

handles. Annotator .Name = get (hObject , ‘ String ’) ;
% update handles

guidata (hObject , handles);

% —— Executes when selected object is changed in uipanelClinician.

function uipanelClinician_SelectionChangeFcn (hObject, eventdata, handles)

if hObject==handles. YesClinician
% if user check this button save ‘Clinician’
handles. Annotator. Clinician=‘Clinician ’;

elseif hObject==handles.NoClinician
% if user check this button save ‘Not a clinician’
handles. Annotator. Clinician=‘Not a clinician ’;

end

% if the user information is not fully inputted, exit

if isempty(handles.Annotator.Name) ||isempty(handles. Annotator. Clinician)
return

end

XVI Appendix B

% update handles
guidata (hObject , handles);

% —— Executes during object creation, after setting all properties.

function popupmenu_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject, ‘BackgroundColor’), get(0,*
defaultUicontrolBackgroundColor 7))
set (hObject , ‘ BackgroundColor ’ , ‘white’) ;

end

% —— Executes on selection change in popupmenu.

function popupmenu_Callback(hObject, eventdata, handles)

contents=cellstr (get(hObject , ‘ String ’));
Aselection=contents{get (hObject, ‘ Value’) };
if strcmp(Aselection , ‘ANNOTATE NEW SET OF IMAGES’)
set (handles.openFileButton , ‘Enable’, ‘off ’, * BackgroundColor
*.[0.941,0.941,0.941]) ;
set (handles.openFolderButton , ‘Enable’, ‘on’, ¢ BackgroundColor
*[1,0.345,0.137]) ;
elseif strcmp(Aselection , ‘ANNOTATE NEW POINTS IN ALREADY ANNOTATED SET’)
set (handles.openFolderButton , ‘Enable’, ‘on’, ¢ BackgroundColor
’,[1,0.345,0.137]);
set (handles.openFileButton , ‘Enable’, ‘on’, ‘ BackgroundColor
’,[1,0.345,0.137]);
elseif strcmp(Aselection , ‘ANNOTATE EXISTING POINTS IN ALREADY ANNOTATED
SET’)
set (handles.openFolderButton , ‘Enable’, ‘on’, ¢ BackgroundColor
7,[1,0.345,0.137]) ;
set (handles.openFileButton , ‘Enable’, ‘on’, ‘ BackgroundColor
7,[1,0.345,0.137]) ;
elseif strcmp(Aselection, ‘Select ...7)
set (handles.openFolderButton , ‘Enable’, ‘off >, ‘ BackgroundColor
" [0.941,0.941,0.941]);

Appendix B XVII

set (handles.openFileButton , ‘Enable’, ‘off >, ¢ BackgroundColor
7,[0.941,0.941,0.941]);
end
(

% update handles

guidata (hObject, handles);

% —— Executes on button press in openFolderButton.

function openFolderButton_Callback (hObject, eventdata, handles)

% Get folder:
directory=uigetdir (handles. files .directory);
% If the user pressed cancelled , then exit:
if directory==0

return
end
% clear previous results:
handles. files =[];
% upload images and save handles:
handles=openFilesFromDirectory (directory , handles);

handles.imagelD=1;

% create the folder RESULTS and the text file for the current image

resFold=‘RESULTS’;

mkdir (directory , resFold);

fileID=fopen(strcat (directory ,‘\ ’,resFold, ¢\ ’,cell2mat (handles. files .name(
handles.imagelD)) ,‘_’, ‘RESULTS’,‘_’, dateNtime, ‘.’ , ‘txt’) ,‘a+’);

fclose (fileID);

% open image

handles.image=imread ([handles. files . directory filesep cell2mat (handles.
files .name(handles.imagelD))]) ;

% plot image

axes (handles.mainFigure)

imshow (handles.image); hold on;

% display the number of images and file’s name

XVIII Appendix B

’ I

c=strcat (‘Image:’ ,num2str (handles.imagelD) ,‘/’ ;num2str(handles. files .
nFiles));

set (handles . display2, ‘String ’,c);

cl=handles. files .name(handles.imagelD) ;

set (handles.text25,‘String ’,cl);

setButtonStateFor _NextOFFProcessON (handles) ;

% updating handles

guidata (hObject , handles);

% —— Executes on button press in openFileButton.

function openFileButton_Callback (hObject, eventdata, handles)

[FileNameTemp , PathName, FilterIndex]=uigetfile (‘x.txt ', ‘Select one or more
text files ', ‘Multiselect ', ‘on’) ;
% add this directory to path and extract file ’s name
idx=strfind (PathName, ‘\ 7);
idx2=idx (end—1);
my_path=PathName (1:1dx2);
my_dir=PathName(idx2+1:end) ;
my_dir=my_dir (1:end—1);
addpath my_dir;
if ischar (FileNameTemp)
FileNameTemp=strread (FileNameTemp,‘%s’,‘whitespace’, ‘" {}¢) ’;
end
FileLIST={FileName{1,:}, FileNameTemp{1,:}};
FileName=FileLIST ;
% update handles

guidata (hObject , handles);

% —— Executes on button press in YesProcess.

function YesProcess_Callback (hObject, eventdata, handles)

% label the image as processed

handles.Processed (handles.imagelD) . Processed=PROCESSED’;

Appendix B XIX

%processed is a vector that contains 0 and 1, one for each image. 1 means
the image has to be processed, 0 not to be.

processed (handles.imagelD)=1;

setButtonStateFor_NextONProcessOFF (handles) ;
% update handles

guidata (hObject, handles);

% —— Executes on button press in NoProcess.
function NoProcess_Callback (hObject, eventdata, handles)
% label the image as not processed

handles. Processed (handles.imagelD). Processed ="NOT PROCESSED’;

%processed is a vector that contains 0 and 1, one for each image. 1 means
the image has to be processed, 0 not to be.

processed (handles.imagelD)=0;

setButtonStateFor_NextONProcessOFF (handles) ;
% update handles

guidata (hObject , handles);

% —— Executes on button press in NextImage.

function NextImage_Callback (hObject, eventdata, handles)

if strcmp(Aselection , ‘ANNOTATE NEW SET OF IMAGES’)

firstAnnotator=handles. Annotator .Name;

firstDate=dateNtime;

%save first data in the text file (user informations, name of image,
etc)

resFold=‘RESULTS’;

fileID=fopen(strcat (directory ,‘\’, resFold,‘\’, cell2mat (handles. files
.name (handles.imageID)), ‘_.’, ‘RESULTS’, ‘_’, dateNtime, ‘.7, ‘txt‘)
, fat’);

write_Generallnformations (fileID , handles.Processed (handles.imagelD).

Processed , cell2mat (handles. files .name(handles.imagelD)), num2str(

XX Appendix B

handles. Annotator .Name) , handles. Annotator. Clinician , num2str(
handles.dateNtime), firstAnnotator, firstDate);
fclose (fileID);
elseif strecmp(Aselection , ‘ANNOTATE EXISTING POINTS IN ALREADY ANNOTATED
SET’) || strcmp(Aselection , ‘ANNOTATE NEW POINTS IN ALREADY ANNOTATED SET
")
Y%read file file
for rf=1:size(FileLIST ,2)
nametemp=FileLIST {1, rf };
if strcmp(handles. files .name{handles.imagelD ,1} ,nametemp(1,1:size (
handles. files .name{handles.imagelD ,1},2)))

fileName=nametemp;

end
end
cd (PathName)
%save in structure:

res=readTextFile (fileName);
first Annotator=char(res{2,4});
firstDate=char(res{2,7});
data=[str2double(res{3,3}),str2double(res{3,5}) ,str2double(res{3,7}),
str2double (res {3,9}) ,str2double(res{3,11})];
center=[str2double (res{4,3}) ,str2double(res{4,5}) ,str2double (res{4,7})
,str2double (res{4,9}) ,str2double(res{4,11}) ,str2double(res{4,13}),
str2double (res{4,15}) |;
radius=str2double(res {4,17});
%save first data in the text file (user informations, name of image,
etc)and also OD and fovea information in the text file
resFold=‘RESULTS’;
fileID=fopen(strcat (directory , ‘\’, resFold, ‘\’, cell2mat (handles.
files .name(handles.imagelD)), ‘.7, ‘RESULTS’, ‘_’, dateNtime, ‘.7, °
txt '), ‘at+’);
write_Generallnformations (fileID , handles.Processed (
handles.imagelID).Processed, cell2mat (handles. files .name(

handles.imageID)), num2str(handles.Annotator.Name) ,

handles. Annotator. Clinician , num2str(handles.dateNtime),

Appendix B XXI

firstAnnotator , firstDate);
write_OD2 (fileID ,data) ;
write_Fovea2 (fileID ,center ,radius);
fclose (fileID);

end

%reset the YES/NOprocess buttons
set (handles.YesProcess, ‘Value’ ,0);
set (handles.NoProcess, ‘Value’,0) ;

% read the next image

handles.imagelD=handles.imagelD+1,;

if handles.imagelD > handles. files.nFiles %no more images

’ .

c=‘All images have been seen ’;

set (handles. display2 , ‘String ’,c, ‘Enable’, ‘off ') ;
cl=*" ",
set (handles.text25,¢String’,cl);
image2process=size (find (processed==1),2);
if image2process==0 % no images to process
% display worning if the user didn’t select any image

w=‘WARNING: you have rejected all the images in this folder !!!’;

))

set (handles.warning, ¢ Visible’,‘on’, ‘ String ’ ,w) ;
s2=‘If you have DONE all the annotations for this set of images
you can choose a NEW one or EXIT’;
set (handles . textNewSetOrExit , ¢ Visible ', ‘on’, ‘ String ' ,s2);
setButtonStateFor_FinishGoToMainMenu (handles) ;
% highlight exit buttons
set (handles . ExitButton, ‘Enable’, ‘on’, ‘ BackgroundColor
’,[1,0.345,0.137]) ;
set (handles.NewSetImagesButton, ‘Enable’, ‘on’, ‘ BackgroundColor
" [1,0.345,0.137]);
set (handles.NextImage, ‘Enable’, ‘off |, * BackgroundColor
" [0.941,0.941,0.941]) ;

% delate retinal images and replot vampire logo

XXII Appendix B

imageLogo=imread (‘eyeLogo.png’) ;

axes(handles. mainFigure)

cla

axis auto

imshow (imageLogo) ;

return;
end
setButtonStateFor_ImageFinishedWhatAnnotate (handles) ;
return;

end

Y%images not finished:

c=strcat (‘Image:’ ,num2str (handles.imageID) ,‘/’ ,num2str(handles. files .
nFiles));

set (handles . display2 , ‘String ’,c);

cl=handles. files .name(handles.imagelD) ;

set (handles.text25,‘String ’,cl);

% open image

handles.image = imread ([handles. files.directory filesep cell2mat (handles.
files .name(handles.imagelD))]);

% updates handles

guidata (hObject , handles);
% plot image
axes(handles.mainFigure)

imshow (handles .image) ; hold on;

setButtonStateFor _NextOFFProcessON (handles) ;

% —— Executes on button press in ChooseAnnotationsButton.

function ChooseAnnotationsButton_Callback (hObject, eventdata, handles)

setButtonStateFor_FinishGoToMainMenu (handles) ;

Appendix B XXIIT

% save all the exit of the checkbox in one matrix so that in MainMenu it ’s
simpler set buttons on/off:
global annotateButtonsMainMenu;

annotateButtonsMainMenu =(];

annotateButtonsMainMenu (1)=get (handles.ODButton, ‘ Value’) ;
annotateButtonsMainMenu (2)=get (handles.FoveaButton, ‘ Value’) ;
annotateButtonsMainMenu (3)=get (handles. WidthsButton , ‘ Value ‘) ;
annotateButtonsMainMenu (4)=get (handles. JunctionsButton , ‘ Value’) ;

if get(handles.ODButton, ‘Value’)=—get(handles.FoveaButton, ‘Value’)=—get (
handles . WidthsButton, ‘Value’)=—get(handles.JunctionsButton, ‘Value’)==0

set (handles . ExitButton, ‘Enable’, ‘on’, ‘BackgroundColor’,
[1,0.345,0.137]);
set (handles.NewSetlmagesButton, ‘Enable’, ‘on’, ‘BackgroundColor’,

[1,0.345,0.137]) ;
end
% PUSH-BUTTONS MENU:
MenuAnnotationSelection (hObject, eventdata, handles);

function MenuAnnotationSelection (hObject, eventdata, handles)

if annotateButtonsMainMenu (1)==1 && annotateButtonsMainMenu (2)==1 &&
annotateButtonsMainMenu (3)==0 && annotateButtonsMainMenu (4)==0
setButtonStateFor_OD_F (handles)
elseif annotateButtonsMainMenu(1)==1 && annotateButtonsMainMenu (2)==1 &&
annotateButtonsMainMenu (3)==1 && annotateButtonsMainMenu (4)==0
setButtonStateFor . OD_F_W (handles);
elseif annotateButtonsMainMenu(1)==1 && annotateButtonsMainMenu (2)==1 &&
annotateButtonsMainMenu (3)==0 && annotateButtonsMainMenu (4)==1
setButtonStateFor_ OD_F_J (handles);
elseif annotateButtonsMainMenu(1)==1 && annotateButtonsMainMenu (2)==1 &&
annotateButtonsMainMenu (3)==1 && annotateButtonsMainMenu (4)==1
setButtonStateFor ALL (handles);
elseif annotateButtonsMainMenu (1)==0 && annotateButtonsMainMenu (2)==0 &&
annotateButtonsMainMenu (3)==1 && annotateButtonsMainMenu (4)==0

XXIV Appendix B

setButtonStateFor_W (handles);
elseif annotateButtonsMainMenu (1)==0 && annotateButtonsMainMenu (2)==0 &&
annotateButtonsMainMenu (3)==0 && annotateButtonsMainMenu (4)==1
setButtonStateFor_J (handles);
elseif annotateButtonsMainMenu (1)==0 && annotateButtonsMainMenu (2)==0 &&
annotateButtonsMainMenu (3)==1 && annotateButtonsMainMenu (4)==1
setButtonStateFor_ W_J (handles) ;

end

Code of paragraph 3.3.2

% —— Outputs from this function are returned to the command line.
function varargout = AnnotateOD_OutputFcn(hObject, eventdata, handles)
% Get default command line output from handles structure

varargout {1} = handles.output;

%save directory

handles. files . directory=directory;

% number of images

handles. files .nFiles = 0;
handles.imagelD=1;

% load VAMPIRE logo
littleLogo=imread (‘littleLogo .png’) ;
axes(handles.logo);

imshow (littleLogo);

%load zoom button’s logo
zoomin=imread (‘zoomin.png’) ;

set (handles .zoomIN, ‘CData’ ,zoomin) ;
zoomout=imread (‘zoomout.png’) ;

set (handles .zoomOUT, ‘CData’ ,zoomout) ;
%load info button’s logo

info=imread (‘infoLogo.png’) ;

set (handles.info_button , ‘CData’,info);
% clear previous results if any

handles. files =[];

Appendix B XXV

% upload images and save handles
handles=openFilesFromDirectory (directory , handles);
% number of these images to be processed
handles.image2process=0;
handles. files .nFiles2process=size (find (processed==1),2); %processed loaded
from START code
% read first image
while handles.imagelD<=handles. files.nFiles
if processed (handles.imagelD)==0 %imagelD not to be annotated so don’t
open it
handles.imagelD=handles.imagelD+1;
else % imagelD has to be annotated so open it
handles.image2process=handles.image2process+1;
% display the number of images
c=strcat (‘Image:’ ,num2str (handles.image2process) ,‘/’ ,num2str(
handles. files .nFiles2process));
set (handles. display , ‘String ’,c);
cl=handles. files .name(handles.imagelD) ;
set (handles. displayl , ¢ String ’,cl);
handles .image=imread ([handles. files .directory filesep cell2mat (
handles. files .name(handles.imagelD))]) ;
% plot image
axes(handles. mainFigure)

imshow (handles .image) ; hold on;

setButtonStateFor_ChoseAnnotation (handles);
% updates handles
guidata (hObject , handles);
break
end

end

% if the images are finished

if handles.imagelD > handles. files.nFiles

c=‘All images have been annotated ’;

set (handles. display, ‘String’, c);

XXVI Appendix B

[
’

cl=
set (handles.displayl, ‘String’, cl);
s=‘Press ”Finish” to go to Start Menu’;
set (handles.suggestions, ‘String’, s);
% remove retinal image from screen and replot vampire logo
imageLogo=imread (‘eyeLogo.png’) ;
axes(handles. mainFigure)
cla
axis auto
imshow (imageLogo) ;
setButtonStateFor_Finish (handles);
return;
end
% updates handles

guidata(hObject, handles)

% —— Executes on button press in autolocateButton.

function autolocateButton_Callback (hObject, eventdata, handles)

c=‘Wait, locating OD ...’;
set (handles.suggestions , ‘String ’,c);

setButtonStateFor_InProcess(handles);

% Mark selected image as non—located OD

handles.results (handles.image2process).ODborders=0;

(
handles.results (handles.image2process).ODellipse=0;
handles.results (handles.image2process).ODcenter=0;
handles.results (handles.image2process). Coefficient =0;
handles.results (handles.image2process) . Residual=0;

(

handles.results (handles.image2process).ODradius=0;
% run the VAMPIRE’s function automaticODlocation
handles=automaticODlocation (handles) ;

% show located OD (draw the circles)

if handles.image2process>0

if handles.results(handles.image2process).ODradius>0

Appendix B XXVII

[ex1,cyl,cx2,cy2,cx3,cy3]=drawCircles (handles, handles.
image2process) ;
end
end
% label the OD of this image as ” Automatic”

handles.results (handles.image2process).AnnotType=‘Automatic’;

setButtonStateFor_ClearOrNext (handles) ;

c=‘Redo the OD for this image or go to next image. Zoom and RGB/Green
channel are active.’;

set (handles.suggestions , ‘String ’,c);

% update handles:

guidata (hObject , handles);

% —— Executes on button press in locateButton.

function locateButton_Callback (hObject, eventdata, handles)

c=‘Select FIVE points on the border of the OD’;

set (handles.suggestions , ‘String ’,c);

set (handles.uipanelFig , ‘BorderWidth’,2, ‘ShadowColor’,[1,0.345,0.137], ¢
HighlightColor *,[1,0.345,0.137]);

setButtonStateFor_InProcess(handles);

% Mark selected image as non—located OD

handles.results (handles.image2process).ODborders=0;

handles.results (handles.image2process).ODellipse=0;
handles.results
handles.results (handles.image2process). Coefficient=0;
Residual =0;
ODradius=0;

% Obtain borders coordinate from the user

handles.results (handles.image2process

handles.results

o~ o~ o~ o~ o~ —~

).

).
handles.image2process).ODcenter=0;

).

).

).

handles.image2process

for i=1:5 % five points

OD_borders(i,:) = ginput(1);

XXVIII Appendix B

plot (OD_borders(i,1) ,0D_borders(i,2),‘ko’);
end
% Fit the ellipse
a=fitellip (OD_borders (:,1) ,0D_borders (:,2));
% Calaculate the residual of ellipse
ResSum=0;
for i=1:length(OD_borders)
x=0D_borders (i,1);
y=0OD_borders(i,2);
residual=a(1)*x*x + a(2)*x*xy + a(3)*y*xy + a(4)*x + a(5)*xy + a(6);
ResSum=ResSum+residual ;
end
% e contains ellipseXcenter ,ellipseYcenter , Radiusl, Radius2, theta
e=fitellipse (OD_borders(:,1) ,0D_borders(:,2));
%Save results
handles.results (handles.image2process).ODborders=OD _borders;
handles.results (handles.image2process).ODellipse=e;

image2process). ODellipse (1:2);

(
(
handles.results (handles.image2process).ODcenter=handles.results (handles.
)
handles.results (handles.image2process). Coefficient=a;
handles.results (handles.image2process).Residual=ResSum;
% Save R=radiusl 4 radius2
handles.results (handles.image2process).ODradius=(handles.results (handles.
image2process). ODellipse (3)+handles.results (handles.image2process).
ODellipse(4))/2;
% Draw Ellipse
drawellip (a,OD_borders, handles) ;
% show located OD (draw the circles)
if handles.image2process >0
if handles.results (handles.image2process).ODradius > 0 % & handles.
showOD
[cx1,cyl,cx2,cy2,cx3,cy3]=drawCircles (handles, handles.
image2process) ;
end

end

Appendix B XXIX

% label the OD of this image as ”Manual”

handles.results (handles.image2process).AnnotType=‘Manual ’;
setButtonStateFor_ClearOrNext (handles);

c=‘Redo the OD for this image or go to next image. Zoom and RGB/Green

’ .

channel are active.’;

set (handles.suggestions , ‘String ’,c);

set (handles.uipanelFig , ‘BorderWidth’,1,‘ShadowColor’, ‘k’, ‘HighlightColor
k) , zwv) ’

% updates handles

guidata (hObject , handles);

% —— Executes on button press in zoomOUT.

function zoomOUT_Callback (hObject, eventdata, handles)

button_state = get(hObject, ‘Value’); % save the state of the button (
pressed or not)

if button_state =— get(hObject, ‘Max’) % toggle button is pressed
zoom on; % activate zoom

get (zoom, ‘Direction ’);

set (zoom, ‘Direction’, ‘out’); % set direction of the zoom = zoom out
elseif button_state =— get(hObject, ‘Min’) % toggle button is not

pressed
disp (‘off’);

end

% —— Executes on button press in zoomlIN.

function zoomIN_Callback (hObject, eventdata, handles)

button_state = get(hObject, ‘Value’); % save the state of the button (
pressed or not)

if button_state =— get(hObject, ‘Max’) % toggle button is pressed
zoom on; % activate zoom

get (zoom, ‘Direction’);

XXX Appendix B
set (zoom, ‘Direction’, ‘in’); % set direction of the zoom = zoom in

elseif button_state =— get(hObject, ‘Min’) % toggle button is not
pressed
disp (‘off’);

end

% —— Executes when selected object is changed in uipanelC_G.

function uipanelC_G_SelectionChangeFcn (hObject, eventdata, handles)

if hObject==handles.colourButton %user chose RGB image

axes(handles. mainFigure)

imshow (handles .image); hold on;

elseif hObject=—handles.Gbutton %user chose green

handles.imageG=handles.image (:,:,2);

axes(handles. mainFigure)

imshow (handles.imageG); hold on;

end

% plot

again

what

necessary

channel

image

[ex1,cyl,cx2,cy2,cx3,cy3]=drawCircles (handles, handles.image2process);

% updates handles

guidata(hObject, handles)

% —— Executes

function clearButton_Callback (hObject, eventdata,
the OD data

Y%reset
handles.
handles .
handles.
handles.
handles.
handles.

on

for

button

press in

this image:

results (handles.image2process

results
results
results
results

results

(handles.
(handles.
(handles.
(
(

handles

handles.

image2process
image2process
image2process
.image2process

image2process

set (handles.colourButton , ‘ Value’,1);

set (handles.Gbutton, ‘Value’,0) ;

).
).
).
).
).
).

clearButton .

ODborders =[];
ODellipse =[];
ODcenter =[];
Coefficient =[]
Residual =[];
ODradius =[];

handles)

)

Appendix B XXXI

% re—plot the image without the wrong OD just calculated
axes(handles. mainFigure) ;

imshow (handles .image) ; hold on;

setButtonStateFor_ChoseAnnotation (handles);

s=‘First , if you want, zoom in on the area of interest and see the green

channel image, then choose the annotation mode. ’;

set (handles.suggestions , ‘String ’,s);
(

% updates handles

guidata (hObject , handles);

% —— Executes on button press in nextImageButton.

function nextImageButton_Callback (hObject, eventdata, handles)

% once next button is pressed, the information of the previous image
should be saved

resultInfo (handles.image2process ,:)=[handles.results (handles.image2process
). ODellipse |;

resultInfoAdditional (handles.image2process ,:) =[handles.results (handles.
image2process) . Coefficient ’,handles.results (handles.image2process).
Residual |;

% save results in .txt file

fileID=fopen (strcat (directory , ¢\’ ,‘RESULTS’,‘\ ’,cell2mat (handles. files .
name (handles.imageID)) ,‘_’ ,‘RESULTS’, ‘_’, dateNtime, ‘.’ ,‘txt’) ,‘a+’);

write_OD (fileID ,resultInfo (handles.image2process ,:) ,handles.results (
handles.image2process).AnnotType) ;

fclose (fileID);

zoom out;
% read next image
handles.imagelD=handles.imagelD+1;
while handles.imagelD<=handles. files.nFiles
if processed (handles.imagelD)==0 %imagelD doesn’t have to be annotated
so don’t open it

handles.imagelD=handles.imagelD+1;

XXXII Appendix B

end
% if

else %imageID has to be annotated so open it
handles.image2process=handles.image2process—+1;
% display the number of images

c=strcat (‘Image:’

,num2str (handles.image2process) ,‘/’ ,num2str(
handles. files .nFiles2process));

set (handles. display , ‘String ’,c);

cl=handles. files .name(handles.imagelD) ;

set (handles. displayl , ‘String ’,cl);

handles.image = imread ([handles. files.directory filesep cell2mat (
handles. files .name(handles.imagelD)) |);

% plot image

axes(handles.mainFigure)

imshow (handles .image) ; hold on;

setButtonStateFor_ChoseAnnotation (handles);

s=‘First , if you want, zoom in on the area of interest and see the

green channel image, then choose the annotation mode. ’;

set (handles.suggestions , ‘String ’,s);

% updates handles

guidata (hObject, handles);

break;

end

the images are finished

if handles.imagelD > handles. files.nFiles

c=‘All images have been annotated ’;

set (handles . display , ‘ String ’,c¢);

cl=* "

set (handles.displayl , ‘String’,cl);

s=‘Press ”Finish” to go to Start Menu’;

set (handles.suggestions , ‘String ’,s);

% delate retinal images and replot vampire logo
imageLogo=imread (‘eyeLogo.png’) ;

axes(handles. mainFigure)

cla

axis auto

Appendix B XXXIII

imshow (imageLogo) ;
setButtonStateFor_Finish (handles);
return;

end

% updates handles

guidata (hObject, handles);

% —— Executes on button press in finish.
function finish_Callback (hObject, eventdata, handles)

close;

function setButtonStateFor_ChoseAnnotation (handles)
set (handles.locateButton , ‘Enable’, ‘on’, ‘ BackgroundColor
*[1,0.345,0.137]) ;
set (handles.clearButton , ‘Enable’, ‘off ’, ‘ BackgroundColor
’[0.941,0.941,0.941]);
set (handles.autolocateButton, ‘Enable’, ‘on’, ‘BackgroundColor
’,[1,0.345,0.137]);
handles.zoomIN, ‘Enable’, ‘on’, ‘ BackgroundColor ’,[1,0.345,0.137]) ;
handles .zoomOUT, ‘ Enable’, ‘on’, ‘ BackgroundColor ’ ,[1,0.345,0.137]) ;
handles . uipanelZoom , ‘ ShadowColor ’,[1,0.345,0.137]) ;

set (
(
(
set (handles . uipanelC_G , ¢ ShadowColor’ ,[1,0.345,0.137]);
(
(
(

set
set
set (handles . colourButton , ‘Enable’, ‘on’) ;
set (handles.Gbutton, ‘Enable’, ‘on’) ;
set

*00.941,0.941,0.941]) ;
set (handles. finish , ‘Enable’, ‘off ’ | * BackgroundColor *,[0.941,0.941,0.941])

handles.nextImageButton , ‘ Enable’, ‘off >, ‘ BackgroundColor

i

Code of paragraph 3.3.3

% —— Executes when selected object is changed in uipanelFovea.
function uipanelFovea_SelectionChangeFcn (hObject, eventdata, handles)

global countV;

XXXIV Appendix B

if countV==0
if hObject=handles.YESvisible
handles.results (handles.image2process). visible=‘YES’;
elseif hObject==handles.NOvisible
handles.results (handles.image2process).visible=‘NO’;
end
countV=countV +1;
s=‘Now you have to select consecutively first the center, then a point
on the contour of the fovea so as to obtain a circumference that
surrounds it. First, if you want, zoom in on the area of interest
and see the green channel image, then press ”Set center and contour

» o,
L.}

set (handles.suggestions , ‘String ’,s);
setButtonStateFor_setCenterContour (handles);
else
if hObject=handles.YESvisible
handles.results (handles.image2process). visible=‘YES’;
elseif hObject==handles.NOvisible
handles.results (handles.image2process).visible=‘NO’;
end
countV=countV +1;
end
% update handles:

guidata (hObject , handles);

function setCenterContour_Callback (hObject,eventdata ,handles)

getUserInput () ;

% calculation of the polar_coordinates, for center:

[thetaODc , thetaODfovc ,thoODc, thetalCc ,rholCc]=polar_coordinates (xFOV, yFOV
, x_-image_size , y_-image_size , xOD, yOD, xFOV, yFOV);

handles.results (handles.image2process).FoveaCenter=[center (handles.

image2process ,:) , polarFoveaCenter(handles.image2process ,:) |;

% for contour:

[thetaODb , thetaODfovb ,thoODb, thetalCb ,rhoICb]=polar_coordinates (xContour,

Appendix B XXXV

yContour, x_image_size, y_image_size, xOD, yOD, xFOV, yFOV);

handles.results (handles.image2process).FoveaContour=[contour (handles.
image2process ,:) , polarFoveaContour(handles.image2process ,:) |;

% calculate radius:

r(handles.image2process)=sqrt ((center (handles.image2process ,l)—contour (
handles.image2process ,1)) 2+(center (handles.image2process ,2)—contour (
handles.image2process ,2)) "2);

b

handles.results (handles.image2process).FoveaRadius=r(handles.image2process
)

% draw circle:

drawcirclefovea (center (handles.image2process ,1) ,center (handles.

image2process ,2) ,r (handles.image2process));

function getUserInput ()
hold on

% center:
c=ginput (1) ;
plot(c(1),c(2),%.87);
center=[center; c]J;

% contour :
b=ginput (1) ;

plot (b(1),b(2),°.b");

contour=[contour; b];

function [thetaOD ,thetaODfov ,rhoOD,thetalC ,rholC]=polar_coordinates(xp,yp,
xpix , ypix ,xod,yod , xfov , yfov)
%shift the origin in OD:
xpod=xp—xod ;
ypod=yod—yp;
%shift the origin in the center of the image:
xpic=xp—(xpix/2);
ypic=(ypix/2)-yp;
Y%polar coord related to the positive horizontal axis (angle
counterclockerwise)

%pole in OD:

XXXVI Appendix B

[tODrad ,thoOD]=cart2pol (xpod, ypod);
tOD=tODrad 180/ pi;
%pole in IC:
[tICrad ,rholC]=cart2pol(xpic, ypic);
tIC=tICrad 180/ pi;
Y%%rotation of 90 so that the polar axis is the positive vertical one
%pole in OD:
if tOD<90
thetaOD=270+tOD;
elseif tOD>=90
thetaOD=tOD—90;
end
%pole in IC:
if tIC<90
thetalC=270+t1C;
elseif tIC>=90
thetalC=tIC —90;
end
%right eye is OK, change rotation for left eye:
if xfov>xod
thetaOD=360—thetaOD ;
thetalC=360—thetalC ;

end

9% thetaODfov:

%calculate the angle difference between the horizontal axis of the
image and the OD-fovea axis:

% hor=vector // horizontal axis of the image

hor=[xfov—xod 0];

% odfov=vector from OD to fovea

odfov=[xfov—xod yfov—yod];

% alpha=angular difference between these 2 vectors

alpha=—(180/pi)*atan2(hor (1)*odfov (2)—hor (2)*odfov (1), hor(1)xodfov (1)
+hor (2)*odfov(2));

alpha=abs(alpha);

Appendix B

XXXVII

% calculate thetaODfov
if yfov>yod
tODfov=thetaOD—alpha;
if tODfov<0
thetaODfov=thetaOD—alpha+360;
else
thetaODfov=tODfov;
end
elseif yfov<yod
tODfov=thetaOD+alpha ;
if tODfov>360
thetaODfov=thetaOD+alpha —360;
else
thetaODfov=tODfov;
end
elseif yfov=—yod
thetaODfov=thetaOD;
end

end

function drawcirclefovea(xc,yc,r)
theta=linspace (0,2*xpi,40);
x_circle=r*cos(theta);
y-circle=rxsin(theta);
cx=x_circle+xc;

cy=y_circle+4yc;

plot(cx, cy, ‘—c’);

function RemoveButton_Callback (hObject, eventdata,

center (end,:) = []; %remove last item.
contour(end,:) = [];

Y%update the axis by re—plotting the image
cla;

imshow (handles .image) ;

handles)

XXXVIII Appendix B

Code of paragraph 3.3.4

%— Executes on button press in setJunctionButton.

function setJunctionButton_Callback (hObject, eventdata, handles)

setButtonStateFor_InProcess (handles);

getUserInputJunction () ;

j=j4+1; %counter of the junctions

% check if shift key is pressed

shiftValue=get (handles. figurel , ‘SelectionType’) ;

hold on;

if stremp(shiftValue, ‘extend’) %if shift pressed=vein
vesselType = ‘V7;
plot (junctions(j,1), junctions(j,2), ‘.b’);

else
vesselType = ‘A’; %if shift not pressed=artery

plot (junctions(j,1), junctions(j,2), ‘.r’);

end

9% polar_coordinates input: xp,yp,xpix,ypix,xod,yod,xfovea ,yfovea
[thetaOD , thetaODfov ,thoOD, thetalC ,rholC]=polar_coordinates (junctions(j,1),
junctions(j,2), size(handles.image,2), size(handles.image,1),
resultInfo (handles.image2process ,1), resultInfo(handles.image2process,2)
, xFovea(handles.image2process), yFovea(handles.image2process));
tempPolar (j ,:) =[thetaOD , thetaODfov ,thoOD, thetalC ,rholC |;
handles. Junctions (handles.image2process).Junctions=[junctions tempPolar

VeinOrArt 7] ;

setButtonStateFor_ReadyJunctions (handles);
s=‘Now you can redo the last junction, or set another junction pressing ”
Set junction”, or, if you have selected all the junctions of interest

for this picture, start the calculation of the angles pressing ”Branch

points selection”. Zoom and RGB/Green channel are active.’;

Appendix B XXXIX

set (handles.suggestions , ‘String ’,s);
% updates handles

guidata(hObject, handles)

function getUserInputJunction ()

ju=ginput (1) ;

junctions=[junctions;ju];

% —— Executes on button press in setVesselsPointsButton.

function setVesselsPointsButton_Callback (hObject, eventdata, handles)

if i==size (junctions,l) % junctions for this image are finished
setButtonStateFor_NextImage (handles);
set (handles . uipanelLittleImage , ‘BorderWidth’,1, ‘ShadowColor’, ‘k’ ¢
HighlightColor ’, ‘w’) ;
s=‘The annotation of this image is finished, go to the next one’;
set (handles.suggestions , ‘String ’,s);
return;

end

s=‘Now, IN THE PANEL BELOW ON THE RIGHT, you have to set the points in the
branches. Press ‘‘Set points’’ to start.’;

set (handles.suggestions , ‘String ’,s);

i=i+1;

%plot rectangle on Main Figure
axes(handles. mainFigure)
imshow (handles .image) ; hold on;
for temp=1:size(junctions ,hk1)

if strcmp(char(VeinOrArt(temp)),‘V’)

plot (junctions (temp,1), junctions(temp,2), ‘.b’);

XL Appendix B

else
plot (junctions (temp,1), junctions(temp,2), ‘.r’);

end
end
w=100; %width of the rectangle
h=100; %high of the rectangle
xr=junctions (i,l)—(w/2);
yr=junctions (i,2)—(h/2);
rectangle (‘Position ’ ,[xr,yr,w,h],‘Curvature’,[0,0], ‘LineWidth’,2,"*

LineStyle’,* =’ ,‘EdgeColor’,‘y’) ;

%plot OLD junctions :
if not(isempty(oldJunctions))
for k=1:size(oldJunctions ,1)
if oldJunctions(k,3)==
plot (oldJunctions(k,1) ,oldJunctions(k,2) ,‘bx’);
elseif oldJunctions (k,3)==0
plot (oldJunctions(k,1) ,oldJunctions (k,2) ,‘rx’);
end
end

end

% plot image on littleFigure
axes(handles.littleFigure)

imshow (handles .image) ; hold on;

plot (junctions(i,1), junctions(i,2), ‘.c’);

Y%zoom in on point location

xmin = junctions(i,1)—100;
xmax = junctions (i,1)+100;
ymin = junctions(i,2) —100;
ymax = junctions (i,2)+100;

axis ([xmin xmax ymin ymax]) ;

setButtonStateFor_ReadyPoints (handles);

% updates handles

Appendix B XLI

guidata(hObject, handles)

% —— Executes on button press in PointsForNextJunctionButton.

function PointsForNextJunctionButton_Callback (hObject, eventdata, handles)

s=‘Now, IN THE PANEL BELOW ON THE RIGHT, click first on the mother vessel
and then on the two children (always in the middle of the vessel). After
selecting the mother a circle that will help you to click on the
children will appear.’;

set (handles.suggestions , ‘String ’,s);

setButtonStateFor_InProcess(handles);

getUserInputPoints () ;

s=‘Now you can redo last selection or go to next junction.’;
set (handles.suggestions , ‘String ’,s);
setButtonStateFor_RedoOrNext (handles) ;

% call the function calculateAngles

angles (i,:)=calculateAngles (junctions (i,:) m(i,:),pl(i,:),p2(i,:));
handles. Junctions (handles.image2process). VesselPoints=[m pl p2];
handles. Junctions (handles.image2process). Angles=angles;

% updates handles

guidata (hObject , handles)

function getUserInputPoints ()

hold on

pointm=ginput (1) ; %mother

plot (pointm (1) ,pointm (2) ,‘.b’);

rj=sqrt ((junctions (i,1)—pointm (1)) 24 (junctions (i,2)—pointm(2))°2); %
radius

drawcirclefovea (junctions(i,1l) ,junctions(i,2),rj); %circle with center in
junctions (i,:) and radius rj

m=[m; pointm |;

pointl=ginput(1); %children 1

XLIT Appendix B

plot (pointl (1) ,pointl(2),°‘.g’);
pl=[pl; pointl];

point2=ginput(1); Y%children 2
plot (point2 (1) ,point2(2),‘.r’);
p2=[p2; point2];

%function to calculate angles

function phi=calculateAngles (ju,m,pl,p2)

mother_vector=[m(1)—ju(1l) m(2)—ju(2)];
childl_vector=[pl(1)— _]U.(l) pl(2)—ju(2)];
child2_vector=[p2(1)—ju(l) p2(2)—ju(2)];

%Plot vectors

plot ([m(1) ju(1)], [m(2) ju(2)], [pL(1) ju(1)], [p1(2) ju(2)], [p2(1) ju
()], [p2(2) ju(2)]);

%calculate angles:

al=—(180/pi)*atan2(mother_vector (1)*childl_vector (2)—mother_vector (2)x

childl_vector (1), mother_vector(1l)xchildl_vector (1)+mother_vector (2)x
childl_vector (2)

a2=—(180/pi) xatan2

i

childl_vector (1)*child2_vector (2)—childl_vector (2)=«
child2_vector (1), childl_vector (1)xchild2_vector (1)+childl_vector (2)=*
child2_vector (2));

a3=—(180/pi)*atan2(child2_vector (1)+*mother_vector (2)—child2_vector (2)x
mother_vector (1), child2_vector (1)*mother_vector (1)+child2_vector (2)=*

mother_vector (2));

)
(

)

if a2>0 %the user has selected the vectors counterclockwise
if abs(a3)>abs(al)
phil=abs(al);
phi2=abs(a2);
phi3=360—phil—phi2;
else Yabs(a3)<abs(al)
phi2=abs(a2);
phi3=abs(a3);
phil=360—phi2—phi3;

Appendix B XLIIT

end
elseif a2<0 %the user has selected the vectors clockwise
if abs(a3)>abs(al)
phi2=abs(a2);
phi3=abs(al);
phil=360—phi2—phi3;
else %abs(a3)<abs(al)
phil=abs(a3);
phi2=abs(a2);
phi3=360—phil—phi2;
end
end

phi=[phil , phi2,phi3];

Code of paragraph 3.3.5

% —— Executes during object creation, after setting all properties.

function generation_CreateFcn (hObject, eventdata, handles)

if ispc && isequal (get(hObject, ‘BackgroundColor’), get(0,°
defaultUicontrolBackgroundColor 7))
set (hObject , ‘ BackgroundColor ’ , ‘ white’) ;

end

function generation_Callback (hObject, eventdata, handles)

handles.Widths(handles.image2process).Generation (j)=get (hObject, ‘String’);

% updating handles

guidata (hObject, handles);

% —— Executes on button press in ContoursForNextPointButton.

function ContoursForNextPointButton_Callback (hObject, eventdata, handles)

XLIV Appendix B

s=‘Now, IN THE PANEL BELOW ON THE RIGHT, click on the contours of the
vessel . 7;

set (handles.suggestions , ‘String ’,s);

setButtonStateFor_InProcess(handles);

% call the function getUserInputContours

getUserInputContours () ;

s=‘Now you can redo last selection or go to next point.’;

set (handles.suggestions , ‘String ’,s);

setButtonStateFor_RedoOrNext (handles) ;

% points on the contour

global contourl;

global contour2;

% call the function calculateWidths

widths (i ,:)=calculateWidths (contourl(i,:) ,contour2(i,:));

handles . Widths(handles.image2process).Contours=[contourl contour2];

handles . Widths(handles.image2process) . Widths=widths;

c

% updates handles

guidata(hObject, handles)

function getUserInputContours ()

hold on
bl=ginput (1) ;
plot(b1(1), b1(2), ‘.y’);
contourl=[contourl; bl];
% vector from current point to central point
v=bl—points (i,:);
v=v./norm(v); % normalized
vp=[—v(2) v(1)]; % perpendicular
% plot line along vessel
if VeinOrArt(i)===86

colourStr = ‘=b’;
else

colourStr = ‘—r’;

end

Appendix B XLV

plot ([points(i,1) points(i,1)+v(1)=*30],[points(i,2) points(i,2)+v(2)=30] ,
‘—g’);

plot ([points(i,1) points(i,1)+vp(1l)=*10],[points(i,2) points(i,2)+vp(2)=*10]
,colourStr);

% plot line acros vessel (other side)

plot ([points(i,1) points(i,1)—v(1)=30],[points(i,2) points(i,2)—v(2)=30] ,
‘ig’)s

% point on the other contour

b2=ginput (1) ;

plot (b2(1), b2(2), ‘.y’);

contour2=[contour2; b2];

% function to calculate widths
function w=calculateWidths (pl,p2)
w=sqrt ((p2(1)—pl(1)) 2+(p2(2)-pl(2)) "2);

Code of paragraph 3.3.6

h=actxcontrol (‘WMPlayer .OCX.7’,[428 8 846 587]);
filename="‘videodemo .mp4’;

pathname=‘C:\...\ 7;

h.URL=[pathname filename];

h.controls.play;

% —— Executes on button press in SOPbutton.
function SOPbutton_Callback (hObject, eventdata, handles)
open (‘C:\ ...\ SOPdocument.pdf’) ;

Code of paragraph 3.3.7

function write_Generallnformations(fileID ,processed ,img,annotator ,

clinician ,dateNtime , firstAnnotator , firstDate)

XLVI Appendix B

fprintf(fileID , ‘%s\nlmage:%s, annotator name:%s, %s, date and time:%s,
OD and fovea annotator:%s, date and time OD and fovea annotation:%s\n’,
processed , img, annotator, clinician , dateNtime, firstAnnotator ,

firstDate);

function write_.OD (fileID ,data, annotType)
fprintf(fileID , ‘OD: Xc:%.1f, Yec:%.1f0, radiusl:%.1{, radius2:%.1f,
theta:%.1f, annotationType:%s\n’, data, annotType);

function write_Fovea(fileID ,center ,radius, visible)
fprintf(fileID , ‘FOVEA: Xc:%.1f, Yc:%.1f, thetaOD:%.1f, thetaODfov:%.1f,
thoOD:%.1f, thetalC:%.1f, rholC:%.1f, radius:%.1f, visible:%s\n’,

center , radius, visible);

function write_Junctions (fileID ,junctionsNva ,vesselpoints ,angles)
fprintf(fileID , ‘*JUNCTION: Xj:%.1f, Yj:%.1f{, thetaOD:%.1f, thetaODfov
:%.1f, 1hoOD:%.1f, thetalC:%.1f, rholC:%.1f, vesselType:%c, Xm:%.1f
Ym:%.1f, Xcl1:%.1f, Yel:%.1f, Xc2:%.1f, Yc2:%.1f, phil:%.1f, phi2

:%.1f, phi3:%.1f\n’, junctionsNva, vesselpoints, angles);

function write_Widths_Generation (fileID ,pointNva ,w, generation)
fprintf(fileID , “WIDTH: Xw:%.1f, Yw:%.1f. thetaOD:%.1f, thetaODfov:%.1f,
rhoOD:%.1f, thetalC:%.1f, rholC:%.1f, vesselType:%s, width:%.1f,

generation:%u\n’, pointNva, w, generation);

function write_Widths(fileID ,pointNva ,w)
fprintf(fileID , “WIDTH: Xw:%.1{, Yw:%.1{, thetaOD:%.1{, thetaODfov:%.1f,
thoOD:%.1f, thetalC:%.1f, rholC:%.1f, wvesselType:%s, width:%.1f\n

pointNva, w);

Code of paragraph 3.3.8

%data with label L:
lp=regexp (line ,L); % label position

Appendix B XLVII

if not(isempty(lp))
res{i,cc}=L; % res is the structure
cc=cc—+1;
Is=size (L,2); % label size
ssi=ls+lp; % start string interval
vir=regexp (line,’,’);
c=0;
for v=1:size (vir ,2)
if vir(v)>lp
esi=vir(v)—1; % end string interval
c=1;
break
end
end
if c==0
res{i,cc}=line(ssi:end); % the data is the last one of itse line
elseif c==1
res{i,cc}=line(ssi:esi); % the data isn’t the last one of its line
end

end

XLVIII Appendix B

Bibliography

[1]

N. Patton, T. M. Aslam, T. J. MacGillivray, I. J. Deary, B. Dhillon, R. H. Eikelboom, K.
Yogesan, and I. J. Constable, “Retinal image analysis: concepts, applications and poten-

tial,” in Prog. Retin. Eye Res., vol. 25, no. 1, pp. 99127, 2006.

B. Al-Diri, A. Hunter, D. Steel and M. Habib, “Manual Measurement of Retinal Bifurcation

)

Features,” in Engineering in Medicine and Biology Society (EMBC) Annual International

Conference of the IEEE, 2010.

N. Patton, T. Aslam, T. J. MacGillivray, A. Pattie, I. J. Deary, and B. Dhillon, “Retinal
vascular image analysis as a potential screening tool for cerebrovascular disease,” in Journal

of Anatomy, vol. 206, pp. 318348, 2005.

M. Niemeijer, X. Xu, A. V. Dumitrescu, P. Gupta, B. van Ginneken, J. C. Folk and
M. D. Abrmoff, “Automated Measurement of the Arteriolar-to-Venular Width Ratio in
Digital Color Fundus Photographs,” in IEEE Trans on Medical Imaging, vol. 30, no. 11,
pp- 19411950, 2011.

A. Perez-Rovira, T. MacGillivray, E. Trucco, K. S. Chin, K. Zutis, C. Lupascu, D. Tegolo,
A. Giachetti, P. J. Wilson and A. Doney, “Vampire: Vessel assessment and measurement
platform for images of the retina,” in Proc. IEEE Engineering in Medicine and Biology

Society, pp. 33913394, 2011.

E. Trucco, L. Ballerini, D. Relan, A. Giachetti, T. MacGillivray, K. Zutis, C. Lupascu,
D. Tegolo, E. Pellegrini, G. Robertson, P. J. Wilson, A. Doney and B. Dhillon, “Novel
VAMPIRE algorithms for quantitative analysis of the retinal vasculature,” in Biosignals

and Biorobotics Conference (BRC), 2013.

A. Giachetti, K. S. Chin, E. Trucco, C. Cobb, and P. J. Wilson, “Multiresolution local-
ization and segmentation of the optical disc in fundus images using inpainted background

and vessel information,” in ICIP, pp. 21452148, 2011.

BIBLIOGRAPHY

8]

[10]

[11]

[12]

[13]

[14]

[15]

J. V. B. Soares, J. J. G. Leandro, R. M. Cesar, H. F. Jelinek and M. J. Cree, “Retinal
vessel segmentation using the 2-D Gabor wavelet and supervised classification,” in IEEE

Trans. on Med. Im., vol. 25, pp. 12141222, Sept. 2006.

A. Cavinato, L. Ballerini, E. Trucco and E. Grisan, “Spline-based refinement of vessel

contours in fundus retinal images for width estimation,” in ISBI, Apr. 2013.

C. A. Lupascu, D. Tegolo and E. Trucco, “Ensembles of bagged decision trees for mea-
suring retinal vessels using an extended multiresolution Hermite model,” submitted for

publication.

D. Sumukadas, R. Price, G. P. Leese, E. Trucco, M. E. T. McMurdo, “Does the European
Working Group on Sarcopenia in Older People algorithm detect all those vulnerable?,” to

appear in Age and Ageing.

A. J. Cruz-Jentoft, J. P. Baeyens, J. M. Bauer, Y. Boirie, T. Cederholm, F. Landi, F.
C. Martin, J. P. Michel, Y. Rolland, S. M. Schneider, E. Topinkov, M. Vandewoude and
M. Zamboni, “Sarcopenia: European consensus on definition and diagnosis: Report of the
European Working Group on Sarcopenia in Older People,” in Age and Ageing, vol. 39,
issue 4, pp. 412-23, Jul 2010.

M. D. Knudtson, K. E. Lee, L. D. Hubbard, T. Y. Wong, R. Klein and B. E. K. Klein,
“Revised formulas for summarizing retinal vessel diameters,” in Curr. Eye Res, vol. 27, no.

3, pp.143149, 2003.
http://www.mathworks.co.uk /help/matlab/index.html

T.Y. Wong, M. D. Knudtson, R. Klein, B. E. . Klein, S. M. Meuer and L. D. Hubbard,
“Computer-assisted measurement of retinal vessel diameters in the Beaver Dam Eye Study:
methodology, correlation between eyes, and effect of refractive errors,” Ophthalmology, vol.

111, no. 6, pp. 11831190, Jun. 2004.

D. Fiorin and A. Ruggeri, “Computerized analysis of narrow-field ROP images for the
assessment of vessel caliber and tortuosity,” in Engineering in Medicine and Biology Society

EMBC Annual International Conference of the IEEE, pp.2622-2625, 2011.

BIBLIOGRAPHY LI

[17]

[20]

[21]

D. N. Shah, C. M.Wilson, G. S. Ying, K. A. Karp, K. D. Cocker, J. Ng, E. Schulenburg,
A. R. Fielder, M. D. Mills and G. E. Quinn, “Comparison of expert graders to computer-
assisted image analysis of the retina in retinopathy of prematurity,” in British Journal of

Ophthalmology, vol. 95, issue 10, p.144, Oct 2011.

C. G. Owen, A. R. Rudnicka, R. Mullen, S. A. Barman, D. Monekosso, P. H. Whincup,
J. Ng and C. Paterson, “Measuring Retinal Vessel Tortuosity in 10-Year-Old Children:
Validation of the Computer-Assisted Image Analysis of the Retina (CAIAR) Program,” in
IOVS, vol. 50, No. 5, May 2009.

C. G. Owen, T. J. Ellis and E. G. Woodward, “A comparison of manual and automated
methods of measuring conjunctival vessel widths from photographic and digital images,”

in Ophthalmic Physiol Opt., vol. 24, issue 2, pp.74-81, Mar 2004.

B. Al-Diri, A. Hunter, D. Steel and M. Habib, “Manual Measurement of Retinal Bifurcation

)

Features,” in Engineering in Medicine and Biology Society (EMBC) Annual International

Conference of the IEEE, 2010.

E. Trucco, A. Ruggeri, T. Karnowski, L.. Giancardo, E. Chaum, J. P. Hubschman, B. al-Diri,
C. Y. Cheung, D. Wong, M. Abramoff, G. Lim, D. Kumar, P. Burlina, N. M. Bressler, H.
F. Jelinek, F. Meriaudeau, G. Quellec, T. MacGillivray and B. Dhillon, “Validating Retinal
Fundus Image Analysis Algorithms: Issues and a Proposal,” in IOVS, vol. 54, No. 0, May
2013.

