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Introduction

The modern comprehension of renormalization in quantum field theory (QFT) is based on
the Wilsonian approach to the renormalization group (RG) [1, 5]. This treatment develops
the idea that a QFT can be considered as an effective field theory and so that it describes
physics only in a certain range of energies. The behavior of the theory is described by a scale-
dependent Wilsonian effective action which is obtained starting from the bare action defined
at a UV cut-off scale Λ0 and integrating out the field-modes with momentum between Λ0

and a floating cut-off scale Λ, which represents the scale at which the theory is considered.
In such a way the contribution of the integrated modes introduces the dependence on the
floating scale into the Wilsonian effective action, which then describes the behavior of the
theory at the energy scale Λ. Varying Λ from the UV cut-off Λ0 down to the IR regime
provides a flow in the space of the couplings, which represents the RG flow of the theory. In
particular such flow is governed by a differential equation, called Wilson-Polchinski equation
(WPE), which describes the evolution with the energy scale of the Wilsonian effective action
and determines the running of the effective couplings of the theory.

More recently a new way to approach and to make computations (in particular at strong
coupling) in quantum field theory has been provided by the AdS/CFT correspondence
[17–19]. The latter is conjectured as a duality between a conformal field theory (CFT) and
a quantum gravity theory defined on the anti-de Sitter space (AdS). However, in this work
we will employ a more general definition of the duality, which determines the equivalence
between a gravity theory (bulk theory) on a d+ 1-dimensional (asymptotic) AdS space and
a field theory in d-dimensions which in general is non-conformal and hence have a non-trivial
RG flow. Even though this description concerns also the non-conformal case, we will keep
referring to it as the AdS/CFT correspondence.

From the computational point of view, there are two crucial aspects of this correspon-
dence. The first is the fact that the strong coupling regime in the QFT-side corresponds to
the weak coupling regime in the bulk side and viceversa. Moreover, the tree level regime of
the bulk theory corresponds to the large N limit of the dual field theory. These facts have
a fundamental importance because they enable one to study the strongly coupled regime of
quantum field theory and, in particular, the RG flow in terms of the tree level gravity dual.
Hence, in order to develop in detail the Wilsonian RG in this framework, it is important to
study the large N limit of a quantum field theory.
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2 Introduction

The latter is a powerful approximation scheme first developed by ’t Hooft [13]. This
method applies, for example, to theories where fields are N × N matrices. Thanks to the
fact that, when the fields are non-commutative, the interaction vertices of the theory have
an ordered structure, one can associate to each Feynman diagram a unique Riemann surface.
In such a way the N -dependence of every graph is related to the topology of the associated
surface through its genus and the number of boundaries. For this reason, in the regime
where the matrix size N is taken very large, the structure of the theory drastically simplifies
because planar diagrams (graphs with null genus and minimum number of boundaries)
represent the leading contribution, whereas all the other, non-planar, graphs are suppressed
by powers of 1/N .

In this framework one can apply the Wilsonian RG to the matrix theory and obtain the
WPE in planar limit [16]. This equation has an interesting structure because the quantum
term of the ordinary WPE, which is proportional to the second derivative with respect to
the fields, reduces in the large N limit to a term proportional only to the first derivative
and so the planar WPE is a Hamilton-Jacobi type equation. Moreover, one can see that the
latter contains the contribution also of non-planar diagrams, which, thanks to the action
of cut-off scale, are responsible of the production of multi-trace terms along the planar RG
flow.

A Wilsonian RG approach has also been developed within the AdS/CFT correspondence
[30, 31]. This method employs the Wilsonian treatment in the gravity side of the duality and
it is developed exploiting the connection between the radial coordinate of the AdS space and
the energy scale in the field theory side. Therefore one can obtain the Wilsonian effective
action of the dual field theory and its RG equation in terms of the radial evolution of the
bulk theory. In particular, taking the classical limit in the gravity side, one can determine
the planar RG equation, which is a Hamilton-Jacobi type equation in the bulk.

For this reason one can define two different formulations which determine the RG equa-
tion for the Wilsonian effective action of a quantum field theory in the large N limit. The
planar WPE represents the flow equation obtained in the QFT-side and it does not de-
pend on the couplings of the theory, i.e. it holds true in both weak and strong coupling
regime, whereas, in the holographic Wilsonian approach, the planar RG equation is ob-
tained from the bulk side for a strongly coupled field theory. Therefore, by consistency with
the AdS/CFT correspondence, one expects the two formulations to be equivalent. However,
this is not true because, even though both equations are of Hamilton-Jacobi type, planar
WPE is characterized by a cubic hamiltonian whereas that of the holographic one is at least
quadratic.

This is an important structural mismatch, which seems to create a puzzling inconsistency.
However, analyzing in depth the two formulations, we realize that the source of this mismatch
can be attributed to the different definition of the theory in the two approaches. Indeed, in
the WPE formulation the theory is explicitly defined in terms of the elementary fields, so
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that the cut-off scale is precisely defined inside the propagator. Instead, in the holographic
formulation the field theory is described, through the AdS/CFT duality, only in terms of
the composite operators dual to the bulk fields. Hence the implementation of the cut-off at
the level of elementary fields is not understood because no information about the elementary
structure of the theory is given.

We explore these aspects considering two explicit examples. First of all we describe the
RG flow of a QFT which is dual to a free scalar field in the bulk. In holographic Wilsonian
approach, studying the radial evolution of the scalar field in the bulk, we obtain the RG flow
of the dual QFT, which is closed on a single- and a double- trace term. Instead, applying
the WPE formulation to this case, we obtain a RG flow which has an extremely different
structure since it is not closed, as in the holographic case, only on two terms, but it contains
other multi-trace terms generated along the flow.

In the other example, generalizing some calculations already present in the literature
[35–37], we define a different field theory procedure to derive the RG flow of a QFT, which
is determined as a deformation of an abstract CFT defined only through the correlators of
composite operators. From this computation we obtain a RG flow whose structure exactly
matches with that obtained in the holographic treatment.

Therefore, thanks to this analysis, we suggest that the mismatch between the planar WPE
and the RG equation in holographic Wilsonian treatment does not necessarily lead to an
inconsistency, but is due to the different definition of the cut-off in the two formulations. In
the future, a deeper study of the relation between elementary fields an composite operators
would be of great importance in the understanding of this issue and of the nature of the
AdS/CFT correspondence itself.

In chapter 1 we describe the Wilsonian approach to the renormalization group of a
quantum field theory, focusing on the derivation of the Wilson-Polchinski equation and
its features. In chapter 2 we describe the large N limit for general matrix theories and
we derive the planar Wilson-Polchinski equation in the scalar case. In chapter 3 we de-
scribe the AdS/CFT correspondence in its standard definition. In chapter 4 we consider
the AdS/CFT correspondence in the non-conformal regime of the boundary field theory
and we describe the holographic Wilsonian RG approach. In chapter 5 we analyze the
mismatch between the planar Wilson-Polchinski equation and the RG equation obtained
through holographic Wilsonian method.
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CHAPTER 1

Wilsonian Renormalization Group

Renormalization is one of the main aspects of quantum field theory. This procedure was
introduced in the early 50’s to remove the UV divergences arising from loop contributions
to Feynman diagrams. In such a way higher orders in perturbative expansion are well
defined and the theory is able to give more precise results, which are remarkably very
close to experimental ones. This method, which we will call standard renormalization,
implements a redefinition of fields (Φ 7→ ZΦ Φ), masses (m2 7→ m2 + δm2) and couplings
(λ 7→ Zλλ) to introduce in the action some counterterms (δZI = ZΦ,λ−1, δm2), which make
the generating functional finite, removing its divergent part. To do so, such couterterms
have to be divergent as well, but we can however expand them in a formal perturbative
loop counting series (δZI = ∑

k δZ
(k)
I ), in which every term is divergent. In this way we

can use perturbative method and renormalize the theory order by order in loop expansion,
neglecting further terms as if they were smaller than the previous ones. This is deeply
counterintuitive (how can we say that some infinite term is “smaller” than another infinite
one and thus neglect it?) and also apparently meaningless from the physical point of view,
but it perfectly works.

In this framework we can argue that the presence of UV divergences in the bare theory
is due to the integration over all energy scales in the loop momentum. Nevertheless its
physical meaning is still a bit obscure and a deeper understanding will be reached through
further developments.

The concept of renormalizability of a theory, i.e. whether UV divergences can be removed
by the redefinition of a finite number of coupling constants, naturally arises within standard
renormalization. Indeed, considering the superficial degree of divergenceD of a 1PI diagram,
which is the total momentum power in the loop integral, the contribution of such graph is
proportional to

∫
dk kD−1 in the limit of large momenta, thus, if D is negative, the integral

is convergent, otherwise it diverges. Through the analysis of the structure of the diagrams
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6 1. Wilsonian Renormalization Group

(number and type of internal and external legs and vertices) present, for example, in [2], one
can obtain a relation of the type D = f(E, V ), which connects D to the number of external
legs E and vertices V of its related graph by a function f . If the theory contains only
couplings with mass dimension di ≥ 0, one can show from such equation that D decreases
as the number of external legs E grows. Thus there will be a particular value E of E such
that D < 0 for E > E. In such a way, even though one can build an infinite number of
diagrams with the same number of external legs E, they are divergent only if E ≤ E. Since
one can show that a vertex with di ≥ 0 must have ni ≤ E external legs, making a redefinition
of it, one can absorb the divergent part of all diagrams with ni external legs. Therefore, one
can renormalize a theory with all vertices with di ≥ 0, namely absorb the divergent part of
all diagrams, through the redefinition of all its parameters plus the renormalization of the
fields. Since the number of all possible vertices with di ≥ 0 is finite, renormalization requires
a finite number of redefinitions. For this reason such theories are called renormalizable and
they have a very simple form.

On the other hand a coupling with dimension di < 0 is called non-renormalizable. If
a theory contains at least one non-renormalizable coupling it is called non-renormalizable.
Indeed the presence of this type of couplings generates divergences in diagrams with E > E.
These terms can be renormalized only including in the theory other non-renormalizable
vertices, which, in their turn, generates other new divergent terms. The latter require the
introduction of other non-renormalizable vertices as the terms above, so that, in principle,
the theory have to contain all possible non-renormalizable interactions to be fully renor-
malized. In such a way, technically speaking, the theory is renormalizable, but, since the
non-renormalizable couplings are infinitely many, it requires the redefinition of an infinite
number of parameters. For this reason a non-renormalizable theory is far less predictable
than a renormalizable one. Hence, standard renormalization identifies the renormalizable
theory as the best candidate for a fundamental theory of particles. This was confirmed
by the large success of QED and Standard Model (SM), which are renormalizable theories,
but the true reason of such success, as we will see in subsection 1.1.2, is different. Thus
the question of why nature should be described by a renormalizable theory was answered,
through standard renormalization, only at technical level.

Owing to these aspects, initially, renormalization was thought to be just an ad hoc
technical tool to adjust QFT in order to obtain results consistent with experiments, but,
subsequently, this idea has evolved. Indeed the understanding of this method had been
greatly improved during the 70’s and the 80’s. First Wilson developed his approach based
on the effective field theory [1], clarifying why UV divergences are expected to appear in
loop diagrams and answering why at low energies physics is described by renormalizable
theories. Then Polchinski formalized such treatment [5], deriving the exact renormalization
group equation and proving the equivalence with standard renormalization.
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1.1. Wilsonian approach
Wilson’s treatment develops an important statement: field theories describe physics only in
a certain limited range of energies. This is the starting point for a new way of understanding
renormalization, where we can consider a QFT as an effective field theory.

An effective field theory (EFT) is a low-energy approximation of a more fundamental
theory which may or may not be a field theory. It is strongly connected to the energy scale at
which we investigate physics, so that its action can have different behavior at different scales.
Owing to this, the principle of renormalizability loses the fundamental nature it has within
standard renormalization and so, in principle, EFT may contain all non-renormalizable
terms compatible with symmetries.

A process occurring at a certain energy accessible by EFT is influenced by the behavior
of the theory at higher energies. Indeed it receives, at quantum level, UV contributions from
the propagation of virtual quanta in loop integrals. Thus, since EFT provides physically
relevant results in a low-energy regime where the process occurs, it has to contain such
UV contributions in its action. In order to compute these corrections and so to describe
the behavior of EFT at the energy of the process, Wilson thought of integrating out the
contribution of the functional integral corresponding to energies higher than the one of the
process. In such a way we obtain the action of the EFT defined precisely at the desired
energy scale, so that it already contains the UV effects. Hence, applying this new approach
to QFT, we can study how high-energy virtual quanta give contribution to lower energy
processes.

To do so, consider a QFT as a theory with physical UV cut-off Λ0. For energies above
Λ0 physics is described by an other theory (string theory, another QFT, . . . ), which is
assumed to be fundamental, while below Λ0 it is represented by a general (bare) action S0

which contains in principle all possible interaction terms compatible with the symmetries
of the theory. Now it is worth studying the behavior of the theory for energies E � Λ0.
Indeed, even though in general Λ0 is not specified (it could be of the order of GeV as well
as of the Planck mass), in many interesting cases it is far greater than energies accessible
by experiments (for example the GUT scale MGUT ∼ 1016 GeV), thus a comparison with
experimental results makes sense if done with the effective behavior of QFT at low energies,
i.e. E � Λ0.

At this point we start considering the functional integral of a theory of a real scalar field
φ in Euclidean d-dimensional space-time:

Z[J ] =
∫
Dφ e−S0[φ]+

∫
Jφ, (1.1.1)

where J is the source. The information about the UV cut-off Λ0 has to be included in Z[J ].
There are two equivalent methods to do so and both will be used in this chapter.



8 1. Wilsonian Renormalization Group

The first way introduces Λ0 directly in the functional measure Dφ. Indeed, in the path
integral formulation, every different momentum field-mode1 φk is an independent integration
variable, thus the functional measure can be written as Dφ = ∏

k dφk. Hence we introduce
the cut-off to cut the modes with momentum larger than Λ0, so that:

Dφ|Λ0
:=

∏
|k|<Λ0

dφk,

which is the truncated functional measure, while:

Z[J ] =
∫
Dφ|Λ0

e−S0[φ]+
∫
Jφ, (1.1.2)

which is the regulated functional integral.
The second way introduces the cut-off scale through the propagator, defining the latter

as:
PΛ0(k) = K(k2/Λ2

0)
(k2 +m2) , (1.1.3)

where K is a C∞ function which is equal to 1 for k2 < Λ2
0 while vanishes very rapidly for

k2 > Λ2
0. In such a way, for momenta higher than Λ0, the propagator becomes negligible,

then the correspondent field-modes are non-propagating. Introducing a bracket notation
defined as:

〈f, g〉 :=
∫

ddk

(2π)d f(k)g(−k),

for every arbitrary functions on the momentum space f , g, the kinetic term (KT) becomes:

KT = 1
2

∫
ddk

(2π)d φk P
−1
Λ0

(k)φ−k = 1
2
〈
φP−1

Λ0
, φ
〉
. (1.1.4)

Hence, in the functional integral, field modes with momentum greater than Λ0 are exponen-
tially suppressed2. This approach is equivalent to the previous one, where we introduced the
cut-off in the functional measure, but it is more useful for explicit calculations. As already
said, in this chapter we will use both of them, depending on where one is more useful than
the other.

Once defined the functional integral for a theory with UV cut-off, we focus on low energies
considering a scale ΛR � Λ0 which is assumed to be the greatest energy scale at which we
can make experiments. In such a way the external source is set to be:

Jk = 0 for |k| > ΛR. (1.1.5)

In this approach the regulated functional integral suggests a way to investigate the influence
of UV fluctuations of the fields on the behavior of the theory. Indeed, since the functional

1Obtained from the Fourier transform of φ(x).
2Indeed Z ∼ exp (−P−1

Λ0
φ2), therefore for momenta over Λ0 the exponent goes to −∞ and the exponential

vanishes.
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measure is the product of field-mode differentials at every momentum value, we can think
of performing the integration over field-modes of momentum greater than a certain energy
scale Λ ≤ Λ0. The term arising from this computation modifies the original bare action
introducing corrections depending on the parameter Λ into the couplings. Therefore this
procedure actually lowers the cut-off from Λ0 to Λ, including the contributions of UV modes
directly in the action. In this picture Λ is a floating cut-off which represents the energy scale
at which we are considering the theory. The latter is described by a scale-dependent effective
action, thus its behavior depends on the energy at which we are evaluating the observables.
This is due to the fact that the UV fluctuations give a precise and computable contribution
to processes of lower energy.

An instructive implementation of this procedure can be done in the general real scalar
theory introduced before. The functional integral with the cut-off defined in the measure
can be written as:

Z[J ] =
∫
Dφ|Λ0

e−
1
2〈φP−1,φ〉−S(0)

int [φ]+〈J,φ〉, (1.1.6)

where P (k) = (k2+m2)−1 is the propagator of the scalar field and S(0)
int is the bare interaction

term at Λ0. Now, considering the floating cut-off Λ ∈ [ΛR,Λ0], which represents the energy
scale where the theory is considered, we can write φ = φH + φL, with:

φHk =

φk for Λ < k ≤ Λ0

0 otherwise
φLk =

φk for k < Λ

0 otherwise
. (1.1.7)

Thus φL is the low-energy part of the field, while φH is the high-energy one. In order to
integrate out φH-modes we can write:

Z[J ] =
∫
DφHDφL e

− 1
2〈(φH+φL)P−1,φH+φL〉−S(0)

int [φH+φL]+〈J,φH+φL〉

=
∫
DφL e

− 1
2〈φL P−1,φL〉+〈J,φL〉

∫
DφH e

− 1
2〈φH P−1,φH〉−S(0)

int [φH+φL],
(1.1.8)

where 〈J, φH〉 = 0 by definition. The integral over φH represents contribution to the func-
tional integral of the theory for energies higher than Λ. Performing it, we obtain a functional
of the field-modes φL, which is a new interaction term replacing S(0)

int, where bare parameters
have been modified by Λ-dependent corrections, creating effective couplings. We call such
functional Wilsonian action SΛ

int, which reads:

e−S
Λ
int[φL] =

∫
DφH e

− 1
2〈φH P−1,φH〉−S(0)

int [φH+φL]. (1.1.9)

The sum of the Wilsonian action with the kinetic term of the low-energy field forms the
effective action SΛ

eff of the theory at the scale Λ, so that:

Z[J ] =
∫
Dφ|Λ e−

1
2〈φP−1,φ〉−SΛ

int[φ]+〈J,φ〉 =
∫
Dφ|Λ e−S

Λ
eff[φ]+〈J,φ〉, (1.1.10)
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where we replaced φL with φ and DφL with Dφ|Λ. This procedure shows that a QFT is
described by its bare action S0 only at the cut-off energy Λ0, whereas at another energy scale
Λ < Λ0 it is represented by the effective action SΛ

eff, which contains corrections coming from
the high-energy fluctuations3 of the fields. Varying the parameter Λ we obtain the effective
action at different energies, so that, of course, we have SΛ

eff 7→ S0 for Λ 7→ Λ0. Hence the pro-
cedure described above produces a trajectory (or flow) of equivalent effective actions which
describe the same theory at different energies. This is called Wilsonian Renormalization
Group flow (WRG) and provides a new method of renormalization.

At this stage, the computation of correlation functions for a theory described by a bare
action S0 can be done using WRG. If their momenta are of the order of ΛR, i.e. very small
with respect to the cut-off scale, we have to compute such functions using the effective action
obtained from S0 by the integration down to ΛR and perform loop integrals up to this scale.
Indeed high-energy effects are already contained in the effective action and their corrections
to correlation functions are introduced slowly within perturbation theory and without any
divergence.

This method not only allows us to perform computations for renormalizable theories,
but also for non-renormalizable ones. Hence it seems to provide a recipe wider than the one
of standard renormalization. On the contrary, thanks to a deeper analysis, one can show
that WRG is equivalent to the latter, even though it provides a wider comprehension of the
renormalization method, as we will see in subsection 1.1.2.

1.1.1. Example: the φ4 theory

To make these concepts more clear we study WRG in a simple example: the φ4 theory in
four space-time dimensions. Consider the bare action at the cut-off scale:

S0 =
∫
d4x

(1
2(∂φ)2 + 1

2m
2φ2 + λ

4!φ
4
)
, (1.1.11)

where φ is a real scalar field, whereas m2 and λ are bare parameters.
Set J = 0 for simplicity and split the field into φH and φL:

Z =
∫
DφHDφL e

−
∫
d4x
[

1
2 (∂φL+∂φH)2+ 1

2m
2(φL+φH)2+ λ

4! (φH+φL)4
]

=
∫
DφL e

−S0[φL]
∫
DφH exp

(
−
∫
d4x

[1
2(∂φH)2 + 1

2m
2φ2

H

+ λ

4!
(
φ4
H + 4φ3

LφH + 4φLφ
3
H + 6φ2

Lφ
2
H

)])
,

(1.1.12)

3when we refer to high-energy fluctuations we mean those associated to the modes of momentum larger
than the scale we are considering.
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where the term
∫
d4x ∂φH∂φL does not appear because in momentum space it becomes∫

d4k k2φHkφL−k and so φHkφL−k = 0 by definition (1.1.7).
Now we have to integrate out φH of the functional integral, in order to obtain the effective

action SΛ
eff. We can consider the parameter λ small and use the perturbative method on it.

Then we expand its exponential term and evaluate its contributions using Wick’s theorem,
as showed in [4] and [12]. Thus the part of the action involving φH, whose exponential is
not expanded, is:

∫
L0 = 1

2

∫
d4x

[
(∂φH)2 +m2φ2

H

]
= 1

2

∫
Λ≤|k|<Λ0

d4k

(2π)4 (k2 +m2)φHkφH−k, (1.1.13)

so that we can evaluate the correlation functions of high-energy modes using:

〈
φHkφHp

〉
0

= NH

∫
DφH φHkφHp e

−
∫
L0 = Θ̂(k)

k2 +m2 (2π)4δ4(k + p), (1.1.14)

where Θ̂(k) is a Heaviside-like function which is 1 for Λ < |k| ≤ Λ0 and vanishes elsewhere,
whereas:

N−1
H =

∫
DφH e

−
∫
L0 , (1.1.15)

which is the normalization. Furthermore the exponential of the remaining part of the action
is expanded in Taylor series:

∫
DφH

[
1− λ

4!

∫
d4x

(
φ4
H + 4φ3

LφH + 4φLφ
3
H + 6φ2

Lφ
2
H

)
+O(λ2)

]
e−
∫
L0 , (1.1.16)

and we can evaluate its behavior focusing on the contribution of single terms in the expan-
sion. Let us start with the first order term φ2

Lφ
2
H, which gives the contribution:

− λ

4NH

∫
d4xφ2

L(x) 〈φH(x)φH(x)〉0 , (1.1.17)

where NH is the normalization term which can be absorbed in the definition of the functional
measure. Henceforth it will be neglected, so we can focus only on the computation of
correlation functions.

The contribution (1.1.17) has a simple and clear diagrammatic description. We represent
the propagator of high-energy modes with a double line and the low-energy field φL with
the usual single line:

〈φH(x)φH(y)〉0 = x y (1.1.18)

φL(x) = x (1.1.19)
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In such a way, (1.1.17) can be represented as:

− λ

4

∫
d4xφ2

L(x) 〈φH(x)φH(x)〉0 = −λ4 x
(1.1.20)

where the internal line forms a loop because 〈φH(x)φH(x)〉0 is evaluated at the same space-
time point and it contains the integration on the high-energy range because it concerns only
the UV field-modes φH, so:

= 〈φH(x)φH(x)〉0 =
∫

d4k

(2π)4
Θ̂(k)

k2 +m2

= 1
16π2

[
(Λ2

0 − Λ2)−m2 log
(Λ2

0 +m2

Λ2 +m2

)]
.

(1.1.21)

The explicit calculation of this integral, as well as of all the other relevant loop integrals we
are dealing with in this chapter is performed in appendix A.

Therefore, since 〈φH(x)φH(x)〉0 does not depend on x, we have:

− λ

4 x
= −µ

2

2

∫
d4xφ2

L(x) = −µ
2

2

∫
d4k

(2π)4 φLkφL−k, (1.1.22)

where:
µ2 = λ

32π2

[
(Λ2

0 − Λ2)−m2 log
(Λ2

0 +m2

Λ2 +m2

)]
, (1.1.23)

which, as we are going to show, is a correction to the mass term of S0 generated by the
high-energy fluctuations of the field coming from φ2

Lφ
2
H. Indeed, evaluating the second order

correction arising from the same term:

∫
DφH

(
λ2

32

∫
d4x d4y φ2

L(x)φ2
L(y)φ2

H(x)φ2
H(y)

)
e−
∫
L0 , (1.1.24)

we have two contributions:

λ2

32

∫
d4x d4y φ2

L(x)φ2
L(y) 〈φH(x)φH(x)〉0 〈φH(y)φH(y)〉0 (1.1.25)

λ2

16

∫
d4x d4y φ2

L(x)φ2
L(y) 〈φH(x)φH(y)〉0

2, (1.1.26)

The term (1.1.25) is associated to the disconnected diagram:

x

×
y

(1.1.27)
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which is the product of two connected diagrams (1.1.22), so it gives a contribution propor-
tional to µ4. Considering the third order correction arising from the same term, i.e. φ2

Lφ
2
H,

we have, among all terms, a product of three diagrams (1.1.22). Going on to further orders
we have the same behavior, therefore the sum of all these terms produces the exponential
series, so that the action S0 is modified with the term (1.1.22) to produce a Λ-dependent
effective action:

SΛ
eff =

∫
d4x

(1
2(∂φ)2 + 1

2(m2 + µ2)φ2 + λ

4! φ
4 + · · ·

)
. (1.1.28)

The mass correction µ2 in (1.1.23) introduces the dependence on the energy scale in the
mass parameter. In such a way the effective mass M2 := m2 + µ2 at the scale Λ is:

M2 = m2 + λ

32π2

[
(Λ2

0 − Λ2)−m2 log
(Λ2

0 +m2

Λ2 +m2

)]
. (1.1.29)

If we take Λ 7→ Λ0, the contribution µ2 vanishes, so that M2 7→ m2 and the effective action
reduces to S0. Moreover, since we are mainly interested in cases where the cut-off scale Λ0 is
very high, it is worth determining the leading behavior ofM2 in the regime where m2 � Λ2

0.
Thus we have µ2 ∼ λ(Λ2

0 − Λ2), so that:

M2 ∼ m2 + λ

32π2
(
Λ2

0 − Λ2). (1.1.30)

Now, being m2 = m2/Λ2
0 the dimensionless bare mass, we can define the dimensionless

effective mass at the scale Λ as M2 := M2/Λ2. Thus its behavior is:

M
2(Λ/Λ0

)
∼
(
m2 + λ

32π2

)(Λ0
Λ

)2
− λ

32π2 . (1.1.31)

This shows that M2 scales as (Λ0/Λ)2, so it becomes increasingly important at low energies
(when Λ 7→ 0) and, sending Λ0 7→ +∞, it reproduces the renormalization of the mass
provided by standard renormalization [4].

The contribution (1.1.26) is a non-local term associated to the connected diagram:

x y (1.1.32)

Many non-local terms associated to connected diagrams, like (1.1.26), are produced when we
consider orders beyond the first in the expansion of the functional integral over φH (1.1.16).
If we try to evaluate them in order to obtain their correction to S0 we have to face the
problem of integration over different space-time coordinates. Such integrals are not easily
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computable and, most importantly, contain products of the field φL evaluated at different
points, which cannot appear as corrections of a local bare action like S0. To overcome this
problem we can expand the non-local terms in a series of infinite local contributions with
growing number of derivatives of the field. In such a way the corrections arising from them
can be included in the action as an infinite number of derivative interactions. Let us explain
more explicitly this method, considering the contribution (1.1.26) and its corresponding
diagram (1.1.32).

The field φL(y) can be expanded in Taylor series around y = x:

φL(y) = φL(x) + ∂µφL(x)(y − x)µ + · · · , (1.1.33)

where ∂µ = ∂/∂xµ, so that:

φ2
L(y) = φ2

L(x) + 2φL(x)∂µφL(x)(y − x)µ + · · · . (1.1.34)

Now, calling w = y−x, the correlator 〈φH(x)φH(y)〉0 can be expressed as 〈φH(0)φH(w)〉0 for
invariance under translations, so (1.1.26) becomes:

λ2

16

∫
d4x d4wφ2

L(x)
(
φ2
L(x) + 2φL(x)∂µφL(x)wµ + · · ·

)
〈φH(0)φH(w)〉0

2. (1.1.35)

This expansion produces an infinite number of local terms with growing number of deriva-
tives, that can be written as:

− ζ

4!

∫
d4xφ4

L −
Aµ

4!

∫
d4xφ3

L∂µφL −
Bµν

4!

∫
d4xφ2

L∂µφL∂νφL + · · · , (1.1.36)

where ζ, A, B, . . . are UV corrections to S0 proportional to λ2 coming from the integrals
over w in (1.1.35). Indeed, considering corrections of order higher than that of (1.1.26), we
can reconstruct the exponential series of such terms, as we did for (1.1.22), so that (1.1.36)
rises to the exponent and represents a new one-loop correction to S0, coming from (1.1.32):

SΛ
eff =

∫
d4x

(1
2(∂φ)2+m2 + µ2

2 φ2+λ+ ζ

4! φ4+Aµ

4! φ
3∂µφ+Bµν

4! φ
2∂µφ∂νφ+· · ·

)
. (1.1.37)

This is an important fact because SΛ
eff now contains a series of non-renormalizable derivative

interactions which are not present in the bare action at Λ0.
Before analyzing the consequences of the presence of such new terms in the effective

action, let us first focus on the first term in (1.1.36). It is a second order correction to the
φ4 vertex and it reads:

ζ

4!

∫
d4xφ4

L(x) = −λ
2

16

∫
d4xφ4

L(x)
∫
d4w 〈φH(0)φH(w)〉0

2, (1.1.38)
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where:

ζ = −3
2 λ

2
∫
d4w 〈φH(0)φH(w)〉0

2 = −3
2 λ

2
∫

d4k

(2π)4
Θ̂(k)

(k2 +m2)2 . (1.1.39)

Evaluating the integral (see appendix A for more details) one obtains:

ζ = − 3λ2

32π2

[
log

(Λ2
0 +m2

Λ2 +m2

)
+m2

( 1
Λ2

0 +m2 −
1

Λ2 +m2

)]
, (1.1.40)

which is the UV correction to the coupling λ, so it provides the dependence on the energy
scale of such parameter. Considering Λ 7→ Λ0 we must have back the bare coupling λ, indeed
we have ζ 7→ 0. Moreover, considering the bare mass much lower than the cut-off m� Λ0,
as we did for µ2, the leading behavior of ζ is:

ζ ∼ 3λ2

16π2 log
( Λ

Λ0

)
, (1.1.41)

thus the total coupling evaluated at Λ reads:

λ(Λ/Λ0) := λ+ ζ ' λ
[
1 + 3λ

16π2 log
( Λ

Λ0

)]
. (1.1.42)

This relation is exactly the order λ2 expansion of the running of λ calculated through the
standard RG treatment [3, 4]:

λ(Λ/Λ0) = λ

1− 3λ
16π2 log

( Λ
Λ0

) = λ

[
1 + 3λ

16π2 log
( Λ

Λ0

)]
+O(λ3), (1.1.43)

which stresses that WRG provides the same results for the scaling of renormalizable cou-
plings as the standard RG treatment provided by Callan-Symanzik equation.

Hence WRG and standard renormalization give the same results for the renormalization
of the mass parameter and the φ4 coupling constant. The crucial difference stands in the
fact that the effective action in WRG contains non-renormalizable interactions appearing
along the RG flow.

Indeed we have seen, in (1.1.37), that the UV contribution coming from (1.1.32) not only
produces the correction to the φ4 vertex (1.1.38), but also a series of derivative interactions
of four fields. Even though such terms are not present in the bare action, they arise along
the flow influencing physical processes at lower energies.

Considering the behavior of these derivative vertices, one can note that Aµ = 0 because,
being it a four-vector, it would have introduced some privileged direction which breaks
the invariance under rotations. Moreover, considering the double derivative term, we have
that Bµν = δµνB(Λ,Λ0) because it is a symmetric rank 2 tensor depending only on scalar
parameters Λ and Λ0, thus it has to be proportional to the only invariant symmetric rank
2 tensor, which in Euclidean signature is δµν . In such a way, for dimensional reasons its
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behavior in the regime where Λ2
0,Λ2 � m2 is:

B(Λ,Λ0) ∼ λ2
( 1

Λ2
0
− 1

Λ2

)
. (1.1.44)

Going on with further derivative terms one obtains similar results and so this means that
the dimensionless parameters associated to such couplings scale as some positive power of
Λ/Λ0 depending on their mass dimension, so they are suppressed with respect to λ in the
low-energy regime.

In addition to these derivative terms introduced by (1.1.32), other non-renormalizable
interactions are produced by terms different from φ2

Lφ
2
H in (1.1.16). For instance, consider

φ3
LφH, its second order expansion reads:

λ2

72

∫
d4x d4y φ3

L(x)φ3
L(y) 〈φH(x)φH(y)〉0 , (1.1.45)

which is associated to the diagram:

(1.1.46)

This contribution produces interactions of six fields, so that the first term in the Taylor
expansion of φ3

L(y) around y = x gives rise to a φ6 vertex, whereas further orders generate
derivative interactions.

Since (1.1.46) is a tree level diagram, it does not contain loop integrals. For this reason
it is useful to write it in momentum space:

λ2

72

∫
d4k

(2π)4
d4k′

(2π)4
d4p

(2π)4
d4p′

(2π)4
d4p′′

(2π)4
Θ̂(p+ p′ + p′′)

(p+ p′ + p′′)2 +m2×

× φLkφLk′φLpφLp′φLp′′φL−k−k′−p−p′−p′′ .

(1.1.47)

Such contribution depends on a parameter η of order λ2, which reads:

η = λ2

72
Θ̂(p+ p′ + p′′)

(p+ p′ + p′′)2 +m2 (1.1.48)

where p, p′, p′′ are external momenta of (1.1.46). Hence this term depends on whether the
transferred momentum p+p′+p′′ in (1.1.46) is greater than Λ. Thus, since the external legs
in such graph represent the field φL, their momentum is always lower than Λ by definition
(1.1.7). Therefore the parameter η is vanishing.
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For this reason we have to study other terms producing vertices with six fields. Consid-
ering the third order expansion of the term φ2

Lφ
2
H in (1.1.16), we have:

− λ3

384

∫
d4x d4y d4z φ2

L(x)φ2
L(y)φ2

L(z)
〈
φ2
H(x)φ2

H(y)φ2
H(z)

〉
0
. (1.1.49)

Expanding the correlator usingWick’s theorem we have that the only contribution associated
to a connected diagram is 8 〈φH(x)φH(y)〉0 〈φH(y)φH(z)〉0 〈φH(z)φH(x)〉0, which gives:

(1.1.50)

This diagram produces interaction terms of six fields, so that, considering only the first term
in the Taylor expansions of φ2

L(y) and φ2
L(z) around y = x, we have:

− λ3

48

∫
d4xφ6

L(x)
∫
d4y d4z 〈φH(x)φH(y)〉0 〈φH(y)φH(z)〉0 〈φH(z)φH(x)〉0 , (1.1.51)

which corresponds to a φ6 vertex:

ξ

6!

∫
d4xφ6

L(x), (1.1.52)

where the coupling is:

ξ

6! = −λ
3

48

∫
d4y d4z 〈φH(x)φH(y)〉0 〈φH(y)φH(z)〉0 〈φH(z)φH(x)〉0

= −λ
3

48

∫
d4k

(2π)4
Θ̂(k)

(k2 +m2)3 ,

(1.1.53)

so that, evaluating the momentum integral (see appendix A), we have:

ξ = 15λ3

16π2

[ 1
Λ2

0 +m2 −
1

Λ2 +m2 −
m2

2

( 1
(Λ2

0 +m2)2 −
1

(Λ2 +m2)2

)]
. (1.1.54)

The leading behavior of ξ for Λ2
0 � m2 and also Λ2 � m2 is ξ ∼ λ3(1/Λ2

0− 1/Λ2). Defining
the dimensionless parameter ξ := ξΛ2, we have that:

ξ
(Λ/Λ0

)
∼ 15λ3

16π2

[( Λ
Λ0

)2
− 1

]
. (1.1.55)

This shows that at low energies also this term is suppressed with respect to λ and, since
one can see that, as for (1.1.32), derivative terms are suppressed with respect to ξ of some
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positive power of Λ/Λ0, also such terms are suppressed in the low-energy regime.
The production of these new interaction terms stresses that UV contributions of in-

tegrated modes generates all possible interaction terms along the RG flow, even though
starting from a renormalizable bare action. This is one of the reasons why we can assert
that a QFT at the cut-off scale contains all possible interaction terms.

Furthermore, this picture states that the UV corrections to the bare action coming from
WRG can be seen as the sum of all connected diagrams of the bare theory in the interval
of energies [Λ,Λ0]:

SΛ
eff =

∫
d4x

[1
2(∂φ)2 + 1

2m
2φ2 + λ

4!φ
4 +

(
+ + + · · ·

)]
. (1.1.56)

This being true, one can see that, even though along the RG flow non-renormalizable terms
are generated, at low energies the theory behaves as a renormalizable φ4 theory because all
new interactions are suppressed with respect to the mass term and the φ4 vertex.

In the next subsection, we will show that, starting from a general bare theory at Λ0,
all non-renormalizable interactions are completely negligible at energies much lower than
Λ0, so that in such regime the theory behaves as a renormalizable one. In this sense the
importance of renormalizability within WRG is restored.

1.1.2. WRG and the concept of renormalizability

In the beginning of the section 1.1 we stated that, at the scale Λ0, QFT is described by a
general bare action with all possible interactions, dropping any issue about renormalizability.
Then we saw that along the RG flow the action is modified becoming scale-dependent, so
that at low energies its behavior is different from that at high energies. This provides,
through WRG, a new way of understanding and using renormalization.

In this picture calculations can be made even though the bare action is non-renormalizable,
and this is possible because we made use of the concept of effective field theory. So one is
driven to ask: why among all possible theories only renormalizable ones describe nature?
The answer come from a simple analysis, explained, for example, in [2] and [4].

Consider an operator Oi of mass dimension di which represents an interaction term of
a d-dimensional bare theory defined at Λ0. Its coupling g(0)

i has dimension d − di, thus it
can be written as a dimensionless parameter g(0)

i multiplied by the factor Λd−di0 . Proceeding
along the RG flow g(0)

i receives UV corrections coming from high energy fluctuations, thus
it becomes a scale dependent effective coupling gi(Λ; Λ0). Like for the bare couplings, we
can write gi(Λ; Λ0) as the dimensionless effective coupling gi(Λ/Λ0) multiplied by Λd−di .
Considering physical processes occurring at energies much lower than the UV cut-off, i.e. of
the order of ΛR � Λ0, the contribution coming from Oi produces a term proportional to
g(0)
i Λd−di0 . The strength of such contribution is determined by

∫
ddxOi and, since the energy
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of the process is of order ΛR, by dimensional analysis we have:∫
ddxOi ∼ Λdi−dR .

This means that the effect of the interaction Oi on low-energy processes produces a contri-
bution proportional to (ΛR/Λ0)di−d.

If Oi is a non-renormalizable operator with di > d, we have that the its contribution is
suppressed by a factor ΛR/Λ0 to a positive power and so it is completely negligible. For
this reason the presence of non-renormalizable terms in the theory at the scale Λ0 or, in
general, at a scale Λ still much greater than ΛR, has no effect on the behavior of physics at
low energies.

This argument is very powerful because within a particle theory, such as the standard
model, we can reasonably think that the cut-off scale Λ0 is very high, for example of the order
of the GUT scale or the Planck mass, so that the typical energy scale of the experiments in
small compared to Λ0. Then all experimental tests obviously reveal processes arising from
renormalizable interactions only.

Moreover, studying the evolution of renormalizable and non-renormalizable couplings
along the RG flow in the regime where couplings remain sufficiently small, a deeper analysis
can be done. In this work we do not explicitly perform such analysis, provided by Polchinski
in [5], but we just outline the main aspects. The first one is that the effective action evolved
from the bare action defined at Λ0 is equivalent, at low energies, to a renormalizable ac-
tion. In particular, starting with a theory defined at Λ0 by an initial surface on the space
of parameters determined by the set of bare couplings g(0)

i , the evolution along the RG
flow necessarily reaches at low energies Λ � Λ0 a stable IR surface parameterized only by
renormalizable couplings, which is independent on both Λ0 and the initial surface. Here
non-renormalizable couplings are functions of the renormalizable ones, with the behavior
(Λ/Λ0)di−d � 1, hence their influence is highly suppressed. Taking Λ0 7→ +∞ and keeping
fixed the IR surface, non-renormalizable couplings reach a limit where they are strongly sup-
pressed by negative powers of Λ0. For this reason the Wilsonian treatment is connected with
the concept of renormalizability, providing the identification between WRG and standard
renormalization.

All these arguments stress that, whatever the explicit form of the action at Λ0 is, a theory
behaves as a renormalizable theory at low energies Λ � Λ0. This explain why one expects
the nature to be described by a renormalizable theory.

1.2. Wilson-Polchinski RG equation
In the previous section we have seen that WRG describes a flow of equivalent scale-dependent
effective actions. This trajectory in the space of parameters is obtained from the functional
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integral integrating out modes of momentum larger than the scale Λ. Since the latter is
introduced in Z to express a change of functional variables in order to write it in terms of
the effective action, such functional is independent of Λ. This fact implies that the effective
action has to produce, at every energy, the same scale-independent functional integral. This
requires that such actions satisfy a constraint in the form of a differential equation, which
describes their evolution along the flow. We can derive this equation imposing that ∂ΛZ = 0.
This consists in the differential formalization of the WRG developed in [5] by Polchinski.
See also [6] and [7] for further discussions.

To be more explicit, consider the scalar theory introduced above. This time the functional
integral Z is expressed with the cut-off defined in the propagator:

Z[J ] =
∫
Dφ e

− 1
2

〈
φP−1

Λ0
,φ

〉
−S(0)

int [φ]+〈J,φ〉
=
∫
Dφ e−S0[φ]+〈J,φ〉. (1.2.1)

When considering the integration of high-energy modes of the field, even the part of the
propagator with momentum between Λ and Λ0 is integrated, thus its contribution is included
in the Wilsonian action SΛ

int and the kinetic term propagates only up to Λ:

Z[J ] =
∫
Dφ e−

1
2〈φP−1

Λ , φ〉−SΛ
int[φ]+〈J, φ〉 =

∫
Dφ e−SΛ

eff[φ]+〈J, φ〉. (1.2.2)

Therefore the effective action can be written as:

SΛ
eff[φ] := 1

2
〈
φP−1

Λ , φ
〉

+ SΛ
int[φ], (1.2.3)

where PΛ is the propagator with the cut-off scale lowered to Λ. So it is convenient to
derive the evolution equation for SΛ

int instead of SΛ
eff. To do so consider the derivative of the

functional integral with respect to Λ, which, as already said, has to be vanishing:

0 = Λ∂ΛZ =
∫
Dφ

[
−1

2Λ∂Λ
〈
φP−1

Λ , φ
〉
− Λ∂ΛS

Λ
int

]
e−S

Λ
eff+〈J, φ〉 (1.2.4)

Instead of performing calculations to obtain the desired equation, Polchinski guessed that
the derivative of SΛ

int is:

Λ∂ΛS
Λ
int = 1

2

∫
ddk(2π)dΛ∂ΛPΛ(k)

[
δSΛ

int
δφk

δSΛ
int

δφ−k
− δ2SΛ

int
δφk δφ−k

]
. (1.2.5)

Substituting this equation in (1.2.4), we must prove that:

1
2

∫
ddk(2π)dΛ∂ΛPΛ

∫
Dφ
[
− 1

(2π)2dP
−2
Λ φk φ−k

+ δSΛ
int

δφk

δSΛ
int

δφ−k
− δ2SΛ

int
δφk δφ−k

]
e−S

Λ
eff+〈J, φ〉 = 0.

(1.2.6)
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To prove the identity above we can start by expressing the derivative of SΛ
int in terms of the

whole effective action:
δSΛ

int
δφk

= δSΛ
eff

δφk
− 1

(2π)dP
−1
Λ φ−k, (1.2.7)

so that:

δ2SΛ
int

δφk δφ−k
= δ2SΛ

eff
δφk δφ−k

− 1
(2π)d

δ(P−1
Λ φ−k)
δφ−k

, (1.2.8)

δSΛ
int

δφk

δSΛ
int

δφ−k
= δSΛ

eff
δφk

δSΛ
eff

δφ−k
+ 1

(2π)2dP
−2
Λ φk φ−k −

2
(2π)dP

−1
Λ φ−k

δSΛ
eff

δφ−k
. (1.2.9)

Owing to the presence of the momentum integral in (1.2.6), some terms in (1.2.9) have been
regrouped sending k 7→ −k.

Now, using these relations, (1.2.6) becomes:

1
2

∫
ddk(2π)dΛ∂ΛPΛ

∫
Dφ
[
δ2e−S

Λ
eff

δφk δφ−k
+ 2

(2π)d
δ
(
P−1

Λ φ−k e
−SΛ

eff
)

δφ−k

− 1
(2π)d

δ(P−1
Λ φ−k)
δφ−k

e−S
Λ
eff

]
e〈J, φ〉 = 0,

(1.2.10)

where we have regrouped some terms, such as:

(
δSΛ

eff
δφk

δSΛ
eff

δφ−k
− δ2SΛ

eff
δφk δφ−k

)
e−S

Λ
eff = δ2e−S

Λ
eff

δφk δφ−k
, (1.2.11)( 1

(2π)d
δ(P−1

Λ φ−k)
δφ−k

− 2
(2π)dP

−1
Λ φ−k

δSΛ
eff

δφ−k

)
e−S

Λ
eff

= 2
(2π)d

δ
(
P−1

Λ φ−k e
−SΛ

eff
)

δφ−k
− 1

(2π)d
δ(P−1

Λ φ−k)
δφ−k

e−S
Λ
eff .

(1.2.12)

At this point, the last term in the integrand of (1.2.10) is field-independent, thus it can
be reabsorbed by a redefinition of the functional measure. Therefore such equation can be
written as:

1
2

∫
ddk(2π)dΛ∂ΛPΛ

∫
Dφ δ

δφ−k

[(
δ

δφk
+ 2

(2π)dP
−1
Λ φ−k

)
e−S

Λ
eff

]
e 〈J, φ〉 = 0, (1.2.13)

where the exponential of the source term can be included in the functional derivative because
it does not give any contribution. Indeed the result of its derivation is proportional to J
and we immediately realize that the product Λ∂ΛPΛ(k) × J(k) vanishes4. Hence we have
the functional integral of a functional derivative with respect to the same argument, which
is zero by definition. This proves (1.2.6), hence the Wilsonian action satisfies the evolution
equation:

Λ∂ΛS
Λ
int = 1

2

∫
ddk(2π)dΛ∂ΛPΛ(k)

[
δSΛ

int
δφk

δSΛ
int

δφ−k
− δ2SΛ

int
δφk δφ−k

]
, (1.2.14)

4∂ΛPΛ is different from zero only for |k| > Λ, while J vanishes for momenta over ΛR.
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which is called Wilson-Polchinski RG equation (WPE). Its solution, with initial condition
SΛ0
int = S(0)

int, provides the evolution of the Wilsonian action along the RG flow. In such a way
we can know the behavior of the theory at all the energy scale. Moreover, we can expand
SΛ
int in power series of the field, so that, deriving the RG equations for the couplings, we can

determine their evolution with the energy scale, i.e. their running. This is very powerful and
useful, in particular, to prove the renormalizability of a theory by the derivation of its UV
limit (Λ0 7→ ∞), as showed by Polchinski in [5] and also discussed, for example, in [8–12].

1.2.1. Wilsonian action and the generating functional

The Wilsonian action SΛ
int arises from the functional integration over high-energy modes of

the bare interaction term and also over the high-momentum part (between the scales Λ and
Λ0) of the kinetic term. Thus we can write it as:

e−S
Λ
int[φ] =

∫
Dφ̃ e

− 1
2

〈
φ̃ P

Λ0
Λ
−1
, φ̃

〉
−S(0)

int [φ̃+φ]
, (1.2.15)

where:
PΛ0

Λ (k) := K(k2/Λ2
0)−K(k2/Λ2)
k2 +m2 , (1.2.16)

which is the propagator with a double cut-off, which selects propagating modes only in the
interval of energies [Λ,Λ0].

This way of writing SΛ
int through PΛ0

Λ is equivalent to the definition with the cut-off in
the functional measure expressed by (1.1.9). Indeed the field φH is non vanishing only for
momenta between Λ and Λ0, thus its kinetic term

〈
φH P

−1, φH
〉
is equivalent to

〈
φ̃ PΛ0

Λ
−1
, φ̃
〉

in (1.2.15).
Considering the properties of the Wilsonian action, we note, from (1.1.56), that SΛ

int is
related to Feynman diagrams carrying information only about high energies. We give here
a general proof of this fact, showing that SΛ

int is actually the generator of connected and
amputated diagrams of the bare theory with the propagator PΛ0

Λ with double cut-off.
Consider the generating functional of connected diagrams for such theory:

e−F [J ] =
∫
Dφ̃ e

− 1
2

〈
φ̃ P

Λ0
Λ
−1
, φ̃

〉
−S(0)

int [φ̃]+
〈
J, φ̃
〉
, (1.2.17)

where we have used φ̃ to name the field for a reason that will be clear later.
Now we redefine the source as:

Jk := PΛ0
Λ
−1(k)φk, (1.2.18)

so that F becomes a functional of the new source φ, and we define:

F̃ [φ] = F [PΛ0
Λ
−1
φ] + 1

2
〈
φPΛ0

Λ
−1
, φ
〉
, (1.2.19)
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which is a deformed generating functional equal to F plus a term proportional to φ 2. In
the following we will show that F̃ satisfies WPE. Indeed the addition of the term quadratic
in φ allows us to write the deformed functional as:

e−F̃ [φ] =
∫
Dφ̃ e

− 1
2

〈
(φ̃−φ)PΛ0

Λ
−1
, φ̃−φ

〉
−S(0)

int [φ̃]
:=
∫
Dφ̃ e−S

Λ0
Λ [φ̃, φ], (1.2.20)

so that, when we take the derivative with respect to Λ we obtain:

Λ∂Λ e
−F̃ =

∫
Dφ̃
(
−1

2Λ∂Λ
〈

(φ̃− φ)PΛ0
Λ
−1
, φ̃− φ

〉)
e−S

Λ0
Λ [φ̃, φ]. (1.2.21)

Recalling from (1.1.3) and (1.2.16) that the dependence on Λ in the propagator is introduced
by the function K(k2/Λ2), the derivative of the double cut-off propagator with respect to Λ
is Λ∂ΛP

Λ0
Λ = −Λ∂ΛPΛ. Thus:

Λ∂Λ e
−F̃ = −1

2

∫
ddk(2π)dΛ∂ΛPΛ

×
∫
Dφ̃ 1

(2π)2dP
Λ0
Λ
−2(φ̃− φ)k (φ̃− φ)−k e−S

Λ0
Λ [φ̃, φ].

(1.2.22)

Therefore we can obtain the desired result if we prove that the functional integral in (1.2.22)
is equal to: (

δF̃
δφk

δF̃
δφ−k

− δ2F̃
δφk δφ−k

)
e−F̃ = δ2e−F̃

δφk δφ−k
.

Performing the derivatives we obtain:

δe−F̃

δφk
=
∫
Dφ̃ 1

(2π)dP
Λ0
Λ
−1(φ̃− φ)−k e−S

Λ0
Λ [φ̃, φ],

δ2e−F̃

δφk δφ−k
= −

∫
Dφ̃ 1

(2π)dP
Λ0
Λ
−1
δd(0) e−S

Λ0
Λ [φ̃, φ]

+
∫
Dφ̃ 1

(2π)2dP
Λ0
Λ
−2(φ̃− φ)k (φ̃− φ)−k e−S

Λ0
Λ [φ̃, φ],

where the first term in the second derivative is a field independent term, then we can neglect
it as we did for that in (1.2.10). The remaining term is exactly the functional integral in
(1.2.22), so F̃ satisfies the Wilson-Polchinski RG equation:

Λ∂ΛF̃ = 1
2

∫
ddk(2π)dΛ∂ΛPΛ(k)

[
δF̃
δφk

δF̃
δφ−k

− δ2F̃
δφk δφ−k

]
, (1.2.23)

with boundary conditions: F̃ [φ] = S(0)
int[φ] for Λ = Λ0. Indeed in this limit PΛ0

Λ
−1 diverges,

thus e−F̃ vanishes everywhere but for φ̃ = φ, where it is equal to the bare interaction term.
At this point F̃ and SΛ

int satisfy the same equation with the same boundary conditions,
then they must be equal up to some constant term that is completely irrelevant.
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This fact introduces an important relation:

SΛ
int[φ] = F [PΛ0

Λ
−1
φ] + 1

2
〈
φPΛ0

Λ
−1
, φ
〉
, (1.2.24)

which states that the Wilsonian action is equal to the generating functional of connected
diagrams of the bare theory with double cut-off, with source PΛ0

Λ
−1
φ. Then, for n > 2:

δnSΛ
int[φ]

δφk1 · · · δφkn

∣∣∣∣∣
φ=0

=
n∏
i=1

PΛ0
Λ
−1(ki)

δnF [J ]
δJk1 · · · δJkn

∣∣∣∣
J=0

. (1.2.25)

Hence, since connected and amputated diagrams are obtained by connected ones cutting
the external line propagators, (1.2.25) actually states that SΛ

int is the generator of connected
and amputated diagrams.

This is a very important feature of WRG and it will be used in the next chapter to derive
the evolution equation for large matrix models.

WRG is a vast sector of QFT which, as already said, greatly improved the knowledge
and comprehension of renormalization. In this chapter we mainly developed the aspects
connected to the RG flow equation because they will be very important in the next stages
of this thesis work.



CHAPTER 2

The Large N Limit for Matrix Models

In this chapter we analyze a very important approximation scheme that can be applied to
a certain type of QFT’s: the large N limit.

This method, first developed by ’t Hooft in [13], produces important results for particular
theories where fields are interpreted as N ×N matrices and couplings are rearranged to be
proportional to the size N of the fields (’t Hooft couplings). Indeed, considering the matrix
size N going to infinity, the behavior of the theory drastically simplify because it receives
contribution only from a certain class of Feynman graphs, called planar diagrams. This is
possible thanks to the fact that the dependence on N of Feynman graphs is connected to
their topology. Thus, in this chapter, we will study the topological properties of diagrams
and we will show that planar diagrams are the leading contributions, whereas all the other
graphs are suppressed by factors of order 1/N or higher. After that we will study WRG
of a QFT in the large N expansion to show that the Wilson-Polchinski RG equation has a
particular and interesting form in such limit.

2.1. Topological classification of Feynman
diagrams
Consider a theory whose fields are N × N matrices Mij(x), where i, j = 1, · · · , N are the
matrix indices, while other possible space-time and flavor indices are neglected for simplicity.
In such a way products of the fields are non-commutative, so that the structure of the
interaction terms made of these products depends on how field indices are contracted in
them.

In general these matrix fields are thought to transform in the adjoint representation of a
certain non-abelian algebra, such as gauge fields in Yang-Mills theory, so that their matrix
structure arises from a symmetry principle. This fact requires that the action is written in

25
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terms of traces of the fields and their derivatives, so that every index is contracted and the
whole functional is invariant under such symmetry transformations. The most important
example is the U(N) Yang-Mills theory, where gauge fields Aµ, and so also the field strength
Fµν , are N × N matrices transforming in the adjoint representation of U(N), so that the
lagrangian of the theory has the form LYM ∼ −trFµνFµν .

The most important consequence of the non-commutative structure of the products of
fields is that the vertices of the theory are not invariant under all permutations of external
legs, but, thanks to the presence of the traces in the action, only under cyclic ones. This
means that exchanging the order of some lines of a vertex, even though attached to other
parts of a graph, one could produce a different diagram, i.e. a different contribution. This
is due to the fact that field indices of the external lines of a vertex can be contracted inside
a diagram in many different ways. For this reason it is useful to introduce a new notation,
called double-line notation, where the field is represented by a double line:

Mij(x) =
i

j

x (2.1.1)

Each line is associated to a field index and, if it is attached to another line carrying another
index, it produces the saturation of such indices:

i

j

l

k

∼ δil δjk (2.1.2)

This is due to the fact that the structure of the kinetic term, neglecting the derivatives, is
proportional to tr |M |2 = ∑

a,bMabM
†
ba. Thus, taking the second derivative with respect

to M in order to obtain the propagator, one has:

∂

∂Mij

∂

∂M †kl

∑
a,b

MabM
†
ba ∼ δil δjk.

In this way one can keep track of how indices are contracted into the diagrams. For example,
consider the next-to-leading order correction to the free energy of the φ4 scalar theory. If
φ is a commutative field the action is that considered in subsection 1.1.1, thus we have
the contribution of three equivalent diagrams (Figure 2.1.1) which arise from all possible
contractions of the lines of the vertex. They are equivalent because in a commutative theory
one can always rearrange the lines with a permutation in order to reach the same form for
all diagrams.

If φ is a N ×N matrix, the lagrangian contains traces of the field, thus it reads:

L ∼ tr
(1

2(∂φ)2 + 1
2m

2φ2 + λ

4!φ
4
)
.
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Figure 2.1.1. The three equivalent diagrams representing the first order correction to the
free energy of the commutative φ4 theory

Using the double-line notation, the graphs have the form shown in Figure 2.1.2, where
diagram (c) is different from (a) and (b) because it contains different contractions of indices.
Indeed, as we will see in detail in the next section, every diagram of a matrix theory contains
a factor proportional to some power of the matrix size of N coming from the propagators
and the vertices, which depends on the explicit form of the action. Moreover, since every
line inside the diagram carries saturation of the indices, a closed line produces a factor∑
i δii = N . Now, diagrams in Figure 2.1.2 have the same number of propagators and

vertices, so the factor coming from them is the same, but (a) and (b) contain three closed
lines whereas (c) only one. Therefore, taking the ratio of the contributions of such diagrams
we note that the latter is suppressed with respect to (a) and (b) by a factor 1/N2.

(a) (b) (c)

Figure 2.1.2. The three diagrams representing the first order correction to the free energy
of the φ 4 matrix theory

This example stresses that it is possible to understand whether a diagram is subleading
with respect to another one simply through the analysis of its structure of propagators,
vertices and closed internal lines, even though the explicit form of the action is unknown.
Thus one is led to ask whether it is possible to generalize this argument and to determine “a
priori” the correct behavior of every graph. The answer is yes and it involves a topological
analysis which allows us to make a classification of Feynman diagrams.

Indeed, thanks to the double-line notation, one can think that the first two graphs in
Figure 2.1.2 have the same topology because they can be drawn on a flat sheet without
superpositions of lines (first graph in Figure 2.1.3). Instead, diagram (c) can be drawn only
on a torus (second graph in Figure 2.1.3) because it contains a superposition of two lines,
which makes its topology different from the previous ones.
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Figure 2.1.3. First order diagrams of the free energy of the φ 4 matrix theory embedded
in the associated surfaces

This preliminary analysis suggests that there could be a connection between Feynman
diagrams and surfaces, which enables us to organize graphs according to some topological
property of the related surfaces, like for example the number of handles. In such a way
one could define the topology of a diagram as the topology of its associated surface. This
is true for any non-commutative theory, where lines and vertices are ordered up to cyclic
permutations, and it is made evident by the double line notation.

To remark this important fact, in the following, we will develop the analysis for general
theories, stating a general proposition and exploring its consequences, whereas in the next
section we will focus on a concrete example of a scalar matrix theory to clarify these facts
through explicit computations.

The connection between Feynman diagrams and surfaces is defined by a proposition which
expresses that each connected Feynman graph corresponds to a unique Riemann surface:

Proposition:

Every connected diagram is associated to a Riemann surface whereon it can be drawn without
any superposition of lines.

This allows us to translate properties of Riemann surfaces into their associated diagrams.
Hence we can define the genus of a graph as the genus1 of its corresponding surface. For
example, the first graph in Figure 2.1.3, which represents both diagrams 2.1.2a and 2.1.2b,
has null genus because it is associated to the sphere, or equivalently to a flat sheet2. The
second one has, instead, genus 1 because it has to be drawn on a torus, which is the surface
with unitary genus, i.e. with one handle. Thus graphs with null genus will be called planar
diagrams, whereas graphs with non-vanishing genus will be non-planar diagrams.

At this point it is useful to limit our discussion only to vacuum diagrams3 for simplicity.
The results we will henceforth obtain can however be extended to diagrams with external

1The genus of a connected, orientable surface is an integer representing the maximum number of cuttings
along non-intersecting closed simple curves without making the resultant manifold disconnected. It is equal
to the number of handles on it.

2One typically prefers to consider compact surfaces like the sphere instead of open ones, like a flat sheet,
because topological properties are more easily formulated on them.

3Diagrams without external legs.
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legs, as we will see later. Thus, considering connected vacuum diagrams, we can use the
triangulation of Riemann surfaces applied to them. In such a way we can identify such
diagrams as geometric figures drawn on the associated surfaces, where the edges are the
propagator lines, the faces are the internal closed lines and the vertices correspond to the
vertices of the diagram. Therefore we can apply Euler’s formula to these graphs:

V − P + I = χ, (2.1.3)

where V , P and I are respectively the number of vertices, propagators and closed lines,
whereas χ = 2− 2g is the Euler characteristic and g is the genus of the surface.

By this identification we can provide a classification of vacuum diagrams based on the
genus. Indeed, even though the power of N multiplying every diagram, which is called
weight factor, depends on the explicit form of the action, one can show that the ratio of the
contribution of two diagrams respectively of genus g1 and g2 is proportional to 1/N2(g1−g2).

In order to prove that, consider a general matrix theory where fields M are N × N

matrices. Depending on the definition of the fields, the kinetic term may contain an arbitrary
power α of N such that KT ∼ Nα tr |∂M |2 and every propagator line carries a factor 1/Nα.
For simplicity, the interaction term Lint[M ] is set to contain only single-trace couplings:

Lint[M ] =
+∞∑
n=3

gntr |M |n. (2.1.4)

Other derivative or multi-trace couplings are neglected because their behavior is the same
as the considered couplings and they would only represent an unnecessary complication to
our proof.

Now consider a generic vacuum diagram with P propagators, V vertices and I closed
lines. Calling Vp the number of vertices associated to the interaction proportional to trMp,
we have:

V = V3 + V4 + · · · =
+∞∑
p=3

Vp. (2.1.5)

Every vertex of p fields in the diagram is attached to p propagators, which, in their turn,
are attached each one to another vertex. So, summing the total number of vertex legs in
the graph we count every propagator twice. Thus we have:

P = 1
2
(
3V3 + 4V4 + · · ·

)
=

+∞∑
p=3

p

2 Vp. (2.1.6)

The contribution of the diagram is:

VPI

∼ gV3
3 gV4

4 · · ·N
I−αP = N I−αP

+∞∏
p=3

gVpp , (2.1.7)
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because every vertex give a factor equal to its coupling, whereas every propagator carries a
factor N−α and, since every line in the diagram carries a saturation of indices, every closed
line produces ∑i δii = N , so we have the term N I−αP .

Using (2.1.3), (2.1.5) and (2.1.6), this contribution can be rearranged. Indeed the number
of closed lines is equal to:

I = 2− 2g + P − V = 2− 2g +
+∞∑
p=3

(
p

2 − 1
)
Vp,

so we have:

N I−αP
+∞∏
p=3

gVpp = N
2−2g−α

∑
p
p
2Vp

+∞∏
p=3

(
gpN

p
2−1

)Vp
= N2−2g

+∞∏
p=3

(
gpN

p
2−1− p2α

)Vp
.

At this point, we can rewrite the theory defining the so called ’t Hooft coupling λp of the
interaction trMp as:

λp := gpN
p
2−1− p2α. (2.1.8)

This being done, the diagram in (2.1.7) becomes:

VPI

∼ 1
N2g−2

+∞∏
p=3

λVpp . (2.1.9)

This shows that, writing the theory through ’t Hooft couplings, the contribution of every
vacuum diagram of genus g is proportional to 1/N2g−2. This feature is independent of the
explicit form of the action, i.e. the precise value of α, because the definition of ’t Hooft cou-
plings (2.1.8) acts balancing the contribution of every vertex with that of every propagator
so that the whole weight factor turns out to be independent of α. Therefore this proves that
the ratio of the contribution of two diagrams of genus g1 and g2 is 1/N2(g1−g2) and allows
us to make a classification of vacuum diagrams according to their genus.

This feature of matrix theories defined through ’t Hooft couplings leads to a very inter-
esting behavior in a particular regime: the large N limit. This consists in taking N 7→ +∞
whereas ’t Hooft couplings λp are kept fixed, so that the original couplings are switched
off. Thus, thanks to the presence of the weight factor, the contribution of diagrams with
non-vanishing genus becomes negligible compared to that of planar diagrams because it
is subleading at least of a factor 1/N2. Then in this limit the theory becomes simpler,
described only by planar graphs (g = 0) and so more easily computable.

For example, consider the free energy of the theory, which is defined as:

e−F :=
∫
DM e−S[M ], (2.1.10)



2.1. Topological classification of Feynman diagrams 31

where S[M ] is the action. F contains the contribution of all connected vacuum diagrams of
the theory at every order. So we can expand it according to the genus of its diagrams:

F =
∑
g

F (g)

N2g−2 , (2.1.11)

where F (g) is the contribution coming from all genus g connected diagrams, hence, it is
weighted with the factor 1/N2g−2. When N is sent to infinity, keeping λp fixed, only F (0)

survives, because only planar diagrams contribute to the theory, so the value of the free
energy is given only by few simple graphs.

(a) (b)

Figure 2.1.4. Two one loop connected diagrams of the φ 4 matrix theory

All these discussions concern only vacuum diagrams. When considering graphs with
external legs, the correspondence with Riemann surfaces is still valid, but some complications
are introduced by the presence of the external lines.

Indeed, consider for example the two diagrams with two external legs of the φ 4 matrix
theory shown in Figure 2.1.4. In order to evaluate their contribution, we can note that both
graphs have the same number of propagators and vertices, but in (a) there is a closed line
(internal circle) which produces a factor N due to the saturation of the indices, whereas in
(b) there is none. Thus (b) is subleading with respect to (a) of a factor 1/N even if both of
them have sphere topology (vanishing genus) and so this fact completely disagrees with the
predictions of the topological analysis performed for vacuum diagrams.

This particular behavior can be understood considering the associated Riemann surfaces.
Indeed as long as dealing with vacuum diagrams, we can use the identification with geometric
figures and compute their weight factor through Euler’s formula (2.1.3), whereas, when there
are external legs, such identification is broken because of the presence of the latter. In order
to restore it we have to consider Riemann surfaces with boundaries4, where the external legs
will be attached. Thus a diagram with external legs is associated to a Riemann surface with
boundaries, such that, drawing the graph on the latter, every external line is attached to one
boundary. In such a way a diagram with external legs can be identified with a geometric
figure where such lines are thought as part of the associated boundaries, so we can use

4The boundary of a subset S of a topological space X is the set of points which can be approached both
from S and from the outside of S. For example a disk is of dimension 2 and its boundary is the 1-dimensional
circle.
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Euler’s formula where Euler’s characteristic generalizes to:

χ = 2− 2g − b, (2.1.12)

where b is the number of boundaries of the surface.
Since external lines are treated as part of boundaries, this identification holds true for

amputated diagrams, i.e. graphs where external legs are not propagators. Later, considering
the connected correlation functions, we will see that the analysis we are going to perform still
holds true for non-amputated diagrams, even though we have to include the contribution of
the propagators in the external lines.

Now we can study the behavior of the weight factor of diagrams with external legs
considering the general theory used in the case of vacuum diagrams. Recalling that ev-
ery propagator carries a factor 1/Nα and the interaction term is that in (2.1.4), where
’t Hooft couplings are (2.1.8), the contribution of a connected amputated diagram with r

external legs, V vertices, P propagators and I closed lines, associated to a surface with
genus g and b boundaries, is:

r; VPI

∼ N I−αP
+∞∏
p=3

(
λpN

1− p2 + p
2α
)Vp

= N
I−αP+

∑
p

(
1− p2 + p

2α
)
Vp

+∞∏
p=3

λVpp , (2.1.13)

Now, since there are r external legs, the relation (2.1.6) between P and V is modified to:

P =
+∞∑
p=3

p

2 Vp −
r

2 , (2.1.14)

because the r external legs are attached to r vertex lines, which do not have to be counted
as propagators in the sum. Therefore, as we did for vacuum diagrams, the contribution of
(2.1.13) can be rearranged using (2.1.3) with the generalized Euler characteristic (2.1.12),
(2.1.5) and (2.1.14). Thus the number of closed lines becomes:

I = 2− 2g − b+ P − V = 2− 2g − b+
+∞∑
p=3

(
p

2 − 1
)
Vp −

r

2 ,

hence we have:

N
I−αP+

∑
p

(
1− p2 + p

2α
)
Vp

+∞∏
p=3

λVpp = N2−2g−b+(α−1) r2
+∞∏
p=3

λVpp .

The contribution of the diagram is then:

r; VPI

∼ 1
N2g−2+b+(1−α) r2

+∞∏
p=3

λVpp , (2.1.15)
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This shows that the weight factor of a diagram with external legs in a theory written through
’t Hooft couplings not only depends on the genus of the diagram, but also on the number
of boundaries of the associated surface and on the number of the external legs. Unlike the
case of vacuum diagrams, here there is a dependence on the explicit definition of the action,
indeed (2.1.15) depends on the explicit value of α. However the ratio of the contributions
of diagrams with the same number of external legs is general, indeed, if their genus is
respectively g1 and g2 and the number of holes is b1 and b2, such ratio is 1/N2(g1−g2)+(b1−b2)

whatever the explicit form of the action is. This result generalizes the one obtained for
vacuum graphs to all amputated diagrams.

(a) (b)

Figure 2.1.5. Connected diagrams associated to surfaces with respectively one and two
boundaries (dashed lines)

Before considering the case of non-amputated connected diagrams, it is important to bet-
ter understand the connection between the external legs and the boundaries of the associated
surface.

If we consider a diagram with all external legs attached to the same internal line, we have a
surface with one boundary because all the external lines can be attached to it (Figure 2.1.5a,
where the dashed box represents the boundary), so that the graph has b = 1.

If the external legs are attached to two different internal lines, the associated surface must
have two boundaries because the external lines cannot be attached to the same boundary
without cutting the graph (Figure 2.1.5b). Hence the surface associated to a diagram has as
many boundaries as different internal lines containing external legs there are in the graph.

In such a way, both diagrams in Figure 2.1.4 are graphs with null genus, but (a) is
associated to a sphere with one boundary, whereas (b) is associated to a sphere with two
boundaries. Therefore, using (2.1.15), we have that (b) is subleading with respect to (a) of
a factor 1/N , which agrees with the prediction given above.

Let us consider now the connected correlation functions. They are described by non-
amputated connected diagrams, i.e. graphs where the external legs are propagators (hence-
forth we will refer to them just as connected diagrams). They have the same structure of the
associated amputated diagrams, except for the external propagators, each one producing an
extra factor 1/Nα. Therefore the weight factor of a connected diagram with r external legs
can be computed using (2.1.15) and multiplying it by 1/Nαr, which is the contribution of
the external propagators. In such a way the ratio of the contributions of two connected
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diagrams with the same number of external legs and characterized respectively by (g1, b1)
and (g2, b2) is still 1/N2(g1−g2)+(b1−b2).

For this reason the leading contribution to the r-point function comes from diagrams
with sphere topology and one boundary, i.e. with all external legs attached to the same
internal line. Hence such graphs are called planar diagrams, whereas all the other ones are
suppressed by powers of N and so they are called non-planar (included null genus graphs
with more than one boundary). For this reason, in the large N expansion, the correlation
functions receive contribution only from planar diagrams. For example the 2-point function
can be expanded as:

〈Mi1j1(x1)Mi2j2(x2)〉conn ∼ + + · · · .

In such a way the whole theory in the large N limit is described only by planar diagrams
(both vacuum graphs and diagrams with external legs), thus such regime is also called planar
limit.

In this section we have outlined the general features of the large N expansion of matrix
theories. For vacuum diagrams we have developed a very elegant proof of the dependence
of the weight factor on the genus. Then we have extended such argument to diagrams with
external legs.

In the next section we will apply these concepts to a single scalar matrix theory in
order to clarify them. First of all we will provide, through a redefinition of the field, a
particularly useful form of the action, then, focusing on vacuum diagrams, we will perform
explicit calculations in order to confirm the prediction (2.1.9) coming from the topological
analysis. In the end, considering diagrams with external legs we will develop a very useful
formalism to describe correlation functions and the generating functional for both connected
and connected amputated diagrams.

2.2. Scalar matrix model
Consider a theory of a scalar N ×N hermitian matrix M(x). Let us take the action:

Ŝ[M ] =
∫
ddx

(1
2tr (∂M)2 −

+∞∑
p=3

gp trMp
)
, (2.2.1)

where, for simplicity, we consider only single-trace non-derivative interactions.
Through this definition of the action the propagator does not carry any power of N , thus

it corresponds to α = 0. Hence ’t Hooft couplings are defined as:

λp := gpN
p
2−1, (2.2.2)
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so that Ŝ can be written as:

Ŝ[M ] =
∫
ddx

(1
2tr (∂M)2 −

+∞∑
p=3

λpN
1− p2 trMp

)
. (2.2.3)

The free energy is:
Z = N

∫
DM e−Ŝ[M ], (2.2.4)

where N is a normalization, which can be fixed requiring that Z|λp=0 = 1, so:

N =
(∫
DM e−

1
2

∫
ddx tr (∂M)2

)−1

=
(
π det�−1)−N2

2 ,

because we can write the exponent as tr
(
M�M

)
and perform a gaussian integral.

This being done, we can provide a very useful redefinition of the field, which actually is
the standard way of writing a theory which admits a consistent large N expansion:

Φ(x) := M(x)√
N

, (2.2.5)

so the action becomes:

Ŝ[Φ] = N

∫
ddx

(1
2tr (∂Φ)2 −

+∞∑
p=3

λp trΦp
)

:= NS[Φ], (2.2.6)

where the new action S is defined carrying out of Ŝ the factor N . Thus the free energy is
now defined as:

e−N
2F = N

∫
DΦ e−NS[Φ], (2.2.7)

where the normalization N becomes:

N =
(
π det�−1

N

)−N2
2

.

In such a way, because of the term N2 ahead F , its topological expansion reads:

F =
∑
g

F (g)

N2g , (2.2.8)

thus the contribution to the free energy of a Feynman diagram of genus g now carries a
weight factor 1/N2g.

This definition of the theory involves directly ’t Hooft parameters λp and makes the
action S[Φ] independent of N . In this picture, given an arbitrary diagram, either vacuum or
with external legs, every vertex carries a factor N , no matter what the number of external
legs it has is, every propagator carries 1/N and, as usual, every closed line produces a factor
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N , so this corresponds to α = 1. For this reason it is very simple to obtain the weight factor
counting its propagators, vertices and closed lines.

Moreover, within this definition, the large N expansion is straightforward because every
term in S does not change while sending N 7→ +∞ with λp kept fixed. For this reason
(2.2.6) is the standard way of defining a theory which admits the large N limit.

2.2.1. Vacuum diagrams

In the first section of this chapter we have developed the topological analysis for Feynman
diagrams. At a certain point, considering some vacuum diagrams in Figure 2.1.2, we have
estimated the N -dependence of the ratio of diagrams with different topology and shown
that it agrees with the general predictions. Here we explicitly compute the single diagrams
and confirm the general analysis.

Consider the free energy F and focus only on the λ4 vertex, which produces diagrams in
Figure 2.1.2:

e−N
2F = N

∫
DΦ e−N

∫
ddx
(

1
2 tr (∂Φ)2−λ4 trΦ4+···

)
,

where dots represent the other interaction terms we are not interested in. Expanding the
exponential in series of the couplings we can evaluate perturbative corrections to F :

e−N
2F = N

∫
DΦ

(
1 +Nλ4

∫
ddx trΦ4(x) + · · ·+O(λ2

4)
)
e−

N
2

∫
tr (∂Φ)2

, (2.2.9)

The correlation functions of the free theory are:

〈O(x)〉0 =
∫
DΦO(x) e−

N
2

∫
tr (∂Φ)2∫

DΦ e−
N
2

∫
tr (∂Φ)2 = N

∫
DΦO(x) e−

N
2

∫
tr (∂Φ)2

, (2.2.10)

where O is an arbitrary operator, thus (2.2.9) can be written as:

e−N
2F = 1 +Nλ4

∫
ddx

〈
trΦ4(x)

〉
0

+ · · ·+O(λ2
4). (2.2.11)

Now, recalling the method used in subsection 1.1.1, we have that:

〈Φij(x) Φkl(y)〉0 =
∫
DΦ Φij(x) Φkl(y) e−

N
2

∫
tr (∂Φ)2∫

DΦ e−
N
2

∫
tr (∂Φ)2 = δil δjk

N
f(x, y), (2.2.12)

where f is the ordinary Green function for a scalar field, which does not depend on N . In the
following we will only concentrate on the N -dependence and drop all space-time dependent
factors, including loop integrals.
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At this point we can compute the first order corrections to F using Wick’s theorem:〈
trΦ4

〉
0

= 〈ΦijΦjkΦklΦli〉0

= 〈ΦijΦjk〉0 〈ΦklΦli〉0 + 〈ΦijΦkl〉0 〈ΦjkΦli〉0 + 〈ΦijΦli〉0 〈ΦjkΦkl〉0

= 1
N2 δik δjj δik δll + 1

N2 δil δjk δji δkl + 1
N2 δii δjl δlj δkk,

(2.2.13)

where repeated indices are summed. In such a way, since δii = N , the correlator reads:

Nλ4
〈
trΦ4

〉
0

= λ4
N

(
δikδjjδikδll + δilδjkδjiδkl + δiiδjlδljδkk

)
= λ4(N2 + 1 +N2). (2.2.14)

Considering the diagrammatic representation, we can associate every term to its correspond-
ing graph. Starting from the vertex, we have:

l

l

i i

j

j

kk

= Nλ4

∫
ddx trΦ4(x), (2.2.15)

hence we can obtain the contribution of every term in (2.2.14) connecting the external lines
of the vertex according to the contractions of the indices coming from the deltas. Thus we
have:

∼ Nλ4 〈ΦijΦli〉0 〈ΦjkΦkl〉0 = λ4N
2 (2.2.16)

and:

∼ Nλ4 〈ΦijΦjk〉0 〈ΦklΦli〉0 = λ4N
2 (2.2.17)

∼ Nλ4 〈ΦijΦkl〉0 〈ΦjkΦli〉0 = λ4 (2.2.18)

which means that the computation of the graphs produces the weight factor 1/N2g−2 because
(2.2.16) and (2.2.17) are planar whereas (2.2.18) has genus 1.

Consider now further orders in the expansion (2.2.11), such as the second order contri-
bution:

N2λ2
4

∫
ddx ddy

〈
trΦ4(x)trΦ4(y)

〉
0
.
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The computation of such terms produces the exponential series of (2.2.14), so that we have:

e−N
2F = exp

(
Nλ4

∫
ddx

〈
trΦ4

〉
0

+ · · ·
)
. (2.2.19)

In such a way, since (2.2.14) is composed by the three diagrams (2.2.16), (2.2.17) and
(2.2.18), they directly contribute to F :

F = − λ4
N2

(
+ + + · · ·

)
∼ λ4

(
1 + 1

N2 + 1 + · · ·
)
. (2.2.20)

Hence, thanks to the definition (2.2.7) with the factor N2 in the exponential, these diagrams
actually give contribution to F with a weight factor 1/N2g instead of 1/N2g−2.

2.2.2. Correlation functions and diagrams with external legs

In the end of the first section of this chapter we have developed a topological analysis for
diagrams with external legs, obtaining that the ratio of the contributions of diagrams with
the same number of external lines depends only on the genus and the number of boundaries
of the associated surface.

In this part we perform explicit calculations within the scalar theory considered above
in order to confirm the general result of the topological analysis and, moreover, we develop
a very useful formalism to rewrite the generating functional in terms of invariant source
operators.

To do so, we study the connected correlation functions. Diagrammatically they are
described by diagrams where the external legs are propagators, thus their weight factor can
be computed using (2.1.15) and multiplying it by 1/N r, where r is the number of external
legs. Let us start considering the 2-point function:

〈Φi1j1(x) Φi2j2(y)〉 =
∫
DΦ Φi1j1(x) Φi2j2(y) e−NS[Φ]∫

DΦ e−NS[Φ] . (2.2.21)

In this case, instead of directly computing the connected correlator, we consider the total
correlation function defined by (2.2.21), neglecting the disconnected contributions. In such
a way we can use the perturbative method expanding in series the exponential, so that:

〈Φi1j1(x) Φi2j2(y)〉 = 〈Φi1j1(x) Φi2j2(y)〉0

+Nλ4

∫
ddz

〈
Φi1j1(x) Φi2j2(y) trΦ4(z)

〉
0

+ · · · ,
(2.2.22)

where, for simplicity, we focus only on the λ4 vertex.
The correlator

〈
Φi1j1Φi2j2 trΦ4〉

0 represents the first order correction and can be com-
puted using Wick’s theorem. Dropping contributions dependent on space-time degrees of
freedom and loop integrals, as we did in (2.2.12), we can focus only on the N -dependence,
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so that we have:〈
Φi1j1Φi2j2 trΦ4

〉
0

= 〈Φi1j1Φi2j2ΦabΦbcΦcdΦda〉0

= 〈Φi1j1Φab〉0 〈Φi2j2Φbc〉0 〈ΦcdΦda〉0 + 〈Φi1j1Φab〉0 〈Φi2j2Φcd〉0 〈ΦbcΦda〉0 + · · · ,
(2.2.23)

Neglecting contributions coming from disconnected diagrams, the remaining terms can be
absorbed in only two contributions:

〈Φi1j1Φab〉0 〈Φi2j2Φbc〉0 〈ΦcdΦda〉0 = 1
N3 δi1bδj1aδi2cδj2bδcaδdd = δi1j2δi2j1

N2 (2.2.24)

〈Φi1j1Φab〉0 〈Φi2j2Φcd〉0 〈ΦbcΦda〉0 = 1
N3 δi1bδj1aδi2dδj2cδbaδcd = δi1j1δi2j2

N3 . (2.2.25)

Considering their diagrammatic representation we have:

i1

j1

j2

i2

∼ Nλ4 〈Φi1j1Φab〉0 〈Φi2j2Φbc〉0 〈ΦcdΦda〉0 = λ4
δi1j2δi2j1

N
(2.2.26)

i1

j1

i2

j2
∼ Nλ4 〈Φi1j1Φab〉0 〈Φi2j2Φcd〉0 〈ΦbcΦda〉0 = λ4

δi1j1δi2j2
N2 . (2.2.27)

Unlike diagrams in Figure 2.1.4, these are non-amputated graphs, thus their contribution
takes into account the presence of the external propagators. Anyway, according to the
topological analysis, (2.2.27) is subleading with respect to (2.2.26) by a factor 1/N .

Because of the invariance under cyclic permutations, these terms represent the only two
possible inequivalent contractions of the indices of the external lines. Hence, regrouping all
equivalent terms, we obtain:

Nλ4

∫
ddz

〈
Φi1j1(x) Φi2j2(y) trΦ4(z)

〉
0

=

= 8 + 4 ∼ 8λ4
δi1j2δi2j1

N
+ 4λ4

δi1j1δi2j2
N2 ,

(2.2.28)

Since (2.2.26) and (2.2.27) represent the only two inequivalent contractions of indices in the
2-point function, all further order terms must be proportional to one of them. Hence we
can write the connected 2-point function as:

N2

2! 〈Φi1j1Φi2j2〉conn = f(0, 1)δi1j2δi2j1
N

+ f(2, 0)δi1j1δi2j2
N2 , (2.2.29)



40 2. The Large N Limit for Matrix Models

where f(0, 1) is the contribution of all diagrams of all orders corresponding to the contrac-
tion δi1j2δi2j1 , whereas f(2, 0) comes from all diagrams with δi1j1δi2j2 . The term 1/2! is
conventional, whereas the power of N multiplying every term in (2.2.29) is exactly the con-
tribution to the weight factor coming from the boundaries 1/N b. Thus, since the contraction
of f(0, 1) corresponds to graphs with one boundary, it has 1/N , whereas f(2, 0) has 1/N2

because it corresponds to diagrams with two boundaries. Moreover, the factor N2 ahead the
2-point function in the l.h.s. of (2.2.29) is the contribution to the weight factor coming from
the external propagators, thus in general it is N r for the r-point function. Through this
definition, being the contribution of the boundaries and the external legs inserted explicitly
in the expansion of the correlation function, the amplitudes f(0, 1) and f(2, 0) contain the
contribution to the weight factor coming only from the genus of their diagrams.

The notation f(ν1, ν2) introduced above develops a useful graphical method to build the
diagrams composing it. Indeed the first entry in the argument of f , i.e. ν1, is the number
of internal lines with one external leg attached to them, whereas the second entry, ν2, is
the number of internal lines with two external legs attached to them. Hence f(ν1, ν2) is
the contribution of all diagrams with ν1 + 2ν2 external legs, composed by ν1 lines with
one external leg and ν2 lines with two external legs. Thus every diagram in f(ν1, ν2) is
associated to a surface with b = ν1 + ν2 boundaries and so such term is multiplied by the
factor 1/Nν1+ν2 . For example in (2.2.29) we have:

f(0, 1) = = + + · · · (2.2.30)

f(2, 0) = = + + · · · . (2.2.31)

This notation is defined so that the contraction structure of every diagram in f(0, 1), as well
as of each one in f(2, 0), is the same. Indeed every graph in (2.2.30) has the same number
of internal lines with the same number of external legs, as well as every diagram in (2.2.31).

The generalization of this formalism to the case of the connected r-point function is
straightforward. Indeed in such function there are as many different terms as the number of
all inequivalent contractions of the external leg indices among themselves. Thus, since the
contraction structure depends on how many external legs are attached to a single closed line
and how many of these lines are there in the graph, we can generalize f(0, 1) and f(2, 0) to
a function f({νk}), where {νk} is a sequence of natural numbers such that:

∑
k

kνk = r, (2.2.32)

which is the constraint imposing the number of external legs to be equal to r. In such a way
νk is the number of closed lines with k external legs attached to them, thus f({νk}) is the
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contribution of all connected diagrams with r external legs with contraction structure {νk}.
Solving the constraint, we can find the number of inequivalent ways of contracting ex-

ternal indices, namely the number of different values of f({νk}). Each one of these values
is multiplied by its associated contraction term (the product of deltas) and by the fac-
tor 1/N b=

∑
kνk corresponding to the number of boundaries of such structure. For example

consider the connected 3-point function:

〈Φi1j1(x1) Φi2j2(x2) Φi3j3(x3)〉conn . (2.2.33)

In order to expand it in terms of f({νk}) we have to solve the constraint (2.2.32) with
r = 3. There are three solutions: (ν1 = 0, ν2 = 0, ν3 = 1), (ν1 = 1, ν2 = 1, ν3 = 0) and
(ν1 = 3, ν2 = 0, ν3 = 0). Thus we have:

f(0, 0, 1) = ∼ δi1j2δi2j3δi3j1
N

(2.2.34a)

f(1, 1, 0) = ∼ δi1j2δi2j1δi3j3
N2 (2.2.34b)

f(3, 0, 0) = ∼ δi1j1δi2j2δi3j3
N3 (2.2.34c)

Hence (2.2.34a) is weighted with 1/N because its external legs are attached to the same
internal line, so b = 1, (2.2.34b) has 1/N2 because it has b = 2 whereas (2.2.34c) is multiplied
by 1/N3 because it has b = 3. Hence, considering only the matrix structure of the theory,
the 3-point function can be written as:

N3

3! 〈Φi1j1Φi2j2Φi3j3〉conn = f(3, 0, 0)δi1j1δi2j2δi3j3
N3

+ f(1, 1, 0)δi1j2δi2j1δi3j3
N2 + f(0, 0, 1)δi1j2δi2j3δi3j1

N
. (2.2.35)

This formalism is important because, as already said, it separates the contribution to the
weight factor of boundaries and external legs from that of the genus, which is contained in
f({νk}). Thus, considering the general case of the r-point function, we have:

N r

r! 〈Φi1j1 · · ·Φirjr〉conn =
∑
{νk}∑
kkνk=r

f({νk})
(contractions of structure {νk})

N
∑
kνk

. (2.2.36)

Now f({νk}) contains the contribution of every diagram of structure {νk}, therefore it is
associated to graphs of every genus. The contribution of boundaries to the weight factor of
such diagrams being represented by the factor 1/N

∑
kνk outside f({νk}), we can expand the
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latter through the genus of its diagrams. Thus we have the expansion:

f({νk}) =
∑
g

f (g)({νk})
N2g−2 , (2.2.37)

where f (g)({νk}) is the contribution of diagrams with structure {νk} and genus g. In such
a way, reconstructing the total power of N of every diagram of genus g and structure {νk}
(i.e. with b = ∑

k νk boundaries) in the r-point function, we have 1/N2g−2+b+r, which is
exactly the result one expects from the topological analysis (we are working with α = 1 and
r external propagators, thus each one carries a factor 1/N). From this we can explicitly see
that only planar diagrams give a finite contribution to the correlation functions in the large
N limit.

This formalism is then very useful to determine the behavior of the generating functional
in the planar limit. Thus, consider the generating functional of connected diagrams of the
scalar theory:

e−N
2F [J ] = N

∫
DΦ e−N

(
S[Φ]−

∫
ddx tr J(x)Φ(x)

)
, (2.2.38)

which is defined from the free energy (2.2.7) introducing the external source J(x), which is
a N ×N hermitian matrix like Φ. The connected correlation functions can be computed by
the relation:

〈Φi1j1(x1) · · ·Φirjr(xr)〉conn = −N2−r δrF [J ]
δJi1j1(x1) · · · δJirjr(xr)

∣∣∣∣∣
J=0

, (2.2.39)

where δ/δJij is the functional derivative with respect to the matrix field J . Now, expanding
F [J ] in a formal Taylor series, we have:

F [J ] = F [0] +
+∞∑
r=1

1
r!

∫
ddx1 · · · ddxr

δrF [J ]
δJi1j1(x1) · · · δJirjr(xr)

∣∣∣∣∣
J=0

× Ji1j1(x1) · · · Jirjr(xr), (2.2.40)

where repeated indices are summed. F [0] represents the free energy F defined by (2.2.7),
which, as already studied, contains the contribution of all vacuum diagrams of the theory.
Since we have already described the expansion of F through the genus (2.2.8), here we focus
on the series of functional derivatives, which describes the contribution of the diagrams with
external legs.

Using (2.2.39) we can write:

F [J ] = F −
+∞∑
r=1

N r−2

r!

∫
ddx1 · · · ddxr 〈Φi1j1(x1) · · ·Φirjr(xr)〉conn

× Ji1j1(x1) · · · Jirjr(xr), (2.2.41)
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where, dropping again the space-time degrees of freedom (dof’s), we can replace the correlator
〈Φi1j1 · · ·Φirjr〉conn with its form in terms of f({νk}), so that the generating functional reads:

F [J ] = F +
+∞∑
r=1

1
N2

∑
{νk}∑
kkνk=r

f({νk})
(contractions of structure {νk})

N
∑
kνk

Ji1j1 · · · Jirjr

= F + 1
N2

∑
{νk}

f({νk})
(contractions of structure {νk})

N
∑
kνk

Ji1j1 · · · Jirjr . (2.2.42)

For simplicity we can absorb the factor 1/N2 into the definition of f({νk}), so that its
expansion becomes:

f({νk}) =
∑
g

f (g)({νk})
N2g . (2.2.43)

At this point, the product of the contraction terms with the source tensor Ji1j1 · · · Jirjr
produces a scalar term depending on J . Its exact form can be understood considering that
in a diagram of structure {νk} there are νk lines with k external legs producing the saturation
of the indices attached to them, such as:

i1 i2 ikj1 j2 jk
∼ δi1jkδi2j1 · · · δikjk−1. (2.2.44)

Hence the product of this term with the source tensor gives the trace operator tr Jk. There-
fore the whole contraction term of structure {νk} produces the operator:

∏
k (tr Jk)νk . More-

over, since every contraction term of such structure is weighted with a factor 1/N
∑
kνk , we

have:
1

N
∑
kνk

∏
k

(tr Jk)νk =
∏
k

(tr Jk
N

)νk
.

Therefore the whole generating functional can be written as:

F [J ] = F +
∑
{νk}

f({νk})
∏
k

(tr Jk
N

)νk
. (2.2.45)

Reintroducing the space-time dof’s we can express it in momentum space:

F [J ] = F +
∑
{νk}

∫ ∏
k,ik,jk

ddp
(ik)
k,jk

δd
( ∑
k,ik,jk

p
(ik)
k,jk

)
f
(
{νk}; p(ik)

k,jk

)

×
∏
k

νk∏
ik=1

tr
(
J(p(ik)

k,1 ) · · · J(p(ik)
k,k )

)
N

, (2.2.46)

where p(ik)
k,jk

is the momentum of the jk-th external leg (jk = 1, · · · , k) attached to the ik-th
line with k external legs (ik = 1, · · · , νk) and to the ik-th boundary, whereas f

(
{νk}; p(ik)

k,jk

)
is

the amplitude of diagrams with structure {νk}, which depends on their external momenta.
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The operators tr Jk are trace operators, hence they are not invariant as N varies. Indeed,
since the trace of a N × N matrix is the sum of the N diagonal entries, we have that
tr (N ×N matrix) ∼ N . For this reason it is worth introducing invariant operators defined
by:

jk(p1, · · · , pk) :=
tr
(
J(p1) · · · J(pk)

)
N

. (2.2.47)

which is of order O(N0 = 1). They are called source operators so that the structure of the
generating functional is:

F [J ] = F +
∑
{νk}

f({νk})
∏
k

jνkk . (2.2.48)

Hence (2.2.46) becomes:

F [J ] = F +
∑
{νk}

∫ ∏
k,ik,jk

ddp
(ik)
k,jk

δd
( ∑
k,ik,jk

p
(ik)
k,jk

)
f
(
{νk}; p(ik)

k,jk

)
×
∏
k

νk∏
ik=1

jk(p(ik)
k,1 , · · · , p

(ik)
k,k ), (2.2.49)

This is the structure of the generating functional in terms of the amplitudes f
(
{νk}; p(ik)

k,jk

)
and of the invariant source operators. Hence, since these amplitudes can be expanded
through the genus as in (2.2.43) and recalling that the free energy has a similar expansion:

F =
∑
g

F (g)

N2g , (2.2.50)

we can see that the whole generating functional can be written as:

F [J ] =
∑
g

F (g)[J ]
N2g . (2.2.51)

where F (g)[J ] is the contribution coming from all diagrams of genus g, thus it reads:

F (g)[J ] = F (g) +
∑
{νk}

∫ ∏
k,ik,jk

ddp
(ik)
k,jk

δd
( ∑
k,ik,jk

p
(ik)
k,jk

)
f (g)({νk}; p(ik)

k,jk

)
×
∏
k

νk∏
ik=1

jk(p(ik)
k,1 , · · · , p

(ik)
k,k ). (2.2.52)

This proves that the generating functional receives contribution from all diagrams with
sphere topology in the large N limit. So it contains also non-planar contributions, because
in its expansion the only important topological property is the genus. This is due to the fact
that the operators jk, which contain the contribution of boundaries to the weight factor, are
invariant in the large N expansion.

Anyway, when taking the derivatives with respect to Jij of F [J ] in order to compute
correlation functions, the powers of N contained in the source operators explicitly appear
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again, so that all the non-planar amplitudes are suppressed with respect to the planar ones.
The application of this formalism to the generator of connected and amputated diagrams

is straightforward. This will be important in the next section for the computation of the
Wilsonian action of the theory and of its evolution along the RG flow.

2.3. Wilsonian action and RG flow
In this section we apply WRG to the scalar matrix theory considered in the previous section.
In particular we study the RG equation in the large N expansion, noting that a closed RG
flow still exists in this limit, as shown by Becchi, Giusto and Imbimbo in [16].

Let us consider the action defined in (2.2.6), which is now treated as the bare action.
Hence we have to introduce the UV cut-off into the propagator and we do so introducing
the scale t0 := Λ−2

0 , so that the kinetic term becomes:

1
2

∫
ddx tr (∂Φ)|2t0 = −1

2

∫
ddx tr (Φ �|t0 Φ) = 1

2

∫
ddk

(2π)dP
−1
t0 (k) trΦkΦ−k, (2.3.1)

where �|t0 is the d’Alembert operator with a cut-off t0, explicitly defined in momentum
space by:

Pt0(k) := K(t0k2)
k2 , (2.3.2)

which is the propagator with cut-off t0, where the function K is the same defined for (1.1.3).
Through this definition the bare action becomes:

S0[Φ] = 1
2

∫
ddk

(2π)dP
−1
t0 (k) trΦkΦ−k − S(0)

int[Φ], (2.3.3)

where:
S(0)
int[Φ] =

∫
ddx

∑
p

λp trΦp(x), (2.3.4)

is the bare interaction term, so that the whole action is single-trace5.
Proceeding along the RG flow, S0 is replaced by an effective action St defined at the

scale t := Λ−2 ≤ t0, whose interaction term is the Wilsonian action:

St[Φ] = 1
2

∫
ddk

(2π)dP
−1
t (k) trΦkΦ−k −NHt[Φ], (2.3.5)

where Pt is the propagator with cut-off t and Ht is the Wilsonian action. Since Ht is also
the generator of connected amputated diagrams of the bare theory with double cut-off, we

5An operator is called single-trace if it is proportional to a trace of some product of fields. Hence a single-
trace coupling is the parameter associated to a single-trace operator and a functional is called single-trace if
it is made of single-trace operators.
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can consider the functional:

e−N
2Ft,t0 [J ] =N

∫
DΦ e

−N
(

1
2

∫
ddk

(2π)d
P
t0
t

−1
trΦkΦ−k−S

(0)
int [Φ]−

∫
ddk

(2π)d
tr JkΦ−k

)
:=N

∫
DΦ e−S

t0
t [Φ,J ],

(2.3.6)

which is the generator of connected diagrams with double cut-off, where J is the source and
P t0t is the propagator with double cut-off, defined in the same way as (1.2.16). Moreover
the normalization term N is:

N =
(
π detP t0t

N

)−N2
2
.

Defining ϕk := P t0t (k)Jk we can recall the connection between Wilsonian action and gener-
ating functional (1.2.24), so that:

Ht[ϕ] = −Ft,t0 [P t0t
−1
ϕ]− 1

2N

∫
ddk

(2π)dP
t0
t
−1(k) trϕkϕ−k. (2.3.7)

Taking the derivative with respect to t of this equation we have:

∂tHt[ϕ] = −∂tFt,t0 [P t0t
−1
ϕ] + 1

2N

∫
ddk

(2π)d
∂tP

t0
t (k)

P t0t (k)
trϕkϕ−k. (2.3.8)

Computing the derivatives of Ft,t0 and writing them in terms of Ht using (2.3.7), one
can obtain the RG equation for the Wilsonian action. Therefore we can start doing so
considering:

〈O(k)〉ϕ :=
∫
DΦO(k) e−S

t0
t [Φ,ϕ]∫

DΦ e−S
t0
t [Φ,ϕ]

, (2.3.9)

which is a sort of correlator where the source ϕ is not switched off. In such a way we have:

∂tFt,t0 = − 1
N2

∂tN
N
− 1

2N

∫
ddk

(2π)d
∂tP

t0
t

P t0t
2 〈trΦkΦ−k〉ϕ

+ 1
N

∫
ddk

(2π)d
∂tP

t0
t

P t0t
2 〈trϕkΦ−k〉ϕ .

(2.3.10)

Now we have to evaluate every single piece of the second member of the last equation. Let
us start from the first one:

∂tN
N

= N−1∂t

(
π detP t0t

N

)−N2
2

= −N
2

2
∂t detP t0t
detP t0t

= −N
2

2 ∂t log
(
detP t0t

)
, (2.3.11)

thus detP t0t is a functional determinant whose derivative can be computed using a property
which connects it to the functional trace:

detP t0t = exp
(
Tr logP t0t

)
,
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where the functional trace is represented by the symbol Tr to distinguish it from the ordinary
matrix trace tr. In such a way:

∂t log
(
detP t0t

)
= ∂tTr

(
logP t0t

)
=
∫

ddk

(2π)d
∂tP

t0
t (k)

P t0t (k)
, (2.3.12)

thus:
− 1
N2

∂tN
N

= 1
2

∫
ddk

(2π)d
∂tP

t0
t (k)

P t0t (k)
. (2.3.13)

Considering the other two terms in (2.3.8) and taking the derivatives with respect to ϕk of
e−N

2Ft,t0 , we can show that:

〈trΦkΦ−k〉ϕ = −P t0t
2(k)tr δ2Ft,t0

δϕk δϕ−k
+N2P t0t

2(k)tr δFt,t0
δϕk

δFt,t0
δϕ−k

〈trϕkΦ−k〉ϕ = −NP t0t (k)trϕk
δFt,t0
δϕk

.

At this point, inserting these results in (2.3.8), we have:

∂tHt =− 1
2

∫
∂tP

t0
t

P t0t
− 1

2N

∫
∂tP

t0
t tr δ2Ft,t0

δϕk δϕ−k

+ N

2

∫
∂tP

t0
t tr δFt,t0

δϕk

δFt,t0
δϕ−k

+
∫
∂tP

t0
t

P t0t
trϕk

δFt,t0
δϕk

+ 1
2N

∫
∂tP

t0
t

P t0t
trϕkϕ−k.

(2.3.14)

Using (2.3.7) we can rewrite the derivatives of Ft,t0 in terms of those of Ht:

δFt,t0
δϕk

= −δHt
δϕk
− 1
N
P t0t
−1(k)ϕ−k, (2.3.15)

thus:

δ2Ft,t0
δϕk δϕ−k

= − δ2Ht
δϕk δϕ−k

− 1
N

δP t0t
−1(k)ϕ−k
δϕ−k

(2.3.16)

δFt,t0
δϕk

δFt,t0
δϕ−k

= δHt
δϕk

δHt
δϕ−k

+ 1
N
P t0t
−1
(
δHt
δϕk

ϕk + ϕ−k
δHt
δϕ−k

)
+ 1
N2P

t0
t
−2
ϕkϕ−k, (2.3.17)

so (2.3.14) becomes:

∂tHt = −1
2

∫
∂tP

t0
t

P t0t
+ 1

2N

∫
∂tP

t0
t tr δ2Ht

δϕk δϕ−k

+ 1
2N2

∫
∂tP

t0
t tr δP

t0
t
−1(k)ϕ−k
δϕ−k

+ N

2

∫
∂tP

t0
t tr δHt

δϕk

δHt
δϕ−k

+
∫
∂tP

t0
t

P t0t
trϕk

δHt
δϕk

+ 1
2N

∫
∂tP

t0
t

P t0t
2 trϕkϕ−k −

∫
∂tP

t0
t

P t0t
trϕk

δHt
δϕk
− 1

2N

∫
∂tP

t0
t

P t0t
2 trϕkϕ−k.

In such a way the terms proportional to trϕ2 and trϕ δHtδϕ cancels out, whereas the field
independent terms proportional to

∫
∂tP

t0
t /P

t0
t can be reabsorbed and neglected as we did
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in (1.2.10). Hence we have:

∂tHt =
∫

ddk

(2π)d∂tP
t0
t (k)

[ 1
2N tr δ2Ht

δϕk δϕ−k
+ N

2 tr δHt
δϕk

δHt
δϕ−k

]
, (2.3.18)

which is the WPE for the scalar matrix theory with UV cut-off t0, indeed it has the same
structure of the equation (1.2.14) we have found in chapter 1.

Since we are interested in the large N limit of the theory, we realize that the term
proportional to the second derivative of Ht in (2.3.18) is subleading with respect to the other
one. Thus one may expect that in such limit only the term proportional to

( δHt
δϕ

)2 survives.
This is not true because the second derivative term actually produces some contribution of
the same order as the leading term. This is due to the fact that the equation is written
in terms of the matrices ϕ, which are not invariant when N increases. Thus, in order
to analyze what happens to (2.3.18) in the large N expansion, we have to use invariant
operators defined as:

Ym(p1, · · · , pm) := tr (ϕp1 · · ·ϕpm)
N

. (2.3.19)

Hence we can rewrite the functional derivatives of Ht using the chain rule:

δHt
δϕk

=
∑
m

∫
ddp1
(2π)d · · ·

ddpm
(2π)d

δHt
δYm(p1, · · · , pm)

δYm(p1, · · · , pm)
δϕk

. (2.3.20)

In such a way the matrix structure is in the factor δYm
δϕ , which reads:

δYm(p1, · · · , pm)
δϕk

= 1
N

δtr
(
ϕp1 · · ·ϕpm

)
δϕk

= 1
N

m∑
i=1

(2π)dδd(k − pi)ϕpi+1 · · ·ϕpmϕp1 · · ·ϕpi−1 .

(2.3.21)

Thus, redefining integration momenta in a suitable way, we can perform the sum over i so
that we have:

δHt
δϕk

=
∑
m

m

∫
ddp1
(2π)d · · ·

ddpm−1
(2π)d

ϕp1 · · ·ϕpm−1

N

δHt
δYm(k, p1, · · · , pm−1) . (2.3.22)

Using this relation we can rewrite the first and the second terms in (2.3.18):

tr δHt
δϕk

δHt
δϕ−k

=
∑
m,n

mn

∫
ddp1
(2π)d · · ·

ddpm−1
(2π)d

ddq1
(2π)d · · ·

ddqn−1
(2π)d

×
tr
(
ϕp1 · · ·ϕpm−1ϕq1 · · ·ϕqn−1

)
N2

δHt
δYm(k, pα)

δHt
δYn(−k, qβ) ,
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and:

tr δ2Ht
δϕk δϕ−k

=
∑
m,n

mn

∫
ddp1
(2π)d · · ·

ddpm−1
(2π)d

ddq1
(2π)d · · ·

ddqn−1
(2π)d

×
tr
(
ϕp1 · · ·ϕpm−1ϕq1 · · ·ϕqn−1

)
N2

δ2Ht
δYm(k, pα) δYn(−k, qβ)

+
∑
m

m

∫
ddp1
(2π)d · · ·

ddpm−1
(2π)d

1
N

tr
(
δϕp1 · · ·ϕpm−1

δϕ−k

)
δHt

δYm(k, pα) ,

where, in the argument of Ym in the derivatives of Ht, pα and qβ represent respectively the
dependence on p1, · · · , pm−1 and q1, · · · , qn−1. Moreover:

δϕp1 · · ·ϕpm−1

δϕ−k
=

m−1∑
i=1

(2π)dδd(k + pi)tr
(
ϕp1 · · ·ϕpi−1

)
ϕpi+1 · · ·ϕpm−1 ,

which allows us to replace the traces with the operators Ym:

N

2 tr δHt
δϕk

δHt
δϕ−k

= 1
2
∑
m,n

mn

∫
ddp1
(2π)d · · ·

ddpm−1
(2π)d

ddq1
(2π)d · · ·

ddqn−1
(2π)d

× Ym+n−2(pα, qβ) δHt
δYm(k, pα)

δHt
δYn(−k, qβ) , (2.3.23)

and:

1
2N tr δ2Ht

δϕk δϕ−k
= 1

2N2

∑
m,n

mn

∫
ddp1
(2π)d · · ·

ddpm−1
(2π)d

ddq1
(2π)d · · ·

ddqn−1
(2π)d

× Ym+n−2(pα, qβ) δ2Ht
δYm(k, pα) δYn(−k, qβ) + 1

2
∑
m

m−1∑
i=1

m

∫
ddp1
(2π)d · · ·

ddpm−1
(2π)d

× (2π)dδd(k + pi)Yi−1(p1, · · · , pi−1)Ym−i−1(pi+1, · · · , pm−1) δHt
δYm(k, pα) . (2.3.24)

This form makes clear that the term proportional to δ2Ht
δYm δYn

is suppressed with respect to
(2.3.23), whereas the last term in (2.3.24) is of the same order. For this reason, in the large
N expansion, the RG equation (2.3.18) becomes:

∂tHt = 1
2

∫
ddk

(2π)d∂tP
t0
t (k)

[∑
m,n

mn

∫
ddp1
(2π)d · · ·

ddpm−1
(2π)d

ddq1
(2π)d · · ·

ddqn−1
(2π)d

× Ym+n−2(pα, qβ) δHt
δYm(k, pα)

δHt
δYn(−k, qβ) +

∑
m

m−1∑
i=1

m

∫
ddp1
(2π)d · · ·

ddpm−1
(2π)d

× (2π)dδd(k + pi)Yi−1(p1, · · · , pi−1)Ym−i−1(pi+1, · · · , pm−1) δHt
δYm(k, pα)

]
. (2.3.25)

This is the RG equation of Ht in the planar limit. It is a Hamilton-Jacobi type equation
which describes a system with a t-dependent “hamiltonian” of the sources Ym.
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This equation produces a closed RG flow in the large N limit which differs from the ordi-
nary one. Indeed, though the first term in (2.3.25) is exactly the classical term proportional
to
( δHt
δϕ

)2 already present in the ordinary equation (2.3.18), the second term, proportional
to δHt

δYm
, is a quantum loop term completely different from that, proportional to δ2Ht

δϕ2 , in
the ordinary WPE. The presence of the latter term is the crucial point, because it leads to
the creation of multi-trace terms6 in Ht associated to non-planar amplitudes with sphere
topology.

∂t =

Ṗ
t0
t

+ Ṗ
t0
t

Figure 2.3.1. The planar RG equation applied to the contribution to Ht coming from a
planar diagram

Considering a diagrammatic argument, we can show that (2.3.25) actually contains con-
tributions coming from non-planar diagrams. Since Ht is the generator of connected ampu-
tated diagrams with double cut-off, we can describe its evolution considering the action of
the derivative with respect to t on graphs composing it. The effect of the application of ∂t
on these graphs is that one internal propagator P t0t is cut forming two new external legs,
later connected by its derivative ∂tP t0t = Ṗ t0t . Therefore, according to the positions of the
cut propagator inside a diagram, there are different possible situations. Let us show this
fact through the example of the planar diagram in Figure 2.3.1. Here the derivative ∂t can
cut one of the three internal propagators, producing two different diagrams. The first graph
in the r.h.s. of such figure represents the situation where ∂t cuts the upper or, equivalently,
the lower propagator. In such a way all the external legs, both the new ones and the original
ones, are attached to the same line, thus the diagram is planar. The second graph in the
r.h.s. of Figure 2.3.1 represents the situation where ∂t cuts the middle propagator, therefore
the new external legs are attached to a line which is different from that of the original one
and so the diagram is non-planar. This shows that the evolution of Ht in the planar limit is
influenced also by non-planar diagrams. Moreover, since every line inside a graph produces
the trace of as many sources as external legs attached to it, these non-planar amplitudes
are proportional to multi-trace terms and the presence of them in the planar RG equation
means that multi-trace interactions are produced in Ht.

This fact is possible only because we have written the theory in a very suitable way, using
invariant composite operators Ym. By this definition the weight 1/N of every internal line

6A multi-trace term is an operator proportional to a product of different traces of products of fields.
Thus a term like O ∼ trφptrφq is called double-trace operator because it is the product of two traces. The
couplings associated to such terms are called multi-trace couplings.
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containing external legs, i.e. of every trace, is absorbed into Ym, so that the contribution
of every diagram depends only on the genus. For this reason both planar and non-planar
diagrams with the same genus produce contributions of the same order to (2.3.25). Therefore
the evolution of Ht along the RG flow in the large N limit is influenced by all diagrams
with sphere topology, both planar and non-planar. In particular, non-planar amplitudes
are responsible for the creation of multi-trace interactions, even though starting only from
single-trace terms.

These facts can be remarked also using functional methods. Indeed, sinceHt is connected
to the generator of connected diagrams Ft,t0 by (2.3.7), we can expand Ht through the
amplitudes of its diagrams:

Ht[ϕ] =
∑
{νk}

∫ ∏
k,ik,jk

ddp
(ik)
k,jk

δd
( ∑
k,ik,jk

p
(ik)
k,jk

)
ht
(
{νk}; p(ik)

k,jk

)
×
∏
k

νk∏
ik=1

Yk(p(ik)
k,1 , · · · , p

(ik)
k,k ), (2.3.26)

where ht
(
{νk}; p(ik)

k,jk

)
is the amplitude of all connected amputated diagrams with structure

{νk} and momenta p(ik)
k,jk

. Therefore, such amplitudes are defined in the same way as the
amplitudes f

(
{νk}; pi

)
of the functional Ft,t0 [J ], thus they contain only the contribution

coming from the genus of their diagram and so they can be expanded as:

ht
(
{νk}; pi

)
=
∑
g

h(g)
t

(
{νk}; pi

)
N2g , (2.3.27)

so that:
Ht[ϕ] =

∑
g

H(g)
t [ϕ]
N2g , (2.3.28)

where H(g)
t is the contribution of all diagrams of genus g, thus it reads:

H(g)
t [ϕ] =

∑
{νk}

∫ ∏
k,ik,jk

ddp
(ik)
k,jk

δd
( ∑
k,ik,jk

p
(ik)
k,jk

)
h(g)
t

(
{νk}; p(ik)

k,jk

)
×
∏
k

νk∏
ik=1

Yk(p(ik)
k,1 , · · · , p

(ik)
k,k ). (2.3.29)

This shows that the planar generatorH(0)
t receives contribution from all diagrams with sphere

topology, both planar and non-planar, exactly as the generator of connected diagrams Ft,t0 .
In conclusion we have seen that the RG flow of a d-dimensional matrix theory with UV

cut-off is described in the large N limit by a Hamilton-Jacobi equation (2.3.25), which differs
from the ordinary WPE in the quantum term. This equation generates a closed RG flow,
which involves both planar and non-planar diagrams with sphere topology and along which
multi-trace interactions are produced in the Wilsonian action, even though starting from a
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single-trace bare action.
This result is important because it can be connected to the RG equations of the gravity

dual in the AdSd+1 space obtained from holography. Therefore in the next chapter we will
develop the AdS/CFT correspondence, arising from the holographic conjecture, in order to
describe the holographic Wilsonian renormalization. The latter enables us to obtain RG
equations in AdS space and to translate them into the QFT-side of the correspondence.



CHAPTER 3

The AdS/CFT Correspondence

Gauge/Gravity duality is one of the most important results coming from sting theory in the
last twenty years and it describes a duality between theories with gravity and theories with-
out gravity. The AdS/CFT correspondence represents a specific case of such duality, which
concerns gravity theories in Anti-de Sitter space (AdS) and field theories with conformal
invariance.

The first explicit realization of AdS/CFT correspondence is the equivalence between type
IIB string theory (and also supergravity) defined on AdS5 × S5 and N = 4 super Yang-
Mills theory in four dimensions, proposed by Maldacena in [17]. Other works [18, 19] have
developed a general prescription which determines the duality between a gravity theory in
a d+ 1-dimensional AdS space and a local conformal field theory (CFT) in d dimensions.

The AdS/CFT correspondence is related to an important physical idea on quantum grav-
ity: holography [20, 21]. This idea comes from the thermodynamics of black holes. Indeed
it has been shown that a black hole is a thermodynamic system where the temperature is re-
lated to the black body emission, whereas the entropy depends on the area A of the horizon
of the black hole through S = A/4G, where G is the gravitational constant. Since entropy
determines the number of degrees of freedom (d.o.f.’s), the latter equation implies that in
a d + 1-dimensional gravity the number of d.o.f.’s contained in a box depends on the area
of such box, i.e. on a d-dimensional object. Instead, in a local field theory the number of
degrees of freedom in a box depends on the volume. Therefore, since an area in d+1 dimen-
sions is the same as a volume in d dimensions, this means that a gravity theory has the same
number of degrees of freedom of a local field theory in one less dimension. This situation is
analogous to an hologram, which provides a 3D picture from the information stored in a 2D
image, thus this phenomenon is referred to as holography. The AdS/CFT correspondence
is a realization of holography since it equalize a theory of gravity in d + 1-dimensions to a
local field theory in d-dimensions.

53
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3.1. The Anti-de Sitter space
Before staring with the proper development of the AdS/CFT correspondence, let us focus
on the Anti-de Sitter space in general d+ 1 dimensions (AdSd+1).

From the physical point of view AdSd+1 is a maximally symmetric solution of the Einstein
equations in d+ 1-dimensions with negative cosmological constant Λc < 0:

Rmn −
1
2gmnR = −Λc

2 gmn, (3.1.1)

where m,n = 0, 1, · · · , d. From this equation we have:

R = d+ 1
d− 1Λc Rmn = Λc

d− 1gmn ,

hence the maximally symmetric solution is represented by the Riemann tensor:

Rmnpq = Λc
d(d− 1)

(
gmpgnq − gmqgnp

)
. (3.1.2)

This solution can be parametrized as the subspace of R2,d with signature (−,−,+,+ · · · ,+),
determined by the quadratic equation:

−X2
−1 −X2

0 +
d∑
i=0

X2
i = −R2, (3.1.3)

with X−1 > 0 and:
R−2 = − Λc

d(d− 1) ,

where R is the so-called AdS radius.
The equivalent maximally symmetric solution in Euclidean signature is the subspace of

R1,d+1 solving the hyperboloid equation:

−X2
−1 +X2

0 +
d∑
i=0

X2
i = −R2. (3.1.4)

Therefore we can easily pass from the Minkowskian to the Euclidean solution with a Wick
rotation: X0 7→ −iX0. This operation is very useful since one typically prefers to work in
Euclidean signature. Thus, henceforth we will work on the Euclidean version of AdSd+1 and
we will set R = 1 for simplicity.

The coordinates X0, X1, · · · , Xd−1 are usually represented as a vector Xµ, so that the
Minsowskian metric of R1,d+1 induces a metric on AdSd+1 of the form:

ds2 = −dX2
−1 + dX2

d + dXµdX
µ, (3.1.5)
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where dXµdX
µ = δµνdXµdXν . Being X−1 related to Xd and Xµ through (3.1.4), we can

parametrize the space by (Xµ, Xd) ∈ Rd+1. This space has a boundary which can be reached
sending XI (with I = −1, µ, d) to infinity with the same rate, i.e. keeping fixed the ratios
XI/XJ , and identifying points according to the equivalence relation XI ∼ sXI , with s ∈ R+.
In such a way from (3.1.4) for large XI we have:

X2
−1 = X2

d +XµX
µ.

Rescaling XI with s = 1/X−1, so that X−1 ∼ 1, we have:

X2
d +XµX

µ = 1. (3.1.6)

This equation defines the boundary of AdSd+1 and shows that such boundary has the topol-
ogy of a d-dimensional sphere Sd.

A suitable system of coordinates on AdSd+1 can be defined by:

z := 1
X−1 +Xd

xµ := Xµ

X−1 +Xd
, (3.1.7)

where z > 0 is the so-called radial coordinate. Thus:

X−1Xd = 1
z

Xd −X−1 = −z
2 + x2

z
Xµ = xµ

z
,

where x2 = xµx
µ = δµνx

µxν . Therefore the metric becomes:

ds2 = gmndx
mdxn =

(
dz2 + dxµdx

µ
)

z2 , (3.1.8)

where xm = (z, xµ) and gmn = z−2δmn. This is a very useful definition of coordinates because
the metric gmn is diagonal and it depends only on the radial coordinate z. Moreover, here
it is immediate to realize that AdSd+1 admits d-dimensional subspaces z = r ∈ R+ which
are Euclidean slices orthogonal to the radial axis z with induced metric:

hµν = δµν
r2 . (3.1.9)

In these coordinates the boundary is parametrized by the points (z = 0, x), reached for X−1,
Xµ and Xd going to infinity with the same rate and X−1 6= Xd, plus (z = +∞, x), which
corresponds to the case with X−1 = Xd. Therefore it corresponds to the d-dimensional
Euclidean space plus the “point at infinity” z = +∞1, which means that it has the topology
of the sphere Sd.

1The proper “point at infinity” of this space is (z = 0, x = ∞), but the isometry which maps
‖x‖d+1 7→ ‖x‖

−1
d+1 shows that both (z = 0, x = ∞) and (z = +∞, x) are mapped to the same point

(z = 0, x = 0), thus they can be identified.
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The metric (3.1.8) is singular at z = 0, thus it cannot induce a metric on the boundary.
For this reason one has to consider a positive function f on AdSd+1 such that f ∼

z 7→0
z g(x),

i.e. that has a first order zero on the boundary, and redefine the metric as:

ds̃2 := f2ds2. (3.1.10)

This new metric for AdSd+1 is finite at z = 0, thus it can induce a metric on the boundary.
The choice of the function f is non-unique because we can always take this transformation:

f 7→ ewf,

with a smooth function w, that changes the metric:

ds̃2 7→ e2wds̃2.

This means that the metric ds̃2 is defined up to conformal transformations parametrized
by the function w. Therefore the metric on AdSd+1 defines a conformal structure on the
boundary.

Since AdSd+1 is a subspace of R1,d+1 defined through (3.1.4), its isometries are the
isometries of R1,d+1, which form the group SO(1, d + 1). Moreover the latter is also the
conformal group of the boundary since it has the topology of the sphere Sd. The action of
SO(1, d+ 1) on AdSd+1 can be expressed in the basis (z, xµ) through:

z 7→ λz xµ 7→ λxµ λ ∈ R+, (3.1.11)

which is a dilatation. Furthermore, the translations are given by:

z 7→ z xµ 7→ xµ + aµ aµ ∈ Rd. (3.1.12)

The subgroup SO(d) generates rotations:

z 7→ z xµ 7→ Λµνxν , (3.1.13)

with Λµν ∈ SO(d), whereas the special conformal transformations are given by:

z 7→ z

1− 2b · x+ b2(z2 + x2) xµ 7→
xµ − bµ(z2 + x2)

1− 2b · x+ b2(z2 + x2) (3.1.14)

with bµ ∈ Rd.
In addition to these transformations we can extend the isometry group SO(1, d + 1)

including a transformation non-connected with the identity, called inversion:

z 7→ z

z2 + x2 xµ 7→
xµ

z2 + x2 . (3.1.15)
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In such a way, including the inversion, the isometry group becomes O(1, d+ 1). In this form
we can easily see that for z 7→ 0 these transformations reduce to the conformal transforma-
tions on the boundary.

3.2. The definition of the correspondence
In the previous section we have studied the properties of the AdS space, now we explicitly
define the AdS/CFT correspondence following the method proposed by Witten in [19].

The duality determines the equivalence between a gravity theory (supergravity/string
theory) in d + 1-dimensional AdS space2 (bulk theory) and a local CFT in d-dimensions.
Its definition requires a map which relates quantities of the two theories and a prescription
which specifies the equivalence between them.

Therefore consider the action of the bulk theory SAdS [Φ], where the fields are collectively
denoted by Φ = (φ,Am, gmn, . . .). To have an AdSd+1 vacuum for SAdS let us assume that the
scalar potential has a negative minimum so that it creates a negative cosmological constant.
Now focus on the behavior of the theory near the AdS boundary at z = 0. Define a set of
boundary conditions for the fields which determines their behavior near the boundary:

Φ(z, x) ∼
z 7→0

f(z)Φ0(x), (3.2.1)

where f is a function of z which represents the profile of the field along the radial axis of
AdSd+1 whose form is determined by the solutions of the equation of motion for small z,
whereas Φ0 is an arbitrary function of Rd which represents the boundary value of Φ.

The partition function of the theory is the functional integral defined with boundary
conditions (3.2.1), thus it reads:

ZAdS =
∫

Φ∼fΦ0
DΦ e−SAdS [Φ]. (3.2.2)

At this point, we define the map between the two theories stating that any field Φ in the
bulk is associated to a conformal operator O of the dual CFT, such that it couples to Φ0

through the term
∫

Φ0O. Therefore the prescription which defines the equivalence between
the two theories is:

〈
e
∫

Φ0O
〉
CFT

= ZAdS =
∫

Φ∼fΦ0
DΦ e−SAdS [Φ], (3.2.3)

which represents the identification of the bulk partition function with boundary state spec-
ified by Φ0 and the generating functional of the d-dimensional CFT, where the boundary
value Φ0 represents the source of the dual operator O.

2To be precise the vacuum of such theory should be AdSd+1 ×M , with M some compact manifold. For
simplicity we will always neglect M and refer only to AdSd+1.
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Since the isometry group ofAdSd+1 coincides with the conformal group of its d-dimensional
boundary, we can think of the dual CFT as “living” on the boundary of AdSd+1, so it will
be referred to as the boundary CFT.

Even though the precise map between bulk fields and boundary operators depends on the
explicit realizations of the duality, some general aspects can be understood using symmetries.
Indeed the source term

∫
Φ0O must be invariant under conformal transformations, therefore

the O(1, d+ 1) quantum number of O, such as the scaling dimension, have to be dependent
on the transformation properties of Φ0. In particular, if Φ is a scalar field, then the dual
operator O has to be a scalar operator, so that the source term is invariant. For the same
reason if Φ is a vector or tensor field, then O is a vector or tensor operator. Moreover, let
us mention another important aspect related to symmetries: gauge symmetries in the bulk
corresponds to global symmetries in the boundary theory. This implies that bulk gauge fields
Aa are dual to the conserved currents Ja of the corresponding global symmetry. Particularly
important is the case of the conserved energy-momentum tensor in the boundary theory.
Indeed, being a symmetric rank 2 tensor, it corresponds to the metric tensor in the bulk
theory, implying that the latter is characterized by invariance under diffeomorphism. For
this reason the bulk theory is expected to be a gravity theory.

The equation (3.2.3) represents a general prescription for the duality, defined without
specifying the complete form of bulk theory and local boundary CFT. However the de-
velopment of most properties of the correspondence is explicitly obtained in string theory,
considering the original duality between type IIB string theory compactified on AdS5 × S5

and N = 4 super Yang-Mills theory in four dimensions in [17]. Indeed, the identification of
the partition functions of the two theories implies that their parameters are related by:

(
R

ls

)4
= g2

YMN, (3.2.4)

where, on the bulk-side, R is the AdS radius and ls is the string scale length which determines
the size of the fluctuations of the string world-sheet, whereas, on the CFT-side, gYM is the
gauge coupling and N is the size of the gauge group, so that λ := g2

YMN represents the
’t Hooft coupling of Yang-Mills theory. This relation shows some important aspects of the
duality. First of all the perturbative string regime, where the supergravity approximation
is consistent, is reached when the string fluctuations are small compared to the radius R of
AdSd+1, thus for: (

R

ls

)4
= g2

YMN � 1. (3.2.5)

In such regime the ’t Hooft coupling λ is strong (large ’t Hooft limit), so the boundary
CFT is not in perturbative regime. On the other hand, the request of λ � 1 to reach the
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parturbative regime of the field theory implies that:

g2
YMN =

(
R

ls

)4
� 1, (3.2.6)

which means that the string fluctuation size is greater than R and so string theory is in
non-perturbative regime, where the supergravity approximation breaks down. These facts
make clear that the perturbative field theory regime and the perturbative gravity regime are
incompatible. This does not corresponds to some contradiction in the correspondence, but
represents the fact that the AdS/CFT is a strong-weak duality, which means that, when
one side is weakly coupled, the other one is strongly coupled and viceversa.

Moreover, another crucial aspect concerns the classical gravity limit. Indeed another
property of the duality is that the string coupling constant gs, which controls the loop
expansion in the bulk theory, is related to the gauge coupling of the boundary field theory
through gs ∼ g2

YM . Therefore in the supergravity approximation regime (3.2.5) we have:

λ = g2
YMN ∼ gsN � 1. (3.2.7)

This means that, being the ’t Hooft coupling λ fixed by (3.2.5), taking the classical gravity
limit gs 7→ 0 necessarily implies that N 7→ +∞. Therefore the classical gravity regime of
the bulk theory is dual to the large N limit of the boundary field theory.

In such limit the bulk action is evaluated on the solutions of the supergravity equations
of motion (on-shell). Owing to the boundary conditions (3.2.1), these solutions Φ behave
as Φ ∼ fΦ0 for z 7→ 0. However, the e.o.m. is a second order equation, so it requires two
conditions to be solved. In addition to (3.2.1), usually one imposes an additional regularity
condition at z = +∞. This is useful because it has been shown that such condition makes
sure that, given the boundary condition specified by Φ0, the solution is unique and extends
over all the AdS space. This means that Φ can be completely written in terms of Φ0 and so
the on-shell bulk action is a functional of Φ0. In such a way the gravity partition function
in the classical limit reduces to:

ZAdS |Φ̄ = e−SAdS [Φ0]. (3.2.8)

Therefore the prescription (3.2.3) reduces to a relation between the classical bulk theory
and the large N dual CFT: 〈

e
∫

Φ0O
〉
CFT

= e−SAdS [Φ0], (3.2.9)

where the l.h.s. represents the large N generating functional of the correlation functions of
the operator O of the boundary CFT. This equation implies that the tree level bulk action is
identified with the generator of the dual field theory. Owing to this fact, we can use directly
SAdS to compute the correlation functions of the operator O dual to the field Φ. Indeed
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from (3.2.9) we have that:

〈O(x1) · · · O(xn)〉CFT = − δnSAdS [Φ0]
δΦ0(x1) · · · δΦ0(xn)

∣∣∣∣
Φ0=0

, (3.2.10)

which means that we can evaluate holographically the large N CFT correlation functions
through the derivatives of the tree level bulk action with respect to the boundary value Φ0,
eventually setting Φ0 = 0 (holographic method).

The conformal invariance of the boundary field theory fixes the form of the 2- and 3-point
function of a conformal operator O of dimension ∆ to:

〈O(x1)O(x2)〉CFT = c

|x1 − x2|2∆ (3.2.11a)

〈O(x1)O(x2)O(x3)〉CFT = d

|x1 − x2|∆|x1 − x3|∆|x2 − x3|∆
. (3.2.11b)

Therefore, computing the correlation functions with the holographic relation (3.2.10), one
must ultimately yield exactly this result.

3.3. Dynamics of a scalar field in the bulk
In this part we develop more concrete aspects of the AdS/CFT correspondence through the
study of the dynamics of fields in AdSd+1.

Let us consider the simple example of a real massive scalar field φ(z, x) in AdSd+1 with
action:

SAdS [φ] =
∫
dzddx

√
g

[1
2g

mn∂mφ∂nφ+ 1
2m

2φ2 + V (φ)
]
, (3.3.1)

where we neglect the back-reaction of the field on the metric and we fix gmn to be the
AdSd+1 metric (3.1.8), so that √g =

√
det gmn = z−1−d.

The equation of motion is:

(
−� +m2)φ+ V ′(φ) = 0, (3.3.2)

where:
�φ = 1

√
g
∂m
(√
ggmn∂nφ

)
, (3.3.3)

which is the d+ 1-dimensional d’Alembert operator (in Euclidean coordinates it reduces to
a Laplacian operator), whereas gmn is the inverse of the metric, thus it reads gmn = z2δmn.
In such a way, the e.o.m. can be written as:

z2∂2
zφ+ (1− d)z∂zφ+ z2∂2

µφ−m2φ− V ′(φ) = 0. (3.3.4)
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In order to determine the boundary value of φ we may restrict to the linearized (free)
equation of motion and treat the contributions coming from the interaction term V (φ) as
perturbations which do not affect the leading term of the solution for z 7→ 0. Thus we have
to solve:

z2∂2
zφ+ (1− d)z∂zφ+ z2∂2

µφ−m2φ = 0, (3.3.5)

This equation can be solved using Bessel functions. However, when z 7→ 0 the x-dependence
becomes negligible because the term z2∂2

µφ is of order z2 whereas all the other terms are of
order z0 = 1. Hence near the boundary the solution behaves as φ ∼ z∆, where ∆ satisfies
the quadratic equation:

∆(∆− d)−m2 = 0. (3.3.6)

The roots of this equation are:

∆± = d

2 ± ν , ν =

√
d2

4 +m2, (3.3.7)

so that the boundary behavior of the solution is of the type:

φ ∼ Az∆− +Bz∆+ , (3.3.8)

with A and B imposed by initial conditions. Now, restricting to values of the mass such that
ν is real we have that ∆− ≤ ∆+, with ∆− = ∆+ = d/2 only for m2 = −d2/4. Therefore the
boundary behavior of φ is dominated by the term scaling as z∆− , so the boundary conditions
are specified by:

φ(z, x) ∼
z 7→0

z∆−φ0(x), (3.3.9)

where the arbitrary function φ0(x) is the boundary value representing the source of the dual
operator O in the boundary CFT.

Imposing the regularity conditions at z = +∞ the solution can be uniquely specified on
the whole AdSd+1 by the boundary value. In such a way we can expand it as:

φ(z, x) = z∆−
(
φ0(x) +

+∞∑
k=1

z2kφ2k(x)
)

+ z∆+

(
A(x) +

+∞∑
k=0

z2kA2k(x)
)
, (3.3.10)

where the functions φ2k can be recursively determined in terms of φ0 by the relation:

φ2k =
∂2
µφ2(k−1)

2k(d− 2∆− − 2k) , (3.3.11)

whereas A and A2k depend on the regularity conditions and can be computed only solving
exactly the equation of motion.

Turning back to the restriction of the mass values only on that which provide real solu-
tions of (3.3.6), we note that such condition admits the possibility to have m2 < 0. This
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implies the possibility to have tachyons in the AdS theory. At first sight this may be puz-
zling, in actual fact a theory in AdS space has more “freedom” on the definition of the
mass. More precisely, one can choose the mass such that m2 < 0 without generating in-
stability because, as proved by [24], the boundary conditions force the kinetic term not to
be vanishing at infinity. This implies more loose stability conditions, which require that m2

is greater than some negative bound, instead of strictly non-negative. This is called the
Breitenlohner-Freedman bound, and reads:

R2m2 ≥ −d
2

4 , (3.3.12)

where, for once, we have restored the AdS radius R. If m satisfies this condition the energy
is positive definite, hence the presence of tachyons has not to be worrisome.

This implies some important facts connected to whether the mass is positive, null or
negative. Indeed, if −d2/4 ≤ m2 < 0 we have ∆− > 0, therefore φ vanishes at the boundary,
whereas, if m2 = 0 we have the massless case, where ∆− = 0 and so φ approaches to the
finite value φ0 at the boundary. In both cases the definition of the boundary value through
the linearized e.o.m. is justified and self-consistent, therefore the generating functional in
the l.h.s. of (3.2.9) is well-defined.

If, however, m2 > 0 we have ∆− < 0, so φ diverges at the boundary. This means that
the boundary behavior of φ determined through the linearized e.o.m. is not self-consistent
and so we cannot build a well-defined generating functional unless we treat the boundary
value φ0 as infinitesimal.

Avoiding for now these issues, let us suppose the generating functional of connected
correlation functions of O to be determined in a consistent way. Thus the duality states
that it is equivalent to the partition function of the bulk theory:

〈
eN

2
∫
φ0O

〉
CFT

=
∫
φ∼z∆−φ0

Dφ e−κ−2SAdS [φ]. (3.3.13)

In this example we explicitly keep track of the standard normalization of the dual CFT
carrying out a factor N2, where N represents the matrix size of the boundary fields. The
operator O is dual to the bulk scalar field φ, thus it is a scalar operator which have to be
of order O(N0 = 1) so that the source term is of order O(N2). This means that O can
be written as the trace of a product of fields and derivatives of the fields in the boundary
theory with normalization:

O = tr (· · · )
N

. (3.3.14)

On the other side of the duality we explicitly express the gravity coupling κ−2 ∼ 1/GN ,
where GN is the Newton’s gravitational constant. In string theory GN is related to the
string coupling constant by GN ∼ g2

s . Therefore, since through the duality gs ∼ 1/N , we
have that GN ∼ N−2. In such a way κ−2 ∼ N2, which means that the bulk action is of
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the same order O(N2) of the action of the dual CFT. For this reason the classical gravity
limit-large N limit connection in the duality is reached by κ2 7→ 0.

To avoid any confusion, henceforth we will use N2 for quantities of the boundary field
theory and κ−2 for quantities in the bulk.

Now the classical gravity duality implies that the on-shell bulk action is the generator
of connected correlation functions of O in the large N limit of the dual CFT, therefore we
have that: 〈

eN
2
∫
φ0O

〉
CFT

= e−κ
−2SAdS [φ0]. (3.3.15)

The definition of φ0 is arbitrary because it depends on the choice of the coordinate z.
Therefore, performing an isometry one could have a change of coordinates which modifies
φ0. Doing so, since the isometries of AdSd+1 are conformal transformations on the bound-
ary, we can obtain the transformation properties of φ0 under the conformal group. Hence
considering, for example, a dilatation (3.1.11), the bulk scalar field φ must be invariant un-
der such transformation, hence φ′(z′, x′) = φ(z, x). Therefore, using (3.3.9), the boundary
value transforms as:

φ0(x) 7→ φ′0(x′) = λ−∆−φ0(λx), (3.3.16)

which means that φ0 has scaling dimension −∆−, or mass dimension ∆− (henceforth, the
mass dimension will be simply referred to as dimension). Therefore, if we consider the source
term

∫
φ0O of the CFT, we have that the dimension of the dual operator O is:

∆+ = d−∆− = d

2 + ν. (3.3.17)

This means that the mass of the bulk field determines the dimension of the dual operator in
the boundary CFT. Thus, adjusting the latter one can obtain an operator in the dual CFT
of the desired dimension.

3.3.1. Holographic renormalization

In the previous part of the chapter we have seen that a classical gravity theory (supergravity)
in AdSd+1 is equivalent to a local large N field theory on the d-dimensional boundary Sd

of AdSd+1. In particular the fundamental statement (3.2.9) asserts that the tree level bulk
action is the generator of connected correlation functions of the boundary CFT in the
planar limit. However, the duality so defined is affected by divergences. Indeed there are
IR divergences in the on-shell bulk action because, due to the boundary behavior of the
fields, the z-integral diverges as z 7→ 0. This fact makes the prescription (3.3.13) a formal
identification between the two theories, unable to yield finite results.

Anyway, we can see that these divergences in the bulk can be related to UV divergences
in the dual field theory. This is due to the so-called IR/UV connection [23], which states
that the long distance (IR) regime of the bulk theory is connected to the short distance



64 3. The AdS/CFT Correspondence

(UV) regime of the dual field theory. In particular, it has been shown in [23] that a IR
regulator paramenter ε� 1 in the bulk, which shifts the boundary from z = 0 to z = ε, acts
through the duality as a UV cut-off for the correlation functions of the boundary theory for
distances much greater than ε.

Due to this fact we can identify the radial axis in AdSd+1 with the length scale in the
boundary theory. This is supported by the fact that, taking a dilatation (3.1.11) in AdSd+1 ,
we have that z 7→ λz, i.e. the radial coordinate is rescaled by a factor λ, whereas, since
(3.1.11) represents also a conformal transformation on the boundary theory, in the QFT-
side the energy scale Λ is rescaled by Λ 7→ Λ/λ. Therefore we shall make the identification
of the radial coordinate z with the inverse of energy scale Λ of the boundary theory.

This is a very important aspect of the AdS/CFT correspondence because it implies that
the near-to-boundary region (z � 1) of the bulk theory corresponds to the UV regime of
the dual QFT, whereas the interior region (z � 1) of the bulk is connected to the IR regime
of the field theory.

In this subsection we will outline the procedure of holographic renormalization for the
massive scalar field in the bulk introduced above. Thus, first of all let us consider the on-
shell bulk action (3.3.1). Using integration by parts and the fact that φ satisfies the e.o.m.,
we can write it as:

S[φ] =
∫
dzddx

[1
2∂m(√ggmnφ∂nφ) +√g

(
V (φ)− 1

2φV
′(φ)

)]
. (3.3.18)

Now, the first term can be rewritten as:

1
2

∫
dzddx ∂m(√ggmnφ∂nφ) = 1

2

∫
dzddx ∂m(z1−dδmnφ∂nφ)

= 1
2

∫
dzddx

[
∂z(z1−dφ∂zφ) + ∂µ(z1−dδµνφ∂νφ)

]
, (3.3.19)

where, since φ is set to vanish as x goes to infinity, the only surviving term is the derivative
with respect to z, which produces a boundary term:

1
2

∫
dzddx ∂z(z1−dφ∂zφ) = 1

2

[∫
ddx(z1−dφ∂zφ)

∣∣∣∣z=+∞

z=0
= −1

2

∫
ddx

(
z1−dφ∂zφ

∣∣∣
z=0

,

(3.3.20)
because, thanks to the regularity condition imposed at z = +∞ for the solution of the
e.o.m., only the term at z = 0 survive and, in particular, is divergent.

This fact is due to the behavior of the on-shell field approaching the boundary. Therefore,
we can think of introducing a regularization scheme defining a IR cut-off ε0 � 1 on the radial
axis, which shifts the boundary from z = 0 to z = ε0. In such a way we have a regulated
boundary where, as long as we keep ε0 6= 0, there are no divergences. Like in the standard
renormalization method for ordinary QFT, we can proceed evaluating quantities on the
boundary at z = ε0 and eventually send ε0 7→ 0.
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Owing to the regularization procedure, the boundary conditions of φ are now specified
by:

φ(ε0, x) = ε
∆−
0 φ0(x), (3.3.21)

and the action S is regularized to:

Sε0 = −1
2

∫
ddx

(
z1−dφ∂zφ

∣∣∣
z=ε0

+
∫
z>ε0

dzddx
√
g

[
V (φ)− 1

2φV
′(φ)

]
, (3.3.22)

The study of Sε0 enables us to determine the divergent contributions and so to develop a
way to remove them. In order to do so we should insert in the first term of (3.3.22) the
solution of the total e.o.m. (3.3.2). Treating such solution in a perturbative way, we can
expand it as: φ = φ

(0) + φ
(1) + · · · , where φ(0) is the free solution, whereas the other terms

are perturbations coming from the potential. Such corrections acts modifying the terms of
the expansion (3.3.10) of the free solution leaving the structure of the expansion unchanged.
Hence we can express φ through the same expansion (3.3.10), where the coefficients contains
the free contribution plus other perturbative corrections (for example A = A(0) +A(1) + · · · ).
Doing so the boundary term of Sε0 can be expanded as:

(
z1−dφ∂zφ

∣∣∣
z=ε0

= ε
2∆−−d
0

(
φ0 +

∑
k

ε2k0 φ2k
)(

∆−φ0 +
∑
k′

(∆−+2k′)ε2k′0 φ2k′
)

+dφ0A+O(ε0)

= ε
2∆−−d
0

+∞∑
k,k′=0

(∆− + 2k′)ε2k+2k′
0 φ2kφ2k′ + dφ0A+O(ε0), (3.3.23)

where O(ε0) includes non-pathological terms proportional to positive powers of ε0, thus
vanishing as ε0 7→ 0. The divergent terms are those proportional to φ2kφ2k′ which satisfies
k + k′ < (d− 2∆−)/2 = ν, hence we have:

Sdiv = −1
2ε

2∆−−d
0

∫
ddx

∑
k+k′<ν

(∆− + 2k′)ε2k+2k′
0 φ2kφ2k′ , (3.3.24)

which is the divergent part of the on-shell bulk action and is responsible for the “bad”
definition of the correspondence (3.2.9).

Let us remark that Sdiv is a local term. Thus, like standard renormalization in QFT,
which involves a procedure of regularization followed by the removal of infinities through
the definition of counterterms, we can define a local boundary term Sc.t. to be added to Sε0 ,
which acts like a countertem, removing the divergent part Sdiv of the bulk action, so that
the renormalized action is defined as:

Sren := lim
ε0 7→0

(
Sε0 + Sc.t.

)
. (3.3.25)

To have a finite Sren through this definition, the counterterm action Sc.t. must cancels out
the divergent terms, therefore it has to be a boundary term which for ε 7→ 0 reduces on-shell
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to −Sdiv:
Sc.t. 7−→

ε0 7→0
−Sdiv. (3.3.26)

This condition of course leave some freedom in the choice of the boundary term, because
one can subtract some arbitrary finite term besides the divergent ones. This means that, as
in the standard renormalization case, there are different renormalization schemes which are
based on the finite contributions subtracted by the counterterm action. All that said, we
will not further investigate this argument and we will just give one choice for Sc.t. without
dwelling on other possible subtraction schemes.

Let us now consider the case where ν < 1, i.e. 2∆− − d < 2. Here the only divergent
term is the one corresponding to k = k′ = 0, thus:

Sdiv = −1
2∆−ε2∆−−d

0

∫
ddxφ2

0(x). (3.3.27)

To remove such divergent term the counterterm action must be such that:

Sc.t. 7−→
ε0 7→0

1
2∆−ε2∆−−d

0

∫
ddxφ2

0(x). (3.3.28)

There are many ways to define Sc.t. satisfying such condition. Here we choose:

Sc.t. = 1
2∆−

∫
ddx

(√
hφ2(x)

∣∣∣
z=ε0

, (3.3.29)

where hµν is the induced metric (3.1.9) on the flat d-dimensional slice of AdSd+1 at z = ε0.
Evaluating (3.3.29) on the solution φ we have:

Sc.t. = 1
2∆−

∫
ddx

(
ε
2∆−−d
0 φ2

0(x) + 2φ0(x)A(x) +O(ε)
)
, (3.3.30)

thus it removes Sdiv plus a finite term proportional to φ0A.
If ν > 1, so 2∆− − d > 2, there are other divergent terms to be removed. To do so we

have to include in Sc.t. other boundary terms. For example, consider the second divergent
term (k = 1, k′ = 0 and k = 0, k′ = 1) in the series (3.3.24):

− (∆− + 1)ε2∆−−d+2
0

∫
ddxφ0φ2. (3.3.31)

The corresponding counterterm can be defined as:

S(1)
c.t. = ∆− + 1

2(d− 2∆− − 2)

∫
ddx

(√
hφ�hφ

∣∣∣
z=ε0

, (3.3.32)

where �h = hµν∂µ∂ν . In such a way the counterterm action is Sc.t. = S(0)
c.t. + S(1)

c.t., where
S(0)
c.t. is the term in (3.3.29) defined for the previous divergent term.
At this point, defined a counterterm action which subtracts the divergent part of the

on-shell bulk action we can send ε0 7→ 0 and obtain the renormalized action Sren.
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This is the holographic renormalization procedure, which provides a recipe to obtain
a finite on-shell bulk action. This method is very similar to standard renormalization of
UV divergences in ordinary QFT since it requires a regularization of the action and the
introduction of counterterms to subtract the divergences, which can be realized through
different renormalization schemes. The main difference is that the counterterm action Sc.t.
introduced in the holographic renormalization is a boundary term which “modifies” the
theory, whereas in ordinary QFT counterterms are introduced through redefinition of the
fields. Moreover, in standard renormalization divergences appear at every loop order and
so in a infinite number of diagrams, thus renormalization is performed perturbatively order
by order, whereas in holographic renormalization divergences depends on the value of ν,
i.e. on the mass of the bulk field, thus we can have just few divergent terms. For example,
in our case, if ν = 0, so m2 = −d2/4, there is no divergence coming from the boundary term
(3.3.20). Instead, if ν < 1 there is only one divergent term, which corresponds to (3.3.29),
whereas if ν > 1 there are many other ones, such as (3.3.31). Hence, since ν =

√
d2

4 +m2,
adjusting the mass of φ in the bulk we can manage at will the structure of the divergent
part Sdiv. This means that also the structure of the boundary term Sc.t. depends on the
mass m of the bulk fields.

At this point, the holographic renormalization method provides a consistent prescrip-
tion which identifies the renormalized bulk action Sren to the generating functional of the
connected correlators of O of the large N dual field theory:

〈
eN

2
∫
φ0O

〉
CFT

= e−κ
−2Sren[φ0] = lim

ε0 7→0
e−κ

−2Sε0 [φ0]−κ−2Sc.t.[φ0]. (3.3.33)

In such a way the derivatives of Sren with respect to φ0 reproduces holographically the
correct correlation functions of O, which have the form given in (3.2.11).

In particular, considering the first derivative of Sren, we can show an important fact: the
mode A going as z∆+ in the solution φ represents the expectation value of the operator O
in the boundary theory.

Therefore, from (3.3.25) we have:

δSren
δφ0(x) = lim

ε0 7→0

(
δSε0
δφ0(x) + δSc.t.

δφ0(x)

)
. (3.3.34)

Let us start the computation with the derivative of Sε0 :

δSε0
δφ0(x) =

∫
dz′ddx′

(
δSε0

δφ(z′, x′)
δφ(z′, x′)
δφ0(x) + δSε0

δ∂mφ(z′, x′)
δ∂mφ(z′, x′)
δφ0(x)

)

=
∫
dz′ddx′

[(
δSε0

δφ(z′, x′)
− ∂m

δSε0
δ∂mφ(z′, x′)

)
δφ(z′, x′)
δφ0(x)

+ ∂m

(
δSε0

δ∂mφ(z′, x′)
δφ(z′, x′)
δφ0(x)

)]
= −

∫
ddx′

(
δSε0

δ∂zφ(z, x′)
δφ(z, x′)
δφ0(x)

∣∣∣∣∣
z=ε0

,

(3.3.35)
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thus:

δSε0
δ∂zφ(z, x′)

∣∣∣∣∣
z=ε0

= 1
2

∫
dz′′ddx′′ (z′′)1−d δ(∂z′′φ)2

δ∂zφ(ε0, x′)

∣∣∣∣∣
z=ε0

= ε1−d0 ∂zφ(z, x′)
∣∣∣
z=ε0

= ε1−d0

(
ε
∆−−1
0 (∆−φ0 +O(ε0)) + ε

∆+−1
0 (∆+A+O(ε0))

)
, (3.3.36)

whereas, using (3.3.10) we have:

δφ(ε0, x′)
δφ0(x) = ε

∆−
0

(
δd(x− x′) +O(ε0)

)
+ ε

∆+
0

(
δA(x′)
δφ0(x) +O(ε0)

)
. (3.3.37)

Therefore:

δSε0
δφ0(x) = −∆+A(x)−∆−

∫
ddx′ φ0(x′)δA(x′)

δφ0(x) + (divergent terms), (3.3.38)

where we have dropped terms proportional to positive powers of ε0 because they vanish as
ε0 7→ 0.

Now consider the derivative of Sc.t.. We compute it with Sc.t. defined in (3.3.29) plus all
the further terms necessary to remove the divergences in S, like S(1)

c.t. in (3.3.32). From the
computation we can see that the only non-divergent term in the derivative of Sc.t. comes
from S(0)

c.t., thus we have:

δSc.t.
δφ0(x) = ∆−

2

∫
ddx′

(√
h

δ

δφ0(x)φ
2(z, x′)

∣∣∣∣
z=ε0

+ δS(1)
c.t.

δφ0(x) + · · ·

= ∆−
∫
ddx′ ε−d0 φ(ε0, x′)

δφ(ε0, x′)
δφ0(x) + δS(1)

c.t.
δφ0(x) + · · · . (3.3.39)

Expressing φ through the expanded solution (3.3.10) we obtain:

δSc.t.
δφ0(x) = ∆−A(x) + ∆−

∫
ddx′ φ0(x′)δA(x′)

δφ0(x) + (divergent terms), (3.3.40)

where the divergent terms are exactly the ones required to cancel the divergences of (3.3.38).
In such a way, we have that the derivative of Sren is finite and reads:

δSren
δφ0(x) = −∆+A(x)−∆−

∫
ddx′ φ0(x′)δA(x′)

δφ0(x)

+ ∆−A(x) + ∆−
∫
ddx′ φ0(x′)δA(x′)

δφ0(x) = −(∆+ −∆−)A(x), (3.3.41)

so that, since ∆+ −∆− = 2∆+ − d, we have:

〈O(x)〉φ0
= (2∆+ − d)A(x), (3.3.42)
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which is the 1-point function of the operator O with φ0 switched on. This stresses a very
important fact: the expectation value of the operator O is determined by A(x).

In this subsection we have outlined the holographic renormalization method, which en-
ables us to obtain the correct correlation functions of the boundary CFT (see appendix B)
through the renormalized bulk action.

Anticipating the content of the next chapter, holographic renormalization is primarily
important for the study of the non-conformal regime of the dual field theory. Indeed, as
introduced in the beginning of the subsection, through the IR/UV connection it is possible
to interpret the IR infinities of the bulk theory as UV divergences of the dual field theory.
Hence the renormalization of the bulk action corresponds to the renormalization of the dual
field theory, where the boundary CFT represents a fixed point.
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CHAPTER 4

Asymptotic AdS/deformed CFT
correspondence

4.1. Introducing a deformation
In the previous chapter we have studied the standard AdS/CFT correspondence, considering
the duality (3.2.3) between a bulk theory in AdSd+1, where fields are forced to reach some
boundary value specified by the boundary conditions, and a d-dimensional CFT on the
boundary of AdSd+1. Every bulk field is associated to a boundary operator in the CFT
such that its boundary value is interpreted as the source of such operator. Moreover, the
classical limit of the tree level bulk theory is equivalent to the large N limit of the boundary
CFT. However, the correspondence so defined is affected by IR divergences in the on-shell
bulk action due to the behavior of the bulk fields in the boundary, i.e. for z 7→ 0. Therefore
we have presented a renormalization method (holographic renormalization) to remove such
divergences, so that the renormalized bulk action is able to yield finite results. In particular,
through the holographic method, the derivatives of the renormalized bulk action with respect
to the boundary values of the fields give the exact form of the correlation functions of the
dual operators imposed by the conformal invariance of the boundary theory.

This technology is applied to field theories with conformal invariance. The latter are not
realistic theories of particles because they do not show a running behavior of the couplings.
Indeed the RG equations of the couplings are trivial (βλ ≡ 0 for the generic coupling λ) and
so there is no RG flow. Therefore, to be more realistic, we would develop the correspondence
for the case of non-conformal field theories. This is possible if we consider theories which,
in the UV, behave as deformations of some CFT. In such a way their action can be written
as:

I = ICFT +
∫
ddx gO, (4.1.1)

71
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where ICFT is the action1 of the original CFT and O is a conformal operator of dimension ∆
which produces a deformation term with coupling g. Such term breaks the conformal in-
variance inducing a running with the energy scale of the parameter g. Depending on the
dimension of O the behavior of the deformation changes. Indeed, if ∆ < d, the deformation
is relevant and it grows stronger while going to the IR along the RG flow. On the contrary, if
∆ > d, the deformation is called irrelevant and it grows as the energy increases. Instead, if
∆ = d the deformation is called marginal and the action I is still conformal at classical level.
In the latter case the symmetry breakdown can occur only considering loop contributions
of order g2 or higher. Depending on the anomalous dimension γO of O introduced by the
loop corrections, the marginal deformation could have very different behaviors. If γO < 0
it is marginally relevant and behaves as a relevant perturbation, if γO > 0 it is marginally
irrelevant and behaves as an irrelevant one, instead if γO ≡ 0 at every order it is exactly
marginal and the conformal invariance is preserved also at quantum level (βg ≡ 0).

Considering the holographic description of the bulk theory dual to the CFT described
by ICFT, we can use the prescription (3.2.3). In the case of a scalar field φ we have:

〈
eN

2
∫
φ0O

〉
CFT

= ZAdS =
∫
φ ∼
z 7→0

z∆−φ0
Dφ e−κ−2SAdS [φ]. (4.1.2)

The boundary condition in the partition function ZAdS of the AdS theory determine a
deformation on the dual CFT of the form:

ICFT 7→ ICFT +N2
∫
ddxφ0O, (4.1.3)

so that the boundary value φ0 is naturally interpreted as the coupling of the deformation
term proportional to O.

This holds true also in the classical gravity limit of the duality, where the tree level bulk
theory is dual to the large N limit of the CFT described by ICFT. In this case the form of
the field in the bulk can be determined by the solutions of the free e.o.m. and reads:

φ = z∆−(φ0 +O(z)
)

+ z∆+
(
A+O(z)

)
, (4.1.4)

where φ0 is the boundary value which determines the deformation of the boundary CFT,
whereas, as seen in (3.3.42), A represents the expectation value of the operator O. This
means that A specifies a choice of the vacuum of the field theory, determining the VEV of
O.

Thanks to the IR/UV connection we can identify the radial coordinate z of AdS with the
inverse of the energy scale of the dual QFT. In this picture the boundary CFT described
by ICFT is supposed to represent a UV fixed point of the deformed QFT, which is the

1In this chapter, to avoid any confusion, we will denote the action of the bulk theory with S, whereas the
action of the dual field theory with I.
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starting point of the RG flow of the deformation term. Indeed, going down to the IR,
the perturbation is switched on and it runs along the RG flow. Since the coupling of this
deformation is φ0, its evolution along the energy scale has to be associated to the evolution
of φ along the radial axis of the bulk metric, so that the solution of the bulk e.o.m. with
boundary conditions specified by φ0 encodes the informations about the running behavior
of the associated deformation of the dual QFT.

From the analysis of the dimension of the operator O, we note that this makes sense only
if the deformation is relevant (or marginally relevant). Indeed, recalling that the dimension
of O, as given in (3.3.17), is ∆+ = d/2+ν, where ν depends directly on the mass of the dual
scalar field φ in the bulk, we have that O is relevant if −d2/4 ≤ m2 < 0, marginal for m2 = 0
and irrelevant for m2 > 0. Therefore, if the deformation is irrelevant the dual scalar field has
positive squared mass and is characterized by ∆− < 0, which implies, through (4.1.4), that
φ diverges on the boundary. This fact means that the use of the free e.o.m. to determine
the boundary behavior of φ is not self-consistent, because the diverging behavior requires a
non-linearized description of the near-to-boundary regime of the bulk theory. This means
that in the QFT-side the partition function of the field theory in the l.h.s. of (4.1.2) is not
well-defined and so the description in terms of a flow starting in the UV from a fixed point
breaks down. This is consistent with the fact that an irrelevant perturbation grows stronger
in the UV and invalidates the description of the theory through a deformation of a CFT
which we started with.

On the other hand, considering a relevant perturbation, the dual field φ in the bulk is
characterized by ∆− > 0, thus it vanishes on the boundary. This means that the use of
linearized solutions of the e.o.m. is consistent in the UV and so the partition function of
the dual QFT with the deformation generated by φ0 is well-defined through the duality.
Therefore the latter describes the RG flow of a QFT starting from a UV fixed point and
evolving to the IR through a deformation generated by the boundary conditions of the fields
in the bulk. This works also for marginally relevant deformations. For this reason we will
explicitly focus only on relevant and marginally relevant deformations, dropping the case of
irrelevant ones.

Since the RG flow generates a running behavior of the couplings, the conformal invariance
is broken in the dual QFT. This fact implies that also the isometries of AdSd+1 are broken
and so the bulk metric is no longer that of AdSd+1, but is deformed. However, the flow
has a UV fixed point characterized by ICFT, where the conformal invariance is not broken.
This means that the bulk geometry has to be asymptotic to AdSd+1 in the IR region, so
that it has an AdS boundary where bulk fields behave as (4.1.4) and the duality (4.1.2) can
be defined. Assuming that the deformation breaks the conformal invariance but preserves
the d-dimensional Poincaré invariance, so that the dual theory is a well-defined relativistic
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QFT, we can parametrize the bulk metric by:

ds2 = u2(z)dz2 + hµν(z)dxµdxν

hµν(z) = v2(z)δµν ,
(4.1.5)

where z is the usual radial coordinate and the boundary corresponds to z = 0. Approaching
the region where z is small, the metric must take an AdS form, thus:

u, v ∼
z 7→0

z−1. (4.1.6)

This is an asymptotic AdSd+1 metric (aAdSd+1) parametrized by (z, x) ∈ Rd+1 and depend-
ing on u and v, which are functions2 of z.

Considering the bulk theory on this metric does not change the prescription (4.1.2)
because the presence of the AdS boundary ensures that the boundary behavior of the bulk
theory is the same. For this reason we refer to this duality as the asymptotic AdS/deformed
CFT correspondence (aAdS/dCFT).

When dealing with a bulk theory in an asymptotic AdS space, the application of almost
all the AdS/CFT technology is straightforward, but there is an important aspect which is
different from the pure AdS case. That is the relation between a radial cut-off z = ε in the
bulk and the energy scale Λ of the dual QFT. In the case of pure AdSd+1 this relation is
Λ ≡ ε−1, which means that the radial cut-off in the bulk is the inverse of the energy scale of
the dual QFT. The generalization to aAdSd+1 is much more subtle and a precise connection
has not yet been determined. Some attempts to define an approximate relation between ε
and Λ have been made, such as in [23, 30], but these are euristic arguments and the topic is
still an important open problem. Nevertheless, it is clear that near the boundary, where the
metric reduces to AdSd+1, the connection between the radial cut-off and the energy scale
reduces to the pure AdS relation.

Considering the technology described in the previous chapter, we can apply the holo-
graphic method to the aAdS/dCFT case for the computation of the correlation functions
for the deformed CFT. Indeed, the correlators of the operator O when the deformation
specified by φ0 is switched on are defined as:

〈O(x1) · · · O(xn)〉φ0
:=

〈
O(x1) · · · O(xn)eN2

∫
φ0O

〉
CFT〈

eN
2
∫
φ0O

〉
CFT

. (4.1.7)

Therefore, using the classical gravity limit prescription (3.2.9), we can compute the large
N connected correlation functions of O through the derivatives of the on-shell renormalized

2In general u and v are functions of both z and x, but the d-dimensional Poincaré invariance requires
them to be independent of the coordinates x.
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bulk action κ−2Sren:

〈O(x1) · · · O(xn)〉φ0,conn = − 1
N2n

δnκ−2Sren
δφ0(x1) · · · δφ0(xn)

∣∣∣∣∣
φ0

, (4.1.8)

where φ0 is set to be equal to the value of the effective coupling at the scale we are interested
in. Setting φ0 = 0, one recovers the correlation functions of the boundary CFT.

This method exploits the holographic renormalization, which provides a finite renormali-
zed action Sren through the introduction of a local boundary counterterm Sc.t.. The removal
of IR divergences of the on-shell bulk action corresponds to removing the UV divergences
in the dual QFT, so that the renormalized bulk theory described by Sren is dual to the
renormalized QFT on the boundary. In such a way this correspondence is given by the
prescription:

〈
eN

2
∫
φ0O

〉
CFT

= lim
ε0 7→0

∫
φ(ε0)∼ε∆−0 φ0

Dφ e−κ−2S[φ]−κ−2Sc.t.[φ], (4.1.9)

where the r.h.s. represents the partition function of the renormalized bulk theory and ε0 is
some IR cut-off on the radial axis.

Many works have developed this aspect, such as [26–28]. In particular it has been shown
that the correlation functions computed using (4.1.9), i.e. after the holographic renormal-
ization, satisfy the standard Callan-Symazik equations of the dual QFT. Moreover the RG
flow of the deformation couplings can be described in terms of the evolution of the bulk
along the radial coordinate. In this picture the bulk fields are interpreted as the running
coupling of the deformation terms and their e.o.m.’s represent the RG equations of the de-
formation couplings. For example, the Hamilton equations for a scalar bulk field φ are the
RG equations for the deformation coupling φ0:

z
d

dz
φ = δH

δπ

∣∣∣∣
π= δS

δφ

←→ Λ∂Λφ = βφ(Λ).

In the next section we will develop in detail a Wilsonian approach to the holographic RG,
in particular, working on a scalar bulk theory.

4.2. Wilsonian approach to holographic RG
The development of the aAdS/dCFT correspondence improved the use of renormalization
methods based on holography. Besides the results mentioned above, a Wilsonian approach
has been recently proposed in [30, 31] and later developed in other works, such as [32–34].

In this section we will develop this approach following the original works and focus on
the holographic computation of the Wilsonian action of the boundary QFT.
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The fact that the radial coordinate z of the bulk is connected to the energy scale of the
dual QFT suggests the existence of a relation between the radial evolution of the bulk theory
and the Wilsonian RG flow of the dual field theory. This idea is developed reproducing for
the radial coordinate in the bulk theory the Wilsonian procedure of separating the functional
integration into a UV and a IR part at a certain cut-off and integrating out the UV modes in
order to obtain a non-local functional which modify the bare action into the scale-dependent
effective action.

Therefore consider a bulk theory in aAdSd+1 with action S0. For simplicity let us restrict
only on scalar fields φi, thus the partition function defined with appropriate boundary
conditions reads:

Z =
∫
φi ∼
z 7→0

z∆−φi0

Dφ e−κ−2S0[φ], (4.2.1)

Let us introduce in the z-axis of aAdSd+1 a IR cut-off ε0 � 1 which determines a regulated
boundary. The action S0 is regularized by this parameter and treated as the bare action
of the bulk theory. On the QFT-side, ε0 is identified with the UV cut-off Λ0 = ε−1

0 of
the boundary theory. Now define a new radial cut-off ε ≥ ε0 which is meant to be the
floating cut-off running along the z-axis. This is dual to the floating energy scale Λ(ε) of
the boundary QFT but the precise relation which connects them depends on the form of
the bulk metric (4.1.5). We take ε as the reference scale on which we want to develop the
duality. Therefore we can split the functional measure of the partition function Z into three
factors:

Z =
∫
φi(ε0)∼ε∆−0 φi0

Dφ(z<ε)DφεDφ(z>ε) e
−κ−2S0[φ]z<ε−κ−2S0[φ]z>ε , (4.2.2)

where φiε := φi(z = ε) are the bulk fields evaluated at z = ε. Now we define the amplitudes:

ΨUV(φε) :=
∫ φi(ε)=φiε

φi(ε0)∼ε∆−0 φi0

Dφ(z<ε) e
−κ−2S0[φ]z<ε (4.2.3)

ΨIR(φε) :=
∫
φi(ε)=φiε

Dφ(z>ε) e
−κ−2S0[φ]z>ε , (4.2.4)

where ΨIR is called IR amplitude because it contains the information about the behavior
of the theory in the interior of the bulk, which is dual to the IR regime of the boundary
QFT. Instead ΨUV is called UV amplitude because it contains the information about the
near-to-boundary behavior of the bulk theory, which corresponds to the UV regime of the
dual QFT. Looking at these definitions, ΨUV is a functional defined with two boundary
conditions. The one imposed at z = ε0 is the proper boundary condition which specifies the
behavior of the bulk fields on the boundary (z = 0), whereas the other one, defined at z = ε

and specified by φiε, imposes the value of the fields at the floating cut-off scale. For this
reason the information about the boundary behavior of the theory (UV data) is contained
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in ΨUV. On the other side ΨIR is defined with the same condition imposed for φi at z = ε

as ΨUV.
Through these definitions the total partition function of the bulk theory becomes:

Z =
∫
Dφε ΨUV(φε)ΨIR(φε). (4.2.5)

The separation of modes at the floating cut-off can be seen as reflecting the Wilsonian
treatment of the dual QFT. Therefore, following [30], we assume that the IR amplitude ΨIR

is equal to the partition function of the dual theory with cut-off at Λ(ε), thus:

ΨIR(φε) =
∫
DM e−I

(Λ)
CFT[M ]+N2

∫
ε−∆−φiεOi , (4.2.6)

where M represents the generic matrix field of the dual QFT and I(Λ)
CFT is the undeformed

action of the boundary theory with cut-off Λ(ε). The operators Oi associated to the bulk
fields φi are single-trace operators with normalization such that the deformation term is of
order O(N2), thus:

Oi = tr (· · · )
N

,

where the dots represent products of the field M and its derivatives.
The equation (4.2.6) is taken in [30] as a postulate which represents the key point to

develop the holographic Wilsonian approach. Starting from this and inserting (4.2.6) in the
total bulk partition function (4.2.5) we obtain:

Z =
∫
DM e−I

(Λ)
CFT[M ]

∫
Dφε ΨUV(φε) eN

2
∫
ε−∆−φiεOi . (4.2.7)

At this point, the integral over φε is interpreted as the Wilsonian action IΛ at the scale Λ(ε)
of the dual QFT:

e−IΛ[O] =
∫
Dφε ΨUV(φε) eN

2
∫
ε−∆−φiεOi , (4.2.8)

which means that:

Z =
∫
DM e−I

(Λ)
CFT[M ]−IΛ[O] :=

∫
DM e−Ieff[M,O]. (4.2.9)

In such a way the total bulk partition function represents to the partition function of the dual
renormalized QFT described in Wilsonian approach by the effective action Ieff = I(Λ)

CFT + IΛ.
The Wilsonian action IΛ at the scale Λ(ε) is then connected to the UV amplitude ΨUV

of the bulk theory defined at the separation scale ε through the integral transform (4.2.8),
which means that moving ε along the z-axis corresponds to considering the dual theory at
the scale Λ.

Analyzing this relation, ΨUV is a non-local functional due to the integration of propa-
gating bulk modes confined in the region ε0 ≤ z < ε. This extends to the Wilsonian action
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through the integral transform (4.2.8), so that IΛ can be seen as containing non-local con-
tributions coming from integrated modes above Λ(ε). As we have seen in subsection 1.1.1,
IΛ is then expected to be a functional localized on the scale Λ(ε) and containing general
multi-trace terms coming from the expansion of the non-local contributions.

Figure 4.2.1. Saddle point evaluation of the total partition function (4.2.5). The red line
is the result of the separate computation of ΨUV and ΨIR. The black line is the correct

procedure obtained minimizing the amplitudes with respect to φiε.

Considering the classical gravity approximation, one would be led to compute ΨIR and
ΨUV on their saddle point and evaluating them on the solutions of the bulk e.o.m. with
boundary conditions specified by the limits of the functional integrals in (4.2.4) and (4.2.3).
Therefore ΨIR would be determined by a solution satisfying a regularity condition at z = +∞
and the boundary condition φi(ε) = φiε, whereas ΨUV would be the solution that satisfies
the same condition as ΨIR at z = ε and the boundary condition φi(ε0) ∼ ε

∆−
0 φi0 on the

AdS boundary. However, this way of proceeding is not correct because, for arbitrary values of
φiε, the union of the two solutions is in general not smooth at z = ε (red line in Figure 4.2.1).

Instead of evaluating separate saddle points for ΨIR and ΨUV, the smooth solution (black
line in Figure 4.2.1) is obtained taking the saddle point directly in (4.2.5), i.e. varying φiε
to have a stationarized functional. In this case the solution is smooth and depends only
on the boundary conditions specified by φi0 and the regularity conditions at z = +∞. This
means that the Wilsonian action of the large N dual QFT is determined by the saddle
point of the integral transform of (4.2.8). As we will see explicitly in the next subsection,
also the large N Wilsonian action contains multi-trace terms at the leading order in the
1/N expansion. Thus the planar RG flow of the dual QFT is described also by non-planar
multi-trace amplitudes.

The evolution equation of the Wilsonian action IΛ can be obtained using the fact that
the total bulk partition function is independent of the floating cut-off scale ε. Therefore,
taking the derivative of Z with respect to ε and setting it to zero, we have:

0 = ∂εZ|φ0
= ∂ε

〈
e−IΛ[O]

〉
Λ(ε)

, (4.2.10)
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where the brackets 〈·〉Λ(ε) represent the path integral of the undeformed theory with cut-
off Λ(ε). Working with this equation is unwieldy since the derivative ∂ε acts both on the
exponential and on the cut-off of the partition function. However there is an alternative and
more useful method to derive it, based on a hamiltonian formalism. Considering the radial
coordinate z as a “time” coordinate, we can define a radial hamiltonian for the bulk theory:

H(φ, π) :=
∫
ddx

(
−πi∂zφi +√gL(φi, ∂φi)

)
, (4.2.11)

where L is the lagrangian density and πi is the conjugate momentum associated to φi:

πi := ∂
√
gL

∂∂zφi
. (4.2.12)

Now, in a quantum mechanical formalism the path integral of the theory represents the
transition amplitude between two boundary states:

Z =
∫
φi(ε0)∼ε∆−0 φi0

Dφ e−κ−2S0[φ] = 〈IR|U(∞, ε0) |φ0〉 , (4.2.13)

where |φ0〉 is the boundary state at z = ε0, specified by the boundary conditions, and |IR〉
is the initial state, specified by the regularity conditions at z = +∞. The operator U(∞, ε0)
is the radial evolution operator:

U(ε2, ε1) = T exp
(
−κ−2

∫ ε2

ε1
dz H

)
, (4.2.14)

which is the T-ordered exponential of the radial hamiltonian, as in canonical quantization.
In this formalism the separation of the path integral at z = ε corresponds to insert the
completeness of an intermediate state |φε〉 in the amplitude:

〈IR|U(∞, ε0) |φ0〉 =
∫
Dφε 〈IR|U(∞, ε) |φε〉 〈φε|U(ε, ε0) |φ0〉 , (4.2.15)

so that ΨIR and ΨUV represent the intermediate transition amplitudes:

ΨIR = 〈IR|U(∞, ε) |φε〉 ΨUV = 〈φε|U(ε, ε0) |φ0〉 . (4.2.16)

In such a way their evolution along the scale ε is determined by radial Schrödinger equations:

∂εΨIR(φε) = κ−2H(φε, πε)ΨIR(φε) (4.2.17)

∂εΨUV(φε) = −κ−2H(φε, πε)ΨUV(φε), (4.2.18)

where πiε = −iκ2 δ
δφiε

is the conjugate momentum associated to φiε.
These equations determine the evolution along the scale ε of the amplitudes of the bulk

theory. Therefore taking the derivative ∂ε in (4.2.8) and using (4.2.18), we can obtain the
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RG flow equation of the Wilsonian action. By doing so, we have:

Dεe−IΛ[O] =
∫
Dφε ∂εΨUV e

N2
∫
ε−∆−φiεOi

=
∫
Dφε

[
−κ−2H(φε, πε)ΨUV

]
eN

2
∫
ε−∆−φiεOi ,

(4.2.19)

where:
Dε := ∂ε + ∆−

ε

∫
ddxOi

δ

δOi
. (4.2.20)

Now, thanks to the properties of the functional derivatives, we can perform some substitution
in the integrand of the r.h.s. of (4.2.19):

φiε −→ κ2ε∆−
δ

δOi

πiε = −iκ2 δ

δφiε
−→ iε−∆−Oi,

In such a way the equation becomes:

Dεe−IΛ[O] = −κ−2H

(
κ2ε∆−

δ

δO
, iε−∆−O

)
e−IΛ[O]. (4.2.21)

This is RG flow equation for the Wilsonian action IΛ of the dual QFT. It represents the
main result derived in [30] because it describes the evolution of IΛ along the RG flow, so
that it can be compared to the ordinary equations obtained in the QFT-side.

The classical gravity limit of the bulk theory is reached by κ2 7→ 0. In this regime the
on-shell bulk theory is dual to the large N limit of the boundary QFT. This means that,
applying this limit to (4.2.21), we obtain the RG equation in the planar limit:

DεĨΛ = H

(
−ε∆− δĨΛ

δO
, iε−∆−O

)
, (4.2.22)

where IΛ[O] := κ−2ĨΛ[O]. This is a Hamilton-Jacobi-like equation which represents the
RG equation of IΛ in the planar limit. We would like to have a matching between this
equation and the planar WPE obtained in chapter 2 for a general scalar matrix theory in d
dimensions. As we will see in the next chapter, the identification is not clear and requires a
careful analysis.

In this section we have seen that the procedure of separating the functional integral of
the bulk theory at a certain cut-off and integrating out the near-to-boundary part produces
an holographic description of the Wilsonian treatment for the dual QFT. In particular
it provides the Wilsonian action and its RG equation, so that we can determine the RG
flow of the boundary theory. For this reason we call this method holographic Wilsonian
renormalization group (hWRG).

Briefly summarizing the meaning of this procedure we can see the connection with the
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holographic renormalization. Indeed the starting point is that the standard AdS/CFT pre-
scription is affected by divergences and so it has to be renormalized. Holographic renormal-
ization represents the standard renormalization for the dual QFT, so it provides a recipe
(4.1.9) which connects the renormalized theories and yields consistent results.

Like the ordinary Wilsonian treatment in QFT, the hWRGmethod outlined here develops
a different point of view. The bulk action S0, regularized at the IR cut-off ε0, is treated
as bare action. Thus, moving from ε0 to a floating scale ε along the z-axis, we integrate
out the field-modes in the interval [ε0, ε], so that the partition function is split into a factor
containing the bare action S0 with cut-off lowered from ε0 to ε (determined by ΨIR) and
a factor containing the integrated part of the theory (ΨUV). The latter term corresponds
holographically to the contribution of the integrated modes of the dual QFT with momentum
above Λ(ε) and provides, through (4.2.8), the Wilsonian action of the dual theory defined
at the scale Λ(ε). One of the crucial aspects of this procedure is that the scale ε, where the
separation of the path integral is taken, corresponds to the cut-off scale Λ(ε) at which the
dual QFT is considered.

Following this point of view, the prescription (4.1.9), provided by holographic renormal-
ization, can be seen as determining the duality where the separation is taken at ε0 7→ 0,
thus where the boundary QFT has a fixed point. Therefore the boundary term Sc.t. added
to S0 to remove its divergences represents in hWRG formalism the UV amplitude evaluated
at ε0:

ΨUV(ε0) = e−κ
−2Sc.t.[φ]. (4.2.23)

This is the connecting point between hWRG and holographic renormalization. In particular
it is clear that Wilsonian treatment extends the duality at every scale of the bulk metric,
including the other procedure in a more general method.

4.2.1. Free massive scalar field in the bulk

In this subsection we perform hWRG in the explicit example of a free real scalar field φ

in the bulk with negligible backreaction and metric (4.1.5), taking for simplicity u = z−1,
[30, 31]. The action is defined as:

S0 = 1
2

∫
dzddx

√
g
(
gmn∂mφ∂nφ+m2φ2

)
, (4.2.24)

so that the radial hamiltonian at z = ε reads:

H = 1
2

∫
ddx ε−1

[
v−dπ2

ε + vd
(
v−2(∂µφε)2 +m2φ2

ε

)]
. (4.2.25)

The aAdS/dCFT correspondence states that φ is dual to a single-trace operator O of the
boundary QFT with dimension ∆+ = d/2+ν. The boundary conditions (4.1.4) specify that
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the boundary value φ0 is the coupling of the single-trace deformation induced in the dual
field theory.

Now, applying the holographic Wilsonian procedure at the scale ε, we can assume that
the UV amplitude can be written as:

ΨUV(φε) = e−κ
−2SUV[φε], (4.2.26)

where SUV is a functional of φε which contains the integrated modes of S0 in the region
ε0 ≤ z < ε. Since the bulk action is quadratic in the field φ, we can reasonably consider the
expansion of SUV to contain terms at most quadratic in φε, thus we can write:

SUV = C(ε)−
∫

ddk

(2π)d
√
hJ(−k, ε)φεk + 1

2

∫
ddk

(2π)d
√
hF (k, ε)φεkφε−k, (4.2.27)

where the parameters C, J and F determine the evolution of SUV along the scale ε.
Now, taking the classical gravity limit of the duality κ2 7→ 0, we obtain the large N limit

of the dual QFT and the evolution equation (4.2.18) for the UV amplitude becomes:

∂εSUV = 1
2

∫
ddk

(2π)d
R

ε

[
−v−d δSUV

δφεk

δSUV

δφε−k
+ vd(v−2k2 +m2)φεkφε−k

]
. (4.2.28)

From this we can obtain the evolution equations of the parameters of SUV. Focusing on J
and F , we have:

1
√
g
∂ε
(√
hJ(k, ε)

)
= −J(k, ε)F (k, ε) (4.2.29)

1
√
g
∂ε
(√
hF (k, ε)

)
= −F 2(k, ε) + (v−2k2 +m2). (4.2.30)

These equations describe the evolution of J and F with the scale ε (see appendix C for the
solutions).

Now, once specified the form of the UV amplitude ΨUV of the free bulk scalar theory
and the evolution for its parameters, we consider the Wilsonian action of the dual QFT. In
this analysis let us restrict to pure AdSd+1 for simplicity. Inserting the explicit expression
of ΨUV in (4.2.8) we can obtain IΛ:

e−IΛ[O] =
∫
Dφε e−κ

−2SUV[φε]+N2
∫
ε−∆−φεO. (4.2.31)

Due to the form (4.2.27) of SUV, we can reorganize the integral over φε into a Gaussian
integral and then explicitly perform it. In such a way, neglecting the field-independent
terms arising from the integration, the Wilsonian action is:

IΛ[O] = N2
∫

ddk

(2π)d
(
ε−∆−λ(−k, ε)Ok + 1

2ε
2νf(k, ε)OkO−k

)
, (4.2.32)
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where λk and f are the effective couplings of the dual QFT, defined by:

λ(k, ε) := − J(k, ε)
F (k, ε) (4.2.33)

f(k, ε) := − 1
F (k, ε) . (4.2.34)

Therefore λ is a single-trace dimensionless coupling which represents the evolution of the
initial deformation. Instead f is a double-trace dimensionless coupling generated along the
flow. The RG equations of λ and f can be obtained from the evolution equations of J and
F . Indeed, using (4.2.29) and (4.2.30), we have that:

ε∂ελ(k, ε) = (ε2k2 +m2)λ(k, ε)f(k, ε) (4.2.35)

ε∂εf(k, ε) = (ε2k2 +m2)f2(k, ε)− df(k, ε)− 1. (4.2.36)

These equations determine the evolution along the energy scale (Λ = ε−1 in pure AdSd+1)
of the effective couplings in the large N limit. Solving them we can determine the planar
RG flow of the dual QFT.

First of all, if we focus on the small momentum regime (εk � 1), we can note that f has
two fixed points (ε∂εf = 0):

f± := ∆±
m2 = − 1

∆∓
, (4.2.37)

where the QFT gains conformal invariance. On these points the single-trace coupling λ

behaves as:
λ ∼ ε∆± . (4.2.38)

This means that on f− the operator O has dimension ∆+. Thus this fixed point corresponds
to the UV fixed point of the boundary field theory determined by the AdS/CFT prescription
specified by the boundary value φ0 (standard quantization). On the other hand, on f+ the
operator O has dimension ∆−. This corresponds to a UV fixed point of the boundary
QFT in a different definition of the correspondence, called alternative quantization [29, 31].
The latter is defined choosing as boundary value of φ the mode A going as z∆+ instead
φ0 as in the standard case. In such a way the dual field theory is different from that of
the standard quantization because the dual operators O have different dimension. This
definition is consistent only for ν ∈ (0, 1), because for ν ≥ 1 the unitarity of the dual theory
is not guaranteed everywhere in the AdS space. After mentioning this alternative definition,
henceforth we will keep developing only the standard quantization.

Imposing the latter quantization, the initial value of f must represent the UV fixed point
f−, thus we set f(ε0) = f−. In such a way we can define:

f := f̄ + f−, (4.2.39)
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where f̄ is the actual double-trace deformation generated along the RG flow. Indeed, since
f− is the fixed point which determines the boundary CFT, its contribution is included in
the definition of ICFT. This means that the RG flow of the CFT described by ICFT with the
single-trace deformation specified by φ0 contains also a double-trace deformation f̄ generated
along the flow. The RG equation of f̄ can be obtained inserting (4.2.39) in the equation
(4.2.36) for εk � 1, so that:

ε∂εf̄ = m2f̄2 − 2νf̄ . (4.2.40)

This result is important because, as we will see in the next chapter, it is exactly the double-
trace β-function obtained with field theory computations for a large N CFT deformed by a
single-trace term [36, 37].

Until now we have considered the RG flow of f only in the small momentum regime
(εk � 1). However, since the general solution (see appendix C) guarantees that f is analytic
also at k = 0 (localized function), we can make the expansion:

f(k, ε) =
+∞∑
n=0

fn(ε)k2n, (4.2.41)

where fn is the effective coupling of the derivative operator O∂2nO in IΛ. In such a way
the RG equation of f can be expanded in:

ε∂εfn = ε2
n−1∑
m=0

fmfn−m−1 +m2
n∑

m=0
fmfn−m − dfn − δn,0. (4.2.42)

This equation describes the RG flow of the coupling fn, which is influenced the other cou-
plings fm with m 6= n. In particular the r.h.s. shows that only parameters fm with m ≤ n

enters the equation for fn, so an iterative solution is possible. In such a way the first term
in the series (4.2.41), which is the effective coupling of O2, does not depends on the other
parameters. Moreover, since its equation is exactly that of f for εk � 1, it describes the
total deformation in such regime. Therefore we can actually define f̄ as the actual coupling
of O2 with RG equation (4.2.40).

In conclusion, this example shows that the dual QFT of a free single scalar theory in
aAdSd+1 for the standard quantization is a deformed CFT where the Wilsonian action
contains a single- and a double-trace deformation. The latter is generated along the flow
even though we started only from a single-trace deformation and it produces an infinite
series of double-trace interactions proportional to the derivatives of O2. The RG flow is
then closed on these deformations and no other multi-trace term is generated.

The main results of this part are the RG equations for the actual double-trace coupling
f̄ and for the n-th term fn of the expansion (4.2.41), which represents the coupling of the
n-th derivative term, proportional to O∂2nO.

In the next chapter we will analyze the results obtained from field theory methods in
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order to compare them with the hWRG ones. In particular we will see that, considering
a deformed CFT defined through composite single-trace operators, like O, the RG flow
equations agree with the holographic result, whereas, using the formalism of [16] described
in chapter 2 for matrix theories defined through elementary fields, the RG equations seem
not to be consistent with the holographic ones.
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CHAPTER 5

The holographic Wilsonian treatment and
field theory methods

In the previous chapter we have describe a Wilsonian approach to holographic RG (hWRG),
proposed by [30, 31]. This method enables us to compute the Wilsonian action of the dual
QFT and its RG equation (4.2.21) holographically. In particular, considering the classical
limit of the bulk theory, one can obtain the planar RG equation (4.2.22), which describes
the RG flow of the dual QFT in the large N limit.

In chapter 2 we have studied the RG flow of d-dimensional matrix theories in Wilsonian
approach. In particular we have described the Wilson-Polchinski RG equation (WPE) in the
planar limit for the case of scalar matrices, first obtained in [16]. Like the finite N ordinary
WPE, the planar equation in independent on the coupling regime of the theory, i.e. it holds
true at both weak and strong coupling. Therefore it is expected to be valid for a general
planar Wilsonian RG flow.

For this reason we are led to think that the planar hWRG equation obtained in chapter 4
has in general the same structure of the planar WPE. However the matching between the
two equations seems not to be clear and our aim is to investigate this issue.

5.1. Comparing hWRG and WPE
Considering first the ordinary Wilsonian treatment in a matrix theory, we can sketch the
structure of the planar WPE dropping for simplicity space-time labels and integrals:

∂tHt ∼ −
1
2

∫
ddk

(2π)d Ṗt
(∑
mn

mnYm+n−2
δHt
δYm

δHt
δYn

+
∑
m

m−1∑
i=1

mYi−1Ym−i−1
δHt
δYm

)
, (5.1.1)
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where Ht is the Wilsonian action of the theory at the cut-off scale t = Λ−2, with Λ the actual
energy scale of the QFT. Moreover, Ṗt is the derivative with respect to t of the propagator
with cut-off, whereas Ym are single-trace operators defined as the trace of the product of m
elementary fields Φ normalized with the factor 1/N . Therefore (5.1.1) is a Hamilton-Jacobi
type equation where Ym are treated as sources and the hamiltonian has the form:

H ∼ Y
(
δHt
δY

)2
+ Y 2

(
δHt
δY

)
. (5.1.2)

On the other hand, within hWRG, the dynamics of the bulk theory determines the evolution
of the Wilsonian action ĨΛ of the dual QFT. In such a way the planar RG equation is a
Hamilton-Jacobi type equation:

DεĨΛ = H

(
−ε∆− δĨΛ

δOi
, iε−∆−Oi

)
, (5.1.3)

where H is the hamiltonian of the bulk theory. The planar limit of the dual QFT corre-
sponds, through the duality, to the classical gravity limit in the bulk. Therefore, in such
regime, the bulk theory can be taken in supergravity approximation. This means that H is
a supergravity hamiltonian.

The operators Oi are the single-trace operators associated to the bulk fields. Since they
are defined as the trace of products of elementary fields and normalized with a factor 1/N ,
we can think to identify them with the operators Ym of the matrix theory so as to establish
a connection between the two formulations. Due to this fact, comparing the structures of
(5.1.1) and (5.1.3), we can see that the hamiltonian (5.1.2) of WPE, since it is a cubic
functional, does not have the form of a supergravity hamiltonian, which instead is at least
quadratic, as already pointed out in [30]. For this reason the two equations actually seem
to have a different structure.

This fact is quite puzzling and a clear understanding of this mismatch is yet to be
obtained. However, one could speculate, like in [30], that the hamiltonian (5.1.2) of WPE
should be interpreted as a string field theory hamiltonian, where Y is a string creation
operator and δ/δY is a string annihilation operator. This would suggests that the ordinary
WRG could correspond through the AdS/CFT duality to the full string theory in the bulk.
In this case a supergravity description could be obtained from (5.1.2) by integrating out
super-massive excited string modes, which are associated to extra-high dimension operators
in the dual QFT. Therefore hWRG could be interpreted as a “supergravity” truncation of
the ordinary WRG, where such operators do not appear because their flow is extremely
convergent.

At a more basic level, one would like to have a better understanding of the nature of
the mismatch between the field-theoretic and holographic RG. We think this is due to a
fundamental difference in the introduction of the cut-off in the two approaches. Indeed in
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WPE formulation, even though the planar RG equation is specified in terms of the composite
operators Ym, the matrix theory is explicitly defined through the elementary field Φ. This
implies that the floating cut-off t is introduced in the theory inside the propagator Pt of Φ,
defined in (2.3.2). In such a way the RG equation explicitly depends on the derivative Ṗt
of the cut-off propagator. Moreover, the description in terms of elementary fields enables
us to develop a diagrammatic interpretation of the planar WPE, where it is clear that
the derivative with respect to the cut-off acts through Ṗt cutting the internal lines of the
diagrams composing Ht and so produces new single and multi-trace contributions.

Instead, in holographic Wilsonian treatment the QFT is defined through the AdS/CFT
correspondence as dual to a bulk theory in aAdSd+1. For this reason the structure of the
field theory is determined only by the composite operators Oi dual to the bulk fields. In
particular the explicit form of the boundary action ICFT, which represents the UV fixed point
of the flow, is unknown and its description in terms of elementary fields is not given. This
means that we have no understanding of the implementation of the cut-off scale Λ inside
the QFT at the level of elementary fields. Indeed, as seen above, in (5.1.3) the evolution
of the Wilsonian action is determined by the radial evolution in the bulk, so the scale Λ
enters the equation through the radial cut-off ε, which represents the separation point of
the path integral (4.2.5). This implies that the derivative with respect to the scale does not
acts explicitly on the propagator of the elementary fields, which in this framework is not
defined, and so we cannot give a diagrammatic interpretation of the RG equation because
we cannot build Feynman diagrams.

The difference in the definition of the theory appears then to be the striking problem.
To get some insight into this analysis, we can think to apply the ordinary WRG approach of
WPE to the simple example of the field theory dual to a free scalar field in the bulk, already
studied in the previous chapter. By doing so we can explicitly compare the RG equations
obtained from the two formulations.

In Wilsonian holographic treatment we have obtained a large N Wilsonian action com-
posed by a single- and a double-trace term in the operator O, dual to the scalar bulk field:

ĨΛ =
∫

ddk

(2π)d
(
λ(−k, ε)Ok + 1

2f(k, ε)OkO−k
)
. (5.1.4)

The RG equations of λ and f are:

ε∂ελ(k, ε) = (ε2k2 +m2)λ(k, ε)f(k, ε)

ε∂εf(k, ε) = (ε2k2 +m2)f2(k, ε)− df(k, ε)− 1,
(5.1.5)

so that the planar RG flow of the theory is closed on λ and f , and no other multi-trace term
appear in ĨΛ.

In order to apply WPE to the same case we can identify the operator O with a single-
trace operator Yn = trΦn/N . The dimension ∆+ of O is then related to the power n of Yn
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by:
∆+ = n

(
d− 2

2

)
,

because (d − 2)/2 is the dimension of the elementary field Φ in d dimensions. Therefore,
since ∆+ = d/2 + ν and ν depends on the mass of the bulk field φ, we have that the value
of n is specified adjusting the mass of the dual bulk field.

Now we can impose Ht to have the form of ĨΛ, so we can restrict its expansion (2.3.26)
to:

Ht =
∫

ddk

(2π)d
(
λ(−k, t)Yn(k) + 1

2f(k, t)Yn(k)Yn(−k)
)
. (5.1.6)

Inserting this equation in (5.1.1) we obtain:

∂tλ(−k)Yn(k) + 1
2∂tf(k)Yn(k)Yn(−k) = −n

2

2 Ṗt(k)λ(k)λ(−k)Y2n−2(k)

− n2Ṗt(k)λ(−k)f(k)Y2n−2(k)Yn(k)− n2

2 Ṗt(k)f2(k)Y2n−2(k)Yn(k)Yn(−k)

− n

2 Ṗt(k)
n−1∑
i=1

(
λ(−k)Yi−1(k)Yn−i−1(k) + f(k)Yi−1(k)Yn−i−1(k)Yn(k)

)
. (5.1.7)

It is immediately clear that this equation is not consistent as it stands. This is due to the
presence of terms proportional to Y2n−2, which is different from Yn and so determines a
new deformation term, and of extra multi-trace terms proportional to Y 3, which are not
present in Ht. This means that the planar RG flow obtained from WPE is not closed on
the couplings λ and f of Yn and Y 2

n , but new single- and double-trace terms are produced
along the flow. Therefore, unlike the hWRG result (5.1.5), the truncation to the single- and
double-trace sector of the operator O is not well-defined in the WPE formulation.

Consider for instance the specific case of n = 2, which represents the first non-trivial
case that can be considered for Ht. The equation (5.1.7) reduces to:

∂tλ(−k)Y2(k) + 1
2∂tf(k)Y2(k)Y2(−k) = −Ṗt(k)λ(−k)− Ṗt(k)

(
2λ(k)λ(−k)− f(k)

)
Y2(k)

− 4Ṗt(k)λ(−k)f(k)Y2(k)Y2(−k)− 2Ṗt(k)f2(k)Y 2
2 (k)Y2(−k). (5.1.8)

Equating the terms proportional to Y2 and Y 2
2 of the two sides of the equation above, one

obtains the RG equations for the effective couplings:

∂tλ(k, t) = −Ṗt(k)
(
2λ(k, t)λ(−k, t)− f(k, t)

)
∂tf(k, t) = −8Ṗt(k)λ(−k, t)f(k, t),

(5.1.9)

which do not match at all with the corresponding RG equations (5.1.5) on the holographic
side. Moreover, the r.h.s. of (5.1.8) contains a multi-trace contribution proportional to
Y 3

2 , which leads to the generation of new terms in the Ht. Considering the diagrammatic
interpretation of the planar WPE, we can see that such contributions are naturally produced
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by the action of the derivative of the cut-off scale ∂t on the terms of the Wilsonian action
Ht. Indeed, the double-trace term fY 2

2 in Ht encodes the contributions of the diagrams
characterized by two traces, i.e. two internal lines with external legs attached to them.
Therefore, since Y2 ∼ trΦ2, such term can be represented by the vertex:

∼
(
trΦ2)2, (5.1.10)

where every branch line represents a trace of two fields, in contrast with the vertex (2.2.15)
of trΦ4, where all the lines are attached to the same trace. In such a way, at order f2, Ht
has a contribution given by the diagram:

∂t
−−−−−−−−−→

Ṗt

(5.1.11)

When ∂t acts on such a diagram, it cuts one internal line replacing it with Ṗt. Therefore,
when the central circle line is cut, a new diagram containing three traces is produced, which
then gives a contribution proportional to Y 3

2 .
From this analysis some facts appear clear:

• The production of new multi-trace terms in the RG equation (5.1.7) obtained in ordi-
nary WRG treatment is due to the action of the cut-off in the contributions present
in the initial form of the Wilsonian action Ht. Therefore we generally expect that in
such formulation the RG flow cannot be consistently truncated.

• The RG flow obtained in (5.1.3) with the holographic Wilsonian treatment reflects
the dynamics of the bulk theory, which determines the dual QFT only in terms of the
composite operators associated to the bulk fields. Therefore, since the cut-off is not
explicitly defined inside the boundary theory, we cannot keep track of its action on
the structure of the Wilsonian action as in WPE.

This lead us to think of the different definition of the field theory in the two approaches
as the main cause of the inconsistency between the RG equations. In particular we believe
that the role of the elementary and composite operators, and the subsequent definition of
the cut-off scale, represent the key points on which to investigate.

5.2. RG flow for a deformed CFT
As an attempt to clarify the difference between the role of elementary and composite op-
erators in Wilsonian RG, we can consider the case of a deformed CFT defined through



92 5. The hWRG and field theory computations

composite operators and compute its RG flow with field theory methods [35–37].
Let us take the action of the theory equal to:

I = ICFT +Nλ

∫
ddxO(x) + f

2

∫
ddxO2(x), (5.2.1)

where ICFT is the undeformed action which is conformal invariant up to terms of order
O(1/N). We assume that the operator O is a single-trace operator with normalization such
that O = tr (· · · ), where the dots represent some product of elementary fields and their
derivatives, so that λ and f are proper ’t Hooft couplings. Being ∆ the dimension of O in
absence of deformation, the 2-point function in such regime reads:

〈O(x)O(y)〉CFT =
Γ
(
d/2
)

2πd/2
v

|x− y|2∆ , v > 0. (5.2.2)

Now we can compute the RG equations of the deformation couplings λ and f employing a
Wilsonian approach. Indeed, considering (5.2.1) as the bare action defined at the UV cut-off
Λ0, we can obtain the effective theory at the scale Λ < Λ0 integrating out the UV modes of
the bare action in the range between Λ and Λ0. By doing so we encounter the expansion:

1−Nλ
∫
ddxO(x)− f

2

∫
ddxO2(x) + N2

2 λ2
∫
ddxddyO(x)O(y)

+ N

2 λf
∫
ddxddyO(x)O2(y) + f2

8

∫
ddxddyO2(x)O2(y) + · · · . (5.2.3)

To evaluate the higher order corrections to λ and f we should know the correct operator
product expansion of O(x)O(y) for x ∼ y. In the large N limit the structure simplifies very
much and the products of operators can be expanded in terms of the correlation functions,
so that we have:

1−Nλ
∫
ddxO(x) +Nλf

∫
ddxddyO(x) 〈O(x)O(y)〉CFT

− f

2

∫
ddxO2(x) + f2

2

∫
ddxddyO(x)O(y) 〈O(x)O(y)〉CFT + · · · , (5.2.4)

where the term proportional to λ2 has been neglected because it only produces a field-
independent correction. Now, we can compute the corrections in (5.2.4) setting w = y − x,
so that we have:

Nλf

∫
ddxddwO(x) 〈O(0)O(w)〉CFT = Nλf

∫
ddxO(x)

∫
ddw 〈O(0)O(w)〉CFT

f2

2

∫
ddxddwO(x)O(w + x) 〈O(0)O(w)〉CFT ∼

f2

2

∫
ddxO2(x)

∫
ddw 〈O(0)O(w)〉CFT ,

where we have used the property of invariance under translations of the 2-point function and
expanded O(w+x) around x stopping at order zero. Since we are computing the Wilsonian



5.2. RG flow for a deformed CFT 93

effective action at the scale Λ, the integral over w is evaluated in the range 1/Λ0 < |w| < 1/Λ,
thus it reads: ∫

ddw 〈O(0)O(w)〉CFT = − v

2∆− d
(
Λ2∆−d − Λ2∆−d

0

)
. (5.2.5)

The contribution of this integral introduces the dependence on the energy scale in the
deformation couplings, so this represents the way of introducing the cut-off in the theory
emerging in this approach. Therefore, let us remark that, being the elementary structure of
ICFT unknown, such scale is not explicitly defined inside the propagator of the elementary
fields, but enters the theory through the integral of the 2-point function of the composite
operator O.

In such a way the large N renormalized couplings at the scale Λ at the second order in
the expansion (5.2.4) are:

λ(Λ) = λ(Λ0) + v

2∆− dλ(Λ0)f(Λ0)
(
Λ2∆−d − Λ2∆−d

0

)
(5.2.6)

f(Λ) = f(Λ0) + v

2∆− df
2(Λ0)

(
Λ2∆−d − Λ2∆−d

0

)
. (5.2.7)

Higher order terms of the expansion (5.2.4) do not give further contributions to the running
of λ and f thanks to the factorization property of the correlation functions in the large N
limit. Indeed, considering for example the third order contribution proportional to f3, we
have that the only term which gives contribution is:

f3
∫
ddxddyddzO2(x)O(y)O(z) 〈O(y)O(z)〉CFT ∼ f

3
∫
ddw 〈O(0)O(w)〉CFT

×
∫
ddxddyO2(x)O2(y), (5.2.8)

whereas all the other terms are suppressed in the large N expansion. This term does not
represent a new correction to the running of f , but it is a contribution to the second order
term in the exponential series of the double-trace deformation. Therefore we have that
(5.2.6) and (5.2.7) are the exact running couplings of the theory in the large N limit and
the higher order terms reconstruct their exponential series in the path integral.

Now, defining the dimensionless couplings λ := λΛ∆−d and f̄ := fΛ2∆−d, we can compute
their β-functions by differentiating with respect to Λ:

Λ∂Λλ = vλ

(
f̄ + ∆− d

v

)
(5.2.9)

Λ∂Λf̄ = vf̄2 + (2∆− d)f̄ . (5.2.10)

These are the RG equations of the single-trace coupling λ and the double-trace coupling f̄ .
Setting the dimension of the operator O to ∆+ the equation of f̄ recovers the RG equation
(4.2.40) of the actual double-trace coupling obtained through holographic Wilsonian treat-
ment in subsection 4.2.1. Moreover, since the term f̄ + (∆− d)/v in the equation of λ can
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be seen as reconstructing the double-trace deformation in (4.2.32), the equation (5.2.9) re-
covers the RG equation of the single-trace coupling (4.2.35) obtained in hWRG formulation.
This is an important result because it has been obtained studying the RG flow of a theory
defined as a deformed CFT in terms of composite operators only. Indeed this framework
reflects that of hWRG, where the dual QFT is defined in the same way. Therefore this
result shows that, considering a CFT deformed by some composite operator, the RG flow of
the deformation terms has the same structure if obtained holographically through hWRG
or directly with field theory computations.

5.3. Conclusions
Summarizing what we have described in this chapter, we can see that, for a theory defined
only through composite operators and where it is not clear how the cut-off scale is introduced
in the action, the planar RG flow computed with field theory methods has the same structure
of the holographic Wilsonian RG in the large N limit, described in chapter 4. On the other
hand the planar RG flow of a matrix theory obtained through ordinary Wilsonian treatment
has a very different structure. This is due to the fact that in this case the theory has an
explicit structure in terms of elementary fields and, in particular, that the cut-off is explicitly
defined inside the propagator, so that we can keep track of how its derivative acts on the
Wilsonian action and generates new interaction terms.

Therefore our proposal is that the underlying reason why the holographic Wilsonian
treatment seems not to be consistent with ordinary Wilsonian approach to large N QFT
stands in the fact that the structure of the theory in the two approaches is determined
respectively through composite operators and elementary fields. This leads to different
descriptions of the RG flow, due, in particular, to the fact that the cut-off scale enters the
theory in very different ways.



APPENDIX A

Calculus of loop integrals

In this appendix we perform the explicit calculations of loop integrals encountered in sub-
section 1.1.1 considering the UV corrections to the φ4 theory in Wilsonian approach.

The first integral we have considered is:

=
∫

d4k

(2π)4
Θ̂(k)

k2 +m2 , (A.1)

where Θ̂(k) is the function which selects momenta in the range [Λ,Λ0]. We can evaluate it
writing the measure in polar coordinates, thus:

d4k = dΩ4dkk
3,

where k = (k2) 1
2 = (kµkµ) 1

2 . So we have:

1
(2π)4

∫
dΩ4

∫ Λ0

Λ
dk

k3

k2 +m2 . (A.2)

Now the integral over the solid angle is:

∫
dΩ4 = 2π2

Γ(2) = 2π2,

where Γ is the Euler’s gamma function, so, since Γ(n) = (n − 1)! for n ∈ N, we have that
Γ(2) = 1.

The integral over k can be computed using a change of variables:

y2 := k2 +m2. (A.3)
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In such a way we have:
dk = y√

y2 −m2dy,

whereas the integration range becomes
[√

Λ2 +m2,
√

Λ2
0 +m2

]
. Therefore the integral in

(A.1) can be written as:

1
8π2

∫ √Λ2
0+m2

√
Λ2+m2

dy

(
y − m2

y

)
= 1

8π2

(1
2y

2 −m2 log y
∣∣∣∣
√

Λ2
0+m2

√
Λ2+m2

.

Hence the result is:
∫

d4k

(2π)4
Θ̂(k)

k2 +m2 = 1
16π2

[
(Λ2

0 − Λ2)−m2 log
(Λ2

0 +m2

Λ2 +m2

)]
. (A.4)

The next loop integral that we are going to perform comes from the UV correction to the
φ4 vertex:

ζ = −3
2 λ

2
∫

d4k

(2π)4
Θ̂(k)

(k2 +m2)2 . (A.5)

Such integral can be computed in the same way as the previous one. Indeed we can write it
as: ∫

d4k

(2π)4
Θ̂(k)

(k2 +m2)2 = 1
8π2

∫ Λ0

Λ
dk

k3

(k2 +m2)2 .

Now, considering the change of variables (A.3), we have:

∫ Λ0

Λ
dk

k3

(k2 +m2)2 =
∫ √Λ2

0+m2

√
Λ2+m2

dy

(1
y
− m2

y3

)
=
(

log y + m2

2y2

∣∣∣∣∣
√

Λ2
0+m2

√
Λ2+m2

.

Hence the result is:
∫

d4k

(2π)4
Θ̂(k)

(k2 +m2)2 = 1
16π2

[
log

(Λ2
0 +m2

Λ2 +m2

)
+m2

( 1
Λ2

0 +m2 −
1

Λ2 +m2

)]
. (A.6)

The last loop integral we explicitly perform comes from the UV correction which produces
a φ6 vertex:

ξ = −15λ3
∫

d4k

(2π)4
Θ̂(k)

(k2 +m2)3 . (A.7)

Following the usual method, the integral reads:

∫
d4k

(2π)4
Θ̂(k)

(k2 +m2)3 = 1
8π2

∫ Λ0

Λ
dk

k3

(k2 +m2)3 ,

so, performing the change of variables (A.3), we have:

∫ Λ0

Λ
dk

k3

(k2 +m2)3 =
∫ √Λ2

0+m2

√
Λ2+m2

dy

( 1
y3 −

m2

y5

)
=
(
− 1

2y2 + m2

4y4

∣∣∣∣∣
√

Λ2
0+m2

√
Λ2+m2

.
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Hence the result is:
∫

d4k

(2π)4
Θ̂(k)

(k2 +m2)3 = − 1
16π2

[ 1
Λ2

0 +m2 −
1

Λ2 +m2 −
m2

2

( 1
(Λ2

0 +m2)2 −
1

(Λ2 +m2)2

)]
.

(A.8)
A particular mention is required for derivative terms in (1.1.37), arising from further orders
in the Taylor expansion of φ2

L(y) around y = x. In subsection 1.1.1 we have noted, through
symmetry properties, that Aµ is vanishing. Here, for completeness, we explicitly derive this
fact.

The parameter Aµ is the coupling of a φ3∂µφ vertex, thus it reads:

Aµ = −3λ2
∫
d4wwµ 〈φH(0)φH(w)〉20

= −3λ2
∫

d4k

(2π)4
d4p

(2π)4
Θ̂(k)

(k2 +m2)
Θ̂(p)

(p2 +m2)

∫
d4wwµ e−iw·(k+p). (A.9)

Now we have:
wµ e−iw·(k+p) = i

∂

∂kµ
e−iw·(k+p), (A.10)

thus: ∫
d4wwµ e−iw·(k+p) = i

∂

∂kµ
(2π)4δ4(k + p). (A.11)

In such a way, using the properties of the delta function, Aµ becomes:

Aµ = 3iλ2
∫

d4k

(2π)4
d4p

(2π)4
∂

∂kµ

(
Θ̂(k)

(k2 +m2)

)
Θ̂(p)

(p2 +m2)(2π)4δ4(k + p), (A.12)

where:

∂

∂kµ
Θ̂(k) = ∂k

∂kµ
∂k
(
θ(Λ0 − k)− θ(Λ− k)

)
= kµ

k

(
δ(Λ− k)− δ(Λ0 − k)

)
(A.13)

∂

∂kµ

1
k2 +m2 = − 2kµ

k2 +m2 , (A.14)

so that the whole derivative reads:

∂

∂kµ

(
Θ̂(k)

(k2 +m2)

)
= kµ

k2 +m2

[1
k

(
δ(Λ− k)− δ(Λ0 − k)

)
− 2 Θ̂(k)

k2 +m2

]
. (A.15)

Since we can split the measure in:

d4k = dΩ4dk k
3, (A.16)

and redefine the four-momentum k as:

kµ = kk̂µ k̂µk̂µ = 1, (A.17)
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we have:

Aµ = 3iλ2

(2π)4

∫
dΩ4 k̂

µ
∫
dk

(
k3Θ̂(k)

(k2 +m2)2
(
δ(Λ− k)− δ(Λ0 − k)

)
− 2 k4Θ̂(k)

(k2 +m2)3

)
(A.18)

Now let us focus on the first integral: ∫
dΩ4 k̂

µ. (A.19)

This integral is equal to zero because the measure is invariant under the redefinition such
that k̂µ 7→ −k̂µ. Therefore the derivative coupling Aµ is vanishing.



APPENDIX B

Holographic computation of the
correlation functions

The renormalized on-shell action Sren is a finite functional of the boundary value φ0 which
yields the correlation functions of the dual operator O in the boundary field theory through
its derivatives with respect to φ0:

〈O(x1) · · · O(xn)〉CFT = − δnSren[φ0]
δφ0(x1) · · · δφ0(xn)

∣∣∣∣
φ0=0

. (B.1)

In such a way we are capable to compute them evaluating Sren on the complete solution φ
of the e.o.m. (3.3.2) written in terms of φ0. However, since the n-point function depends
on the n-th derivative of Sren with respect to φ0 calculated in φ0 = 0, every term in Sren

proportional to some power of φ0 greater than n does not give contribution and can be
neglected.

Therefore, the 1-point function would need just single-field terms which are not present
in Sren, thus we can say that it is vanishing. Instead, for the 2-point function we need the
action up to quadratic terms in φ0, i.e. just the free part. For this reason we can consider
the solution of the free e.o.m., which is the Klein-Gordon equation (3.3.5). Such solution
can be expressed in terms of a function K(z;x− x′) which satisfies:

(
−� +m2)K(z;x− x′) = 0

K(z;x− x′) ∼
z 7→0

z∆−δd(x− x′),
(B.2)

so that:
φ(z, x) =

∫
ddx′K(z;x− x′)φ0(x′). (B.3)

SinceK(z;x−x′) connects the solution φ evaluated in the bulk to its boundary value φ0, it is
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called bulk-to-boundary propagator. Moreover it can be computed considering the Green’s
function G of the free e.o.m. operator in AdSd+1:

(
−� +m2)G(z, x; z′, x′) = 1

√
g
δ(z − z′)δd(x− x′), (B.4)

so that, through Green’s theorem, we have that:

φ(z′, x′) =
∫
ddx z1−d

(
φ(z, x)∂zG(z, x; z′, x′)−G(z, x; z′, x′)∂zφ(z, x)

∣∣∣
z=0

−
∫
ddx z1−d

(
φ(z, x)∂zG(z, x; z′, x′)−G(z, x; z′, x′)∂zφ(z, x)

∣∣∣
z=+∞

, (B.5)

because the boundary of AdSd+1 is the union of (z = 0, x) with (z = +∞, x). The imposition
of regularity conditions at z = +∞ ensures that the second term in the previous equation
does not give contribution. Unlike K, the Green’s function G connects two different bulk
points (z, x) and (z′, x′), thus it is can be called bulk-to-bulk propagator to be distinguished
fromK. Moreover G satisfies (B.4), thus it is a solution of the free e.o.m., and so its behavior
for z 7→ 0 is:

G(z, x; z′, x′) ∼
z 7→0

z∆−G−(x; z′, x′) + z∆+G+(x; z′, x′), (B.6)

where G− is a non-normalizable amplitude. Thus, in order to have a normalizable Green’s
function, we set G− ≡ 0 and so, using the boundary conditions for φ in (B.5), we have:

φ(z′, x′) = (∆+ −∆−)
∫
ddxG+(x; z′, x′)φ0(x), (B.7)

which allows us to connect G+ to the bulk-to-boundary propagator:

K(z′;x′ − x) = (∆+ −∆−)G+(x; z′, x′), (B.8)

and then:
G(z, x; z′, x′) ∼

z 7→0
z∆+K(z′;x′ − x)

∆+ −∆−
. (B.9)

Therefore, computing the Green’s function we can obtain the explicit form of the bulk-to-
boundary propagator. To do so we can note that G is invariant under the isometry group
O(1, d+ 1) of AdSd+1, hence it must be a function of the AdS invariant distance:

w2 = −ηIJ(X −X ′)I(X −X ′)J = 2− 2ηIJXiX
′
J = (z − z′)2 + (x− x′)2

zz′
:= 1

u
, (B.10)

where I = −1, 0, 1, · · · , d and ηIJ = diag(−1,+1, · · · ,+1).
Solving the equation (B.4) of G in terms of u we can obtain its form for z 7→ 0, i.e. u 7→ 0:

G ∼
z 7→0

cu∆+ 7−→
z 7→0

cz∆+

(
z′

z′2 + |x− x′|2

)∆+

(B.11)
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From this we obtain that:

K(z;x− x′) = c+
z∆+(

z2 + |x− x′|2
)∆+

, (B.12)

where c+ = c(∆+ −∆−) is a normalization, which is fixed by boundary conditions, thus it
has to satisfy:

lim
z 7→0

c+
z∆+−∆−(

z2 + |x− x′|2
)∆+

= δd(x− x′), (B.13)

or equivalently:

lim
z 7→0

c+

∫
ddx

z∆+−∆−(
z2 + |x− x′|2

)∆+
= 1. (B.14)

Performing a change of variables y := |x− x′|/z we can solve the integral. This enables us
to determine the explicit form of the normalization, which is:

c+ = Γ(∆+)
π
d
2 Γ(∆+ − d

2)
, (B.15)

where Γ is the Euler’s gamma function. Therefore, since ∆+ ≥ d/2 and Γ(x) > 0 for x ≥ 0,
the normalization c+ is always non-negative1.

Now, knowing the correct form of the bulk-to-boundary propagator, we can give a general
solution of the free e.o.m. with boundary value φ0:

φ(z, x) = c+

∫
ddx′

z∆+(
z2 + |x− x′|2

)∆+
φ0(x′). (B.16)

Considering the expanded solution (3.3.10), we can obtain the form of A(x) in terms of φ0

looking at the contribution proportional to z∆+ for z 7→ 0:

A(x) = c+

∫
ddx′

φ0(x′)
|x− x′|2∆+

. (B.17)

Recalling from (3.3.42) that the derivative of Sren with respect to φ0 has the form:

〈O(x)〉φ0
= − δSren

δφ0(x) = (2∆+ − d)A(x), (B.18)

we have that the 1-point function of O in the boundary CFT is obtained setting φ0 = 0.
So, using (B.17), we have:

〈O(x)〉CFT = 0, (B.19)

which reflects our initial prediction and satisfies the conformal invariance.
1In fact, c+ > 0 except for ∆+ = d/2, where the Gamma function Γ(∆+ − d/2) =∞ and so c+ 7→ 0.
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To compute the 2-point function we need the second derivative of Sren, thus we can apply
another derivative to (B.18):

〈O(x1)O(x2)〉φ0
=
δ 〈O(x1)〉φ0

δφ0(x2) = (2∆+ − d) δA(x1)
δφ0(x2) . (B.20)

Using (B.17), we have:
δA(x1)
δφ0(x2) = c+

|x1 − x2|2∆+
. (B.21)

Therefore the 2-point function of the operator O in the boundary CFT is:

〈O(x1)O(x2)〉CFT = (2∆+ − d) c+

|x1 − x2|2∆+
. (B.22)

This agrees with the expected result for the correlation function in a conformal field theory.
The computation of the 3-point function requires the introduction of terms proportional

to φ3
0 in Sren, so we have to include in the computation the part of the potential V (φ)

proportional to λφ3. In such a way the e.o.m. is modified to:

(
−� +m2)φ+ λφ2 = 0. (B.23)

The solution can be calculated perturbatively in λ. Thus we can expand φ = φ
(0) +φ(1) + · · · ,

where φ(0) is the free solution (B.16), whereas φ(1) is the contribution of order λ, which solves
the perturbative equation:

(
−� +m2)φ(1) + λ

(
φ

(0))2 = 0. (B.24)

Being the latter an inhomogeneous Klein-Gordon equation, its solution can be written using
the Green’s function G which satisfies (B.4):

φ
(1)(z, x) = −λ

∫
dz′ddx′

√
gG(z, x; z′, x′)

(
φ

(0)(z′, x′)
)2
. (B.25)

Recalling the boundary behavior of the bulk-to-bulk propagator (B.9), we have:

φ
(1)(z, x) ∼

z 7→0
− λz∆+

2∆+ − d

∫
dz′ddx1d

dx2d
dx3
√
gK(z′;x− x1)K(z′;x1 − x2)

×K(z′;x1 − x2)φ0(x2)φ0(x3). (B.26)

This is a term going as z∆+ , so it represents a correction of order λ to A(x):

A(1)(x) = − λ

2∆+ − d

∫
dzddx1d

dx2d
dx3
√
gK(z;x− x1)K(z;x1 − x2)

×K(z;x1 − x3)φ0(x2)φ0(x3), (B.27)
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so that the term A in the expansion of φ can be written as A = A(0) + A(1), where A(0) is
the free contribution (B.17), whereas A(1) is the latter correction.

Now, like for the 2-point function, we can write the 3-point function as:

〈O(x1)O(x2)O(x3)〉φ0
=

δ2 〈O(x1)〉φ0

δφ0(x2)δφ0(x3) = (2∆+ − d) δ2A(x1)
δφ0(x2)δφ0(x3) . (B.28)

Since the free part A(0) is proportional to φ0, its second derivative vanishes, thus only A(1)

gives a finite contribution:

δ2A(1)(x1)
δφ0(x2)δφ0(x3) = − 2λ

2∆+ − d

∫
dzddx

√
gK(z;x − x1)K(z;x − x2)K(z;x − x3), (B.29)

which means that the 3-point function of O in the boundary CFT is:

〈O(x1)O(x2)O(x3)〉CFT = −2λ
∫
dzddx

√
gK(z;x− x1)K(z;x− x2)K(z;x− x3). (B.30)

Exploiting the transformation properties of the bulk-to-boundary propagator one can per-
form the integral and show that:

〈O(x1)O(x2)O(x3)〉CFT ∼
1

|x1 − x2|∆+ |x1 − x3|∆+ |x2 − x3|∆+
, (B.31)

which is the expected result for the 3-point function in a conformal field theory.
Looking at the form of (B.30) we can give a diagrammatic interpretation of the contribu-

tions to the correlation functions. Indeed we have defined K as the bulk-to-boundary propa-
gator because it connects a point in the bulk to a point on the boundary, thus we can imagine
to represent it as a line which starts in the bulk and ends on the boundary:

K(z;x− x′) =

bulk

(z;x)

x′

boundary

On the contrary, the bulk-to-bulk propagator connects two different points in the bulk.
Therefore we can represent G(z, x; z′, x′) as a line in the interior of the bulk connecting the
points (z, x) and (z′, x′):

G(z, x; z′, x′) =

bulk

(z;x) (z′;x′)

boundary
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Through this method we can represent the contributions of the correlation functions as
diagrams with as many bulk-to-boundary lines as functions K there are in the integral and
as many bulk-to-bulk lines as Green’s functions G. For example, the 3-point function is
represented by:

(z;x)
x1

x2

x3

where the integral λ
∫
K(z;x− x1)K(z;x− x2)K(z;x− x3) is represented by an interaction

of three bulk-to-boundary propagators happening in the bulk at (z, x).
Using this representation we can argue the contributions of every correlation function.

For example, the 4-point function is determined by two different terms:

The first diagram is of order λ because it comes from the term λφ3 in V (φ) and involves two
vertices connected by a bulk-to-bulk propagator G. The second diagram is the contribution
coming from the term µφ4 in V (φ) so it is of order µ and involves the vertex of four bulk-
to-boundary propagators.

This is the standard technology for the computation of the correlation functions of the
operator O in the boundary CFT. We have shown that this method provides the expected
results for the 1-, 2- and 3-point functions. This provides a consistency verification of the
AdS/CFT correspondence statement (3.2.9).

Let us remark that this method yields finite and well-defined results only after the holo-
graphic renormalization has removed the divergences on the bulk action.



APPENDIX C

Solution of the RG equations

In this appendix we explicitly solve the evolution equations (4.2.29) and (4.2.30) of the
parameters J and F of the UV amplitude (4.2.27) for the free scalar field in the bulk
considered in subsection 4.2.1:

1
√
g
∂ε
(√
hJ(k, ε)

)
= −J(k, ε)F (k, ε) (C.1)

1
√
g
∂ε
(√
hF (k, ε)

)
= −F 2(k, ε) + (v−2k2 +m2). (C.2)

The general solutions can be specified in terms of initial conditions J0 := J(ε0) and F0 :=
F (ε0) defined on the regulated boundary. Looking at the first order form of the bulk e.o.m.:

∂zφk = z−2
√
g
πk, ∂zπk = √g(v−2k2 +m2)φk, (C.3)

where π is the conjugate momentum of φ, we can see that J and F can be parametrized in
terms of the general solution (φ̂, π̂) of such equation:

J(k, ε) = 1√
hφ̂k(ε)

, F (k, ε) = π̂k(ε)√
hφ̂k(ε)

. (C.4)

This means that the initial conditions (J0, F0) can be translated into the boundary conditions
of (φ̂, π̂). Since the metric is asymptotic to AdSd+1 near the boundary, for ε0 7→ 0 we have:

φ̂k(ε0) ∼ αkε∆−0 + βkε
∆+
0 . (C.5)

In such a way the functions α and β specify the solution (φ̂, π̂). Thus if we pick two
independent particular solutions (φ̂1, π̂1) and (φ̂2, π̂2) of (C.3), such that:

φ̂1 ∼ z∆− , φ̂2 ∼ z∆+ for z 7→ 0,
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the general solution can be expressed as:

φ̂k = αkφ̂1(ε, k) + βkφ̂2(ε, k) π̂k = αkπ̂1(ε, k) + βkπ̂2(ε, k). (C.6)

For this reason, using (C.4) evaluated at ε0, we can determine the relation between (J0, F0)
and (α, β):

α = ∆+ − F0
2νJ0

ε
∆+
0 β = F0 −∆−

2νJ0
ε
∆−
0 . (C.7)

Instead of using β, it is more convenient to define χ := β/α, so that the initial conditions
of J and F can be expressed in terms of (α, χ). Thus we have that:

χ = F0 −∆−
∆+ − F0

ε−2ν
0 . (C.8)

At this point we can write the solutions of (4.2.29) and (4.2.30) as:

√
hJ(k, ε) = 1

αk

1
φ̂1(ε, k) + χkφ̂2(ε, k)

(C.9)

√
hF (ε, k) = π̂1(ε, k) + χkπ̂2(ε, k)

φ̂1(ε, k) + χkφ̂2(ε, k)
. (C.10)

In the case of pure AdSd+1 metric (3.1.8) we can obtain an explicit solution in the regime
of small momenta (εk � 1). Indeed, in such case we can consider:

φ̂1 = z∆− , φ̂2 = z∆+ , (C.11)

so that from (C.9) and (C.10) we obtain:

J(ε) = 1
α

ε∆+

1 + χε2ν
(C.12)

F (ε) = ∆− + ∆+χε
2ν

1 + χε2ν
. (C.13)

Let us remark that the solution (φ̂, π̂) of (C.3) does not correspond to the classical solution
φ where the on-shell bulk action is evaluated. This is due to the fact that the boundary
conditions specified by (α, χ) of φ̂ depends on the initial conditions (J0, F0) of the flow of
the parameters J and F of SUV, whereas φ is defined through (4.1.4) plus some regularity
condition at z = +∞ in order to determine a single deformation of the boundary CFT.

Using hWRG we have seen that the Wilsonian action (4.2.32) of the dual QFT contains
a single- and a double-trace deformation in the operator O, respectively determined by the
couplings λ and f . Since they are related to J and F through:

λ(k, ε) = − J(k, ε)
F (k, ε) f(k, ε) = − 1

F (k, ε) , (C.14)
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the solutions of their RG equations (4.2.35) and (4.2.36) can be found from the solutions of
the evolution equations of J and F . Therefore in pure AdSd+1 and for εk � 1 we have:

λ(k, ε) = − 1
αk

ε∆+

∆− + ∆+χkε2ν
f(k, ε) = − 1 + χkε

2ν

∆− + ∆+χkε2ν
. (C.15)

If we want the solutions for the more general metric (4.1.5) we can use (C.9), (C.10) and
write it in terms of (φ̂1, π̂1) and (φ̂2, π̂2):

λ(k, ε) = − 1
αk

1
π̂1(ε, k) + χkπ̂2(ε, k) f(k, ε) = −

√
h
φ̂1(ε, k) + χkφ̂2(ε, k)
π̂1(ε, k) + χkπ̂2(ε, k) . (C.16)

The imposition of the standard quantization requires that the initial value f(ε0) = f−. This
implies that F0 = ∆+ and so, from (C.8), we have that χ =∞. Hence:

f(k, ε) = −
√
h
φ̂2(ε, k)
π̂2(ε, k) . (C.17)

Indeed at ε = ε0 we have φ̂2 ∼ ε
∆+
0 and π̂2 ∼ ∆+ε

−∆−
0 , thus f(ε0) = −1/∆+ = f−. This is

the general solution for the double-trace coupling of the Wilsonian action.
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