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1 Introduction

This thesis discusses Lipman’s method of the resolution of singularities for
algebraic surfaces based on [2].

More precisely, let X be a surface, i.e. a Noetherian, normal, connected,
and excellent scheme. Denote X = X0 and define a sequence of surfaces

X0←X1←X2← ... (1.1)

Here, Xi is the normalization of the blowing-up of Xi−1 along its singular
locus, and the arrows are the corresponding morphisms fi : Xi → Xi−1.
According to Lipman, when i is large enough, Xi is nonsingular.

The proof starts by showing that for sufficiently large n in the above
sequence, all points of Xn are rational singularities (Section 10). In Sec-
tion 10.1, it is shown that nonsingular points are rational singularities. At
a singular point p, the lengths of the stalks of R1f∗OX′ are bounded inde-
pendently of modifications f : X ′ → X (Section 10.2). These facts about
the length are due to the theory of dualizing sheaves discussed in Section 8.
With these two facts, one can find some sequence of surfaces that blows-up
the singular points into rational singularities.

Now the problem is reduced to the case when all points of a surface X0 are
rational singularities. The second step of the proof, discussed in Section 12,
is to show that when m ≫ 0, the dualizing sheaf of Xm in (1.1) is locally
free. From this, all rational singularities can be shown to have multiplicity
at most 2.

Finally, the schematic-fibre of rational singularities are analysed . For
each point with multiplicity 2, its schematic-fibre under the blow-up map is
either a nonsingular curve, a reduced cone, or a double line, and all singular
points in the fibre can be resolved by a sequence of normalized blow-up into
nonsingular points.

Due to time constraints, only the first two steps are discussed in this
thesis. Also, the following restriction is made.

Definition 1.1. A surface X is an integral normal separated scheme of finite
type and of dimension 2 over an infinite perfect closed field k.

2 Multiplicity

The aim of this section is to prove the following proposition:

Proposition 2.1. Let A be a d-dimensional Cohen-Macaulay local ring with
maximal ideal m and infinite residue field k. Then there exists a regular
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sequence a1, · · · , ad ∈ A such that the multiplicity of m is the length of the
ring A/(a1, · · · , ad).

To do so, this section collects a list of facts about multiplicity and other
concepts of commutative algebra from [11].

2.1 Definition of multiplicity

The lemma below motivates the definition of multiplicity.

Lemma 2.2. Let A be a d-dimensional Noetherian local ring and I an m-
primary ideal. For every finitely generated A-module M , denote l(M) the
length of M as an A-module. Then for sufficienly large n, there is some
e(I,M) ∈ Z such that

l(M/In+1M) =
e(I,M)

d!
nd + (lower order terms)

Definition 2.3. The e(I,M) in the above definition is called the multiplicity
of I. If m is the maximal ideal of A, e(m) denotes e(m,A).

2.2 Regular sequences

Definition 2.4. Let A be a ring and M be an A-module. Then a sequence of
elements a1, · · · an ∈ A is called anM -regular sequence ifM/(a1, · · · , an)M ̸=
0 and for 1 ≤ i ≤ n, ai is not a zero-divisor of M/(a1, · · · , ai−1)M .

Definition 2.5. Let A be a ring, M be an A-module, and a1, · · · , an ∈ A.
Define K0 = A, Ki = ⊕1≤j1<···<ji≤nAej1···jn for 1 ≤ i ≤ n, and Ki = 0 for

i > n. For i ≥ 2, define the following map:

d : Ki → Ki−1

ej1···ji 7→
i

∑

k=1

(−1)k−1ajkej1···ĵk···ji .

Also define d(ej) = xj. This d is a differential map that defines a complex
K•, called the Koszul complex. The homology groups are denoted Hi(a,M).

Lemma 2.6. Let A be a ring, M be an A-module, and a1, · · · an ∈ A be an
M -regular sequence. Then the only nonzero homology group of the Koszul
complex of A is H0(a,M) = M/(a1, · · · , an)M .
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2.3 System of parameters

Lemma 2.7. Let A be a d-dimensional Noetherian local ring and m the
maximal ideal. Then every generating system of an m-primary ideal has
at least d elements. Also, there exists an m-primary ideal generated by d
elements.

Definition 2.8. Let A be a d-dimensional Noetherian local ring and m the
maximal ideal. Any d-element subset of A that generates an m-primary ideal
is called a system of parameters.

The following formula relates Koszul complexes and multiplicities.

Proposition 2.9. Let A be a d-dimensional Noetherian local ring and M a
finitely generated A-module. Let {a1, · · · ad} be a system of parameters and
I = (a1, · · · , ad). Then we have

e(I,M) =
d

∑

i=0

(−1)il(Hi(a,M)).

Lemma 2.10. Let A be a d-dimensional Noetherian local ring with maximal
ideal m and infinite residue field k. Let I be an m-primary ideal. Then there
is a system of parameters {a1, · · · ad} such that

e(I, A) = e((a1, · · · , ad), A).

Lemma 2.11. [11, Theorem 17.4(iii)] Let A be a Noetherian local ring with
maximal ideal m. Let a1, · · · , ar ∈ m. Then if a1, · · · , ar is an A-regular
sequence, there is a system of parameters of A that contains a1, · · · , ar.

2.4 Depth and Cohen-Macaulay rings

Lemma 2.12. Let A be a Noetherian ring, I be an ideal of A, and M a
finitely generated A-module such that M ̸= IM . Then all maximal M -
regular sequences in I have the same length.

Definition 2.13. Let A be a Noetherian ring, I be an ideal of A, and M
a finitely generated A-module such that M ̸= IM . The length of a maxi-
mal M -regular sequence in I is called the I-depth of M and is denoted as
depth(I,M).

If A is a local ring with maximal ideal m, depth(m,M) is also called the
depth of M and is also denoted depth(M).
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Definition 2.14. A Noetherian local ring A is called a Cohen-Macaulay ring
if depth(A) = dim(A).

A Noetherian ring A is called a Cohen-Macaulay ring if for every maximal
ideal m, Am is Cohen-Macaulay.

Lemma 2.15. Regular local rings are Cohen-Macaulay.

Local rings of surfaces are Cohen-Macaulay.

Lemma 2.16. Every integral normal ring of dimension 2 is Cohen-Macaulay.

Proof. By the Auslander-Buchsbaum formula, depth(Am) ≤ dim(Am) = 2.
The reverse inequality follows from the Serre criterion of normality.

Over local Cohen-Macaulay rings, systems of parameters coincide with
regular sequences.

Lemma 2.17. [11, Theorem 17.4(iii)] Let A be a Cohen-Macaulay local ring
with maximal ideal m. Let a1, · · · , ar ∈ m. Then a1, · · · , ar is an A-regular
sequence if and only if there is a system of parameters of A that contains
a1, · · · , ar.

The proof of Proposition 2.1 can now be given.

Proof. Let {a1, · · · ad} be a system of parameters such that e(I, A) = e((a1, · · · , ad), A).
Since this system produces an A-regular sequence, all homology groups of
positive degrees are zero for the Koszul complex with the sequence a1, · · · , ad.
Therefore, e(I, A) = l(A/(a1, · · · , ad)).

This section ends with the definition of multiplicity over a scheme.

Definition 2.18. Let X be a reduced scheme of finite type over a field k.
Then the multiplicity of a point x ∈ X is the multiplicity of the maximal
ideal mx in the local ring OX,x.

3 Blow-ups

3.1 Existence of blow-ups

Blow-ups is an essential tool to resolve singularities. The material of this
section is based on [8, Section (13.19)].

7



Definition 3.1. [8, Definition 13.90] Let X be a scheme and Z be a closed
subscheme. A blow-up ofX along Z is a schemeX ′ and a morphism f : X ′ →
X such that f−1(Z) is an effective Cartier divisor and X ′ and f satisfies the
universal property: if f ′ : X ′′ → X is any morphism such that f ′−1(Z) is an
effective Cartier divisor, there exists a unique morphism g : X ′′ → X ′ such
that f ′ = f ◦ g.

Definition 3.2. With notations as above, Z is called the centre of the blow-
up and f−1(Z) the exceptional divisor of the blow-up.

Blow-ups exist for every closed subscheme. With the above universal
property, a blow-up is unique up to an unique isomorphism. The following
two lemma describes blow-ups and their exceptional divisors explicitly.

Lemma 3.3. [8, Proposition 13.92] Let Z be a closed subscheme of a
scheme X with associated ideal sheaf I . Then the blow-up of X along
Z is Proj(⊕d≥0I

d).

Lemma 3.4. [8, Remark 13.94] Let Z be a closed subscheme of a scheme X
with associated ideal sheaf I . Then the exceptional divisor of the blow-up
of X along Z is Proj(⊕d≥0I

d/I d+1).

3.2 Properties of Blow-up

We first notice that blow-up can be studied locally.

Lemma 3.5. [8, Proposition 13.91(2)] Let X be a scheme, Z a closed sub-
scheme of X, and f : X ′ → X the blow-up of X along Z. Further let U
be an open subset of X and U ′ be the blow-up of U along Z ∩ U . Then
f−1(U) = U ′.

Lemma 3.6. [8, Proposition 13.91(3)] Let X be a scheme, Z a closed sub-
scheme of X, and f : X ′ → X the blow-up of X along Z. Then f |f−1(X\Z) is
an isomorphism.

With these lemmas, one can study the behaviour of the blow-up locally,
such as studying the case when X is an affine open scheme.

Lemma 3.7. Let A be a ring and I be an ideal of A generated by n elements.
Suppose X = Spec(A) and b : X ′ → X is the blow-up of X along V (I) ⊂ X.
Then b is a projective morphism and X ′ is isomorphic to a closed subscheme
of Pn−1

A .

8



Proof. Let I = (a0, · · · , an−1). Then there is a surjective A-homomorphism:

α : A[x0, x1, · · · , xn−1]→ A⊕ I ⊕ I2 ⊕ · · · ,

1 7→ 1 ∈ A,

xi 7→ ai ∈ I.

Taking Proj on both sides, we have the commutative diagram

Pn−1
A X ′

X

b

i

b

with X ′ ∼= V +(kerα).

3.3 Blow-ups over regular surfaces

In this subsection, the proof of the following lemma, as discussed in [1], will
be given:

Lemma 3.8. The blow-up of a nonsingular scheme along a nonsingular
closed subscheme is nonsingular.

Since nonsingularity of a scheme is a local property, the above lemma can
be proved by using an affine open cover. The above lemma restricted to an
affine scheme then becomes:

Lemma 3.9. Let A be a nonsingular ring. Let I be an ideal of A such that
A/I is nonsingular. Then Proj(⊕d≥0I) is a nonsingular scheme.

To prove this lemma, the following facts about nonsingular rings and
regular sequences are collected:

Lemma 3.10. [12, Tag 00NR] Let A be a nonsingular local ring with an
ideal I such that A/I is also a nonsingular local ring. Then there exists a
system of parameters {a1, · · · , ad} such that

� this system {a1, · · · , ad} generates m and,

� there exists 1 ≤ c ≤ d such that I = (a1, · · · , ad).

Lemma 3.11. [12, Tag 00NU] Let A be a Noetherian local ring. Let
a1, · · · , ac be a A-regular sequence such that A/(a1, · · · , ac) is a nonsingular
local ring. Then A is also a nosingular local ring.
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Lemma 3.12. Let A be a Noetherian ring, and let I ⊂ A be an ideal
generated by a A-regular sequence a1, · · · , ac. Then there is the following
isomorphism

(A/I)[x1, · · · , xc]→ ⊕d≥0I
d/Id+1,

xd
i 7→ ai

d ∈ Id/Id+1.

Using these facts, the nonsingularity of the blowup can be proved. We
shall first prove that the exceptional divisor is nonsingular. Note that is the
exceptional divisor of the blow-up of Spec(A) along the closed subscheme
associated to I is Proj(⊕d≥0I

d/Id+1).

Lemma 3.13. Let A be a nonsingular ring. Let I be an ideal of A such that
A/I is nonsingular. Then Proj(⊕d≥0I

d/Id+1) is also nonsingular.

Proof. Let p ∈ Spec(A). To prove this lemma, we consider the blow-up of
Spec(Ap) along the closed subschmeme associated to the ideal Ip. Note that
this is possible since Spec(Ap) is the intersection of all open subschemes that
contain p. Then the exceptional divisor is Proj(⊕d≥0I

d
p/I

d+1
p ).

Using Lemma 3.10, there is aAp-regular sequence such that Ip = (a1, · · · , ac).
Then by Lemma 3.12, Proj(⊕d≥0I

d
p/I

d+1
p ) = Pc−1

Ap/Ip
, which is nonsingular.

Now the proof of Lemma 3.8 will be given.

Proof. First note that b induces an isomorphism from X ′ \ b−1(x) to X \{p}.
Thus X ′ is nonsingular outside b−1(x).

Let x′ ∈ b−1(x). Since b−1(x) is an effective Cartier divisor, there is some
a ∈ OX′,x′ such that a is not a zero divisor and Ob−1(x),x′ = OX′,x′/(a). Since
Ob−1(x),x′ is nonsingular, OX′,x′ is nonsingular by Lemma 3.11.

4 Grassmannian and line bundles on closed

subschemes

4.1 Grassmannian functor

The Grassmannian functor classifies a collection of locally free subsheaves
and can be seen as a scheme defined through a functor.

Definition 4.1. [8, Section (8.4)] Let 0 ≤ d ≤ n. The Grassmannian functor
Grassd,n : (Sch)op → (Sets) is the contravariant functor defined as follows
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� For every scheme S, define

Grassd,n(S) = {U ⊂ O
n
S :

O
n
S/U is a locally free OS-submodule of rank n− d}.

� For every morphism f : T → S, define

Grassd,n(f) : Grassd,n(S)→ Grassd,n(T ),

U 7→ f ∗
U .

Lemma 4.2. [8, Lemma 8.13 and Corollary 8.15] The functor Grassd,n
is represented by a scheme locally covered by a finite number of copies of
A

d(n−d)
Z .

The Grassmannian functor can be generalized. In the above definition
of the Grassmannian functor, the On

S can be replaced by an arbitrary quasi-
coherent sheaf, as follows.

Definition 4.3. [8, Section (8.6)] Let e ≥ 0, X a scheme, and E a quasi-
coherent OX-module. The Grassmannian functor Grasse(E ) : (Sch/X)op →
(Sets) is a contravariant functor defined as follows:

� For every X-scheme h : S → X, define

Grasse(E )(S) = {U ⊂ h∗(E ) :

h∗(E )/U is a locally free OS-submodule of rank e}.

� For every morphism f : T → S, define

Grassd,n(f) : Grassd,n(S)→ Grassd,n(T ),

U 7→ f ∗
U .

Lemma 4.4. [8, Proposition 8.17(1)] The functor Grasse(E ) is represented
by a X-scheme.

The following simple lemma relates both version of the Grassmannian
functors.

Lemma 4.5. The equality Grasse(On
X) = Grassn−e,n×ZX holds.
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Proof. Consider a X-scheme h : T → X. Then

(Grassn−e,n×ZX)(T )

=(Grassn−e,n×X)(T )

=Grassn−e,n(T )×X(T )

=Grassn−e,n(T )× {h}.

Since h∗(On
X) = On

T , there is a bijection

Grasse(On
X)(T )→ (Grassn−e,n×ZX)(T )

functorial in T .

Before continuing, some properties of modules of finite presentation and
finite type are recalled.

Lemma 4.6. [8, Propositon 7.28] Let X be a ringed space. Consider an
exact sequence of OX-modules:

0→ F
′ → F → F

′′ → 0

with F of finite presentation and F ′′ of finite type. Then F ′ is of finite
type.

Lemma 4.7. [8, Proposition 8.10] Let X be a scheme, and ι : F ′ → F

be a a homomorphism of OX-modules. Further suppose that F ′ is of finite
type and F is locally free of finite type. Then the following statements are
euqivalent.

1. The map ι is injective and F ′′ := F/ι(F ′) is locally free of finite type.

2. For every open affine subset U of X, there exists a homomorphism
π : F |U → F ′|U such that ρ ◦ ι|U = id

3. If f : T → X is a morphism of schemes, f ∗(ι) : f ∗(F ′) → f ∗(F ) is
injective.

4. If x ∈ X, the morphism ι0 := ι⊗ idκ(x) : F ′(x)→ F (x) is injective.

5. The OX-module F ′ is locally free of finite type and the dual ι∨ : F∨ →
F ′∨ is surjective.
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Proof. (1 ⇒ 2) Let U be an affine open subset of X and U = Spec(A).
Since F and F ′′ are locally free and hence quasi-coherent, there exists free
A-modules M and M ′′ such that M̃ = F |U and M̃ ′′ = F |U .

Denote π : F → F ′′ and p : M →M ′′. Then p̃ = π|U . By [8, Proposiiton
7.14], ker(π|U) = ker(p)∼. Let M ′ = ker(p). Then F ′|U = M̃ ′.

The above discussion yields the following exact sequence:

0→M ′ i
−→M →M ′′ → 0.

Since M ′′ is free, M ′′ is projective. Then the exact sequence splits and i
has an left inverse r. One can then take ρ = r̃.

(2⇒ 3) By applying f ∗ to both sides of ρ ◦ ι = id, f ∗(ι) has a left inverse
f ∗(ρ).

(3 ⇒ 4) Replace f in statement 3 by the morphism Spec(κ(x))→ X.
(4⇒ 1) The injectivity of ι will be checked first. Let x ∈ X. By assump-

tion, the map ι0 is an injective morphism of κ(x)-vector space. Therefore,
there is an left inverse ρ0 of ι0.

Now note that the morphism Fx → F (x)
ρ0
−→ F ′(x) is surjective. Also,

Fx is locally free of finite type and thus projecive. Therefore, there is a
morphism ρ1 : Fx → F ′

x such that the following diagram commutes:

F ′
x Fx F ′

x

F ′(x) F (x) F ′(x).

ιx ρ1

ι0 ρ0

Note that F ′
x = im(ρ1 ◦ ιx) + mxF

′
x. By Nakayama’s lemma, ρ1 ◦ ιx is

surjective, hence bijective. Then ι has a left inverse (ρ1 ◦ ιx)
−1 ◦ ρ1 and is

injective.
The above discussion also shows that the following exact sequence:

0→ F
′
x

ιx−→ Fx → F
′′
x → 0

splits. As such, F ′′
x is a direct summand of Fx the free OX,x-module. Since

F ′ and F is locally free of finite type, F ′′ is of finite presentation. By [8,
Proposition 7.47], F ′′ is locally free of finite type.

(4 ⇒ 5) Up to this point, it is shown that statements 1-4 are equivalent.
Therefore, it is possible to continue the discussion in the proof of (1 ⇒ 2) as
follows. Since the exact sequence 0→M ′ →M →M ′′ splits, M ′ is a direct
summand of M ′′ and thus free. Therefore, F ′ ∼= ι(F ′) is locally free.

Since F ′ and F are locally free of finite type, the equality (ι0)
∨ = ι∨ ⊗

idκ(x) holds for all x. Since ι∨ ⊗ idκ(x) is surjective, the map ι∨x is surjective
by Nakayama’s lemma.
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(5 ⇒ 4) Since F ′ and F are locally free of finite type, the equality
(ι∨ ⊗ idκ(x))

∨ = ι ⊗ idκ(x) holds for all x. Since ι∨ ⊗ idκ(x) is surjective,
ι⊗ idκ(x) is injective.

Corollary 4.8. Let X be a scheme, n ≥ 1, and U ⊂ On
X such that On

X/U
is a locally free OX-submodule of rank n− d. Then U is locally free module
of rank d.

Proof. Combine the previous 2 lemmas.

4.2 Global sections of line bundles and closed sub-

schemes

Lemma 4.9. Let k be an infinite field, X be a k-scheme of finite type, and Z
be a n-dimensional closed subscheme. Let L be a line bundle onX generated
by global sections. Then there exist n+1 global sections s0, · · · sn ∈ Γ(X,L )
such that for every z ∈ Z the (si)z generate the OX,z-module Lz.

Proof. By collecting all global generators that generate the finite number of
elements that generates L locally, one can show that L is generated by
finitely many global sections. Fix the number of collected global sections to
be N . This produces the following exact sequence

0→ K
ι
−→ O

N
X → L → 0.

By Corollary 4.8, K is a direct summand of ON
X and is locally free of

rank N − 1.
Notice that if there are n + 1 elements s0, · · · , sn in Γ(X,L ) such that

∑n
i=0 si|ZOZ ̸⊂ K |Z , the image of

∑n
i=0 si|ZOZ is the whole L |Z .

Consider the Grassmannian varieties

S = GrassN−n−2(K |Z), R = GrassN−n−1(ON
Z ).

It will be shown that there is a morphism u1 : S → R using the Yoneda’s
lemma. To do so, it will be first shown that S(T ) ⊂ R(T ) for every Z-scheme
T with structure morphism u : T → Z.

Let U ∈ S(T ). Applying statement 3 of Lemma 4.7, the inclusion rela-
tions U ⊂ u∗K |Z ⊂ u∗ON

Z holds.
To show that u∗ON

Z is a locally free OT -module, one first consider the
exact sequence:

0→ U
ι′
−→ u∗

K |Z → u∗
K |Z/U → 0.
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Again by Lemma 4.7, the map ι′∨ : (u∗K |Z)
∨ → U ∨ is also surjective.

Also, since K and ON
X satisfies statement 3 of Lemma 4.7, so does u∗K and

u∗ON
Z . Then the morphism (u∗ON

Z )∨ → (u∗K |Z)
∨ is surjective. Therefore,

the morphism (u∗ON
Z )∨ → (u∗K |Z)

∨ → (U )∨ is surjective. Since U is
locally free, u∗ON

Z /U is locally free of rank N − n− 1.
Now we have obtain the morphism u1 : S → R. SinceR = GrassN−n−1(ON

k )×Spec k

Z by Lemma 4.5, this produces another natural morphism

u2 : R→ GrassN−n−1(ON
k )

Denote P = GrassN−n−1(ON
k ) and u = u2 ◦ u1 : S → P . We now need

to show that P \ u(S) has a k-valued point. Note u is not surjective, since
dimS = (N − n− 2)(n+ 1) + n < (N − n− 1)(n+ 1) = dimP .

Since Z is a k-scheme of finite type, S is a projective Z-scheme, and
P is a projective k-scheme, u is of finite type. Since P is covered by a
finite number of copies of A

(N−n−1)(n+1)
k , P is Noetherian. Then Chevalley’s

theorem ( [8, Theorem 10.20]) shows that u(S) is a finite union of locally
closed subsets of P .

Notice that the closure of an irreducible component of u(S) is an irre-
ducible component of u(S). Also, all irreducible components of u(S) are
obtained in this way. They have the same generic point and thus the same
field of rational functions. Therefore, dim u(S) = dim u(S) < dimT .

Therefore, there exists an open subscheme V ⊂ T such that V ∩u(S) ̸= ∅

and such that V is isomorphic to an open subscheme of A
(N−n−1)(n+1)
k . Let

f be a polynomial such that D(f) ⊂ V . Since k is infinite, there is some
x ∈ k(N−n−1)(n+1) such that f(x) ̸= 0 and there is some k-point in T \ u(S).

Note that this closed point corresponds to a (n+1)-dimensional k-vector
spaceW ⊂ Γ(X,L ). Let s1, · · · , sn be a basis ofW . Then U = ⊕n

i=1si|ZOZ ̸⊂
K |Z .

Corollary 4.10. Let k be an infinite field, X be a k-scheme of finite type,
and Z be a n-dimensional closed subscheme. Let L be a line bundle on X
generated by global sections. Then there exist some open subscheme U ⊂ X
containing Z and n + 1 global sections s0, · · · sn ∈ Γ(X,L ) such that the
si|U generate L |U .

Proof. Let z ∈ Z. By the previous lemma, there exist n + 1 global sections
s0, · · · sn ∈ Γ(X,L ) such that for every z ∈ Z the (si)z generate the OX,z-
module Lz. Then there is an open enighbourhood Uz ∈ X of z such that
si|Uz

generate L |Uz
. The proof is completed by taking U = ∪z∈ZUz
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5 Modification

Definition 5.1. A morphism of schemes f : X ′ → X is called a modification
if f is birational and projective.

5.1 Examples of modification

Let us give some examples of modifications.

Lemma 5.2. [8, Corollary 13.97] Blow-ups are modifications.

Lemma 5.3. Normalizations of surfaces are modifications.

Proof. [8, Proposition 12.44] implies that normalization is birational. Since
X is quasi-excellent, by [8, Theorem 12.50], normalization is finite, hence
projective.

5.2 Properties of modifications

Proposition 5.4. Let f : X ′ → X be a modification of surfaces. Then
there exist closed points x1, · · · xn ∈ X such that f induces an isomorphism
X ′ \ f−1({x1, ...xn}) ∼= X \ {x1, ...xn}

Proof. Let U be the maximal open subset of X such that f |f−1(U) is an
isomorphism. Since X ′ is integral and X is Noetherian, [12, Tag 0BFP]
implies that U contains all x ∈ X such that

� x is of codimension 0, or

� x is of codimension 1 and its stalk OX,x is a discrete valuation ring.

Recall that normal rings of dimension 1 are regular and hence are discrete
valuation rings. Since X is normal, all points of codimension 1 are in U .

This means that X \ U is a closed subset of X and only has points of
codimension 2, i.e. closed points. Therefore, X \ U is a finite set of closed
points of X, and the required isomorphism follows.

The direct image functors attached to modifications maps structure sheaves
to structure sheaves, in the following situation.

Proposition 5.5. [10, Corollary 4.4.3(a)] Let f : X ′ → X be a proper bira-
tional morphism from an integral scheme X ′ to a normal locally Noetherian
scheme X. Then the canonical homomorphism OX′ → f∗OX is an isomor-
phism.
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5.3 Domination

Definition 5.6. Let f : X ′ → X be a modification of surfaces. The mor-
phism f is said to be dominated by another modification g : X ′′ → X if the
induced birational map π : X ′′ → X ′ is defined on the whole X ′′.

Lemma 5.7. The map π in the above definition is also a modification.

Proof. π is birational because K(X ′′) = K(X ′) = K(X).
Now we need to show that π is projective. Since projective morphisms

are separated, this is true by [6, (5.5.5)].

The following proposition is useful

Proposition 5.8. Let f : X ′ → X be a modification of surfaces. Then f
is dominated by a sequence of normalized blow-up of closed points. More
precisely, there are surfaces X ′′

1 , ..., X
′′
n such that the following diagram com-

mutes and all maps in the upper row and the right column are normalized
blow-ups.

X ′′
n · · · X ′′

2 X ′′
1

X ′ X
f

6 Homological algebra

6.1 Higher direct images

Lemma 6.1. [9, III, Corollary 8.2] Let f : X ′ → X be a continuous map
of topological spaces and F be a sheaf of abelian groups on X ′. Then for
q > 0 and open U ⊂ X, (Rqf∗F )|U = Rq(f |f−1(U))∗(F |f−1(U)).

Lemma 6.2. [9, III, Corollary 8.8] Let f : X ′ → X be a projective morphism
of Noetherian schemes. Let F be a coherent OX′-module. Then for i ≥ 0,
Rif∗(F ) is a coherent OX′-module.

Proposition 6.3. [2, (1.5)(a)] Let f : X ′ → X be a birational and projec-
tive morphism of surfaces and F a coherent OX′-module. Then for i ≥ 2,
Rif∗F = 0. Also, dim suppR1f∗F = 0. If x ∈ R1f∗F , (R1f∗F )x is a finite
length OX,x-module.

17



6.2 Spectral sequence

The material of this subsection is based on [13, Chapter 5]

Definition 6.4. Let A be an abelian category and a ∈ Z. A (cohomology)
spectral sequence in A consists of the following data:

� A family {Epq
r }p,q∈Z,r≥a of objects in A.

� Maps dpqr : Epq
r → Ep+r,q−r+1

r that satisfies dp+r,q−r+1
r ◦ dpqr = 0.

� An isomoprhism Epq
r+1

∼
−→ ker(dpqr )/ im(dp−r,q+r−1

r )

Note that the last isomorphism means that for r ≥ a, Epq
r+1 is a quotient

of some subobject of Epq
r .

Definition 6.5. A spectral sequence is bounded if for all n ∈ Z, there are
only finitely many pairs (p, q) such that p+ q = n and Epq

a is nonzero.

Definition 6.6. Let {Epq
r } be a bounded spectral sequence. Then for each

p, q, there is some r(p, q) ≥ a such that for r ≥ r(p, q) Epq
r = Epq

r(p,q). We

denote Epq
∞ := Epq

r(p,q)

Definition 6.7. A bounded spectral sequence {Epq
r } is said to converge to

H∗ if there is a family of objects Hn of A, each having a family of objects
F ∗Hn such that

� F pHn ⊃ F p+1Hn for all p,

� There exists sn < tn such that F snHn = Hn and F tnHn = 0, and

� there is an isomorphism Epq
∞

∼
−→ F pHp+q/F p+1Hp+q.

Symbolically, such convergence is denoted Epq
a ⇒ Hp+q. The family of

objects H∗ is called the limit of the spectral sequence.

By chasing the diagram around Epq
2 , the following result can be obtained:

Lemma 6.8. Let {Epq
r }r≥2 be a spectral sequence such that Epq

r = 0 when
p or q is negative and that converges to {Hn, F pHn}n,p∈Z. Then we have the
exact sequence

0→ E1,0
2 → H1 → E0,1

2 → E2,0
2 → H2

Here E0,1
2 → E2,0

2 is the differential map. This exact sequence is called
the exact sequence of low degree terms.
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Theorem 6.9. (Grothendieck spectral sequence) Let F : A → B and G :
B → C be two left exact functors between abelian categories with enough
injective objects. If F maps injective objects of A to G-acyclic objects of B,
then for each A ∈ A there is a convergent spectral sequence:

Epq
2 = RpG(RqF (A))⇒ Rp+q(G ◦ F )(A)

Substituting direct image functors to the above theorem and using the
proof of [12, Tag 01F5], we obtain the following consequence:

Proposition 6.10. (Relative Leray spectral sequence) Let f : X → Y and
g : Y → Z be morphisms of ringed spaces. Let F be an OX-module.
Then there is a spectral sequence {Epq

r }r≥2 of OZ-modules such that Epq
2 =

Rpg∗(R
qf∗F )⇒ Rp+q(g ◦ f)∗F

Corollary 6.11. The exact sequence of low degree terms for Proposition 6.10
is

0→ R1g∗(f∗F )→ R1(g ◦ f)∗F → g∗(R
1f∗F )→ R2g∗(f∗F )→ R2(g ◦ f)∗F

Lemma 6.12. Let f : X → Y be an affine morphism of schemes and F be
a quasi-coherent OX-module. Then Rqf∗F = 0 for q > 0

Proof. Let V ⊂ Y be an affine open set. Then f−1(V ) is affine. By [9, III,
Theorem 3.7] of Hartshorne and Lemma 6.1, Rqf∗F (V ) = H i(f−1(V ),F ) =
0.

Proposition 6.13. Let f : X → Y and g : Y → Z be morphisms of schemes
and F be a quasi-coherent OX-module. Further assume f to be affine. Then
for p ≥ 0, Rp(g ◦ f)∗F ∼= Rpg∗(f∗F )

Proof. By Proposition 6.10, there is a spectral sequence {Epq
r }r≥2 of OZ-

modules such that Epq
2 = Rpg∗(R

qf∗F ) ⇒ Rp+q(g ◦ f)∗F . Denote Hn =
Rn(g ◦ f)∗F .

If q > 0, then Rqf∗F = 0 and thus Epq
2 = 0. Then for r ≥ 2, we have

Epq
r = 0 if q > 0 and Epq

r
∼= Epq

2 if q = 0. Therefore, Epq
∞ = E2

pq for all
p, q ∈ Z.

Using the definition of convergence of bounded spectral sequences, we
have Ep−k,k

∞
∼= F p−kHp/F p−k+1Hp. If k > 0, we have Ep−k,k

∞ = 0 and

F pHp ∼= F p−1Hp ∼= F p−2Hp ∼= · · ·

Similarly, by considering the case of k < 0, we have

F p+1Hp ∼= F p+2Hp ∼= F p+3Hp ∼= · · ·

Therefore, F pHp = Hp and F p+1Hp = 0. Then Rpg∗(f∗F ) = Ep0
∞ =

F pHp/F p+1Hp = Hp = Rp(g ◦ f)∗F .
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7 Reflexive sheaves

The material here is based on [12, Tag 0AVT].

7.1 Definition

Definition 7.1. Let X be a scheme and F be a coherent OX-module. Then
the dual of F is the OX-module

F
∨ = HomOX

(F ,OX).

Definition 7.2. Let X be an integral locally Noetherian scheme and F be
a OX-coherent sheaf. The reflexive hull of F is

F
∨∨ = HomOX

(HomOX
(F ,OX),OX).

The sheaf F is called reflexive if the natural map F → F∨∨ is an
isomorphism.

Example 7.3. Let X be an integral locally Noetherian scheme and F be a
locally free OX-sheaf. Then F is reflexive.

In the other direction, a reflexive sheaf is locally free in some open sub-
space of the base scheme.

Lemma 7.4. [12, Tag 0AY6] LetX be an integral locally Noetherian normal
scheme. Let F be a coherent OX-module. Then the following statements
are equivalent:

� The sheaf F is reflexive.

� There is an open subscheme j : U → X such that

– Every irreducible component of X \U has codimension ≥ 2 in X;

– j∗F is finite locally free; and

– F = j∗j
∗F .

As such, this gives the following definition, generalizing the rank of locally
free sheaves:

Definition 7.5. Let X be an integral scheme with generic point η. The rank
of a reflexive sheaf F is dimK(X) Fη.

For surfaces, one can take the above U to be the regular locus:
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Lemma 7.6. [12, Tag 0B3N] Let X be a regular scheme of dimension ≤ 2
and F be a coherent OX-module. Then F is reflexive if and only if F is
locally free of finite rank.

Here, some basic property of reflexive modules are listed.

Lemma 7.7. [12, Tag 0AY4] LetX be an integral locally Noetherian scheme
and F and G be coherent OX-modules. Further assume G to be reflexive.
Then HomOX

(F ,G ) is reflexive. In particular, F∨ and F∨∨ are reflexive.

Theorem 7.8. [12, Tag 0EBJ] Let X be an integral locally Noetherian
scheme and j : U → X be an open immersion with complement Z. Further
assume that for z ∈ Z, OX,z has depth ≥ 2. Then j∗ and j∗ define an
equivalence of category between the category of reflexive OX-modules and
the category of reflexive OU -modules.

Corollary 7.9. Let X be a surface and j : U → X be an open immersion
such that X \ U is a codimension 2 subspace. If F and G are two reflexive
OX-module such that F |U = G |U , then F = G .

Proof. Since X is normal, by Serre’s criterion the stalks of all points in X \U
are of depth ≥ 2. From the above theorem, we have

F = j∗j
∗
F = j∗F |U = j∗G |U = j∗j

∗
G = G

7.2 Torsion-free sheaves

It is also known that reflexive sheaves are torsion-free sheaves.

Definition 7.10. [12, Tag 0AVR] Let X be an integral scheme and F be
a quasi-coherent OX-module. Then a section s of F is a torsion element if
at the generic point η, sη = 0.

Definition 7.11. [12, Tag 0AVR] Let X be an integral scheme, and F be
a quasi-coherent OX-module. Then F is torsion-free if every torsion section
of F is 0.

In other words, an OX-module F on an integral scheme X is torsion-free
if and only if for all U ⊂ X open, if η is the generic point of X, then the
natural map F (U)→ Fη is injective.

Lemma 7.12. [12, Tag 0AY2] Let X be an integral locally Noetherian
scheme. Let F be a coherent OX-module. Then we have

� If F is reflexive, then F is torsion free.

� The map j : F → F∨∨ is injective if and only if F is torsion free.
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7.3 Weil divisors

In this section, the theory of Weil divisors will be generalized to normal
schemes, based on [12, Tag 0EBK]. Recall that over integral Noetherian
locally factorial schemes, the group of Weil divisors is isomorphic to that of
Cartier divisors. Therefore, after passing to linear equivalent classes, both
groups are isomorphic to the group of isomorphism classes of line bundles.
For more general scheme, reflexive sheaves would be a good substitution. As
a motivation, we have the following lemma:

Lemma 7.13. [12, Tag 0EBL] Let X be an integral locally Noetherian
normal scheme. Then the map

(F ,G ) 7→ (F ⊗ G )∨∨

defines an abelian group law on the set of isomorphism classes of rank 1
reflexive OX-modules.

Lemma 7.14. [12, Tag 0EBM] Let X be an integral locally Noetherian
normal scheme. There is an isomorphism between the group of isomorphism
classes of rank 1 reflexive OX-modules and the group of linear equivalent
classes of Weil divisors.

Given a Weil divisor Z, we can use the above lemma to construct a
corresponding reflexive sheaf, which can be denoted as OX(Z) or O(Z). Fur-
thermore, given a reflexive sheaf F , denote F (Z) := (F ⊗ OX(Z))

∨∨.

Lemma 7.15. Let X be an integral locally Noetherian scheme, Z a principal
Weil divisor with corresponding closed immersion i, and F be a reflexive
sheaf. Then we have the exact sequence

0→ F (−Z)→ F → F ⊗ i∗OZ → 0.

Proof. Recall that we have the natural exact sequence

0→ OX(−Z)→ OX → i∗OX → 0.

Since tensor product is right exact, we only need to prove that F (−Z)→ F

is injective.
Take an open subset j : U → X such that X \U is of codimension 2 and

F |U and O(Z)|U are locally free. Then we have the following exact sequence:

0→ j∗(F ⊗ OX(−Z))|U → j∗(F ⊗ OX)|U → j∗(F ⊗ j∗OX)|U .
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Note

(F ⊗ OX(−Z))
∨∨

=j∗j
∗((F ⊗ OX(−Z))

∨∨)

=j∗(((F ⊗ OX(−Z))|U)
∨∨)

=j∗((F ⊗ OX(−Z))|U).

Thus we have the required exact sequence.

8 Duality

Dualizing sheaves is an important ingredient in proving the resolution of
singularities. This section aims to introduce concepts used to define dualizing
sheaves, starting from concepts in homological algebra and then proceeding
to dualizing complexes in commutative algebra. This section then ends with
the definition and the properties of dualizing sheaves.

8.1 RHom functor

The aim of this section is to define the RHom functor, the derived functor of
the Hom functor. In this subsection, A is a Noetherian ring. C• and D• are
complexes of A-modules with differential map dC and dD. This subsection
begins with the definition of the Hom functor.

Definition 8.1. [12, Tag 0A8H] The Hom complex Hom•(C•, D•) is defined
as follow:

Homn(C•, D•) =
∏

i∈Z

Hom(C i, Di+n)

with the differential map

d(f) = dD ◦ f − (−1)nf ◦ dC

for f ∈ Homn(C•, D•).

To define RHom functor, some properties of complexes are defined.

Definition 8.2. [12, Tag 010Z] A complex C• is called acyclic if H i(C•) = 0
for all i

Definition 8.3. [12, Tag 070H] A complex I• is called K-injective if for
every acyclic complex C•, Hom(C•, I•) = 0.
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Lemma 8.4. [12, Tag 0914] Let C• be a complex. Then there exists a
K-injective complex I• and a morphism of complexes f : C• → I• such that
f is a quasi-isomorphism.

In the following, D(A) denote the derived category of the category of
A-modules. Two complexes C• and D• are isomorphic in D(A) if there is a
morphism of complexes f : C• → D•.

Definition 8.5. [12, Tag 0A5W] Let C• and D• be two complexes in D(A).
Let I• be a K-injective complex isomorphic to D• in D(A). Define a functor
RHom, called the derived Hom functor, as follows:

RHomA : D(A)op ×D(A)→ D(A),

(C•, D•) 7→ Hom•(C•, I•).

Recall that Ext is the derived functor of the left exact Hom functor at
any one of the two argument. This subsection ends with a relation between
Ext functor and RHom functor.

Lemma 8.6. Let C• and D• be two complexes in the derived category of
modules over a ring A. Then the following equalities hold

Exti(C•, D•) = HomD(A)(C
•, D•[i]) = H i(RHom(C•, D•)).

Proof. This is due to [12, Tag 06XQ] and [12, Tag 0A64].

8.2 Dualizing complexes

This subsection discusses dualizing complexes and their properties. Before
giving the definition of dualizing complexes, the following notations on sub-
categories of D(A) is defined.

� The subcategory Db(A) contains all complexes C• isomorphic to a
bounded complex in D(A).

� The subcategory DCoh(A) contains all complexes C• whose cohomology
modules are finitely generated.

� The subcategory Db
Coh(A) is the subcategory Db(A) ∩DCoh(A).

Definition 8.7. [12, Tag 0A7B] Let A be a Noetherian ring. Denote the
complex with only zero terms except an A at the zeroth position as A[0]. A
complex ω•

A is called a dualizing complex if ω•
A satisfies the following:
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� the sheaf ω•
A is isomorphic to a finite complex of injective A-modules

in D(A),

� the sheaf ω•
A is in DCoh(A), and

� there is a quasi-isomorphism A[0]→ RHomA(ω
•
A, ω

•
A).

The following lemma explains the name ”dualizing” in dualizing complex.

Lemma 8.8. [7, Proposition 25.75] Let A be a Noetherian ring and ω• be
a complex satisfying the first two condition of Definition 8.7. Then ω• is a
dualizing complex if and only if for every C• ∈ Db

Coh(A) such that the natural
morphism

C• → RHom(RHom(C•, ω•), ω•)

is an isomorphism.

Not all Noetherian rings have a dualizing complex. However, for the rings
that are in consideration, i.e. Noetherian integral normal ring of dimension
2, a dualizing sheaf exists.

Lemma 8.9. [12, Tag 0A7K] Let k be a field. Then every k-algebra of finite
type has a dualizing complex.

This subsection ends with a discussion of normalized dualizing complexes,
which is motivated by the following lemma.

Lemma 8.10. [12, Tag 0A7L] Let ω•
A be a dualizing complex of a local

ring A. Let m be the maximal ideal of A. Then there is n ∈ Z such that
RHom(A/m, ω•

A)
∼= (A/m)[−n].

Since tensor product of A[−n] commutes with the second argument of
RHom ( [12, Tag 0ATK]), the following definition can be made:

Definition 8.11. Let ω•
A be a dualizing complex of a local ring A with

maximal ideal m. The complex ω•
A is normalized if RHom(A/m, ω•

A)
∼=

(A/m)[0].

8.3 Dualizing modules

Definition 8.12. [12, Tag 0DW3] Let A be a Noetherian local ring of
dimension d and ω•

A be a normalized dualizing sheaf of A. Then H− dimA(ω•
A)

is the dualizing module of A.
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Dualizing modules exist for Cohen-Macaulay local ring.

Lemma 8.13. [12, Tag 0AWS] Let A be a Noetherian local ring with nor-
malized dualizing complex ω•

A and dualizing module ωA. Then the following
are equivalent

� The ring A is Cohen-Macaulay.

� The complex ω•
A is concentrated at a single degree.

� The equality ω•
A = ωA[dim(A)] holds.

The following lemma shows an association between dualizing modules
and the Ext functor. This is the definition of dualizing module used in [4,
Definition 1 §9] and is mentioned in [5, Definition 3.3.1].

Lemma 8.14. Let A be a Cohen-Macaulay local ring with residue field k
and dualizing module ωA. Then

dimk Ext
i(k, ωA) =

{

1 if i = dimA

0 if i ̸= dimA
.

Proof. Using Lemma 8.6,

ExtiA(k, ωA)

=HomD(A)(k, ωA[dimA][i− dimA])

=H i−dimA(RHom(k, ωA[dimA]))

=

{

k if i = dimA

0 if i ̸= dimA

The last equality is due to the definition of normalized dualizing complex.

This section ends with a method of computing some dualizing modules.

Lemma 8.15. [5, Theorem 3.3.5(a)] Let A be a Cohen-Macaulay local ring
with the dualizing module ωA. Consider a regular sequence a1, · · · , an in A.
Then ωA/(a1,···an)

∼= ωA/(a1, · · · an)ωA.
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8.4 Dualizing sheaves

This subsection discusses duality for schemes. Note that given a scheme X,
we denote D(OX) the derived category of the category of A-modules.

Definition 8.16. [12, Tag 0A87] Let X be a scheme. We call ω•
X a dualizing

complex of X if for every affine open subset U = SpecA there is a dualizing
complex ω•

A for the ring A such that ωX |U is isomorphic to ω̃•
A in D(OX).

Definition 8.17. [12, Tag 0AWH] Let X be a Noetherian scheme with a
dualizing complex ω•

X . Let n ∈ Z be the smallest integer such that Hn(ω•
X)

is nonzero. Then the sheaf Hn(ω•
X) is called the dualizing sheaf.

Here is some properties of dualizing sheaves.

Lemma 8.18. [12, Tag 0AWH] Let X be a Noetherian equidimensional
scheme, U an open subset of X, and ωX a dualizing sheaf of X. Then
ωX |U = ωU .

Lemma 8.19. [7, Proposition 25.138] Let X be a normal connected Noethe-
rian scheme and ωX be a dualizing sheaf. Then ωX is reflexive.

Below is some explicit description of the dualizing sheaves for some schemes.

Lemma 8.20. [7, Corollary 25.130] Let X be a connected separated smooth
scheme of dimension d over a field k. Then ωX = ∧dΩ1

X/k, where Ω
1
X/k is the

sheaf of differentials.

Lemma 8.21. [7, Proposition 25.139] If X is an integral normal separated
scheme of finite type over a perfect field k, then the dualizing sheaf ωX of X
is the double dual of the canonical sheaf, as below:

ωX
∼= (∧dimXΩ1

X/k)
∨∨

Proof. From the above lemma, we have the following isomorphisms over the
smooth locus Xsm of X:

ωX |Xsm
= ωXsm

= ∧dimXΩ1
Xsm/k = (∧dimXΩ1

X/k)|Xsm
= (∧dimXΩ1

X/k)
∨∨|Xsm

.

The last equality follows from the fact that the canonical bundle over
regluar By [12, Tag 0B8X], the nonsingular locus and the smooth locus Xsm

coincide in X, and this locus is a dense open subscheme of X. Furthermore,
since X is normal, by Serre’s criterion X \Xsm has codimension ≥ 2.

Together with the fact that ωX and (∧dimXΩ1
X/k)

∨∨ are reflexive, one can
apply Corollary 7.9 and show that the required isomoprhism overX holds
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8.5 Properties of dualizing sheaves

Lemma 8.22. [2, (1.5)(c)] Let X be a surface and F be a finite length
OX-module. Then F and Ext2OX

(F , ωX) have the same length.

Lemma 8.23. [2, (1.6)(c)] Let f : X ′ → X be a modification of surfaces
and F ′ be a reflexive O ′

X-sheaf. Define F ′D = HomO′

X
(F ′, wX′). Then the

following sequence is exact:

0→ f∗(F
′D)→ (f∗F

′)D → Ext2OX
(R1f∗F

′, ωX)→ R1f∗(F
′D)→ 0.

Lemma 8.24. [2, (3.4)(i)] Let ω be a dualizing sheaf of a surface X and
f : X ′ → X be a modification of surfaces. Then the finite length OX-module
R1f∗OX and ωX/f∗ωX′ are dual via Ext(·, ω) and have the same length.

Proof. Substitute F = OX′ to Lemma 8.23, we have

0→ f∗(O
D
X′)→ (f∗OX′)D → Ext2(R1f∗OX′ , ωX)→ R1f∗(O

D
X′)→ 0,

Note OD
X′ = HomOX′

(OX′ , ωX′) = ωX′ and (f∗OX)
D = HomOX

(f∗OX′ , ωX) =
HomOX

(OX , ωX) = ωX . Also, by the Grauert-Riemenschneider’s vanishing
theorem [2, Theorem 2.9(i)], R1f∗ωX′ = 0. Then we have

0→ f∗ωX′ → ωX → Ext2(R1f∗OX′ , ωX)→ 0

Therefore ωX/f∗ωX′
∼= Ext2(R1f∗OX′ , ωX) and the duality follows. The

equality in length is guaranteed by Lemma 8.22

9 Rational singularities

9.1 Definition

Definition 9.1. Let X be a surface. A closed point p ∈ X is called a rational
singularity if for every surface X ′ and for every modification f : X ′ → X,
(R1f∗OX′)p = 0

Remark 9.2. Suppose f : X ′ → X is a modification from a regular surface
X ′ to a surface X with a rational singularity x. Using [3, Proposition 1]
the arithmetic genus of every irreducible component of f−1(x) is 0. As such,
these components are isomorphic to P1

k, i.e. are rational curves ( [9, Example
IV.1.3.5]).

A surface whose closed points are rational singularities simplifies the situ-
ation, since the blow-up of the surface along rational singularities is normal,
see [2, Theorem 4.9]. This means that instead of considering normalized
blow-ups, only blow-ups need to be consider.
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9.2 Basic property

Lemma 9.3. [2, Proposition (3.2)(i)] Let X,X ′, X ′′ be surfaces and f :
X ′ → X, g : X ′′ → X, π : X ′′ → X ′ be modifications such that the following
diagram is commutative:

X ′′ X ′

X

π

g

f

There is a natural exact sequence

0→ R1f∗OX′ → R1g∗OX′′ → f∗R
1π∗OX′′ → 0

Proof. Using Corollary 6.11, we have an exact sequence

0→R1f∗(π∗OX′′)→ R1(f ◦ π)∗OX′′

→ f∗(R
1π∗OX′′)→ R2f∗(π∗OX′′)→ R2(f ◦ π)∗OX′′

Recall that X,X ′, and X ′′ are normal and modifications are birational
and projective, hence proper. By Proposition 5.5,

π∗OX′′ = OX′ .

Also, by Proposition 6.3,

R2f∗(π∗OX′′) = R2g∗OX′′ = 0.

The proof is completed by substituting the above two equalities into the
exact sequence.

Lemma 9.4. [2, Proposition (3.2)(ii)] Let X and X ′ be surfaces and f :
X ′ → X be a modification of surfaces. If X has rational singularities, so
does X ′.

More precisely, let x ∈ X be a rational singularity. Then if x′ is a closed
point of X ′ such that f(x′) = x, x is also a rational singularity.

Proof. Let π : X ′′ → X ′ be a modification of surfaces and g = π ◦ f . Then
(R1g∗OX′′)x = (R1f∗OX′)x = 0. By Lemma 6.2, both R1g∗OX′′ and R1f∗OX′

are coherent and thus are of finite presentation. Then there is an open neigh-
bourhood U of x such that (R1g∗OX′′)|U and (R1f∗OX′)|U are zero sheaves.
Therefore, by Lemma 9.3, (f∗R

1π∗OX′′)|U is a zero sheaf.
By Proposition 6.3, supp(R1π∗OX′′)|U = 0. Then the conclusion follows

from the following lemma.
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Lemma 9.5. LetX be a surface, F be a coherent OX-module with dim suppF

= 0. If Γ(X,F ) = 0, then F = 0.

Proof. Suppose to the contrary suppF is nonempty. Let suppF = {x1, ..., xn}
and sx1

∈ Fx1
. Let U1 be an open neighbourhood of x1 such that sx1

lifts to some s1 ∈ Γ(U1,F ) and x2, ..., xn /∈ U1. Let U2 = X \ {x1} and
s2 = 0 ∈ Γ(U2,F ).

Note that X is covered by open subsets U1 and U2. Also, since (U1∩U2)∩
suppF = ∅, s1|U1∩U2

= 0 = s2|U1∩U2
. Then there is a s ∈ Γ(X,F ) such that

s1 = s|U1
and s2 = s|U1

.
However, it is assumed that Γ(X,F ) = 0. Therefore s = 0 and s1 =

s|U1
= 0. This shows that Fx1

= {0}.

Lemma 9.6. [2, Proposition (3.4)(ii)] Let X be a surface. Then x ∈ X is a
rational singularity if and only if for every modification of surfaces f : X ′ →
X, the equality (ωX′/f∗ωX)x = 0 holds.

To prove this lemma, we recall the following result about stalks and the
functors Ext and Ext :

Lemma 9.7. [9, Proposition 6.8] Let X be a Noetherian scheme, x ∈ X,
and F and G be OX-modules. If F is coherent, for i ≥ 0 we have

Ext i(F ,G ) ∼= ExtiOX,x
(Fx,Gx).

Now we prove Lemma 9.6.

Proof. (⇒) Recall from Lemma 6.2 thatR1f∗OX′ is coherent. Using Lemma 8.24,
one have

(ωX′/f∗ωX)x

=Ext2(R1f∗OX′ , ωX)x

=Ext2((R1f∗OX′)x, ωX,x)

=Ext2(0, ωX,x)

=0.

(⇐) Since ω′
X/f∗ω is coherent annd is dual toR1f∗OX′ via Ext2(R1f∗OX′ , ωX)

by Lemma 8.24, reversing the role of ω′
X/f∗ω and R1f∗OX′ in the above chain

of equalities proves what is required.
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10 Resolution of points into rational singu-

larities

In this section, we aim to show the following proposition.

Proposition 10.1. Let x ∈ X be a closed point. Then for some large n,
every closed point in the preimage of x becomes a rational singularity of Xn

in (1.1).

The proof here is based on [2, Section 3]. It will be divided into two
cases: nonsingular closed points (Section 10.1) and singular closed points
(Section 10.2).

10.1 Nonsingular closed points

Nonsingular closed points on a surface are already rational singularities. Be-
fore showing this, we first discuss higher direct images and blow-ups.

Lemma 10.2. Let f : X ′ → X = Spec(A) be the morphism of blow-up X
at a nonsingular closed point p. Then R1f∗OX′ = 0

Proof. We first define the following list of symbols.

� Denote P by P1
A.

� Write P1
A as Proj(A[x0, x1]).

� Denote by m the maximal ideal corresponding to the closed point p is
m.

� Since p is a nonsingular point, let m be generated by two elements
u1, u2.

� Denote by I the ideal sheaf (u0x1−u1x0)OP. Note thatX
′ = V+(u0x1−

u1x0).

� Let i : X ′ → P be the closed immersion.

� Denote by g : P→ X the natural map when viewing P as a A-scheme.

Let {U0, U1} be the standard open cover of P and U0 = SpecA[x1/x0].
Then the morphisms f, g, i induces the following commutative diagram of
ring homomorphisms:
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A[x1/x0]/(u0x1 − u1x0) A

A[x1/x0]

Similar diagram can also be constructed for U1. Therefore, f = g ◦ i.
Now consider the following exact sequence of sheaves:

0→ I → OP → i∗OX′ → 0.

We then extract the following part of the long exact sequence of higher
direct image functor:

R1g∗OP → R1g∗(i∗OX′)→ R2g∗I

By Proposition 6.3, R2g∗I = 0. Also, by [12, Tag 01XW], R1g∗OP = 0.
Therefore by Proposition 6.13, R1f∗OX′ = R1g∗(i∗OX′) = 0

Proposition 10.3. [2, Proposition (3.2)(iii)] Nonsingular points p ∈ X are
rational singularities.

Proof. By Lemma 6.1, one only needs to show that it is true for some affine
neighbourhood of p in X. Also, since the nonsingular locus of X is open,
we can further assume that X is nonsingular. Let X = Spec(A) for some
regular ring A.

Let f : X ′ → X be a modification. Using Proposition 5.8, there is a
sequence of normalized blowing-ups X ′′

1 , ..., X
′′
n over X that dominates f .

Then we have the commutative diagram:

X ′′
n · · · X ′′

2 X ′′
1

X ′ X

fn f2
f1

f

with all arrows of the upper row and the right column normalized blow-
ups at a point, which are modifications. The arrow on the left is a birational
morphism. Also note that by Lemma 5.7, all maps between the two rows are
modifications.

It is now needed to show that (R1f∗OX′)p = 0. Since blowing-up is an
isomorphism outside the centre, we can assume that for every 1 ≤ m ≤ n,
f−1
m (p) is within the centre of the blow-up of X ′′

m.
Since Lemma 3.8 implies that the blow-up at p is nonsingular, normal-

ization is unnecessary and f1 is the blow-up at p. Hence R1(f1)∗OX′ = 0 by
Lemma 10.2.

Now we show that (R1(fn)∗OX′)p = 0 for all n by induction. Consider
the commutative diagram below with R1(fn−1)∗OX′ = 0.
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X ′′
n X ′′

n−1

X

fn

π

fn−1

Similar to the discussion on f1, R
1π∗OX′′

n−1
= 0.

Applying Lemma 9.3 we have a short exact sequence

0→ R1fn−1∗OX′′

n−1
→ R1fn∗OX′′

n
→ fn−1∗R

1π∗OX′′

n
→ 0.

Since all but the middle term is zero, R1fn∗OX′′

n
= 0.

Now we show that R1f∗OX = 0. Indeed, applying Lemma 9.3 again, we
have an exact sequence

0→ R1f∗OX′ → R1fn∗OX′′

n
= 0.

10.2 Singular points

We first show a sufficient condition for singular closed points to be blown-up
to rational singularities.

Proposition 10.4. Let x ∈ X be a singular closed point such that the
length of (R1f∗OX′)x is bounded independently of the modification f . Then
for some large n, the singular point becomes a rational singularity of Xn in
(1.1).

With this proposition, the proof proceeds as follows:

� Show that the length of ωX′/f ∗ωX at x is independently of the modi-
fication f .

� Pass this information of bounded length to that of (R1f∗OX′)x using
duality.

We now prove this proposition.

Proof. Let x ∈ X be a singular point. Let f : X ′ → X be a modification
such that (R1f∗OX′)x has the maximum length among all modification of X.

Step 1: There is some open neighbourhood U of x and a composition
U ′′ → U of normalized blow-ups such that all closed points of U ′′ are rational
singularities.

Let π : X ′′ → X ′ be a modification. By the maximality of (R1f∗O
′
X)x,

(R1(π◦f)∗OX′)x also has the maximum length. This forces l((f∗R
1π∗OX′′)x) =

33



0 and (f∗R
1π∗OX′′)x = 0. Let U be an open neighbourhood of x such that the

only singular point in U is x and (f∗R
1π∗OX′′)|U = 0. Note that U remains

a surface. By Proposition 6.3 , the support of R1π∗OX′′ is of dimension 0.
By Lemma 9.5, (R1π∗OX′′)|f−1(U) = 0. Hence, all closed point of f−1(U) are
rational singularities.

Denote U ′ = f−1(U). Apply Proposition 5.8 to dominate U ′ → U by a
sequence of normalized blow-ups.

U ′′ = U ′′
m

bm−→ U ′′
m−1

bm−→ · · ·
bm−→ U ′′

1
bm−→ U ′′

0 = U (10.1)

Denote the composition of the normalized blow-ups as g : U ′′ → U . This
induces a modification U ′′ → U ′. Since all closed points of U ′ are rational
singularities, all closed points of U ′′ are rational singularities by Lemma 9.4.

Step 2: Complete the proof by comparing the above sequences of normal-
ized blow-ups (1.1) and (10.1).

For 1 ≤ l ≤ k, let the blow-up bl : X
′′
l → X ′′

l−1 be the blow-up of X ′′
l−1 at

the point xl. Suppose the map αl : X
′′
l−1 → · · · → X ′′

1 → X does not map xl

to x. Then bl|b−1

l
(X′′

l−1
\{xl})

is an isomorphism. Therefore, we can ignore all

those blow-ups. Now replace the remaining blow up with the blow-up that
blows up all the singular points, and we obtained what is required.

What is left to show is that the singular points on the surface have the
aforementioned bound.

Lemma 10.5. Let X be a surface. Then for any modification f : X ′ → X
and closed point x ∈ X, the length of (ωX/f∗ωX′)p is bounded independently
of f

Proof. Recall from Lemma 8.21 that the dualizing sheaf of X is (∧2Ω1
X/k)

∨∨.
This produces a canonical morphism

ϕ1 : ∧
2Ω1

X/k → ωX . (10.2)

Also, one can construct the following composition of maps:

ϕ2 : ∧
2Ω1

X → f∗(∧
2Ω1

X′)→ f∗ωX′ → ωX . (10.3)

The first map is a canonical map from [12, Tag 08RU]. Recall that by defi-
nition there is a natural isomorphism Hom(Ω1

X/k, f∗Ω
1
X′/k)→ Der(OX , f∗Ω

1
X′/k),

the set of all derivations OX → f∗Ω
1
X′/k. Using the natural maps OX → f∗OX′

and OX′ → Ω1
X′/k, one obtains the first map. The second map is the map
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from taking double dual, similar to the map (10.2) but applied to X ′. The
third map is from Lemma 8.24.

Restricting to the smooth locus, it can be checked that the homomor-
phisms ϕ1 and ϕ2 are the same map. Details are omitted. Therefore,
imϕ1 ⊂ im(f∗ωX′ → ωX) ∼= f∗ωX′ and the length ωX/f∗ωX′ is bounded
by ωX/ im

∧2 Ω1
X independently of f .

Now we can conclude that all singular points can be blown-up to rational
singularities.

Proposition 10.6. For every singular point p, the length of R1f∗OX′ at p
is bounded independently of the modification f : X ′ → X.

Proof. Using Lemma 8.22, (R1f∗OX′)p has the same length as (ωX/f∗ωX′)p,
which is bounded independently of the modification by Lemma 10.5.

11 Blowing-up rational singularities

11.1 Modifications and reflexive sheaves

In this section, let f : X ′ → X be a modification of surfaces that is an
isomorphism outside a rational singularity x ∈ X.

Lemma 11.1. [2, Proposition 4.1] Let F ′ be an OX′-module generated by
global sections. Then for n ≥ 1, Rnf∗F

′ = 0.

Lemma 11.2. [2, Proposition 4.2] Let L be a reflexive OX-module. Then
f ∗L /(f ∗L )tor is reflexive.

11.2 Euler characteristic

In this section, let f : X ′ → X be the blow-up of a surface X along x, and
let Z ′ = f−1(x). Further assume that there are some global sections s1, s2 of
OX′ such that IZ′ = (s1, s2)OX′ , which is the case by Corollary 4.10.

Lemma 11.3. [2, Proposition 4.6] Suppose x ∈ X has multiplicity µ, i.e.
the multiplicity of the maximal ideal mx as a OX,x-module is µ. Then the
maximal ideal mx of the stalk OX,x satisfies dimk m

r
x/m

r+1
x = rµ + 1 for all

r ≥ 0.

Lemma 11.4. [2, Proposition 4.8] Let f : X ′ → X be the blow-up of
the maximal ideal m at a rational singularity with exceptional divisor Z ′ =
f−1(x) and corresponding ideal sheaf IZ′ spanned by two elements. Then
χ(OZ′) = 1 and deg(O ′

X(−Z
′)|Z′) = µ.
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12 Bounding multiplicities

The next step of the proof is to show that after some composition of blowing-
up a surface whose closed points are rational singularities, the singular ra-
tional singularities have multiplicity of 2. Such points are called rational
double points. Recall from Lemma 11.4 that we only need to consider blow-
ups rather than normalized blow-ups from now on.

The multiplicities of nonsingular closed points are always 1. Therefore,
we can restrict our attention to an open affine subscheme that contains a
single rational singularity.

Let f : X ′ → X be the blow-up of a rational singularity x ∈ X. The
proof will proceed as follow:

� Show that ωX′ = f ∗ωX/(f
∗ωX)tor, the quotient of the inverse image of

ωX by the torsion elements.

� Show that for n≫ 0 and the Xn as in (1.1), ωXn
is locally free.

� Show that if the dualizing sheaf of a surface is locally free, all closed
points on the surface have multiplicity ≤ 2.

Let f : X ′ → X be the blow-up of X along the ideal sheaf I{x} of a
rational singularity x, and let Z ′ = f−1(x). Recalling that multiplicity is
a local property and blowing-up can be considered in a local manner, the
following assumption on the surface X can be made:

� X is the affine scheme of some ring, say A. Then by viewing I{x} as
an ideal of A, we have I{x} = m, where m is the maximal ideal of A
corresponding to {x}.

� There are global sections s1, s2 of OX′ such that IZ′ = (s1, s2)OX′ .
This is true by Corollary 4.10.

� x is the only singular point inX, by passing to a suitable neighbourhood
of x.

12.1 Bound on multiplicities

The last part of this step will be shown first. This is because the following
lemma, a generalization of what is required, will be useful for an earlier step.

Lemma 12.1. Let x be a rational singularity of the surface X with multi-
plicity µ > 1. Let the maximal ideal and the dualizing module of OX,x be
mx and ω respectively. Then dimκ(x)(ω/mxω) = µ− 1.
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Proof. By Proposition 2.1, let a1, a2 ∈ OX,x be a regular sequence such that
the multiplicity at x is the length of OX,x/(a1, a2).

Denote O = OX,x/(a1, a2) and m = mx/(a1, a2). Then the map

mx ↠ m

induces a surjective κ(x)-vector space homomorphism

mx/m
2
x → m/m2

with kernel κ(x)a1 + κ(x)a2.
Using Lemma 11.3, dimκ(x) m/m2 ≥ µ − 1. Therefore, m cannot be

generated by fewer than µ− 1 elements, and the length of m as a O-module
is at least µ− 1.

Since the length of O is µ by the choice of a1, a2 andm ̸= O by Nakayama’s
lemma, l

O
(m/m2) = µ− 1. Therefore, l

O
(m2) = 0 and m2 = 0.

Let

0 = M0 ⊊ · · · ⊊ Mµ−1 = m

be a maximal composition series of O-modules. Since m2 = 0, this series
doubles as a sequence of inclusions of κ(x)-modules. Let 1 ≤ c ≤ µ− 1 and
b1, b2 ∈ Mc/Mc−1 such that Mc/Mc−1 = κ(x)b1 + κ(x)b2. By Nakayama’s
lemma, Mc/Mc−1 = Ob1+Ob2. Note Mc/Mc−1 is a simple O-module. With-
out loss of generality, let u ∈ O such that ub1 = b2. Then this equality can be
reduced to κ(x) = O/m. Thus Mc/Mc−1 is a simple κ(x)-module. Therefore,
dimκ(x) m = µ− 1.

Applying Lemma 8.15 to O and the regular sequence a1, a2, the dualizing
module ω of O is ω/(a1, a2).

Now consider the exact sequence

0→ m→ O → κ(x)→ 0

Since the dimension of O is 0, applying the functor Hom(−, ω) by Lemma 8.14
and the definition of dualizing sheaves yields a short exact sequence

0→ κ(x)→ ω → κ(x)µ−1 → 0

which in turns yields a surjective map ω/mω → κ(x)µ−1. Such a surjective
map is possible since κ(x) = OX,x/mx, and thus mω is in the kernel of
ω → κ(x)µ−1 in the exact sequence.

Since the length of κ(x) as a O-module is 1, the length of ω is µ. By
Nakayama’s lemma, ω ̸= mω. Recall that we have assumed that µ > 1.
Hence, OX,x is not regular and mx ̸= (a1, a2). Then m ̸= 0 and ω/mω has
length at most µ − 1. Combining what we have above, κ(x)µ−1 ∼= ω/mω ∼=
ω/mxω.
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Proposition 12.2. Let x be a rational singularity of a surface X with mul-
tiplicity µ. Further suppose ωX,x is a free OX,x-module. Then µ ≤ 2.

Proof. By [7, Proposition 25.80 ], ωX,x is the dualizing module ω of OX,x and
ωX is of rank 1 by Lemma 8.21. If µ > 1, 1 = dimκ(x)(ω/mxω) = µ− 1 with
mx the maximal ideal of OX,x. Hence µ = 2.

12.2 Dualizing sheaves of the blow-up

Proposition 12.3. Let x ∈ X be a rational singularity of multiplicity µ > 1,
and let f : X ′ → X be the blowing-up of x. Then ω1 := f ∗ωX/(f

∗ωX)tor =
ωX′ .

One direction of this proposition is easy.

Lemma 12.4. There is an injective map ω1 → ωX′ such that ω1 is isomorphic
to its image in ωX′ .

Proof. Taking the adjoint of the isomorphism in Lemma 9.6 produces the
map g : f ∗ωX → ωX′ . Since g induces a nontrivial linear map between
two one-dimension K(X)-vector spaces by taking stalk at the generic point,
ker g = (f ∗ωX)tor.

Now the proof will be done by contradiction. Note that we can assume
that ω1 ⊂ ωX′ . Suppose ω1 ⊂≠ ωX′ . To show that there is a contradiction,
we compare the following Euler characteristics:

χ1 := χ(ω1|Z′),

χ2 := χ(ωX′ |Z′).

Here Z ′ = f−1(x) as in the start of the section.

Lemma 12.5. We have H1(Z ′, ω1|Z′) = 0.

Proof. Note that we have the following exact sequence:

0→ IZ′ω1 → ω1 → ω1 ⊗OX′
OX′/IZ′ → 0

By the fact that IZ′ is locally principal and Lemma 11.2, the first and
second terms are reflexive. Using Lemma 11.1 and the long exact sequence
of the derived functor Rf∗, R

1f∗(ω1⊗OX′
OX′/IZ′) = 0. Now [9, Proposition

III.8.5] can be applied to show that H1(X ′, ω1 ⊗OX′
OX′/IZ′) = 0. Since

Z ′ = SuppIZ′ , we find H1(Z ′, ω1|Z′) = 0.

Lemma 12.6. We have mωX ⊂ f∗(f
∗(mωX)/(f

∗(mωX))tor).
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Proof. Let U ⊂ X be open. By Proposition 5.5, OX′(f−1(U)) = OX(U).
Note that there is an equality

OX′(f−1(U))⊗OX(f(f−1(U))) mωX(f(f
−1(U))))

=mωX(f(f
−1(U))))

Since mωX is torsion free, the above equality becomes an injective map
after taking the quotient modulo the torsion elements.

Lemma 12.7. We have dimk H
0(Z ′, ω1|Z′) ≤ µ− 1.

Proof. Note that f ∗m = IZ′ . Then we have

mωX ⊂ f∗(IZ′ω1) ⊂ f∗ω1 ⊂ f∗ωX′ = ωX .

Now recall that Suppmx = {x} and SuppI ′
Z = Z ′. Then

H0(Z ′, ω1|Z′)

=H0(X ′, ω1/I ω1)

=H0(X, f∗(ω1/I ω1))

⊂H0(X,ωX/mωX)

=ωX,x/mxωX,x.

By Lemma 12.1, dimk H
0(Z ′, ω1|Z′) ≤ µ− 1.

Lemma 12.8. The equality χ2 = µ− 1 holds.

Proof. Now we compute χ2. Using [7, Corollary 25.130(2) and Remark
19.24], one can see that ωZ′ = (ωX′ ⊗ OX′(Z ′))|Z .

Since f |Z′ gives us a projective morphism with target Specκ(x), the spec-
trum of some finite extension of k, the Riemann-Roch theorem can be applied
to Z ′ and gives

χ2 = χ((ωX′ ⊗ OX′(Z ′))|Z′) + deg(OX′(−Z ′)|Z)

= χ(ωZ′) + deg(OX′(−Z ′)|Z).

By Lemma 11.3, deg(OX′(−Z ′)|Z) = µ. By Lemma 11.3 and Serre duality,
χ(ωZ′) = 1. Therefore, χ2 = µ− 1.

Combining the lemmas above,

Lemma 12.9. we have the inequality χ1 ≤ χ2.
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Recall from the start of this proof of contradiction that it is assumed
that ω1 ⊊ ωX′ . Since both ω1 and ωX′ are rank 1 reflexive modules over
a Noetherian integral normal scheme, there is some positive divisor D such
that ωX′ = (ω1 ⊗ OX′(D))∨∨.

The following lemma is a general one for arbitrary reflexive sheaves of
rank 1. Combining this lemma with the above discussion of strict inclusion,
we will show that χ1 > χ2 in Lemma 12.11.

Lemma 12.10. Let L be any reflexive sheaf of rank 1 on X ′, and let C ′ be
a connected component of Z ′. Then

χ(L |Z′) > χ(L (C ′)|Z′)

Proof. Using Lemma 7.15, the following diagram of OX-modules with exact
rows and columns can be constructed:

0 0

0 L (−Z ′) L L ⊗O′

X
O ′

X/IZ′ 0

0 L (C ′ − Z ′) L (C ′) L (C ′)⊗OX′
O ′

X/IZ′ 0

L (C ′ − Z ′)
⊗OX′

OX′/IC′

L (C ′)
⊗OX′

OX′/IC′

0 0

There is IC′ the ideal sheaf corresponding the closed subscheme C ′ of
X ′.

Since the Euler characteristic is additive in short exact sequences, there
is the following system of equations:



















χ(L (−Z ′)) + χ(L ⊗O′

X
O ′

X/IZ′) = χ(L )

χ(L (C ′ − Z ′)) + χ(L (C ′)⊗O′

X
O ′

X/IZ′) = χ(L (C ′))

χ(L (−Z ′)) + χ(L (C ′ − Z ′)⊗O′

X
O ′

X/IC′) = χ(L (C ′ − Z ′))

χ(L ) + χ(L (C ′)⊗O′

X
O ′

X/IC′) = χ(L (C ′))

.

The above system reduces to

χ(L ⊗OX′
OX′/IZ′)− χ(L (C ′)⊗OX′

OX′/IZ′)

= χ((L (C ′ − Z ′)⊗OX′
OX′/IC′))− χ((L (C ′)⊗OX′

OX′/IC′)).

40



Note that all sheaves above have support within C ′. Hence, this quantity
also equals

= χ((L (C ′ − Z ′)⊗OX′
OX′/IC′)|C′)− χ((L (C ′)⊗OX′

OX′/IC′)|C′)

Also, they are reflexive sheaves over a 1-dimensional normal scheme. Apply-
ing Riemann-Roch to C ′, this becomes

= deg(OX(−Z
′)|C′)

Since Z ′ is the blow-up of x, IZ′ is a very ample line bundle for f ( [8,
Proposition 13.96]). By [8, Remark 13.53], IZ′ |Z′ is very ample for f |Z′ :
Z ′ → Specκ(x). Applying [8, Theorem 13.59(a)], IZ′ |Z′ is ample. Therefore,
[8, Proposition 13.51] implies that IZ′ |C′ is ample, and thus has positive
degree, in particular by [12, Tag 0BEV]. The required inequality follows.

Lemma 12.11. We have the inequality χ1 > χ2.

Proof. Since D is a finite sum of connected components of Z ′, we obtain the
result by applying Lemma 12.10 multiple times.

Therefore, we have produce the required contradiction, and conclude that

ωX′ = f ∗ωX/(f
∗ωX)tor.

12.3 Locally free dualizing sheaves

The proof can now be completed.

Proposition 12.12. Consider the sequence (1.1). For sufficiently large n,
for the composition of blow-up of singular points f : Xn → X we have
ωXn

= f ∗ωX/(f
∗ωX)tor is locally free.

Proof. Since blow-ups can be studied locally, let X = Spec(A). Also by
definition ωX is coherent. At the generic point η of X, ω(X) ⊂ ωη

∼= K(X).
Therefore, ω(X) is isomorphic to a finitely generated A-submodule of K(X),
which in turn is isomorphic to an ideal I of A. Let g : X ′ → X be the
normalized blow-up of X along the closed subscheme Z = SpecA/I. Then
the ideal I and thus ω blow-ups to a locally free module g∗(IOX) = g∗ωX .

Now apply Proposition 5.8 to dominate g with a sequence of blow-ups
h : Xn → X with π : Xn → X ′. Then h∗ωX = π∗g∗ωX is locally free.

While Proposition 5.8 may blow up nonsingular points, by Lemma 7.6,
ωX is locally free at nonsingular points. Therefore, one may modify the blow-
up such that the centre of the blow-up has no nonsingular points. Therefore,
for sufficiently large n in the sequence (1.1), ωXn

is locally free.
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[7] U. Görtz and T. Wedhorn. Algebraic Geometry II. Cohomology of co-

herent sheaves.
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