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Sommario

L’osteoartrite è una malattia degenerativa della cartilagine articolare, la

quale ha una limitata capacità intrinseca di auto-rigenerazione, portando

alla formazione di difetti che possono intaccare sia la cartilagine che l’osso

sottostante. Per creare un costrutto capace di sostituire e rigenerare questo

particolare tessuto, un polimero biodegradabile funzionalizzato attraverso

spazzole polimeriche può rappresentare un sostituto al danno della carti-

lagine. Per iniziare, lo scopo di questo lavoro è lo studio della funzionaliz-

zazione di una superficie di polimero biodegradabile con un peptide bioat-

tivo attraverso spazzole polimeriche. Perciò sono stati preparati film di

policaprolattone (PCL) usando una pressa a riscaldamento. Le spazzole di

poli(N-isopropilacrilammide) (PNIPAM), sintetizzate attraverso la tecnica

di polimerizzazione RAFT (Reversible Addition-Fragmentation Transfer),

sono state introdotte nella superificie attraverso il metodo di “grafting-to”,

sfruttando la presenza della maleimide nella superficie di PCL. Presenza

confermata utilizzando la fluorescenza di BSA-FITC. L’introduzione delle

spazzole di PNIPAM è stata confermata dall’analisi FT-IR, con un segnale

crescente per le maggiori percentuali di maleimide. Le spazzole di PNI-

PAM contengono un gruppo finale aldeidico, utilizzato per l’introduzione del

peptide RGD, attraverso la reazione con il gruppo amminoossilico del pep-

tide. Inoltre, l’introduzione delle spazzole polimeriche e del peptide è stata

ripetuta in presenza di un catalizzatore. Infine, le cellule di osteosarcoma

MG 63 sono state seminate su film funzionalizzati, per testare l’influenza

di ogni componente: maleimide, spazzole di PNIPAM and peptide RGD. I

risultati della semina cellulare, ottenuti con la colorazione DAPI e falloidina

488, mostrano che la presenza del peptide RGD aumenta l’adesione cellu-

lare nelle superfici funzionalizzate dopo 3 giorni, con un maggior numero di

cellule all’aumentare della percentuale di maleimide. Il solo PCL presenta

un andamento quasi costante nel numero di cellule durante l’esperimento,

manifestando il bisogno di una funzionalizzazione superficiale per migliorare

le caratteristiche del materiale per questa applicazione.
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Abstract

Osteoarthritis is a complex disease referring to the degeneration of artic-

ular cartilage, which has poor intrinsic capacity of self-regeneration, lead-

ing to creation of defects, which can affect both cartilage and underlying

bone. In order to find a way to create a construct able to replace and re-

generate this particular tissue, a functionalized biodegradable polymer via

polymer brushes can represent a design for cartilage loss. To begin with

this idea, the aim of this work is the study of the functionalization of a

biodegradable polymer surface with bioactive peptide via polymer brushes.

Therefore, films of polycaprolactone (PCL) were prepared using hot press.

Poly-(N-isopropylacrylamide) (PNIPAM) brushes, synthetized via reversible

addition-fragmentation chain transfer (RAFT) polymerization, were intro-

duced on the surface via “grafting-to” technique, exploiting the presence of

maleimide on PCL surface. This was confirmed using BSA-FITC staining.

FT-IR analysis show the successful introduction of PNIPAM brushes, with

increasing signal for higher percentages of maleimide. The PNIPAM brushes

contained an aldehyde end-group, employed for the introduction of the RGD

peptide, which was synthetized containing an amino-oxy group: the coupling

between the brushes and the peptide occurs through an aldehyde - amino-

oxy reaction. Furthermore, the introduction of brushes and peptide was

repeated in presence of a catalyst. Lastly, functionalized films were seeded

with MG 63 osteosarcoma cells, to test the influence of each component:

maleimide, PNIPAM brushes and RGD peptide. The results on the seeded

samples from DAPI and phalloidin 488 staining showed that the presence of

RGD peptide increases cell adhesion on surfaces with functionalized PNI-

PAM brushes on day 3, with higher number of cells as the percentage of

maleimide increases, while the presence of only PNIPAM brushes does not

increase the cell number on the samples. PCL itself presents almost a con-

stant number of cells after the modifications of the surface, revealing the

requirement of a functionalization of the surface to improve the features of

the material for this application.
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Chapter 1

Introduction

1.1 Osteoarthritis

Degeneration of mature articular cartilage is the major cause of disability

and it can be caused by a trauma or during the course of joints disorders

such as osteoarthritis (OA) [1, 2]. Osteoarthritis is the main form of arthritis

[3] and it is a complex disease that affects millions of people worldwide [4].

The incidence of this disease is increasing with increased life expectancy

and rising levels of obesity [5]. OA is predicted to become the fourth cause

of disability worldwide by 2020 [6]. Severe joint pain and loss of function

characterized the osteoarthritis, resulting in difficulties in daily activities

and affecting the quality of life [7]. The sites that are most affected by OA

are knee, hip and hand [5]. Furthermore, osteoarthritis is associated with a

considerable socioeconomic cost, relating to not only medical cost but also

cost of work absence and early retirement [4, 6].

During the course of the osteoarthritis, the components of the articu-

lar cartilage show morphological, structural, biochemical and biomechanical

changes, which imply the degeneration and loss of the cartilage tissue [8].

A comparison between healthy and OA tissue is represented in Figure 1.1,

showing the cartilage of the knee as an example. The healing of damaged

articular cartilage is complicated, due to its poor intrinsic capacity of repair

and self-regenerate. Articular cartilage is an avascular tissue and it does not

response to an injury following the usual cascade of events of inflammatory

reaction, common to other tissues. There is no cure for the osteoarthritis.

Conventional osteoarthritis treatments aim at pain and weight management

and improving the function, with surgical procedures for end-stage disease.
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Figure 1.1: Healthy and OA knee joint [9]

Moreover, the surgical intervention induces a fibrous repair tissue, which is

a different tissue than the healthy articular cartilage [7]. For this reason,

strategies involving tissue engineering are developing in order to promote

cartilage tissue regeneration [2]. The challenge within this tissue is the re-

pair of the osteochondral interface, developing a structure able to regenerate

the cartilage and to integrate with the underlying bone [3].

In order to understand how osteoarthritis phenomena acts on the car-

tilage tissue and the underlying bone, and how to develop a structure able

to regenerate the interface between these two tissues, it is important to

know the composition, the structure and the function of the tissues under

discussion.

1.2 Bone tissue

Bones are vascularized and innervated organs, consisting of bone tissue,

bone marrow and a surrounding connective tissue. The principal functions

of the bone tissue include support of softer tissues, such as muscles, allowing

the movement, protection of internal organs, production of blood cells and

storage of minerals, in particular calcium and phosphorous [10].

Bones can be classified, according to their shape, into long bones, short

bones and flat bones. In particular, the long bones are employed to describe

the macroscopic structure of the bone [11]. An adult long bone consist of a

diaphysis, the central part of the bone, and two epiphysis, localized at the

ends of the bone. The structure of the bone differs in the two compartments

just described, as shown in Figure 1.2: the diaphysis is composed mainly
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Figure 1.2: Cortical and trabecular bone [12]

of cortical bone, which represents the external part of the bone, while the

inner part of the diaphysis and the epiphysis consist mostly of cancellous or

trabecular bone [13]. On the joint surfaces, at the end of epiphysis, a thin

layer of articular cartilage covers the subchondral bone. Cortical bone is a

dense and highly mineralized bone tissue that constitutes 80% of the mass

of the bone tissue in the body and it is largely responsible of mechanical and

structural properties of the bone [10]. The remaining 20% of the bone mass

is represented by trabecular bone, a porous structure composed by a lattice

of plates and rods known as trabecula [11]. In the bone marrow channel,

the inner central part of the bone, the space between the trabecula becomes

wider and filled with bone marrow [10].

Bone is a mineralized connective tissue, composed of mineral, organic

matrix, cells and water [14]. The mineral content consist mostly of hydrox-

yapatite Ca10(PO4)6OH2 [11]. Type I collagen is the major component of the

organic matrix, containing also non-collagenous proteins, such as osteocal-

cin, osteopontin, osteonectin and bone sialoprotein [15]. The cells involved

in the formation, modelling and remodelling of the bone are osteoblasts,

osteoclasts, and osteocytes. The precursor of these cells is constituted by

mesenchymal stromal cells (hMSCs), which represent a small fraction within

the bone marrow. Osteoblast are responsible of bone synthesis and depo-

sition, while osteoclasts are responsible of bone resorption. These opposite

activities of osteoblasts and osteoclasts are regulated by hormones, based

on the calcium request from the body. In addition, the interactions of the

process between osteoblasts and osteoclasts are controlled by the third type

of cells, the osteocytes. These cells are actively involved in maintaining the

bone matrix, but they are also mechanotransductors, allowing the transmis-
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sion of signals via mechanical, electrical and chemical mechanisms [13].

The structure and the composition of bone tissue differs significantly

from the cartilage tissue, described in the following section.

1.3 Articular cartilage

Hyaline cartilage, or articular cartilage, is a highly specialized connective

tissue that cover the gliding surfaces of diarthroidal joints [16]. It is a low

friction tissue, with a high capacity to bear and distribute loads and it per-

mits the movement of articulating bones [17]. Hyaline cartilage has unique

mechanical behaviour, but it has limited capacity for healing and repair.

Articular cartilage lacks of blood vessels, nerves and lymphatics and, once

damaged, it cannot have the usual inflammatory response experienced by

other vascularized and innervated tissues [18]. Hyaline cartilage is made of

a dense extracellular matrix (ECM) with sparse population of highly spe-

cialized cells, the chondrocytes. The ECM is composed primarily of water,

collagen and proteoglycans, with smaller amount of noncollagenous proteins

and glycoproteins. Water is the main fluid component of the articular carti-

lage and it represents 80% of its wet weight. Since the cartilage tissue has no

vascularity, the presence of water allows the transport and the distribution

of nutrients to chondrocytes. In addition, water provides lubrication of the

tissue. Collagen is the most abundant macromolecule and forms 10-20% of

the wet weight of the articular cartilage. Collagen II represents the predom-

inant type of collagen within the ECM. Collagen creates a network with a

well-defined ultrastructure, in which the orientation of the fibers changes

with the depth of the articular cartilage. It provides tensile and shear stiff-

ness and strength of cartilage tissue [16, 19]. Proteoglycans represent the

second-largest group of macromolecules in the ECM, up to 10-15% of the

wet weight of the cartilaginous tissue. Proteoglycans are embedded within

the collagen network, creating a fiber-reinforced material. They provide a

compressive strength to the articular cartilage. Chondrocytes derive from

mesenchymal stem cells, they are only 1-5% of the volume and they are

sparsely distributed within the ECM. They are responsible of the synthesis

of the components of the extracellular matrix and they regulate the main-

tenance and the metabolism of the matrix [20]. All these components vary

with the depth of articular cartilage. The tissue can be divided in four dif-

ferent zones, showed in the Figure 1.3: the superficial zone, the middle zone,

the deep zone and the calcified zone. The superficial or tangential zone is the

thinnest layer, that is characterized by densely packed collagen fibers that

are oriented parallel to the articular surface. This zone has a low concentra-



1.3. Articular cartilage 5

Figure 1.3: Articular cartilage layers

tion of proteoglycans and a low permeability. The chondrocytes are present

in relatively high number, they have flattened ellipsoid shape and they are

oriented along the collagen fibers. This layer has the highest water content.

The integrity of this layer is important for the protection and maintenance

of the deeper layers. The arrangement of the collagen fibers provides the

greatest tensile and shear strength. Changes in the structure of this zone

alters the mechanical properties of the cartilage and contribute to the devel-

opment of osteoarthritis [20] . The middle or transitional zone represent an

anatomic and functional bridge between the superficial and the deeper zones.

This layer is characterized by higher concentration of proteoglycans and a

lower concentration of chondrocytes, which have a more spherical shape.

In this region, the collagen fibers have an arcade-like structure interspersed

with randomly oriented fibers. This zone represent the first line against the

compressive forces. The following layer is the last region of purely hyaline

tissue before reaching the bone and it provides the greatest resistance to

compressive force [16]. In the deep zone, the collagen fibers are oriented

perpendicular to the articular surface and anchored to the underlying sub-

chondral bone. This region is characterized by the highest proteoglycans

content and the lowest water content and cell density. Chondrocytes are

slightly elongated and oriented in the direction of the collagen fibers. The

border between the deep zone and the calcified zone is called “tidemark”.

The calcified zone contains a poor concentration of chondrocytes, embedded

in a calcified matrix. The cells are hypertrophic and synthetize type X colla-

gen, which provides structural integrity and a shock absorber along with the
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subchondral bone [20]. This layer of mineralized cartilage matrix represents

the osteochondral interface, which links the articular cartilage tissue to the

underlying subchondral bone [3]. In fact, this represents an anchorage point

for the cartilage tissue. The characteristics of the components of articular

cartilage makes it a fluid-saturated, fiber-reinforced, porous and permeable

composite material [17]. Besides the complex structure, the articular car-

tilage lacks the intrinsic ability to regenerate, as it is an avascular tissue.

For this reason, cartilage is not able to self-repair after a traumatic injury

or to contain the process of osteoarthritis and consequently to obtain the

restoration of its structure and function [20].

The defects in the articular cartilage are classified based on their depth

and they can be divided in chondral or osteochondral. The first type of de-

fect refers to a lesion of the articular cartilage alone, whereas the second one

represents an injury of the articular cartilage together with the subchondral

bone [19]. The difference between the articular cartilage defects is shown in

Figure 1.4, where chondral defects are represented by the partial-thickness

and full-thickness cartilage defects, whereas the bone-cartilage defect repre-

sents the osteochondral defects.

Figure 1.4: Chondral and osteochondral defects of articular cartilage [21]

Besides the treatments for relieving the pain, there are also surgical in-

terventions including subchondral stimulation, mosaicplasty and periosteal

grafts [3]. However, all these strategies give suboptimal results. An alter-

native approach, which is developing in the last years, is given by tissue

engineering.

1.4 Tissue Engineering

The term “Tissue Engineering”, as recognized today, was introduced at a

bioengineering panel meeting of the National Science Foundation in 1987.

This led to the first meeting focused on the subject of tissue engineering
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the following year [22]. Tissue Engineering is an interdisciplinary field that

applies the principles and innovations of engineering and life science to the

development of biological substitutes in order to restore, maintain or improve

an organ or a tissue function [23]. The loss of part of an organ or a tissue,

compromised or removed because of accidents, tumor or trauma, is one of

the most frequent, devastating and costly problems in human health care

and the ultimate goal of the surgery is the repair of the damaged tissue

or organ. The most commonly used methods are tissue grafting and organ

transplantation or synthetic material replacement [24]. The limitations of

the first method include the cost of the transplantation, the donor shortage

and the possible long-term problems after the transplantation. The second

one gives poorly integration with the host tissue and failure over the time

[25]. The goal of the field of tissue engineering is to overcome the limitations

of these conventional treatments for damaged tissue or organ, producing

substitutes that can grow with the patient, without needing a second surgery

or supplementary therapies and in the end, making this solution a cost-

effective treatment in the long term [26]. The key components of tissue

engineering, that promote the achievement of the goals of this new field, are

scaffolds, cells and bioactive molecules. These elements can be combined in a

suitable biological environment to produce engineered tissue in vitro or used

as a strategy of tissue regeneration in vivo [21]. The combination of these

elements is generally referred to as tissue engineering triad (Figure 1.5).

Figure 1.5: Tissue engineering triad [27]
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1.4.1 Scaffolds in Tissue Engineering

In general, tissue engineering involves the development of a three-dimensional

scaffold that provide the environment to support and guide the growth and

the proliferation of cells, promoting the formation of new tissue [28]. It is

possible to create a new tissue, using this approach, with which the body

can interact and carry out all the expected biological activities. In this way,

the created scaffold will have tailored and biomimetic properties [29]. The

successful tissue engineered scaffold has to satisfy many requirements:

• its structure has to be three-dimensional, with sufficient porosity and

adequate pores shape and size to promote tissue integration and vas-

cularization,

• it has to be made of material that is biocompatible, with controlled

biodegradability and that function without interrupting other physio-

logical activities,

• it should have appropriate surface chemistry in order to promote cells

adhesion, differentiation and proliferation,

• it needs to have the adequate mechanical properties that match the

properties needed by the tissue in the site of implantation,

• it must not promote adverse response and

• it has to be easy to fabricate in a variety of configurations [23, 26].

Furthermore, the rate of degradation of the scaffold has to be close to the re-

generation rate of the desired natural tissue [29].These aforementioned char-

acteristics refer to the architecture and the material of the tissue-engineered

scaffold. In addition to these components, cells able to differentiate in the

specific cell phenotype and bioactive substance giving the stimulus for the

differentiation are required for the success of the tissue engineering [30]. Ide-

ally, a scaffold should be able to mimic the structure, the composition and

the biological function of the natural extracellular matrix and its mechanical

support so as regulate the cellular activities [31].

The materials used for the fabrication of the scaffold should be biocom-

patible, biodegradable and bioresorbable. In addition, degradation products

should be removed from the body via metabolic pathway, without adverse

response and an adequate rate. The most used materials in tissue engineer-

ing are:
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- naturally derived materials, such as collagen

- acellular tissue matrices

- synthetic polymers

- ceramics

The advantages of natural materials are their biological recognition, the

sharing of mechanical, chemical and physical properties of the replacing tis-

sue, but the high cost of these materials is a limiting factor for their use.

As for the synthetic materials, they can be reproduced on large scale, they

are cost efficient and it is possible to tailor the mechanical and physical

properties to the application, but they usually lack of recognition sites to

communicate with the cells [32]. The most commonly used synthetic mate-

rials are biodegradable polymers, in particular

- polyglicolic acid (PGA)

- polylactic acid (PLA)

and their copolymers (PLGA)

- polycaprolactone (PCL) [33]

1.5 Biodegradable polymers

The definition of a biomaterial includes any natural or synthetic materials

that can be engineered in order to interact with biological systems without

causing any adverse reactions. Within the group of the biomaterials used

in medical applications, polymers have a great importance. A particular

subgroup of these biomaterials are the biodegradable polymers. They gain

interest because these polymers can be broken down and excreted or re-

sorbed without the needing of a second surgery to remove them [34]. In

the recent years, many polymeric biomaterials with different properties has

been investigated and developed for tissue engineering applications. Many

of these biomaterials show desired biodegradation properties and good me-

chanical properties. One challenging regarding polymeric materials in medi-

cal applications is that they lack of interactive properties with the cells [35].

This limitation can be solved with the application of a surface modification

technique on these biomaterials. In this way, it is possible to improve cells

interactions with the substrate, maintaining the other characteristics of the

biomaterials [36]. Many of these techniques are focused on the immobiliza-

tion of biomolecules onto the surface of the scaffold [31].



10 Introduction

1.5.1 Polycaprolactone

Polycaprolactone (PCL) is an aliphatic biodegradable polyester of liner for-

mula (C6H10O2)n with a semicrystalline structure. It is biocompatible, biore-

sorbable and characterized by a melting temperature Tm of ca 60◦C and a

glass transition temperature Tg of ca -60◦C. PCL is a FDA-approved bio-

material, it has good mechanical properties and it has exceptional ability

to form blends. Furthermore, PCL degrades at slower rate than the other

polymers (2-3 years). PCL is one of the early polyester synthetized by the

Carothers group in the 1930s. In the 1970s-1980s PCL and its copolymer

were extensively used, in particular in the field of drug delivery. Due to

its slow degradation rate, it was replaced in the following years by other

resorbable polymer, more suitable for a few months’ applications. Thanks

to the development of the field of the tissue engineering, in the last years

PCL regain importance, being extensively investigated as a scaffold mate-

rial [37, 38]. However, beyond its slow degradation rate, its biocompatibility,

the easily fabrication and the appropriate mechanical properties, the major

drawback of the PCL is its hydrophobic nature and consequently, the ab-

sence of biologic recognition sites. Several surface modification techniques

have been investigated in order to overcome these limitations and improve

the cell adhesion and proliferation and the biocompatibility of this polymer

[36].

1.6 Functionalization of surfaces

Biomaterials show appropriate bulk properties for their end use in biomedi-

cal applications, but sites of interactions with the biological environment are

not always present on the surface of the biomaterial. This is a limitation,

because communications between a biomaterial and its surrounding occur

through the interfaces. Several surface modification techniques have been

developed in order to design a material that can have specific, desirable and

biological interactions with the surroundings. In the last 50 years, there was

a dramatic progress in the ability to understand and to characterize these

interactions, but also to comprehend molecular mechanisms and signalling

between cells and their environment. Consequently, knowledge of material

surface science, and cell and molecular biology are needed to arrange and

control the interactions at the interfaces of a successful biomaterial [39].

Chemical and physical surface modifications approaches for the func-

tionalization of the interface have recently gain importance as promising

methods to tailor chemical, physical and biological properties of the sub-
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strates in order to increase the adhesion, proliferation and differentiation of

the cells [40]. The methods of surface modification allow the introduction

of specific functional groups, which can be used to tether a bioactive com-

pound to a substrate via a spacer molecule. Functional groups commonly

used in bioconjugation are thiols, aldehydes, carboxylic acids, hydroxyls and

primary amines. In Figure 1.6 it is shown the procedure of functionalization

with a polymeric substrate.

Figure 1.6: Concept of biological surface modification [41]

In this functionalization strategy, the spacer molecule can be given by a

tethered polymeric species that can be assembled, grown or grafted onto the

substrate via covalent or physical interactions. These assemblies are called

polymer brushes and they can be applied to both metallic and polymer

substrates [40]. These layers consisting of polymer brushes can also be

used to modulate the properties of the surface without affecting the bulk

properties of the material [42].

1.6.1 Polymer brushes

Polymer brushes is the term used for polymer chain end-grafted to a sup-

porting surface [43]. The presence on a surface of this thin polymer layer

can affect its properties such as wettability, adhesion, lubrication, friction

and biocompatibility [42]. The advantages of polymer brushes, compared to

other surface modification methods, are their mechanical and chemical ro-

bustness [44], and the possibility to control various important architectural

features: the length of the polymer chain, the grafting density, the thickness

of the polymer coating and the chemistry of the brushes [45]. In addition,

the flexibility to introduce different functional groups [44].

The covalent grafting of polymer brushes to the surface can be accom-

plish by two different approaches, named “grafting-to” and “grafting-from”

techniques. “Grafting-to” method involves a chemical reaction between pre-

formed, end-functionalized polymers and substrate, where complementary

functional groups are located, resulting in tethered polymer brushes [46].
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The addition of polymer brushes with this approach is experimentally sim-

ple and it is possible to characterize accurately the preformed polymer via

chemical and physical methods [42], but it has some limitations. It is diffi-

cult to produce a thick layer of polymer and to achieve high grafting density

[44]. The latter limitation is due to the steric hindrance, caused by the pre-

viously attached polymers, which block the remaining binding sites present

on the surface [47]. “Grafting-from” technique involves the formation of

the polymer chain via polymerization from initiators [48], usually covalently

bonded to the surface. This approach, which initiate the growth of the chain

directly on the surface, allows obtaining higher grafting density. The com-

plications of this method can be the efficiency of the initiator, its presence

on the surface [43].

Figure 1.7: Representation of “grafting to” and “grafting from” methods [49]

The introduction of polymer brushes as surface coating method has recently

gain attention in the fields of stem cell biology, tissue engineering and regen-

erative medicine. This is due not only to the easy fabrication process and

the compatibility with different materials, but also to the simplicity of cou-

pling bioactive molecules to polymer brushes [48]. In this way, the presence

of bioactive materials can influence cell adhesion, formation, proliferation

and differentiation.

1.6.2 Bioactive peptides

The cell adhesion on a surface is mediated by the interactions between the

receptors on the cell membrane and their ligands, such as peptides, proteins,

saccharides and other biologically active substances [50]. At the beginning,

the functionalization of surfaces were done using cell adhesive proteins, but
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the use of proteins has some disadvantages. First, the proteins have to be

isolated from other organisms and purified. They may cause undesirable im-

mune response and increase the risks of infections. In addition, the proteins

can undergo to proteolytic degradation and they have to be continuously

refreshed, and this would be impossible for long-term applications. Most

of these limitations can be overcome by using a smaller sequence of a pep-

tide, containing the cell recognition motif of the protein. The advantages of

the peptides are the higher stability towards sterilization conditions, heat

treatments and pH variation, easy characterization and cost effectiveness.

In addition, the smaller size of the peptides allows packing them with higher

density, compensating the possibly lower cell adhesion activity [51].

Bioactive peptides are sequences of amino acids that mimic the func-

tions of biological molecules. In particular, of the molecules present in the

extracellular matrix (ECM) [47]. In general, a peptide that contains the

cell-binding domain of an ECM protein is immobilized on the surface; the

receptors found in the cell membrane recognize its ligand and bind to it. In

this way, the ligand-receptor interactions promote the cell adhesion on the

surface [50].

The most employed adhesion peptide is the sequence of RGD, derived

from the cell-binding domain of the fibronectin, an ECM protein.

1.6.2.1 RGD sequence

The RGD sequence (R: arginine, G: glycine, D: aspartic acid) was identified

in 1984 by Pierschbacher and Ruoslahti as a cell-binding region in fibronectin

[52]. Fibronectin is a protein of the extracellular matrix that promotes

cell attachment and spreading. The recognition of the RGD domain in the

fibronectin is the major mechanism for the adhesion of anchorage-dependent

cells [50]. Since the discovery of the RGD motif, various materials have been

functionalized using this sequence, for medical studies and applications. The

presence of the RGD peptide not only stimulates cell adhesion, but it has also

the ability to address certain cell lines and to increase specific cell responses.

Besides RGD sequence, other cell adhesion motifs have been identified, found

on ECM proteins, soluble proteins and natural or synthetic peptides and

they can be used in combination with RGD peptide or independently [51].

1.7 Aim of the thesis

The aim of this thesis is the functionalization of polymer surfaces with a

bioactive peptide, through the specific coupling with polymer brushes. The
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material used for making the surfaces is a biodegradable polymer, polycapro-

lactone and the choice of this polymer is given by the intended applications

for the particular construct, which are the reparation and regeneration of

the articular cartilage tissue. The addition of the polymer brushes gives the

possibility to modify the surface of the material. In the bioactive peptide,

containing the RGD sequence, is present a particular functional group, used

for the specific coupling with the polymer brushes.

First, 2D surface of polycaprolactone (PCL) are made; then, polymer

brushes are added to the surface, using a specific coupling between the poly-

mer brushes and a compound mixed with PCL, the maleimide. At the end,

the polymer brushes, through an aminoxy-aldehyde reaction, are function-

alized with a peptide of sequence GRGDSP. After the preparation and the

functionalization of the PCL surface, the influence of all the components on

the adhesion and proliferation of cells is studied. For this purpose, various

samples are seeded with MG63 osteosarcoma cells for different time points.

The prepared surfaces are characterized using FTIR, GPC and contact an-

gle. The cell studies are performed using fluorescent dyes and analysing

microscopy images.

The GRGDSP peptide was prepared in the laboratory of chemical bio-

engineering at University of Padova, while the preparation of the mate-

rial, functionalization and cell work were performed in the laboratories of

MERLN Institute, Maastricht University.
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Materials and Methods

2.1 Materials

2.1.1 Materials and reagents

Materials and reagents provided by Sigma-Aldrich (Steinheim, Germany):

- 1,4-dioxane

- 1,6- hexanediamine

- 2-propanol

- BSA-FITC

- DAPI

- Diethyl ether

- DMF

- DMSO

- Ethylenediamine

- m-phenylenediamine

- Ninhydrin

- PBS

- Polycaprolactone - average Mn = 45, 000
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- TEA

- Trypan Blue

Materials and reagents provided by Thermo-Fisher Scientific (Waltham,

MA, USA):

- Alexa Fluor™ 488 Phalloidin

- EZ-Link™ Alkoxyamine-PEG4-Biotin

- Gibco™ Trypsin-EDTA (0.05%), Phenol red

- MEM α, GlutaMAX™ Supplement, no nucleosides

- Penicillin-Streptomycin

Materials and reagents provided by VWR International (Radnor, PA, USA):

- BSA

- Ethanol

- PFA

- Potassium phosphate dibasic

- TCEP

- Triton® X-100

Materials and reagents provided by TCI Chemicals (Tokyo, Japan):

- 4-Amino-3-hydrazino-5-mercapto-1,2,4-triazole (Purpald®)

- 4-Amyloxybenzaldehyde

- Carboxymethoxylamine Hemihydrochloride

- N-(2-Hydroxyethyl)maleimide

2.1.2 PNIPAM

Poly(N-isopropylacrylamide), abbreviated PNIPAM, is a thermoresponsive

polymer, used as material for the polymer brushes. It was prepared in the

laboratories of MERLN Institute, at Maastricht University, by my daily

supervisor Khadija Mulder.
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2.1.3 RGD peptide

The functionalization of the samples in this work is done using a bioactive

peptide, containing the RGD sequence. The peptide was synthesized in

the laboratory of chemical bioengineering of the department of Industrial

Engineering (University of Padova). The sequence of the peptide is

Aoa7 GRGDSP

where

- Aoa = amino-oxy-acetic acid

- 7 = 7-aminoheptanoic acid

- G = glycine

- R = arginine

- D = aspartic acid

- S = serine

- P = proline

and its molecular weight is MW=784.8 Da. The chemical structure of the

peptide is shown in the following Figure 2.1:

Figure 2.1: RGD peptide chemical structure [53]

2.1.4 MG 63 osteosarcoma cells

In this work, the samples are seeded with MG 63 osteosarcoma cells, pro-

vided by ATCC (American Type Culture Collection). These cells are highly

proliferative and receptive for genetic manipulation; for their properties, MG

63 cells are widely used as in vitro models.
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2.2 Methods

2.2.1 FT-IR

Fourier transform infrared spectroscopy is a technique used to obtain an ab-

sorption infrared spectrum of a compound. The functionality of this type of

spectroscopy is based on the principle that almost all the molecules absorb

infrared light. The spectrum derived from the measurement is characteristic

of the sample and it represents the molecular “fingerprint” of the sample.

Each substance has its own spectrum and two different molecular structure

cannot share the same spectrum. FT-IR spectroscopy is used for identifica-

tion, analysis of the structure of a variety of compounds, both organic and

inorganic substances [54]. It is also useful for qualitative and quantitative

analysis of a sample.

The instrumentation used in FT-IR spectroscopy is given by a spectrom-

eter, whose basic components are:

• infrared source, which emits the radiation

• Michelson interferometer that modulates the infrared radiation

• detector, used to collect the IR beam that is passed through the sample

• computer that run the Fourier transform of the digitized signal.

The role of the Fourier transform is to convert the raw data in the final

spectrum that is possible to analyse.

Figure 2.2 represents a scheme of the core of the spectrometer, the

Michelson interferometer. The energy from an infrared source passes through

Figure 2.2: Michelson interferometer
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a beam splitter, which divides the incoming radiation in two perpendicular

beams. One beam is directed towards a fixed mirror, while the other beam

goes to a moving mirror. The two beams recombine at the beam splitter, but

the differences in the pathlength between the beams cause constructive and

destructive interference. The combined beam is called interferogram. The

infrared (IR) radiation, coming from the beam splitter, hit the samples and

when it passes through it, some of the radiation is absorbed and some of it is

transmitted, as it passes through the sample. The signal, which is collected

by the detector of the FT-IR spectrometer, is the spectrum that results from

the interaction between the IR radiation and the analysed spectrum [55].

The region of electromagnetic spectrum interested in the FT-IR analysis

is the infrared region, in particular the vibrational portion of this region.

In chemistry, it is preferred to express the radiation in this vibrational in-

frared region using the unit called wavenumber ν̄. The wavenumber can

be easily calculate as the reciprocal of the wavelength and it is expressed

in cm−1. Using the wavenumber, the vibrational infrared spectrum extends

from 4000 to 400 cm−1 . Almost any compound with covalent bonds absorbs

electromagnetic radiation in the infrared region. The IR radiation produces

different types of vibrations and rotations of the covalent bonds between

two elements. The simplest types of vibrational motions that a molecule

can experience are the stretching and the bending modes. The first one

is the continuously changing of the interatomic distance along the axis of

the bond between two atoms. The stretching mode can be symmetric or

asymmetric. The second type of vibrational motion occurs when the an-

gle between two bonds changes. There are various bending modes named

wagging, twisting, scissoring and rocking [56].

2.2.2 GPC

Gel permeation chromatography is a technique that separates analytes based

on their size. The mechanism of GPC involves the injection of dissolved

molecules onto specialized columns, containing packed porous beads. GPC

columns can contains pores of single size or of different sizes. The degree

of access of the molecules to the pores determines the separation process.

The smaller molecules can easily access the pores and they can spend more

time in the column, whereas larger analytes are restricted in available pores

or they are excluded from the pores, and they are eluted quickly. The

samples leaves the column in the inverse order of molecular size, as shown in

Figure 2.3; the largest molecule is the first to leave, followed by progressively

smaller molecules.
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Figure 2.3: GPC mechanism [57]

In order to analyse the sample, this has to be prepared. The preparation

of the sample consists in the dissolution of the sample in an appropriate

solvent, filtration of the obtained solution and its injection onto a column.

The material eluting from the column reaches the detectors of the GPC.

The most widely used is the differential refractometer (RI detector) that

measures the difference in refractive index between the solvent and the sam-

ple + solvent. It determines the amount of eluted material as a function of

the retention time, converted to molecular weight using a calibration curve,

generated using polymers of known molecular weight, which relates the re-

tention time with the molecular weight of the polymer. In addition, the

photodiode array (PDA) detector can be present, which can look at a range

of wavelengths and it allows determining information about the chemical

composition distribution.

GPC is a valuable tool used to determine the molecular weight of a

sample as well as the distribution of the molecular weight. The analyzed

samples of this technique are usually polymers, that are characterized by

different molecular weight definitions. GPC can be used to determine the

following molecular weight averages:

• Number average molecular weight Mn, that is the statistical average

molecular weight of all the polymer chains

Mn =

∑
Ni ·Mi∑
Ni

• Weight average molecular weight MW

MW =

∑
Ni ·M2

i∑
Ni ·Mi
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• Size average molecular weight MZ

MZ =

∑
Ni ·M3

i∑
Ni ·M2

i

where Mi is the molecular weight of a chain and Ni is the number of

chain of that molecular weight

• Polydispersity index PDI, that represents the broadness of the molec-

ular weight distribution. It is given by the following ratio:

PDI =
MW

Mn

At the end of the measurement performed by the GPC, the obtained output

is a chromatograp, showed in Figure 2.4.

Figure 2.4: Example of molecular weight distribution

2.2.3 Contact angle

Contact angle is a useful and simple technique to analyse surface properties,

in particular, it directly measures the wettability of a surface. The wettabil-

ity is a useful parameter in the study of the interactions between the surface

of the material and the biological environment. Contact angle methods are

inexpensive and easy to perform. The measurement is performed using a

still drop of liquid on a surface and detecting the angle θC formed between

the surface of the drop and the surface of the material. When the surface

is wettable, the liquid drop tends to extend itself on a flat surface, whereas

the drop forms a round shape when the surface is not wettable. In practice,

when

• θC = 0, the surface is completely wettable

• 0 < θC < 90◦, the surface is partially wettable
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• θC > 90◦, the surface is not wettable [58]

The phenomenon of the contact angle can be explained using the relation-

ship of the wettability with the surface tensions of the material. At the

Figure 2.5: Contact angle and surface tensions [59]

equilibrium, all the surface tensions between solid, liquid and vapor phases

has to be zero, as showed in the equation (2.1), called Young’s equation

γSG − γSL − γLGcos(θC) = 0 (2.1)

with γSG, γSL, γLG superficial tension between solid and vapor, solid and

liquid, and liquid and vapor. The contact angle is given by equation (2.2)

cos(θC) =
γSG − γSL

γLG
(2.2)

2.2.4 Cell culture

Culturing cells in an artificial environment is one of the major tools used in

molecular and cellular biology, capable to provide models systems for study-

ing not only the normal physiology and biochemistry of the cells, but also

the toxicity of drugs or other compounds on the cells, as well as carcino-

genesis and mutagenesis. The advantages of the cell culture techniques are

the possibility of expanding the available amount of cells, studying cellular

processes and reducing the number of animal experiments.

The term cell culture refers to the removal of cells from an animal or

plant, which are maintained alive for more than 24 hours in a favourable

artificial environment. Cell cultures can be isolated from primary tissue, and

they are called primary cultures. This type of culture has a limited life span;

the cells can divide a limited number of times, before losing their ability to

proliferate. However, some cell lines can undergo through a process called

transformation, spontaneously or chemically induced, and become immortal.
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In this way, the cell line has the ability to divide indefinitely and it becomes

a continuous cell line.

In vivo, cells are surrounded by tissue fluids, which provide all the es-

sential components and remove metabolic products from the organism. In

cell culture, the physico-chemical and physiological environment is given by

the growth medium. It provides nutrients, growth factors, hormones, and it

regulates pH and osmotic pressure of the culture. The only parameter that

the media does not control is the temperature: 37 ◦C and the humidity are

provided by incubators, in which cells are placed during the growth.

The growth of cells in culture goes through different phases. The first

one is the quiescent or lag phase, this depends on the cell type, the seeding

density, the media components and previous handling. During this phase,

the cells start to attach to their substrate, synthesizing enzymes, DNA and

proteins. There is only a small increase in the number of cells. In the next

phase, the log-phase, cells proliferate exponentially, reaching the highest

metabolic activity. The length in time of this phase depends on the cell

cycle of the cells. During this phase, cells secrete metabolites and require

new nutrients; for this reason, the medium should be refreshed. After the

exponential growth, cells enter into a stationary phase, where the growth is

greatly reduced or entirely ceased [60].

Figure 2.6: Growth pattern of cultured cells [61]

2.2.4.1 Subculturing of cells

When cells reach a semi-confluent state, 70%-80% of the available substrate

is covered, the culture has to be divided. This procedure is called subcul-

turing or passaging, and it is referred to the removal of the medium, the

detachment of the cells from the substrate by using proteolytic enzymes and
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the transfer of cells into a new substrate with fresh medium. If cells are not

subcultured, they can lag for a long period and never recover or they might

differentiate. Subculturing of cell culture allows to keep cells in an optimal

density and to stimulate their proliferation [60].

2.2.4.2 Cryopreservation of cells

If a surplus of cells is available after passaging, it should be frozen. This

process is called cryopreservation and it provides the storage of the cells,

immersed in complete medium in which is present a cryoprotective agent

such as DMSO, in liquid nitrogen. The presence of cryoprotective additives

protect the cells from damage during the freezing [60].

2.2.4.3 Thawing of cells

When cells or a new type of cells are needed, it is possible to thaw the frozen

cells, stored in liquid nitrogen. The procedure of thawing is stressful for the

cells and it has to be a good and quick technique in order to have most of

the cells that survived. After thawing, the cells are immerse in medium and

store in the incubator [60].

2.2.4.4 Aseptic technique

Maintain an aseptic working area is the main requirement of a cell culture

laboratory. For this reason, all the work with cells is performed in a Laminar

Air Flow (LAF) cabinet. This sterile environment protect the cell culture

from dust and other airborne contaminants, using a constant and unidi-

rectional flow of HEPA-filtered air. In addition, the LAF hood provides a

barrier between the culture and the operator. The important elements of an

aseptic technique are a sterile working area, good personal hygiene, sterile

reagents and media, and sterile handling. The culture hood is large enough

to allow one person to work, has the adequate amount of light, and provides

a comfortable workstation. The working area has to be maintained clean,

uncluttered and with everything on direct sight [60]. Figure 2.7 represents a

basic layout of a flow hood. The arrangement is prepared for right-handed

workers with the following items: pipettes on the right can be easily reached,

media and reagents on rear right for easy pipetting, tube rack on rear middle

for additional reagents and waste liquid containers on the rear left. A clear

space is present in the center to work on cell culture flasks.
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Figure 2.7: Basic layout of a culture hood [60]

2.2.5 Biological fluorenscent stains

After the culture of cells on a substrate, it is possible to quantify the number

of cells and their morphology using fluorescence microscopy. In order to see

and image the cells, fluorescent dyes are needed. Fluorescent dyes are able

to bind to different components of the cell and, after the excitation with

light of adequate wavelength, they are able to emit a colour. In this work,

the fluorescent stains used are 4’,6-Diamidino-2-phenylindole dihydrochlo-

ride (DAPI) and phalloidin 488.

DAPI is a DNA-specific probe that increases its fluorescence when it

binds to the adenine-thymine (A-T) sequence of the DNA [62], which is

contained in the cell nucleus. For this reason, it is used to determine the

number of nuclei on the substrate. Its maximum absorption is at wavelength

of 358 nm, in the ultraviolet, while its maximum emission is blue light, at

wavelength of 461 nm, as shown in Figure 2.8. It has a great photostabil-

Figure 2.8: Absorption and emission spectrum of DAPI [63]



26 Materials and Methods

ity [64]. DAPI can also bind to RNA, but it shows a weaker fluorescence

intensity [65].

Phalloidin is a bicycle peptide that belong to the family of toxins called

phallotoxins, which are isolated from the Amanita phalloides, the death cup

mushroom [66]. Phalloidin binds to the F-actin, the filamentous actin, and

it allows the investigation of the distribution of the F-actin and consequently

of the cytoskeleton of the cells. There are different phalloidin conjugates,

with a range of colour choice. The phalloidin stain, used in this thesis,

is phalloidin 488 and it has an excitation maximum at wavelength of 493

nm and an emission maximum at wavelength of 519 nm. The fluorescence

spectrum is shown in Figure 2.9.

Figure 2.9: Absorption and emission spectrum of Alexa Fluor™488 Phalloidin [67]

In order to use these fluorescent dyes, the cells must be permeabilized and/or

fixed before adding them [64]. After the staining, in order to image the

cells, it is possible to use a fluorescence microscope, in which are present

the appropriate filters to excite and record the fluorescence intensity of the

sample.

Figure 2.10: Example of bovine pulmonary artery endothelial cells stained with

Alexa Fluor® 488 phalloidin and DAPI [68]
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Experimental Part

3.1 Preparation and characterization of the sur-

faces

3.1.1 Preparation of PCL films

In this work, the polymer used as surface is PCL. To start the project, 2D

films were made using a hot press (Specac, Manual Hydraulic Press), in

Figure 3.1.

Figure 3.1: Hot press

After opening the water valve and turning on the device, the temperature

was set at 95◦C, higher than the melting temperature of the PCL (around

60◦. Then, the following sandwich was prepared:
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• slice of rubber, wrapped with aluminium foil

• silicon wafer

• mold, with 9 circles

• 3 pellets, weighing about 105 mg, of PCL in each circle

• silicon wafer upside down

• slice of rubber, wrapped with aluminium foil.

When the temperature reached 95◦C, the sandwich was inserted between the

hot plates for 5 minutes to melt. Then, a pressure was applied until there

was no space between the silicon wafers and the mold, waiting another 10

minutes. Next, the temperature was decreased to 55◦C. After that, the

sandwich was demounted and the discs were punched out using a puncher

of 15 mm, obtaining PCL films of diameter of 15 mm and thickness of 0.11

mm, showed in Figure 3.2.

Figure 3.2: PCL films

3.1.2 Characterization of PCL films

PCL films were characterized with FT-IR, GPC and contact angle. These

films were used as a control for the modified films and the results obtained

from the analysis were used as a reference.

3.1.2.1 FT-IR

FT-IR spectra of a PCL and PCL-modified films were measured with ATR-

FTIR Spectrometer (Thermo-Fisher, Nicolet™iS™50 FT-IR Spectrometer),

and visualized using OMNIC software. Data were collected between 400-

4000 cm-1, at 4 cm-1 resolution with 32 scans.

In Figure 3.3, FT-IR spectrum of PCL film is showed, in which it is

possible to see the typical peaks of PCL: asymmetric CH2 stretching at

2944 cm-1, symmetric CH2 at 2864 cm-1, carbonyl (C=O) stretching at 1720

cm-1 and C-O stretching at 1159 cm-1.



3.1. Preparation and characterization of the surfaces 29

Figure 3.3: FT-IR spectrum of PCL film

3.1.2.2 Contact angle

The contact angle of PCL film was measured using a drop of 6 µl of distilled

water. The measurement were repeated 3 times in different parts of the same

film. The angle was obtained from an image showed in Figure 3.4, using the

software of drop shape analysis (DSA4). The result of the measurement is

θPCL = 72.7◦ ± 2.09.

Figure 3.4: Contact angle of PCL film

3.1.2.3 GPC

After the analysis on the PCL film, a small piece of it was cut and dissolved

in DMF 0.1% LiBr: 2 mg of polymer were dissolved in 1 mL of DMF 0.1%

LiBr. After the dissolution of PCL, the solution was filtered using a PTFE

filter of 0.2 µm, and placed in a glass vial, which was inserted in the GPC

(Shimadzu, Prominence-i GPC System) for the measurement. The chro-

matogram obtained at the end of the measurement is showed in Figure 3.5.

In Table 3.1, the molecular weight averages.
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Figure 3.5: GPC chromatogram of PCL film

Table 3.1: Values from GPC

Mn MW PDI

53567 79877 1.49

3.1.3 Aminolysis of PCL films

The first modification of PCL surfaces was aminolysis. In this work, this re-

action occurs between the polyester, PCL, and diamine, 1,6-hexanediamine.

Aminolysis involves the cleavage of ester bonds and simultaneous formation

of amide bonds, NH2 and OH groups [69]; in particular, one amino group

(NH2) of the diamine reacts with the -COO- group of PCL to form a covalent

bond, -CONH-, while the other amino group is free and unreacted [70], as

showed in the schemes of Figure 3.6. With the introduction of NH2 groups

on the surface, through the aminolysis reaction, it is possible to increase

the hydrophilicity of the surfaces and consequently create a more adequate

environment for the cells.

Figure 3.6: Schemes of aminolysis between PCL and 1,6-hexanediamine [71, 72]

PCL films were immersed in 1 mL of a solution of 1,6-hexanediamine/2-

-propanol with 10 wt% of 1,6-hexanediamine at 37◦C (HeratermTM Oven,

Thermo-Fisher) for

• 1h

• 4h

Then, the films were rinsed for 1h with deionized water at room temperature,

to remove the free 1,6-hexanediamine, and dried overnight [70].
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3.1.4 Characterization of aminolysed films

After the aminolysis, the samples were analyzed with FT-IR, GPC and

contact angle. In addition, to check the presence of NH2 groups on the

surfaces, a ninhydrin test was performed.

3.1.4.1 Ninhydrin test

Ninhydrin assay is a colorimetric test used for the detection of amino groups

on the PCL surface, and consequently the effectiveness of aminolysis reaction

[35].

Ninhydrin is a powdered chemical compound of yellow colour, which can

reacts with free amino groups, producing a purple colour, called Ruhemann’s

purple. It was discovered by Siegfried Ruhemann in 1911, who observed the

reaction of ninhydrin with α-amino acids [73]. In fact, the detection of amino

groups allows using ninhydrin to test the presence of amino acids, peptides

and proteins. A scheme of the reaction with an amino acid is showed in

Figure 3.7.

Figure 3.7: Scheme of ninhydrin reaction [74]

In this work, the protocol of ninhydrin assay is the following [75]: first,

aminolysed films were cut in small pieces of 8 mm of diameter, and each

film was dissolved in 150 µL of 1,4-dioxane. The same amount of 1 mol/L

ninhydrin/ethanol solution was added. The obtained solutions were heated

at 80◦C for 15 minutes and then cooled in ice bath. The solutions were

transferred on a 96-well plate and the absorbance between 450 nm and

650 nm were measured using a plate reader (BMG Labtech, CLARIOstar®

High Performance Microplate Reader). A calibration curve was obtained

using known concentration of 1,6-hexanediamine in 2-propanol/1,4-dioxane

with the addition of ninhydrin/ethanol solution. The absorbance spectrum

of the solutions of different known concentration of 1,6-hexanediamine, be-

tween 450 nm and 650 nm, is showed in Figure 3.8. After the analysis, the

absorbance of the samples had a maximum peak at 492 nm and, for this

reason, the calibration curve was obtained from the absorbance spectra at

a wavelength of 492 nm. The calibration curve relates the absorbance with
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Figure 3.8: Spectra of different wt% of 1,6-hexanediamine

the NH2 concentration in the solution. From the calibration curve, it is pos-

sible to calculate the amino groups concentration in the aminolysed samples.

The calibration curve was obtained from the previous spectra using Basic

Fitting tool of MATLAB® (R2017b), choosing linear fitting; the software

provided the equation of the calibration curve and the calculation of R2, the

coefficient of determination.

Figure 3.9: Calibration curve of reaction ninhydrin-NH2
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3.2 Cell culture

MG 63 ostesarcoma cells were thawed and cultured in flasks. The medium

used for the culture was α-MEM without nucleosides, to which 10% of vol-

ume of FBS was added. The medium was refreshed every other day until

the cells reached 70%-80% of confluency and then trypsinized to replate or

to cryopreserve.

3.2.1 Trypsinization

Trypsin is a serine protease, found in digestive system of many vertebrates.

It hydrolyses proteins: when trypsin is added to a cell culture, it cleaves the

peptide bonds in the proteins that enables the adhesion of cells to the flasks

and between them. The breakdown of the proteins allows the detachment of

the cells from the substrate, but at the same time, trypsin breaks down also

the other proteins of cell membrane and that can affects the functioning

of the cells [76]. For this reason, trypsin has to be inactivate to avoid

destructive effects on the cell culture. Trypsinization procedure for a T225

flask is the following:

• Remove the medium from the flask

• Washing step: (x2 times)

– Add 4 mL of PBS in the flask

– Remove the PBS

• Trypsin step:

– Add 4 mL of trypsin in the flask

– Incubate the flask at 37◦C for 4 minutes

– Check the cells with the microscope and tap if the cells do not

get loose

• Deactivation step:

– Add 8 mL of medium directly on the bottom of the flask to collect

all the cells

• Transfer all the medium with cells to a plastic tube
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3.2.1.1 Cell counting

Cells are seeded on a surface using a certain density of cells/cm2. Trypan

blue and a Neubauer chamber are used to count the collected cells; in this

way it is possible to calculate the number of cells that are needed for the

seeding.

Trypan blue is a blue acid dye, containing two azo chromophores [77].

It is employed in dye exclusion tests in order to determine the number of

viable cells in suspension [78]. This is possible because live cells that have

intact membrane excludes trypan blue, which can permeate cell membrane

of dead cells. For this reason, looking at the cells in the microscope, the

live ones look clear, whereas the dead one are blue. The Neubauer chamber

provides a scheme and a formula to determine the number of cells. The

layout of the chamber is showed in the Figure 3.10: the cells are counted in

the 5 highlighted squared.

Figure 3.10: Layout of Neubauer chamber [79]

The formula is the following:

Concentration (cells/mL) = 2 × number of counted cells

number of squares
× 10000

and it keeps into account the dilution of the cells with the trypan blue.

The counting procedure, used in the laboratory, was performed using 20

µL of trypan blue to which 20 µL of cells in medium were added. Then, 10

µL of this solution was put in the chamber and the cells are counted using

the microscope.
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3.2.2 Cell seeding

After the preparation and modification of the surfaces, PCL and aminolysed

films were seeded with MG 63 osteosarcoma cells, at passage P 93.

For each time point, samples used for cell seeding were triplets of films

of the following conditions

• PCL

• PCL Aminolysis 1 h

• PCL Aminolysis 4 h

Prior to cell seeding, the samples were sterilized, immersing them in ethanol

70% for 10 minutes and drying them on autoclaved paper filter. After the

sterilization, the samples were placed in 24-well plates, using O-rings to

keep them on the bottom of the well. The O-rings were sterilized as well

using the same procedure. The samples were covered with 1 mL of α-MEM

+ Glutamax/10% FBS + 1% of Pen/Strep and incubated at 37◦C for 10

minutes, before adding the cells.

The films had a diameter of 15 mm and an area of A=1.76 cm2. The

cell density used for the seeding was 5000 cells/cm2, meaning around 9000

cells per film. After the counting, cells were added randomly to the medium

in each samples. Cells seeded on films were analysed at

• Day 1

• Day 7

3.3 Biological characterization

In order to observe the cells and be able to analyse them, two different stains

were used: DAPI and phalloidin 488. Prior to staining, the cells were fixed

on the samples: in this way, the cells are not alive, but they maintain their

shape.

3.3.1 Fixation of cells

After 1 day and 7 days, the cells were fixed on the films, with the following

procedure:

• Remove 900 uL of medium from each well

• Add 100 uL of 8% PFA solution to each well
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• Place the well-plate at 4◦C for 20 minutes

Leaving 100 uL of medium, instead of removing the entire medium, to pre-

vent from damaging the samples, giving a final concentration of PFA solution

of 4%.

After the incubation in the refrigerator

• Remove the fixation solution from each well

• Add 1 mL of PBS to each well

• Repeat PBS wash 3 times

• Leave 1 mL of PBS in each well to store the samples in the refrigerator

3.3.2 DAPI and phalloidin staining

Prior to staining, the cells need to be permeabilize, in order to allow the

staining to pass through the cell membrane. The procedure to permeabilize

the cells is described here:

• Replace PBS in each well with 300 uL of 0.1% Triton® X-100 in PBS

• Incubate the samples for 15 minutes at room temperature

• Remove the permeabilization solution from each well

• Wash 3 times with 500 uL of PBS

• Leave 500 uL of PBS to maintain the samples wet

After the permeabilization step, it is possible to start immediately with the

staining: first, the phalloidin staining, then the DAPI staining.

The solution for the phalloidin staining was prepared as following:

• 5 uL of methanolic stock solution into 200 uL of 1% BSA in PBS

and the procedure of the phalloidin staining is described below:

• Replace PBS with 300 uL of staining solution per well

• Incubate the samples for 20 minutes at room temperature in the dark

• Remove the staining solution from each well

• Wash the samples with 500 uL of PBS

• Repeat PBS wash for 3 times
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Lastly, the solution for the DAPI staining was prepared:

• 0.1 ug of DAPI per 1 mL of PBS

and after the last PBS wash of phalloidin step, the DAPI solution is used

as following:

• Replace PBS with 300 uL of DAPI solution per well

• Incubate the samples for 15 minutes at room temperature in the dark

• Remove the staining solution from each well

• Wash the samples with 500 uL of PBS

• Repeat PBS wash for 3 times

• Leave 500 uL per well for the imaging

3.3.3 Microscope images

Triplicates of the samples were imaged using a fluorescence microscope

(Nikon, Inverted Microscope Eclipse Ti-S), with different excitation and

emission filters, matching the wavelengths of phalloidin 488 and DAPI, as

described in section 2.2.5. Each film was imaged 3 times, in different parts

of the surface. The images from the two channels were merged with Im-

ageJ [80]. The counting of the number of nuclei present in each image was

performed using CellProfiler [81], in particular the analysis module of iden-

tification of primary objects.

3.4 Preparation and characterization of the sur-

faces

The main purpose of this project is the functionalization of the PCL surface

with a RGD peptide, through the coupling with polymer brushes. The first

step, to achieve the ultimate goal, is the preparation of the PCL surface, with

an element that allows the coupling with the brushes: for this reason, PCL

is functionalized with maleimide. This compound can link the PNIPAM

brushes, containing an aldehyde group. This functional group is needed

because it can couple with the specific amino-oxy group, present on the RGD

peptide. A schematic representation of the final structure of the surface is

given in Figure 3.11.
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Figure 3.11: Scheme of PCL-maleimide-PNIPAM-peptide structure

3.4.1 PCLM surfaces

Maleimide is a chemical compound of structural formula in Figure 3.12.

Figure 3.12: Structural formula of maleimide [82]

The functional group of maleimide can be used to create different macro-

molecular architectures, through the coupling reaction between maleimide

and thiol group [83]. PCL was functionalized with maleimide, obtaining

PCL-maleimide (PCLM), of molecular weight between 7000 g/mol from

NMR and 15000 g/mol from GPC. In order to create films with maleimide

on the surface, the compound of PCLM was mixed with PCL Mn=45,000,

in different percentages:

• 1% of PCLM

• 10% of PCLM

The mix of these percentages of PCLM with PCL was done using an extruder

(Thermo Scientific HAAKE MiniCTW), in Figure 3.13. The temperature

was set on 63◦C, the speed of the screws at 100 rpm, and the materials were

inserted and left to mix for 10 minutes. Then, the temperature was decrease

at 55◦C: after reaching it, the screws’ speed was decrease to 5/10 rpm and

the material was extruded, obtaining fibers of material.

The procedure of each percentage of PCLM was repeated two times. The

fibers from the second extrusion were cut in small pieces and used to make
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Figure 3.13: Thermo Scientific HAAKE MiniCTW [84]

films, as described for the PCL films in section 3.1.1. The different steps are

showed in Figure 3.14.

Figure 3.14: Steps from extruded PCL-PCLM fibers to films

3.4.1.1 BSA-FITC

Albumin-fluorescein isothiocyanate conjugate (BSA-FITC) was used to check

the presence of maleimide on the surface of the films. This conjugate is com-

posed of a protein, bovine albumin serum (BSA), and a labelling agent, flu-

orescein isothiocyanate (FITC), which bind the proteins through the amino

group of a residue [85]. FITC is a popular fluorescent probe that has its

excitation at wavelength of 495 nm and its emission at wavelength of 519

nm, giving a green colour. The conjugation of the labelled-protein and the

maleimide occurs through the bond between maleimide and sulfhydryl group

on the protein, as showed in Figure 3.15.

Figure 3.15: Reaction scheme bteween maleimide and protein [86]

To test the samples, a solution of PB buffer at pH=7 with a concentration of

1 mg/mL of BSA-FITC was prepared. 2 samples of the following conditions
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• PCL

• 1% PCLM

• 10% PCLM

were place in a 24 well-plate and immersed in 600 µL of BSA-FITC/PB

buffer solution for 24 hours at room temperature, covered with aluminium

foil. At the same time, 1 sample of each condition was immersed in only PB

buffer, as control. After the determined time, all the samples were washed 3

times with PB buffer. The analysis of the samples was performed using the

plate reader (BMG Labtech, CLARIOstar® High Performance Microplate

Reader) and the microscope (Nikon, Inverted Microscope Eclipse Ti-S) .

3.5 Introduction of polymer brushes

After the preparation of the PCLM surfaces and the test of the presence

of maleimide on the surfaces, polymer brushes made of PNIPAM were pre-

pared.

3.5.1 Preparation of the polymer brushes

The polymer used for the brushes is PNIPAM. It was prepared by my daily

supervisor, from NIPAM with RAFT polymerization.

3.5.1.1 RAFT polymerization

The three principal mechanisms employed for reversible-deactivation radical

polymerization are:

• Polymerization with reversible termination coupling

• Radical polymerization with reversible termination by ligand transfer

to a metal complex, usually called atom-transfer radical-polymerization

(ATRP)

• Free-radical polymerization with reversible chain transfer or RAFT

polymerization [87]

Reversible addition-fragmentation chain transfer (RAFT) was developed at

CSIRO in the 1990s and it is a robust and versatile method to control rad-

ical polymerization [88]. The mechanism of this controlled polymerization

involves a chain growth that is initiated by a free radical initiator, such as

AIBN, and mediated by a dithioester chain transfer agent, usually called
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RAFT agent. The transfer of radical between the growing chains gives a

good control of the polymerization, while the presence of the dithioester

moiety gives a good living character to the reaction [44]. A scheme of the

overall RAFT process is shown in Figure 3.16, where Z is the activating

group and R the free-radical leaving group [88].

Figure 3.16: RAFT process [88]

The success of the RAFT polymerization is given by the effectiveness of

the RAFT agent and consequently, by the choice of Z and R groups. Select-

ing the appropriate RAFT agent and the reaction conditions, RAFT poly-

merization is applicable to a wide range of monomers, obtaining controlled

molecular weight polymers with very narrow polydispersity [87]. This pro-

vides the ability to synthetize well-defined homo-, gradient, diblock, triblock

and star polymers, and more complex architecture, including microgels and

polymer brushes, which are not synthetize with other methods [88].

In this work, RAFT polymerization was used to synthetize the PNI-

PAM brushes. These were obtained from NIPAM, using AIBN as initiator,

1,4.dioxane as solvent and the following RAFT agent, prepared by Dr. Huey

Wen Ooi, based on Jackson et al. [89]:

Figure 3.17: RAFT agent [89]

The temperature was set at 60◦C and the reaction was performed for 6

hours.

3.5.2 Addition of PNIPAM brushes

In order to add the polymer brushes to PCL and PCLM samples, a solution

of PNIPAM brushes was prepared and each film was immersed in 600 µL of
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it. The components for the preparation of the solution of PNIPAM brushes

were:

• PNIPAM

• TCEP

• 1,4-dioxane

• Ethylenediamine

• Diethyl ether

• Nitrogen

PNIPAM Mn=23,000 was weighted for a final concentration of 10 mg/mL

and a crystal of TCEP was added. The polymer was dissolved in 1,4-dioxane

and the solution was degassed using nitrogen for 15 minutes. Then, 1 M

of ethylenediamine was added to the solution, followed by degas for other

15 minutes. This step was needed to remove the RAFT agent from PNI-

PAM and it was demonstrated by the changing in colour, from yellow to

transparent, of the solution. After that, the solution was leaving to stir,

while diethyl ether was degassed with nitrogen for 15 minutes. At the end,

the solution was precipitate in diethyl ether, which is non solvent, collecting

the polymer at the bottom of the tube. PNIPAM with diethyl ether was

centrifuge (Centrifuge 5430 R, Eppendorf) at 4◦, 5000 rpm for 10 minutes.

After the centrifugation, the diethyl ether was removed and the PNIPAM

was let it dry. The final solution used for the samples was made of the

obtained PNIPAM, dissolved in PB buffer, at pH=7. The sample were im-

mersed in 600 µL of this solution for two days and then washed for 3 times

with PB buffer.

3.5.2.1 Alkoxyamine-PEG4-Biotin

To test the presence of the brushes on the surface of the films, a particu-

lar dye was used: Alkoxyamine-PEG4-Biotin, of structure showed in Fig-

ure 3.18. This dye contains an amino-oxy group, the same functional group

present in the peptide, and it couples with the aldehyde group, present in

the PNIPAM brushes. Details on this reaction are given in section 3.6.

Alkoxyamine-PEG4-Biotin was dissolved in DMSO with a concentration

of 250 mM and then, it was added to PB buffer pH=7, with a concentration

of 0.2 mg/mL. PCL and PCLM films with added PNIPAM brushes were

immersed in 600 µL of this solution for 24 hours. The samples were analysed
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Figure 3.18: Alkoxyamine-PEG4-Biotin [90]

with the plate reader (BMG Labtech, CLARIOstar® High Performance

Microplate Reader) and the microscope (Nikon, Inverted Microscope Eclipse

Ti-S). The wavelength used for analysing these samples was checked using

the PDA detector of the GPC (Shimadzu, Prominence-i GPC System). The

result of the measurement is shown in Figure 3.19.

Figure 3.19: Result of PDA detector of GPC for Alkoxyamine-PEG4-Biotin

The signal of the dye showed around 20 minutes, at wavelength between

300 nm and 400 nm. The other signal, after 25 minutes, it was given by the

solvent.

3.6 Introduction of the peptide

After the addition of the PNIPAM brushes to the PCL and PCLM films,

RGD peptide was added to the films. The coupling between the brushes

and the peptide is specific: in the PNIPAM brushes is present an aldehyde

group, while the peptide has an amino-oxy group. The reaction between

these two functional groups is shown in Figure 3.20.

Figure 3.20: Aldehyde - amino-oxy reaction [91]
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3.6.1 Amino-oxy - aldehyde small molecule test

Amino-oxy - aldehyde small molecule test was used to analyse the coupling

between these two functional groups and estimate the concentration of com-

pounds, containing amino-oxy and aldehyde groups, to obtain the higher

coupling between them.

In this work, the small molecule test was carried out using the following

compounds containing the functional groups of interest:

• 4-Amyloxybenzaldehyde

• Carboxymethoxylamine

These were dissolved in PB buffer at pH=7 in different mole ratios:

• 1 : 1

• 1 : 2

• 2 : 1

• 1 : 4

• 4 : 1

and left to shake for 24 hours.

To verify the coupling, a dye that reacts in presence of aldehydes was

used. The name of this substance is 4-amino-3-hydrazino-5-mercapto-1,2,4-

-triazole, but it is usually called Purpald®, to give an indication of its

application. It turns purple when aldehydes are present. The scheme of the

reaction is shown in Figure 3.21.

Figure 3.21: Reaction between Purpald® and aldehydes [92]

The solution for the detection of the aldehydes was prepared dissolving

Purpald® in NaOH with a concentration of 5 mg/mL. Then, 10 µL of each

solution of different molar ratio was added to 500 µL of Purpald®/NaOH

solution. When the purple colour showed in the solutions, around 30 minutes

after the mixing, t he solutions were transferred on a 96-well plate and the

absorbance between 450 nm and 650 nm was measured with the plate reader

(BMG Labtech, CLARIOstar® High Performance Microplate Reader).
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3.6.2 Preparation of RGD peptide

The peptide Aoa7GRGDSP (sequence: NH2-O-CH2-CO-7-aminoheptanoic

acid-Gly-Arg-Gly-Asp-Ser-Pro-NH2) was synthesized on Rink Amide MBHA

resin (0.60 mmol/g) using Fmoc chemistry by a Syro I synthesizer (Multi-

syntech, Witten, Germany). The side chain protecting groups were: OtBu,

Asp; tBu, Ser; Pbf, Arg. The couplings were double for the first insertion,

then single (5 equivalents of Fmoc-amino acid, 5 eq. HBTU, 5 eq. HOBt and

10 eq. DIEA, for the last coupling 10 eq. of 2,4,6-Collidine was used instead

of DIEA). The peptide was deblocked from the resin and deprotected from

side chain protecting groups using the mixture 1,9 mL TFA, 0.05 mL TES,

0.05 mL H2O, for 1.5 h. The identity and homogeneity of crude peptide was

ascertained by mass and RP-HPLC analyses.

3.6.3 Addition of RGD peptide

The solution containing the peptide was prepared dissolving 0.2 mg/mL of

Aoa7GRGDSP peptide in PB buffer, at pH=7. Before the immersion of the

samples in this solution, all the PCL/PCLM films + PNIPAM brushes were

sterilize in ethanol 70% for 10 minutes and then dried, and the solution was

filtered using a 0.2 µm filter. These steps were performed in a cell culture

cabinet. Then, the samples were immersed in 600 µL of peptide solution

for a week. At the end, the samples were washed 3 times with filtered PB

buffer.

3.7 Cell seeding

The following surfaces were prepared:

• PCL, 1% PCLM, 10% PCLM, as controls

• (PCL, 1% PCLM, 10% PCLM) + PNIPAM brushes

• (PCL, 1% PCLM, 10% PCLM) + PNIPAM brushes + RGD peptide

For each time points, triplets of these samples were seeded with MG 63

osteosarcoma cells, at passage P 95. The sterilization of the samples and

the preparation of the well-plates were the same as described in section 3.2.2.

The only difference is that the samples were not incubated with the medium

α-MEM + Glutamax/10% FBS + 1% of Pen/Strep; 1 mL of this was added

to each sample immediately before the introduction of the cells. The area

of the film was A=1.76 cm2 and the cell density was 5000 cells/cm2. Cells

seeded on films were analysed at
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• Day 1

• Day 3

3.8 Biological characterization

After 1 day and 3 days, the seeded cells were fixed, stained with DAPI and

phalloidin 488 and then analysed. The procedures of all these steps were

already described in section 3.3.

3.8.1 Microscope images

Triplicates of the samples were imaged using a fluorescence microscope

(Nikon, Inverted Microscope Eclipse Ti-S). This time, each film was imaged

5 times, starting from the center of the sample and followed a clockwise

rotation. The images from the two channels were merged with ImageJ [80]

and a representative image is shown as result. The counting of the num-

ber of nuclei present in each image was performed using CellProfiler [81], in

particular the analysis module of identification of primary objects.

3.9 Optimization of introduction of brushes and

peptide

The last section of this work refers to the optimization of the following steps:

• Addition of the PNIPAM brushes

• Addition of the RGD peptide

These procedures were repeated with new films in presence of a catalyst, in

order to increase the rate of the reactions and to have more effectiveness of

the coupling between maleimide, brushes and peptide.

In addition, another percentage of PCL-maleimide was introduced: PCL

was mixed with

• 20% of PCLM

This higher percentage of maleimide was added to show greater differences

between PCLM samples.
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3.9.1 Optimization of addition of polymer brushes

PNIPAM for the brushes was prepared in the same way as described in

section 3.5.2. Then, 10 mg/mL of PNIPAM was dissolved in a solution of:

• PB buffer, pH=7

• TEA, a catalyst

The concentration of the catalyst was 1% of the volume of the final solution.

The samples were immersed in 600 µL of this solution overnight. After that,

the films were washed 3 times with PB buffer.

To test the coupling, the samples were analyzed using FT-IR and con-

tact angle. In addition, Alkoxyamine-PEG4-Biotin was used, following the

procedure of section 3.5.2.1. The only differences were the lenght of the

reaction and the prepared solution. The samples were immersed overnight

in 600 µL of a solution made of

• PB buffer, pH=7

• 0.2 mg/mL of Alkoxyamine-PEG4-Biotin

• 10 mM of m-phenylenediamine, a catalyst

3.9.2 Optimization of addition of peptide

In the same way, the solution for the peptide was made of

• PB buffer, pH=7

• 0.2 mg/mL of RGD peptide

• 10 mM of m-phenylenediamine, a catalyst

Then, the solution was filtered using a 0.2 µm filter and 600 µL of it were

added to the, already sterile, PCL/PCLM films + brushes. The samples

were immersed in the solution for 2 days, followed by 3 washes with PB

buffer.

3.9.3 Cell seeding

The following surfaces were prepared

• PCL, 1% PCLM, 10% PCLM, 20% PCLM as controls

• (PCL, 1% PCLM, 10% PCLM, 20% PCLM) + PNIPAM brushes
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• (PCL, 1% PCLM, 10% PCLM, 20% PCLM) + PNIPAM brushes +

RGD peptide

For each time point, triplets of these samples were seeded with MG 63

osteosarcoma cells, at passage P 97. The sterilization of the samples and

the preparation of the well-plates were the same as described in section 3.7.

The area of the film was A=1.76 cm2 and the cell density was 5000 cells/cm2.

Cells seeded on films were analyzed at

• Day 1

• Day 3

3.9.4 Biological characterization

After 1 day and 3 days, the seeded cells were fixed, stained with DAPI and

phalloidin 488 and then analyzed. The procedures of all these steps were

already described in section 3.3.

3.9.5 Microscope images

Triplicates of the samples were imaged using a fluorescence microscope

(Nikon, Inverted Microscope Eclipse Ti-S) and each film was imaged 5 times,

starting from the center of the sample and followed a clockwise rotation, as

reported for the previous experiment. The images from the two channels

were merged with ImageJ [80] and a representative image is shown as result.

The counting of the number of nuclei present in each image was performed

using CellProfiler [81], in particular the analysis module of identification of

primary objects.

3.9.6 Statistical analysis

The results of the counting are expressed as mean ± standard deviation

(SD) of the triplicates of films for each condition. If it was not possible to

obtain all the images from a film, the calculation of the mean was adjust

accordingly and taking into account the presence of less information. The

results were calculated in Excel. Statistics were performed using ANOVA

test in GraphPad Prism 7. Statistical significance between the modified

films and the respective controls was expressed as p-value (∗ p<0.05)



Chapter 4

Results and Discussion

In this chapter, the results and the discussions about the analysis, described

in the experimental section, will be presented. The principal outcomes of

the project are represented by the preparation of different surfaces and the

immobilization of different compounds on them. Furthermore, the seeding

of cells on these surfaces are shown through the use of biological staining,

followed by the counting of the number of cells present on the different films

and the comparison between them.

4.1 Aminolysed films

First modification of PCL surfaces was aminolysis. After that, the samples

that were analysed using FT-IR and the ninhydrin test were the following:

• PCL

• PCL-NH2 1h

• PCL-NH2 4h

Where PCL-NH2 indicates the samples after aminolysis, namely after the

introduction of amino groups, followed by the duration of the reaction.

4.1.1 FT-IR

First, the samples listed above were analysed with FT-IR. The spectra ob-

tained from the measurements are shown in Figure 4.1.

Beside the typical peaks of PCL, described in section 3.1.2.1, three ad-

ditional peaks are present in the spectra of aminolysed films:
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Figure 4.1: FT-IR spectrum of PCL/PCL-NH2 films

• at wavelength 3334 cm-1 attributable to N-H stretching

• at wavelength 1635 cm-1 attributable to C=O bending

• at wavelength 1560 cm-1 attributable to N-H bending [72]

The presence of these three additional peaks in the aminolysed samples

evidences the immobilization of the amino group on the surface [93, 72]. All

the aminolysed samples show the peaks, but the sample PCL-NH2 1h has a

higher signal in the IR regions of interest, showing that the increase of the

time of the aminolysis reaction does not necessarily lead to an increase of

the amino groups present on the surface.

4.1.2 Ninhydrin test

After the FT-IR measurements, the aminolysed samples were tested using

the ninhydrin, as explained in section 3.1.4.1. The result of the absorbance

of the samples is shown in Figure 4.2.

In literature [70, 35, 94, 95, 96], the absorbance of the aminolysed samples

is usually analysed at wavelength between 515 nm and 570 nm, while the

samples analysed in this work show shifted peaks, with a maximum around

492 nm. Furthermore, the absorbance values are very low, because, from a

visual inspection, the samples did not show a very strong purple colour. This

result may be due to the incomplete reaction of the ninhydrin with the amino

groups, showing the absorbance peaks in a different IR region. However, it

was possible to obtain a linear calibration curve at 492 nm, as shown in

Figure 3.9, and to calculate the number of NH2 groups on the surface: 1.96
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Figure 4.2: Absorbance of PCL-NH2 films after ninhyderin test

× 10-3 mol/L for the sample PCL-NH2 1h and 1.75 × 10-3 mol/L for the

sample PCL-NH2 4h. These values of the concentration of NH2 groups on

the surfaces are larger than an order of magnitude compared to the numbers

for the same values of absorbance, but measured at different wavelength,

found in literature [70]. Even if the reaction of the ninhydrin with the

surfaces did not work completely, the absorbance of the PCL-NH2 1h is

higher compared to the absorbance of the sample PCL-NH2 4h, according

to the FT-IR results on the same samples. The value of amino groups was

expected to reach a maximum around 1h of exposure to 1,6-hexanediamine,

as reported in literature [70, 94, 95]. The reaction with carboxyl of free

amino on terminal chain or the degradation of superficial layer may cause

the decreasing of amino groups for longer period of aminolysis [70].

After the measurements and tests on the samples, all of them were seeded

with MG 63 osteosarcoma cells. The use of the cells allows testing if the

aminolysis reaction, with the introduction of polar groups on the surface

[69], creates a more appropriate environment for the cells, compared to only

PCL surface.

4.2 Biological characterization of aminolysed films

On PCL and PCL-NH2 surfaces, MG 63 osteosarcoma cells were seeded.

The cells on the films were fixed after 1 day and 7 days, stained and then

analysed.

The images obtained with the microscope are shown in Figure 4.3 and

represent a portion of PCL, PCL-NH2 1h and PCL-NH2 4h surfaces after
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1 day. The results of counting of nuclei is presented with a graph in Fig-

ure 4.5(a).

Figure 4.3: Day 1: Phalloidin 488 and DAPI staining of cells on PCL, PCL-NH2

1h and PCL-NH2 4h surfaces

Figure 4.4: Day 7: Phalloidin 488 and DAPI staining of cells on PCL, PCL-NH2

1h and PCL-NH2 4h surfaces

From the analysis of the images and the counting, it is possible to notice

that the number of cells in the PCL film is lower respect to the PCL-NH2

samples, whereas there is not an evident difference between the films modi-

fied with the aminolysis reaction.

In Figure 4.4, the images of cells on the surfaces after 7 days. In these

samples, the number of cells is high, both in PCL and in PCL-NH2 surfaces,

making difficult to obtain a reliable result from the count of cells. Taking

into account this observation, the counting reveals that the number of cells

on the PCL-NH2 films is higher compared to the PCL film, but also in this

case the difference between the time points of the PCL-NH2 films is not

significant, as shown in the graph in Figure 4.5(b).
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(a) (b)

Figure 4.5: Number of nuclei

The high presence of cells in the PCL films can be due to the incubation

with the medium of the surface, before the introduction of the cells. The

components of the medium, in particular proteins, can be adsorbed on the

surface and attract the cells to adhere. In addition, there is no other space

where the cells can go, except the surface. The cells cannot go through the

sample.

In conclusion, the presence of NH2 groups on the surface increases the

adhesion of the cells compared to the PCL sample, but the different length

in time of the reaction does not show a noticeable difference. From the

results of FT-IR and cell seeding, the only sample of PCL-NH2 1h can be

used for further analysis, without needing of samples with a longer time of

the aminolysis reaction.

4.3 PCLM surfaces

The surfaces for the functionalization with brushes and with RGD peptide

were prepared by mixing PCL with PCL-maleimide in different percentages:

• 1% PCLM

• 10% PCLM

These surface and PCL films were tested with BSA-FITC in order to see

if maleimide is present on the surface of the films. The fluorescence of the

BSA-FITC on the surfaces was tested with the plate reader and in order to

show the emission at 519 nm of BSA-FITC, the surface were imaged with

the microscope. The obtained images were shown in the Figure 4.6
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Figure 4.6: Fluorescence images of PCL, 1% PCLM and 10% PCLM

The first row represents the samples immersed in PB buffer and the second

row shows the samples after the immersion in a solution of BSA-FITC.

From left to right, the samples are PCL, 1% PCLM and 10% PCLM. In

the following Table 4.1, the values of fluorescence measured with the plate

reader.

Table 4.1: Fluorescence values of PCL, 1% PCLM and 10% PCLM

PCL 1% PCLM 10% PCLM

555 540 955

8373 13143 21201

From both results, the samples that were immersed in the solution BSA-

FITC/PB buffer show the fluorescence signal, whereas the control samples

immersed in PB buffer do not show any fluorescence. The images are con-

firmed by the values in Table 4.1. The results increase with the introduction

and the increment of the percentage of PCL-maleimide. The fluorescence

is present also in the PCL sample, in which there is no maleimide. This

can be due to the adsorption of the BSA protein on the surface, during

the immersion in the PB buffer, but the value is the lowest compared to the

samples in which the maleimide is present. Therefore, the fluorescence of the

BSA-FITC confirms the presence of the maleimide in the PCLM surfaces,

showing a higher value for 10% PCLM.
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4.4 PNIPAM brushes

After testing the presence of the maleimide on the surfaces, PNIPAM brushes

were added on the following samples:

• PCL

• 1% PCLM

• 10% PCLM

These were analysed with FT-IR, contact angle and using Alkoxyamine-

PEG4-Biotin.

4.4.1 FT-IR

The FT-IR spectrum of the PNIPAM Mn=23000 g/mol, with its structure,

is shown in Figure 4.7:

Figure 4.7: FT-IR spectrum of PNIPAM

The principal peaks of PNIPAM are the following:

• N-H stretching in the IR region between 3500-3000 cm-1

• C=O stretching at wavelength 1647 of cm-1

• C-N stretching and N-H bending at wavelength of 1541 cm-1 [97]

The surfaces were analysed with FT-IR after the addition of the PNI-

PAM brushes, obtaining the spectra shown in Figure 4.8.

Compared to the spectrum of only PCL, in Figure 3.3, all the samples

+ brushes show additional peaks in two IR regions, between 3600-3000 cm-1



56 Results and Discussion

Figure 4.8: FT-IR spectra of PCL, 1% PCLM and 10% PCLM + PNIPAM

brushes

and between 1700-1500 cm-1. The changing in the spectra in these regions

is evidenced in all the samples, included PCL without the maleimide on the

surface. The different profile of the spectrum of PCL can be due to the

absorption of PNIPAM on the surface, during the immersion in the solution

of brushes in PB buffer, carried out at pH=7. In addition, all the spectra

seem to follow the same trend, with minimum differences even between the

samples containing PCL-maleimide. From these results, it is not possible to

state to which surface the PNIPAM brushes were bound and the experiment

was repeated afterwards with the introduction of a catalyst in the solution.

4.5 Biological characterization of PCLM films

After the introduction of the brushes, the samples were immersed in the

solution of RGD peptide for a week. In order to show the influence of the

different components of the surfaces on the cells, the following samples were

seeded with MG 63 osteosarcoma cells:

• Neat surfaces: PCL, 1% PCLM, 10% PCLM

• (PCL, 1% PCLM, 10% PCLM) + PNIPAM brushes

• (PCL, 1% PCLM, 10% PCLM) + PNIPAM brushes + RGD peptide

Then, the cells were fixed and analysed after 1 day and 3 days. The samples

were not analysed after 7 days, as for the aminolysed films, because after 7

days, there is a great amount of cells on the surface and this rapid growth

does not allow distinguishing the influence of the modification processes on
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the films. For this reason, day 3 was chosen as second time point for the

analysis.

4.5.1 Day 1

The images of the stained cells are shown in Figure 4.9 and they indicate a

portion of each film, representative for the all surface.

Figure 4.9: Day 1: Phalloidin 488 and DAPI staining of cells on PCL, 1% PCLM

and 10% PCLM, + PNIPAM brushes and + PNIPAM bruhes + RGD peptide

surfaces

From left to right, there are the different surfaces, while from the top to the

bottom, the images represents the cells in contact with different modifica-
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tions of the surface.

In addition, the nuclei of the cells were counted with CellProfiler and

the result is shown in the graphs in Figure 4.10.

Figure 4.10: Day 1: Number of nuclei for the different conditions

Compared to the control samples, the number of cells increases with the

addition of RGD peptide, after 1 day, in the samples with a percentage of

maleimide present on the surface. The PCLM samples show an increase of

the number of cells after the introduction of PNIPAM brushes; the num-

ber is maintained constant after the introduction of RGD peptide for 1% of

PCLM, while there is a significant increase for the sample of 10% PCLM,

compared to the sample with PNIPAM brushes. The number of cells on PCL

surface does not show significant changes during the experiment. Lastly, the

maleimide present on the surface decreases significantly the number of cells

on the PCLM surfaces compared to the PCL. In this way, it is possible to

show the influence on cell adhesion of the different components used in the

samples: maleimide, PNIPAM brushes and RGD peptide and compared it

with the respective controls.

4.5.2 Day 3

The same seeded samples were analysed after 3 days and the images of

DAPI and phalloidin staining of the cells are shown in Figure 4.11. The

arrangement of the images is the same of Figure 4.9.

The number of cells on the samples is counted using CellProfiler and

the graphs relating to the number of nuclei on the surfaces after 3 days are

shown in Figure 4.12.
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Figure 4.11: Day 3: Phalloidin 488 and DAPI staining of cells on PCL, 1%

PCLM and 10% PCLM, + PNIPAM brushes and + PNIPAM bruhes + RGD

peptide surfaces

The number of cells on the neat surfaces and after the introduction of PNI-

PAM brushes follows the trend shown after 1 day, while the number of the

cells on the PCLM surfaces after the addition of the RGD peptide is doubled

compared with PCL, showing a greater difference between the PCL and the

PCLM samples. In particular, a significant increase is shown for the 10%

PCLM sample compared to the control and with PNIPAM brushes samples.
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Figure 4.12: Day 3: Number of nuclei for the different conditions

4.6 Optimization of introduction of brushes and

peptide

After the analysis described in the previous section, some steps of the pro-

cedure were optimized. In particular, the addition of the PNIPAM brushes

and the introduction of the RGD peptide were performed using two dif-

ferent catalysts, TEA and m-phenylenediamine respectively. This allowed

reducing the time of immersion in the solutions of brushes and peptide, and

making specific the coupling between the different components added to the

surfaces.

4.6.1 Addition of PNIPAM brushes

First, another percentage of PCL-maleimide was introduced, 20% PCLM;

therefore, the PNIPAM brushes were added to the following samples:

• PCL

• 1% PCLM

• 10% PCLM

• 20% PCLM

Then, these samples were analysed with FT-IR and, to test the amino-

oxy - aldehyde reaction in presence of the catalyst m-phenylenediamine,

Alkoxyamine-PEG4-Biotin was used.
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4.6.1.1 FT-IR

The spectra of the samples after the addition of the PNIPAM brushes are

shown in Figure 4.13

Figure 4.13: FT-IR spectra of PCL, 1% PCLM, 10% PCLM and 20% PCLM +

PNIPAM brushes

In this case, the spectrum of the PCL does not change after the immersion

in the solution with the polymer brushes, showing only the typical peaks of

the material. In the spectra of the PCLM surfaces, increasing peaks appear

in two different regions:

• 3700-3000 cm-1 region, attributable to N-H stretching

• 1700-1500 cm-1 region, in which two peaks are present, attributable to

C=O stretching, C-N stretching and N-H bending

The peaks increase with the increasing of the percentage of PLC-maleimide

and they are more evident for the 20% of PCLM, in particular in the second

IR region. The two peaks, belonging to the IR region between 1700-1500

cm-1, represent the amide peaks and confirm the presence of the PNIPAM

on the surface. Gunnewiek et al. also stated the reduction of the ester peaks

of the PCL, that in these results was not changing, while the presence of

the peak in 3700-3000 cm-1 region was not mentioned [98]. These spectra

are obtained after the immersion of the samples in a solution of PNIPAM

brushes, with the addition of the catalyst TEA. The presence of this catalyst

allows the specific coupling of the brushes with the maleimide on the surface

and it prevents the adsorption of the brushes on the PCL surface, which does

not show different peaks on the spectrum.
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4.6.1.2 Alkoxyamine-PEG4-Biotin

Before the introduction of the RGD peptide, the amino-oxy - aldehyde reac-

tion was tested using the specific dye Alkoxyamine-PEG4-Biotin, in presence

of m-phenylenediamine. The dye was added to the samples with PNIPAM

brushes overnight and then analysed using the microscope and measuring

the fluorescence with the plate reader.

The fluorescence images of the samples are shown Figure 4.15, compared

to the result images of the same dye without the use of the catalyst, Fig-

ure 4.14. The images are followed by the measured values of fluorescence in

Table 4.2

Figure 4.14: Fluorescence images of PCL, 1% PCLM and 10% PCLM + PNIPAM,

reaction for 24h

Figure 4.15: Fluorescence images of PCL, 1% PCLM, 10% PCLM and 20% PCLM

+ PNIPAM, reaction overnight

The images of Figure 4.15 represent the samples with PNIPAM brushes, in

which the reaction between the functional groups of the brushes and the

dye was performed overnight: it is possible to notice the increasing of blue

fluorescence in the samples with increasing percentage of PCL-maleimide. In

addition, the PCL samples shows the lowest value of fluorescence in presence

of the catalyst. Conversely, the images in Figure 4.14 are the fluorescence

results of the samples in which the reaction was performed without the

catalyst and for longer time, 24 hours. The values of fluorescence, obtained

in this case, are very similar between the samples and lower compared to
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Table 4.2: Values of fluorescence of PCL, 1% PCLM, 10% PCLM and 20% PCLM

+ PNIPAM

(a)

PCL 1% PCLM 10% PCLM

6447 8677 7175

(b)

PCL 1% PCLM 10% PCLM 20% PCLM

13063 17075 18553 22759

the values of Table 4.2(b), making difficult interpreting the results of the

reaction.

From these results, it is evident that the presence of the catalyst in-

creases the time of the reaction between the aldehyde group on the PNIPAM

brushes and the amino-oxy group present in the Alkoxyamine-PEG4-Biotin.

The efficiency of m-phenylenediamine in accelerating the reaction under

physiological conditions has been reported in literature [99]; in addition,

the concentration of m-phenylenediamine can be higher compared to other

catalysts, due to its superior solubility limit at pH=7 [100].

Testing the samples using Alkoxyamine-PEG4-Biotin allows predicting the

link between the PNIPAM brushes and the RGD peptide, containing an

amino-oxy group. For further investigations of the coupling between the

brushes and the peptide, a small molecule test with compounds containing

the two functional groups can be performed.

After this test, RGD peptide was added to the samples, to which PNI-

PAM brushes were added in presence of TEA, in a solution using the same

catalyst employed with the biotin dye. The reaction was performed for two

days, followed by the biological characterization of the samples.

4.7 Biological characterization

Therefore, the procedure of cell seeding and staining was repeated with the

following samples:

• Neat surfaces: PCL, 1% PCLM, 10% PCLM, 20% PCLM

• (PCL, 1% PCLM, 10% PCLM, 20% PCLM) + PNIPAM brushes

• (PCL, 1% PCLM, 10% PCLM, 20% PCLM) + PNIPAM brushes +

RGD peptide
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The cells seeded on these samples were fixed, stained and analysed after 1

day and 3 days.

4.7.1 Day 1

The images related to DAPI and phalloidin 488 staining of MG 63 on the

different samples after 1 day are shown in Figure 4.16. From left to right,

there are the different surfaces, from the top to the bottom, the different

modifications of the surface are represented. In addition, the nuclei of the

cells were counted and the result is shown in the graphs in Figure 4.17.

Figure 4.16: Day 1: Phalloidin 488 and DAPI staining of cells on PCL, 1% PCLM,

10% PCLM and 20% PCLM, + PNIPAM brushes and + PNIPAM bruhes + RGD

peptide surfaces

The results obtained from the counting of nuclei present in the samples can

be compared with the numbers of previous experiments, without the use of

catalysts. In this case, the neat surfaces shows similar number of cells after 1

day, even in the samples with the highest percentage of the PCL-maleimide.

The same trend is followed for the samples after the introduction of the PNI-

PAM brushes. The number of cells increases with the introduction of the
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Figure 4.17: Day 1: Number of nuclei for the different conditions

RGD peptide, showing differences between the different samples of PCLM.

Compared to previous results (Figure 4.10), the results of these experiment

show similar results between the samples, with the addition of the samples

with higher percentage of maleimide, that shows a significant increase in

presence of RGD peptide compared to control samples. The presence of

cells on the surface increases with the increasing of the percentage of the

PCL-maleimide, to which the PNIPAM brushes and consequently the RGD

peptide are coupled. A greater percentage of maleimide on the surface allow

coupling a higher number of PNIPAM brushes, to which more RGD peptide

can link. Furthermore, the number of cells on PCL surface remains around

the same value during the all experiment.

4.7.2 Day 3

After 3 days, the images of the stained cells are shown in Figure 4.18, with

the same arrangement of the images of Figure 4.16, followed by the graphs

obtained from the counting with CellProfiler in Figure 4.19.

In this experiment, the number of cells are similar between the samples

of neat surfaces and after the addition of the PNIPAM brushes; there is no

significant differences between the samples and conditions. The number of

nuclei of PCL surface remains almost constant between the different condi-

tions, as shown for day 1. The PCLM samples show a great increase of the

cells on the surface with the introduction of the RGD peptide. The value of

counted nuclei is double for the 1% PCLM, tripled for the 10% PCLM and

it is almost quadrupled for the 20% PCLM, compared to the value for the
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neat surfaces and with the PNIPAM brushes. The raise of the cell adhesion

on surfaces increases significantly for 10% and 20% of PCL-maleimide. The

same trend, shown after 1 day, results more evident after 3 days.

The influence of RGD peptide on cell adhesion is widely reported in

literature [50, 51, 101], showing the increasing of the number of cells on

different types of surface, functionalized with this bioactive peptide. The

cell activity of MG 63 osteosarcoma cells benefits from the immobilization of

RGD peptide on a polymer surface as well as on a metal surface [102, 103].

Figure 4.18: Day 3: Phalloidin 488 and DAPI staining of cells on PCL, 1% PCLM,

10% PCLM and 20% PCLM, + PNIPAM brushes and + PNIPAM bruhes + RGD

peptide surfaces

From these last results, the presence of RGD peptide increases the cell adhe-

sion on the different PCLM surfaces, increasing the number of cells with the

increase of the percentage of PCL-maleimide used to prepare the samples.

The usage of catalysts for the addition of the brushes and the peptide al-

lows obtaining a quicker reaction between the different components [99], as

reported in section 4.6.1.2 with the use of Alkoxyamine-PEG4-Biotin, and

furthermore, a specific coupling between them, as shown in FT-IR spectra

in Figure 4.13, in which PCL did not show addition peaks to its spectrum.
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Figure 4.19: Day 3: Number of nuclei for the different conditions

In this way, a higher percentage of maleimide on the surfaces can link to

an higher number or PNIPAM brushes, which accordingly can couple to a

bigger number of RGD peptide, bringing to an increase of the cell adhesion

on the surface, proved by the images of the staining and the counting of the

nuclei.
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Conclusions

In this thesis project, the main focus is the functionalization of PCL films

with RGD peptide, through the specific coupling with polymer brushes,

made of PNIPAM. The first step to achieve this goal was the preparation

and test of the surfaces, starting from pure PCL to the introduction of

maleimide.

The first modification of the surface via aminolysis showed increasing

cell adhesion to the surface, as known from literature. Furthermore, it was

determined the optimal duration of the reaction, 1 hour, to obtain higher

signal from the reaction between the polyester and the amino groups. More

research is needed to understand the outcome obtained from the ninhydrin

assay and why it differs from the results shown in literature papers.

After this first step, commercial available PCL of Mn=45,000 was mixed

using the extruder with synthetized PCL-maleimide and afterwards, films

were made out of it. These samples were obtaining using the hot press,

which is a method similar to printing. In addition, after the mixing, the

presence of the maleimide on the surfaces was confirmed by the analysis

with BSA-FITC. These information can be useful for further applications of

this mixed material.

The last and most important step of this work is represented by the

introduction of the PNIPAM brushes on the surface and the succeeding

functionalization with the RGD peptide. After the first trial, the samples

seeded with MG 63 cells showed an increasing adhesion on the surface in

presence of PNIPAM brushes functionalized with RGD peptide, although

the surfaces with different percentage of maleimide showed similar results.

In this case, the positive effect on the RGD peptide on the cells was shown.
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To improve the functionalization of the surfaces, two catalysts were in-

troduced. In this way, it was possible to optimize the introduction of the

PNIPAM brushes, as shown in the FT-IR spectra, with increasing signal

as percentages of PCL-maleimide increase. This result shows the success-

ful introduction of the PNIPAM brushes on the different surfaces, except

on the PCL surface, where there is no maleimide available on the surface.

In addition, the presence of TEA catalyst allowed reducing the time of the

reaction between the maleimide and the brushes, making the reaction faster

and avoiding the absorption of the brushes on the surface.

Moreover, in presence of m-phenylenediamine better results were shown

for the reaction between the aldehyde group on the brushes and the amino-

oxy group present on the peptide. Also in this case, the use of the catalyst

increases the time of the reaction, avoiding not only the absorption of the

peptide on the surface, but also the possible damage of the peptide for

longer reaction. The test using the Alkoxyamine-PEG4-Biotin showed the

successful coupling between the functional group of the PNIPAM brushes

and the RGD peptide.

To achieve the building of this surface functionalization of PCL, maleimide,

PNIPAM brushes and RGD peptide, the possibility of introducing pre-

cise functional groups on these compounds was fundamental. The use of

the specific RAFT agent for the PNIPAM brushes and the preparation of

the peptide with an amino-oxy group allowed the specific coupling between

maleimide and brushes, and between the brushes and the RGD peptide.

Finally, the samples were seeded with MG63 cells and the increase of the

cell adhesion was showed in samples with PNIPAM brushes functionalized

with RGD peptide; this result was better shown after 3 days of cell culture

on the surfaces.

In conclusion, the successful outcomes of this thesis work can be sum-

marized as follows:

• Preparation of PCL films with maleimide on the surface

• Preparation of PNIPAM brushes and RGD peptide with relevant func-

tional groups

• Introduction of PNIPAM brushes on PCL-maleimide surfaces

• Functionalization of brushes with RGD peptide via aldehyde-amino-

oxy reaction

• Increase of cell adhesion in response to RGD peptide
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This thesis work is only the first step in the functionalization of PCL using

brushes and RGD peptide. Further researches and tests on the reactions

between the different compounds and on the conditions of the reactions

have to be performed. Various types of polymer brushes and peptides can

be tested to achieve different outcomes. In addition, the cells used can be

changed in favour of human mesenchymal stromal cells (hMSCs) for future

studies of proliferation, adhesion and differentiation. All the samples in

this project are represented 2D surfaces: after the studies on these samples,

future works are needed for the transition to 3D scaffolds.





Appendix A

Abbreviations

AIBN = Azobisisobutyronitrile

Aoa = amino-oxy-acetic acid

BSA - FITC = Albumin-fluorescein isothiocyanate conjugate

BSA = Bovine serum albumin

DAPI = 4’,6-Diamidino-2-phenylindole dihydrochloride

DMF = N,N-dimethylformamide

DMSO = Dimethyl sulfoxide

EDTA = Ethylenediaminetetraacetic acid

FBS = Fetal bovine serum

LiBr = Lithium bromide

MEM α-= Minimum essential medium α

NaOH = Sodium hydroxide

NIPAM = N-Isopropylacrylamide

PBS = Phosphate buffered saline

PCL = Polycaprolactone

PEG = Polyethylene glycol

PFA = Paraformaldehyde

PNIPAM = Poly(N-isopropylacrylamide)

PTFE = Polytetrafluoroethylene

TCEP = Tris(2-carboxyethyl)phosphine hydrochloride)

TEA = Triethylamine
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