
UNIVERSITÀ DEGLI STUDI DI PADOVA

Dipartimento di Fisica e Astronomia “Galileo Galilei”

Corso di Laurea in Fisica

Tesi di Laurea

Accoppiamento tra le soluzioni alle equazioni di Einstein

di buco nero e quelle cosmologiche

Coupling between black hole and cosmological solutions

to Einstein’s equations

Relatore Laureando

Prof. Paolo Rossi Tommaso Corbetta

Anno Accademico 2022/2023





Abstract

Italiano
In relatività generale i buchi neri sono descritti attraverso soluzioni nel vuoto simmetriche rispetto a
un’asse alle equazioni di Einstein. Poichè sono soluzioni nel vuoto, esse tendono a uno spaziotempo di
Minkowski piatto all’infinito delle coordinate spaziali. Il modello cosmologico attualmente accettato
è però una metrica di Robertson-Walker, che può essere solo spazialmente piatto e, in particolare,
prevede che l’universo espanda isotropicamente e omogeneamente. Questa tesi investiga la generaliz-
zazione di McVittie del più semplice, non rotante e statico buco nero, descritto attraverso la soluzione
di Schwarzschild alle equazioni di Einstein. Questa nuova soluzione tende correttamente alla soluzione
cosmologica di Robertson-Walker all’infinito spaziale. La principale differenza tra tale generalizzazione
e l’originale buco nero di Schwarzschild è che la sua massa non è più una costante nel tempo ed è difatti
accoppiata al fattore di scala cosmologico. In particolare la massa di un buco nero di McVittie cresce
con l’espansione dell’universo e questo effetto compensa esattamente la corrispondente rarefazione di
una distribuzione omogenea di buchi neri. Il bilanciamento tra questi due effetti può essere visto come
una possibile origine della costante cosmologica, interpretata come una componente della densità di
energia che non dipende dal fattore di scala dell’universo. Recenti osservazioni mostrano delle consis-
tenze tre la masse misurate dei buchi neri, costante cosmologica e la predizione di McVittie.

English
In general relativity black holes are described as vacuum axisymmetric solutions to Einstein’s equa-
tions. Since they are vacuum solutions, they tend to flat Minkowski spacetime at spatial infinity.
The presently accepted relativistic cosmological model, however, is a Robertson-Walker metric that
may only be spatially flat and, in particular, the universe expands, isotropically and homogeneously.
This thesis investigates McVittie’s generalization of the simplest, non-rotating, static black hole, de-
scribed by the Schwarzschild solution to Einstein’s equation. This new solution correctly tends to the
Robertson-Walker cosmological solution at spatial infinity. The main difference between this gener-
alization and the original Schwarzschild black hole is that its mass is not constant in time anymore
and is, in fact, coupled with the cosmological scale factor. In particular the mass of a McVittie black
hole grows as the universe expands and this effect exactly compensates the corresponding rarefaction
of a spatially homogeneous distribution of black holes. The balance between these two effects can be
seen as one possible origin of the cosmological constant seen as a component of the energy density
that does not depends on the scale factor of the universe. Recent observations show some agreements
between the measured mass of black holes, cosmological constant and the McVittie predicition.
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CHAPTER

ONE

INTRODUCTION

General relativity is today the main theory of interest to describe the physical nature of our universe
in astronomical scales. In particular, quantum theory is not needed when dealing with a model of the
universe here-now, since only for hot, dense matter quantum effects are dominant. One intuitively
believes that these effects become dominant when the scalar curvature S is of the same magnitude
as the inverse of the Planck constant h−1 [18]. Such conditions are those of the first instances of
the universe. We shall not deal with it in this thesis. All the following results and equations will
be treated in natural units such that c=8πG=1. Einstein’s field equations of general relativity are
tensorial relations that can be written as follows [2]

Gµν = Tµν − Λgµν (1.0.1)

or equivalently

Ricµν = (Tµν −
1

2
Tgµν) + Λgµν (1.0.2)

Where Gµν = Ricµν −
1

2
Rgµν is the Einstein tensor and Tµν is the stress energy tensor.

Two kinds of solutions to Einstein’s equations are used in astronomy to describe different phenomena:

i) Local solutions are spacetimes whose coordinates are the ones of an observer near a mass source.
The most important example of local solutions is the Schwarzchild metric which describes
the gravitational field of spherically symmetric vacuum space-times. The Schwarzchild solution
is used to describe the motion of the planets around the sun and non-rotating black holes. The
latter is not that common in the universe since a non-homogeneous distribution of matter in
a collapsing star generates a rotating black hole which is described by the axisymmetric Kerr
solutions.

ii) Cosmological solutions describe the whole universe and its history. Most of these solutions start
from a reasonable principle- the Copernican principle - which implies that the universe, on its
largest scale, looks the same everywhere. As a result, spatial isotropy and spatial homogeneity
are assumed. These metrics are written in ”comoving coordinates” which are used when the
system of nebulae is taken as the basis reference. The most general solution for isotropic,
homogeneous cosmological metrics is the Robertson-Walker metric.

Despite local black hole solutions have been one of the main topics of general relativity, they have
been often treated isolated from the rest of the universe. On the other hand, cosmological black holes
(CBHs) are surrounded by the matter of the universe, living in a cosmological spacetime [20]. This
is a more realistic concept that correlates local solutions to the cosmological one. They must thus
be compatible. In particular, the local solution at spatial infinity must reproduce the cosmological
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CHAPTER 1. INTRODUCTION

one. However, the curvature of a black hole solution such as the Schwarzschild solution and the Kerr
solution is null approaching spatial infinity, while the cosmological solution of the general Robertson-
Walker class might only be spatially flat and not globally flat. The Robertson-Walker metric is the
one that reproduces a spatially isotropic and homogeneous space which is modulated by a scale factor
a(t). The spatial curvature of this metric is modeled by an adjustable parameter k, and cosmologists
tend to agree to the fact that a perturbed Robertson-Walker metric is the best description of the
actual universe, at least here-now. The case k=0 is the flat one and can be called simple cosmological
spacetime. Einstein-de Sitter metric belongs to a subclass of Robertson-Walker flat metrics of vacuum
solutions, where the cosmological constant Λ is carrying a kind of vacuum energy (dark energy) that
allows the vacuum spacetime to expand. Robertson-Walker metrics which describe universes filled
with a perfect fluid obey a class of equations called Friedmann equations. These equations rule the
evolution of the universe, and in particular the evolution of the scale factor. Spacetimes that obey to
these equations are called Friedmann-Robertson-Walker (FRW) universes. The present day accepted
model is a perturbed flat Robertson Walker solution called Λ-CDM model, that includes multiple
density parameters to describe dark matter, dark energy and radiation. The presence of dark energy
is a need to describe an accelerating universe, in accordance with the latest observations. However,
the source of dark energy is still a matter of debate and black holes themselves might represent the
main source.
Some solutions to the incompatibility issue have been proposed. The Einstein-Strauss model ”pasts” a
vacuum sphere of arbitrary radius representing the Schwarzschild solution in an expanding Friedmann
universe [19]. It has also been called, as the intuitive picture of spacetime suggests, a ”Swiss-cheese
model”. The result is that the condition of asymptotic flatness is relaxed. Another similar attempt
by Vaidya was made to represent the model with a superposition of the Kerr solution with the met-
ric of the Einstein universe [21]. The result is the Vaidya-Einstein-Schwarzschild (VES) spacetime.
Furthermore, a time-dependent solution for the Schwarzschild black hole living in a cosmological space-
time was proposed by Sultana and Dyer [20]. Nevertheless, the solution investigated by this thesis
is the one discussed by McVittie, the first of its kind, which represents a ”cosmological” analogue
of the Schwarzschild metric, describing a particle surrounded by a perfect fluid. McVittie expresses
the metric in terms of ”cosmical coordinates”, compatible at infinity with the RW metric, differing
only in terms of negligible contributes [12]. The cosmical coordinates reduce to the comoving FRW
coordinates, thus they represent a particular reference frame of the galaxies composing the universe.
However, a causal structure analysis of the surfaces of interests of the McVittie metric shows that
only a restricted subclass of solutions can represent BHs. Moreover, some further results regarding
the McVittie Black holes have been treated by Nolan (1993) who constructed a non-singular interior
for this solution. Faraoni & Jacques (2007) treated dynamical phenomena of this kind of black holes
resulting in effects including a comoving horizon.
Since the Schwarzschild solution is the ideal one of a non-rotating black hole, a generalization of the
Kerr black hole of the same kind is needed. However, no analytical solution has been found at the
present day. Local Kerr solutions describe with excellent results only black holes in timescales from
millisecond to hours, and spatial scales up to milliparsecs. When the scales become cosmological, the
absence of a coupling with the global solution leads to inconsistencies. A BH solution that satisfies
observational constraints at small and large scales simultaneously has yet to be found. However, a
more general relation between relativistic material and the expansion of the universe was found by
Croker & Weiner (2019). The consequences of this kind of coupling concerning Kerr BHs are dealt
in [7]. The latter article investigates such effect in a new light, giving experimental results and con-
clusions about the contributions of black holes as a dark energy species, stating that the late-time
accelerating expansion of the universe is driven by these kind black holes interiors. This thesis aims
to give a first introduction of local and cosmological solutions in general relativity, to investigate the
McVittie computations and physical implications, and to discuss the new conclusions about the origin
of dark energy made by Farrah et al. (2023).
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CHAPTER

TWO

EXACT SOLUTIONS

The following results, if not differently specificated, are taken from [18] and treated and discussed in
the related mathematical formalism.

2.1 The Schwarzchild black hole

Assume (S2, h, ξ) to be the unit 2-sphere space-time, where h is the metric associated with it and ξ
the volume element. Let µ ∈ (0,∞) 1. Define A ⊂ R2 by A = (u1)−1[(0, 2m)∪ (2m,∞)]. M = S2×A

is then the manifold of interest which is the Cartesian product between a 2-sphere (where the angular
coordinates shall live) and a rectangle (where the radial and time coordinates shall live2). Let P :
M −→ S2 and Q :M −→ A be the natural projections. Now define r = u1 ◦Q and t = u2 ◦Q.

Definition 2.1. The Schwarzchild metric is a Lorentzian metric 3 g on M defined by [18, p. 30]

g =

(︃
1− 2µ

r

)︃−1

dr2 + r2P ∗h−
(︃
1− 2µ

r

)︃
dt2 (2.1.1)

which can be explicated by

g =

(︃
1− 2µ

r

)︃−1

dr2 + r2dΩ2 −
(︃
1− 2µ

r

)︃
dt2 (2.1.2)

where dΩ2 = dθ2 + sin2(θ)dϕ2.
It is clear how the latter metric reduces to a flat Minkowski metric as r →∞ i.e. infinitely away from
the source. The Schwarzschild space-time is composed of two connected components:

i) (N, g|N ) where N = r−1(2µ,∞) is the normal Schwarzschild space-time of active mass m̄ = 8πµ.
This space-time is sufficient to describe stars whose radius is smaller than 2µ. In fact, the
Schwarzschild solution is a vacuum solution and so it wouldn’t describe the interior of the star

anyway. g|N is a Lorentzian metric with
∂

∂t

⃓⃓⃓⃓
N

timelike while r is a kind of radius.

ii) (B, g|B) where B = r−1(0, 2µ) is the Schwarzschild black hole of active mass m. A star of
active mass at least twice as big as the one of the sun, which runs out of fuel, starts collapsing

1The mass of the black hole is actually not defined a priori. It is a constant of the metric which can be linked to the
mass through the weak field limit.

2It may be misleading to name the first coordinate ”time” since in one of the two connected components (the black
hole component) of A it is not a time at all. In fact, it is neither spacelike nor timelike.

3A metric with signature=2.
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2.2. REFERENCE FRAMES CHAPTER 2. EXACT SOLUTIONS

inexorably because of the gravitation field of its own mass. The result is a black hole, a body
with a density beyond the current scope of physics. No signal can escape from it and the only
trace that the black hole leaves is its gravitational influence on the rest of the universe. In this

region
∂

∂r

⃓⃓⃓⃓
B

is timelike so that −dr|B is a kind of time. Every timelike and null geodesic must

go in the direction of the black hole heading to the singularity of infinite curvature.

We stated before that the limit r →∞ brings the metric to a flat Minkowski one. A formal way to state
that the latter limit corresponds to approaching spatial infinity is the following. Define f : U → R
where U = N ∪ B and f = RijklRijkl which measures the overall magnitude of the curvature. An
observer γ : (a, b)→M is said to escape to infinity iff limu→bfγu = 0.

Proposition 2.1. f = 144
µ2

r6

Proof. Omitted.

The Schwarzschild metric is the unique spherically symmetric vacuum solution (thus Ricci flat) as
stated by Birkhoff’s theorem [2]. The result is a static metric. Following are reported some
definitions to point out what the latter means.

2.2 Reference frames

Definition 2.2. Let (M,g) be a spacetime. An observer in M is a future-pointing timelike curve
γ : ε→M such that | γ∗ |= 1.

Normalization is imposed for convenience.
An instantaneous observer is an ordered pair (z,Z), where z ∈ M and Z is a future-pointing timelike
unit vector in Mz

Definition 2.3. A reference frame Q on a space-time M is a vector field each of whose integral
curves is an observer. Q is a geodesics reference frame iff ∇QQ = 0.

In other words a vector field Q is a reference frame iff g(Q,Q)=-1 and Q is future pointing. Now,
let ω be the 1-form equivalent to Q (i.e. ω(·) = g(Q, ·)). Let γ : ε → M be an observer in Q.
Then (γ∗ω)(d/du) = ω(γ∗) = g(Q, γ∗) = g(γ∗, γ∗) = −1 since γ must be future pointing. Thus, it is
immediate that du = −γ∗ω. A reference frame Q may also have some additional properties that will
be useful in the next sections:

i) Q is called locally synchronizable iff ω ∧ dω = 0

ii) Q is called locally proper time synchronizable iff dω = 0

iii) Q is called synchronizable iff there exist h, t : C∞(M)→ R such that h > 0 and ω = −h dt. The
function t is then called time function which is not unique. In this case du = (h ◦ γ)γ∗ dt.

iv) Q is called proper time synchronizable iff h identically equals 1. Then ω = −dt and t is called
the proper time function which is also not unique. In this case du = γ∗ dt.

Proposition 2.2. If Q is an arbitrary reference frame on M with the following properties: i) dt is
nowhere zero, and ii) the level hypersurfaces of the time function t are orthogonal to Q.
Then, Q is syncronizable and ±t is a time function for Q.

Proof. Omitted.

Now let Q be a proper time synchronizable reference frame and Na be the level hypersurface of the
proper time t defined by t=a. Assume that each observer intersects Na only once. The observers
belonging to the reference frame can agree to set up their ”atomic clocks” in order to make it mark

4



CHAPTER 2. EXACT SOLUTIONS 2.3. STATIC METRIC

t = 0 when they cross N0 . Since du = −γ∗ dt, each of them will cross Na at t = a. When the reference
frame is only synchronizable and not proper time synchronizable, it is possible to express (t ◦ γ) as
an explicit function of u dependent by h. Physically, observers in a (proper time) synchronizable
reference frame can use light signals to experimentally correlate by ”radar” their reference times. In
the former time will coincide, while in the latter they’ll reach a compromise time.

2.3 The Schwarzschild metric as a static metric

As we are dealing with a time-independent source of gravity, a few more implications must be treated.
This peculiarity can be only valued by postulating the existence of a reference frame of observers that
don’t experience a change in the local geometry.

Definition 2.4. Let Z be a reference frame on M. Z is defined as stationary iff there is a positive
function f on M such that fZ is a Killing vector field. Z is then static iff it is stationary and
irrotational4. M is stationary (respectively, static) iff there exists on M Z above.

Furthermore M is an absolute stationary reference frame if it is unique. An observer (γu, γ∗u) is at
rest iff it is in absolute reference frame. Irrotational reference frames are privileged reference frames.
In fact, neighbors reference frames can relate their times to each others.

Proposition 2.3. A reference frame is irrotational iff it is locally synchronizable.

Proof. Omitted.

Heuristically we can say that stationary spacetimes are generated by a time-independent source while
static spacetimes have the additional property of a non rotating source.

Proposition 2.4. The normal Schwarzschild space (2.1.2,ii) is a static spacetime.
a(∂/∂t)|N , ∀a ∈ R, is a killing future pointing vector. Z = (1 − 2µ/r)−1/2(∂/∂t) is a static, absolute
reference frame on N. An observer γ is at rest iff r ◦ γ ∈ (2µ,∞) constant and P ◦ γ ∈ S2 constant,
where P :M → S2 is the natural projection on the angular coordinates.

Z is orthogonal to the family of hypersurfaces t=const, and in particular it is synchronizable but not
proper time synchronizable. Two observers in this reference frame are able to find a compromise time
that won’t be the same in general. The distance between two observers (x1,Zx1) and (x2,Zx2) who
are at rest is independent of time. In fact, the two can relate their proper times u1 and u2 to the
coordinate t. At a constant t, the distance between them is given by

∆s =

∫︂ √︃
gµν

dxµ

dλ

dxν

dλ
dλ (2.3.1)

Supposing without loss of generality that Px1 = Px2. Then

∆s =

∫︂ (︃
1− 2µ

r

)︃−1

dr (2.3.2)

which is not a function of t.

2.4 Isotropic coordinates

Definition 2.5. A metric expressed in isotropic coordinates (r, θ, ϕ, t) is a Lorentzian metric that
can be written in the form

g = A(r, t)2(dr2 + r2dΩ2)−B(r, t)2dt2 (2.4.1)

4a specific definition of irrotational is given in Sachs-Wu 2.3. Physically, the observers in a small neighborhood of an
observer in x ∈ M exhibit no overall rotation.
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2.5. COSMOLOGICAL MODELS CHAPTER 2. EXACT SOLUTIONS

The Shwarzschild metric can be also expressed in isotropic coordinates, which are obtained by a
diffeomorphic transformation, resulting in a physically equivalent space-time. As a consequence, the
latter is just given without further comments [22, p. 181] by

r = r1

(︃
1 +

µ

2r1

)︃2

(2.4.2)

In the new coordinates, the Schwarzschild metric can be indeed written

g =

(︃
1 +

µ

2r1

)︃4

dr21 + r21dΩ
2 −

(︃
1− µ/2r1
1 + µ/2r1

)︃2

dt2 (2.4.3)

This coordinate system doesn’t allow to describe spacetime inside the event horizon. In fact, the
condition that emerges from the change of coordinate is

r1 >
µ

2

Nevertheless, the latter form will be useful in discussing the McVittie metric.

2.4.1 The Kerr Solution

The Kerr metric, found only in 1963, represents a spinning black hole. Such property is reasonable in
every realistic scenario, since a slight non-homogeneity of a collapsing star would produce a rotation.
The solution is much more difficult than the Schwarzschild one, and the derivation starts from the
assumptions of axial symmetry (around the rotation axis) and stationary solution. The result is [2]

g =
ρ2

∆
dr2 + ρ2dθ2 + (r2 + a2) sin2 θdϕ2 +

2µr

ρ2
(a sin2 θdϕ− dt)2 (2.4.4)

where

∆(r) = r2 − 2µr + a2

ρ2(r, θ) = r2 + a2cos2θ

The active mass of the black hole is m̄ = 8πµ, while the variable a measures the spin. Note that for
a→ 0 the solution reduces to Schwarzschild one.
The metric produces two killing vectors: ξµ = ∂t that makes the solution stationary, but not static
(since it’s spinning); and ηµ = ∂ϕ which expresses the axial symmetry. Further properties are resumed
by Carrol (1997) [2].

2.5 Cosmological Models

2.5.1 Matter Models

We want to describe the universe and its history through a spacetime (M, g, ∇) where ∇ is the relative
Levi-Civita connection. The approximation used for the Schwarzschild solution of a vacuum universe
is not valid anymore. One needs to define a stress-energy tensor that describes the energy distribution
of the universe and other pre-relativistic concepts such as energy of electromagnetism, momentum per
unit volume, energy flux, and momentum flux. In doing so a matter model is needed.

Definition 2.6. A particle of rest-mass m is a future-pointing curve γ : ε→M such that g(γ∗, γ∗) =
−m2 where m ∈ [0,∞) is allowed to be 0 for mass-less particles such as photons.

Suppose now that an enormous number of particles of mass m have the same energy-momentum.

Definition 2.7. A particle flow (P,η) of rest-mass m is a function η :M → [0,∞), called the world
density, and an energy-momentum vector field P: M → TM such that each integral curve of P is a
particle rest-mass m.

6



CHAPTER 2. EXACT SOLUTIONS 2.5. COSMOLOGICAL MODELS

This description is useful to describe the collective behavior of a distribution of particles that are future-
pointing and with a similar momentum. The particle world density is conserved iff div(ηP) = 0. The
stress-energy tensor is then built from the latter. If the particles of the flow of mass m all have the same
charge e∈ R, then (m,e,P,η) is the type of the particle flow. We call Ê the (2,0)- stress-energy tensor
field on M and E the physically equivalent (0,2)-tensor field. Suppose any instantaneous observer (z,Z)
measures the energy in any unit 3-volume of his local rest space Z⊥ . We assume E(Z,Z)=measured
energy density ∀z, Z.

Definition 2.8. Let (P,η) be a particle flow on spacetime M. The stress-energy tensor of (P,η) is
T̂ = ηP⊗P.

The stress-energy tensor E of an electromagnetic field F on M is then defined as

Eij =
1

4π
[FimF

m
j −

1

4
gijF

mnFmn] (2.5.1)

The basic object of interest in mathematical general relativity is a triple (M,M,F) called a relativistic
model. Here, M is a Riemannian manifold, F is an electromagnetic field and M is a matter model.
In most of the non-quantum physical situations a matter model can be described by a collection
M=(mA, eA,PA, ηA) | A = 1, ..., N of N particle flows M Where N is a non-negative integer. By
making N sufficiently large one can basically describe any form of matter.
Some useful examples of matter models are reported in the following examples. Each of these is
necessary to understand the perfect fluid matter model which is the one used to model cosmological
spacetimes and to compute the Friedmann equations. Let J be the charge-current density.

Example 2.1 (Dust). Let (m,0,P,η) be a particle flow on M with m,η nowhere zero. Then Z = m−1P
is a reference frame on M and ρ = m−2η is a function ρ :M → (0,∞).
(M,M,F) is defined as dust iff:

i) M =(Z,ρ), where Z is a reference frame on M and ρ is a C∞ function.

ii) T̂ = ρZ⊗Z and J=0.

Z is then defined as the comoving reference frame. ∀z ∈M , the instantaneous observer (z,Zz) measures
energy density T(Z,Z)z=ρz so ρ is defined as the comoving energy density. We say (M,M,F) obeys
the dust matter equation iff div(ρZ)=0=DZZ.

If (M,M1,F) and (M,M2,F) are relativistic models, then the superposition (M,M,F) is defined as:
M is the pair {M1,M2} and T̂ = T̂ 1 + T̂ 2, J = J1 + J2. Then M1 and M2 are the components of M.
We require that the matter equations of the two components are the same and that the superposition
is collision-free i.e. there aren’t any interactions between them.

Example 2.2 (Quasi-gas). M is a quasi-gas on M iff M is a finite superposition 5 of particle flows
on m obeying

i) M is a non-empty set;

ii) ∀ particle-flow in M, the world density is nowhere zero.

It is reasonable to assume that a stress-energy tensor singles out a reference frame in a natural way. T̂
is defined to be normal at x ∈M iff T̃X6 is timelike ∀ causal X ∈Mx. X is then called an eigenvector
of T̂ at x iff T̃X = aX for some a ∈ R.

Proposition 2.5. If a stress-energy tensor T̂ is normal at x ∈M , then T̂ has a timelike eigenvector
which is unique up to nonzero multiples.

5the ”quasi-gas” characterization refers to the fact that gas must be described by an infinite collection of particle
flows.

6the equivalent (1,1)-tensor of T̂ .
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Proof. omitted.

Now T̂ is called normal if it is normal t every x ∈ M . A nowhere zero vector field X on M is called
an eigenvector field of T̂ iff there is a function (eigenfunction) f on M such that T̂X = fX.

Proposition 2.6. A normal stress-energy tensor T on M posseses a unique future-pointing unit time-
like eigenvector field.

Proof. Omitted.

The concept of eigenvector fields is of fundamental importance in defining the comoving reference
frame in a cosmological spacetime. If we assume the Einstein field equations, it is easy to demonstrate
that an eigenvector field of T̂ is necessary and sufficiently an eigenvector field of Ĝ.

Example 2.3 (Perfect fluid). The perfect fluid matter model is the one used to define the Friedmann-
Robertson-Walker universes. A stress-energy tensor T̂ on a spacetime M is defined as spatially isotropic
at z ∈ M iff there exists one instantaneous observer (z,Z) for whom T is spatially isotropic i.e they
are left invariant by the unique extension of the transformation ψ :Mz →Mz such that ψ ∈ O3.

Proposition 2.7. Let M be a quasi-gas on M whose stress-energy tensor T̂ is spatially isotropic at
each z ∈M . Then:

i) T̂ is normal;

ii) T̂ = ρZ ⊗ Z + p(ĝ + Z ⊗ Z), where Z is the reference frame which is an eigenvector field of T.
ρ, p are functions on M such that ρ > 0 and ρ ≥ 3p ≥ 0. Furthermore, T is spatially isotropic
for (z,Z) iff Z=Zz;

iii) ρz = 3pz for one z ∈M iff ρ = 3p iff each component of M has zero rest mass.

Proof. Omitted.

We call ρ and p respectively the energy density and the pressure of the quasi-gas M. The physical
interpretation of the latter is in terms of ”random velocities” of the quasi-gas. J is set to zero. The
condition in iii) is the one of a radiation-dominated universe. Furthermore, in a Robertson-Walker
universe, Z = ∂4 is comoving.

Definition 2.9. A relativistic model (M,M,F) is a perfect fluid iff

i) M = (Z, ρ, p) where Z is a reference frame on M, and ρ, p are C∞ functions with ρ > 0 and
ρ ≥ 3p ≥ 0;

ii) J=0 and T̂ = ρZ⊗ Z+ p(ĝ + Z⊗ Z)

By definition, M is then a perfect fluid on M and Z is the comoving reference frame.

A perfect fluid can be seen as an enormous number of particle flows with lots of random collisions.
These fluids are isotropic in their rest frames. In these frames Tµν = diag(p, p, p, ρ). Here ∂4 is taken
to be the timelike coordinate. The stress-energy tensor with an index raised by the metric is

Tµ
ν = diag(p, p, p,−ρ) (2.5.2)

and the trace is given by
T = Tµ

µ = −ρ+ 3p; (2.5.3)

To make progress one has to define an equation of state of the type

p = ωρ (2.5.4)

which is respected by essentially every perfect fluid relevant to cosmology.

8
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2.5.2 Robertson-Walker spacetime

Now that a justified stress-energy tensor is defined it is possible to build a cosmological model.
As we anticipated the Copernican principle states that the universe must be homogeneous and
isotropic. These conditions have mathematical implications [2]:

i) Spatial homogeneity: ∀p, q ∈M there is an isometry ϕ on M such that ϕp = q;

ii) Spatial isotropy for an observer(z,Z): let ϕ be an isometry on M such that ϕz = z and
ϕ∗Z = Z. Then ϕ∗ ∈ O3. Then (M,g) is called spatially isotropic for (z,Z) iff given any two
vectors X1, X2 ∈ R (local rest space of (z,Z)), there is such ϕ with ϕ∗X1 = X2.

On the other hand, when we look at distant galaxies, they appear to be receding from us. As a
consequence, the universe must be not static so homogeneity and isotropy are not assumed in time.
Define now M = Σ × F, where F is an open interval in R and Σ is a maximally symmetric three-
dimensional manifold. We basically foliate spacetime in isotropic, homogeneous, spacelike slices. The
metric can thus be taken to be of the form[2]

g = −dt2 + a2(t)dσ2 (2.5.5)

where dσ2 = γijdx
idxj is the 3-D maximally symmetric submanifold metric. a(t) is called the scale

factor, and tells us how big the spacelike manifold is at a time t. The Riemann tensor of a maximally
symmetric space is uniquely specified by a curvature constant K and by the number of eigenvalues of
the metric [22] in the following way

Rijkl = K(γikγjl − γilγjk) (2.5.6)

and

Rjl = 2Kγjl (2.5.7)

A space with these properties is called a space of constant curvature. The metric for Σ is distinctively
determined, up to coordinate transformations from (2.5.6)[13]. A spherical symmetric space is in the
form

dσ2 = e2β(r)dr2 + r2dΩ2 (2.5.8)

Comparing the Ricci tensor to the one in (2.5.7), one can find the Robertson-Walker metric

g = a2(t)

[︃
dr2

1−Kr2
+ r2dΩ2

]︃
− dt2 (2.5.9)

It is obtained without the use of the field equations but just from the already treated generic assump-
tions. Since the substitution

K → K

| K |
r →

√︁
| K |r a(t)→ a(t)√︁

| K |
(2.5.10)

leaves the metric (2.5.9) invariant, the only relevant parameter is k = K
|K| , provided that the scale

factor a(t) must be renormalized and the coordinate r must be transformed as above. The parameter
k defines three cases of interest:

i) k=0 (flat): There is no curvature on the spatial sub-manifold R3;

ii) k=1 (closed): positive curvature on R3;

iii) k=-1(open): negative curvature on R3.

The metric (2.5.9) can be also written [10]

g = a(t)2
(︁
dr2 + χ2(r)dΩ2

)︁
− dt2 (2.5.11)

9
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where

χ(r) =

⎧⎪⎨⎪⎩
sin(r) if k=+1

r if k=0

sinh(r) if k=-1

(2.5.12)

These three can be combined notationally as

χ(r) =
sin(
√
kr)√
k

(2.5.13)

In fact, the case k=0 is interpreted as a limit

lim
k→0

χ(r) = lim
k→0

sin(
√
kr)√
k

= lim
k→0

√
kr√
k

= r (2.5.14)

and the case k=-1 gives

sin(
√
−1r)√
−1

=
sin(ir)

i
= sinh(r) (2.5.15)

. The non-trivial results above are thus recovered. Finally, through the coordinate change

r = 2
tan(
√
kr/2)√
k

(2.5.16)

and renaming r as r, we obtain the Lamâıtre coordinate system of the RW metric

g =
a2(t)(︃

1 +
kr2

4

)︃2

{︁
dr2 + r2dΩ2

}︁
− dt2 (2.5.17)

It is easy to verify that starting from the elements of the spacelike metric dσ2

γij = (1 +
kr2

4
)−2δij (2.5.18)

that the equation (2.5.6) holds [13].
The spacelike submanifold is modulated by the renormalized scale factor and thus the equation (2.5.6)
becomes

Rijkl = [k/a2(t)](γikγjl − γilγjk) (2.5.19)

The proper distance between two different galaxies, measured at the same cosmic time t is consequen-
tially [22]

dprop(t) =

∫︂ r1

0

√
grrdr = a(t)

∫︂ r1

0

dr√
1− kr2

(2.5.20)

A perfect fluid relativistic model of the kind of (2.9) is now used to describe the universe matter
distribution since this type of fluid is isotropic in his rest frame, then the metric expressed in the
isotropic frame we are seeking to build is going to identify the same frame, i.e. the comoving frame.
The comoving observer is intuitively speaking moving with the matter of the universe. Here-now
galaxies seem to form the predominant form of matter. The galaxies random velocities are quite small
compared to the speed of light. Thus, we can interpret the history of each galaxy with an integral
curve of Z.

It is seen in proposition 2.7 that ω ≤ 1

3
and the relation becomes an equality for a radiation-dominated

model ω =
1

3
.

10
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We also see that by computing the conservation of energy equation of the zero component of Tµ
ν we

obtain [2]

0 = ∇µT
µ
0 = −

·
ρ− 3

·
a

a
(ρ+ 3p) (2.5.21)

where the dot indicates a partial derivation over t. The latter with the equation of state (2.5.4) gives
[23]

ρ = ρ0a
−3(1+ω) (2.5.22)

Where ρ0 is the density at the present time. In other words, the density of the fluid decreases with
a weight ω given by the equation of state. If the stress energy tensor is given by the superposition of
multiple different perfect fluids, the above equation is valid for each fluid

ρx = ρ(x,0)a
−3(1+ωx) x = 1, ..., N (2.5.23)

where N is the number of fluids taken in consideration.
Empirically we can state that our universe here-now is a matter universe with

ρmat

ρrad
∼ 1067.

We can write T̂ = Tĝ + T̂ p + T ′ˆ where Tĝ is due to the matter in galaxies, Tp̂ is due to the microwave

photons and T ′ˆ includes the contribution of all other forms of matter such as neutrinos. Near here-
now Tĝ must certainly dominate. Thus a dust cosmological model is preferred. Dust is collision-less,
non-relativistic matter. The weight ωm = 0 (p=0) implies ρm = ρm,0a

−3. Furthermore, ordinary
matter doesn’t completely describe all the matter composing the universe. Inconsistencies in the ob-
servations of spiral galaxies by Rubin [23] showed that a big amount of non-luminous matter must
affect observations. The theorizing of dark matter followed quickly.

Dealing with radiation, in order to include further corrections, one discovers by relating the two
forms of the stress-energy tensor (2.5.2) and (2.5.1) that the weight of radiation is ωr = 1/3. Thus
ρr = ρr,0a

−4.

These components have been supposed enough to describe an economic model of the universe here-
now, at least before the more recent discoveries made by the Supernova Cosmology Project and the
High-z Supernova Search Team from observations of standard candles and type Ia supernovae in 1998
[23]. A cosmological model built with only matter and radiation necessary leads to an expanding uni-
verse with a decreasing velocity. Experimental data supported this behavior until the latter discovery
that suggested an accelerating universe. In order to explain data, the cosmological constant Λ was
recovered. Originally, Λ was added by Einstein to the field equations in order to allow the universe to
be static. On the other hand, a static universe would have been unstable and cosmological data soon
supported the opposite view of a dynamic universe. After the above observations, the cosmological
constant was recovered to make the universe accelerate.

Λ adds a vacuum energy, also called dark energy. The field equations (3.2.6) in vacuum are of the
same form as the equations with no cosmological constant but an energy momentum for the vacuum

T (vac)
µν = −Λgµν (2.5.24)

The structure of this tensor is the same of a perfect fluid with

ρ = −p = Λ (2.5.25)

Therefore the cosmological constant can also be treated as a negative density component in the stress-
energy tensor.

Using the field equations in the form of (2.5.4), we obtain the Friedmann equations [2](︄ ·
a

a

)︄2

=
ρ

3
− k

a2
+

Λ

3
(2.5.26)

7However, the energy density in radiation dominated at very early times...
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and
··
a

a
= −1

6
(ρ+ 3p) +

Λ

3
(2.5.27)

Metrics that follow the latter equations are called Friedmann-Robertson-Walker (FRW) universes.
The Λ-CDM model is a perturbed flat FRW model that includes dark matter, radiation, and dark
energy, given by the cosmological constant. As suggested by recent observations, the Λ-CDM model
is the one preferred to describe the universe here-now. In fact, it is a simple and economic model that
doesn’t give up to describe in good approximation the observations [23].
Note that the Friedmann equations (2.5.26) and (2.5.27) can be also written without the cosmological
constant Λ, and by including it in the density. In this way, pressure can also be negative, and in order
to get an accelerating universe the following condition must hold:

−1 ≤ ω ≤ −1

3
(2.5.28)

where ω = −1 is the only vacuum case.

We then call H =

·
a

a
the Hubble parameter which characterizes the rate of expansion.

The density parameter is defined by Ω =
ρ

ρcrit
where ρcrit = 3H2 is the density obtained by imposing k=0 (flat universe) in (2.5.26), and Λ included
as a energy density.
The present experimental Hubble parameter is H0 = 2.18× 10−18 s−1 [23].
Therefore, the present day critical density is

ρ(crit,0) = 3H2
0 = 3(2.18× 108 s−1)2 = 1.43× 10−35 s−2

in natural units.
Thus, if the current total energy density of the universe is greater than or less than ρcrit,0, the universe
will either be spherical or hyperbolic. Ω gives information about the curvature of the universe since
the Friedmann equation (2.5.26) can be written

Ω− 1 =
k

H2a
(2.5.29)

that selects the three cases: i) Ω < 1←→ open; ii) Ω = 1←→ flat; i) Ω > 1←→ closed.
In a model where more constituents are taken, these definitions must be treated separately for each
component

Ωx =
ρx
ρcrit

; Ω(x,0) =
ρ(x,0)

ρcrit
(2.5.30)

Using then Ω as a parameter in the equation (2.5.23) it is possible to predict the evolution of

ρx = 3H2
0Ω(x,0)a

−3(1+ωx) ; Ωx =
H2

0

H2
Ω(x,0)a

−3(1+ωx) (2.5.31)

2.5.3 Simple cosmological spacetimes

Robertson-Walker flat spaces are interesting since they describe the universe in a surprisingly good
approximation. We shall call them simple cosmological spacetime. They can be written in the form

g =
{︂
(e(β◦t)

(︁
dr2 + r2dΩ2

)︁}︂
− dt2 (2.5.32)

where exp(β/2) = a.
Finally, it is called original de Sitter universe a simple cosmological spacetime in the form (2.5.32)

and β ◦ t = at with a = ±
√︃

Λ

3
is a constant [2].

The latter universe can be obtained from the Friedmann equations for a simple cosmological spacetime
in vacuum filled with energy given by a cosmological constant Λ > 0. Actually, whatever the space
curvature is, all the vacuum spacetimes with Λ > 0 are equivalent and maximally symmetric. The
Λ < 0 solution is also maximally symmetric, and it is known as the anti-de Sitter universe.
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CHAPTER

THREE

THE MCVITTIE MASS-PARTICLE

3.1 The McVittie mass-particle in a cosmological universe

The McVittie mass-particle is a generalization of the better known Schwarzschild static mass-particle
expressed in isotropic coordinates (2.4.3)

g =

(︃
1 +

µ

2r1

)︃4

dr21 + r21dΩ
2 −

(︃
1− µ/2r1
1 + µ/2r1

)︃2

dt2 (3.1.1)

The wanted generalization is needed when an observer is near a strong source of gravity and wants
to model it, embedded in the cosmological universe. In fact, this new metric describes a spherically
symmetric massive body, such as a black hole or a star, which is compatible at infinity with the RW
metric, eventually written in the Lemâıtre coordinates (2.5.17)

g =
a2(t)(︃

1 +
kr2

4

)︃2

{︁
dr2 + r2dΩ2

}︁
− dt2 (3.1.2)

where the constant k gives the curvature of the space as a whole.
The simple cosmological metric already discussed in (2.5.32) is the special case of (3.1.2), in which the
curvature of space is set to zero. While the cosmological metrics (2.5.32) and (3.1.2) are expressed in
the cosmic coordinate1 r, the local metric uses the observer’s coordinate r1. These are related by a
change of coordinate made by the observer at a specific time t1 written in the form r1 = reβ(t1)/2. In
this way, the observer’s coordinate is not independent of the time at a fixed value of r. In particular,
the metric (3.1.2) in observer’s coordinates becomes

eβ(t)−β(t1)(︄
1 +

ke−β(t1)r21
4

)︄2

{︁
dr21 + r21dΩ

2
}︁
− dt2 (3.1.3)

which at the time t1 becomes a static spacetime, possibly just curved in space with spatial curvature
K = e−β(t1)k.
In this way, in a flat RW spacetime (2.5.32), the observer lives in a flat Minkowski spacetime at t1.

1The ”cosmical coordinates” are called in this way because the ”cosmical time” reduces to the ordinary FRW comoving
time when the center mass is absent.
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3.2 Derivation of the metric

The goal is to build a metric respecting the above conditions, whose coordinates are the ones set up
by an observer close to the mass-particle that is taken to be the origin of the spatial coordinates. The
assumptions made by the observer are firstly the ones that are always set in any model of relativity
[12]:

i) The length of a measuring rod is constant in time and independent of orientation around a given
point;

ii) The backwards and forwards velocity of light between any two points is the same;

iii) The velocity of light is the same in every direction around a given point.

Furthermore, the observer sets up a system of coordinates orthogonal and isotropic in space, possibly
through a change of coordinates.
In addition, the Copernican principle is assumed resulting in the following assumptions:

iv) The matter in the universe is distributed with spherical symmetry around the origin;

v) There is no flow of the matter as a whole either towards or away from the origin. Consequently,
the pressure at any point is isotropic, i.e. the random velocities of the particles composing the
galaxies have no preferential direction. We’ll see how this ”non-accretion” condition can be
eliminated in order to get a slightly different kind of solution.

Nevertheless, the resolution of Einstein’s equations shall be treated with the use of cosmical coordinates
that satisfy the Copernical principle, and so the conditions (iv) and (v). We shall then show, that
after a transformation into the observer’s coordinates the same conditions hold. The most general
metric respecting orthogonality, isotropy and spherical symmetry around the origin is in the form

g = eν(r,t)
{︁
dr2 + r2dΩ2

}︁
− eξ(r,t)dt2 (3.2.1)

where r indicates the cosmical coordinate. The stress-energy tensor, chosen starting from these as-
sumptions, is the one describing a perfect fluid in the comoving coordinates (2.5.2)

Tµ
ν =

⎛⎜⎜⎝
p 0 0 0
0 p 0 0
0 0 p 0
0 0 0 −ρ

⎞⎟⎟⎠ (3.2.2)

having trace T = (3P − ρ).
The stress-energy component T 4

0 is set to zero in order to respect the condition of no-accretion (v)
and thus no radial flow. However, this hypothesis is not well motivated at a physical level. In par-
ticular, black holes are highly dynamical objects that live in a universe full of matter and radiation
[11]. Furthermore, LIGO and VIRGO gravitational wave detectors showed that black holes can grow
feeding other black holes [1]. Nevertheless, such condition is realistic for other kinds of objects.
The analytical procedure to find the functions ν and ξ is based on the resolution of Einstein’s equa-
tions.
Starting from the general form of the metric (3.2.1) one can compute the Christoffel symbols. Con-
ventionally the coordinates are identified by ∂r = ∂1, ∂θ = ∂2, ∂ϕ = ∂3, and ∂t = ∂4. Furthermore the
dot denotes differentiation with respect to t, and the dash denotes differentiation with respect to r.
The non-null Christoffel symbols follow:

Γ1
11 =

1

2
ν ′ Γ1

14 = Γ1
41 =

1

2
ν̇ Γ1

22 = −
1

2
r
(︁
rν ′ + 2

)︁
Γ1
33 = −

1

2
r sin2(θ)

(︁
rν ′ + 2

)︁
Γ1
44 =

1

2
ξ′eξ − eν Γ2

21 = Γ2
12 =

1

2
ν ′ +

1

r
Γ2
24 = Γ2

42 =
1

2
ν̇

Γ2
33 = − sin(θ) cos(θ) Γ3

31 = Γ3
13 =

1

2
ν ′ +

1

r
Γ3
32 = Γ3

23 = cot(θ)
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Γ4
11 =

1

2
ν̇eνe−ξ Γ4

41 = Γ2
14 =

1

2
ξ′ Γ4

22 =
1

2
r2ν̇eνe−ξ

Γ4
33 =

1

2
r2 sin2(θ)ν̇eνe−ξ Γ4

44 =
1

2
ξ′ (3.2.3)

The Ricci tensor is then built from the latter symbols. The non-null components are

Ric11 = eνe−ξ

(︃
−1

4
ν̇ξ̇ +

3

4
(ν̇)2 +

1

2
ν̈

)︃
+

(︃
1

4
ν ′ξ′ − ν ′′ − 1

4

(︁
ξ′
)︁2 − 1

2
ξ′′ − ν ′

r

)︃

Ric22 = eνe−ξ

(︃
−1

4
r2ν̇ξ̇ +

3

4
r2 (ν̇)2 +

1

2
r2ν̈

)︃
+

(︃
−1

4
r2
(︁
ν ′
)︁2 − 3

2
rν ′ − 1

4
r2ν ′ξ′ − r

2
ξ′ − r2 ν

′′

2

)︃
Ric33 = sin2(θ)

[︃
eνe−ξ

(︃
−1

4
r2ν̇ξ̇ +

3

4
r2 (ν̇)2 +

1

2
r2ν̈

)︃
+

(︃
−1

4
r2ν ′ξ′ − 1

4
r2
(︁
ν ′
)︁2 − 1

2
r2ν ′′ − 1

2
rξ′ − 3

2
rν ′
)︃]︃

Ric44 =
3

4
ν̇ξ̇ − 3

4
(ν̇)2 − 3

2
ν̈ + eξ−ν

(︃
1

4

(︁
ξ′
)︁2

+
1

2
ξ′′ +

1

4
ν ′ξ′ +

ξ′

r

)︃
Ric14 = Ric41 =

1

2
ν̇ξ′ − ν̇ ′ (3.2.4)

Plugging the Ricci tensors in the Einstein field equations (1.0.2) gives the four equations

−1

2
(ρ+ 3p) + Λ = e−ξ

{︃
3

2
ν̈ +

3

4
(ν̇)2 − 3

4
ξ̇ν̇

}︃
− e−ν

{︃
1

2
ξ′′ +

1

4
(ξ′)2 +

1

r
ξ′ +

1

4
ξ′ν ′
}︃

(3.2.5)

−1

2
(p− ρ) + Λ = e−ξ

{︃
1

2
ν̈ +

3

4
(ν̇)2 − 1

4
ξ̇ν̇

}︃
− e−ν

{︃
1

2
ξ′′ +

1

4
(ξ′)2 +

1

r
ν ′ + ν ′′ − 1

4
ξ′ν ′
}︃

(3.2.6)

−1

2
(p− ρ) + Λ = e−ξ

{︃
1

2
ν̈ +

3

4
(ν̇)2 − 1

4
ξ̇ν̇

}︃
− e−ν

{︃
1

2
ν ′′ +

3

2r
ν ′ +

1

4
(ν ′)2 +

1

2r
ξ′ +

1

4
ξ′ν ′
}︃

(3.2.7)

ν̇ ′ − 1

2
ν̇ξ′ = −T14 = 0 (3.2.8)

Setting equal the second members of (3.2.6) and (3.2.7), it is possible to obtain the two fundamental
equations for determining the coefficients of the metric

ξ′′ + ν ′′ − 1

r
(ν ′ + ξ′)− ν ′ξ′ − 1

2
(ν ′)2 +

1

2
(ξ′)2 = 0 (3.2.9)

ν̇ ′ − 1

2
ν̇ξ′ = 0 (3.2.10)

3.3 Solution of the equations

The fundamental equations (3.2.9) and (3.2.10) can be used to determine the function ν(r, t) and
ξ(r, t). The eq. (3.2.9) can be written as follows

∂ν̇

∂r
=

1

2
ν̇ξ′

∂ν̇

ν̇
=

1

2
ξ′∂r

log(ν̇) =
1

2
ξ + a(t)

ν̇ = α(t)eξ(r,t)/2

where α(t) = ea(t). This can be put in integral form as

ν(r, t) =

∫︂
α(t)eξ(r,t)/2dt+ g(r) (3.3.1)

The latter equation relates the two functions of interest. Then, we can study restricted cases to arrive
at the wanted solution.
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3.3.1 ξ is a function of r alone

If we assume ξ(r, t) = ξ(r) the equation (3.3.1) becomes

ν = β(t)eξ(r)/2 + g(r) (3.3.2)

where

β =

∫︂
α(t)dt

Thus the derivatives of ν with respect to r can be written

ν ′ =
1

2
β(t)ξ′(r)eξ(r)/2 + g′(r)

ν ′′ =
1

4
β(t)

(︁
ξ′(r)

)︁2
eξ(r)/2 +

1

2
β(t)ξ′′(r)eξ(r)/2 + g′′(r)

Therefore, the equation (3.2.10) can be developed further as

ξ′′ − 1

4
β(ξ′)2eξ/2 +

1

4
βξ′′eξ/2 + g′′ − 1

2r
βξ′eξ/2+ (3.3.3)

−g
′

r
− ξ′

r
− g′ξ′ − 1

8
β2(ξ′)2eξ − (g′)2

2
− 1

2
βg′ξ′eξ/2 +

1

2
(ξ′)2 = 0 (3.3.4)

We can treat this equation as a second degree equation for β rewriting it in the canonical form

A(r)β(t)2 +B(r)β(t) + C(r)

where

A(r) = −1

8
(ξ′)2eξ

B(r) =
1

4r

(︁
−r(ξ′)2 + 2rξ′′ − 2ξ′ − 2rg′ξ′

)︁
eξ/2

C(r) = ξ′′ + g′′ − g′

r
− ξ′

r
− g′ξ′ − (g′)2

2
+

(ξ′)2

2

Hence, two sub-cases occur:

i) A(r) ̸=0: The solution of the equation (3.3.4) can be put in the form

β(t) =
−B(r)±

√︁
B2(r)− 4A(r)C(r)

2A(r)

It is then necessary that β(t) = β = constant since the left member is a function of t, while the
right member is a function of r.
Now, using eq. (3.3.2), it is immediate that both ν and ξ are functions of r alone. Therefore,
the result is a static metric, which is not the solution we are seeking for;

ii) A(r)=0: Such condition implies ξ′ = 0. Thus, ξ is a constant. Equation (3.3.4) becomes

g′′ − g′

r
− (g′)2

2
= 0 (3.3.5)

This differential equation can be treated as a first order differential equation by making the
substitution g′ = z−1. Hence

g′′ = − z
′

z2

and (3.3.5) turns into

z′ +
z

r
= −1

2

16
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The related homogeneous solution can be find with

dz

dr
= −z

r
dz

z
= −dr

r
log(z) = log(r−1) + C

zo(r) =
K

r

where K = eC .
A particular solution is obtained with the method of variation of the parameters. Hence

zp(r) =
C(r)

r

and

C ′(r) = −r
2

=⇒ C(r) = −r
2

4

setting the integration constant to 0. Thus

zp(r) = −
r

4

z(r) =
K

r
− r

4

g′ =

(︃
K

r
− r

4

)︃−1

= − 4r

r2 − 4K

The solution of the differential equation is then

g(r) = C −
∫︂

4r

r2 − 4K
dr = C − 2 log(r2 − 4k) =

= C − 2 log(−4k)− 2 log

(︃
1 +

r2

4K

)︃
= −2 log

(︃
1 +

kr2

4

)︃

where k = − 1

K
and the constant of integration cancel the constant term [−2 log(−4k)] for

simplicity.
Plugging this result into (3.3.2) we obtain

ν = β(t)e−ξ/2 − 2 log

(︃
1 +

kr2

4

)︃
(3.3.6)

Remembering that ξ is a constant, one can see that the latter gives the RW metric, up to a
rescaling of t.

Therefore, no generalization in terms of cosmical coordinates of the Schwarzschild metric exists, in
which the ”mass”2 of the particle enters as a constant independent of time. In fact, to get a metric
with the discussed properties ξ must depend on the cosmical time.

3.3.2 ξ is a function of both r and t, g(r)=0

In the latter section it was shown that the function g(r) influences the curvature of space. Thus, we
expect that by imposing g(r)=0, the wanted generalization will be compatible only with a flat RW
metric (2.5.32). Starting from the reasonable requirement that the solution must have a singularity

2The concept of mass must be taken with caution since here ξ(r, t) is a function dependent on the coordinate system.
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at the origin, just like the normal Schwarzschild solution, it is possible to expand ν, ξ as power series
in u=1/r by setting

γ = eξ/2 = 1 + η1(t)u
m1 + η2(t)u

m2 + ... = 1 +
∞∑︂
i=1

ηi(t)u
mi (3.3.7)

In this way the limit r →∞ implies γ → 1, which leads to a flat Minkowski space as expected.
On the other hand, if r → 0 it is immediate that γ →∞ and thus there is a singularity.
By substituting (3.3.7) into (3.3.1) we obtain

ν =

∫︂
α(t)γ(t)dt =

∫︂
α(t)dt+

∫︂
α(t)

(︄ ∞∑︂
i=1

ηi(t)u
mi

)︄
dt = β(t) +

∞∑︂
i=1

βi(t)u
mi (3.3.8)

with

β(t) =

∫︂
α(t)dt (3.3.9)

and

βi(t) =

∫︂
α(t)ηi(t)dt (3.3.10)

These definitions can also be put in differential form as

β̇(t) = α(t) (3.3.11)

βi̇ (t) = α(t)ηi(t) = β̇(t)ηi(t) (3.3.12)

Equation (3.2.10) can be rewritten by substituting the independent variable r into u = 1/r, and by
substituting the function ξ int γ = eξ/2. In doing so, the new derivatives can be computed to find

∂

∂r
= − 1

r2
∂

∂u
;

∂2

∂r2
=

1

r4

(︃
2r

∂

∂u
+

∂2

∂u2

)︃
;

and by using the chain rule, we get

∂ξ

∂u
=
∂(2 log γ)

∂u
=

2

γ

∂γ

∂u
;

∂2ξ

∂u2
=
∂2(2 log γ)

∂u2
=

2

γ2

[︄
γ
∂2γ

∂u2
−
(︃
∂γ

∂u

)︃2
]︄

Eq. (3.2.10) then becomes

γ

(︃
3
∂ν

∂u
+ u

∂2ν

∂u2

)︃
+ 2u

∂2γ

∂u2
+

(︃
6− 2u

∂ν

∂u

)︃
∂γ

∂u
− 1

2
uγ

(︃
∂ν

∂u

)︃2

= 0 (3.3.13)

where
∂ν

∂u
=

∞∑︂
i=1

miβi(t)u
mi−1 ;

∂2ν

∂u2
=

∞∑︂
i=1

mi(mi − 1)βi(t)u
mi−2

∂γ

∂u
=

∞∑︂
i=1

miηi(t)u
mi−1 ;

∂2γ

∂u2
=

∞∑︂
i=1

mi(mi − 1)ηi(t)u
mi−2

Now, by substituting the series forms of ν and γ given by (3.3.7) and (3.3.8), the latter equation leads
to (︄ ∞∑︂

i=1

mi(mi + 2)βi(t)u
mi−1

)︄⎛⎝1 +

∞∑︂
j=1

ηj(t)u
mj

⎞⎠+

(︄ ∞∑︂
i=1

2mi(mi + 2)ηi(t)u
mi−1

)︄
+

−

(︄ ∞∑︂
i=1

2miβi(t)u
mi

)︄⎛⎝ ∞∑︂
j=1

mjηj(t)u
mj−1

⎞⎠+ (3.3.14)

−

(︄ ∞∑︂
i=1

(1/2)miβi(t)u
mi

)︄⎛⎝ ∞∑︂
j=1

mjβj(t)u
mj−1

⎞⎠(︄1 + ∞∑︂
k=1

ηk(t)u
mk

)︄
= 0
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mi − 1 m1 − 1 m2 − 1 m3 − 1 m4 − 1 m5 − 1 ...
mi +mj − 1 2m1 − 1 m1 +m2 − 1 2m2 − 1 m2 +m3 − 1 2m3 − 1 ...
mi +mj +mk − 1 3m1 − 1 2m1 +m2 − 1 2m2 +m1 − 1 3m2 − 1 2m2 +m3 − 1 ...

Table 3.1: Table of the possible indices produced by equation (3.3.14).

The result is an infinite number of indicial equations, obtained by equating every power of u to zero.
In particular, we see that the lowest power of u turns out to be um1−1.
Equating its coefficients to zero, we get

m1(m1 + 2)(2η1(t) + β1(t)) = 0 =⇒ 2η1(t) = −β1(t) =⇒ 2η1̇(t) = −β1̇(t) (3.3.15)

Note that only the first and the second term contribute to the latter. This, combined with (3.3.12),
result in the useful equation

η̇1(t)

η1(t)
= −1

2
β̇(t) (3.3.16)

Hence
η1̇(t)

η1(t)
= −1

2

βi̇ (t)

ηi(t)
(3.3.17)

In general, the possible powers are of the type

mi − 1 ; mi +mj − 1 ; mi +mj +mk − 1

We put these indices in a table, as shown in tab. (3.1).
By equating the coefficients on the diagonals, starting from the left side, it becomes soon clear that we
can state mi = im1. Hence, if the wanted solution needs to include the first power of u, the necessary
condition is

mi = i (3.3.18)

Let’s now impose the coefficients of u1 equal to zero:

m2(m2 + 2)(2η2(t) + β2(t))− 4m1η
2
1 = 0 =⇒ 2η2(t) + β2(t) = k2η

2
1(t) (3.3.19)

where k2 = 1/2.
After differentiating this relation with respect to t, it follows that

2η2̇ + β2̇ = η1η1̇ (3.3.20)

Using now eq. (3.3.17) to substitute β2̇, we get

2η2̇ − 2
η2
η1
η1̇ = η1η1̇

2η2̇ = η1̇

(︃
η1 + 2

η2
η1

)︃
dη2
dη1

= η1 + 2
η2
η1

We can treat the latter through the associated differential equation

2y′(x) = x+ 2
y

x
(3.3.21)

than can also be written

2

(︃
y′

x
− y

x2

)︃
= 1 (3.3.22)

Then, we proceed with the substitution

z(x) =
y

x
; z′(x) =

y′

x
− y

x2

19
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Thus, eq. (3.3.21)

z′(x) =
1

2
=⇒ z(x) =

x

2
=⇒ y(x) =

x2

2

Where the constant of integration has been set to zero.
Therefore it is possible to write

η2(t) =
1

2
η21(t) (3.3.23)

which plugged in eq. (3.3.19) results in

β2(t) = −η21(t) (3.3.24)

Proceeding in this manner, we see that in general, for any power of u, the above equations can be
written

2ηn + βn = knη
n
1

2ηṅ + βṅ = nknη
n−1
1 η1̇

2
dηn
η1

= nknη
n−1
1 + 2

ηn
η1

and in conclusion

ηn(t) = cnη
n
1 (t) (3.3.25)

βn(t) = −
2cn
n
ηn1 (t) (3.3.26)

where cn = n
n−1

kn
2 are constants.

Therefore, if the solution we want exists must be of the form

γ = 1 +

∞∑︂
n=1

cn

(︃
µ(t)

r

)︃n

(3.3.27)

ν = β(t)− 2
∞∑︂
n=1

cn
n

(︃
µ(t)

r

)︃n

(3.3.28)

after renaming η1(t) ≡ µ(t) and with the condition

1

2
β̇ = − µ̇

µ
(3.3.29)

Such condition can be seen as a constraint of no-accretion, since it is a direct consequence of the field
equation (3.2.9).
Next, we want to show that these equations can be expressed in finite form. In order to do so, let’s
compute some derivatives to find out that

∂ν

∂r
=

2

r

∞∑︂
n=1

cn

(︂µ
r

)︂n
=

2(γ − 1)

r
(3.3.30)

∂ν

∂t
= −2 µ̇

µ
− 2

∞∑︂
n=1

cn
µ̇

µ

(︂µ
r

)︂n
= −2 µ̇

µ
γ (3.3.31)

and
∂2ν

∂r2
=

2

r2

(︃
r
∂γ

∂r
− γ + 1

)︃
;

∂ξ

∂r
=

2

γ

∂γ

∂r
;

∂2ξ

∂r
=

2

γ2

[︃
γ
∂2γ

∂r2
−
(︃
∂γ

∂r

)︃]︃
20
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Thus, the second fundamental (3.2.10) equation becomes

r2
∂2γ

∂r2
− r(γ − 1)

∂γ

∂r
− γ(γ2 − 1) = 0 (3.3.32)

Through the substitution

r = ex ;
∂

∂r
=

1

r

∂

∂x
;

∂2

∂r2
=

1

r2

(︃
∂2

∂x2
− ∂

∂x

)︃
(3.3.33)

it is possible to rewrite (3.3.32) in the other form

∂2γ

∂x2
− γ ∂γ

∂x
− γ(γ2 − 1) = 0 (3.3.34)

which is an autonomous O.D.E. of the second order. The general integral of the latter is found by
doing another substitution z = γ2 − 1 and by defining ∂γ

∂x = z(1 + ω).
In this way, the following derivatives can be computed:

∂2γ

∂x2
=
∂z

∂x
(1 + ω) + z

∂ω

∂x
∂z

∂x
= 2γ

∂γ

∂x
= 2γz(1 + ω) =⇒ γ =

∂z

∂x

1

2z(1 + ω)

These can be then insert into the differential equation

(1 + ω)
∂z

∂x
+ z

∂ω

∂x
− z(1 + ω) + z

2z(1 + ω)

∂z

∂x

Multiplying every term for dx, reduces the latter to the O.D.E. of the first order, with separable
variables

∂z

z
= −2 1 + ω

ω(2ω + 3)
∂ω (3.3.35)

that can be put in its integral form

log(z) = −(2/3)
∫︂ (︃

1

ω
+

1

2ω + 3

)︃
dω =⇒ log(z) = log

[︁
ω2(2ω + 3)

]︁−3
+K(t) =⇒

=⇒ z3ω2(2ω + 3) = A3(t) (3.3.36)

Where A(t) = eK(t).
Then, we express ω and z in terms of γ to get(︃

∂γ

∂x
− γ2 + 1

)︃2(︃
2
∂γ

∂x
+ γ2 − 1

)︃
= A3(t) (3.3.37)

The series form of γ includes one ”arbitrary constant” µ(t), with respect to integrations by r. Thus,
the final solution must be obtained starting from a particular first integral as above. Therefore, we
decide to set A=0.
Since, the particular solution

∂γ

∂x
− γ2 + 1 = 0 (3.3.38)

is singular, the particular first integral we require is the alternative one provided by (3.3.37):

2
∂γ

∂x
+ γ2 − 1 = 0 (3.3.39)

which can be solved by separating variables in the following way:

−2 dγ

γ2 − 1
= dx∫︂ (︃

1

γ + 1
− 1

γ − 1

)︃
dγ = x+K(t)

γ + 1

γ − 1
= K ′(t)ex
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where K ′(t) = eK(t).
Hence, solving the equation for γ gives the finite form

γ(t) =
1− µ(t)

2r

1 + µ(t)
2r

(3.3.40)

where µ(t) = −1/K ′(t) is chosen to match the expansion in series form (3.3.27), and r = ex is
recovered.
We then use the finite form of γ to compute the spatial derivative (3.3.30)

∂ν

∂r
= 4

µ(t)

((2r + µ(t))r
(3.3.41)

which can be solved by separating the variables

1

4
dν =

(︃
2

2r + µ(t)
− 1

r

)︃
dr

ν

4
= log

(︃
2r + µ(t)

r

)︃
+K(t)

ν(t) = β(t) + 4 log

(︃
1 +

µ(t)

2r

)︃
(3.3.42)

where 4K(t) + log 2 = β(t). So, the finite form of ν is found, too.
The time derivative

∂ν

∂t
= −2 µ̇

µ
γ

gives the condition

β̇ + 4

(︃
(µ̇/2r)

1 + (µ(t)/2r

)︃
= −2 µ̇

µ

(︃
1− (µ(t)/2r)

1 + (µ(t)/2r)

)︃
(3.3.43)

that leads to

β̇ = −2 µ̇
µ

(3.3.44)

which is the wanted condition.
Now that we found the functions of interest, we can plug them into the general metric (3.2.1). The
result is the McVittie generalization of the Schwarzschild metric in a flat universe, expressed
in cosmical coordinates

g =

(︃
1 +

µ(t)

2r

)︃4

eβ(t)
{︁
dr2 + r2dΩ2

}︁
−
(︃
1− (µ(t)/2r)

1 + (µ(t)/2r)

)︃2

dt2 (3.3.45)

where the condition (3.3.61) must hold.
It’s easy to show that the flat McVittie metric reduces to the Schwarzschild metric (2.4.3) when
eβ(t)/2 = a ≡ 1.

3.3.3 ξ is a function of both r and t, g(r) ̸=0

The curved generalization of the McVittie metric can be found by setting the functions of interests in
a form that can be compatible with the flat case (3.4.1) in small regions near the origin. On the other
hand, the wanted generalization must reduce to the Lamâıtre metric in the limit r →∞. By analogy
with the flat case, we try to start from the forms

γ = eξ/2 =
1− y(r, t)
1 + y(r, t)

ν = β(t) + 4 log [1 + y(r, t)] + g(r) (3.3.46)

where

g(r) = −2 log
(︃
1 +

kr2

4

)︃
(3.3.47)
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as we found in subsection (3.3.1) for the case ξ(r, t) ≡ ξ(r). The relative derivatives are

∂ξ

∂r
= − 4

1− y2
∂y

∂r
;

∂2ξ

∂r2
= − 4

(1− y2)
∂2y

∂r2
− 8y

(1− y2)2

(︃
∂y

∂r

)︃
and

∂ν

∂r
=

4

1 + y

∂y

∂r
+
∂g

∂r
;

∂2ν

∂r2
=

4

(1 + y)

∂2y

∂r2
− 4

(1 + y2)2

(︃
∂y

∂r

)︃
+
∂2g

∂r2

Furthermore, the derivatives of g are

∂g

∂r
=

kr

1 + kr2

4

;
∂2g

∂r2
=

kr2

4 − k(︂
1 + kr2

4

)︂
where we can state from a direct computation that

∂2g

∂r2
− 1

r

∂g

∂r
− 1

2

(︃
∂g

∂r

)︃2

= 0

By defining the functions of interests in this way, the second fundamental equation (3.2.10) becomes

− 4y

1− y2
∂2y

∂r2
+ 12

1

1− y2

(︃
∂y

∂r

)︃2

+
4y

r(1− y2)

(︃
1 + r

∂g

∂r

)︃
∂y

∂r
+
∂2g

∂r2
− 1

r

∂g

∂r
− 1

2

(︃
∂g

∂r

)︃2

= 0

which, combined with the latter equality gives

∂2y

∂r2
− 3

y

(︃
∂y

∂r

)︃2

− ∂y

∂r

(︄
1

r
− kr

1 + kr2

4

)︄
(3.3.48)

We can now treat the differential equation as y is a function of r alone, and then renaming the arbitrary
constants of integration as functions of t. The equation can be written

yy′′ − 3(y′)2 − yy′
(︄
1

r
− kr

1 + kr2

4

)︄
= 0 (3.3.49)

The method of resolution consists in doing the following substitution:

z =
y

y′
; z′ =

(y′)2 − y′′

(y′)2
=⇒ yy′′ = (y′)2 − z′(y′)2 (3.3.50)

That transforms the differential equation in a first order O.D.E.

z′ +

(︄
1

r
− kr

1 + kr2

4

)︄
z = −2 (3.3.51)

The associated homogeneous equation is

z′ +

(︄
1

r
− kr

1 + kr2

4

)︄
z = 0 (3.3.52)

The solution to (3.3.52) can be found by separating the variables

log z = −
∫︂ (︄

1

r
− 2

kr
2

1 + kr2

4

)︄
dr

zo(r) =
A

k

(︂
1 + kr2

4

)︂2
r

(3.3.53)
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while the particular solution is of the form

zp(r) = C(r)zo(r)

with

C(r) = −4

k

∫︂ kr
2(︂

1 + kr2

4

)︂2dr
Hence,

z(r) =
A

k

(︂
1 + kr2

4

)︂2
r

+
4

k

1 + kr2

4

r
(3.3.54)

From the substitution (3.3.50) we then obtain

dy

y
=
dr

z
(3.3.55)

Hence, the related integral form is

log(y) = 2

∫︂
1

(1 + u)(A+ 4 +Au)
du =

= (1/2)

∫︂ (︃
1

1 + u
− A

A+ 4 +Au

)︃
du = log

1 + kr2

4

A+ 4 +Au
+B (3.3.56)

where u = kr2

4 . Then

y2 =
B

A+ 4 +Ak r2

4

(︃
1 +

kr2

4

)︃
(3.3.57)

Now, the only way to obtain a value of y that reduces to µ/2r in regions where kr2 is negligible is to
impose

A = −4 ; B = −kµ
2(t)

4

that is

y =
µ(t)

2r

(︃
1 +

kr2

4

)︃1/2

(3.3.58)

Substituting y in (3.3.1) we obtain the final forms

ν(r, t) = β(t) + 4 log

{︄
1 +

µ(t)

2r

(︃
1 +

kr2

4

)︃1/2
}︄
− 2 log

(︃
1 +

kr2

4

)︃
(3.3.59)

ξ(r, t) = 2 log

⎧⎪⎨⎪⎩
1− µ(t)

2r

(︂
1 + kr2

4

)︂1/2
1 + µ(t)

2r

(︂
1 + kr2

4

)︂1/2
⎫⎪⎬⎪⎭ (3.3.60)

Direct substitutions in (3.2.9) show that
µ̇

µ
= −1

2
β̇ (3.3.61)

holds in the curved case too.
The final form, expressed in cosmical coordinates, of the generalized McVittie metric in an
arbitrary curved space is finally revealed:

g =

{︃
1 + µ(t)

2r

(︂
1 + kr2

4

)︂1/2}︃4

(︂
1 + kr2

4

)︂2 eβ(t)
{︁
dr2 + r2dΩ2

}︁
−

⎧⎪⎨⎪⎩
1− µ(t)

2r

(︂
1 + kr2

4

)︂1/2
1 + µ(t)

2r

(︂
1 + kr2

4

)︂1/2
⎫⎪⎬⎪⎭

2

dt2 (3.3.62)
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which has to be coupled with the condition (3.3.61), that relies on the ”non-accretion” hypothesis.
Moreover, the function µ(t) must not be taken to represent the mass of the particle since it’s just a
metric coefficient in a particular coordinates system.

Then, it is now clear that, as r →∞, the metric (3.3.62) tends to the form

g =

(︂
1 +

√
kµ(t)
4

)︂4
(︂
1 + kr2

4

)︂2 eβ(t)
{︁
dr2 + r2dΩ2

}︁
−

(︄
1−

√
kµ
4

1 +
√
kµ
4

)︄2

dt2 (3.3.63)

which differs from the FRW solution only in terms of µ/
√
k that are negligibly small when µ is the

mass of a star and 1/
√
k is of the order of the radius of space. Such limit can also be obtained by

setting the ”mass” µ(t) = 0.

3.4 The observer’s system

The Λ-CDM model assumes a flat RW metric, since it seems to be a really good fit for the observations.
Moreover, we expect that the spatial curvature of the FRW geometry doesn’t influence the behavior
of the metric near a mass source, provided that its radius is smaller than the radius of the curvature
[11]. Therefore, a good approximation of the McVittie metric in cosmical coordinates is

g =

(︃
1 +

µ(t)

2r

)︃4

eβ(t)
{︁
dr2 + r2dΩ2

}︁
−
(︃
1− (µ(t)/2r)

1 + (µ(t)/2r)

)︃2

dt2 (3.4.1)

The latter can be also linearized in the limit µ(t)/r << 1, in which case it reduces to

g = eβ(t)
(︃
1 + 2

µ(t)

r

)︃{︁
dr2 + r2dΩ2

}︁
−
(︃
1− 2

µ(t)

r

)︃
dt2 (3.4.2)

that is a perturbed FRW cosmology. Then, one might be tempted to build an arbirtray ”multicentered”
solution by using linear superposition.
Let’s consider a generic observer situated at a cosmical distance r from the mass-particle, and at any
instant t1. Then, he is entitled to make a coordinate transformation

r1 = eβ(t1)/2r

In fact, if we compute the stress-energy tensor components (Tij)
∗ in the observer’s coordinates, it is

easy to find that

(T 1
1 )∗ = T 1

1 = −ρ ; (T 2
2 )∗ = (T 3

3 )∗ = (T 4
4 )∗ = T 2

2 = T 3
3 = T 4

4 = p (3.4.3)

Thus, the conditions of section (3.2, iv & v) are satisfied in the observer’s system.
Let’s define

µH = µ(t1)e
β(t1)/2 = µ(t1)a(t1) (3.4.4)

Then, the Hawking-Haywards mass of the McVittie mass-particle is mH = 8πµH [5].
This is the real physically relevant quantity representing the mass of the particle.
In fact, it is easy to show that such mass respects the non-accretion condition

µḢ(t) =

(︃
µ̇(t) +

µ(t)

2
β̇(t)

)︃
eβ(t)/2 = 0 (3.4.5)

where we used relation (3.3.61).
The metric (3.4.1) can be thus written(︃

1 +
µH
2r1

)︃4 {︁
dr21 + r21dΩ

2
}︁
−
(︃
1− µH/2r1
1 + µH/2r1

)︃2

dt2 (3.4.6)
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Hence, the observer’s metric is exactly the Swarzschild static field in the form (2.4.3), independently
of the instant at which the transformation is made. The observer will always feel to live near a static
field.
The operational procedure is actually the opposite: The observer sets a coordinate system, and in
particular he chooses a ”time”, that has no correlation with the time of other reference frames. Then,
he is allowed by (3.4.3) to make a transformation to cosmical coordinates, as a mathematical tool.
Stationary observers are then able to find a compromised time to build a relation between their clocks.
Furthermore, if we take mH as the mass of the Sun, the terms mH/r1 are already negligible at the
distance of the earth, approaching a flat RW metric (2.5.32). Therefore, a human observer living on
the surface of the earth is able to account for the ”recession” of a distant galaxy by assigning a fixed
value r to the galaxy, and measuring the red-shift as an effect of the change in the coordinate r1 due
to the non-null time travel of light. Since we defined

a(t) = eβ(t)/2

it is easy to show that

H(t) =
ȧ(t)

a(t)
=
β̇(t)eβ(t)

eβ(t)
=
β̇

2
(3.4.7)

that is the Hubble parameter, which can be measured as above.
The numerical number of the present Hubble parameter H0 is reported in subsection (2.5.2), and in
particular it is positive.
Hence, by using (3.3.61) and the point of view of cosmical coordinates, the (non-covariant) ”mass” of
the particle µ(t) decreases.

3.5 Pressure, density, Λ

The need of a cosmological constant has been widely discussed over the last century. The experimen-
tal evidence of an accelerating universe emphasizes the necessity of it, directly from the Friedmann
equations. We shall show that the result is the same, by using the McVittie metric. We start from
the field equations (3.2.5), (3.2.6) in cosmical coordinates and by solving for the density ρ and the
pressure p, in order to express them in a more immediate form.
Firstly, we solve for the density:

4ρ+ 4Λ = 3e−ξ(ν̇)2 − e−ν

{︃
2ξ′′ + (ξ′)2 + 6ν ′′ +

6

r
ν ′ − 2

r
ξ′ − 2ξ′ν ′

}︃
we then use the second fundamental equation (3.2.10), and get

ρ = Λ+
3

4
e−ξ(ν̇)2 − e−ν

{︃
ν ′′ +

2

r
ν ′ +

1

4
(ν ′)2

}︃
(3.5.1)

Secondly, we solve for the pressure:

4P − 4Λ = −e−ξ
{︂
4ν̈ + 3(ν̇)2 − 2ν̇ξ̇

}︂
+ e−ν

{︃
2ξ′′ + (ξ′)2 +

2

r
ξ′ + 2ν ′′ +

2

r
ν ′
}︃

that becomes

4P − 4Λ = −e−ξ
{︂
4ν̈ + 3(ν̇)2 − 2ν̇ξ̇

}︂
+

+e−ν

{︃(︃
ξ′′ + ν ′′ − 1

r
(ν ′ + ξ′)− ν ′ξ′ − 1

2
(ν ′)2 +

1

2
(ξ′)2

)︃
+

(︃
ξ′′ + ν ′′ +

3

r
(ξ′ + ν ′) +

1

2
(ν ′)2 +

1

2
(ξ′)2 + ν ′ξ′

)︃}︃
Now, for (3.2.10), the first part of the second parenthesis is zero. Then

p = Λ− e−ξ

{︃
ν̈ +

3

4
(ν̇)2 − 1

2
ξ̇ν̇

}︃
+
e−ν

4

{︃
ξ′′ + ν ′′ +

3

r
(ξ′ + ν ′) +

1

2
(ξ′ + ν ′)2

}︃
(3.5.2)
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Now, consider an observer’s system at the instant t1. Denote ρ1, p1 the values of density and pressure
in this system at the instant t1. Then, denote by Ḣ1 and Ḧ1 the Hubble parameter Ḣ and the
acceleration parameter Ḧ at the instant t1. Since the transformation r1 = eβ(t1)/2r leaves the stress-
energy tensor invariant as demonstrated in the previous section, it is possible to get the correspondents
equations in the observer’s system directly by substituting the new variable and by introducing the
constant mass mH = eβ(t1)/2.
Explicitly, on a fixed t1-slice, we obtain

ρ1 = −Λ + 3Ḣ
2
1 + 3k

{︄
1 +

µH
2r1

(︃
1 +

k1r
2
1

4

)︃1/2
}︄−4

− 3k
µH
r1

(︃
1 +

k1r
2
1

4

)︃1/2
{︄
1 +

µH
2r1

(︃
1 +

k1r
2
1

4

)︃1/2
}︄−5

p1 = Λ−
1 + µH

2r1

(︂
1 +

k1r21
4

)︂1/2
1− µH

2r1

(︂
1 +

k1r21
4

)︂1/2 12Ḧ1 − 3Ḣ
2
1 − k

{︄
1 +

µH
2r1

(︃
1 +

k1r
2
1

4

)︃1/2
}︄−4

(3.5.3)

The latter reduces to the better known FRW equations in the limit r1 →∞ (neglecting terms µH/
√
k).

In the flat case (3.4.1), which is the main case of interest, they further simplify to

ρ1 = 3H2
1 (3.5.4)

p1 = −2
1 + mH

2r1

1 + mH
2r1

H1
̇ − 3H2

1 (3.5.5)

where we used relation (3.4.7).
The first equation is the ordinary FRW equation (2.5.26), and therefore it is homogeneous. The second
equation is different from (2.5.27), and in particular, it contains a non-homogeneous term ∝ H2, except
in the case of a pure cosmological constant (Ḣ = 0). That makes the pressure perceived by an observer
inhomogeneous in space. This can be explained as follows: the presence of a mass-particle must break
the homogeneity of the stress-energy on spatial slices, expecially in the case of a massive particle, such
as a black hole. However, the density is a function of t alone. Therefore, the gradient of the pressure
must counterbalance this effect in order to get a homogeneous stress-energy [11].

3.6 McVittie BHs

The McVittie solution is interesting in its own right, just to be an exact non-linear solution of the
second order to Einstein’s field equations. Furthermore, it is the first real attempt to describe a dy-
namical black hole living in a FRW universe filled with a perfect fluid. However, the solution presents
some physical pathologies when we want to deal with objects that originate from the collapsing of a
star, i.e. cosmological black holes (CBHs).

3.6.1 Apparent horizons

The conventional definition of black holes includes asymptotic flatness and a global definition of the
event horizon. In CBHs the first condition is obviously relaxed. Therefore, local definitions of the
structures and their horizons are needed.
The event horizon of a stationary black hole is a co-dimension one null hypersurface defined as the
boundary of the region which is not in the causal past of the future null-infinity [1]. Thus, the event
horizon is a global property of the spacetime, and one cannot locate the event horizon with local
experiments in a finite interval of time [1]. On the other hand, an apparent horizon is a surface where
at least one congruence of null geodesics changes its focusing properties. In other words, a specific
family of geodesics flips from converging to diverging, by passing through the apparent horizon [11].
Apparent horizons depend on the embedding of the surface in spacetime. Therefore, they don’t carry
geometric invariant data. In any case, the existence of an apparent horizon implies the appearance
of a future event horizon outside of it [1]. More formal definitions of apparent horizons and trapped
regions can be found in [8], [9], and they are not going to be further treated in this thesis.
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3.6.2 The Schwarzschild-de Sitter metric

The flat McVittie solution can be written in ”cosmical coordinates” in a more modern notation:

g =

(︃
1 +

µH
2a(t)r

)︃4

a2(t)
{︁
dr2 + r2dΩ2

}︁
−

(︄
1− µH

2a(t)r

1 + µH

2a(t)r

)︄2

dt2 (3.6.1)

where we emphasize the fact that the real physical quantity is mH = 8πµH .
A remarkable property is that the latter metric for a de Sitter background (a(t) = a0e

H0t with
H0 =

√︁
Λ/3) reduces to a Schwarzschild-de Sitter black hole solution in the static form (after a

proper change of coordinate) [5]:

g =

(︃
1− 2µH

r
− Λr2

3

)︃−1

dr2 + r2dΩ2 −
(︃
1− 2µH

r
− Λr2

3

)︃
dt2 (3.6.2)

This solution has been deeply discussed in literature because of its interesting thermodynamical fea-
tures in its dynamical horizons.

3.6.3 McVittie singularities

Returning to the general flat McVittie solution, a curvature singularity at r = µH

2a(t) is present, which
can be seen thanks to the Ricci scalar

R = 12H2 + 6
1 + µH

2a(t)

1− µH

2a(t)

Ḣ (3.6.3)

where the pressure approaches infinity. This singularity is spacelike, and extends all the way to
spatial infinity in the sense of proposition (2.1). Therefore, it should be seen as a big bang singularity.
However, this singularity is absent when Ḣ = 0, making the hyperfsurface regular. In contrast, the
Schwarzschild solution has a coordinate singularity in the horizon, which is disposable thanks to a
change of coordinates.
Moreover, Nolan argued that the null black hole horizon of the McVittie metric is at infinite distance,
representing a null boundary. Hence, the metric outside this surface is geodesically complete and thus,
in order to respect the cosmic censorship hypothesis, it doesn’t describe a black hole [15]. However,
it was shown by the paper of Kaloper, Kleban, and Martin (2010), that this assertion is wrong and
such null surface is at a finite distance [11]. Or rather, the assertion is wrong just for the subclass of
solutions represented by these which scale factor asymptotes to de Sitter spacetime

a(t)→ eH0t =⇒ H → H0 = constant

with H0 > 0, obtained thanks to the addition of a cosmological constant.
In such case, the exponential nature of the scale factor allows the stress-energy density to decrease
rapidly enough that all curvature invariants reduce to the ones of a pure Schwarzschild-de Sitter black
hole. On the other hand, a polynomial form of the scale factor

a(t) ∼ tp =⇒ lim
t→∞

H(t)→ H0 = 0

allows naked singularities [11].
Therefore, at least in the case of an approaching de Sitter spacetime, the McVittie solution can
represent a CBH, with regular horizon. Note that the isotropic Schwarzschild metric, approached by
a McVittie solution, has the unwanted feature that the coordinate r covers the exterior of the black
hole twice. Thus, it’s possible to express the McVittie solution in a form that gives a more intuitive
behavior in the surfaces of interests.
Thanks to the transformation

→
r→ (1 +

µH
2a(t)r

)2a(t)
→
r (3.6.4)
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Figure 3.1: Schwarzschild-de Sitter confor-
mal diagram. Black solid lines are the sur-
faces of constant t, the green arrow repre-
sents ingoing observers, and the red dashed
line is the null apparent horizon at r = r−
and t =∞ [11].

Figure 3.2: Conformal diagram of the McVit-
tie solutions, restricted to the ones asymp-
totic to a de Sitter space. In addition, the
blue dashed line is the cosmological horizon
at r = r+, the broken curve at the bottom
is the spacelike big bang at r = 2m, and
the thin green dashed line is the union of the
two branches of apparent horizons at a finite
t [11].

it is possible to write the McVittie metric in a form that, for H = const, reduces to the Scwharzschild-
de Sitter metric, analogous to the outgoing Eddington-Finkelstein coordinate system for a flat Schwarzschild
black hole, that is

g = − 2Hr√︁
1− (2µH/r)

drdt+
dr2

1− (2µH/r)
+ r2dΩ2 − f(r, t)dt2 (3.6.5)

where f(r, t) = 1− (2µH/r)−H2(t)r2.

3.6.4 Causal structure

Paper [11] demonstrates that the apparent horizons can be located at the two roots of f(r, t), distin-
guishing the case of t finite and t →∞. Assuming the dominant energy condition (ρ ≥| p |) and
an asymptotic de Sitter behavior (limt→∞H → H0), we summarize the five surfaces of interest [11]:

i) A surface at r = 2µH
3 and t = finite. This is the big bang singularity. It is a spacelike 3-surface

that lies in the causal past of all spacetime points in the patch represented by the metric (3.6.5);

ii) A null apparent horizon at r = r− and t =∞. r− is identified with the smaller root of f(r, t). If
H0 > 0 this is a regular black hole event horizon. If H0 = 0 it is a null singularity. In both
cases it is at a finite spatial distance from the interior. For the case H0 ̸= 0 this surface can be
accessed in finite affine parameter by ingoing null geodesics, and it is traversable. Hence, the
surface is not a boundary and the spacetime is geodesically incomplete being compatible with
the censorship hypothesis.

iii) A null surface ending at the point r = r+ and t = ∞. r+ is identified with the greater root of
f(r, t). If H0 > 0 this is a cosmological event horizon. If H0 = 0 this is a null FRW infinity
at r+ = ∞. Furthermore, a null geodesic gets to the cosmological horizon at r = r+ in finite
affine parameter. Thus, this surface belongs to the spacetime.

iv) Two spacelike apparent horizons that live at the two roots r = r− and r = r+, but at a finite
time t. The first one evolves inward in time, along spacelike directions. On the other hand, the
second branch evolves outward becoming timelike, and eventually asymptoting to null at t =∞.
Such branch always remains inside the Schwarschild-de Sitter horizon at r = r+.
They link up thanks to a bifurcation point and delimit a normal region of spacetime from an
antitrapped region4. The coordinate r is spacelike only in the normal region. It is clear from the
form of the function f(r, t) that, at a fixed time t1, the areas of the apparent horizons are the
same of the ones of a Schwazschild-de Sitter black hole with H = H(t1).

3Such surface seems different from the on found in equation (3.6.3) , but note that we changed the radial coordinate
to a new one, which is now physical.

4both expansions of the ingoing and outgoing geodesics are positive.
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Therefore, the McVittie solutions in spacetimes which are asymptotically dominated by a positive
cosmological constant are CBHs [11].

3.7 Cosmological Black Holes (CBHs)

3.7.1 The non-accretion condition

In the last section, we discussed the McVittie solution for a generic mass-particle, which is coupled
with the scale factor in a FRW universe. We’ve seen how such model struggles in describing cos-
mological black holes because of some intrinsic singularities, which are not compatible with a strict
definition of CBHs, violating cosmological censorship in some cases. However, in spacetimes which
are asymptotically dominated by a positive cosmological constant, the mas-particle can represent a
CBH. This special case is actually a possible physical scenario. There is another problem though: the
non-accretion condition is highly unrealistic and struggles to describe massive gravitational objects
like CBHs. One could think that the r = µH/2 surface behaves like a wall that stops all the cosmic
fluid from the external universe. Related to this, it was shown that the accretion rate of a test fluid
for a spherical symmetric Schwarschild solution follows the law

µḢ = 4πDµ2H(p∞ + ρ∞) (3.7.1)

where p∞ and ρ∞ are the pressure and density at spatial infinity, and D is a constant first integral
of motion [5]. Therefore, in a Schwarzschild-de Sitter solution, where the universe is dominated by
a vacuum constant (p = −ρ = −Λ), the non-accretion condition seems to hold. However, since the
cosmological spacetime described by the Λ-CDM model considers other kinds of fluid, this result is
not completely satisfying.

3.7.2 Further models of CBHs

Despite McVittie solution still has to be completely defined and understood, being object of confused
literature, further models of CBHs have been introduced. Studies by Nolan (1993) developed a new
interior metric for the McVittie solution, by replacing it with a different geometry at small radius.
Such metric can be used to describe external fields of finite size objects or exterior bubbles separating
different spacetime regions [15]. Earlier studies by Einstein and Straus introduced the Swiss-cheese
model, a spacetime where the vacuum Schwazschild black hole is glued in a homogeneous FRW cosmol-
ogy. However, the model can’t describe the solar system and hardly describes non-spherical solutions
[20]. Vaidya (1977) followed a a similar road, representing a superposition of the Schwarschild metric
with the one of an Einstein static universe [21]. Such solution is called Vaidya-Einstein-Schwarzschild
(VES) spacetime. Moreover, it describes a perfect fluid with equation of state ρ + 3p = 0. Nayak
(2000) later matched the VES spacetime with Schwarzschild vaccum solution representing the interior
of the BH [14]. In these two models, the condition of asymptotic flatness is relaxed. However, they are
time independent solutions that unlikely describe a real CBH. In fact, both of them admit a horizon
defined as a Killing horizon, but a time dependent cosmological spacetime cannot admit a a global
timelike killing vector [20].

3.7.3 Sultana & Dyer solution

Later model by Sultana and Dyer (2005) described a primordial dynamical black hole, existing ab
initio, interacting with a k=0 (flat) FRW universe with a(t) ∼ t2/3. The authors computed a conformal
transformation of the Schwarzschild metric

g
(S)
ab → a2(t)g

(S)
ab

and admitted a conformal Killing vector field for ξc∇ca(t) ̸= 0, generating a conformal Killing horizon.
The chosen fluid is a superposition of an ordinary massive dust, and a null dust

Tab = T
(massive)
ab + T

(null)
ab = ρuaub + ρnkakb = ρuaub
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The result is the metric

g =
(︂
1 +

µ0
2r

)︂4
a2(t)

{︁
dr2 + r2dΩ2

}︁
−
(︃
1− µ0

2r

1 + µ0

2r

)︃2

dt2 (3.7.2)

which is similar to the McVittie metric, with the difference that the mass parameter is now a constant
µ0. This implies that the no-accretion condition is relaxed and we get µH(t) = µ0a(t). This solution
is non-singular at the surface µH/2, but has the problem that the fluid becomes tachyonic (negative
energy density) at late times near the horizon, and it is a special case of dust dominated universe,
which is not compatible with the Λ-CDM model [5].

3.7.4 Faraoni & Jacques solution

Marginal evidence of phantom energy, i.e. an energy that violates the dominant energy condition,
and thus ω < −1, led theorists to take in consideration the possibility of a Big Rip at late times
of the universe5. Dealing with this scenario, Faraoni & Jacques (2018) wondered if highly bounded
cosmological objects such as CBHs would be so highly deformed causing an expansion of the event
horizon, and thus risking to violate cosmic censorship hypothesis. In this sense, they investigated the
magnitude of the coupling of CBHs with the scale factor a(t) [5]. Earlier work by Price and Romano
[17] showed a ”all or nothing” behavior, suggesting that weekly coupling in atoms makes them to
comove with the universe, while strongly coupled atoms are only slightly perturbed by a transient
and don’t expand [5]. However, large structures in an arbitrary FRW universe behave differently. For
example, a black hole generated by a Schwarzschild-de Sitter solution6 (3.6.2) admits a inner horizon

at a radius r = µ(t)
2 = µH

a(t)2 . Therefore, the area of the correspondent 2-dimensional sphere is

A =

∫︂ ∫︂
dθdϕ

√
gΣ =

∫︂ ∫︂
dΩ a2(t)

(︃
1 +

µ(t)

2r

)︃4

r2 = 16πµ2H (3.7.3)

and thus, the Schwarzschild radial coordinate corresponding to the horizon is the physical curvature
coordinate

rphys =

√︃
A

4π
= 2µH (3.7.4)

which is not coupled. The latter suggests that in a de Sitter universe only weekly coupled objects
participate in the cosmic expansion. However, this is not true in an arbitrary FRW universe. In fact,
by taking a dust-dominated Sultana-Dyer solution (3.7.2), the latter reduces to

rphys = 2µH(t) = 2µ0a(t) (3.7.5)

The radius is thus comoving with the expansion of the universe.
Faraoni & Jacques built a perfectly comoving solution of the McVittie form

g = a2(t)A4(r, t)
{︁
dr2 + r2dΩ2

}︁
− B2(r, t)

A2(r, t)
dt2 (3.7.6)

where

A(r, t) = 1 +
µ(t)

2r
B(r, t) = 1− µ(t)

2r
which describes a CBH embedded in a universe with generic factor a(t) and filled with an imperfect
fluid of the form

Tab = (p+ ρ)uaub + pgab+ qaub + qbua (3.7.7)

where the spatial vector qc describes a radial energy flow,

ua = (A/B, 0, 0, 0) , qb = (0, q, 0, 0), qcuc = 0, ucuc = −1

Such solution makes the surface r = µ(t)/2 non singular, and makes the black hole embedded in
a hypothetical phantom-dominated universe disappear at late times, protecting cosmic censorship.
However, it has the problem that the accretion flow becomes superluminal.

5A cosmological scenario where the expansion is so fast that cosmological object are most likely teared apart.
6and thus, a McVittie black hole solution, since we had to impose the constraint of a late times de Sitter asymptotic

behavior.
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3.7.5 Crooker & Weiner coupling

Crooker & Weiner (2019) found a way to couple all the relativistic material, including the interior
of compact objects, with the expansion of the universe, by deriving Friedmann equations through
the Einstein-Hilbert action in a perturbed FRW universe. By starting from a few basic reasonable
assumptions [3], the result is

d2a

dη2
=
a3

6
⟨ρ(η, x)−

3∑︂
i=1

pi(η, x)⟩V (3.7.8)

where η is the conformal time, and the spatial average is made inside a volume V. Such volume
corresponds to a 3-ball centered in a point P of space, such that moving the center of the ball to
another point U doesn’t change the average estimation. Because the universe is homogeneous in
its largest scale, there must exists a radius bV, great enough so that this is possible approximately.
Observations suggest that, at the present epoch such radius is

bV ∼ 180Mpc

Therefore, this coupling is a consequence of an averaging process of all pressures composing the
universe. From the conservation law of the stress-energy tensor, they showed that the material con-
tributing in this way to the expansion must shift locally in energy [3]. The paper further argued
that the vacuum Kerr solution (and thus the Schwarzschild solution) respects the assumptions in a
specific domain, but it doesn’t affect Friedmann’s equation. Furthermore, asymptotic flat solutions
of any kind are valid only for short intervals. On the other hand, Schwarzschild’s constant density
sphere (interior solution) and the isolated de-Sitter sphere (representing a GEODE7) both couple with
the expansion by affecting the Friedmann equations. GEODEs are explicit GR solutions maximally
relativistic: they saturate the dominant energy condition. Furthermore, the article states that any
source that contributes to the cosmologically averaged pressure must itself evolve cosmologically, but
the effect is non-negligible only for relativistic objects8 [3]. The energy density can be written

ρ(a) = EN (3.7.9)

where N is the physical number density of the object population. Moreover, in an expanding universe

N ∼ a−3 (3.7.10)

and (2.5.22) becomes

E ∼ a−3ω (3.7.11)

In other words, this is a generalized photon red shift for timelike trajectories, which successfully
reduces to the better known photon case for ω = 1/3.
For GEODEs the effect is maximal with

E ∼ a3 (3.7.12)

The cosmological energy shift is completely unaffected by the spatial distribution of material in the
universe. This model justifies a single-parameter model of cosmological coupling [4]:

m(a) = m0

(︃
a

ai

)︃k

(3.7.13)

with k = −3ω, and ai is the scale factor at which the object becomes cosmologically coupled.

7A simple model of a Generic Object of Dark Energy.
8composed by materials such that | ω |=| p

ρ
| is not negligible.
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3.8 Have we found the source of dark energy?

The Kerr solution (1963) showed excellent consistency with observations of gravitational waves from
binary BH mergers, on timescales from millisecond to hours, and spatial scales of up to milliparsecs
[7]. Croker (2019) showed that such consistency can hold in a restricted dominion of spacetime, since
a Kerr BH is a local solution asymptotic to flat Minkowski spacetime.
The need of CBHs solution is obvious, but since the discovery of the McVittie metric, not many crucial
results have been found. Generalizations of the Schwarzschild solutions well behave only for specific
asymptotic spacetimes, while we are far from finding a Kerr CBH. However, a paper made by Farrah
et al. (2023) [7] tried to use the simple model of cosmological energy shift made by Crooker (3.7.13)
to validate observations from five different high-redshift samples9, and one local sample (z ∼ 0), of
elliptical galaxies. The experimental results were presented in an earlier paper by Farrah et al. (2023)
[6]. The goal of the article is to perform a direct test of BH mass growth due to cosmological coupling.
The test relies on the measurement of the increasing ratio of a supermassive black hole (SMBH) to
host stellar mass

R =
MBH

M∗
(3.8.1)

which can be compared with the mass of the local sample. In fact, a translational offset was found
comparing the two samples in the MBH -M∗ plane: a small translation offset τ∗ in stellar mass M∗ was
detected, while the magnitude of the MBH offset τBH is much larger.
Then, a parameterization of the energy shift can be made thanks to (3.7.13)10. SMBH growth via
accretion is expected to be negligible, and galaxy-galaxy mergers should not in average increase the
SMBH mass. One would think that the only component of the analyzed system that couples is the
highly relativistic supermassive black hole. The result is

k = 3.11+1.19
−1.33 (90% confidence level) (3.8.2)

which excludes the uncoupled case (k=0) at 99.98% confidence. The related value of k ∼ 3 is consis-
tent with a vacuum interior, just like the one of GEODEs.
Equation (3.7.13) suggests that vacuum interior black holes with k ∼ 3 will gain mass proportional to
a3, while the number density of such objects will decrease like a−3 because of cosmological expansion
in a FRW universe. When accretion is negligible, this population of BHs will participate to expansion
as a dark energy density ρΛ. From the conservation of the stress-energy tensor this is possible only if
they also contribute cosmological pressure PΛ = −ρΛ. k ∼ 3 BHs can be thus treated as cosmological
dark energy species. The natural implication is that a cosmologically realistic BH solution with a
non-singular vacuum interior for GR must exist. Morevre, the paper goes behind this conclusion,
stating that BHs contribute as the unique cosmological dark energy species, driving the late time
accelerating expansion with the Planck measured value ΩΛ = 0.68. In order to do so, the authors
built a mathematical model of the cosmic star formation rate density (SFRD). Then, they showed
that an estimate of the mass of the population of BHs made by (3.7.13), distributed as a population of
Massive Compact Halo Objects (MACHO), is consistent with the mathematical model. In conclusion,
stellar remnant BHs must produce the totality of dark energy.

On the other hand, a more recent paper by Parnovsky [16] introduced some serious issues in the
latter model. These are briefly summarized as follows

i) Firstly, a well behaving solution for Kerr cosmological black holes has yet to be found and eq.
(3.7.13) must be taken carefully. Another issue follows directly: while in an asymptotic flat BH
solution the mass of the object can be detected from the asymptotical form of the metric, in
cosmological black holes this is not true anymore and ambiguity in defining the invariant mass
is present, especially because of the absence of an exact solution.

9two from WISE survey (z = 0.75) and (z = 0.85), two from the SDSS (z = 0.75) and (z = 0.85), and one from
COSMOS field (z = 1.6).

10further technical details can be found in [7] and [6], since they are not the object of this thesis.
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ii) In a process of galaxies merging, it is true that the mass of the stellar population of the formed
galaxy can be approximately considered equal, while the final formed SMBH doesn’t exceed the
sum of the masses of the two original SMBHs11. An increase in the BH mass at accretion is
compensated by a decrease in the matter mass outside of it. Thus, the BH mass can increase,
while the total mass cannot. However it is difficult to imagine that the rate of accretion is related
to the scale factor a(t). An argument in contrast with this objection is that, by assuming that
a(t) is a monotonic function, the scale factor function can be inverted in order to obtain t(a).

iii) Let’s assume that the black hole interior is actually dark energy density. The density increase due
to cosmological coupling is perfectly balanced by the expansion as stated before. This feature
is consistent with the constancy of the dark energy density. In fact it cannot be transformed in
something else or viceversa. The equation of state p = −ρ provides a negative constant pressure
and an antigravity effect (since ρ + 3p < 0). However, the black hole doesn’t have a negative
pressure and thus it cannot provide antigravity. The reason is simple. Black holes are highly
compact objects that occupy only a little fraction of space. Thus, the antigravitational effects
would be seen firstly in the region around the black hole. Moreover, the small fraction of BHs
matter cannot produce the present day dark energy.

iv) Assume that these vacuum energy interiors (ρv, pv) exist, taking the role of dark energy. Let there
be only matter in the universe, which is cold (pm ∼ 0), while the radiation can be considered
negligible in this analysis. Then, to obtain an accelerating universe as a whole, the condition
ρ+3P = ρm+ ρv +3Pv < 0 must hold. However since for vacuum ρv = −pv, the latter becomes
ρv > ρm/2.
It is unlikely that this kind of BHs provide more than a third of the total mass in the universe.

3.9 Conclusions

Conclusions by Farrah et al. (2023) [7] concerning the origin of dark energy are yet to be completely
discussed. However, a paper by Parnovsky [16] shows some persuasive physical objections to the latter
coupling model, suggesting that black holes can’t be the cause of the late time accelerating universe.
Therefore, the model built in [7] may have an internal consistency, but it’s important to don’t jump on
cosmological conclusions over the dark energy origin. In fact, the used coupling models are far from
describing a realistic solution of cosmological black holes. Despite this, the McVittie solution, which
is the first attempt to couple a mass-particle with an expanding FRW universe, is interesting in its
own right, since it is an exact solution of the second order to Einstein’s equations. However, McVittie
solution can’t always describe a black hole embedded in a FRW universe because of its singularities.
Kaloper [11] showed the the only subclass of McVittie solutions that can describe a CBH is the one
represented by metrics that are asymptotic to a de Sitter spacetime (and thus driven by a cosmological
constant). Other coupling solutions have been found: some examples are the Nolan interior [15], the
Sultana-Dyer accretion solution [20], and the solution given by Faraoni and Jaques that produces a
comoving horizon [5]. Crooker [3] showed that BH solutions that are asymptotic to flat Minkowski
universe can describe a physical solution only in a small subdomain of spacetime. Moreover, in the
same paper a redshift generalization for timelike trajectories was presented. Recent observations,
showed excellent consistency with the spinning Kerr solution (1963), only in short time/space-scales.
The need of an exact cosmological solution of the Kerr metric is obvious, in particular if new relations
between black holes and the expanding universe want to be found.

11part of the mass may decrease because of the emission of gravitational waves during the process.
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