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Nomenclature

Symbol Quantity Unit

a wave amplitude m
C wave celerity m/s
Ek kinetic energy J/m
Ep potential energy J/m
F specific energy flux W/m
g gravitational acceleration m/s2

h water depth in quiet conditions m
h height of the pipe flow m
H wave height m
H0 unperturbed wave height m
k wave number m−1

l depth of the lower end the conversion system m
L wave length m
L0 unperturbed wave length m
Lp inclined plane chord length m
Mi number of cells included in the pipe-flow at time i -
N number of time-steps -
P0 theoretical unperturbed wave power W/m
S space of the configuration variables -
T wave period s
u horizontal component of velocity m/s
v velocity vector m/s
X design vector -
w vertical component of velocity m/s
δ adimensional depth of the upper edge of the plane -
η profile function of the wave m
ηb breaking efficiency of a given configuration -
φ velocity potential m2/s
γ Iribarren-Battjes empirical parameter -
Γb breaking index -
ϑ average inclination of the plane rad
ρ local density kg/m3

ω wave angular frequency rad/s
∆zj height of cell j m
∆ti duration of a time-step s
∇· divergence operator -
∇× rotor operator -
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Chapter 1

Energy from the sea

1.1 Introduction

Recent instabilities of world economy, due to the increasing price of

carbon-derivative fuels along with the connected socio-political turbu-

lences, have aroused the interest in the production of renewable energy

among the most industrialised western nations. In this scenario, the sea

represents a huge reserve of energy that occurs in a number of different

forms.

Figure 1.1: Distribution of marine energy over the globe (in kW/m)

3



4 CHAPTER 1. ENERGY FROM THE SEA

Among these, the best known and most freely available are wave en-

ergy and tidal energy; some research was also performed by constructing

a heat cycle based on geothermal vents, without achieving significant

results [1]. National governments as well as private industries are in-

creasing their efforts in order to develop reliable technologies to exploit

this great resource. With few exceptions, the actual techniques to ex-

tract energy from waves and tides are quite different, reflecting the very

different characteristics of these two sources of energy.

Ocean waves arise from the transfer of energy from the sun to wind and,

finally, water. Solar energy generates wind that blows over the sea sur-

face, converting wind energy to wave energy, which can travel thousands

of miles with little energy loss. Most importantly, waves are a regular

source of power, whose intensity can be accurately predicted even several

days before their arrival [2].

1.2 Generalities about sea waves

Wave energy is due to the movement of water particles close to the sea

surface, being the development of a wave determined by the wind action

on water surface. Beneath the free surface, each single water particle

makes a circular motion, while energy transmission occurs in the direction

of the wave propagation. In the absence of current there is no net water

movement associated to energy transportation. This is in sharp contrast

with tide energy, were water and energy move together.

When the wave motion occurs offshore, most of the movement of water

occurs on site and consists of small oscillations of the individual particles

that make only negligible shifts forward. The offshore waves therefore

imply a displacement of forms rather than the substance or, in other

words, a shift of energy rather than of substance. Only when the wave

breaks a significant mass flow is realized.
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Sea waves consist on a movement of surface water, mainly due to the

action of wind; wind effects can be felt up to a maximum depth of 150

meters. In this case the wave form because the wind pushes the water

layer surface, giving some of its energy; the friction between the wind and

the water surface moves the surface particles in a circulatory motion.

Size of waves directly depends on the water basin in which they develope

and from the source that has generated them. Under normal conditions,

offshore waves may reach 6 meters in height in the Mediterranean Sea

and 18 meters in the Atlantic Ocean and the Pacific Ocean. However,

Figure 1.2: Waves and breaking

when a wave hits an obstacle, it may rise and reach greater heights: the

highest waves formed in this way can be seen in the storms at north-west

of the Cape of Good Hope. The waves motion is classified according to

a scale ranging from 1 (corresponding to the calm sea) up to 10 (which

indicates a severe storm with waves over 13 meters)

Effects on the coast Waves can have two effects on the coast: their

violent action erodes the coast on which they fall or ,in some places where

their action is softer, sediments which they lead may cause the advancing

of the coast towards the sea.
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The wave energy so comes from the movement of water close to the

sea surface, on which the action of the wind determines the formation

and development of them; as the wind comes from the action of the sun

on the atmosphere, waves represent a reserve of solar energy.

As can be seen from Fig 1.2, below the surface in deep water the individ-

ual particles of water make circular movements, while the transmission

of energy takes place in the direction of propagation of the wave: in

the absence of current there is no net movement of water related to the

transport of energy.

The phenomenon of the wave breaking, due to the static action of the

seabed, water particles acquire a horizontal velocity component, which

will be object of study in this thesis, and from which it is intended to

obtain mechanical energy.

1.3 Current recovery technologies

The realistically usable worldwide resource has been estimated to be

greater than 2 TW. Locations with the most potential for wave power

include the western seaboard of Europe, the northern coast of the UK,

and the Pacific coastlines of North and South America, Southern Africa,

Australia, and New Zealand. The most common categories are shortly

described below.

Overtopping converters

These devices [3] are based on the action of waves pushing water up a

ramp from which it spills into a basin. In some systems using a flat

ramp width constant operating conditions the water may be raised up

to 3 m. The water collected in the basin is drained then back into the

sea through a turbine (usually a Kaplan type), using a conventional low-

dropout hydraulic technology adapted to marine conditions.
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The first important development of this category was the Tapchan

(Tapered Channel) configuration, designed for coastal use, using a basin

on land. The technology was later adapted open sea, using floating docks

and ramps.

Figure 1.3: Overtopping converter

Articulated rafts.

These devices are based on the relative motion of articulated floating

segments [4][5]. A hydraulic system between each pair of segments sup-

plies a hydraulic accumulator, from which the pressurized fluid drives a

generator. Articulated rafts are placed perpendicular to the wave front.

Figure 1.4: Articulated rafts
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Oscillating water column devices

This is one of the most common device in order to produce energy from

waves. An oscillating water column (OWC) includes a partially sub-

merged structure (collector), open to the sea surface. Under the action

of waves, the water flows into and out of the structure, compressing the

air inside a collector open to the atmosphere, which in turn flows through

a turbine that extracts energy and drives a generator.

Figure 1.5: Oscillating water column application

The Wells turbine is the most used for this application, mainly because

of its simplicity and performance. The OWC design is the most ma-

ture wave energy collector in terms of number and duration of in-sea

prototypes tested to date. Research on OWCs started in the 1980s, in

conjunction with their installation in countries such as Japan [6]. Ide-

ally, the air chamber dimensions should be designed to maximize energy

capture in the local wave climate. On the other hand, it was proved that

the generator design is almost completely independent of wave climate,

such that only areas of extreme wave energy can marginally benefit from

larger generators[7].
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Buoys and floaters

The rise and fall of the waves moves a rack and pinion within the buoy

and spins a generator. The electricity is transmitted to shore over a

submerged transmission line. A 150 kW buoy has a diameter of 36 feet

(11 m) and is 145 feet (44 m) tall, with approximately 30 feet of the unit

rising above the ocean surface.

Using a three-point mooring system, they are designed to be installed

one to five miles (8 km) offshore in water 100 to 200 feet (60 m) deep.

Figure 1.6: PowerBuoy with peak-rated power output of 150 kW.
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Chapter 2

Mathematical models for sea

waves

2.1 Classification

Ocean waves are a surface movement mainly due to the action of wind,

which can be felt in the open sea up to a maximum depth of 150 meters.

In this case waves form because the wind pushes the surface water layer,

giving some of its energy. The friction between the wind and the water

surface moves the surface particles of a circulatory motion.

In view of these considerations, we can report a classification of ocean

waves (Kinsman 1983), based on the period T of propagation:

• capillar waves (0-0.1 s)

• ultragravity waves (0.1-1 s)

• gravity waves (1-30 s)

• infragravity waves (30 s - 5 min)

• long period waves (30 min - 24 h)

• tidal waves ( 24 h)

11
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The first four can be considered caused by the action of wind, while

the other from movements of larger scale such as seismic or lunar; waves

of wind can be divided into living waves and long waves depending on

the distance of damping.

2.2 Characteristics of a water-wave

Consider a wave motion η(x, t) around an average value of h (free surface)

describable by a sinusoidal function of the coordinates x and t. A similar

wave motion is called plane wave, and the general equation which governs

the profile is the following:

η(x, t) = a · sin(kx− ωt+ ϕ) (2.1)

Figure 2.1: Characteristics of a plane wave

We note that a similar phenomenon can be described with a two-dimensional

model (which assumes unitary y-coordinate) but then results can be

adapt to the three-dimensional case through appropriate considerations

that will be discussed.
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The quantities characterizing the propagation of motion are summa-

rized according to Figure 2.1 and are:

• L : wavelength or spatial period [m]

• a : wave amplitude [m]

• h : average level of the free surface [m]

• η(x, t) : current deviation from the average level [m]

• T : period [s]

There are also some important parameters that are derived directly from

the previous ones:

• C : wave celerity [m·s−1]

• k = 2π
L

: wave number [m−1]

• ω = 2π
T

: wave angular frequency [s−1]

2.3 Governing equations

Equations that govern the motion of the fluid inside the test tank are

Navier-Stokes equations, i.e. the continuity equation (conservation of

mass) and the momentum equation (variation of momentum).

Conservation of mass

The velocity vector is in the form v = (u, 0, w) having regard to the

two-dimensionality of the problem, and the balance equation of mass in

a volume portion is, in general, given by:

∂ρ

∂t
+ ρ(∇ · v) + v · ∇ρ = 0 (2.2)
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Assuming density ρ constant in time and uniform in space, the pre-

vious equation becomes:

∇ · v = 0 (2.3)

or equivalently, whereas the wave is two-dimensional:

∂u

∂x
+
∂w

∂z
= 0 (2.4)

Variation of momentum

As regards the balance equation of momentum, it presents itself in the

most general form as:

ρ
dv

dt
= Σ (F)m + Σ (F)sup (2.5)

in which the terms in the second member respectively indicate the sum

of the body forces and surface forces acting on the unit of mass.

The body forces include the contribution of weight and Coriolis force

(negligible if we consider little geographically extended domain).

The surface forces contain the contribution of pressure and that of surface

frictions. However, assuming the fluid non-viscous, the friction forces

water-bottom, water-water and air-water are neglected in the discussion.

The forces acting on a portion of the fluid volume is thus reduced to:

Fsup = −∇p , Fm = (0)i− (ρg)k

Explaining the material derivative and projecting (2.5) along the two

cartesian axes, having regard to the simplifications made, we obtained

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= −1

ρ

∂p

∂x
(2.6)

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
= −1

ρ

∂p

∂z
− g (2.7)
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By the hypothesis that the vorticity vector is null (plausible hypoth-

esis if the wave does not break) so that the motion can be considered as

irrotational, you get an additional condition:

∇× v = 0 =⇒ ∂w

∂x
− ∂u

∂z
= 0 (2.8)

Given the irrotational velocity field, we deduce the existence of a scalar

potential φ, known throughout the domain that describes the kinematic

field, such that:
∂φ

∂x
= u ,

∂φ

∂z
= w (2.9)

Depending on the potential of the velocity is then possible to rewrite

(2.4) as:

∂2φ

∂x2
+
∂2φ

∂z2
= 0 (2.10)

or, in compact notation:

∇2φ = 0

As for the equation of motion, can be expressed as a function of the

velocity potential, obtaining the known Bernoulli equation:

∂φ

∂t
+
p

ρ
+ gz +

1

2

(
∂φ

∂x

)2

+
1

2

(
∂φ

∂z

)2

= const (2.11)

By setting the boundary conditions to the system of differential equations

given by (2.10) and (2.11) you can trace the scalar potential φ and then

know, at each point of the domain and at each time instant, the velocity

vector (in magnitude and direction) and the pressure field.
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Kinematic boundary conditions

The kinematic conditions pose constraints on the properties of the ve-

locity vector in correspondence of particular geometrical discontinuities

of the domain, for example the seabed or the free surface.

If we assume that the axis x is the same height as the free surface, the

free surface motion is described by (2.1) and the points in question are

identified by the relation:

z = η(x, t) (2.12)

Consequently, the total derivative with respect to time is expressed by:

d

dt
η(x, t) =

∂η

∂t
+ u

∂η

∂x
(2.13)

and remembering that dη
dt

= w = ∂φ
∂z

and u = ∂φ
∂x

the previous equation,

and then the kinematic boundary condition on the free surface, can be

rewritten as:
∂φ

∂z
=
∂η

∂t
+
∂φ

∂x

∂η

∂z
(2.14)

While the points in contact with the seabed are characterized by the

constant equation:

z ≡ −h (2.15)

The velocity of these points, due to the impermeability of the seabed,

must have only component along x, then:

(w)z=−h =

(
∂φ

∂z

)
z=−h

= 0 (2.16)

To these must be added the wave-inlet boundary conditions, i.e. those

that describe the periodic wave generation. This aspect is dealt with in

Chapter 6.
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Dynamic boundary conditions

The dynamic boundary conditions set the distribution of pressures acting

on a given surface. In particular, on all the free surface points acts the

same pressure, equal to atmospheric pressure:

(p)z=η ≡ patm (2.17)

In view of this, we can rewrite the equation (2.11) as:

∂φ

∂t
+
patm
ρ

+ gη +
1

2

(
∂φ

∂x

)2

+
1

2

(
∂φ

∂z

)2

= const (2.18)

and noting that the contribution of the static pressure is constant, it can

be brought to second member:

∂φ

∂t
+ gη +

1

2

(
∂φ

∂x

)2

+
1

2

(
∂φ

∂z

)2

= const (2.19)

Find a solution in terms of phi(x, z, t) and p(x, z, t) to the system of

differential equations given by (2.10) and (2.11) is not analytically simple

because of the non-linearity introduced by the kinetic terms in the second

equation: it is therefore necessary to introduce some simplification.
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2.4 Linear theory of Airy

Airy has analytically found the potential function φ(x, z, t) which solves

the continuity equation and the motion equation in the hypothesis of

linearity, that is when the quadratic terms can be neglected compared

to the other; this hypothesis is valid only with the assumption of small

amplitude waves relative to the length and depth: η(x, t)� L, h .

In view of these considerations, we can simplify the equation of motion

in order to make it linear:
∇2φ = 0
∂φ

∂t
+
p

ρ
+ gz = const

(2.20)

The system admits analytical solution, in particular the velocity potential

φ is given by the following expression:

φ(x, z, t) = −
(a · g
ω

) cosh k(h+ z)

coshhk
cos(kx− ωt) (2.21)

From the known potential, the expressions of components of the veloc-

ity vector can be directly derived as a function of spatial and temporal

parameters:

u(x, z, t) =
∂φ

∂x
=
a · g · k
ω

sin(kx− ωt)cosh k(h+ z)

coshhk
(2.22)

w(x, z, t) =
∂φ

∂z
= −a · g · k

ω
cos(kx− ωt)sinh k(h+ z)

coshhk
(2.23)

It can be shown that, as already assumed in the introduction phase, the

wave profile in the case of linear simplification of the motion equations

is a harmonic function of the parameters x and t:

η(x, t) = a · sin(kx− ωt) (2.24)
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2.5 The second-order theory of Stokes

When a two-dimensional wave propagates on a relatively low depth , the

surface profile tends to change with respect to the sinusoidal so as to

give rise to an increase of the crests and a flattening of the troughs so

that the profile is not symmetrical with respect to the level of quietness:

in this case is no longer valid the representation by means of the linear

theory with decreasing depth. So it is necessary to take into account in

the equation of motion of the integrated terms of higher order:

∂φ

∂t
+
p

ρ
+ gz +

1

2

(
∂φ

∂x

)2

+
1

2

(
∂φ

∂z

)2

= const (2.25)

Without mentioning the demonstration, the velocity components that

are obtained from the derivation of the potential are:

u =
agk

ω

[
cosh k(d + z)

cosh dk
sin(kx− ωt) +

3ak cosh 2k(d + z)
4 sinh3 dk · cosh dk

sin(2kx− 2ωt)
]

(2.26)

w = −agk

ω

[
sinh k(d + z)

cosh dk
cos(kx− ωt) +

3ak sinh 2k(d + z)
4 sinh3 dk · cosh dk

cos(2kx− 2ωt)
]

(2.27)

Direct application to CFD simulations These last two expressions

represent, for each x fixed position, the components of the velocity vector

of all the points, from the bottom to the free surface: hence will have

fundamental importance in CFD simulations because representing the

kinematic boundary conditions that describe the arrival of the wave from

the undisturbed marine system into the virtual test tank.
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2.6 Wave breaking

2.6.1 Stability and shoaling

When a wave propagates through a decreasing depth seabed, the wave-

length decreases and the height increases: this in order to allow the

conservation of energy flow per unit of length. The parameters that

characterize this phenomenon, called shoaling, can be found in:

• H/H0 : ratio between the local wave height and the unperturbed

wave height (for deep seabed) ;

• h/L0 : ratio between the local depth and the unperturbed wave-

length

It is possible to represent the correlation between the two parameters in

the Cartesian plane, in order to understand how the amplitude varies as

a function of the local depth of the bottom:

Figure 2.2: Wave height as a function of local depth
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The figure shows that for very low depth, the conservation of energy

requires that the amplitude increases up to an infinite value for h → 0.

On the other hand, if the depth is much greater than the wavelength, it

falls assuming wave in deep water, therefore H = H0.

Stability index It is reasonable to assume that the amplitude of a

wave can not increase to very high values; intuitively, if the amplitude

tends to high values while the distance between two ridges is reduced

gradually, the profile of the wave becomes unstable: this context is the

phenomenon known as wave breaking. The breaking criterion we intro-

duce is the McCowan one, that fixes the stability limit condition by the

index:

Γb =
H

h
≤ 0, 78 (2.28)

2.6.2 Types of wave breaking

The wave breaking is a complex phenomenon that gives rise to consid-

erable complications in the analytical description of the fluid motion,

having regard to these complications, the approach that is adopted for

the study of the problem is empirical.

The way in which the wave breaking occurs are varied and depend on

the slope of the seabed and the wave kinematics. The wave breaking

figures are therefore different to each other, and depend on the empirical

parameter of Iribarren-Battjes :

γ =
tanϑ√
H0/L0

(2.29)

where ϑ indicates the slope of the seabed.
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In relation to the value of γ parameter, we have three different types

of wave breaking, called respectively:

• spilling breaking (γ < 0, 5) : turbulence on the crest;

• plunging breaking (0, 5 < γ < 3, 3) : turbulence in the lower part

of the water column;

• surging breaking (γ > 3, 3) : turbulence generated by the friction

of the bottom;

Spilling breaking

Also called overthrow breaking, is characterized by slight slope seabeds,

with a unbalanced forward wave and subsequent localized breaking in a

strip along the ridge.

Figure 2.3: Spilling breaking

Generally this type of wave breaking presents foam on the side of the

ridge on the side of the propagation of the wave motion.
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Plunging breaking

This type of breaking is characterized by average slope seabeds, evident

curl in wave crest, plunge forward of the water forming the crest; this

gives rise to high horizontal components of velocity, and strong release

of kinetic energy.

Figure 2.4: Plunging breaking

Surging breaking

Also called lift breaking, is characterized by steep seabed which cause a

phenomenon of reflection: the wavefront rises suddenly, and collapsing

immediately after.

Figure 2.5: Surging breaking
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2.7 Energy associated to wave

As already mentioned in the introductory part, a unperturbed wave in-

volves the transport, in the direction of the velocity (in our case x) of a

quantity of energy. The transmitted energy is composed of:

• Potential energy, resulting from the displacement of a mass (water)

from the equilibrium position with respect to the gravitational field;

• Kinetic energy, due to the magnitude of the velocity vector of the

different points of the domain occupied by the fluid;

The determination of the wave energy is of fundamental importance be-

cause it provides a term of comparison to estimate the performance of

a hypothetical conversion device, or to estimate the power required to a

wave-maker for creating a similar wave.

2.7.1 Potential energy

Following the analytical determination of the average potential energy

for a wave of type (2.1) is proposed. Consider an infinitesimal element

of the fluid column as in figure:

The potential energy relative to that element can be written as:

dEp = dm · g · zG = ρg · dx · (h+ η) ·
(
h+ η

2

)
(2.30)
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Imposing that the wave profile is described by (2.1) ie a harmonic

sinusoidal, we can estimate the potential energy averaged over a period

between two crests:

Ep =
1

LT

∫
d(Ep) =

1

LT

∫ T

0

∫ L

0

ρg
(h+ η)2

2
dxdt =

=
ρg

2LT

∫ T

0

∫ L

0

[h+ a sin(kx− ωt)]2 dxdt =

=
ρg

2LT

∫ T

0

∫ L

0

[
h2 + 2ah sin(kx− ωt) + a2 sin2(kx− ωt)

]
dxdt

using the subtraction formulas of sine and cosine we can develop the

harmonic terms as:

sin(kx− ωt) = sin kx cosωt− cos kx sinωt

cos(kx− ωt) = cos kx cosωt+ sin kx sinωt

and remembering sin2 α = 1−cos2α
2

you can rewrite the quadratic term as:

sin2(kx−ωt) =
1− cos(2kx− 2ωt)

2
=

1− cos 2kx cos 2ωt− sin 2kx sin 2ωt

2

All products of harmonic functions that result, give zero contribution

since the integral is calculated over the spacial period L and the time

period T :∫∫
(sinx cos t) dxdt =

∫ L

0

(sinx) dx ·
∫ T

0

(cos t) dt = 0 · 0 = 0

The final expression that results is therefore:

Ep =
ρg

2LT

∫ T

0

∫ L

0

(
h2 +

a2

2

)
dxdt =

=
ρg

2LT

∫ T

0

∫ L

0

(
h2 +

(H/2)2

2

)
dxdt =

ρgh2

2
+
ρgH2

16
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The latter expression makes evident how, in calculating total poten-

tial energy, there are two contributions: the energy due to the wave

profile and the potential energy that would have the same mass of water

in conditions of quiet, the latter amounting to ρgh2

2
.

If you want to get the part of energy due to wave only, simply subtract

the cited term, then: (
Ep

)
wave

=
ρgH2

16
(2.31)

2.7.2 Kinetic energy

The kinetic energy of the wave motion is due to the sum of the energies

possessed individually by each infinitesimal element of the domain, the

latter equal to:

dEk =
1

2
· dm · |v|2 =

1

2
(ρ · dx · dz) (u2 + w2) (2.32)

It should be noted that the two-dimensionality of the problem demands

that variables we are examining are specific quantities, so refer to dy = 1.

Imposing that the wave profile in this case also have sinusoidal harmonic

character, we can estimate the average kinetic energy between two crests

over a period:

Ek =
1

LT

∫
d(Ec) =

1

LT

∫ T

0

∫ L

0

∫ η

−h
ρ
u2 + w2

2
dzdxdt

Replacing the components u and w with respective expressions as a func-

tion of t, z and x and following similar steps to those of the potential

energy calculation, we obtain:

(
Ek

)
wave

=
ρgH2

16
(2.33)
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As mentioned in the introductory chapter, specific average total en-

ergy of a wave that propagates in the x direction, is obtained by adding

the components of potential energy and kinetic energy specific just ob-

tained:

E = Ep + Ek =
ρgH2

8
(2.34)

And so the total energy held in a progressive wave along a wave front of

length l is obtained as:

E = E · l =
ρgH2

8
· l (2.35)

From the energy conversion point of view , the interesting parameter

is the power potentially developable by an installation. For this reason

it is necessary to know the power of an incident wave; the theoretical

unperturbed wave power PO is defined as the wave energy per unit time

transmitted in the direction of wave propagation, and can be shown to

be:

P0 =
ρgH2L

16T
(2.36)

For finite amplitude waves, or shallow water, the above formula can be

adapted as follows:

P0 =
ρgH2L

16T

(
1 +

2kh

sinh(2kh)

)
(2.37)

This last result is of fundamental importance in this work, as it will be

a reference for the energy considerations for the device to be configured.
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Chapter 3

Modern methods of

optimization

Optimization is the act of obtaining the best result under given circum-

stances. In design, construction, and maintenance of any engineering

system, engineers have to take many technological and managerial deci-

sions at several stages. The ultimate goal of all such decisions is either

to minimize the effort required or to maximize the desired benefit.

Figure 3.1: Minimum of f(x) is same as maximum of -f(x).

29
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Since the effort required or the benefit desired in any practical situ-

ation can be expressed as a function of certain decision variables, opti-

mization can be defined as the process of finding the conditions that give

the maximum or minimum value of a function.

It can be seen from Fig. 3.1 that if a point x∗ corresponds to the min-

imum value of function f(x), the same point also corresponds to the

maximum value of the negative of the function, −f(x). Thus without

loss of generality, optimization can be taken to mean minimization since

the maximum of a function can be found by seeking the minimum of the

negative of the same function.

In recent years, some optimization methods that are conceptually dif-

ferent from the traditional mathematical programming techniques have

been developed. These methods are labeled as modern or nontraditional

methods of optimization. Most of these methods are based on certain

characteristics and behavior of biological, molecular, swarm of insects,

and neurobiological systems. The most important methods are:

• Genetic algorithms

• Simulated annealing

• Particle swarm optimization

• Ant colony optimization

• Fuzzy optimization

• Neural-network-based methods

Most of these methods have been developed only in recent years and

are emerging as popular methods for the solution of complex engineering

problems. Most require only the function values (and not the deriva-

tives).

The genetic algorithms are based on the principles of natural genetics

and natural selection. Simulated annealing is based on the simulation of

thermal annealing of critically heated solids.
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Both genetic algorithms and simulated annealing are stochastic meth-

ods that can find the global minimum with a high probability and are

naturally applicable for the solution of discrete optimization problems.

The particle swarm optimization is based on the behavior of a colony of

living things, such as a swarm of insects, a flock of birds, or a school of

fish. Ant colony optimization is based on the cooperative behavior of

real ant colonies, which are able to find the shortest path from their nest

to a food source.

In many practical systems, the objective function, constraints, and the

design data are known only in vague and linguistic terms. Fuzzy opti-

mization methods have been developed for solving such problems.

In neural-network-based methods, the problem is modeled as a network

consisting of several neurons, and the network is trained suitably to solve

the optimization problem efficiently.

3.1 Genetic Algorithms

Many practical optimum design problems are characterized by mixed

continuous-discrete variables, and discontinuous and nonconvex design

spaces. If standard nonlinear programming techniques are used for this

type of problem they will be inefficient, computationally expensive, and,

in most cases, find a relative optimum that is closest to the starting point.

Genetic algorithms (GAs) are well suited for solving such problems, and

in most cases they can find the global optimum solution with a high prob-

ability. Although GAs were first presented systematically by Holland, the

basic ideas of analysis and design based on the concepts of biological evo-

lution can be found in the work of Rechenberg. Philosophically, GAs are

based on Darwin’s theory of survival of the fittest. Genetic algorithms

are based on the principles of natural genetics and natural selection. The

basic elements of natural genetics reproduction, crossover, and mutation

are used in the genetic search procedure.
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GAs differ from the traditional methods of optimization in the fol-

lowing respects:

• A population of points (trial design vectors) is used for starting the

procedure instead of a single design point. If the number of design

variables is n, usually the size of the population is taken as 2n to

4n. Since several points are used as candidate solutions, GAs are

less likely to get trapped at a local optimum.

• GAs use only the values of the objective function. The derivatives

are not used in the search procedure.

• In GAs the design variables are represented as strings of binary

variables that correspond to the chromosomes in natural genet-

ics. Thus the search method is naturally applicable for solving

discrete and integer programming problems. For continuous design

variables, the string length can be varied to achieve any desired

resolution.

• The objective function value corresponding to a design vector plays

the role of fitness in natural genetics.

• In every new generation, a new set of strings is produced by using

randomized parents selection and crossover from the old genera-

tion (old set of strings). Although randomized, GAs are not simple

random search techniques. They efficiently explore the new combi-

nations with the available knowledge to find a new generation with

better fitness or objective function value.

3.1.1 Design variables

In GAs, the design variables are represented as strings of binary numbers,

0 and 1. If each design variable xi, i = 1, 2, ..., n is coded in a string of

length q, a design vector is represented using a string of total length nq.
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For example, if a string of length 5 is used to represent each variable,

a total string of length 20 describes a design vector with n = 4. The

following string of 20 binary digits denote the vector (x1 = 18, x2 =

3,x3 = 1, x4 = 4):

Figure 3.2: Example of codification of four design variables

In general, if a binary number is given by bqbq−1...b2b1b0, where bk = 0

or 1, k = 0, 1, 2, ..., q , then its equivalent decimal number y (integer) is

given by:

y =

q∑
k=0

2kbk (3.1)

This indicates that a continuous design variable x can only be represented

by a set of discrete values if binary representation is used. If a variable

x (whose bounds are given by x(l) and x(u)) is represented by a string of

q binary numbers, its decimal value can be computed as

x = x(l) +
x(u) − x(l)

2q − 1

q∑
k=0

2kbk (3.2)

3.1.2 Objective Function and Constraints

Because genetic algorithms are based on the survival of the fittest princi-

ple of nature, they try to maximize a function called the fitness function.

Thus GAs are naturally suitable for solving unconstrained maximization

problems. The fitness function, F (X), can be taken to be same as the

objective function f(X) of an unconstrained maximization problem so

that F (X) = f(X).
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A minimization problem can be transformed into a maximization

problem before applying the GAs. Usually the fitness function is chosen

to be nonnegative. The commonly used transformation to convert an

unconstrained minimization problem to a fitness function is given by:

F (X) =
1

1 + f(X)
(3.3)

It can be seen that the conversion does not alter the location of the min-

imum of f(X) but converts the minimization problem into an equivalent

maximization problem. A general constrained minimization problem can

be stated as:

Minimize f(X)

subject to:

gi(X) ≤ 0 , i = 1, 2, ...,m (3.4)

and

hj(X) = 0 , j = 1, 2, ..., p (3.5)

This problem can be converted into an equivalent unconstrained mini-

mization problem by using the concept of penalty function. The fitness

function is modified as following:

F (X) = f(X) +
m∑
i=1

ri · g̃i(X)2 +

p∑
j=1

Rj · hj(X)2 (3.6)

being

g̃i(X) =

gi(X), if gi(X) > 0

0, if gi(X) ≤ 0
(3.7)

In most cases the penalty parameters ri and Rj associated with the con-

straints values are usually kept constant throughout the solution process

as:

ri = r, i = 1, 2, ...,m and Rj = R, j = 1, 2, ..., p (3.8)
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3.1.3 Genetic Operators

The solution of an optimization problem by GAs starts with a population

of random strings denoting several design vectors. The population size

in GAs (n) is usually fixed. Each string (or design vector) is evaluated

to find its fitness value.

The population is operated by three operators (reproduction, crossover,

and mutation) to produce a new population of points. The new popu-

lation is further evaluated to find the fitness values and tested for the

convergence of the process.

One cycle of reproduction, crossover, and mutation and the evaluation

of the fitness values is known as a generation in GAs. If the convergence

criterion is not satisfied, the population is iteratively operated by the

three operators and the resulting new population is evaluated for the

fitness values. The procedure is continued through several generations

until the convergence criterion is satisfied and the process is terminated.

The details of the three operations of GAs are given below.

Reproduction

Reproduction is the first operation applied to the population to select

good strings of the population to form a mating pool. The reproduc-

tion operator is also called the selection operator because it selects good

strings of the population. The reproduction operator is used to pick the

fittest strings (above-average) from the current population and insert

their multiple copies in the mating pool based on a probabilistic proce-

dure. In a commonly used reproduction operator, a string is selected

from the mating pool with a probability proportional to its fitness. Thus

if Fi denotes the fitness of the ith string in the population of size n, the

probability for selecting the ith string for the mating pool pi is given by:

pi =
Fi∑n
j=1 Fj

; j = 1, 2, ..., n (3.9)
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The implementation of the selection process given by (3.9) can be

understood by imagining a roulette wheel with its circumference divided

into segments, one for each string of the population, with the segment

lengths proportional to the fitness of the strings as shown in Fig. 3.1.

By spinning the roulette wheel n times (n being the population size) and

selecting, each time, the string chosen by the roulette-wheel pointer, we

obtain a mating pool of size n.

Figure 3.3: Roulette-wheel selection scheme

By this process, the string with a higher (lower) fitness value will be

selected more (less) frequently to the mating pool because it has a larger

(smaller) range of cumulative probability. Thus strings with high fitness

values in the population, probabilistically, get more copies in the mating

pool. It is to be noted that no new strings are formed in the reproduction

stage; only the existing strings in the population get copied to the mating

pool. The reproduction stage ensures that highly fit individuals (strings)

live and reproduce, and less fit individuals (strings) die. Thus the GAs

simulate the principle of survival-of-the-fittest of nature.
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Crossover

After reproduction, the crossover operator is implemented. The purpose

of crossover is to create new strings by exchanging information among

strings of the mating pool.

Many crossover operators have been used in the literature of GAs. In

most crossover operators, two individual strings (designs) are picked (or

selected) at random from the mating pool generated by the reproduction

operator and some portions of the strings are exchanged between the

strings. In the commonly used process, known as a single-point crossover

operator, a crossover site is selected at random along the string length,

and the binary digits (alleles) lying on the right side of the crossover

site are swapped (exchanged) between the two strings. The two strings

selected for participation in the crossover operators are known as parent

strings and the strings generated by the crossover operator are known as

child strings. For example, if two design vectors (parents), each with a

string length of 10, are given by:

(PARENT 1) X1 = [ 0 1 0 | 1 0 1 1 0 1 1 ]

(PARENT 2) X2 = [ 1 0 0 | 0 1 1 1 1 0 0 ]

the result of crossover, when the crossover site is 3, is given by:

(OFFSPRING 1) X3 = [ 0 1 0 | 0 1 1 1 1 0 0 ]

(OFFSPRING 2) X4 = [ 1 0 0 | 1 0 1 1 0 1 1 ]

Since the crossover operator combines substrings from parent strings

(which have good fitness values), the resulting child strings created are

expected to have better fitness values provided an appropriate (suitable)

crossover site is selected. However, the suitable or appropriate crossover

site is not known before hand. Hence the crossover site is usually chosen

randomly.
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The child strings generated using a random crossover site may or may

not be as good or better than their parent strings in terms of their fitness

values. If they are good or better than their parents, they will contribute

to a faster improvement of the average fitness value of the new popula-

tion. On the other hand, if the child strings created are worse than their

parent strings, it should not be of much concern to the success of the

GAs because the bad child strings will not survive very long as they are

less likely to be selected in the next reproduction stage (because of the

survival-of-the-fittest strategy used).

As indicated above, the effect of crossover may be useful or detrimen-

tal. Hence it is desirable not to use all the strings of the mating pool in

crossover but to preserve some of the good strings of the mating pool as

part of the population in the next generation. In practice, a crossover

probability, pc, is used in selecting the parents for crossover. Thus only

100 pc percent of the strings in the mating pool will be used in the

crossover operator while 100(1 - pc) percent of the strings will be re-

tained as they are in the new generation (of population).

Mutation

The crossover is the main operator by which new strings with better

fitness values are created for the new generations. The mutation operator

is applied to the new strings with a specific small mutation probability,

pm. The mutation operator changes the binary digit (allele’s value) 1

to 0 and vice versa. Several methods can be used for implementing

the mutation operator. In the single-point mutation, a mutation site

is selected at random along the string length and the binary digit at

that site is then changed from 1 to 0 or 0 to 1 with a probability of

pm. Numerically, the process can be implemented as follows: a random

number between 0 and 1 is generated; If the random number is smaller

than pm, then the binary digit is changed. Otherwise, the binary digit is

not changed.
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The purposes of mutation are:

• generating a string (design point) in the neighborhood of the cur-

rent string, thereby accomplishing a local search around the current

solution

• mantaining diversity in the population.

3.1.4 Algorithm

The computational procedure involved in maximizing the fitness func-

tion F (x1, x2, x3, ..., xn) in the genetic algorithm can be described by the

following steps.

1. Choose a suitable string length l = nq to represent the n design

variables of the design vector X. Assume suitable values for the

following parameters: population size m, crossover probability pc,

mutation probability pm, permissible value of standard deviation

of fitness values of the population (sf )max to use as a convergence

criterion, and maximum number of generations imax to be used an

a second convergence criterion;

2. Generate a random population of size m, each consisting of a string

of length l = nq. Evaluate the fitness values Fi , i = 1, 2, ...,m of

the m strings;

3. Carry out the reproduction process;

4. Carry out the crossover operation using the crossover probability

pc;

5. Carry out the mutation operation using the mutation probability

pm to find the new generation of m strings;

6. Evaluate the fitness values Fi , i = 1, 2, ...,m of the m strings of

the new population. Find the standard deviation of the m fitness

values;
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7. Test for the convergence of the algorithm or process. If sf ≤
(sf )max, the convergence criterion is satisfied and hence the pro-

cess may be stopped. Otherwise, go to step 8.

8. Test for the generation number. If i ≥ imax, the computations have

been performed for the maximum permissible number of genera-

tions and hence the process may be stopped. Otherwise, set the

generation number as i = i+ 1 and go to step 3.

The reproduction operator selects good strings for the mating pool, the

crossover operator recombines the substrings of good strings of the mat-

ing pool to create strings (next generation of population), and the mu-

tation operator alters the string locally.

The use of these three operators successively yields new generations with

improved values of average fitness of the population. Although, the im-

provement of the fitness of the strings in successive generations cannot

be proved mathematically, the process has been found to converge to the

optimum fitness value of the objective function. Note that if any bad

strings are created at any stage in the process, they will be eliminated

by the reproduction operator in the next generation. The GAs have

been successfully used to solve a variety of optimization problems in the

literature.
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3.2 Fuzzy-logic theory

In traditional designs, the optimization problem is stated in precise math-

ematical terms. However, in many real-world problems, the design data,

objective function, and constraints are stated in vague and linguistic

terms. For example, the statement, ”This beam carries a load of 1000 lb

with a probability of 0.8” is imprecise because of randomness in the ma-

terial properties of the beam. On the other hand, the statement, ”This

beam carries a large load” is imprecise because of the fuzzy meaning of

”large load”.

Similarly, in the optimum design of a machine component, the induced

stress (σ) is constrained by an upper bound value (σmax) as (σ < σmax).

If (σmax) = 30psi, it implies that a design with (σ) = 30.000psi is accept-

able whereas a design with (σ) = 30.001psi is not acceptable. However,

there is no substantive difference between thw two designs. It appears

that it is more reasonable to have a transition stage from absolute per-

mission to absolute impermission. This implies that the constraint is to

be stated in fuzzy terms. Fuzzy theories can be used to model and design

systems involving vague and imprecise information.

Representation of fuzzy sets

Let X be a classical crisp set of objects, called the universe, whose generic

elements are denoted by x. Membership in a classical subset A of X can

be viewed as a characteristic function µA from X to [0,1] such that:

µA(x) =

1, if x ∈ A

0, if x /∈ A
(3.10)

The set [0, 1] is called a valuation set. A set A is called a fuzzy set if the

valuation set is allowed to be the whole interval [0, 1].
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The fuzzy set A is characterized by the set of all pairs of points

denoted as:

A = x, µA(x) (3.11)

where µA(x) is called the membership function of x in A. The closer

the value of µA(x) is to 1, the more x belongs to A. The basic crisp set

operations of union, intersection, and complement can be represented on

Venn diagrams as shown in Fig. 3.4 Similar operations can be defined

Figure 3.4: Basic set operations in crisp set theory: (a) A or B or both:
A ∪B ; (b) A and B : A ∩B; (c) not A: A

for fuzzy sets, noting that the sets A and B do not have clear boundaries

in this case. The graphs of µB and µB can be used to define the set-

theoretic operations of fuzzy sets.

The union of the fuzzy sets A and B is defined as:

µA∪B(y) = max[µA(y);µB(y)] =

µA(y), if µA(y) > µB(y)

µB(y), if µA(y) < µB(y)
(3.12)

The intersection of the fuzzy sets A and B is similarly defined as:

µA∩B(y) = min[µA(y);µB(y)] =

µA(y), if µA(y) < µB(y)

µB(y), if µA(y) > µB(y)
(3.13)
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Figure 3.5: Basic set operations in fuzzy set theory: (a) union (b)
intersection (c) complement

Optimization of fuzzy systems

The conventional optimization methods deal with selection of the design

variables that optimizes an objective function subject to the satisfaction

of the stated constraints. For a fuzzy system, this notion of optimiza-

tion has to be revised. Since the objective and constraint functions are

characterized by the membership functions in a fuzzy system, a design

(decision) can be viewed as the intersection of the fuzzy objective and

constraint functions. The conventional optimization problem was stated

as follows:

Find X which minimizes f(X)

subject to

g
(l)
j ≤ gj(X) ≤ g

(u)
j , j = 1, 2, ...,m (3.14)

While the optimization problem of a fuzzy system is stated as follows:

Find X which minimizes f(X)

subject to

gj(X) ∈ Gj, j = 1, 2, ...,m (3.15)
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where Gj denotes the fuzzy interval to which the function gj(X) should

belong. Thus the fuzzy feasible region S, which denotes the intersection

of all Gj , is defined by the membership function:

µS(X) = min[µGj
(X)] (3.16)

Since a design vector X is considered feasible when µS(X) > 0, the op-

timum design is characterized by the maximum value of the intersection

of the objective function and the feasible domain:

µD(X∗) = max [µD(X∗)] X∗ ∈ D (3.17)

being

µD(X∗) = min
[
µf (X); min jµGj

(X)
]

(3.18)

Figure 3.6: Concept of fuzzy decision



Part II

Optimization of breaking

performances
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Chapter 4

Numerical model

4.1 Representation of the test-tank

As shown in Fig 4.1, a numerical wave tank is modelled to represent the

test facility of the Department of Naval Architecture, Ocean and Envi-

ronmental Engineering of the University of Trieste (Italy), where the pro-

posed numerical analyses are planned to be experimentally reproduced

in the prosecution of the hereby presented investigation.

Figure 4.1: Schematic representation of the numerical wave tank

47



48 CHAPTER 4. NUMERICAL MODEL

4.2 Meshing of the geometry

The calculation grid has been modeled as a compromise between good

accuracy in the description of the physical phenomenon of the breaking

wave and reasonable computation-time of the CFD simulation, so that

it can be inserted in the optimization loop for the calculation of the

objective function.

In this regard, after previous experiments and validations [1] , [11] the

mesh has thickened in correspondence of the following points:

• velocity inlet : this edge is the critical area in which conditions on

velocity are imposed and allow the waves to propagate;

• free surface: the multiphase model used in this work (VOF) loses

accuracy at the interface between the two phases if the grid is not

sufficiently thick in the border zone. Therefore, it is necessary to

thicken the mesh at the free surface;

• inclined plane: this area requires a greater accuracy in the dis-

cretization because the wave motion becomes irregular and poten-

tially turbulent.

Figure 4.2: Numerical model of the phisical geometry

Downstream of the plane the grid was thinned out so to allow the waves to

dissipate [12] and avoid phenomena of wave reflection that would distort

the results.
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4.3 Settings of CFD simulations

4.3.1 Multi-phase model

In computational fluid dynamics, the volume of fluid method (or in short

VOF method) is a numerical technique for tracking and locating the

free surface (or fluid-fluid interface). It belongs to the class of Eulerian

methods which are characterized by a mesh that is either stationary or

is moving in a certain prescribed manner to accommodate the evolving

shape of the interface.

The method is based on the idea of so-called volume fraction function Φ

that indicates the phase distribution in a volume control (cell).

So VOF allows to use static grids, but requires a fine discretization at

the interface for well-describing the phase border zone.

4.3.2 Governing equations

A laminar fluid model is adopted for the numerical solution of the prob-

lem. In this regard, Lal and Elangovan [6] compared the characteristic

values of a sea wave using different viscous models (laminar, k − ε and

SST), without registering any significative difference.

This, combined with the agility and speed of calculation of the laminar

model, has led to its adoption for the present numerical computations.

As already proposed in [4] and [7], the solver solution controls adopted in

the simulations are the body force weighted pressure discretization with

the PISO pressure velocity coupling. The momentum transport equa-

tion discretization is implemented with the MUSCL third order and the

modified high resolution interface capturing (HRIC) options. Both the

MUSCL third order and the HRIC options provide increased solution

power for breaking waves and other complex multiphase problems. The

time step of the simulation is set at 5 · 10−3 s. Finer time discretizations

did not provide significant variations in the numerical results. Residuals

convergence criterion for each physical time step is set to 10−4.
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4.4 Generation of wave motion

With respect to Figure 3, wave trains are generated at the left boundary

(were a velocity inlet boundary condition is settled), by imposing a time-

dependent variation to the two components (horizontal and vertical) of

the water velocity (set initially quiet inside the whole computational

domain), according to (2.26) and (2.27).

Figure 4.3: Kinematic boundary condition on velocity components to
generate the wave

The following table summarizes the main features of the computed wave

trains.

Symbol Value Unit
L (*) 3 m
a (*) 7.5 cm
T (*) 1.386 s
h (*) 1.5 m
k (**) 2.09 1/m
ω (**) 4.53 rad/s

Table 4.1: Wave train characteristics adopted for the proposed numer-
ical simulations; (*) independent parameters, (**) derived parameters
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4.5 Model validation

In order to validate the numerical model, after generating the wave train

by imposing u(t) and w(t) at the left boundary of the computational

domain, the horizontal component of water velocity is evaluated at a

fixed reference section (x = 4 m) from the inlet, after a sufficient time

span (t = 10 s) in order to reach a periodic-state of the flow field, as

summarized in the following figure.

Figure 4.4: Reference schema for the validation of the numerical model

Figure 4.5: Close-up on the free surface for the three adopted spatial
domain discretizations
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Numerical predictions of u(t) are compared with the theoretical val-

ues given by (2.26) for three tested spatial domain distributions, whose

main geometrical features are summarized in Table 4.2.

Case Type Number of Elements
Case 1 Coarse 448116
Case 2 Normal 545174
Case 3 Fine 765212

Table 4.2: Characteristic sizes of the three grid configurations

A triangular mesh with a growth rate equal to 1.15 linking a minimum

cell size of 10 mm (close to the free surface) to a maximum dimension of

50 mm is chosen, since finer grid discretizations do not provide significant

variations in the numerical results, as can be seen from the figure:

Figure 4.6: Validation of the numerical model based on x-velocities



4.6. EVALUATION OF THE AVAILABLE ENERGY FLUX 53

4.6 Evaluation of the available energy flux

For every analyzed individual j, the breaking efficiency 1 was defined as:

(ηb)j =
F j

P0

(4.1)

where P0 represents the theoretical unperturbed wave power given by eq.

(2.37) and F j represents the specific flux of kinetic energy averaged over

a period. The computation of F j is described below. The elementary

Figure 4.7: Evaluation of the energy flux F across a vertical section

contribute dF of kinetic energy flux can be written as:

dF = dĖk =
1

2
ṁ · u2 =

1

2
ρ · u3 · dz (4.2)

The total specific energy flux which interests the general vertical section

at time t can be evaluated by integrating the elementary contribute dF

over h(t), in formulas:

F (t) =

∫ l+h(t)

l

ρ · u3

2
dz (4.3)

1This definition of efficiency ignores the content of kinetic energy due to the ve-
locity component along the y-axis, which is considered unlikely to be converted into
mechanical energy, because too fluctuating.
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The total average specific energy flux which interests the general ver-

tical section can be evaluated as:

F =
1

T

∫ T

0

∫ l+h(t)

l

ρ · u3

2
dz dt (4.4)

Considering the spatial and temporal discretization adopted in the nu-

merical simulations, (4.4) can be approximated by the following expres-

sion, in which integrals are replaced by sums and differentials dt and dz

are replaced by finite intervals:

F ' 1

T

N∑
i=1

Mi∑
j=1

(
ρ · u3

2

)
∆zj∆ti (4.5)

The adopted time-discretization is ∆ti = 0.125 s, so that the wave period

is composed by N = 11 time-steps. Mi indicates the number of cells

making up the pipe flow h(t) at time i. Because of the difficulties of

Figure 4.8: Schema of the numerical calculation of F (t)

accurately identifying the instantaneous height h(t) of the pipe flow (see

section 4.7) a constant value h̃ was fixed for the calculation, increased

with respect to h(t) so that h̃ ≥ h(t) ∀ t ∈ T .
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4.7 Correction of the interface gradient

4.7.1 Limits of VOF model

The model used to describe the free surface is the VOF (Volume Of Fluid)

which unlike the front-tracking methods, considers the interface zone as

composed of a single fluid with discontinuous properties, introducing an

additional unknown factor to the problem that expresses the volume

fraction occupied by one of the fluid in the control volume.

Assigning the value 0 to air and the value 1 to water, a typical distribution

of phase (and so of density) is represented in fig.9 as a function of the

vertical coordinate z:

Figure 4.9: Distribution of the volume fraction at the interface

The slope of the inclined line shown in figure is greater the greater is

the accuracy in the discretization of the domain at the interface between

the two phases. From simulation results it was found that the elements

which greatly contribute to the calculation of F are not characterized by

a definite value of volume fraction (next to 0 or 1) but an intermediate

value, with questionable physical significance.
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4.7.2 Fuzzy-logic approach

In this regard, it was decided to weigh the contributions in the integration

of energy flow based on the value of volume fraction, by adopting a

distinction between air and water phases by means of fuzzy logic, which

responds to the following proposition:

”Cells that contain water only are those

characterized by a phase rather close to one”

so that the objective function:

F (t) =

∫ h̃

0

ρ(z) · u3(z)

2
dz (4.6)

is replaced by:

F (t) =

∫ h̃

0

(ρ)water · u3(z)

2
· f̃(φ)dz (4.7)

in which f̃(φ) is a filter-function on the phase defined by:

f̃(φ) =
1

1 + e−20(φ−0.5)
(4.8)

Operatively, the filter is applied simply by changing the definition of the
integrand function from (4.6) in (4.7) within the calculation routine in
the CFD solver.
In fact, the entire procedure of evaluation of the energy flow is auto-
matically handled by the CFD solver, which provides output the value,
integrated in space. The integration over time is performed manually at
the conclusion of the simulation.

define

custom-field-functions

define

"energy-flux"

0.5 * 998.2 * x_velocity^3 * 1/(1+e^(-20*(phase - 0.5)))
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The filter function shown in fig. has been shaped by trial, requiring

that an element with φ = 0.6 will be disadvantaged by 10% compared

to an element that has fully unitary phase: this implies that an element

with φ = 0.8 does not differ from one with φ = 1 (both certainly contain-

ing water). The need to introduce the filter function arises after finding

Figure 4.10: Filter f̃(φ) function on the phase values

excessive instability of the results by varying meshes: small changes in

the discretization caused large variations in energy flow. This fact in-

dicatives a physically unreliable calculation.

Of course, by varying the value of the phase in this way, also the den-

sity varies approximately proportional and therefore distort the results

obtaining a density distribution that does not satisfy the Navier-Stokes

equations. Nevertheless, the results are more stable and therefore the

calculation is considered more reliable.
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4.7.3 Differences on results

To evaluate the influence of the uncertainty of the VOF model at the

interface, the values of F (t) obtained in the optimum configuration and

filtered by the algorithm (13) were compared to the unfiltered values

(fig.16): The instantaneous flow of energy in the time gap corresponding

Figure 4.11: Comparison between filtered values of F (t) and unfiltered

to wave breaking results slightly amplified compared to the unfiltered

case. Shown below a comparison of the contours of kinetic-energy flux

in the original and filtered case.

Figure 4.12: Contours of energy flux in original (a) and filtered case
(b)



Chapter 5

Optimization procedure

5.1 Preliminary choises

In order to reduce the number of variables processed by the algorithm

genetic it was necessary carry out some preliminary choices. The length

of the segment joining the extremes of the inclined plane was set equal

to the wavelength:

L′ = Lwave (5.1)

Figure 5.1: Variables to be fixed before the genetic optimization

59
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To establish plausible values of ϑ, some more consideration are re-

quired, particularly with regard to the type of breaking to be obtained

through the numerical simulations.

As explained in chapter (2.6), the behavior of a wave during its breaking

is well-described by the Iribarren-Battjes empirical parameter:

γ =
tanϑ√
H0/L0

(5.2)

where ϑ is the local slope of the seabed.

The most interesting type of breaking, in order to induce a horizontal net

flow downstream of the plane, is plunging wave, which can be obtained

for values of γ varying between 0.5 and 3. So, reversing the previous

equation with respect to ϑ, the following relationship can be obtained:

γ = 1.7 =⇒ ϑ = 15◦ (5.3)

A preliminary optimization cycle has also allowed to determine the op-

timal depth at which place the upper end of the breaking plane.

To make results compatible with other types of wave, the depth of the

plane was non-dimensionalized with respect to the wave heigh:

δ =
d− yt
H

(5.4)

The method used in the pre-optimization is the grid method [14] whereby

the space of variables is explored through a uniform rectangular dis-

cretization, and the objective function is evaluated at all grid points.

The pre-optimization lead to an optimal depth equal to:

δopt ≈ 1/4 (5.5)

so that the top of the inclined plane was placed as:

yt = d−H/4 (5.6)
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5.2 Introduction to the optimization loop

Given the long time required for completion of a simulation, the proce-

dure has been implemented so as to automatically perform the various

steps of the optimization loop, as shown in the following figure:

Figure 5.2: Representation of the optimization loop

The whole optimization procedure is automatically managed by using

three different commercial software , each having respectively the func-

tion of:

• managing the genetic algorithm and processing the decision vari-

ables (MATLAB)

• defining the profile of the seabed and meshing the geometry of

the model, on the basis of the decision variables received in input

(Ansys GAMBIT)

• evaluating the objective function through an unsteady CFD simu-

lation (Ansys FLUENT)
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The setup of the genetic algorithm described in section 5.5 is im-

plemented in the file options-ga.m, while the entire optimization loop is

managed by the main program, master.m, which combines individuals

from generation to generation in accordance with in options.

Figure 5.3: Detailed description of the optimization loop

The main routine is that which calculates the objective function (funobj.m)

starting from the two decision variables received from master.m, and its

functions are in the order:

• managing the data storage;

• deriving the Bezier curve starting from the decision variables;

• producing in output the journal file for the meshing software;

• starting GAMBIT and (afterwards) FLUENT, syncing them prop-

erly;

• from the output of FLUENT, calculating the objective function

and returning it to master.m
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5.3 Design variables

As explained in paragraph 5.1, it was found as the average slope of the

seabed does not clearly influence the energetic performances of the break-

ing wave: it was therefore decided to fix the two ends of the inclined plane

and vary the profile of the plane by a Bezier curve linking the two ex-

tremes, defined by two decicion variables y1 and y2 both varying between

yb and yt.

A Bezier curve is a function defined by a set of control points P0 through

Pn, where n is called its order (n = 1 for linear, 2 for quadratic, etc.).

The first and last control points are always the end points of the curve;

however, the intermediate control points (if any) generally do not lie on

the curve. The mathematical definition of a Bezier curve is:

[x(t); y(t)] =
n∑
i=0

Cn,i · ti(1− ti)n−i [Xi;Yi] (5.7)

being:

Cn,i =
n!

i!(n− i)!
(5.8)

and [Xi;Yi] the coordinate of the Bezier points A,B,C,D : obviously A

and D are fixed, B and C are driven by the decision variables.

Figure 5.4: Bezier polygon dependent on decision variables y1 and y2
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The MATLAB routine that pratically calculates the profile by using
the Bezier Curves is shown below:

function [xy_o]=bezier(x_i,y_i,npoints) % x_i and y_i are row vectors
n=length(x_i)-1;
c=coefficients(n+1);
t=[0:1/(npoints-1):1];
for k=1:n+1

c_t(k,:)=c(k)*t.^(k-1).*(1-t).^(n-(k-1));
end
x_o=c_t’*x_i’; y_o=c_t’*y_i’; xy_o=[x_o y_o];
end

In order to generalize the obtain results, the decision variables have

been non-dimensionalized with respect to the positions of the ends of the

seabed:

ξ1 =
y1 − yb
yt − yb

; ξ2 =
y2 − yb
yt − yb

(5.9)

Being 0 ≤ ξ1, ξ2 ≤ 1 , the limit configurations that can be processed by

the optimization algorithm are illustrated in fig.3. Obviously among all

possible configurations, there is also the straight plane, which corresponds

to the design point:

ξ1 = 1/3 ; ξ2 = 2/3 (5.10)

Figure 5.5: Limit configurations of the decision variables
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5.4 Objective function

The optimization problem in question is mono-objective and consists in

maximizing the energy performance of a sea-wave in correspondence of

its breaking point (fig.5.6) by varying the geometry (2D) of the seabed.

The objective function, evaluated over a period, was illustrated in section

Figure 5.6: Evaluation section of the objective function

4.6 with the corrections made in accordance with section 4.7:

F = − 1

T

N∑
i=1

Mi∑
j=1

(
ρwater · u3

2
· 1

1 + e−20(φ−0.5)

)
∆zj∆ti (5.11)

The minus sign is due to the default configuration of the GA (minimiza-
tion) while in the case under examination is required maximization of
the objective function. The time integration is carried out in MATLAB
environment, while the spacial integration is automatically-provided by
the CFD solver in which a user-defined function was define:

define

custom-field-functions

define

"energy-flux"

0.5 * 998.2 * x_velocity^3 * 1/(1+e^(-20*(phase - 0.5)))
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5.5 Settings of the Genetic Algorithm

5.5.1 Test function

To determine the best setup of the genetic algorithm that can ensure a

good chance of finding the minimum of F (y1; y2) have made various tests,

by using an objective function F̃ in the form of Gaussian bell, suitably

shaped so that it presents a minimum within the domain considered:

F̃ (y1; y2) = −e−[3(y1−1)2+3(y2−0.9)2] (5.12)

Figure 5.7: Test function of the Genetic Algorithm
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That, as it was built, has a minimum at the point:(
y1

y2

)
opt

=

(
1

0.9

)
(5.13)

With 5 individuals the minimum is reached on average after 7-8 gen-

erations, launching the algorithm several times, however, it sometimes

happens that the minimum is reached with sufficient accuracy only after

11-12 generations.

From here, the need to increase the number of individuals with the aim

of increasing the capacity of exploration of the algorithm, and can have

a greater probability of reaching the desired minimum.

5.5.2 Option settings

Having to do with an objective function which is very onerous to be

evaluated (as it requires an unsteady CFD simulation) it was necessary to

reach a compromise between the security to achieve the optimum point,

and limiting the total number of simulations. The chosen parameters

are:

• Number of individuals = 8

• Number of generations = 8

• Crossover function = crossover intermediate

• Elite count = 1

• Crossover fraction = 6/7

Elite Count parameter indicates the number of individuals with the best

fitness values in the current generation that are guaranteed to survive to

the next generation. These individuals are called elite children. When

Elite count is at least 1, the best fitness value can only decrease from one

generation to the next.



68 CHAPTER 5. OPTIMIZATION PROCEDURE

Setting Elite count to a high value causes the fittest individuals to

dominate the population, which can make the search less effective.

Using these parameters, in each generation there is an individual that

survives from the previous generation, one that is created by a genetic

mutation, and the remaining are created by crossover between two par-

ents.

Individuals that make up the initial population were uniformly distributed

in the domain of the decision variables, so that no macro-area results un-

explored by the code:

Figure 5.8: Initial population on the space of the decision variables S
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Results and developments

6.1 Optimization results

Fig.7 shows the evolution of the population to varying generations, high-

lighting the fitness of the best individual and worst one.

Figure 6.1: Time-evolution of the fitness of the population

As shown in the figure, the efficiency presents great variability within the

domain of the decision variables, ranging from 20% to 70% in the initial

generation, and from 30% to 80% in the initial generation.

69
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The genetic algorithm leads to an improvement of yield of 10%, that

from the point of view of energy conversion is a significant achievement.

Below is illustrated in detail the evolution of the different individuals of

the population in subsequent generations.

Figure 6.2: Time-evolution of individuals
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After eight generations, the individual characterized by the best fitness

was found to have the following genotype:

(ξ1; ξ2) = (0.64; 0.39) (6.1)

which corresponds the phenotype:

Figure 6.3: Phenotype of the optimal individual

As shown in fig.6.2, all individuals in the latest generation are crowded

next to the optimal individual decribed in (6.1): this is an indication of

the significance of the results.

Figure 6.4: Contours of phases: (a) t = T, ..., nT ; (b) t = T
3
, ..., 3n+1

3
T

The particular shape of the seabed profile found by the genetic algorithm

allows incident wave to reach the critical depth (and consequently to

initiate the wave breaking as described in (13)) in correspondence of the

central zone of the plane, so that the maximum flow of kinetic energy

takes place at the top of the seabed (fig.6.4).
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Contours of the specific flux of kinetic energy are illustrated in Fig. 6.5.

f(t) =
ρ · u3

2
(6.2)

The value of f(t) is almost zero everywhere before the wave breaking

because of the reduced horizontal speeds, and reaches its maximum at

the instants of wave breaking in correspondence of the evaluation section

of the objective function. Figures 6.6 and 6.7 illustrate how solutions that

Figure 6.5: Contours of f(t): (a) t = T, ..., nT ; (b) t = T
3
, ..., 3n+1

3
T

are very different from the optimal are not suitable to induce the required

type of wave breaking. Particularly, a profile similar to fig.6.6 causes a

premature wave breaking and the consequent dissipation of energy before

investing the evaluation section. The profile of the plane corresponds to

the couple:

(ξ1; ξ2) = (1; 1) (6.3)

Figure 6.6: Premature breaking: contours of specific energy flux
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On the contrary, a profile similar to fig.6.7 does not induce a proper wave

breaking: most of the energy is reflected back (in the opposite direction

of the wave propagation) and the wave breaking takes place downstream

of the inclined plane, dissipating the remaining energy in hydrodynamic

frictions.The profile of the plane corresponds to the couple:

(ξ1; ξ2) = (0; 0) (6.4)

Figure 6.7: Wave reflection and late breaking: contours of specific
energy flux
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6.2 Installation solutions

A first elementary system solution consists in placing the rotor at the

point of maximum average flow of kinetic energy, so that the breaking

wave invests the lower blades of the wheel, exchanging energy.

Figure 6.8: First plant solution for breaking waves

An other solution is showed in the following figure: first waves invest the

upper blades of the rotor, yielding part of kinetic energy, and the return

flow invests in the lower part, favoring the rotation in the same direction.

Figure 6.9: Second plant solution for breaking waves



6.3. ENERGETIC CONSIDERATIONS 75

6.3 Energetic considerations

From the previous chapter resulted that, through appropriate arrange-

ments on the geometry of the inclined plane, it is possible to induce an

”optimal” breaking to the incident wave, in order to maximize the release

of kinetic energy from it.

Through the definition of breaking efficiency, it was estimated the max-

imum percentage of extractable energy compared to the nominal unper-

turbed wave power:

Fmax = 0.8 · P0 = 80% of the wave power (6.5)

Energy availability in the Mediterranean Sea amounts to the following

average values:

• 8-12 kW/m at the coast;

• 50 kW/m offshore;

While for the oceans, the energy availability are significantly higher

thanks to the presence of ocean waves:

• 20-25 kW/m at the coast;

• even more than 100 kW/m offshore;

Assuming use of a water wheel for the energy conversion (University of

Southampton recent studies have shown that such devices have a con-

version efficiency of about ηc=0.6), it is estimated that the energy per

linear meter obtainable from a breaking-wave conversion plant installed

at a Mediterranean coast is:

Pnet = P0 · ηb · ηc = 10 · 0.8 · 0.6 ≈ 5 kW/m (6.6)

Then with a few meters of plant would be possible, in principle, to equal

the performance of a common mini wind turbine plant.
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Appendix

6.4 MATLAB code of the optimization loop

6.4.1 Main program

clear

clc

mkdir(’data’);

global count;

count=0;

global history;

csvwrite(’.\n_generation.txt’,0);

csvwrite(’.\n_individual.txt’,0);

fitnessfcn=@funobj_waves;

nvars=2;

A = [];

b = [];

Aeq = [];

beq = [];

LB=[0.704,0.704];

UB=[1.48,1.48];

nonlcon=[];

options=options_ga;

[x,fval,exitflag,output,population] =

ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB,nonlcon,options);

77
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6.4.2 Objective function

function fo=funobj_waves(x)

global count;

global history;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

n_ind=csvread(’.\n_individual.txt’);

gen=csvread(’.\n_generation.txt’);

n_ind=n_ind+1;

if n_ind==9

n_ind=1;

csvwrite(’.\n_individual.txt’,1);

gen=gen+1;

csvwrite(’.\n_generation.txt’,gen);

f_name_gen=strcat(’.\data\gen_’,num2str(gen));

mkdir(f_name_gen);

else

csvwrite(’.\n_individual.txt’,n_ind);

end

folder_individual=strcat(’.\data\gen_’,num2str(gen),

’\ind_’,num2str(n_ind));

mkdir(folder_individual);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

x_i=[4 4.966 5.932 6.898];

y_i=[0.704 x(1) x(2) 1.48];

nurbs=bezier(x_i,y_i,10);

f_j_g=fopen(’.\meshing.jou’,’wt’);

fprintf(f_j_g,’%s\n’,’vertex create coordinates 0 0 0 ’); %1

fprintf(f_j_g,’%s\n’,’vertex create coordinates 0 1.538 0 ’); %2

fprintf(f_j_g,’%s\n’,’vertex create coordinates 0 3.5 0 ’); %3

fprintf(f_j_g,’%s\n’,’vertex create coordinates 6.898 3.5 0 ’); %4

fprintf(f_j_g,’%s\n’,’vertex create coordinates 20 3.5 0 ’); %5

fprintf(f_j_g,’%s\n’,’vertex create coordinates 20 0 0 ’); %6

fprintf(f_j_g,’%s\n’,’vertex create coordinates 6.898 0 0 ’); %7

fprintf(f_j_g,’%s\n’,’vertex create coordinates 6.898 1.55 0 ’); %8

for i_=1:10

vertex=[’vertex create coordinates ’,num2str(nurbs(i_,1)),’

’,num2str(nurbs(i_,2)),’ 0’];

fprintf(f_j_g,’%s\n’,vertex);

end

for j_=1:10

vertex=[’vertex create coordinates ’,num2str(nurbs(j_,1)),’

’,num2str(nurbs(j_,2)-0.02),’ 0’];

fprintf(f_j_g,’%s\n’,vertex);

end

fprintf(f_j_g,’%s\n’,’vertex create coordinates 0 1.5 0 ’); %29

fprintf(f_j_g,’%s\n’,’vertex create coordinates 6.898 1.5 0 ’); %30

fprintf(f_j_g,’%s\n’,’vertex create coordinates 7.2 1.55 0 ’); %31

fprintf(f_j_g,’%s\n’,’vertex create coordinates 7.2 1.46 0 ’); %32
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fprintf(f_j_g,’%s\n’,’edge create straight "vertex.1" "vertex.29" ’); %1

fprintf(f_j_g,’%s\n’,’edge create straight "vertex.2" "vertex.3" ’); %2

fprintf(f_j_g,’%s\n’,’edge create straight "vertex.3" "vertex.4" ’); %3

fprintf(f_j_g,’%s\n’,’edge create straight "vertex.4" "vertex.5" ’); %4

fprintf(f_j_g,’%s\n’,’edge create straight "vertex.5" "vertex.6" ’); %5

fprintf(f_j_g,’%s\n’,’edge create straight "vertex.6" "vertex.7" ’); %6

fprintf(f_j_g,’%s\n’,’edge create straight "vertex.7" "vertex.1" ’); %7

fprintf(f_j_g,’%s\n’,’edge create straight "vertex.4" "vertex.8" ’); %8

fprintf(f_j_g,’%s\n’,’edge create straight "vertex.8" "vertex.30" ’); %9

fprintf(f_j_g,’%s\n’,’edge create straight "vertex.28" "vertex.7" ’); %10

fprintf(f_j_g,’%s\n’,’edge create straight "vertex.19" "vertex.9" ’); %11

fprintf(f_j_g,’%s\n’,’edge create nurbs "vertex.9" "vertex.10" "vertex.11"

"vertex.12" "vertex.13" "vertex.14" "vertex.15" "vertex.16" "vertex.17"

"vertex.18" interpolate ’); %12

fprintf(f_j_g,’%s\n’,’edge create straight "vertex.18" "vertex.28" ’); %13

fprintf(f_j_g,’%s\n’,’edge create nurbs "vertex.19" "vertex.20" "vertex.21"

"vertex.22" "vertex.23" "vertex.24" "vertex.25" "vertex.26" "vertex.27"

"vertex.28" interpolate ’); %14

fprintf(f_j_g,’%s\n’,’edge create straight "vertex.29" "vertex.2" ’); %15

fprintf(f_j_g,’%s\n’,’edge create straight "vertex.30" "vertex.18" ’); %16

fprintf(f_j_g,’%s\n’,’edge create straight "vertex.29" "vertex.30" ’); %17

fprintf(f_j_g,’%s\n’,’edge create straight "vertex.8" "vertex.31" ’); %18

fprintf(f_j_g,’%s\n’,’edge create straight "vertex.31" "vertex.32" ’); %19

fprintf(f_j_g,’%s\n’,’edge create straight "vertex.32" "vertex.28" ’); %20

fprintf(f_j_g,’%s\n’,’face create wireframe "edge.1" "edge.17" "edge.16" "edge.12"

"edge.11" "edge.14" "edge.10" "edge.7" real’);

fprintf(f_j_g,’%s\n’,’face create wireframe "edge.4" "edge.5" "edge.6" "edge.10"

"edge.20" "edge.19" "edge.18" "edge.8" real’);

fprintf(f_j_g,’%s\n’,’face create wireframe "edge.2" "edge.3" "edge.8" "edge.9"

"edge.17" "edge.15" real’);

fprintf(f_j_g,’%s\n’,’face create wireframe "edge.16" "edge.9" "edge.18" "edge.19"

"edge.20" "edge.13" real’);

fprintf(f_j_g,’%s\n’,’edge mesh "edge.1" successive ratio1 0.975 size 0.02’);

fprintf(f_j_g,’%s\n’,’edge mesh "edge.2" successive ratio1 1.1 size 0.06’);

fprintf(f_j_g,’%s\n’,’edge mesh "edge.3" size 0.2’);

fprintf(f_j_g,’%s\n’,’edge mesh "edge.4" size 0.2’);

fprintf(f_j_g,’%s\n’,’edge mesh "edge.5" size 0.2’);

fprintf(f_j_g,’%s\n’,’edge mesh "edge.6" size 0.2’);

fprintf(f_j_g,’%s\n’,’edge mesh "edge.7" size 0.2’);

fprintf(f_j_g,’%s\n’,’edge mesh "edge.8" successive ratio1 0.95 size 0.04’);

fprintf(f_j_g,’%s\n’,’edge mesh "edge.9" size 0.007’);

fprintf(f_j_g,’%s\n’,’edge mesh "edge.10" successive ratio1 1.08 size 0.05’);

fprintf(f_j_g,’%s\n’,’edge mesh "edge.11" size 0.02’);

fprintf(f_j_g,’%s\n’,’edge mesh "edge.12" successive ratio1 0.995 size 0.015 ’);

fprintf(f_j_g,’%s\n’,’edge mesh "edge.13" size 0.01’);

fprintf(f_j_g,’%s\n’,’edge mesh "edge.14" successive ratio1 1.007 ratio2 1.025 size 0.03’);

fprintf(f_j_g,’%s\n’,’edge mesh "edge.15" successive ratio1 1 size 0.01’);

fprintf(f_j_g,’%s\n’,’edge mesh "edge.16" size 0.007’);

fprintf(f_j_g,’%s\n’,’edge mesh "edge.17" successive ratio1 1.006 ratio2 1.01 size 0.02’);

fprintf(f_j_g,’%s\n’,’edge mesh "edge.18" size 0.01’);

fprintf(f_j_g,’%s\n’,’edge mesh "edge.19" size 0.01’);

fprintf(f_j_g,’%s\n’,’edge mesh "edge.20" size 0.01’);

fprintf(f_j_g,’%s\n’,’face mesh "face.1" triangle ’);

fprintf(f_j_g,’%s\n’,’face mesh "face.2" triangle ’);

fprintf(f_j_g,’%s\n’,’face mesh "face.3" triangle ’);

fprintf(f_j_g,’%s\n’,’face mesh "face.4" triangle ’);

fprintf(f_j_g,’%s\n’,’physics create "muri" btype "WALL" edge "edge.7"

"edge.6" "edge.5" "edge.11" "edge.12" "edge.13" "edge.14" ’);

fprintf(f_j_g,’%s\n’,’physics create "cielo" btype "PRESSURE_OUTLET" edge
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"edge.2" "edge.3" "edge.4" ’);

fprintf(f_j_g,’%s\n’,’physics create "in" btype "VELOCITY_INLET" edge "edge.1" "edge.15" ’);

fprintf(f_j_g,’%s\n’,’export fluent5 ".\\mesh.msh" nozval ’);

fprintf(f_j_g,’%s\n’,’abort ’);

fclose(f_j_g);

!.\gambit_launcher.bat

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

check=0;

while check~=1

if exist(’.\mesh.msh’,’file’)==2

check=1;

pause(10);

else

pause(1);

end

end

movefile(’.\meshing.jou’,folder_individual);

!.\fluent_launcher.bat

check=0;

while check~=1

if exist(’.\mesh-1975.dat’,’file’)==2

check=1;

pause(10);

else

pause(10);

end

end

results=textread(’.\energy-flux.out’,’%s’);

i=149;

j=1;

sum=0;

while j<12

sum = sum + (str2double(results(i)));

i=i+2;

j=j+1;

end

fo = -(sum/11);

file_ind=strcat(folder_individual,’\variabili_decisione.txt’);

f_=fopen(file_ind,’wt’);

fprintf(f_,’%f%s’,x(1),’,’);

fprintf(f_,’%f%s’,x(2),’,’);

fprintf(f_,’%f%s’,fo ,’,’);

fclose(f_);

movefile(’.\mesh.msh’,folder_individual);

movefile(’.\energy-flux.out’,folder_individual);

movefile(’.\mesh-1975.cas’,folder_individual);

movefile(’.\mesh-1975.dat’,folder_individual);

count=count+1;

history(count,1)=x(1);

history(count,2)=x(2);

history(count,3)=fo;

end
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