
Università degli studi di Padova

Dipartimento di Fisica e Astronomia “G.Galilei”

Master Degree in Astrophysics and Cosmology

Final Dissertation

The orbital geometry of the Hot Jupiter

HD189733b: new results from the

Rossiter-McLaughlin Revolutions

Thesis Supervisor Master Candidate
Prof. LucaMalavolta Davide Savio

Academic Year
2022-2023



ii



“A mia madre,
che da sempre crede in me.”



iv



Abstract

Among the increasing number of discovered exoplanets, the ones that transit their host star
are of great interest, because they can be analysed with both photometric and spectroscopic
methods. The combination of the information obtained from the light curve, which is related
to the planet radius, and from the radial velocity curve, which instead is related to the mass
of the planet, allows the determination of the bulk density of the exoplanet. Another impor-
tant aspect in analysing a transiting planet with the spectroscopic technique is the possibility
to observe the Rossiter-McLaughlin (RM) effect, i.e., the radial velocity anomaly caused by the
planet as it transits across the disc of its host star. The RM waveform is sensitive to the local
properties of the star occulted by the transit chord, as a consequence it allows the measure-
ment of the star-planet orbital alignment. In particular, the angle ψ between the orbital axis
of a planet and the spin axis of its host star is of fundamental importance to constrain theories
on planet formation, orbital migration and tidal evolution. As an example, planets in aligned
orbits are the result of dynamically gentle migrations, while misaligned planets could have ex-
perienced violent migration processes such as planet-planet or star-planet scattering through
the Kozai-Lidovmechanism. It is therefore of great importance tomeasure this angle as a func-
tion of stellar parameters, age, and planetary multiplicity. The classical RM effect allows the
measurement of the sky projections of the stellar spin and the orbital plane, called λ, and the
true obliquity ψ can be determined only through strong assumptions. In this Master Thesis
I present a new implementation of the revolutionary method proposed by Cegla et al. 2016
in which the geometry of the planetary system is derived by modelling the occulted regions of
the star through cross-correlation analysis of the spectra rather than the apparent radial veloc-
ity change due to the spectral deformation. With the so-called Reloaded Rossiter-McLaughlin
(RRM) technique, I am able to measure the true 3D spin-orbit geometry of the star-planet
system although the veq sin i⋆ degeneracy is still present. In the modelling, I have also included
differential stellar rotation and centre-to-limb convective variations, while making no assump-
tions on the shape of the intrinsic stellar photospheric lines. I have also implemented the recent
improvement proposed by Bourrier et al. 2021, dubbed Rossiter-McLaughlin effect Revolu-
tions (RMR), so that I can now exploit the full extent of information contained in spectral
transit time series by modelling simultaneously all the in-transit cross correlation functions
through a Bayesian approach, enabling the measurement of the spin-orbit angle of small exo-
planets even when the classical RM signal is not detectable. I have then focused my attention
to HD189733b, a Jupiter-like exoplanet with a period of 2.2 days orbiting a K2 star. Due to
the brightness of its host star (magnitudeV=7.6) and the extreme conditions undergoing on its
outer layer, this exoplanet is a golden target for exoplanetary atmosphere studies, which in turn
relies on accurate characterization of the planetary and orbital characteristics. After validating
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the mathematical framework and the data analysis steps of my implementation of the RRM
and the RMR techniques by comparing my results with those already published on publicly
available HARPS data, I have performed a combinedmodelling of photometric data spanning
over fifteen years, high precision radial velocity data from the literature, and eight in-transit
spectroscopic time series, in a robust and reliable Bayesian framework. Most notably, I have
used data coming from two sectors of TESS to obtain the most precise radius measurement of
this planet so far, and unpublished spectroscopic time series over four nights of observations
obtained in the context of the Global Architecture for Planetary Systems (GAPS) program us-
ing the ultra-stable HARPS-N spectrograph at the Telescopio Nazionale Galileo.
Thework I performedhas produced themost accurate self-consistent set of planetary param-

eters among those reported in the literature forHD189733b, including a newdetermination of
the spin-orbit angle for this planetary system. With the code publicly available, I have now the
possibility to extend this kind of analysis tomanyother exoplanetswith in-transit spectroscopic
observations but still lacking a characterization of the 3D spin-orbit geometry of the star-planet
system, making this thesis onHD189733b the first of a long series of groundbreaking works.
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Sommario

Tra il crescente numero di esopianeti scoperti, quelli che transitano la loro stella ospite sono
di grande interesse, in quanto possono essere analizzati sia tramite il metodo fotometrico che
tramite quello spettroscopico. Combinando l’informazione ottenuta dalla curva di luce, legata
al raggio del pianeta, con quella ottenuta dalla curva di velocità, che dipende invece alla massa
del pianeta, è possibile determinare la densità apparente del pianeta. Un altro importante as-
petto nell’analizzare con la tecnica spettroscopica un pianeta che transita risiede nella possibil-
ità di osservare l’effetto di Rossiter-McLaughlin (RM), ovvero, l’anomalia nella velocità radi-
ale causata dal pianeta mentre transita da una parte all’altra del disco della sua stella ospite.
La forma d’onda dell’effetto RM è sensibile alle proprietà locali della stella che viene occul-
tata della corda del transito e di conseguenza permette di misurare l’allineamento stella-pianeta.
Nello specifico, l’angolo ψ compreso tra l’asse del piano orbitale del pianeta e l’asse di rotazione
della sua stella ospite è di fondamentale importanza per poter imporre dei vincoli alle teorie
di formazione planetaria, migrazione delle orbite ed evoluzione mareale. A titolo d’esempio,
i pianeti in orbite allineate sono il risultato di migrazioni dinamicamente tranquille, mentre
i pianeti disallineati potrebbero aver subito processi di migrazione turbolenti come nel caso
dello sparpagliamentopianeta-pianeta o pianeta-stella tramite ilmeccanismodiKozai-Lidov. E’
dunque di fondamentale importanza misurare quest’angolo in funzione dei parametri stellari,
dell’età e della molteplicità planetaria. L’effetto RM classico permette di misurare la proiezione
in cielo degli assi di rotazione stellare e del piano orbitale, chiamata λ, mentre l’obliquità vera
ψ può essere determinata solo tramite forti assunzioni. In questa Tesi Magistrale presento una
nuova implementazione del metodo rivoluzionario proposto da Cegla et al. 2016 in cui la ge-
ometria del sistema planetario è derivatamodellando le regioni della stella occultate dal pianeta
tramite l’analisi di correlazione incrociata degli spettri, anziché il cambiamento apparente in
velocità radiale a causa della deformazione dello spettro. Con la tecnica chiamata Reloaded
Rossiter-McLaughlin (RRM), sono in grado di misurare la vera geometria 3D spin-orbita del
sistema stella-pianeta sebbene rimanga la degenerazione veq sin i⋆. Nel modello ho incluso an-
che la rotazione differenziale della stella e la variazione convettiva dal centro al bordo, senza
fare assunzioni sulla forma delle linee fotosferiche stellari intrinseche. Ho anche implementato
il recente miglioramento proposto da Bourrier et al. 2021, soprannominato effetto Rossiter-
McLaughlinRevolutions (RMR), così chepossa ora sfruttarenella loro interezza le informazioni
contenute nella serie temporale di spettri del transito, modellando simultaneamente tutte le
funzioni di correlazione incrociata durante il transito con un approccio Bayesiano, rendendo
possibile la misura dell’angolo di spin-orbita degli esopianeti piccoli, anche nei casi in cui il
segnale RM classico non sia rilevabile. Ho concentrato la mia attenzione su HD189733b, un
esopianeta simile a Giove con un periodo di rivoluzione di 2.2 giorni in orbita attorno ad una
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stella K2. A causa della luminosità della sua stella ospite ( magnitudine V=7.6 ) e le condizioni
estreme in atto nel suo strato più esterno, questo pianeta è un obiettivo d’oro per gli studi sulle
atmosfere planetarie, che a loro volta fanno affidamento su di una accurata caratterizzazione
delle caratteristiche planetarie e orbitali. Dopo aver validato il quadro matematico e gli step di
analisi dei dati dellamia implementazione delle tecniche del RRMe del RMR, facendo un con-
fronto dei miei risultati con quelli già pubblicati relativi ai dati HARPS ad accesso pubblico,
ho eseguito unmodello combinato di dati fotometrici che ricoprono un arco di tempo di oltre
15 anni, misure ad alta precisione di velocità radiale prese dalla letteratura ed 8 serie temporali
spettroscopiche in transito, in un contesto Bayesiano robusto ed affidabile. In particolare, ho
utilizzato dati provenienti da due settori di TESS, per ottenere la misura ad oggi più precisa
del raggio di questo pianeta e serie temporali spettroscopiche non pubblicate, divise in quat-
tro notti di osservazioni ottenute nel contesto del programma dell’Architettura Globale per
i Sistemi Planetari (GASP) utilizzando lo spettrografo ultra-stabile HARPS-N al Telescopio
Nazionale Galileo.

Il lavoro cheho eseguitohaprodotto il set di parametri planetari più accurato ed auto-consistente
tra tutti quelli riportati in letteraturaperHD189733b, inclusaunanuovadeterminazionedell’angolo
spin-orbita per questo sistema planetario. Con il codice pubblicamente disponibile, ho adesso
la possibilità di estendere questo tipo di analisi a molti altri esopianeti con osservazioni spettro-
scopiche in transito,ma ancora privi di una caratterizzazione della geometria 3D spin-orbita del
sistema stella-pianeta, così che questa tesi relativa ad HD189733b risulti il primo di una lunga
serie di lavori innovativi.
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1
Introduction

After the discovery of 51 Peg-b by Mayor&Queloz in 1995, the Exoplanetary Science has en-
tered a still going flourishing age, during which, thanks also to the interest of the public, many
efforts and investments have been dedicated to this research, and different astrophysical fields
have also been involved in making Exoplanetary Astrophysics the prolific science it is nowa-
days. In a time span of almost three decades since the discovery of the first exoplanet, many
other planets orbiting around a star different from the Sun have been detected, so that it is now
possible to study a significant number of exoplanets and systems of exoplanets. This has been
made possible thanks to the improvement of the multiple techniques of detection as well as
the development of new space and ground based telescopes intended for this kind of research.
Among the different detection methods, the photometric technique of the transit has proven
to be the most rewarding one, contributing with about 4000 discovered planets to the total
of 5438 confirmed exoplanets, followed by the spectroscopic technique of the radial velocity
(RV), which led to the discovery of more than 1000 planets.1 These two techniques are com-
plementary to each other, since from the light curve of the transits it is possible to measure
the radius and from the radial velocity curve the mass of the planet; once these two physical
quantities are both known for a given planet, as it happens in the cases in which the host star
is bright, so that the spectroscopic analysis can be applied, than it is also possible to determine
its bulk density. A planet that transits a bright rotating star, obscures regions of the stellar sur-

1https://exoplanetarchive.ipac.caltech.edu/

1

https://exoplanetarchive.ipac.caltech.edu/


face from the view causing a deviation from the Doppler reflex motion that it imparts on the
host. As a consequence, during the transit across the stellar disc, the spectral lines are distorted
and the result is an anomalous deviation of their line-of-sight (LOS) velocities centroid from
the Keplerian curve. This anomalous spectroscopic signal is known as Rossiter-McLaughlin
(RM) effect2 and it has a shape that contains information about the ratio of the sizes between
the planet and its host star, the impact parameter, the rotational speed of the star and the an-
gle λ which is the sky-projected spin–orbit angle i.e., the projection onto the plane of the sky
of the angle between the normal to the orbital plane of the planet and the rotation axis of the
star. The first reported Rossiter–McLaughlin effect for an exoplanet was that of HD209458
b, by Queloz and collaborators in 2000 and after that, determining λ has become one of the
steps to characterise the orbital geometry of planetary systems.[1]Measuring the spin-orbit an-
gle is fundamental to improving theories on the planetary formation, evolution andmigration
for a variety of systems. According to the model of disk-driven migration, the alignment be-
tween angular momentum of proto-planetary disk and planetary orbits should be conserved.
Nonetheless, exoplanets show a large diversity in value of λ as for the other physical quantities.
There aremany formation andmigrationmechanisms that can lead to amisalignment between
the spin of the star and the axis of the planetary orbit: a primordial tilt of the star or the disk,
a tidal torque on the disk from a close star, a tidal torque on the inner planets from an outer
companion and scattering or secular interactions between inner planets and outer planetary or
stellar companion.[2] Therefore, determining themutual inclinations between the planets and
with the host star, and analyzing the distribution of λ with other parameters can allow to dis-
tinguish among the different scenarios.[2] For the cases in which the RV precision is too poor
to measure the mass, the RM effect can be used to confirm that an object is a planet, excluding
companion stars and brown dwarfs.[1] It can also be applied in other cases, to measure the or-
bital inclination of eclipsing binaries, or to determine the direction of the rotational spin of the
exoplanets, and it can provide information about the atmospheric composition of the planets
and also about exo-moons.[1] In all of these cases, a correct modelling of the RMwaveform is
necessary.

2The name of this effect comes from the papers published jointly by Rossiter and McLaughlin in 1924, al-
though it had already been theorised much earlier by Holt in 1893 and Schlesinger had correctly interpreted in
1910 the discrepant radial-velocities obtained during an eclipse.[1]
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1.1 The effect explained

Whena star rotates, oneof its hemispheresmoves toward theobserver and theother hemisphere
moves away from the observer. Considering the LOS component of the stellar rotation, the
approaching hemisphere appears blue-shifted, while the receding one appears red-shifted. If a
planet transits this star, than itwill sequentially cover different portions of the stellar disc during
its transit. While the planet obscures the blue-shifted side of the star, the average value of the
flux received by the observer appears offset toward the red, so that the net result is a positive
shift in the measured RV of the star; the opposite happens when the red-shifted hemisphere is
obscured, but in both cases there is a deviation form theDoppler reflexmotion.[3]Considering
the stellar velocity profile, the star appears to be rapidly changing his rotation speed while the
planet moves in front of its disc: this is the Rossiter–McLaughlin effect. From the shape of the
RM effect is possible to obtain several information, like the time the planet has spent crossing
one hemisphere and the other, from which is possible to get the projected angle between the
path of the planet and the equator of the star. To a first order, the semi-amplitude of the RM
effect scales with the planet’s size and the stellar rotational velocity:

ARM ≃ 2
3
Dv sin i⋆

√
1− b2 (1.1)

where b is the impact parameter, sin i⋆ is the sky projected inclination of the stellar spin axis, v
is the equatorial rotational velocity of the star and D = (Rp/R⋆)

2 is the transit depth, relating
the radius of the planet to that of the host star.[1] The event has the same duration as the
transit, which is 2-3 hours in the case of an Hot Jupiter. In order to detect the RM signal, the
requirement are high-cadence RV measurements obtained with stable spectrographs able to
guarantee high precision and high resolution.

1.2 The classical Rossiter-McLaughlin effect

The first attempts to model the RM effect were made by Petrie back in 1938, who referred to
it as rotation effect and by Kopal in 1942, who gave formulations which were only valid in the
case of coplanar systems.[1] Hosokawa generalized these calculations in 1953, introducing the
sky-projected spin–orbit angle and Kopal compiled a complete description between 1959 and
1979 using α−functions, based on Legendre polynomials to integrate over the visible surface
of the stars.[1] Adjustment to the model were made by Queloz and collaborators on the first
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RMeffect detection in 2000, by drawing a grid over the star and reconstructing the cross corre-
lation function of its spectrum fromwhich the radial-velocity was extracted.[1] This approach
based on the grid has been adopted by other authors, because it allows to treat various stellar
effect, such as variability due to the motion of the spots and the overlap of spots by transiting
planets. The most used notation for the spin-orbit angle is λ and has been introduced by Ohta
and collaborators in 2005 in a paper where they presented an analytical expression for the RM
effect.[1] This formalism has been improved in 2011 by Hirano and in 2013 by Boué, by solv-
ing the issues related to the different methods of RV extraction from the stellar spectra that
could affect amplitude and shape of the RM effect.[1] Another correction that can be applied
is that proposed in 2011 by Shporer and Brown, that takes into account the small bias that is
introduced in the angle λ if the stellar convective blue-shift is ignored.[3]
The traditional way of modelling the RM effect is through a radial-velocity time-series. The
information contained in the RV comes from distorted stellar absorption lines, that are caused
by a reduction on the flux coming from the blue or red-shifted hemisphere. Detecting tempo-
ral variations in the shape of a single line by a transiting planet is complicated, yet Albrecht and
collaborators were able to do it for some eclipsing binaries in 2007.[1]

1.3 The Reloaded Rossiter–McLaughlin effect

In the contest of a planetary transit, different points of the stellar disc are sequentially obscured
by the planet causing the anomalous signal in the stellar RV curve that is known as RM effect.
The classicalmethod to study this effect is that ofmodelling the apparent radial velocity change
due to the spectral deformation, but this can be challenging. An alternative andmore efficient
method is that of the Reloaded Rossiter-McLaughlin effect (RRM), proposed by Cegla and
collaborators in 2016[3], according to which the RM effect is studied over thousands of stellar
lines, through cross-correlation analysis. TheRRMmethod relies on the reconstruction of the
velocity field that the planet obscures during the transit, using the cross correlation functions
(CCF). This technique allows to isolate the starlight from the obscured regions by subtracting
in-transit spectroscopic observations from those taken out-of-transit, similarly to what is done
in line profile tomography, but it analyses directly the local CCF occulted by the planet with-
out the assumption of a particular function in order tomodel its impact on the disc-integrated
CCF.[3] The RVs of the planet-occulted regions are then obtained from the centroids of the
average stellar line contained in each CCFloc.
A correct modelling of the RMwaveform is extremely important, still many of the classical ap-
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proaches ignore any velocity source emanating from the surface of the star and simply assume
a rigid body rotation, in contrast to the models of stellar photospheres. The RRM approach
accounts for the convective blue-shift and its centre to limb variation and takes into account
the latitudinal differential rotation α. According to Cegla and collaborators, accounting for
α allows to lift the degeneracy between the equatorial velocity veq and the stellar inclination i⋆,
because the transit is then sensitive to the stellar latitudes that are covered by the planet and this
allows to directly measure the stellar inclination[3]. If the veq sin i⋆ degeneracy can be lifted, it
is possible tomeasure the true spin-orbit angle ψ, which describes the three-dimensional geom-
etry of the star-planet system and removes the biases introduced by using its projection on the
sky λ.

1.4 The Rossiter–McLaughlin effect Revolutions

The reloaded RM technique isolates the local CCFs (CCFloc) from the regions of the stellar
photosphere that are occulted by a planet during its transit. The RVs are obtained from the
CCFloc and are then fitted with a realistic model that gives constraints on the stellar surface ve-
locity field and orbital architecture of the system.[2] This approach is based on the possibility
to detect and fit with a χ2 minimizationmethod the average stellar line of individual CCFloc. In
many cases in which the host star is too faint, the stellar line is too shallow, or the transit depth
is too small, and in the low-fluxCCFloc at the limbs of the star, which are darker at optical wave-
lengths and only partially occulted by the planet, theRRMmethod can not be applied.[2]This
restricts the range of small planets for which the RRM technique can determine the orbital ge-
ometry to the cases in which they transit bright stars only. A new approach to analyze the
RM effect has been proposed by Bourrier and collaborators in 2021[2] with the purpose to
overcome these limitations: the RM effect Revolutions (RMR) method. As in the traditional
RRM approach, the starting point is the extraction of CCFs that are occulted by the planet,
but rather than working with CCFloc, in the RMR method the flux of the continuum of the
CCF is normalized to unity, rather than to the flux value of the occulted regions. The intrin-
sic CCF obtained in this way are independent of planetary occultation and of limb-darkening
effect and trace the variation in the profiles of the local stellar line , thus allowing for a more di-
rect comparison. In theRRMmethod, eachCCFloc is fittedwith aGaussian linemodel using a
Levenberg-Marquardt least-squares minimization. This approach is limited by the possibility
to detect the stellar line and it depends on an arbitrary threshold, calculated using the fit prop-
erties, to establish if the local stellar line is detected and the values obtained from the best-fit can
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be used for the analysis. If systematic errors are present in the data, with the χ2 minimization
it is difficult to determine whether the model has been fitted to a stellar line or to a spurious
feature. Moreover, if the stellar line model properties are not following a Gaussian distribu-
tion, the χ2 minimization can introduce a bias in the best-fit values and errors. In the RMR
method, the analysis of the planet-occultedCCFs is improved thanks to the Bayesian approach.
In each exposure, a model of the stellar line is fitted to the intrinsic CCF sampling the poste-
rior distributions of the parameters with aMarkovChainMonteCarlo (MCMC)method and
permitting a variety of priors. The targets for which this method has been introduced have a
small S/N and this implies that the stellar line properties are poorly constrained in individual
exposures. To get over this problem, the main novelty of the RMR approach is that of fitting
all the intrinsic CCFs together with a joint model, where the shape parameters of the CCF are
shared among the observations, instead of fitting them one by one, with independent sets of
parameters.[2] There are different analytical models that can be used to describe the stellar line
profile with properties that can be kept constant in all exposures or be set by parametricmodels
as a function of time. The RV centroids of the theoretical lines are set by a surface RV model
that takes into account for the projected rotation velocity field of the star and for its blur over
the region covered by the planet at a given epoch, evaluating also the contribution of the con-
vective blueshift and of the differential rotation. The time series of the theoretical stellar lines
is convolved with the response of the instrument and fitted to all the intrinsic CCFs together
using theMCMC. If the stellar line ismodelled before convolution, it is possible to have amore
direct comparison between different instruments.[2] The RMR technique allows to amplify
the S/N of the occulted stellar line, at first order by the number of in-transit exposures and this
increases the possibility of determining the path of the planet even in the cases inwhich the line
can not be detected in individual exposures. Differently from the traditional RRM method,
the RMR approach exploits all the temporal and spectral information contained in the data,
in order to derive the properties of the stellar surface and the orbital architecture with a higher
precision, as it fits the stellar line profiles and not just their centroids.[2]
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2
The Reloaded Rossiter-McLaughlin

technique

In this chapter I provide a complete description of the ReloadedRossiter-McLaughlin (RRM)
technique. For this part of my work I had to build the mathematical framework and the var-
ious steps required for the data handling and the data analysis, with the specific purpose of
reproducing the results of Cegla et al. 2016 on HD189733[3] using HARPS data reported in
Table 2.1.

Table 2.1: HARPS data on HD189733

Night Spectra In-transit Pre/post Mask texp [s] Airmass

2006-07-29 12 6 0/6 K5 ∼ 600 1.62− 1.86
2006-09-07 20 11 3/6 K5 ∼ 6001 1.62− 2.05
2007-07-19 39 19 0/20 G2 ∼ 300 1.62− 2.49
2007-08-28 40 20 7/13 G2 ∼ 300 1.62− 2.28

1During this night of observations, two longer exposures of 900 s have been carried out, one before and one
after the transit, due to the poor weather conditions.
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Table 2.2: Literature values for HD189733 taken from Cegla et al. 2016[3]

Parameter Value

T0 2454279.436714± 0.000015 d
P 2.21857567± 0.00000015 d
iP 85.710± 0.024◦
R⋆ 0.805± 0.016 R⊙
RP 0.15667± 0.00012 R⋆

a/R⋆ 8.863± 0.020
Ttr 1.827 h
K 200.56± 0.88 m s−1

e 0
ω 90◦
u1 0.816± 0.019
u2 0

2.1 The code for the RRM

Since Cegla and collaborators have not released their code to compute the Reloaded Rossiter-
McLaughlin effect, in order to reproduce the results reported in their paper I had to follow the
description that they have provided in the method’s section and write a code that performs the
same kind of calculations and analysis. In its very first part, my code selects the cross correlation
functions (hereafter CCFs), as computed by the Data Reduction Software provided by the
builder of the instrument.2 In the case of HARPS, the CCF as stored as file .fits, with the
identifier suffix _ccf_[template_name], where template_name is the file name of the coo-
relation mask used to compute it. Each of them is a matrix made of noredr CCF spectrum that
corresponds to the CCF computed for each order.2 Among the multiple information that are
reported in the header of the CCFs, I took the values of the time of the observation in BJD,
the total exposure time in seconds, the barycenter drift corrected RV in km/s, the value of the
reference pixel, the Full Width at Half Maximum (FWHM) of the CCF, reported in km/s,
and the data of each of the CCFs and stores them keeping the separation based on the night
of the observation. Starting from the literature values of the time of conjunction and orbital
period, reported inTable 2.2, my code computes the time of ingress, conjunction and egress
for each night of observation and uses these values to distinguish between in-transit and out-
of-transit CCFs. An example of the output of this analysis is visualized in Figure 2.1a, where

2https://www.eso.org/sci/facilities/lasilla/instruments/harps/doc.html
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(b) Residual of the keplerial and system velocities subtraction.

Figure 2.1: This plots show how data are visualized before and after the subtraction of the keplerian and system velocity.
In particular, in Figure 2.1a the drift corrected radial velocities are plotted as a function of the time of the observation and
different colors are used to identify in‐transit CCFs (blue) and out‐of‐transit CCFs (red). The vertical lines correspond to
the time of ingress (also called first contact, or T1) and egress (fourth contact, T4) and they temporally collocate the transit
during that specific night. The trend that the blue points follow is due to the RM effect. Figure 2.1b shows for the same
night the residual signal left after the modelled keplerian velocity and the system velocity γ have been subtracted from
the drift corrected RV. The horizontal black line indicates where the point should dispose in absence of the RM effect ( no
transit ).

I plotted the drift corrected RV (RVC) as a function of the time of the observation for one of
the nights, using different colors for the in-transit and out-of-transit CCFs. From this plot is
already possible to recognise the signal of the RM effect.
After this selection, I performed a modelling of the RV curve with a sinusoidal function

defined as:
RVkepler = −K sin (2πφ), (2.1)

where K is the semi-amplitude in km/s which value, taken from literature, is reported in Ta-
ble 2.2, and φ is the orbital phase, computed as:

φ =
(T− TC)

P
, (2.2)

where T is the time of the observation, TC is the time of conjunction of that night and P is the
orbital period of the planet, also taken from literature and reported in Table 2.2. This model
describes the RV curve of a star that is performing a keplerian motion around the barycentric
position due to the presence of a planet, hence the nameRVkepler. When the observedRV curve
is compared with the modelled RVkepler, there is no difference between them out of the transit,
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(c) Normalized master out‐of‐transit.

Figure 2.2: These plots display the steps that are performed by the program. Figure 2.2a shows the master‐out‐of‐transit
CCFs, obtained by co‐adding the out‐of‐transit CCFs of each night. Figure 2.2b shows the selection of the flat part, ex‐
cluding the points in the interval±1.5 · FWHM from the center and the fitting with a second order polynomial on it.
Figure 2.2c shows the normalized master‐out‐of‐transit; they have different contrast depths because they are obtained
with the two different masks K5 and G2.

while there is a clear residual RV signal during the transit, that corresponds to the RM effect.
The plot of Figure 2.1b displays an example of this residual RM signal. Practically speaking,
in the out-of-transit CCFs the drift corrected radial velocity signal (RVC) is given by the sum
of the keplerian and system velocity, while in the in-transit CCFs a third component is also
present, which is the RM anomaly. To obtain the value of the system velocity γ, I computed
the mean of the difference between the observed out-of-transit RVC and the modelled RVkepler.
The computed values of γ and the RVkepler are then used to perform a rebinning, so that each
CCF is now aligned in the stellar reference frame (central position of CCF with a RV value of
0 km/s). For the rebinning, my code takes a subroutine dedicated to this purpose, that works
with a cubic interpolation and conserves the flux inside of each bin. This is a fundamental step
that I had to do before to proceed any other analysis, because I then computed the master-out-
of-transit CCFs (see Figure 2.2a), by co-adding the out-of-transit CCFs of each night, which
must be aligned in the stellar reference frame to be sure that the signal that enters the sumcomes
from the same region of the surface of the star for each of them. At this point, I selected the
flat part of the master-out-of-transit CCFs. In order to use the same interval of points in all of
them, I have determined first the mean values of the FWHM of each night, then the mean of
these values, FWHM, and selected the flat part by excluding all the points that are closer than
±1.5 · FWHM to the center. I then fitted the flat part using a second order polynomial (see
Figure 2.2b). Finally, I have normalized the master-out-of-transit CCFs, dividing them by the
values obtained from the fitting (see Figure 2.2c). I note that some observation have been taken
with different masks, as the data was gathered by independent research groups using different
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Figure 2.3: Top: this plot shows the residual of the CCFs obtained by subtracting the in‐transit from the master out‐of‐
transit CCFs. Different colours are used here for visualization purpose. Bottom: this is the residual map of a subset of
the time series CCFs colourcoded by residual flux. The travelling bump in the in transit CCF profiles is recognizable as an
orangish streak, as the planet moves in front of the disc of the star. Both plots are centered on a RV of 0 km s−1, because
the orbital motion and the systemic RVs have been removed.

setup for the DRS. For this reason, each night must be analyzed independently. The plots in
Figure 2.2 display these steps. I have applied this procedure of flat part selection and normaliza-
tion also to the in-transit CCFs. In this case the flux needed also to be scaled in order to keep
into account for the limb darkening (LD) effect during the transit. To do that, my code uses
the batman3 package to produce light curves modelled with a quadratic limb darkening law,
with the LD coefficients u1 and u2 that are reported in Table 2.1. I have then multiplied the
values of the flux obtained from themodel by the corresponding observed ones and in this way
I scaled the flux of the in-transit CCFs. Once the scaling is done, I could easily obtain the resid-
uals by directly subtracting the in-transit from the master out-of-transit CCFs without having
to assume any shape for them. The residuals are shown in Figure 2.3 using different colours for
an easier visualization. Since the system velocities of the master out-of-transit CCFs have been
removed, these residuals are set in the stellar rest framewhere the velocity of rotation of the star

3BAsic Transit Model cAlculatioN in Python, by Laura Kreidberg https://github.com/lkreidberg/
batman.
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(a) Gaussian fitting of the residuals.
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(b) Residual fluxes as a function of the local RVs.

Figure 2.4: The result of the Gaussian fitting of the residuals is shown in Figure 2.4a with different colors for the cases in
which the fit worked properly (lime) and the cases in which it didn’t due to the small level of S/N (orange). The residual
fluxes are plotted as a function of the local RVs in Figure 2.4b to see their trend. In particular, from this plot is possible to
see how the orange points are the ones affected by the larger error and are located in different positions with respect to
the general trend followed by the lime points. The horizontal dashed gray line representing the threshold in terms of flux
and the vertical dashed black line showing that the lime points are symmetric with respect to the central RV of 0 km/s are
also shown.

is evident. The residual CCFs that are closer to the stellar limb are the ones having a lower con-
tinuum flux level due to the LD effect and higher velocity shifts caused by the rotation of the
star. In order to determine the values of the radial-velocities and flux from the residual CCFs, I
performed a fittingwith aGaussian function onone in four points, to take into account also for
the over-sampling of the CCF output by the HARPS pipeline, using a Levenberg-Marquardt
least-squares minimisation. Figure 2.4a gives a visual feedback of the fitting using different col-
ors to indicate whether the fit worked properly (lime) or not (orange). I computed the errors
associated to theRVand to the flux as the square root of the diagonal elements of the covariance
matrix obtained with the curve_fit function of the scipy.optimize package. By plotting
the local RVs as a function of the fluxes values it is possible to visualise that points correspond-
ing to values of the flux below a certain threshold are deviating from the general RV trend and
are also affected by larger errors (see Figure 2.4b). These outlier points are the residual CCFs
closer to the limb of the star that are affected by the LD effect, by the rotation of the star and
include also the cases in which the planet is only partially covering the star during the transit
ingress and egress. Still, the mean of the values of the RVs of the outlier points is 2.995 km s−1,
in agreement with the result of Cegla et al. 2016[3].
Since they are measured directly, the total RVs of the CCFs also include contributions from
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Figure 2.5: These are the plots showing the trend of the RVs as a function of the phase (Figure 2.5a) and as a function of
the< μ > (Figure 2.5b).

stellar rotation and the net convective velocities. In the Figure 2.5a I plotted the RVs of the in-
transit residual CCFs as a function of the phase. The general trend shows a linear dependence
of theRVs from the phase and the outlier points in this plot correspond to thosementioned be-
fore. In the Figure 2.5b I plotted the sameRVs as a function of the brightness-weighted< μ >

behind the planet, (see Equation 2.12), and also in this case the outlier points can easily be rec-
ognized.
The value of the total velocity that I have obtained for the CCFs includes the Doppler-shifts
of the residual CCF profiles caused by the stellar rotation behind the planet and the large scale
centre-to-limb convective variation caused by the corrugated nature of granulation. In order
to model the contribution of the stellar rotation to the residual CCF velocities, my code com-
putes the brightness-weighted average differential rotation behind the planet, v<stel>, per each
time of the observation. The position of the centre of the planet at any given orbital phase, φ
is described as

xP =
a
R⋆

sin (2πφ), (2.3)

yP = − a
R⋆

cos (2πφ) cos (iP), (2.4)

for a circular orbit, where a is the semi-major axis,R⋆ is the radius of the host star and iP is the
inclination of the planetary orbit. The differential rotation requires the value of the orthogonal
distance from the stellar spin-axis, x⊥, which is obtained by rotating the coordinate system in
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(a) Computed stellar grid.
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(b) Brightness weighted< μ > as a function of the phase.

Figure 2.6: These are the plots showing the star grid obtained from the numerical computation on a square grid of 251
equal steps in x and y directions, colorcoded by the radial velocity, Figure 2.6, and the brightness weighted behind the
planet obtained from the numerical computation of Equation 2.12, Figure 2.6b. The stellar grid is here computed on 251
instead of 51 steps only for visualization purpose.

the sky plane by the projected obliquity λ,

x⊥ = xP cos (λ)− yP sin (λ), (2.5)

y⊥ = xP sin (λ) + yP cos (λ). (2.6)

Apart from the specific case in which i⋆ = 90◦, this rotation is not sufficient to guarantee that
the equator of the reference coordinate system and the equator of the star are aligned. For this
reason, in order to calculate the differential rotation it is necessary to know also the orthogonal
distance from the stellar equator, y′⊥. To obtain it, the coordinate system is rotated again about
the x⊥ axis by an angle β = π/2− i⋆:

z′⊥ = z⊥ cos (β)− y⊥ sin (β), (2.7)

y′⊥ = z⊥ sin (β) + y⊥ cos (β), (2.8)

where z⊥ =
√
1− x2⊥ − y2⊥, in units ofR⋆.

Assuming a differential rotation law derived from the Sun, Ω = Ωeq(1 − α sin2 θ)[3], the
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Figure 2.7: These are the plots showing the mean stellar velocity numerically computed according to the Equation 2.10
and the convective velocity obtained from Equation 2.11 plotted as a function of the phase. Non‐zero values for the
convective velocity outside the transit are a numerical artifact of the proposed approximation, and are ignored in the
modelling of the measured RVs.

rotation velocity of the star for a given position is defined as

vstel = x⊥veq sin i⋆(1− αy′2⊥), (2.9)

since y′⊥ = sin (θlat), where θlat is the latitude relative to the equator of the star and α is the
differential rotation rate. The x⊥ and y′⊥ values are computed also for any x,y position inside
the stellar disc and behind the planet. The v<stel> is then numerically calculated as

v<stel> =

∑
Ivstel∑
I

, (2.10)

where I is the intensity determined using the limb darkening law. To compute v<stel> numer-
ically, my program constructs a stellar grid that is transited by the planet and performs the
summation of the vstel behind the planet over a square grid of 51 equal steps in the vertical and
horizontal direction, which origin is defined at the planet center. I have excluded any contribu-
tion from the steps that do not lie beneath the planet and/or on the stellar disc, by setting the
value of them to 0. I have also excluded theCCFs that are close to the limb, since they have very
noisy profiles. My program also excludes the ones whose brightness-weighted< μ > behind
the planet has a value smaller than 0.25.

In my modelling I can also take account of the net convective shift vconv. Since there is not
an exact formulation for the contribution of vconv, I have approximated it using a polynomial.
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Figure 2.8: These are the plots showing the mean stellar velocity numerically computed according to the Equation 2.10
and the convective velocity obtained from Equation 2.11 plotted as a function of the< μ >.

The convective velocity has a radial symmetry about the disc centre, due to the fact that the
granulation on the spherical host star has a corrugate nature. So the contribution of the centre-
to-limb convective velocity has this expression

vconv =
i=n∑
i=1

ci < μ >i (2.11)

where n is the order of the polynomial and< μ > is the brightness-weighted behind the planet,
which is given by

< μ >=

∑
Iμ∑
I
, (2.12)

with μ = cos θ (θ centre-to-limb angle), and is also computed numerically by the program,
summing over a stellar grid of 51 equal steps in x and y, centered on xP, yP as before. In the pre-
vious steps, while removing the RVs from the master out-of-transit CCFs, I have also removed
the brightness-weighted vconv of the whole stellar disc from the in-transit CCFs. For this reason,
the condition that I impose on the coefficients of the polynomial during the vconv polynomial
fitting to the in-transit data is that the brightness-weighted net convective blueshift integrated
over the stellar disc is zero ∫ π

0 2
∫ π

2
0 I(θ)vconv(θ)R2

⋆ sin(θ)dθdφ∫ π
0

∫ π
2
0 I(θ)R2

⋆ sin(θ)dθdφ
= 0, (2.13)
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where R2
⋆ sin(θ)dθdφ is the surface element dSR⋆ . To take into account only the half sphere

facing the observer, the integration over φ is performed from 0 to π, while the integration over
θ is written as twice the integral from 0 to π/2, because the two halves of the stellar disc are con-
sidered equal, since the center-to-limb variation is radially symmetric. Writing Equation 2.13
as a function of μ and solving for the constant offset c0 in vconv, the result is:

c0 = −
∑i=n

i=1 ci
∫ 1
0 I(μ)μ

i+1dμ∫ 1
0 I(μ)μdμ

. (2.14)

This is the condition to be imposed when computing any vconv polynomial. Finally the value of
the total velocity of the occulted stellar region is:

vtot = v<stel> + vconv. (2.15)

Table 2.3: Priors and boundaries values of the parameters used in the MCMC simulation.

Parameter Prior min Max units

convc1 Uniform -5.0 5.0 km/s
convc2 Uniform -5.0 5.0 km/s
veq Uniform 0.0 10.0 km/s
i⋆ Uniform 0.0 180.0 deg
P⋆ Gaussian 1.0 1000.0 d
α Uniform 0.0 1.0

R/R⋆ Gaussian 0.10 0.20
iP Gaussian 80.0 90.0 deg
λ Uniform -90.0 90.0 deg

a/R⋆ Gaussian 0.00 20.00
TC Gaussian 2454279.3 2454279.5 d
PP Gaussian 2.10 2.30 d

jitter Uniform 0.0002 29.0337
ldC1 Gaussian 0.796 0.836
ldC2 Gaussian 0.00 0.02

Any transiting planet towhich this analysis canbe applied has also highprecision light curves
fromwhich a/R⋆, iP andRP/R⋆ canbemeasured in amore accurate andpreciseway than from
the RM alone. In the case of HD189733, the values that I used to compute xP and yP for each
in-transit epoch are taken from literature and are the ones that I have reported in Table 2.2.
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The computation of v<stel> also requires veq, i⋆, λ and α. In order to obtain these quantities, I
performed a fit with the Markov chain Monte Carlo (MCMC) algorithm, using the emcee4

package. The MCMC fits also for each of the coefficients of Equation 2.11, since the vconv is
allowed to assume non-zero values. I provided none a priori knowledge of vconv to the program,
except for the condition that it must satisfy, which is given by Equation 2.14 and the order
of the polynomial, which I set to 2. I set uniform priors on α, which value has to be in the
[0, 1] interval, since values outside this region are forbidden, on the equatorial velocity veq and
on the stellar inclination i⋆, while for the rotation period of the star P⋆ I set a Gaussian prior.
Following the description that I found in the paper of Hathaway et al. 2015[4], in which the
authors present amodel for the convective blueshift velocity of the Sunwith the corresponding
coefficients, I fixed the boundaries on the convective coefficients convc1 and convc2 in a way
to reproduce the model of this paper, i.e., I imposed that convc1 has a positive value and that
convc2 has a negative value. I have constrainedGaussian priors also for the planetary parameters
such as the orbital period PP, the time of conjunction TC, the ratio of planet radius to stellar
radius R/R⋆, the inclination iP and the ratio of semi-major axis to stellar radius a/R⋆ and a
uniform prior to the value of the sky-projected spin-orbit angle λ. I also set Gaussian priors
to the coefficients of the quadratic limb darkening law ldc1 and ldc2 . In my analysis I have also
included a jitter parameter, i.e., a constant to be added in quadrature to the error associated
to the RVmeasurements in order to take into account possible under-estimation of the errors.
For the jitter, I used a uniform prior. All these parameters with related information on the
priors and boundaries used in the MCMC simulation are reported in Table 2.3. For the first
analysis, I have randomly initialised 60 walkers over the range of the priors to make sure that
they explore exhaustively the parameter space. The number of walkers is set to 4 times the
number of parameters of the model, and the length of the chain is set to 105 steps, with a burn-
in phase of 55, 000 steps. For the second analysis I decided to remove the contribution of the
convective velocity, hence reducing the number of the parameters to 13, to see if and howmuch
the result of the simulation changes. Also in this case I have randomly initialised the walkers
over the range of the priors and I made them explore the parameter space with a chain of 105

steps with a burn-in phase which in this case is set to a value of 61, 000 steps. Both theMCMC
analysis properly worked and all the parameters that I have fitted converged before the end of
the chain. The results of these two analysis are reported in Table 2.4.

By combining the obtained values of i⋆ and λ, with the orbital inclination iP, which value in

4emcee: The MCMC Hammer, by Daniel Foreman-Mackey, David W. Hogg, Dustin Lang and Jonathan
Goodman https://github.com/dfm/emcee
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both cases has a median value of 85.71◦, I have determined the true 3D obliquity ψ using the
following equation:

ψ = arccos(sin i⋆ cos λ sin iP + cos i⋆ cos iP). (2.16)

In particular, in performing this calculation I did not simply use themedian values of the three
angles, but the sampled posteriors one by one, thus obtaining a distribution of values also for
ψ. The resulting best fit values obtained as median of the values of ψ for the 2 simulations are
reported in Table 2.4. In Figure 2.9 I displayed the corner plot of the quantities that I have

Table 2.4: MCMC observational results for HD189733 and the derived 3D spin‐orbit obliquity.

veq (km s−1) i⋆ (◦) α λ (◦) c15 (km s−1) c25 (km s−1) ψ (◦)

4.11+0.46
−0.44 99.5+12.0

−9.6 0.36+0.24
−0.17 -2.7+1.0

−1.2 0.21+0.32
−0.15 -0.66+0.25

−0.37 14.41+11.12
−8.08

3.81+0.41
−0.35 99.90+12.95

−14.28 0.23+0.17
−0.14 -0.15+0.54

−0.56 / / 15.38+12.15
−9.97

obtained from the two separate analysis using different colors. The most interesting fact that
is highlighted in this corner plot is the existence of a degeneracy between the parameters i⋆ and
ψ that is not present in the corresponding corner plot obtained by Cegla and collaborators[3].
This degeneracy is recognisable as a V-shaped diverging linear trend in the marginalised two
dimensional distribution panel of i⋆ vs ψ, where it is clear that two distinct values of i⋆ are
associated to the same value of ψ. What I noticed is that, in this panel, the two distributions of
i⋆ converge to a point that has a value of 85.71◦, which corresponds to the orbital inclination iP.
I checked the original paper for a visual feedback and I found that, even if in the corner plot of
Cegla et al. 2016 there is a single distribution of values of i⋆, the point atwhich it encounters the
x-axis of the corresponding panel is the same. This can not be just a coincidence. As amatter of
fact, in this model the stellar spin angle is determined starting from the value of the differential
rotation andof the equatorial rotation velocity. Bydefinition, thedifferential rotation expresses
how the rotation velocity of the star changes as a function of the stellar latitude, so the situation
is symmetric with respect to the stellar equator. As a consequence, if I fix the value of iP, than
there are two possible geometric configurations, obtained by changing the inclination of the
stellar spin axis with respect to the line of sight, for which all the other parameters are identical.
This is because the transit chord can be both in the northern or in the southern hemisphere of
the star, and the results that are obtained by modeling the CCFs of the planet-occulted stellar

5These are the convective coefficients of order 1 and 2.
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Figure 2.9: This is the corner plot of the parameters analysed with the MCMC simulation. Different colors are used here to
better distinguish the distributions obtained from the two analysis. In particular, the green points are those corresponding
to the first analysis, which also included the convective contribution to the velocity, while the purple points correspond
to the second analysis, which did not include the convection. No big differences are observed in terms of distribution in
the two cases a part from the λ parameter which changes from ‐2.7◦ for the convective to ‐0.15◦ for the non‐convective
case. Median values are also displayed.
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Figure 2.10: This is an example of the backwards reconstructed RV as a function of the phase angle. The RV here shown
are obtained from simulated data, giving the values of i⋆ as input and not extracted from the residual CCFs as done before.
Notice that even if the two fixed angles have a difference of 28◦, the RV associated to them are still overlapping.

regions during the transit are exactly the same. Starting from this empirical evidence, I wanted
to prove that this is the cause of the degeneracy on my results. As first, I double checked my
script to make sure that no typo or wrong input values were present, and to exclude any other
possible cause of the degeneracy. Then I decided to write a program with simulated data, to
study the behaviour of the system in different geometric configurations. For this analysis I
fixed the values of ω, e, P, T0, Ttr and a/R⋆ to the ones from the literature, which are reported
in Table 2.2 and I also fixed the value of the stellar differential rotation α to 0.25 and that of
vsin i⋆ to 3.8 km s−1. I took advantage of the functions of Python to generate 102 values of
time, centered on the literature value of T0, and I used them to determine the orbital phase. I
have randomly generated a normal distribution for the value of the inclination of the planet
centered on the literature value iP, and for the value of λ, centered on the value of -0.4, using
in both cases 104 random points. The idea is that, since the degeneracy is related to the stellar
spin angle, than there are two different values of i⋆ giving the same value ofψ. To provemy idea,
instead of computing the value of i⋆ starting from the values of the equatorial velocity veq and
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Figure 2.11: This is an example corner plot obtained starting from the simulated data. In the marginalised two dimensional
distribution panel of i⋆ vs ψ is clearly recognizable the V‐shaped diverging linear trend, that is expected in this case due
to the fact of having assumed two distinct distribution of values for i⋆. No major differences are instead spotted in the
histogram of the marginalised distribution of ψ, confirming that it is nonetheless possible to constrain its value.

of the stellar differential rotation α, I assigned it as an input parameter to my program trying
different couple of values. In Figure 2.10 I plottedwith different colors theRVs as a function of
the phase, to provide an example of how it is possible to reconstruct almost identical RV values
starting from different stellar spin angles, proving indeed that the degeneracy is present. For
the specific case in example, I used the couple i1⋆ = 71.71◦ and i2⋆ = 99.71◦, fixed as iP ± 14◦,
to generate two normal distributions of stellar spin angles with a standard deviation of 13◦. In
this way the distribution related to the larger value falls between the two that I have obtained
as a result of the MCMC simulations. I have then also obtained the corner plot associated to
the same parameters of this analysis, which is shown in Figure 2.11. In the marginalised two
dimensional distribution panel of i⋆ vs ψ, I obtained the V-shaped diverging linear trend as I
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was expecting, due to the fact of having assigned as input two different values for the stellar
spin angle. This degeneracy is also present in the other cases that I have considered, where I
have changed the input values of i⋆ in a way to obtain two distributions which are symmetric
with respect to the value of iP, for which I do not provide the plots. Thanks to these results I
can confirm that my analysis on the HARPS data has worked properly and rather Cegla and
collaborators[3] have made some assumptions on the stellar spin angle value for which they
did not provide any information, or the code they used for the MCMC simulation did not
properly explore the values of i⋆ inside the interval of [0, 180]◦, as they claim, since from their
corner plot it seems that there is a threshold on this parameter, apparently at the same value
of the orbital inclination of the planet, which is indeed the value at which the posterior of the
stellar inclination is specularly reflected.
From the analysis that I performed withmyRRMcode, I have also obtained new estimates for
the value of veq sin i⋆, which I reported in Table 2.5 specifying if I have included the convective
term or not in the analysis. The value obtained by including also the convection is slightly
larger than the one obtained excluding it, in accordance with the trend found also by Cegla et
al. 2016.

Table 2.5: veq sin i⋆ values obtained from the analysis.

Analysis veq sin i⋆ (km s−1)

convection 3.93+0.49
−0.39

no-convection 3.63+0.36
−0.29
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3
The Rossiter-McLaughlin effect Revolutions

technique

In this chapter I provide a description of the Rossiter-McLaughlin effect Revolutions (RMR)
technique. Also in this case, I had to build the mathematical framework and the various steps
required for the data handling and the data analysis, taking advantage of those already imple-
mented in the code that I wrote for the RRM technique, with the purpose of reproducing the
improved technique presented by Bourrier et al.2021[2]. In this case, instead of reproducing
their results on the HD3167 system, I worked with the sameHARPS data onHD189733 that
I used in the previous technique, reported in Table 2.1.

3.1 The code for the RMR

Bourrier and collaborators havenot released their code to compute theRossiter-McLaughlin ef-
fectRevolutions[2] yet. For this reason, I had towritemyowncode for theRMR, following the
steps that are described in their paper, but using instead the sameHARPS data onHD189733
on which I worked with the code for the Reloaded RM effect, that are reported in Table 2.1.
The first step of this analysis, which consists in the extraction of the planet-occulted CCFs, is
the same of that for the traditional RRM. Therefore I here just summarize the operations that
I performed, since I have already provided a description for them in the previous chapter Sec-
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(a) Residuals before the scaling, same as the RRM.
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(b) Residuals after the scaling, same continuum value.

Figure 3.1: These plots show the difference between the residuals obtained with the RRM and with the RMR. Notice that
in Figure 3.1b the vertical axis has been limited to a small range for visualization purpose and thus part of the residuals
are cut. This is because the scaling of the residuals that have a flux close to zero encounters division by number that are
almost zero, hence producing very large values.

tion 2.1. After selecting the CCFs, I have aligned them by correcting for the keplerian motion
and the system velocity. Using the batman package, my code computed the light curves with
the assumption of a quadratic limb darkening law. I then have scaled the fluxes of the CCFs
using the corresponding values of the light curves as reference. I co-added the CCFs outside of
the transit in order to get the master-out of transit and I have obtained the residual CCFs by
subtracting the in-transit CCFs from themaster-out of transit CCFs. Up to this operation, the
two codes are identical, but in this case, instead of working with the CCF_loc as in the RRM,
I reset the residual CCFs to a common flux level. To do that, I divided their continuum by the
flux scaling obtained from the light curve modeled with batman, so that the residuals are given
as

CCFresiduals =
CCFmaster − CCFin−transit · fluxLDbatman

1− fluxLDbatman
. (3.1)

These resultingCCFs are independent from the occultation of the planet and from the effect of
the LD on the continuum flux, hence they are intrinsic CCFs and they allow for a more direct
comparison since they only display variations in the local stellar line profiles. In Figure 3.1 I
visualise the difference between the residuals obtainedwith the traditional RRMapproach and
the ones obtained with the RMR technique, by showing the two plots one next to the other.
In Figure 3.2a I display the map of the intrinsic CCFs during the transit, which is obtained
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(a) Intrinsic CCF map during the transit.
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(b) Clear scaled residual CCFs.

Figure 3.2: These plots show in Figure 3.2a an example of the map of the intrinsic CCF during the transit of HD 189733b,
where values of the phase are plotted as a function of the RV in the stellar rest frame and are coloured as a function of
their normalised flux, and in Figure 3.2 the clear scaled residual CCFs, which are a sub‐set of the ones in Figure 3.1b, ob‐
tained by restricting the phase to the [‐0.015,0.015] interval.

by plotting the scaled residual CCFs as a function of RV along the horizontal axis, and as a
function of orbital phase along the vertical axis, and color-coded according to their value. The
interval of phase inside which the signal to noise has an acceptable value is [−0.015, 0.015], so
I decided to plot again the residual CCFs limiting them to this phase interval, obtaining the
plot of Figure 3.2b, which results much more clear than the one of Figure 3.1b thanks to the
restriction that I have applied.

3.1.1 Individual exposures fitting

The next step is that of analysing the individual exposures, in order to identify the variation of
FWHM and contrast as a function of the limb angle μ. In the RRM approach, I fitted each
CCF_locwith a stellar line model using the Levenberg-Marquardt least-squares minimization
method. In order to determine if the local stellar line are to be considered detected and if the
best fit properties can be used for the analysis, I applied a single arbitrary threshold, calculated
using the properties of the fit. When data are affected by systematic errors, with the χ2 mini-
mization is difficult to understand if the model has been fitted to a stellar line or to a spurious
feature. Furthermore, the χ2 can bias the best-fit estimates and errors of the stellar line model
if the parameters to be estimated are correlated within each others.

To improve this step, in the RMR technique I took advantage of the Bayesian approach. In

27



2

1

0

RV

0.5

0.6

C

2.0

2.5

3.0

3.5

0 250 500 750 1000 1250 1500 1750 2000
step number

0.00

0.05

0.10

jit

Figure 3.3: This is an example of the result of the single CCF fit, obtained from the MCMC simulation. Each of the MCMC
chains for the RV centroid, for the contrast, for sigma and for the jitter, that are displayed in the plot, are related to the
same CCF taken in example. The convergence is reached in about 300 steps and is kept up to the end of the chain, telling
that the values have been properly found even if the chain is only 2000 steps long.

particular, I fitted each of the intrinsic CCFs with a stellar line model using emceeMCMC[5].
The model that I implemented in the code is that of a simple Gaussian defined as

1− h√
2πσ2

e−
(x−x0)

2

2σ2 , (3.2)

where 1 corresponds to the value of the continuum of the flux, fixed by the scaling that I have
applied to the CCFs and h is a term of normalization that enters in the contrast C, defined as

C =
h√
2πσ2

, (3.3)

so that the Equation 3.2 can be written as

1− Ce−
(x−x0)

2

2σ2 . (3.4)

28



0.5
28

0.5
32

0.5
36

0.5
40

C

2.8
75

2.9
00

2.9
25

2.9
50

1.9
00

1.8
75

1.8
50

1.8
25

1.8
00

RV

0.0
09

0.0
10

0.0
11

0.0
12

jit

0.5
28

0.5
32

0.5
36

0.5
40

C
2.8

75
2.9

00
2.9

25
2.9

50
0.0

09
0.0

10
0.0

11
0.0

12

jit

Figure 3.4: This is an example of corner plot obtained as a result of the MCMC simulation. The parameters here displayed
are the ones taken in example in Figure 3.3.

I have set jump parameters to the RV centroid x0, to the contrastC, to σ and to the jitter, which
is a constant that I added in quadrature to the error associated to the measures in order to take
into account possible under-estimation of the errors. Taking as reference the results obtained
from the previous RRM analysis, I have set a uniform prior distribution on the RV centroid in
the interval [−5, 5] km/s. According to the scaling that I have applied, the value of the flux at
the center of the stellar absorption lines ranges between 0 and the local continuum of 1, but in
order to evaluate the impact of noise on the line detection, I have set an uniform prior distribu-
tion on the line contrast over a larger range of [−0.5, 1.5]. I have set another uniform prior dis-
tribution between [0, 20] km/s on σ, an interval of almost 3 times the average value of σ, while I
decided to set a logarithmic prior distribution on the jitter term in an interval of [−8, 0], since
the value I expected was small. I have randomly initialised the walkers over the range of the pri-
ors to make sure that they explored exhaustively the parameter space. I have fixed the number
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(a) Best‐fit of all the residuals.
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(b) Example of a single best‐fit residual.

Figure 3.5: These plots show the best‐fit of the residuals obtained as a result of the MCMC simulation. In Figure 3.5a all
the CCFs are plotted together, using a dashed‐dotted black line for the residuals and continuous lines of different colours
for the modeled best‐fit values. In Figure 3.5b, an example of a single residual CCF is selected in order to better visualise
the result of the fit. The orange curve is the result of the fit of the gaussian model, the red horizontal line corresponds to
the common flux value (fixed at 1) and the green vertical line is centered on the value of the RV of this specific CCF.

of walkers for the first analysis to 24, which corresponds to 6 times the number of the parame-
ters, and the length of the chain to 2000 steps, with a burn-in phase of 500 steps. Once the test
was done, I have taken the median of the posterior probability distributions as best-fit values
for themodel parameters and assigned errors as the discrete difference between themedian and
the 16 and 84 percentile. In Figure 3.3 I show an example of the chains obtained as a result of
theMCMC simulation. From this plot is possible to see that the chains have very quickly con-
verged in about 300 steps, stably staying there up to the end of the chains. This is telling that
the simulation has properly worked even if the chains were only 2000 steps long. In Figure 3.4,
I show an example of all the one and two dimensional projections of the posterior probability
distributions of my parameters. This corner plot is useful because it demonstrates quickly the
co-variances between parameters. In fact, the diagonal of the plot shows with histograms the
marginalised distribution independently for each parameter, while the other panels show the
marginalised two dimensional distributions. I decided to also plot the values of the best-fit,
obtained from the emcee test as the median value of the posterior probability distribution. In
particular in Figure 3.5a I plotted the residualCCFs all togetherwith their corresponding fitted
gaussian model, and in Figure 3.5b I plotted a single CCF, chosen as example, to have a better
visualisation of the fitting. With the results obtained from the fit I have also realised the three
plots in Figure 3.6, considering the entire set of data from the four night of observation. The
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Figure 3.6: Left: In this figure the RVs are plotted as a function of the orbital phase restricted to the interval φ =
[−0.015, 0.015], and the points are color‐coded by phase. The purple line representing the linear fit is also displayed.
Middle: the values of the contrast are plotted as a function of the brightness‐weighted behind the planet< μ >. Right:
the values of the sigma are plotted as a function of< μ >. In both cases the points are color‐coded by< μ >. Also in
these plots the points are following a general linear trend, with an increase in the value of contrast and sigma as a function
of< μ >. The green and magenta lines represent the result of the linear fit to the data.

first in Figure 3.6a is that of the radial velocity as a function of the orbital phase, which shows
that RV depends linearly by φ as RV(φ) = 2.393φ - 0.009. The second in Figure 3.6b is that
of the contrast as a function of the brightness-weighted behind the planet, which also appears
to follow a linear trend, with a fitted value of C(μ) = 0.027μ + 0.506. Actually, in this plot it
is possible to distinguish two different linear trends characterised by different slopes. This is
related to the fact that the data that I have combined in the plot come fromobservations carried
out using different filtering masks, the ones indicated in Table 2.1. This difference in terms of
contrast is the same that I have explained in Section 2.1, where I discussed the normalised mas-
ter out-of-transit CCFs, displayed in Figure 2.2c. Hence, to better visualise this difference in
terms of slope, I have plotted again in Figure 3.7 the contrast as a function of< μ >, this time
separating the values according to the filtering mask used to obtained them and I got CK5(μ)
= 0.008μ + 0.437 and CG2(μ) = 0.034μ + 0.535 as a result of the fit. The third in Figure 3.6c
is the plot of σ as a function of< μ >, which again shows a linear dependence between these
two quantities, fitted as σ(μ) = 0.081μ+ 2.751. Following the same strategy that I have adopted
in Chapter 3, in order to plot a clearer version of the residual CCFs, (Figure 3.2b), I have con-
veniently decided to show also in these three plots only the points within the interval of φ and
< μ > where the fit have properly worked. In this way I have excluded the outlier points,
which correspond to the measurements obtained outside the interval φ = [−0.015, 0.015],
close to the edges of the stellar disk, where the level of S/N is almost zero and for which the
scaling that I have applied emphasises the noise, as shown in Figure 3.1b. Even if in the original
work of Bourrier et al. 2021[2], the authors say that they did not apply any arbitrary threshold,
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(a) Contrast as a function of< μ > for the K5 mask only.
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(b) Contrast as a function of< μ > for the G2 mask only.

Figure 3.7: These plots display a zoom of the Figure 3.6b, obtained by excluding again the values with< μ > below 0.3
and separating them according to the mask that has been used to carry out the observations. From these plots is possible
to see the different slopes of the linear fit.

I decided to apply it anyway, for visualisation purpose.

3.1.2 Global Transit analysis

Up to here, the RMR approach hasmuch in commonwith the RRM technique, a part for the
scaling that is applied to the residualCCFs and for the Bayesian approach used in themodelling
of the individual exposures. The next step, which represents the main novelty of the RMR
approach, is that that of fitting all the intrinsic CCFs together with a joint model, instead of
fitting them individually.

Keeping into account the results that I found during the analysis of the individual exposures,
I decided to separate the data of the different nights according to the filtering mask that had
been used to carry out the observations. This produced two distinct sets of data, that I labeled
as K5 and G2 with clear reference to the mask. Working separately on each dataset I prepared
the parameters with priors and boundaries to be given as inputs for the modelling. Also in
this case, to perform the fit I used the MCMC algorithm implemented in the emcee package.
Many analytical models can be applied to describe the stellar line profile, both keeping con-
stant the properties in all exposures, or setting them by parametric models as a function of a
given coordinate parameter. In my implementation I have decided to set the RV centroids of
the theoretical lines by the same surface RV model, described in Cegla et al. 2016[6], that I
have used to implement the RRM method. As I have reported in Section 2.1, this model ac-
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counts for the projected stellar rotational velocity field, and its blur over the region occulted by
the planet for a given exposure, including also the differential rotation of the star and the con-
vective blue-shift. To quantify the contribution of the stellar rotation, my code computes the
brightness-weighted average differential rotation behind the planet, v<stel> according to Equa-
tion 2.10. The computation of v<stel> requires the quantities veq, i⋆, λ and α, which values are
also fitted by emcee. The convective contribution vconv, defined in Equation 2.11, is allowed to
assume non-zero values. I did not provide any a priori knowledge of vconv to the program, but
I imposed the condition that it must satisfy, expressed by Equation 2.14, and the order of the
polynomial to be used, which I set to 2. As a consequence of this choice, I required emcee to fit
the 2 coefficients of the second order polynomial expression for vconv. I have then set uniform
priors on α, on the equatorial velocity veq and on the stellar inclination i⋆, while for the rota-
tion period of the star P⋆ I set a Gaussian prior. Also in this case I have fixed the boundaries on
the convective coefficients convc1 and convc2 in a way to reproduce the model presented in the
paper of Hathaway et al. 2015[4], by imposing that convc1 has a positive value and that convc2
has a negative value. I have constrained Gaussian priors for the planetary parameters such as
the orbital period PP, the time of conjunction TC, the ratio of planet radius to stellar radius
R/R⋆, the inclination iP and the ratio of semi-major axis to stellar radius a/R⋆ and a uniform
prior to the value of the sky-projected spin-orbit angle λ. To be consistent with the model of
the RRM technique, I used also in this case a quadratic limb darkening law, setting Gaussian
priors to its coefficients ldc1 and ldc2 . In order to exploit the full extent of information contained
in the data, I fitted the profiles of the local stellar lines occulted by the planet, rather than just
their centroids as in the traditionalRRMtechnique, using aGaussian profile for themodelling.
This allowedme to boost the S/N of the occulted stellar lines by a factor which is proportional
to the number of in-transit exposures, thus increasing the possibility of constraining the planet
path even when the line was not detectable in individual exposures. Given that the analysis
of individual exposures allowed me to find a linear dependency of both the contrast and the
FWHM with < μ >, I decided to explore this trend with emcee, fitting them with a first or-
der polynomial. In particular, for both of them I fitted the slope, Cm and FWHMm, and the
intercept, Cq and FWHMq, and I also included a jitter parameter, using uniform priors with
the same boundaries for the G2 and the K5 dataset.

All these parameters with related information on the priors and boundaries used in the
MCMC simulation are reported in Table 3.1.

For the first analysis, I have randomly initialised 96 walkers over the range of the priors to
make sure that they explore exhaustively the parameter space. The number of walkers is set
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Table 3.1: Priors and boundaries values of the parameters used in the MCMC simulation.

Parameter Prior min Max units

convc1 Uniform 0 5.0 km/s
convc2 Uniform -5.0 0 km/s
veq Uniform 0.0 10.0 km/s
i⋆ Uniform 0.0 180.0 deg
P⋆ Gaussian 1.0 1000.0 d

vsin i⋆ Uniform 0.0 200.0 km/s
R⋆ Gaussian 0.75 0.85 km
α Uniform 0.0 1.0

R/R⋆ Gaussian 0.10 0.20
iP Gaussian 80.0 90.0 deg
λ Uniform -90.0 90.0 deg

a/R⋆ Gaussian 0.00 20.00
TC Gaussian 2454279.3 2454279.5 d
PP Gaussian 2.10 2.30 d

Cm Uniform -10.0 10.0
Cq Uniform 0.0 1.0
σm Uniform -10.0 10.0
σq Uniform 0.0 70.0

jitter Uniform 0.0002 29.0337
ldC1 Gaussian 0.796 0.836
ldC2 Gaussian 0.00 0.02

to 4 times the number of parameters of the model, and the length of the chain is set to 105

steps, with a burn-in phase of 28, 000 steps. For the second analysis I decided to remove the
contribution of the convective velocity, hence reducing the number of the parameters to 22,
to see if and howmuch the result of the simulation changes. Also in this case I have randomly
initialised the walkers over the range of the priors and Imade them explore the parameter space
with a chain of 105 steps with a burn-in phase which in this case is set to a value of 69, 800 steps.
Then I also have performed a third analysis, in which I have excluded the stellar differential
rotation from the parameters, fitting vsin i⋆ and the stellar radius R⋆ instead, and including
the contribution of the convection. The MCMC analysis properly worked in the three cases,
and all the parameters that I have fitted converged before the end of the chain. The results of
these three analysis are reported in Table 3.2 and in Table 3.3. The values and error associated
to them are defined also in this case using themedian and its discrete difference with the 16 and
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the 84 percentile.
By combining the obtained values of i⋆ and λ, with the orbital inclination iP, whichmedian

value is 85.71◦, I have determined the true 3D obliquity ψ using the following equation:

ψ = arccos(sin i⋆ cos λ sin iP + cos i⋆ cos iP). (3.5)

In particular, in performing this calculation I did not simply use themedian values of the three
angles, but the sampled posteriors one by one, thus obtaining a distribution of values also forψ.
In the specific case of the third analysis, before to compute ψ I had to compute also i⋆, starting
from the values of vsin i⋆, and veq using the values of R⋆ and P⋆ obtained from the fit. To
compute veq I applied the simple equation of the circular motion

veq =
2πR⋆

P⋆

, (3.6)

and I used these computed values to extract i⋆ from vsin i⋆ simply as

i⋆ = arcsin (v sin i⋆ ·
P⋆

2πR⋆

). (3.7)

The resulting best fit values obtained as median of the values of ψ for the three simulations are
reported in Table 3.2.

Table 3.2: MCMC observational results for HD189733 and the derived 3D spin‐orbit obliquity.

veq (km s−1) i⋆ (◦) α λ (◦) c1 (km s−1) c2 (km s−1) ψ (◦)

4.47+0.15
−0.11 108.4+8.2

−6.7 0.34+0.12
−0.08 -0.98+0.15

−0.16 0.45+0.07
−0.03 -0.53+0.05

−0.07 22.71+8.21
−6.66

5.45+0.09
−0.11 90.83+0.69

−0.68 0.98+0.02
−0.04 0.93+0.10

−0.10 / / 5.21+0.68
−0.66

3.56+0.32
−0.17 69.27+9.73

−10.26 / -0.84+0.16
−0.16 0.06+0.09

−0.04 -0.46+0.04
−0.07 16.46+10.26

−9.69

Table 3.3: Slopes and intercepts of contrast and of FWHM for the three analysis.

Analysis 1st G2 1st K5 2nd G2 2nd K5 3rd G2 3rd K5
Parameter Value Value Value Value Value Value

Cm 0.125+0.007
−0.007 0.063+0.007

−0.007 0.127+0.007
−0.007 0.063+0.007

−0.007 0.126+0.007
−0.007 0.063+0.007

−0.007
Cq 0.466+0.005

−0.005 0.395+0.005
−0.004 0.464+0.005

−0.005 0.395+0.004
−0.005 0.465+0.004

−0.005 0.395+0.004
−0.005

fwhmm 0.39+0.10
−0.10 0.39+0.10

−0.10 0.38+0.10
−0.10 0.36+0.11

−0.11 0.38+0.10
−0.10 0.40+0.11

−0.11
fwhmq 6.52+0.07

−0.07 5.85+0.07
−0.07 6.52+0.07

−0.07 5.87+0.07
−0.07 6.53+0.07

−0.07 5.85+0.07
−0.07
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Figure 3.8: This is the corner plot that visualises the results of the first and second analysis. It is clear the difference in the
parameters obtained in the convective case (purple) and in the non convective case (green).

The results that I have reported in Table 3.2 are very different in the three analysis. Con-
sidering for example the α parameter, the values that I have obtained including the convective
contribution and not including it are not even compatible the one with the other. I decided to
display in Figure 3.8 a corner plot with the results of these two analysis, using different colors
to better show all the differences between them. From the corner plot is easy to see that, dif-
ferently from what I found with the RRM technique (compare with Figure 2.9), none of the
parameters obtained in one analysis has a compatible counterpart in the other.

In the third RMR analysis, that I performed including the convective contribution, but ex-
cluding the differential rotation, I got a smaller value for the stellar inclination with respect to
the ones that I have obtained from all the previous analysis. I have computed i⋆ by combining
the distributions for P⋆ and R⋆ with that for vsin i⋆, which are quantities that have been fitted
independently, but I can not exclude that the distribution for i⋆ is affected by a possible system-
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Figure 3.9: This is the corner plot that visualises the results of the three analysis. Colors are indicative of the analysis, in
particular purple is for the convective with differential velocity, orange for the convective without differential velocity
and green is for the non convective analysis.

atic error caused by the inter-dependency of these quantities. In the Figure 3.9 I displayed in a
corner plot the distributions of the parameters that I have obtained as a result of the three analy-
sis using different colors in order to better distinguish them. It is clear from Figure 3.9 that the
i⋆ degeneracy, that I discovered in the RRM analysis, is still present. This because the values of
ψ obtained from the first and third analysis are compatible, despite the fact of having used two
very different distributions of i⋆ values to compute them. In this plot I have also shown the
distributions of the vsin i⋆ values that I have obtained. Taking the median of the distributions
as best fit value and the discrete difference between the median and the 16 and 84 percentile as
error associated to it, I got the new estimates also for the vsin i⋆, that I reported in Table 3.4
specifying the number of the analysis from which they come from. The results that I have
obtained for the slopes and intercepts of the contrast and of the FWHM of the spectral lines,

37



Table 3.4: veq sin i⋆ values obtained from the analysis.

Parameter 1st analysis 2st analysis 3rd analysis

veq sin i⋆ (km s−1) 4.18+0.24
−0.18 5.45+0.09

−0.11 3.33+0.01
−0.01
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Figure 3.10: This figure shows an example of the corner plot obtained using the results of the MCMC fit on the slope and
intercept of the contrast and of the FWHM of the stellar lines obtained with the G2 filtering mask.

which are reported in Table 3.3, are instead well constrained and show almost no differences in
the three analysis. This is telling that the information of the stellar profile is mostly contained
in the value of the centroid, which is expression of the radial velocity, and few information is
extracted from the depth (Contrast) and the width (FWHM) of the stellar spectral line. I dis-
play in Figure 3.10 an example of the corner plot that I have obtained using these values. From
the diagonal, is clear that the fitted parameters follow a Gaussian distribution, and in the other
panels is also possible to see the linear correlation between the slope and the intercept of both
the quantities.
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4
Dataset

In this chapter I present all the dataset that I used to performmy analysis. In particular, in the
modelling I included eight in-transit spectroscopic time series (Section 4.1 and Section 4.2),
photometric data spanning over fifteen years, taken both fromTESS archive (Section 4.3) and
from literature (Section 4.5), and high precision radial velocity data from the literature (Sec-
tion 4.4), in a robust and reliable Bayesian framework. In each of the following section I pro-
vide a description on how I obtained the data and how I prepared them to be used for themod-
elling, of which I provide more information in Section 4.7. Section 4.6 is instead dedicated to
the Limb Darkening coefficients.

4.1 HARPS observational data

In order to resolve the stellar surface using the transiting planet, my target needed to be bright,
with an high value of signal-to-noise (S/N), and the observation must be carried out with
an highly stabilised spectrograph. The star HD189733 was a good choice for this purpose,
since there were available archival observations from theHigh-AccuracyRadial-velocity Planet
Searcher (HARPS) echelle spectrographmounted on the ESO3.6m telescope inLa Silla, Chile.
The dataset is composed by four nights of data collected in 2006, during the observations of
July 29/30 and September 7/8, and in 2007 during the observation of July 19/20 and August
28/29. I have already provided information about these data at the beginning of Chapter 2,
where I have reported Table 2.1 with the details.
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4.2 NewHARPS-N data

In my analysis I have also included unpublished spectroscopic time series over four nights of
observations obtained in the context of the Global Architecture for Planetary Systems (GAPS)
program, using the High Accuracy Radial velocity Planet Searcher for the Northern hemi-
sphere (HARPS-N). HARPS-N is an high-resolution optical spectrograph dedicated to exo-
planet search and optimized for high-precision radial-velocity measurement, installed at the
Italian Telescopio Nazionale Galileo (TNG), which is a 3.58m telescope located at the Roque
de los Muchachos Observatory on the island of La Palma in Canary Islands. A description of
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Figure 4.1: These plots display the HARPS‐N dataset. Figure 4.1a is the plot of the RV in km/s, as a function of the time
stamps in BJD, while Figure 4.1b is the plot of the same RV as a function of the orbital phase, computed starting from the
time in BJD.

the HARPS-N spectroscopic dataset related to my target star HD189733 can be found in Ta-
ble 4.1, where I have provided information on the night of the observations, on the number of
spectra collected, on the mask that have been used and on the exposure time. Since these are

Table 4.1: HARPS‐N data on HD189733

Night Spectra Mask texp [s]

2017-05-30 46 K5 300
2017-07-20 55 K5 300
2017-07-29 43 K5 300
2018-10-18 15 K5 900

private data that belong to the GAPS team, which used them in the study of the exoplanetary
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atmosphere, my work on them to study the RM effect and the results that I have obtained ap-
plying also theRRMand theRMRmethods are the first of their kind. In Figure 4.1 I provided
two plots where I have visualised the 4 radial velocity curves related to the HARPS-N dataset.
To obtain these plots I displayed the RV values both as a function of the time stamps in BJD,
in Figure 4.1a, and as a function of the orbital phase, in Figure 4.1b.

4.3 TESS data

The Transiting Exoplanet Survey Satellite (TESS) was launched in April 2018. It is a NASA
mission that was designed to spend two years discovering transiting exoplanets through an all-
sky survey. The mission duration has been extended by other two years and probably it will go
on searching for exoplanets also in the next years. TESS has four identical, highly optimized,
red-sensitive, wide-field cameras that together can monitor a 24◦ × 96◦ strip of the sky (called
sector). The field-of-view is oriented along a line of ecliptic longitude with the instrument gen-
erally pointing at±54◦ of ecliptic latitude, whichmakesCamera 4being centeredon an ecliptic
pole. In this way sectors overlap near the ecliptic pole and so a given star may be observed by
several sectors. By monitoring each sector for 27 days and nights, TESS covered the south-
ern hemisphere sky during the first year of the mission and the northern hemisphere in the
second year. Then, since the mission got extended, it started re-observing both the southern
(already completed) and the northern hemisphere sky. The set of TESS data products is made
of 30/10-min cadence Full-Frame Images (FFI) and 2-min cadence postage stamps for about
200, 000 pre-selected targets. Indeed the team prepared the TESS Input Catalogue (TIC) of
over 1 billion objects and a special subset Candidate Target List (CTL) of 200, 000 objects for
the short-cadence observations. This was done because taking images every 30 or 10min is not
a good choice for the light curve sampling, sincewe can have the so called binning effect1. Given

Table 4.2: ExoFOP information on HD189733.

TIC ID 256364928

Sectors 41 , 54
Ttr (d) 2459770.4104(21± 34)
P (d) 2.218574(80± 18)

the fact that they only have a limited amount of data that can be downloaded from the satellite,
1When a light curve is observed, the variation of the transit have timescales of a fewminutes, thus integrating

an image over half an hour can smooth out all the features of the light curve itself.
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theTESS team selected a special sample of targets (usually bright stars or stars which are already
known to have some planets) and they decided to download only a small portion of the image
around the target (these are the so called Target Pixel Files) measuring the flux of the observed
star every 2 min, to better determine the shape of the transit. To download the data related to
my target HD189733, I initially retrieved its TESS Input Catalogue number and the sector in
which it has been observed, from the ExoFOP website2. I got information on the TIC ID, the
sectors of TESS, the reference time of the first transit (detected in the TESS light curve) and
the period of the planet, which I reported in the Table 4.2. I then used the official archive for
NASA missions data products, that is the Mikulski Archive for Space Telescopes (MAST3 ), in
order to download the TESS Target Pixel File (TPF) related to my star. Once I entered the TIC
number and selected the TESS mission data products, I got many results. Since HD189733
has been observed in 2021 in sector 41 and in 2022 in sector 54, I found two sets of science
data, each containing five files. Among these files I used only the ones with suffix _lc.fits,
containing the light curves as extracted by the TESS team. More information on these TESS
data are reported in Table 4.3.

Table 4.3: TESS data on HD189733

Sector Data points Start time End time Filter Waveband

s41 19149 2021-07-24 2021-08-20 TESS Optical
s54 18890 2022-07-09 2022-08-04 TESS Optical

4.3.1 TESS analysis

Since the TESS team have already reduced the data, I did not perform the aperture photom-
etry on the TPF, but I used the light curves provided by them. In particular, they not only
have provided all the data, but they have also performed the data reduction with both a Simple
AperturePhotometry (SAP), and aPre-searchDataConditionedSimpleAperturePhotometry
(PDCSAP), which is the SAP after correcting for instrumental systematics as possible changes
in the detector efficiency and any other long term trends. As first step I wrote a Python script
to load the light curve .fits files and to open their Header/Data Units (HDU). The HDU
contained three entries: primary, lightcurve and aperture. I extracted the data from
the lightcurveHDU and found the keywords contained in it. In particular I was interested

2https://exofop.ipac.caltech.edu/tess/
3https://mast.stsci.edu/portal/Mashup/Clients/Mast/Portal.html
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Figure 4.2: These plots display the comparison between the SAP (cyan points) and PDCSAP (orange points) analysis per‐
formed by the TESS team with the data corresponding to sector 41 (left) and data corresponding to sector 54 (right).

in the flux of the SAP, the flux of the PDCSAP and the error associated to them, so I selected
them using the correct keyword. The PDCSAP fluxes should be in principle best estimate of
the intrinsic variability of the target, since they are obtained after correcting for systematics that
are usually quantified studying common trends relative to all the stars that fall in the surround-
ings of the considered target. This is a general approach to correct the data for systematics, but
it may not work in some specific cases. In order to check if the applied correction has been
successful or not, I decided to compare the PDCSAP with the SAP analysis. For this aim, to-
gether with the SAP, PDCSAP flux and associated errors, I also extracted the time stamps and
the quality flag of the data, as determined by the TESS team. For my analysis, I have decided
to keep only the points with quality flag equal to zero, i.e., data points that are not affected by
any instrumental anomalies or astrophysical effects. To provide a visual feedback of the com-
parison, in Figure 4.2 I plotted the flux values of the two analysis as a function of time, using
different color in the two cases and highlighting the bad data in red. The two analysis are al-
most identical in the case of sector 41, while they show some differences in sector 54, where
the PDCSAP algorithm seems to have encountered some problem. For this reason I decided
to consider the SAP as best analysis in both sectors and I saved in a file only the values that I
flagged as very good data for the time stamps, for the flux of the SAP and for its corresponding
error. From the plots in Figure 4.2 it is easy to see that the flux is not normalised and that the
light curves have some trends. These trends can be caused by some residual instrumental sys-
tematic error or by any other source of spurious signal different from the one of the planetary
transit, like stellar activity. Indeed, the presence of a star spot can mimic the transit signal by
causing a reduction on the measured flux, while the presence of a flare causes an increase of
the flux and the modulation of these different signals is part of the observed trend in the light
curve. For this reason, if I want to fit the actual transit signal, I need to remove these trends
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(a) Fit on the SAP data of sector 41.
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(b) Fit on the SAP data of sector 54.

Figure 4.3: These plots display, with different colors, the results of the fit performed by wotan on the SAP flux data with
both the biweight (lime) and the hspline (magenta) averaging methods.

and normalise the light curve in a way that the flux is equal to 1 outside the transit and assumes
a value smaller than 1 only during the transit. To perform this operation, which is called light
curve flattening, I followed a quite empirical approach with no assumption on the cause of
the signal modulation, by modelling the light curve outside of the transit in order to get the
normalised flux. To perform this operation I took advantage of the already implemented and
tested code wotan4, developed by Hippke et al. in 2019[7], in order to get a proper correction
of the light curve preserving the shape of the transit itself. This code selects the data using two
windows, one along the x-axis, called temporal window, and one along the y-axis, which selects
only those points that are locatedwithin a given vertical distance from the average of the points
previously computed, within the temporal window. In practice, wotan takes a chunk of the
light curve, computes the average, and then re-computes its value inside the temporal window
by weighting the selected points according to the distance in flux with respect to the average
value previously calculated. In this way, during the operation of flattening of the light curve
I give much less weight to the points that are associated to the transit signal, hence preserving
the characteristics of the transit itself. I gave as input to wotan the file associated to the SAP
data flagged as very good, that I previously saved, and I decided to test two different algorithms
to compute the average: the so called Tukey’s biweight and the Huber’s spline. Both of these
algorithms required the assignment of a value for several parameters, which are: windows
lenght, the length of the filter window in units of time; edge cutoff, since trends near the
edges are less robust, depending on the data, it may be beneficial to remove the edges; break
tolerance, if there are large gaps in time, especially with corresponding flux level offsets, the
flattening is much improved when splitting the data into several sub-light curves and applying
the filter to each individually; returntrend, if True, themethodwill return a tuple of two el-

4This code can be retrieved from the github repository https://github.com/hippke/wotan
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(a) Comparison of all the folded light curves.
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Figure 4.4: Right: Plot of the folded light curves obtained by slightly shifting the value of the flux, for visualisation purpose.
Here are compared all the SAP light curves, coloured in black, with the biweight (lime) and the hspline (magenta). Left: This
plot shows how the two flattened light curves, obtained with the biweight and with the hspline methods, are practically
overlapping, even if σBiweight is slightly larger than σHspline.

ements (flattened flux, trend flux), where trend flux is the removed trend, otherwise it will only
return flattened flux; cval,tuning parameter for the robust estimators. In Table 4.4 I reported
the values of each of the parameters that I used to run the two algorithms and to provide also a
visual feedback of the results obtained with wotan, in Figure 4.4 I plotted the trends identified
by both the biweight and the hsplinemethods ontomy SAPflux data. Since Iwanted to display

Table 4.4: Parameters for the two algorithms used in the wotan code.

Method biweight spline

window length (d) 1.0 0.5
edge cutoff 0.3 /

break tolerance 0.5 0.5
return trend True True

cval 0.5 1.5

the light curve as a function of the orbital phase, I had to perform the folding of the light curve,
a process in which all the points that correspond to the same moment of the transit are over-
lapped, a planetary orbit after the other, in order to superimpose all the recurring transits. First
I computed the phase, using the reference time of the first transit and the period of the planet,
reported in Table 4.2, in a way that the transit is centered in zero. Then I divided the SAP flux
values by an average value computed on the out-of transit points, in order to normalise the
light curve. Finally, to compare the normalised SAP curves with the biweight and the hspline
flattened ligt curves, I plotted them together in Figure 4.4a. In order to quantitatively compare
the light curves, I selected a range of the orbital phase outside of the transit not too far from
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it, and I computed the standard deviation of the points inside that range, finding that: σSAP =
0.011268, σBiweight = 0.000364 and σHspline = 0.000352. The largest standard deviation is that
produced by the SAP light curve, while both the flattened ones produce a small σ, which is
comparable between them two, as can be seen in the plot of Figure 4.4b, but is slightly smaller
in the case of theHuber splinemethod. As a consequence, I decided to retain theHuber spline
flattened light curve and saved it into a file, after computing the error associated to these data,
as the ratio between the error associated to the input light curve and themodelled trend derived
with the Huber spline method, which I assumed to be error-less.

4.4 Literature radial velocity data

Aiming to get a new estimate of the mass of HD189733b, I also performed a spectroscopic
analysis of radial velocities, as is usually done in the RV technique. The concept on which this
technique is based is very simple. A star and a planet which form a system are both orbiting
around the common center of mass, which is the barycenter of the system. Since the planet is
too faint, what is detected with the RV method is the motion of the star induced by the pres-
ence of the planet. In particular, during its orbit around the barycenter, the velocity of the
star has a radial component which is oriented along the line of sight. This radial component
causes aDoppler effect in the emitted light of the star, which appears bluer as the star is moving
toward the observer and redder as it moves in the opposite direction. Due to the Doppler ef-
fect, the spectral line of the star are periodically shifting from their rest position of an amount
which, if quantified, allows to detect the presence of a planet. This indeed was the technique
that led Bouchy and his collaborators to discover the exoplanet HD189733b in 2005[8]. From
the observation of the orbital motion of the star around the barycenter it is possible to obtain
the characteristics of the planet. In particular, if the eccentricity of the planet is zero, the star
describes a perfect sinusoidal motion and it is possible to determine the value K of the semi-
amplitude of the RV curve fitting the data even with few points. The mass of the planet (MP)
can then be derived from the value of K, given that the mass of the star is known. What is
actually derived is not MP, but the lower limit mass MP sin iP, but since HD189733b is also
transiting in front of its host star, than the value of the orbital inclination in known, hence the
true mass of the planet can be determined.

In order to perform this kind of analysis I did not get any newRVmeasurements, but I used
literature data taken from previous analysis of this kind. To search for these data, I used the
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NASA Exoplanet Archive website5 and I found two papers cited in the ancillary information
section related to the RV curves. Checking these papers, I found that in one of them the au-
thors were using data taken from the discovery paper, and the same HARPS data on which I
performed my analysis. Than I decided to take the RV data directly from the discovery paper.
In Table 4.5 I have summarised the sample of RV data that I have used to performmy analysis,
which are literature data taken from the discovery paper of Bouchy et al. 2005[8], from the
paper of Winn and collaborators published in 2006[9], and from the paper of 2009 by Boisse
and collaborators[10]. In both the cases of Bouchy[8] andWinn[9], data also contain RVmea-
surements taken during the transit, which the authors used to performed an analysis of theRM
effect with the classical method.

Table 4.5: Literature RV data on HD189733

Paper Data points Excluding RM Including RM Mask

Bouchy 2005 47 15 26 R37000K0
Winn 2006 86 26 58 Optical Spectra
Boisse 2009 33 33 / G2

4.4.1 Literature radial velocity analysis

From the discovery paper of Bouchy et al. 2005[8] I found the information that the spectro-
scopic observations of HD189733 have been carried out in March 2004 with the ELODIE
spectrograph mounted on the 1.93 m telescope at the Haute-Provence Observatory (OHP)
in France. Using this information, I searched in the online available archive of ELODIE and
found the same spectroscopic data onwhich the authors performed their analysis. After saving
them, I wrote a Python script to see their content. In particular, since they were file .fits, I
opened them with astropy and checked the information reported in the header. Among the
information, I found five different values associated to the keyword time, numbered from 1 to
5, of which time4 corresponded to the time of mid exposure, and time5 to the exposure time
in seconds. I noticed that in writing this files the science team had used the UTC time scale.
For this reason I had to convert them to the appropriate scale, which is the Barycentric Julian
Date (BJD), which takes also into account of the time required to the light to travel the dis-
tance between the heliocentric and the barycentric position of the Solar System. To perform

5https://exoplanetarchive.ipac.caltech.edu/
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Figure 4.5: In these plots are displayed the RVs values taken from Bouchy et al. 2005[8] as a function of the time in BJD
in Figure 4.5a and as a function of the orbital phase in Figure 4.5b. Different colors are used in both cases to distinguish
where the RM effect is present.

the conversion between the two time scales I took advantage of the functions already imple-
mented in the astropymodule, to which I gave as input the UTC time, together with the sky
coordinates of my target star, and the Earth location of the observatory. After this operation,
I computed the orbital phase starting from the time values in BJD, and I used it to define the
interval inside of which the RVmeasures were including the RM effect. I then saved the RVs in
two distinct files, one for those with the RM effect and one for those not including it. In Fig-
ure 4.5a I have displayed with different colors the RVs as a function of the time stamps in BJD
and in Figure 4.5a as a function of the orbital phase. From my selection I found that among
the 47 total RV data points of this set, 26 were also including the RM effect, 15 were excluding
it and the remaining 6 were bad data, that I decided not to include in the further steps of my
analysis. This information is reported in Table 4.5.

In thepaper ofWinn et al. 2006[9] the authors explain that the observationswere carriedout
during the predicted transit of 21 August 2006, using theHighResolution Echelle Spectrome-
ter (HIRES) mounted on the 10m telescope Keck I. They obtained 70 spectra in an interval of
time of 7.5 hours, getting measurements also before and after the transit. To these they added
other 16 spectra that had been obtained by the California-Carnegie group at random orbital
phases. The entire dataset on which they performed their analysis was reported in a table, so in
this case I did not need to search for the data. The values of time they reported are expressed
in the Heliocentric Julian Date (HJD) scale, so before I could use them to compute the orbital
phase I had to convert them into the BJD, using again the functions implemented in astropy.

48



2.4530 2.4532 2.4534 2.4536 2.4538 2.4540
BJD 1e6

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

RV
 (k

m
 s

1 )

RM effect
no RM effect

(a)Winn’s RVs as function of time.

0.4 0.2 0.0 0.2 0.4
Phase

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

RV
 (k

m
 s

1 )

RM effect
no RM effect

(b)Winn’s RVs as function of phase.

Figure 4.6: In these plots are displayed the RVs values taken from Winn et al. 2006[9] as a function of the time in BJD
in Figure 4.6a and as a function of the orbital phase in Figure 4.6b. Different colors are used in both cases to distinguish
where the RM effect is present.

Using the properly computed orbital phase, I selected the RVs on the basis of including or not
theRMeffect and then I plotted themboth as a function of time and as a function of the phase
as shown in Figure 4.6. In particular, in Figure 4.6a is possible to distinguish also the 16 points
corresponding to the spectra added to the dataset. Among the 86 total RVs data points, 2 were
bad points that I had to discard, while the remaining, that I saved in two separate files to be
used for the analysis, were divided in 58 which included the RM effect, and 26 not including
it. I reported this information also in Table 4.5.

From the paper of Boisse et al. 2009[10] I found the information that the authors had ob-
tained the RVmeasurements on which they performed the analysis, between 12 July 2007 and
23August 2007. They carried out the observations with the high-resolution SOPHIE spectro-
graph, mounted on the 1.93 m telescope at the OHP in France. Also in this case I have been
able to get the spectroscopic data from the online available archive of SOPHIE, using the in-
formation provided by the authors of the paper to search for them. I wrote a Python script to
open the data after saving them, as I did for the RVs of ELODIE. These were files .fits, so
I opened the header to check the information contained in them and found that the values of
time were reported in the UTC TBD scale. In order to convert the values of time to the BJD
scale I used astropy and then I proceeded as before in computing the orbital phase and sepa-
rating theRVs values on the basis of containing theRMeffect or not. This time all of the 33RV
data points were not including the RM effect, as I also showed in the two plots of Figure 4.7,
so I saved all of them in a single file, ready to be used for the analysis, as reported in Table 4.5.

49



0 10 20 30
BJD +2.4543000000e6

0.2

0.1

0.0

0.1

0.2

RV
 (k

m
 s

1 )

no RM effect

(a) Boisse’s RVs as function of time.

0.4 0.2 0.0 0.2 0.4
Phase

0.2

0.1

0.0

0.1

0.2

RV
 (k

m
 s

1 )

no RM effect

(b) Boisse’s RVs as function of phase.

Figure 4.7: In these plots are displayed the RVs values taken from Boisse et al. 2009[10] as a function of the time in BJD
in Figure 4.7a and as a function of the orbital phase in Figure 4.7b. No points associated to the RM effect are present.

4.5 Literature light curve data

Soon after the discovery in 2005 of the exoplanetHD189733b through the RV technique, this
planetary systemhas been analysed alsowith the photometricmethod, given that the planet has
been proven to transit its host star. The idea behind this technique, also called transit photom-
etry, is to detect the drop of the observed brightness of a star, caused by a planet transiting in
front of it, through photometric observations. The fractional drop in the stellar flux (δ) is pro-
portional to the ratio of the surfaces of the two bodies (R2

P/R2
⋆), therefore it is easier to detect

it when the planet has a larger radius and the star is a dwarf. The main advantage of this tech-
nique is that it allows to get an estimate of the radius of the planet. The problem is that a planet
can be observed transiting its host star only if its orbit is almost aligned with the line of sight
of the observer on Earth, so it is necessary to observe a very large number of stars in order to
increase the probability to detect it. This method has also an high rate of false detection, since
many stellar effects can mimic the effect of a planetary transit. This fortunately is not the case
of HD189733b, which presence has been well confirmed by multiple observations with both
spectroscopy and photometry. By modelling a theoretical light curve of a star with a transiting
exoplanet it is possible to retrieve many information about the planetary system as the transit
duration, the orbital period of the planet and the ratio between the radius of the two bodies.
In addiction, by monitoring for a sufficiently long time span the orbit of the same planet with
photometry, it is also possible to calculate new ephemerides, and estimate the timing offsets of
the distinct transits with respect to the predictions of a constant orbital period, which can be
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used to reveal the eventual presence of additional planets in the system.
In order to perform this kind of analysis I did not get new photometric observations, but I

used literature data taken from previous analysis of this kind. To search for these data, I have
consulted the NASA Exoplanet Archive website5, where in the ancillary information section
related to the photometric light curves I found many results. I decided not to include in my
analysis amateur light curves, since no information were provided on the method adopted to
obtain them. I also excluded light curves obtained through observations carried out with other
space telescopes, because treating those data would have required specific programs, making
the analysis become more complicated. So the only light curves that I included in my sample,
which I reported in Table 4.6, are those taken from the papers of Bakos et al. 2006[11], and
Winn et al. 2007[12].

Table 4.6: Literature light curve data on HD189733

Paper Light Curves Used6.

Bakos 2006 15 11
Winn 2007 8 8

4.5.1 Literature light curve analysis

Bakos et al. 2006[11] have organized an extensive observing campaign with the goal of acquir-
ing multi-band photometric measurements of the transit of HD189733b. In the paper they
have reported a table with all the information regarding the instruments used to carry out the
observations, which in this case are seven telescopes on four different sites spread in geographic
longitude. This was done in order to collect a large number of individual data points in a time
span of two months. The telescopes which were involved in the photometric monitoring are
the 1.0m telescope at the Wise Observatory in Israel; the 1.2m telescope at OHP; the 1.2m
telescope at the Fred Lawrence Whipple Observatory (FLWO) of the Smithsonian Astrophys-
ical Observatory (SAO); the 0.11m HAT-5 and HAT-6 wide-field telescopes plus the 0.26m
TopHAT telescope, also at FLWO; and the 0.11m HAT-9 telescope at the Submillimeter Ar-
ray site at Mauna Kea in Hawaii. Following the indication provided by the authors, I searched
online and found all the data of their analysis. Since data were collected with different instru-
ments, at different locations and using also different filters, I had to treat each of the light curves

6Since not all of the light curves that are reported in the paper contain a sufficient portion of the transit, I
decided to use only the ones containing at least half of it. I explain this in Subsection 4.5.1
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separately. I wrote a Python script to open the files containing the header information and I
found that the photometric measurements were expressed in magnitudes and that the time
stamps were reported in the Heliocentric Julian Date (HJD) scale. The first thing that I had
to do was to convert the values of time in the BJD scale and to do that I used the astropy
functions, to which I give as input the HJD values and also the keyword of the observatory
location, which was reported in the header of the files as OBSERVATORY_SITE. Then I had
to convert the magnitude values in flux. To do this I used the simple equation

F = 10−0.4m, (4.1)

where F is the flux and m the value of magnitude that was reported in the files. Obviously,
together with the magnitudes I also had to convert in flux units the errors associated to them.
To do that, I first defined an upper (εup) and a lower (εlow) value of the error, respectively as
εup = F · (100.4σm − 1) and εlow = F · (1− 10−0.4σm). I have computed then the average of them,
and used the resulting value as error associated to the measures of flux:

σF =
εup + εlow

2
. (4.2)

With the data converted in convenient units, I displayed each light curve by plotting the nor-

Table 4.7: Light curve taken from the dataset of Bakos et al. 2006[11].

Night Telescope Filter7 Cadence (s) Data points

2005-09-15 OHP 1.2m B 86 128
2005-09-24 Wise 1.0m B 42 201
2005-09-24 OHP 1.2m RC 95 159
2005-09-26 OHP 1.2m RC 95 142
2005-09-29 HAT-6 IC 108 126
2005-09-29 FLWO 1.2m rSloan 17 810
2005-09-29 HAT-5 IC 135 83
2005-09-29 TopHAT V 70 79
2005-10-01 HAT-9 IC 99 96
2005-10-28 TopHAT V 106 159
2005-11-19 HAT-9 IC 90 115

malised flux as a function of the time stamps.To better compare the different light curves I have
7The B and V filters are those of the Johnson system, IC and RC filters belong to the Cousins system, while

the rSloan is a filter from the Sloan Digital Sky Survey (SDSS) photometric system.
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Figure 4.8: Light curves taken from literature on which the photometric analysis has been conducted. In both cases, the
the values of the normalised fluxes are plotted as a function of the orbital phase, in a way that the center of the transit
corresponds to φ=0. The vertical black line gives the position of the center of the transit, while the two vertical dashed
lines provide a visual indication of the interval of phase inside of which the transit is observed.

normalised the flux values, by computing the ratio between the measured flux and the average
of the continuum, which I selected in the flat part of the light curves. What I observed in these
plots was that not all the light curves included a sufficient portion of the transit, that could
be used in the next steps of the analysis, and in the majority of them the transit was only par-
tially detected. For this reason I decided to keep only the light curves that were including at
least half of the transit, hence restricting my dataset to 11 of the original 15 light curves. I re-
ported in Table 4.7 the information related to the dataset on which I conducted my analysis
and I displayed the corresponding light curves all together in Figure 4.8a, to give also a visual
feedback. In particular, to produce this plot I computed the orbital phase, starting from the
values of time in BJD, and I added a small offset to the values of the flux of the different light
curves, for visualisation purpose, in order to avoid any overlapping. I then saved each of them
in a file .dat reporting in columns the values of time in BJD, the normalised flux in electrons
per second, and the associated error.

On the footsteps of Bakos and collaborators, Winn et al. performed another photometric
analysis of HD109733b in 2007[12]. To do that, they used observation collected in 2005 and
2006 by telescopes at four different observatories. They collected photometric measurements
with the 1.2m telescope at the Fred L. Whipple Observatory (FLWO) on Mount Hopkins in
Arizona; theyused theT100.8mautomatedphotometric telescope (APT) at FairbornObserva-
tory, in Arizona; with the 2m telescope at the Multicolor Active Galactic Nuclei Monitoring
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(MAGNUM) observatory on Haleakala, in Hawaii, they photometrically observed the same
transit that was observed spectroscopically by Winn et al. in 2006[9]; and they used also the
1.0m telescope atWiseObservatory, in Israel. In total, they gathered photometric observations
of 8 different transits of which they provided a clear description in the paper. Following their
description, I have been able to find the complete dataset on which they performed their anal-
ysis. After saving them, I opened the header of these data and found the information that the

Table 4.8: Light curve taken from the dataset of Winn et al. 2007[12].

Night Telescope Filter8 Cadence (s) Data points

2005-09-28 T10 APT 0.8m (b + y)/2 86.4 202
2006-05-02 T10 APT 0.8m (b + y)/2 86.4 178
2006-05-22 T10 APT 0.8m (b + y)/2 86.4 134
2006-06-11 T10 APT 0.8m (b + y)/2 78.0 97
2006-07-21 FLWO 1.2m zSloan 13.8 910
2006-08-21 MAGNUM2.0m V 82.8 168
2006-09-05 Wise 1.0m IC 43.8 344
2006-09-10 FLWO 1.2m zSloan 13.8 752

photometric measurements were reported in flux units and the values of time were expressed
in the HJD scale. Also in this case I had to treat each of the file separately, so I wrote a Python
script andusedastropy functions to convert the time inBJD, taking into account the informa-
tion on the location of the observatorywhich I found in the header, reportedwith the keyword
OBSERVATORY_SITE . Then, as I did with the light curves of Bakos et al. 2006, I displayed
each of them by plotting the flux as a function of the time stamps. In this case, as the authors
said in the paper, all the 8 light curves contained a complete transit, so I saved each of them in
a file, after having normalised the flux values. To perform the normalisation, I computed the
ratio between the measured flux and the average value of the continuum, determined from the
flat part of the light curve, as before. In Table 4.8 I reported the information on the dataset on
which I conduced my analysis, which is the same as the one in literature. To visualise the light
curves, I first computed the orbital phase using the values of time in BJD, and then I plotted the
normalised flux values as a function of it. In Figure 4.8b I displayed the light curves of Winn
et al. 2007 all together in the same plot, adding an increasing offset to the values of the flux for
visualisation purpose only, to avoid any overlapping.

8The (b+y)/2 filter is a special combination of two separate differential magnitudes from the Stromgren sys-
tem, used to improve the photometric precision. The V and IC filters belong to the Johnson and Cousins photo-
metric system, while zSloan is taken from the SDSS system.
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4.6 Limb Darkening coefficients

One of the aspect that I needed to keep into account, before to perform the modelling of the
data, was the LimbDarkening (LD). Considering that my dataset is composed by both photo-
metric and spectroscopic measurements obtained with different instruments, using different
filters, I had to compute the correct coefficients for the LD. In particular, to be consistent with
the previous analysis that I described in Chapter 2 and Chapter 3, I decided to use a quadratic
law for the LD, for which I needed to determine the two coefficients to be used. To do this
I took advantage of PyLDTk9, the Python toolkit for calculating the stellar LD profiles and
model specific coefficients for arbitrary pass-bands using the stellar spectrummodel library by
Husser et al. 2013[13], implemented by Hannu Parviainen in 20159. I reported in Table 4.9
the results obtained with PyLDTk, providing for each filter both LD c1 and LD c2, which are
the coefficients for the quadratic LD law. In Figure 4.9 I plotted the filters that I used in

Table 4.9: Stellar Limb Darkening coefficients obtained with PyLDTk.

Filter LD c1 LD c2
rSloan 0.5825± 0.0178 0.1230± 0.0438
zSloan 0.4015± 0.0113 0.1268± 0.0310
V 0.6608± 0.0203 0.0972± 0.0458
B 0.8460± 0.0269 0.0032± 0.0489
IC 0.4548± 0.0132 0.1270± 0.0363
RC 0.5584± 0.0172 0.1249± 0.0431
TESS 0.4657± 0.0134 0.1273± 0.0356

HARPS-N 0.6746± 0.0198 0.0854± 0.0438

PyLDTk to determine the LD coefficients, using different colors for visualisation purpose only.
I note that the errors are brutally underestimated, as they do not take into account possible dif-
ferences between filters at different telescope, and error in the theoretical model atmospheres.
For this reason, in the model I decided to arbitrarily assign an error of ±0.05 to the derived
values and use a Gaussian prior for these parameters. I also note that in Table 4.9 I did not in-
clude the filter (b+y)/2 of the Stromgren photometric system, since it is a composed filter, and
the estimates of the LD coefficients for this kind of filter were not reliable. Therefore, I gave
its coefficients as free parameters to the model, using a Uniform prior for them. Even if from

9ldtk: Limb Darkening Toolkit
http://mnras.oxfordjournals.org/lookup/doi/10.1093/mnras/stv1857
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Figure 4.9: This figure represents the filters used in PyLDTk. The plot shows the transmission of each filter as a function
of the wavelength.

PyLDTk I got an estimate for both the LD c1 and the LD c2, for the TESS filter I decided to also
use a Uniform prior, defined in the same intervals of those used for the Stromgren filters. In
Table 4.10 I reported the LD coefficients and their prior.

Table 4.10: Stellar Limb Darkening coefficients given as priors to the model.

Filter LD c1 LD c2 Prior

rSloan 0.58± 0.05 0.12± 0.05 Gaussian
zSloan 0.40± 0.05 0.13± 0.05 Gaussian
V 0.66± 0.05 0.10± 0.05 Gaussian
B 0.85± 0.05 0.00± 0.05 Gaussian
IC 0.45± 0.05 0.13± 0.05 Gaussian
RC 0.56± 0.05 0.13± 0.05 Gaussian

HARPS-N 0.67± 0.05 0.086± 0.05 Gaussian
(b+y)/2 [0.0, 1.0] [−1.0, 1.0] Uniform
TESS [0.0, 1.0] [−1.0, 1.0] Uniform

4.7 Modellingwith PyORBIT

So far I have described how I have collected the data, gathering them fromdifferent archives and
IhavediscussedhowIhave analysed thedata andhowIhavedecidedwhichone to include inmy
dataset. In each of these cases, I have saved the selected data in a file .dat, ready to be used for
the modelling. What I still have to explain is how I performed the modelling. In order to carry
out themodelling in a robust and reliable Bayesian framework, I took advantage of PyORBIT10,

10PyORBIT code is available here: https://github.com/LucaMalavolta/PyORBIT
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a publicly available code for exoplanet orbital parameters and stellar activity implemented by
Malavolta et al. in 2016[14]. In particular, working on the PyORBIT code, there was an already
implemented subroutine dedicated to the study of the Rossiter-McLaughlin effect with the
classical method, described in the paper of Covino et al. 2013[15]. Hence I decided to also
perform amodelling ofmy data using the already implementedRMclassicalmethod, since this
analysis has never been applied on the dataset that I have presented here. Then I uploaded the
codes that I have written to implement the RRM and the RMR techniques in the subroutines
of thePyORBIT code, so that I could select themwhenproviding the inputs related to themodel
that should be used by the code in order to study the RM effect.

In this way I have been able to perform three different modelling of the RM effect using the
same dataset. To do that, I had to prepare the input .yaml files for PyORBIT specifying for
each data: the name of the file; the kind, if photometric or spectroscopic; and the models to be
used. In the case of the photometric data, in the model I have specified that I wanted to apply
the quadratic limb darkening law, using for each filter the appropriate coefficients, (described
in Section 4.6) and in the case of the light curves from the literature I have also included a
normalization factor. For all the spectroscopic data I have specified that I wanted to use the
radial velocity model, and for those where the effect was present, I selected also the model of
the Rossiter-McLaughlin effect that I intended to use. This selection allowed me to produce
the three different versions of the modelling, namely the standard RM, the Reloaded RM, and
the RMRevolutions.

Then I had to give as input also the planetary and stellar parameters. For the planet I used
a circular orbit model, specifying the boundaries on the orbital period, on the semi-amplitude
of the RV curve, on the time of conjunction and on the eccentricity. For the star, instead, I set
Gaussian priors on the mass, on the radius, on the density and on the rotation period.

Finally I fixed the length of the emcee chain to 105 steps, with a burn-in phase of 2 × 104

steps and I set the number of the walkers to 4 times the number of the parameters. The results
of this analysis are presented in the next chapter.
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5
Results

In this chapter I present the results obtained starting from the full dataset that I have described
in Chapter 4. In Section 5.1 I discuss the results obtained using the Standard RMmethod, in
Section 5.2 the results that I have obtained with the RRM and RMR analysis including both
the differential rotation α and the convective contribution vconv, in Section 5.3 I present the
results of the RRM and RMR analysis performed again excluding α and vconv from the fitted
parameters, and in Section 5.4 I compare the results of the different analysis.

5.1 Standard Rossiter-McLaughlin

As I have explained in the previous chapter, in the first analysis I have used the model of the
standard RM effect already implemented in the PyORBIT code to fit my dataset. Since part of
the data are not of public access and other are gathered from archives of different instruments,
including for the first time the recently released light curves of TESS, this analysis can not only
be useful to make a comparison with the other two techniques, but also provides new and
accurate estimates for the parameters of the system. I report in Table 5.1 the parameters with
relative best fit values, obtained as the median of the fitted distribution, and error associated to
them, obtained as discrete difference between the median value and the 16 and 84 percentiles.
I note that the estimated value of the radius of the planet that I have obtained starting from
the light curves of TESS is the most accurate obtained so far. In Figure 5.1 I have displayed the
distributions of the parameters obtained from the fit. As it can be seen, the histogram of the
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Figure 5.1: This is the corner plot obtained using the results of the fit with the standard RM method.
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impact parameter b shows a double picked shape, indicating that the fit has found two possible
solutions, one of which is more probable. The histograms for the semi-amplitude of the RV
curve and for the veq sin i⋆ have instead a well defined Gaussian shape, telling that these two
parameters have been correctly fitted.

Table 5.1: MCMC observational results from the Standard RM analysis of the HD189733 system. Parameters that are
preceded by ∗ are the derived parameters obtained from the posteriors samples.

Parameter Value Units

veq sin i⋆ 2.55+0.02
−0.02 km s−1

ρ⋆ 1.930+0.012
−0.013 ρ⊙

ldC1,TESS 0.480+0.045
−0.047

ldC2,TESS 0.086+0.071
−0.066

ldC1,HARPSN 0.260+0.034
−0.034

ldC2,HARPSN 0.527+0.041
−0.040

RP 0.1551+0.0003
−0.0004 R⋆

λ 0.02+0.22
−0.22 deg

b 0.663+0.002
−0.003 R⋆

K 199.99+0.82
−0.79 m s−1

TC 2459770.4104(51± 13) d
PP 2.2185749(49± 24) d

∗a/R⋆ 8.909+0.019
−0.020

∗iP 85.732+0.024
−0.020 deg

∗MP 1.116+0.044
−0.045 MJ

∗RP 1.141+0.027
−0.027 RJ

5.2 Reloaded and Revolutions first analysis

In this section I present the results that I have obtained applying the RRM and the RMR
techniques. In performing these two analysis I have included in the fitted parameters both the
differential rotation and the convective velocity contribution, as I have explained in Chapter 2
and Chapter 3, where I have described how I have implemented these two techniques. In Ta-
ble 5.2 and in Table 5.3 I have reported the MCMC results that I have obtained from the two
analysis. I have decided to split them in two separate tables, the first of which reports the pa-
rameters that are more specifically related to the analysis of the RM effect, including also the
derived true 3D spin-orbit angle, while the second reports other parameters that have been fit-
ted by PyORBIT, including some derived planetary parameters obtained from the posteriors
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samples. The parameters that I have reported in Table 5.2 assume different values in the two

Table 5.2: MCMC observational results for HD189733 and the derived 3D spin‐orbit obliquity. First row is for the
Reloaded RM and second row is for the RM Revolutions. The two coefficients c1 and c2 here reported are those of the
second order polynomial that have been used to fit the convective velocity contribution.

veq (km s−1) i⋆ (◦) α λ (◦) c1 (km s−1) c2 (km s−1) ψ (◦)

3.88+0.16
−0.28 72.88+24.06

−12.88 0.69+0.25
−0.49 -4.48+0.86

−0.81 4.76+0.18
−0.31 -3.87+0.31

−0.21 17.41+10.89
−9.43

3.62+0.06
−0.09 84.30+0.92

−0.96 0.95+0.04
−0.08 0.24+0.09

−0.11 0.19+0.19
−0.13 -0.17+0.09

−0.14 2.48+0.95
−0.90

Table 5.3: Other MCMC observational results from the RRM and from the RMR analysis of the HD189733 system. The
derived parameters obtained from the posteriors samples are preceded by ∗.

Parameter Value Reloaded Value Revolutions Units

veq sin i⋆ 3.53+0.27
−0.22 3.60+0.07

−0.09 km s−1

ρ⋆ 1.928+0.012
−0.012 2.185+0.025

−0.022 ρ⊙
P⋆ 9.95+0.76

−0.49 10.63+0.35
−0.32 d

R⋆ 0.761+0.018
−0.018 0.759+0.018

−0.018 R⊙

ldC1,TESS 0.552+0.043
−0.046 0.723+0.010

−0.010
ldC2,TESS 0.033+0.067

−0.063 0.277+0.010
−0.011

ldC1,HARPSN 0.672+0.041
−0.045 0.552+0.040

−0.040
ldC2,HARPSN 0.862+0.045

−0.046 0.760+0.043
−0.043

RP 0.1558+0.0003
−0.0004 0.1443+0.0002

−0.0003 R⋆

b 0.667+0.002
−0.003 0.524+0.005

−0.005 R⋆

K 201.6+1.8
−1.7 201.6+1.8

−1.7 m s−1

TC 2459770.4104(52± 13) 2459770.4106(52± 10) d
PP 2.2185749(50± 26) 2.2185748(81± 26) d

∗a/R⋆ 8.905+0.019
−0.019 9.285+0.035

−0.031
∗iP 85.704+0.024

−0.023 86.765+0.046
−0.041 deg

∗MP 1.164+0.055
−0.054 1.259+0.061

−0.060 MJ
∗RP 1.154+0.027

−0.027 1.066+0.025
−0.025 RJ

analysis. To better visualise this difference, I have used the distribution of values fitted with the
two methods to obtain the two-colors corner plot of Figure 5.2. From the corner plot is easy
to see that the differential rotation parameter assumes a large range of possible values in the
case of the RRMmethod (purple), indicating that it is not well constrained, while in the case
of the RMRmethod (green) the distribution is very close to the maximum boundary value of
1. The other parameters have in general a better defined distribution. This is particularly true
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Figure 5.2: Corner plot showing with distinct colors the differences between the values obtained from the two methods.
Purple indicates the Reloaded RM distributions, while green indicates those obtained from the RM Revolutions. The i⋆
degeneracy is still present in the RRM case. No compatibility is present between the convective coefficients fitted in the
two cases and α in unconstrained.
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in the case of the RMRmethod, for which the values are all distributed close to their median
value, even if they are far from the corresponding median value of the distributions obtained
with the RRM method. The degeneracy of the i⋆ value, of which I have already discussed in
Chapter 2, is still present in the case of the RRM technique, while it seems to be lifted in the
case of the RMR technique, probably because all the values are concentrated close to the me-
dian. The distribution of the values obtained for the λ angle assumes a Gaussian shape in the
case of the RRM analysis, while it is more picked in the case of the RMR analysis, but the me-
dian values associated to them assume opposite signs. Finally, since the median values of the ψ
angle distributions obtained with the twomethods differ by∼ 15◦, these two estimates are not
compatible with each other. Still, there is a compatibility between the value of ψ obtained by
modelling this dataset with theRRMtechnique and those that I have reported inTable 2.4 and
Table 3.2, obtained fitting only the HARPS data with both methods. Lastly, I note that the
impact parameter b and the scaled planetary radius RP/R⋆ from the RMR analysis are incon-
sistent with those obtained with the standard RM analysis, the RRM analysis, and in general
with the values reported in the literature using independent datasets andmodelling tools. This
unexpected outcome is casting several doubts on the reliability of the analysis with the RMR
approach, at least when both differential rotation and the convective coefficients are involved.

Table 5.4: MCMC results of the fitted slope and intercept for the contrast (C) and for the FWHM obtained from the RMR
method.

Instrument Mask Parameter Value

HARPS G2 Cm 0.164+0.007
−0.007

HARPS G2 Cq 0.424+0.005
−0.005

HARPS G2 fwhmm -0.233+0.097
−0.095

HARPS G2 fwhmq 6.995+0.072
−0.074

HARPS K5 Cm 0.073+0.007
−0.007

HARPS K5 Cq 0.381+0.005
−0.005

HARPS K5 fwhmm 0.21+0.11
−0.11

HARPS K5 fwhmq 5.974+0.08
−0.08

HARPS-N K5 Cm 0.107+0.004
−0.004

HARPS-N K5 Cq 0.367+0.003
−0.003

HARPS-N K5 fwhmm -0.326+0.054
−0.054

HARPS-N K5 fwhmq 6.501+0.041
−0.041

In Table 5.4 I have reported the results obtained by fitting the slopes and the intercepts of
the contrast and of the FWHM with a first order polynomial, providing also information on
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Figure 5.3: Example of corner plot obtained from the fitted slope and intercept of the parameters contrast and FWHM of
the stellar spectral lines observed with HARPS‐N using the K5 filtering mask.

the instrument and the filteringmask to which they correspond. To have also a visual feedback
of the quantities reported in Table 5.4 I have displayed in Figure 5.3 an example of the corner
plot that I have obtained. The diagonal histograms of the plot show that all the parameters
have been correctly fitted by the model, since the values obtained are distributed according to
a Gaussian shape. There are no unexpected features in the panels and is clear the correlation of
the slope and intercept of each parameter, as is expected in the case of a linear trend. This corner
plot is also confirming that almost no information is contained in the depth and in the width
of the stellar spectral lines, represented by the contrast and the FWHMparameters. Therefore
almost all the information is extracted from the radial velocity, which is the centroid of the
stellar spectral line.
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5.3 Reloaded and Revolutions second analysis

Here I present the results that I have obtained from the second analysis that I have performed
with both theRRMand theRMRmethods excluding from the fit the parameter related to the
differential rotation, α, and the two coefficients related to the convective velocity, c1 and c2. I
have decided to exclude these effects as theirmodelling produces inconsistent resultswith either
different datasets or different techniques, and I suspect that my dataset is not able to properly
constrain the associated parameters. In Table 5.5 and in Table 5.6 I have reported all the results
of the fitted parameters. I note how the fact of having excluded both the effects of the stellar

Table 5.5: MCMC observational results for HD189733 and the derived 3D spin‐orbit obliquity. First raw is for the
Reloaded RM and second raw is for the RM Revolutions. Parameters that have not been included in the fit are indicated
with /.

veq sin i⋆ (km s−1) i⋆ (◦) α λ (◦) c1 c2 ψ (◦)

3.141+0.034
−0.032 103.23+18.82

−38.75 / -0.37+0.32
−0.32 / / 24.64+12.47

−12.00
3.088+0.011

−0.012 97.58+22.27
−35.13 / -0.13+0.11

−0.12 / / 23.76+11.85
−11.57

differential rotation and of the convective blueshift from the modelling has produced results
that, differently from the first analysis are more similar with each other. First of all, the impact
parameters and the scaled planetary radius from the RMR analysis are now consistent with all
the other analysis. Secondly, there is a consistency in the estimated values of the ψ angle, which
results∼ (24±12)◦ in both cases, while in the previous analysis therewas a difference of∼ 15◦

between the median values obtained applying the RRM and the RMRmethod.

However the values of ψ that I got as result of this second analysis are substantially larger
than those obtained in the previous analysis and aremuch similar to that obtained in theRMR
analysis of the HARPS data including both α and vconv, that I have reported in the Table 3.2.
To better visualise the results, I have also produced the corner plot displayed in Figure 5.4. I
have used different colors to distinguish the results obtained with the two methods. The first
thing that I note is the double Gaussian distribution in the histogram of the i⋆ parameter. This
outcome is not surprising, as it is related to the fact that I am not able to distinguish if the
planet is transiting above or below the stellar equator, as already observed in Chapter 2. In
this analysis the stellar spin angle is not derived from the the stellar differential rotation α and
equatorial velocity veq as in the previous analysis, but is obtained combining the distributions
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of values of the stellar rotation period P⋆ and radius R⋆ with that of the veq sin i⋆ as

i⋆ = arcsin (v sin i⋆ ·
P⋆

2πR⋆

). (5.1)

To perform this computation I have used the goniometric functions of the numpy package.
When I checked the results I found that the arcsin function implemented in numpy had ex-
cluded from the computation all the values for which the argument θ = (v sin i⋆ · P⋆

2πR⋆
) was

larger than 1. This makes sense from themathematical point of view, but represents a problem,
because part of the values which instead have a physical meaning are discarded. To overcome
this problem, I wrote a Python script where I have selected all the values of θ larger than 1 and
I have subtracted the constant value of 2 from them. With this arrangement, all the values of
θ have been moved inside the interval of [−1, 1], where the arcsin function is defined. The op-
eration that I have performed has allowed me to retrieve also the otherwise discarded values of
i⋆, which are responsible for the secondGaussian distribution whichmedian is larger than 90◦.
Therefore here I have proved again the presence of the aforementioned i⋆ degeneracy, of which
the authors of the papers have not provided any description.

Table 5.6: Other MCMC observational results from the RRM and from the RMR analysis of the HD189733 system. The
derived parameters obtained from the posteriors samples are preceded by ∗.

Parameter Value Reloaded Value Revolutions Units

ρ⋆ 1.928+0.012
−0.013 1.925+0.013

−0.013 ρ⊙
ldC1,TESS 0.462+0.038

−0.039 0.469+0.089
−0.110

ldC2,TESS 0.116+0.054
−0.053 0.09+0.20

−0.13
ldC1,HARPSN 0.603+0.041

−0.042 0.494+0.037
−0.038

ldC2,HARPSN 0.805+0.046
−0.045 0.686+0.042

−0.042

RP 0.1549+0.0003
−0.0003 0.1552+0.0001

−0.0001 R⋆

b 0.662+0.002
−0.003 0.663+0.005

−0.008 R⋆

K 201.5+1.7
−1.8 201.6+1.7

−1.8 m s−1

TC 2459770.4104(55± 13) 2459770.4104(48± 13) d
PP 2.2185750(09± 21) 2.2185748(95± 36) d

∗a/R⋆ 8.906+0.019
−0.019 8.901+0.020

−0.020
∗iP 85.737+0.023

−0.023 85.730+0.020
−0.020 deg

∗MP 1.124+0.045
−0.046 1.124+0.046

−0.046 MJ
∗RP 1.140+0.027

−0.027 1.140+0.028
−0.028 RJ

In Figure 5.5 I have also plotted the estimated value of i⋆ obtained from the first analysis

68



40 60 80 100 120 140 160
i  ( )

0

1000

2000

3000

4000

5000

6000

7000

Nu
m

be
r

RRM1
RRM2

(a) Comparison of i⋆ from the two RRM analysis.

40 60 80 100 120 140 160
i  ( )

0

2000

4000

6000

8000

10000

12000

Nu
m

be
r

RMR1
RMR2

(b) Comparison of i⋆ from the two RMR analysis.

Figure 5.5: These plots show the comparison between the estimated values of i⋆ obtained from the two analysis. In Fig‐
ure 5.5a are displayed the distributions of values obtained with the RRM method, while in Figure 5.5b those obtained with
the RMR method.

against that obtained from the second analysis for both the RRM and the RMR methods. I
note that in both cases there is a clear difference between the distributions obtained in the first
and in the second analysis, with the second analysis characterised by a double Gaussian profile
with median value symmetric with respect to 90◦ and with a slightly larger probability for the
distribution on the right. The fact that values larger than 90◦ have a larger probability finds
a confirm in the results of the analysis performed in Chapter 2 and in Chapter 3 using only
HARPS data. This is interesting, because I would have not find a single i⋆ value larger than 90◦

without the operation on θ > 1, and I can thus say that my intuition on the problem related
to the domain of definition of the arcsin function indeed was correct.

In Table 5.6 I have included other results that I have obtained from the MCMC analysis
with both methods. In particular in this table I have also reported the derived parameters ob-
tained from the posterior samples. Among these values I note the planetary radius ∗RP, which
estimate is slightly larger in the case of the RRMmethod than in the RMRmethod, although
compatible within the errors. Lastly, in Table 5.7 I have reported the results of the fitted slope
and intercept for both the contrast and the FWHM obtained from this second RMR analysis.
In order to have also a visual feedback of these quantities, in Figure 5.6 I have displayed an exam-
ple of the corner plot that I have obtained starting from their values. The diagonal histograms
of the plot show that all the parameters have been correctly fitted by themodel, since the values
obtained are distributed according to a Gaussian shape. From the other panels is possible to
recognise the correlation between the slope and intercept of the fitted contrast and FWHM,
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Figure 5.6: Example of corner plot obtained from the fitted slope and intercept of the parameters contrast and FWHM of
the stellar spectral lines observed with HARPS using the G2 filtering mask.
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Table 5.7: MCMC results of the fitted slope and intercept for the contrast (C) and for the FWHM obtained from the RMR
method.

Instrument Mask Parameter Value

HARPS G2 Cm 0.175+0.008
−0.007

HARPS G2 Cq 0.434+0.005
−0.005

HARPS G2 fwhmm -0.320+0.110
−0.110

HARPS G2 fwhmq 7.026+0.073
−0.074

HARPS K5 Cm 0.082+0.007
−0.007

HARPS K5 Cq 0.383+0.005
−0.005

HARPS K5 fwhmm 0.15+0.12
−0.12

HARPS K5 fwhmq 6.03+0.08
−0.08

HARPS-N K5 Cm 0.117+0.004
−0.004

HARPS-N K5 Cq 0.371+0.003
−0.003

HARPS-N K5 fwhmm -0.346+0.060
−0.060

HARPS-N K5 fwhmq 6.481+0.039
−0.039

confirming the aforementioned linear trend. No other relevant features are present neither in
this case. This allows me to say that indeed most of the information of the system comes from
the centroids of the stellar lines, which are related to the radial velocity, while the contrast and
FWHM are not adding much information.

5.4 Comparison of the results

InTable 5.8 I have reported again the results that I have presented in the previous sections. Each

Table 5.8: MCMC observational results of all the analysis. Each row corresponds to a different analysis; first: standard
RM method, second: 1st analysis with RRM method, third: 1st analysis with RMR method, fourth: 2nd analysis with RRM
method, and fifth: 2nd analysis with RMR method.

veq sin i⋆ i⋆ α λ c1 c2 ψ

2.55+0.02
−0.02 / / 0.02+0.22

−0.22 / / /
3.53+0.27

−0.22 72.88+24.06
−12.88 0.69+0.25

−0.49 -4.48+0.86
−0.81 4.76+0.18

−0.31 -3.87+0.31
−0.21 17.41+10.89

−9.43
3.60+0.07

−0.09 84.30+0.92
−0.96 0.95+0.04

−0.08 0.24+0.09
−0.11 0.19+0.19

−0.13 -0.17+0.09
−0.14 2.48+0.95

−0.90
3.14+0.03

−0.03 103.23+18.82
−38.75 / -0.37+0.32

−0.32 / / 24.64+12.47
−12.00

3.09+0.01
−0.01 97.58+22.27

−35.13 / -0.13+0.11
−0.12 / / 23.76+11.85

−11.57

(km s−1) (◦) (◦) (km s−1) (km s−1) (◦)
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Figure 5.7: Comparison of the estimates reported in Table 5.8. Different colors are used for different parameters. The
labels of the x‐axis are referring to the methods (standard RM, RRM and RMR) and to the analysis (1st and 2nd). Faint
colors are used to indicate the unreliable values obtained in the first analysis with both the RRM and the RMR method.

row of the table corresponds to a different analysis. From a first look, it is clear that the results
that I have obtained substantially change from one method to the other. To better display this
differences, I decided to plot the estimated values all together in Figure 5.7. In particular, in the
plot I have included the 5 estimates of λ and veq sin i⋆ and the 4 estimates of i⋆ and ψ.

The two plots on the right are confirming that the first analysis performed with the RMR
method is not reliable, as the error bars of both i⋆ and ψ are unrealistically small comparedwith
the other analysis, including the RMR itself under different assumptions and is clear that the
value of ψ obtained with this analysis is not compatible with the other three, which instead
are compatible with each other. The estimated i⋆ are instead compatible, but this is mostly
because of the very large error-bars associated to the measures. The upper left plot is showing
that the value of λ obtained from the first analysis with the RRMmethod is an outlier, and is
not compatible with the others, which are also characterised by smaller error-bars. Finally, the
lower right plot, shows that in the case in which veq sin i⋆ is a fitted quantity of the MCMC
analysis, than the estimates are more accurate (RM and second analysis with both RRM and
RMR) and in general have a smaller median value, while they have a broader distribution and
a larger median value in the case in which they are derived parameters (first analysis with RRM
and RMR).
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Figure 5.8: Comparison of all the 9 estimated values of the true 3D spin‐orbit angle ψ. Each point in the plot corresponds
to the result of a different analysis. In the x‐axis are reported the acronyms of the analysis. In particular, rRM and RMr
represent respectively the results of the Reloaded RM and of the RM Revolutions analysis applied only to the HARPS
data, reported in Table 2.4 and Table 3.2. Red and orange horizontal lines are indicating the median and the 16 and 84
percentile.

Since the power of the two techniques that I have implemented is that of measuring the
true 3D spin-orbit angle ψ, I have decided to compare all the estimates of this angle that I have
obtained in my work, by plotting their values all together in Figure 5.8. This plot shows that
except for the two isolated cases of the first analysis performed on the entire dataset using the
RMRmethod (RMR 1st), and the second analysis performed only on the HARPS data using
the RMR method (RMr 2nd), the estimates are compatible with each other. Computing the
median of the 9 ψ values that I have found, my best estimate for the 3D spin-orbit angle is
16.46+10.89

−9.47
◦. The result reported in Cegla et al. 2016[3] was ψ =∼ 7+12

−4
◦, so less than half of

mine in terms of median value, but thanks to the very large error associated to them, the two
estimates are still compatible. Moreover, inWinn et al. 2007[12] the authors explain that they
have determined an upper bound on the ψ angle of 27◦ with 95% confidence. So my estimate
falls in between the result obtained by Cegla et al. 2016 and the upper bound found byWinn
et al. 2007.

In Table 5.9 I have merged all the other results already presented in this chapter, reporting
the information on the method and on the analysis to which they are referred. From this ta-
ble is possible to see that the results obtained with the RMR method during the first analysis
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represent an outlier case. In particular, the estimate of the impact parameter b obtained in this
case is much smaller than those obtained in the other analysis. A smaller value is also obtained
for the ratio of planet radius to stellar radius RP/R⋆ and for the radius of the planet. The oppo-
site trend is followed by the stellar density ρ⋆, by the orbital inclination

∗iP, by the mass of the
planet and by the ratio of semi-major axis to planet radius ∗a/R⋆. The results obtained in the
other analysis are instead compatible with each other. The fact that analysis performed with
different methods and imposing different conditions produce results that are compatible with
each other, allows me to say that in the isolate case of the 1st RMR analysis something went
wrong during the modelling, probably due to some systematic error which is currently under
investigation.

Table 5.9: Comparison of the results obtained with the different methods. Derived parameters obtained from the posteri‐
ors samples are preceded by ∗.

Parameter Standard RM 1st RRM 1st RMR 2nd RRM 2nd RMR

ρ⋆ (ρ⊙) 1.930+0.012
−0.013 1.928+0.012

−0.012 2.185+0.025
−0.022 1.928+0.012

−0.013 1.925+0.013
−0.013

ldC1,TESS 0.480+0.045
−0.047 0.552+0.043

−0.046 0.723+0.010
−0.010 0.462+0.038

−0.039 0.469+0.089
−0.110

ldC2,TESS 0.086+0.071
−0.066 0.033+0.067

−0.063 0.277+0.010
−0.011 0.116+0.054

−0.053 0.09+0.20
−0.13

ldC1,HARPSN 0.260+0.034
−0.034 0.672+0.041

−0.045 0.552+0.040
−0.040 0.603+0.041

−0.042 0.494+0.037
−0.038

ldC2,HARPSN 0.527+0.041
−0.040 0.862+0.045

−0.046 0.760+0.043
−0.043 0.805+0.046

−0.045 0.686+0.042
−0.042

RP/R⋆ 0.1551+0.0003
−0.0004 0.1558+0.0003

−0.0004 0.1443+0.0002
−0.0003 0.1549+0.0003

−0.0003 0.1552+0.0001
−0.0001

b (R⋆) 0.663+0.002
−0.003 0.667+0.002

−0.003 0.524+0.005
−0.005 0.662+0.002

−0.003 0.663+0.005
−0.008

K (m s−1) 199.99+0.82
−0.79 201.6+1.8

−1.7 201.6+1.8
−1.7 201.5+1.7

−1.8 201.6+1.7
−1.8

∗a/R⋆ 8.909+0.019
−0.020 8.905+0.019

−0.019 9.285+0.035
−0.031 8.906+0.019

−0.019 8.901+0.020
−0.020

∗iP(◦) 85.732+0.024
−0.020 85.704+0.024

−0.023 86.765+0.046
−0.041 85.737+0.023

−0.023 85.730+0.020
−0.020

∗MP (MJ) 1.116+0.044
−0.045 1.164+0.055

−0.054 1.259+0.061
−0.060 1.124+0.045

−0.046 1.124+0.046
−0.046

∗RP (RJ) 1.141+0.027
−0.027 1.154+0.027

−0.027 1.066+0.025
−0.025 1.140+0.027

−0.027 1.140+0.028
−0.028

74



6
Conclusion

In thisMaster Thesis I have presented a new implementation of the revolutionarymethod pro-
posed by Cegla et al. 2016[3] and by Bourrier et al. 2021[2] which allows the measurement
of the true 3D spin-orbit angle ψ with unprecedented accuracy. I have then focused my at-
tention to HD189733b, a Jupiter-like exoplanet with a period of 2.2 days orbiting a K2 star.
This exoplanet is a golden target for exoplanetary atmosphere studies, due to the brightness
of its host star (magnitude V=7.6) and the extreme conditions undergoing on its outer layer.
The analysis of the atmosphere relies on accurate characterization of the planetary and orbital
characteristics, hence the importance of measuring the geometry of the planetary system.
Since the authors of the paper have not released their code, in order to reproduce the model

presented by Cegla et al 2016, called Reloaded Rossiter-McLaughlin (RRM) technique, I had
to rebuild the mathematical framework and the various steps required for the data handling
and the data analysis, using the same HARPS data on HD189733 they used in their analysis
aiming to get the same results. I have been able to reproduce the model and I have discovered
the presence of a degeneracy in the i⋆ angle, of which the authors of the paper did not provide
any information in their paper. Since in my analysis I have fitted the same parameters, with the
same priors and boundaries described in the paper, I wanted to go deeper in understanding the
reason why I found a degeneracy in the i⋆ angle values. Given that the RM effect is symmetric
with respect to the stellar equatorial plane, by keeping all the parameters of the systemfixed and
changing only the stellar inclination angle, I have been able to obtain the same identical value
of ψ starting from two completely different values of i⋆. I can not exclude the presence of any
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systematic error in my implementation of the code, but the presence of this degeneracy could
be the reason why my estimate of the ψ angle (∼ 15+12

−10
◦) results larger that the one reported

in the paper (∼ 7+12
−4

◦), even if they still are compatible thanks to the large value of the error
associated to them. Moreover,my estimate iswell below theupper boundon theψ angle, which
is of 27◦ with 95% confidence, as reported inWinn et al. 2007[12].

Subsequently, I have implemented the recent improvement proposed byBourrier et al. 2021,
dubbedRossiter-McLaughlin effect Revolutions (RMR), which further expands the RRMby
simultaneously modelling all the in-transit cross correlation functions through a Bayesian ap-
proach, enabling the measurement of the ψ angle of small exoplanets even when the classical
RM signal is undetectable. Also in this case I had to write a new code to reproduce this tech-
nique, since the authors did not release their code. To do that, I have taken advantage of the
code that I wrote for the RRM technique and I have used the same HARPS data of the previ-
ous analysis. In the modelling I have included both the contribution of the stellar differential
rotation and of the convective blueshift, obtaining different results, despite the fact of having
used the same data and model of the RRM analysis. I tried to exclude the convective contribu-
tion or the stellar differential rotation, obtaining other unexpected results and suggesting that
both effects cannot be constrained properly with this technique. In theRMRmodelling I have
also fitted the contrast and the FWHMof the stellar spectral lines with a first order polynomial.
The fit has properly worked, producing well defined Gaussian shaped distributions of values
for the slope and the intercept of these two parameters. From this fact I discovered that indeed
most of the information of the system that I have obtained is extracted from the radial velocity
measurements, which are the expression of the centroids of the stellar lines.

After validating the mathematical framework and the data analysis steps of my implemen-
tation of the RRM and the RMR techniques, I have used the free access PyORBIT code to
perform a combinedmodelling of photometric data spanning over fifteen years, high precision
radial velocity data from the literature, and eight in-transit spectroscopic time series, in a ro-
bust and reliable Bayesian framework. In my dataset I have included also light curves coming
from two sectors of TESS (41 and 54), and I have used these data to determine the radius of the
planet, RP=(1.141 ± 0.027) RJ, which indeed is the most precise radius measurement of this
planet so far. With the high precision radial velocity data that I have gathered from the litera-
ture I have been able to determine also a new estimate of themass of the planetMP = 1.116+0.044

−0.045

MJ. Together with the HARPS data that I had already analysed, I have included in the dataset
also unpublished spectroscopic time series over four nights of observations obtained in the con-
text of the GAPS program using the ultra-stable HARPS-N spectrograph at the TNG. I have
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performed many different analysis, imposing different conditions and using three models for
the RM effect, adding to the RRM and RMR methods also the standard model already im-
plemented in PyORBIT. Contrarily to what I expected, the results obtained applying the RRM
and RMR techniques to this new dataset are inconsistent with those obtained when using
only the HARPS data. In particular, including in the dataset also the HARPS-N data, which
are virtually identical (or even better) data, I have obtaiend diverging values for the convective
coefficients and a large value (close to the maximum boundary of 1) for the stellar differen-
tial rotation. This fact cast a shadow on the robustness of the already published results and,
considering that the results change in a consistent way depending on the dataset that I used,
I can conclude that neither the RRM nor the RMR technique allowed me to obtain reliable
information on the stellar differential rotation and on the centre-to-limb convective blueshift
variations, differently from what is reported in the papers of Cegla et al. 2016[3] and Bourrier
et al. 2021[2]. I can not exclude any possible error inmy implementation of themethods, even
if I have verified that my model applied to the dataset presented in Chapter 4 has reproduced
the effect of the differential rotation and of the convective blueshift described in Cegla et al.
2016[6] and Hathaway et al. 2015[4]. Moreover, when using only the HARPS data, I have
been able to reproduce the results presented in Cegla et al. 2016[3], with the necessary caveats,
and there is not a reason to think that the problem is related to the HARPS-N data, given the
similarity between the two instruments and since the CCF treatment has been identical. In
order to include the differential rotation in the dataset gathered from the papers, the shear pa-
rameter has to be measured in a independent way, for example using spectropolarimetry, as
is described in Fares et al. 2010[16] , while to treat the centre-to-limb convective blueshit, a
possible solution could be that of using synthetic spectra computed as a function of the limb
angle, similarly to what is shown in Czesla et al. 2015[17]. I note that Bourrier et al. 2022[18]
and Bourrier et al. 2023[19] did not include these two effects in their analysis of 15 exoplanets
using the RMR technique, probably because they have encountered the same problem that I
found when trying to fit α and vconv.

As an alternative solution to the problematic treatment of differential rotation and convec-
tive blue-shift, I resorted to the projected rotational velocity of the star, measured from my
data, and the knowledge of the rotational period of the star, which can be easily obtained from
ground and space based photometry, to characterize the 3D spin-orbit geometry of the star-
planet system. Although the advanced techniques for the analysis of the Rossiter-McLaughlin
effect discussed in thisMaster Thesis still need additional development regarding some detailed
effects involved in the modelling, new perspective are opening for many exoplanets with in-
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transit spectroscopic observations. As the system architecture and orbital properties of exo-
planets are shaped during the first hundreds of millions of years of their life, assessing the true
spin-orbit angle of young star-planet systems would be of extreme importance to strongly con-
strain the dynamical evolution of planets and discriminate between different formation scenar-
ios. For this reason I intend to further extend the RRM and RMR techniques to determine
the obliquity of young stars, which are characterised by short rotation period (on the order of
a few days) and consequently strong magnetic activity, resulting in the prominent presence of
active regions, which are characterised by different temperatures and are responsible for the
brightness variation and the spectral line deformation. With theRRMandRMR techniques I
have the possibility to explore the stellar surface properties while being occulted by the planet,
so I intend to use the consistent effort to characterise stellar activity across several stellar rota-
tion periods to build a frameworkwhich allowsme tomodel the effect of stellar activity during
a transit, hence enabling the determination of ψ also for young objects. The outcome of this
project is expected to advance not only the field of planetary formation and evolution, but also
to improve the atmospheric characterization of exoplanets in the presence of stellar activity.
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