
Master Thesis in Information Engineering

Performance Analysis and Evaluation of Object

Detection Algorithms for Drone Networks

Master Candidate Supervisor

Nisan Karsan Prof. Marco Giordani

Student ID 2040499 University of Padova

Co-supervisor

Asst. Prof. Filippo Campagnaro and Roberto Francescon

University of Padova

Academic Year
2023/2024

To my beloved parents,
my father Haydar and my mother Nermin,

whose unwavering support and endless love have been my constant source of strength,
and to my dearest brother Arman,

my precious Melis,
and friends, whose encouragement

and companionship have been my guiding light through every challenge
this is for you.

Abstract

This thesis explores the optimization and performance evaluation of YOLOv5
and YOLOv8 object detection algorithms within drone networks, particularly
when implemented on edge computing devices such as the Raspberry Pi 4. The
research is grounded in the practical application of these algorithms to two dis-
tinct datasets: the Stanford Drone Dataset and the VisDrone Dataset. These
datasets were chosen due to their relevance in aerial surveillance scenarios and
the unique challenges they present, such as varying object scales and densi-
ties. The findings reveal that both YOLOv5 and YOLOv8, when coupled with
OpenVINO and NCNN optimizations, demonstrate substantial improvements
in accuracy and processing speed, catering effectively to the constraints of edge
computing environments. This study not only highlights the trade-offs between
computational efficiency and detection performance but also contributes practi-
cal insights into the deployment of AI-driven surveillance systems in resource-
limited settings.

Key contributions include a detailed comparative analysis of YOLOv5 and
YOLOv8 performance across different datasets and optimization techniques,
providing valuable guidelines for implementing these algorithms in real-world
drone-based object detection scenarios. The research outcomes offer a foun-
dation for developing more efficient and accurate object detection systems for
autonomous drones and other edge-based applications in resource-constrained
environments.

Contents

List of Figures xi

List of Tables xiii

List of Acronyms xvii

1 Introduction 1

2 Related Works 5

2.1 The Difference between UAV Object Detection and Common Ob-
ject Detection . 6

2.2 Challenges in UAV Object Detection 7
2.3 Traditional Object Detection Approaches 9
2.4 Deep Learning Object Detection Approaches 10

2.4.1 Two stage-based object detection algorithms 11
2.4.2 One stage-based object detection algorithms 13

2.5 Performance Metrics for Object Detection 14
2.6 Evolution of YOLO Algorithms . 17

2.6.1 YOLO: You Only Look Once 18
2.6.2 YOLOv2: Better, Faster, and Stronger 19
2.6.3 YOLOv3 . 20
2.6.4 YOLOv4 - High-Speed and Precise Object Detection 21
2.6.5 YOLOv6 . 22
2.6.6 YOLOv7 . 23
2.6.7 Summary . 24

3 Methodology 27

3.1 Proposed Models: YOLOv5 & YOLOv8 for Aerial Image Object
Detection . 27

vii

CONTENTS

3.1.1 YOLOv5 . 28
3.1.2 YOLOv8 . 31

3.2 Datasets Overview . 33
3.2.1 Stanford Drone Dataset . 33
3.2.2 Stanford Drone Dataset with Grouped Object 36
3.2.3 VisDrone Dataset . 37
3.2.4 VisDrone Dataset with Grouped Object 39

3.3 Preprocessing and Data Organization 40
3.3.1 Dataset Organization . 40
3.3.2 Frames Extraction . 41
3.3.3 Annotation Format . 41

3.4 Training YOLOv5 and YOLOv8 Algorithms 44
3.4.1 Dataset Utilization . 44
3.4.2 Hardware Configuration . 44
3.4.3 Training with YOLOv5 . 45
3.4.4 Training with YOLOv8 . 46

3.5 Training Results . 48
3.5.1 Comparison of YOLO models on different datasets 48
3.5.2 Performance Analysis . 49
3.5.3 Class-Wise Analysis . 51

4 Experiments and Results 53

4.1 Testing Process . 53
4.2 Hardware and Software Setup . 53

4.2.1 Raspberry Pi 4 Specifications 54
4.3 Testing on Raspberry Pi 4 . 56

4.3.1 Exporting YOLOv5 to OpenVINO 56
4.3.2 Exporting YOLOv8 to NCNN 56

4.4 Performance Analysis . 59
4.4.1 Accuracy of Object Detection 59
4.4.2 Comparative Analysis of YOLO Model Performance on

Stanford Drone Dataset . 59
4.4.3 Comparative Analysis of YOLO Model Performance on

VisDrone Dataset . 60
4.4.4 Effects of Class Variations on Performance 61
4.4.5 Inference Time Measurement 65

viii

CONTENTS

4.4.6 Inference Time Analysis Using Stanford Drone and Grouped
Dataset . 65

4.4.7 Inference Time Analysis Using Visdrone-2019 DET and
Grouped Datasets . 66

4.4.8 Power Consumption Measurement 68
4.5 Summary of Key Findings . 72

5 Conclusions and Future Work 75

5.1 Conclusions . 75
5.2 Future Work . 76

References 77

Acknowledgments 87

ix

List of Figures

2.1 Images from the Visdrone dataset. 8
2.2 Images from Stanford Drone Dataset. 8
2.3 The development history of object detection. [34] 10
2.4 Displays a schematic plot illustrating the configuration of a one-

stage detector (a) and a two-stage detector (b) [35]. 12
2.5 Intersection over Union. a) The IoU is calculated by dividing the

intersection of the two boxes by the union of the boxes; b) exam-
ples of three different IoU values for different box locations [36]. . 14

2.6 YOLO version timeline [36] . 17
2.7 The system models detection as a regression problem. It divides

the image into an 𝑆 × 𝑆 grid and for each grid cell predicts 𝐵

bounding boxes, confidence for those boxes, and 𝐶 class proba-
bilities. These predictions are encoded as an 𝑆 × 𝑆 × (𝐵 × 5 + 𝐶)
tensor [37]. 18

2.8 Darknet-19 simplified [39] . 19
2.9 Shows the original YOLOv3 architecture [42]. 20

3.1 Network structure of YOLOv5 [55]. 28
3.2 Mosaic data augmentation flow [57]. 29
3.3 Structure of (a) YOLOv4 and YOLOv5 backbone draws from CSP-

Net (b) ResNet [58]. 30
3.4 The structure of FPN and PAN in YOLOv5 [59]. 30
3.5 The architectural design of YOLOv8 [60]. 31
3.6 Two sample images from the Stanford dataset [32]. 34
3.7 Two sample images from the VisDrone dataset [31]. 38
3.8 Comparison between different annotation formats 43
3.9 Performance of YOLOv5 pre-trained models [51] 45

xi

LIST OF FIGURES

3.10 Performance of YOLO models [52] 46

4.1 Inference time by model and weights (Stanford Drone and Stan-
ford Drone Grouped Dataset with Grouped Dataset) 66

4.2 Inference time by model and weights (Visdrone-2019 and Visdrone-
2019 with Grouped Dataset) . 67

4.3 Energy consumption of Stanford Drone Datasets for each YOLO
model configuration based on inference times and current con-
sumption . 71

4.4 Energy consumption of VisDrone Datasets for each YOLO model
configuration based on inference times and current consumption 72

xii

List of Tables

2.1 YOLO Versions and Their Performance [36] 24

3.1 Distribution of Categories Across Scenes from the Stanford Drone
Dataset with All Object Categories 33

3.2 Distribution of Grouped Object Categories in Different Scenes
from the Stanford Drone Dataset 36

3.3 VisDrone2019 class-wise distribution [63]. 37
3.4 VisDrone dataset class-wise distribution after grouping 39
3.5 Comparison of YOLO models on different datasets 48
3.6 Comparison of YOLO models on class-wise different datasets . . 50

4.1 Raspberry Pi Series Comparison 54
4.2 YOLOv8n on RPi4 . 56
4.3 Comparison of different models in Stanford Drone test Dataset . . 57
4.4 Comparison of different models in VisDrone-2019 test Dataset . . 58
4.5 AP values for different models and categories from the Stanford

and Stanford Grouped test datasets 63
4.6 AP values for different models and categories from the VisDrone

and VisDrone Grouped test datasets 64

xiii

List of Acronyms

AI Artificial Intelligence

AP Average Precision

CNN Convolutional Neural Network

CPU Central Processing Unit

CSP Cross Stage Partial

CVGL Computer Vision and Geometry Laboratory

DPM Deformable Part-Base

FPN Feature Pyramid Network

FPS Frames Per Second

GPU Graphics Processing Unit

GPIO General Purpose Input/Output

IoU Intersection over Union

mAP mean Average Precision

ML Machine Learning

NCNN Neural Network Inference Framework

HOG Histogram of Oriented Gradients

OpenVINO Open Visual Inference and Neural Network Optimization

PAN Path Aggregation Network

xvii

LIST OF TABLES

ROI Regions of Interest

RAM Random Access Memory

RCNN Region-based Convolutional Neural Network

R-FCN Region-based Fully Convolutional Networks

SDD Stanford Drone Dataset

SSD Single Shot Detector

SIFT Scale Invariant Feature Transform

SPPF Spatial Pyramid Pooling Fast

SVM Support Vector Machine

UAV Unmanned Aerial Vehicle

YOLO You Only Look Once

xviii

1
Introduction

Network edge object identification has become increasingly crucial due to
the rise of drone technologies and the need for real-time data processing [1] [2].
This is particularly vital in sectors such as drone-based monitoring and security
surveillance, where accurate and swift object detection can save lives [3].
Drone-based surveillance and monitoring systems rely heavily on object de-
tection. Real-time object identification in drones improves operating safety and
effectiveness [4]. In urban areas, these systems can detect and track automobiles,
pedestrians, and other items of interest, giving vital data for traffic management
and public safety [3]. Similar to this, proactive surveillance systems that use ob-
ject detection algorithms in security applications can quickly identify possible
risks, allowing for prompt interventions and risk reduction [5].

Edge computing plays a fundamental role in reducing latency by processing
data near the point of data acquisition, which is essential in mobile or remote
work environments where processing capacity and energy availability are lim-
ited [6] [7] [8]. Small, power-efficient devices like the Raspberry Pi are ide-
ally suited for these applications, which benefit from decentralized processing
frameworks that minimize latency [9].

The rapid evolution of automotive networks and intelligent transportation
systems has led to a rise in demand for accurate and efficient object detection
algorithms in urban mobility and smart traffic management [10]. Especially
when it comes to accident monitoring systems, these improvements have made
cities much safer, more efficient, and more secure [11].

1

Infrastructure-based object detection and tracking systems have become a
popular area of study because they might be able to solve the problems that
onboard sensors have [12]. UAVs provide a new perspective for monitoring sce-
narios that contains automotives, complementing ground-based sensors [13].
Drones with advanced object detection capabilities can quickly survey broad re-
gions, detect traffic anomalies, monitor congestion, and even assist in emergency
response scenarios. This aerial perspective enhances situational awareness, al-
lowing for more comprehensive and dynamic traffic management strategies [14].

The You Only Look Once (YOLO) family of object detection algorithms, par-
ticularly YOLOv5 and YOLOv8, have gained prominence for their speed and ac-
curacy in real-time applications [15]. YOLOv8, in particular, has been developed
to further enhance performance and robustness, incorporating innovations such
as attention mechanisms and dynamic convolution [16]. These algorithms are
well-suited for scenarios requiring low-latency object detection, such as automo-
tive and drone-based monitoring systems. They have been shown to outperform
other state-of-the-art benchmarks in terms of detection accuracy and computa-
tional efficiency [16]. Furthermore, YOLOv5 has been successfully implemented
for real-time object detection and image detection tasks, demonstrating its prac-
tical applications in surveillance, automated driving, and robotics [15].

The implementation of object detection on Raspberry Pi platforms has demon-
strated high-precision detection and real-time processing capabilities, crucial for
edge computing applications [17, 18]. This approach addresses the challenges of
wireless communication and real-time processing in distributed object detection
architectures [1], particularly for UAV missions that demand low latency and
high accuracy [19]. Raspberry Pi’s versatility extends to various applications, in-
cluding image processing, surveillance, and facial recognition [20]. Its potential
as a wireless sensor node, capable of interfacing with diverse peripherals, further
broadens its research applications [21]. In the context of drone-based systems,
Raspberry Pi offers significant advantages. It enables autonomous on-board
processing of visual data, reducing network latency and enhancing privacy [22].
The platform optimizes energy consumption, which is crucial for extending op-
erational duration in surveillance missions [23, 24]. Moreover, Raspberry Pi
provides a compact, lightweight solution ideal for integration into drone sys-
tems, effectively addressing payload and power constraints [25]. By focusing
on energy-efficient computing and algorithm optimization for the Raspberry Pi,
we can enhance the practicality of drone-based monitoring systems.

2

CHAPTER 1. INTRODUCTION

This approach not only extends mission durations but also addresses broader
challenges in sustainable and long-endurance UAV operations across various
applications, from urban planning to emergency response scenarios [26].

The research also involves adapting and benchmarking the YOLO algorithms
for edge deployment by converting YOLOv5 to the Open Visual Inference and
Neural Network Optimization (OpenVINO) format and YOLOv8 to the Neural
Network Inference Framework (NCNN) format. This is to assess their compat-
ibility with Raspberry Pi 4 hardware and optimize their performance for edge
computing scenarios.

A comparative analysis will evaluate the performance trade-offs associated
with each adaptation, providing insights into the balance between speed, power
efficiency, and accuracy in object detection tasks.

This thesis explores the optimization and performance evaluation of YOLOv5
and YOLOv8 object detection algorithms, focusing on their implementation
on edge computing devices such as the Raspberry Pi 4. By analyzing these
algorithms’ performance on two distinct datasets relevant to urban and aerial
surveillance - the Stanford Drone Dataset and the VisDrone Dataset - we aim to
provide insights into the practical application of advanced object detection in
resource-constrained environments. Our comprehensive approach assesses the
models’ performance across critical metrics, including mean Average Precision
(mAP), inference time, and energy consumption. Additionally, we explore the
impact of model optimization techniques such as OpenVINO and NCNN, and
investigate the effects of object grouping on detection performance.

This research not only addresses the technical challenges of deploying AI-
driven surveillance systems in edge computing scenarios but also contributes to
the broader goal of enhancing safety and efficiency in smart city and intelligent
transportation applications.

We implement YOLOv5 and YOLOv8 algorithms using the PyTorch frame-
work, leveraging their pre-trained weights as starting points. For our edge
computing simulations, we use Python 3.9.2 along with PyTorch 1.11.0 and
torchvision 0.12.0 for model deployment on Raspberry Pi 4 hardware. To opti-
mize performance, we utilize OpenVINO for YOLOv5 and NCNN for YOLOv8,
enabling efficient inference on the Raspberry Pi platform.

3

Our experiments yield several significant findings. In terms of detection
accuracy, YOLOv8 models, particularly YOLOv8l, demonstrate superior per-
formance on aerial imagery, achieving mAP scores of up to 56.1% at IoU 0.5.
YOLOv5 models show strong performance in urban surveillance scenarios, with
YOLOv5x reaching an mAP of 80.7% at IoU 0.5. Regarding inference time,
smaller models like YOLOv8n exhibit lower latency, with times as low as 389.6
ms on grouped object datasets at 416x416 resolution. Energy consumption
analysis reveals that optimized models significantly reduce power usage, with
NCNN and OpenVINO configurations showing particular efficiency.

In conclusion, our research demonstrates that careful selection of model ar-
chitecture, optimization technique, and dataset preprocessing can substantially
enhance the performance of object detection systems in drone-based edge com-
puting scenarios, balancing accuracy, speed, and energy efficiency.

This thesis is structured as follows:

• Chapter 2: Existing research is examined in depth. It analyses the evolu-
tion of object detection algorithms, focusing on the YOLO family, and edge
computing in modern applications. The review lays the groundwork for
this thesis by identifying gaps and opportunities.

• Chapter 3: The experimental design, datasets, YOLOv5 and YOLOv8 al-
gorithms, and Raspberry Pi 4 hardware configuration are covered in this
thesis. It describes adapting algorithms to OpenVINO and NCNN edge
computing frameworks and training and testing methodologies.

• Chapter 4: Presentation of experimental results. This contains object de-
tection method performance on multiple datasets, Raspberry Pi 4 inference
time, and power consumption statistics. The algorithms’ accuracy and op-
timizations are also covered.

• Conclusions and Future Work: The final chapter summarises the re-
search’s main findings, discusses field contributions, and offers further
research. It concludes that edge device object detection methods must be
optimized.

4

2
Related Works

Object detection is a computer technology used in Artificial Intelligence (AI)
and Machine Learning (ML) that involves identifying and locating objects within
digital images or videos. This technology plays a crucial role in various applica-
tions, from security surveillance systems to autonomous vehicles, by allowing
machines to interpret and analyze visual data similarly to how humans do. The
basic process involves several steps; image acquisition, pre-processing, feature
extraction, object classification, and localization.

Unmanned Aerial Vehicle (UAV)s use object detection for a variety of reasons:

• Navigation and Collision Avoidance: To safely navigate their environment,
avoid obstacles, and maintain safe distances from other objects or terrain
features.

• Surveillance and Monitoring: For tasks that require consistent monitor-
ing, like border security or traffic analysis, where drones need to identify
specific objects or activities.

• Search and Rescue: To quickly locate people in distress in vast or challeng-
ing terrains, improving response times and outcomes in emergencies.

• Agricultural and Environmental Monitoring: To assess crop health, detect
pests, and manage farms more efficiently, saving time and resources.

• Delivery and Logistics: For identifying delivery points, avoiding hazards,
and ensuring that goods are transported safely and efficiently [5].

5

2.1. THE DIFFERENCE BETWEEN UAV OBJECT DETECTION AND COMMON OBJECT
DETECTION

2.1 The Difference between UAV Object Detection
and Common Object Detection

Object detection algorithms commonly rely on datasets obtained from hand-
held cameras or fixed settings, resulting in a predominance of side-view images
in a typical view. Nevertheless, due to their elevated vantage point, aerial im-
ages captured by UAVs display noticeable disparities compared to conventional
ground-level photographs. Hence, the object detection techniques utilized in
standard visual perception cannot be readily adapted to UAV aerial imagery.
Various challenges, such as equipment instability, can negatively impact the
quality of UAV aerial photos. These challenges can result in issues such as jitter,
blur, low resolution, light changes, and image distortion. To improve the effec-
tiveness of detection systems, it is essential to preprocess these considerations
for the video [27].

Furthermore, the aerial image displays an uneven distribution of objects and
a significant prevalence of minuscule object dimensions. For example, when
viewed from above, cars and people may cover many pixels, but when viewed
normally, they only cover a few pixels. The uneven distribution of these objects
causes them to appear distorted, making it difficult to recognize multiple objects
at once. This requires the employment of specialist network modules to extract
features.

There are differences in the occlusion seen from a normal perspective com-
pared to that seen from an aerial perspective. The item can be obscured from
ordinary vision by additional obstructions, such as an individual positioned in
front of a vehicle. Nevertheless, when observed from an aerial perspective, the
object can get obscured by the encompassing surroundings, such as foliage and
structures [28] [29].

6

CHAPTER 2. RELATED WORKS

2.2 Challenges in UAV Object Detection

UAVs can operate at different heights and view angles, making vehicle de-
tection and recognizing pedestrians, cars, skaters, bikers, and others in aerial
imagery difficult. Scale variations, diverse orientations and types of objects,
changes in illumination, high object density, similarity in appearance, partial oc-
clusions, complex backgrounds, and varying image qualities make it difficult to
detect these objects in UAV-based images. The problem gets further complicated
by limited annotated training datasets and real-time detection.

• Small object: High-resolution aerial images show fewer items besides au-
tos than typical scene photographs, resulting in less feature extraction
information. This increases missed detections and localization difficulty.

• Scale Diversity: A UAV’s varied altitudes can confuse and ambiguously
size an object. The different scales of cars, pedestrians, and other objects
in photos and videos make recognition harder.

• Object Orientations and Types: UAVs’ mobility offers front, side, and top
views. Pictures and videos show a range of elements in different shapes
and orientations, making detection harder.

• Illumination Condition Variations: Light, which is crucial to categorization
and detection, is one of the hardest problems to solve. Image preprocess-
ing is needed to decrease lighting and illumination effects to construct a
reliable and accurate system.

• Complex Background and Similar Appearance: Due to their large size and
wide viewing angles, aerial photographs have complicated backgrounds
with many items, making it difficult to discern between comparable object
types. A pedestrian could be mistaken for a skater, bicyclist, or tree.
Vehicles can also be mistaken for trash bins and air conditioners, making
identification and classification more difficult.

• Limited Annotated Datasets: Low-availability annotated datasets make
aerial image-based vehicle or pedestrian recognition harder. The lack of
tagged object datasets in UAV photography reduces detector accuracy,
especially for deep-learning-based detectors that need many annotated
images/videos for training. The most accessible datasets are satellite im-
agery. Most of the study is based on their UAV-gathered datasets.

• Real-Time Issue: UAVs must detect and classify automobiles, pedestrians,
skaters, and bicycles in crowded surroundings in real-time to manage road
traffic or parking lots. However, limited onboard hardware resources on
the UAV platform make sophisticated tasks with huge data loads difficult,
making real-time detection and classification difficult. Aerial photos are
larger than scene images, slowing detection. Thus, low-power and low-
processing UAV platforms need accurate, rapid detection algorithms that
can handle many object kinds to fulfill their missions quickly [30].

7

2.2. CHALLENGES IN UAV OBJECT DETECTION

Figure 2.1: Images from the Visdrone dataset.
[31]

Figure 2.2: Images from Stanford Drone Dataset.
[32]

In the challenging frames of drone-based videos([32], [31]) defocus, motion
blur, occlusion, and other variations (e.g., illumination, size, small object) may
leave too few clues for successful detections (Figures 2.1 and 2.2).

8

CHAPTER 2. RELATED WORKS

2.3 Traditional Object Detection Approaches

Vision-based and machine classifier-based methods are part of classical cat-
egorization. Our main interest is deep learning methods, thus modern cate-
gorization emphasizes these. Figure 2.3 illustrates the detection models, both
classical and deep learning-based. Classical object detection methods include
improvements in aerial images using machine learning algorithms with hand-
crafted features. Traditional aerial image analysis methods include inertial op-
tical flow, shape-based descriptors, online boosting with Histogram of Oriented
Gradients (HOG) based features, Deformable Part-Base (DPM) descriptors, mul-
tiple trained cascaded Haar classifiers, and Markov random field descriptors.

Machine learning algorithms for aerial photos leverage automated classifiers
on human-selected parameters to improve performance. Bayesian networks,
graph cut methods, HOG with Support Vector Machine (SVM) classifier, Viola
jones-SVM hybrid, multi-scale HOG, AdaBoost classifier, Scale Invariant Fea-
ture Transform (SIFT) descriptor with SVM classifier, and stochastic constraints-
based detection systems are used. Both linear and rotational velocities are
detected and distinguished using inertial optical flow. In high-visual-noise envi-
ronments, shape-based characteristics were used to recognize fixed and moving
objects. For fuzzy aerial data detection, the systems used a Bayesian network
with numerous learning features and gradient mask filters as low-resolution
features. The system displayed poor performance.

Classic object detection methods like inertial optical flow, shape context fea-
ture descriptors, and boosting frameworks with HOG features in aerial images
had trouble learning object-specific features like contour size and hierarchical
shape dynamics. These techniques were vulnerable to errors in real-world set-
tings due to their inability to handle moving objects, dynamic backgrounds,
or lighting variations, which are essential to aerial pictures. Due to image
resolution and feature description issues, these models were unable to attain
considerable accuracy. When feeding an algorithm a vector with millions of
values, HOG, SIFT, and Markov Random field are inefficient. Its length and
noisy data make it difficult [33].

9

2.4. DEEP LEARNING OBJECT DETECTION APPROACHES

2.4 Deep Learning Object Detection Approaches

Figure 2.3: The development history of object detection. [34]

UAV aerial imaging is utilized for entertainment, detection and classification
investigations, animal observation, and other exciting reasons. Recent UAVs are
cheap to operate for end consumers who seeking aerial imaging equipment on
a budget, unlike an aircraft. Advanced deep learning-based object detection
methods have a promising future. Recent years have seen several improvements
in deep learning-based object detection systems in low-altitude UAVs. Since
the dataset distribution includes photos collected from top view angles and
some from lower view angles, perspective variance is one of the main issues in
drone-recorded photographs. Object traits learned from different viewpoints
are not transportable. Thus, sophisticated detectors must detect aerial images.
Fig. 2.3 shows two-stage, one-stage, and advanced deep learning-based aerial
picture object detection techniques. Two-stage detectors include faster Region-
based Convolutional Neural Network (RCNN), Mask RCNN, Cascade RCNN,
Feature Pyramid Network (FPN), and Region-based Fully Convolutional Net-
works (R-FCN), whereas one-stage detectors include YOLO, Single Shot Detec-
tor (SSD), RefineDet, and RetinaNet [33].

10

CHAPTER 2. RELATED WORKS

2.4.1 Two stage-based object detection algorithms

Two-stage object identification algorithms employ a two-step process to iden-
tify objects. Fig.2.4 shows the Basic architecture of two-stage and one-stage de-
tectors.
Initially, they generate a limited number of Regions of Interest (ROI) and sub-
sequently classify each of these areas using a network. The RCNN algorithm,
which was one of the earliest advanced algorithms, greatly enhanced object
recognition by utilizing deep learning to compute the locations of objects from
a vast collection of region candidates. It achieved this by cropping and classi-
fying each candidate individually. The Fast RCNN algorithm was developed to
mitigate the significant computational and temporal expenses associated with
RCNN. It achieves this by employing an end-to-end training process that classi-
fies item suggestions and accurately determines their bounding box coordinates.
Fast RCNN enhanced the performance of RCNN by enhancing detection accu-
racy and reducing the requirement for storing individual feature extraction.

Additional progress has been made with the introduction of Feature Pyramid
Networks (FPN), which offer a multi-scale feature representation that is crucial
for recognizing objects at various scales. This addresses a fundamental obstacle
in the field of computer vision. FPN has been expanded to include mask pro-
posals, which improves both recall and speed for object detection tasks. Mask
RCNN enhances object localization accuracy by incorporating a mask predictor.

In the context of drone object detection, especially in low-altitude aerial
photos where vehicles appear diminutive and are difficult to accurately locate,
conventional approaches such as RCNN and Fast RCNN frequently prove inad-
equate. They are not designed to efficiently handle small objects or accurately
extract specific attributes beyond the bounding box. These networks have signif-
icant slowdowns due to the substantial computing load and the nature of their
architecture. Recent breakthroughs, such as Cascade RCNN and light-head
RCNN, enhance object detection in high-resolution aerial photos by integrating
attention mechanisms. Nevertheless, additional adjustments are necessary for
these approaches to adequately fulfill the requirements of detecting low-altitude
airborne objects [33].

11

2.4. DEEP LEARNING OBJECT DETECTION APPROACHES

Figure 2.4: Displays a schematic plot illustrating the configuration of a one-stage
detector (a) and a two-stage detector (b) [35].

12

CHAPTER 2. RELATED WORKS

2.4.2 One stage-based object detection algorithms

Two-stage detectors enabled early deep learning-based object detection, but
the inference speed was a problem. The efficiency of one-stage detectors over
two-stage detectors makes them suitable for low-altitude object detection. Thus,
researchers finally switched to one-stage detectors given their flexibility, high-
speed and low-memory requirements. Single-stage algorithms pass the en-
tire image into a grid-based Convolutional Neural Network (CNN) instead
of in patches like two-stage detectors. Fig. 2.4 displays a one-stage object-
detector model. Initially, one-stage detection algorithms recommended a real-
time single-pass method called YOLO, which provided better findings mAP
higher than two-stage detectors) in a short time. The aim was to forecast object
number and location from an image. YOLO trained on full photos improved
detection. This integrated object detection model had many advantages over
previous methods such as:

• 45 Frames Per Second (FPS) base network speed on high-performance GPU.

• Generalizable object representations reduce breakdown risk in new do-
mains.

SSD algorithm, a more advanced single-shot detector, outperformed two-
stage detectors that proposed regions. SSD feature detection outperformed prior
detectors that calculated features by executing a neural network on input once.
Anchor boxes were used to learn bounding box coordinates. RefineDet’s two-
step cascade regression improves one-stage detector. These two interconnected
modules mimic the two-stage structure for precise, efficient detection. RefineDet
achieves state-of-the-art generic object identification (PASCAL VOC 2007, 2012,
and MS COCO). RetinaNet, another FPN-based single-stage detector, uses focal
loss to address class imbalance induced by excessive foreground-background
ratio. A new dynamic loss function called focused loss was employed to change
weights between positive and negative training data to solve RetinaNet’s degen-
erative model for a large number of background cases. A simple dense detector
was trained to test focus loss. The most accurate object detectors use region
proposal methods like RCNN series to apply a classifier to a sparse set of possi-
ble object locations. One-pass detectors are faster and simpler but less accurate
than two-pass detectors. Foreground background class imbalance during dense
detector training is the main cause of accuracy issues [33].

13

2.5. PERFORMANCE METRICS FOR OBJECT DETECTION

2.5 Performance Metrics for Object Detection

Once object detection algorithms have been developed, they need to go
through testing. The evaluation of object detection approaches includes evalu-
ating many metrics such as mAP,Intersection over Union (IoU), recall rate, and
precision. These are the key evaluation metrics [34].

True Positive, False Positive, True Negative, and False Negative

The true positive (TP) result indicates the detector’s accurate automobile
count. A bounding box is positive if its IoU value exceeds a threshold. If the
same object has many bounding boxes, only the one with the largest overlap ratio
is a positive detection. False positive (FP) is the number of autos the detector
misidentifies. Bounding boxes are false negatives (FNs) when they fail to detect
vehicles and true negatives (TNs) when they accurately identify misdetections.
"IoU" stands for intersection over union, which measures how well the bounding
box matches the item.

Intersection Over Union

A detection frame is formed when an object is detected. IoU is a mathematical
measure of the ratio of the overlapping area between a priori and real frames to
their total area. The threshold is usually 0.5, the same as the cross-union ratio.
The object is detected if the value surpasses 0.5.

Figure 2.5: Intersection over Union. a) The IoU is calculated by dividing the
intersection of the two boxes by the union of the boxes; b) examples of three
different IoU values for different box locations [36].

14

CHAPTER 2. RELATED WORKS

Recall

An essential parameter for assessing the detector’s performance is its recall
rate. The following illustrates the proportion of predicted positive objects that
are objects.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
=

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐴𝑙𝑙𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠

Precision

Precision is defined as the model’s accuracy in identifying the correct sample
divided by the total sample in the prediction result. When the intersection-
union ratio is more than the threshold, the result is classified as True Positive
(TP); otherwise, it is classified as False Positive (FP). If an object is not picked up
by the detector in the detection frame that has the sample designated on it, it is
classified as False Negative (FN). Accuracy is defined as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
=

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐴𝑙𝑙𝐺𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ

Average Precision

Average Precision (AP) is the precision averaging over a [0, 1] recall. The
greater the AP value, the better the detector performs in detecting a particular
type of object in the dataset. The following is the definition of average precision.

𝐴𝑃𝑢 =
1

|Ω𝑢|
∑︂
𝑖∈Ω𝑢

∑︁
𝑗∈Ω𝑢

ℎ(𝑝𝑢𝑗 < 𝑝𝑢𝑖) + 1
𝑝𝑢𝑖

where the location of object 𝑗 is indicated by 𝑝𝑢𝑗 , the Ground Truth result
is indicated by Ω𝑢 , and the recommendation list’s prioritisation of object 𝑗 over
item 𝑖 is indicated by 𝑝𝑢𝑗 < 𝑝𝑢𝑖 .

15

2.5. PERFORMANCE METRICS FOR OBJECT DETECTION

Mean Average Precision

The average accuracy of each type of item that the detector detects is averaged
(mAP). For the whole dataset, higher mAP values signify improved detector
performance. The definition of the mean average accuracy is

𝑚𝐴𝑃 =

∑︁
𝑢∈𝑈 𝐴𝑃𝑢

|𝑈|

16

CHAPTER 2. RELATED WORKS

2.6 Evolution of YOLO Algorithms

It introduced an end-to-end real-time object identification method. YOLO,
which stands for "You Only Look Once," refers to the fact that it completed the
detection task in a single network pass, as opposed to earlier techniques that
either employed sliding windows and required hundreds or thousands of runs
of a classifier for each image, or more sophisticated techniques that divided the
task into two steps: the first step finds potential regions with objects or regions
proposals, and the second step runs a classifier on the proposals.
Additionally, YOLO employed a simpler output that relied just on regression to
forecast the detection outputs, in contrast to Fast RCNN, which employed two
distinct outputs a regression for the box coordinates and a classification for the
probabilities. YOLO’s real-time object detection has helped autonomous driving
systems identify and track vehicles, pedestrians, bicycles, and other obstacles.
These skills have been used in action recognition, surveillance video analysis,
sports analysis, and human-computer interaction. YOLO models have been
used for license plate detection and traffic sign recognition, helping develop in-
telligent transportation systems and traffic management solutions. They locate
and monitor endangered species for biodiversity conservation and ecological
management. Finally, YOLO is applied in robotics and drone object identifi-
cation. This thesis focuses on researching drone object detection using YOLO
techniques.

Figure 2.6: YOLO version timeline [36]

There have been several iterations of YOLO over the years, all updated with
cutting-edge concepts this section will be explained. Figure 2.6 Figure shows
how the YOLO family has evolved. The proposed models YOLOv5 and YOLOv8
will be explained in Chapter 3.

17

2.6. EVOLUTION OF YOLO ALGORITHMS

2.6.1 YOLO: You Only Look Once

The YOLO model predicts bounding boxes using 𝑃𝑐 , which measures item
presence and placement precision. The model rates its object location prediction
accuracy with this confidence grade. Each bounding box has coordinates its
center concerning the grid cell it lies in and dimensions, 𝑏ℎ and 𝑏𝑤 , which
indicate its height and width as proportions of the image. Non-maximum
suppression eliminates multiple detections from the 𝑆×𝑆×(𝐵×5+𝐶) tensor [37].

Figure 2.7: The system models detection as a regression problem. It divides
the image into an 𝑆 × 𝑆 grid and for each grid cell predicts 𝐵 bounding boxes,
confidence for those boxes, and 𝐶 class probabilities. These predictions are
encoded as an 𝑆 × 𝑆 × (𝐵 × 5 + 𝐶) tensor [37].

Strengths and Limitations

YOLO has certain drawbacks while being a fast object detector. State-of-the-
art techniques such as Fast RCNN have a less localization error than YOLO.
There exist three primary factors for this limitation:

• This means that YOLO’s predictive power is limited to detecting a maxi-
mum of two objects of the same type in a grid cell.

• Things with aspect ratios that weren’t in the training set of data are hard
for YOLO to forecast.

• The down-sampling approach allows YOLO to learn from coarse object
features.

18

CHAPTER 2. RELATED WORKS

2.6.2 YOLOv2: Better, Faster, and Stronger

On the PASCAL VOC2007 dataset, the model known as YOLOv2 had an
amazing average accuracy (AP) of 78.6%, surpassing the performance of its
predecessor, YOLOv1, which only managed to obtain 63.4%. These results
demonstrate the superior object identification and recognition capabilities of
YOLOv2, opening new avenues for computer vision research in the future [38].

The system has undergone several enhancements. These enhancements in-
volve implementing batch normalization for convolutional layers to enhance con-
vergence and mitigate overfitting. An advanced classifier with high-resolution
capabilities was incorporated, leading to improved performance while process-
ing inputs with greater resolutions. The architecture was modified to incor-
porate fully convolutional layers, specifically utilizing a backbone known as
DarkNet. DarkNet consists of 19 convolutional layers and 5 max-pooling layers.
Additionally, anchor boxes are employed to forecast bounding boxes.

Figure 2.8: Darknet-19 simplified [39]

Ultimately, dimension clusters were incorporated to enhance the precision
of predictions by utilizing appropriate priors identified by k-means clustering.

During the training process, the two datasets were merged in a way that
allows the detection network to backpropagate when a detection training image
is utilized. The utilization of a classification training picture results in the
backpropagation of the classification component inside the architecture [38].

The outcome is a YOLO model with the ability to identify over 9000 cate-
gories, hence its designation as YOLO9000.

19

2.6. EVOLUTION OF YOLO ALGORITHMS

2.6.3 YOLOv3

YOLOv3 has significantly outperformed its predecessors in several parame-
ters, most notably speed and accuracy. YOLOv3 has demonstrated rapid iden-
tification times on the COCO dataset, which is comparable to the accuracy of
SSD models but around three times faster, indicating a significant improvement
in real-time object detection capabilities. At a 0.5 IOU threshold, it achieves a
mAP of 57.9%, demonstrating competitive performance versus other cutting-
edge models such as RetinaNet [40].

Yolov3 brings several improvements that help it perform better. With 106
layers, it has a deeper and more intricate architecture that allows for more
precise feature extraction. To enhance the detection of items with diverse sizes,
this model also includes multiscale predictions, which employ three distinct
scales. Furthermore, by employing three different kernel sizes for detection
13x13, 26x26, and 52x52 YOLOv3 increases its accuracy across a range of object
scales and improves its adaptability in a variety of detection scenarios [41].

Figure 2.9: Shows the original YOLOv3 architecture [42].

All things considered, YOLOv3 stands out with its real-time object identifica-
tion speed and precision, making it a strong option for applications that demand
quick and accurate visual data interpretation.

20

CHAPTER 2. RELATED WORKS

2.6.4 YOLOv4 - High-Speed and Precise Object Detection

By enhancing the capabilities of its forerunners to achieve high speed and
accuracy, YOLOv4 has significantly advanced the field of real-time object de-
tection. Several additional characteristics are integrated into this model to opti-
mize efficiency while avoiding an increase in processing loads during inference.
YOLOv4, for example, makes use methods such as Mish-activation, Cross-Stage
Partial connections, and Weighted-Residual Connections to improve the model’s
efficiency and learning capabilities.

YOLOv4 exhibits a robust performance while providing balance between
speed and accuracy. It uses the CSPDarknet53 as its skeleton, PANet as its neck,
and the YOLOv3 detection methods as its head. Its remarkable performance on
object identification tasks makes it appropriate for real-time applications. These
components all play a part in this. In addition to demonstrating exceptional
speed in detection, YOLOv4 outperforms YOLOv3 in terms of accuracy and
processing time, attaining cutting-edge outcomes in benchmarks.

The "bag of freebies," or tactics used in the training phase to improve accuracy
without affecting the model’s runtime performance, are what set YOLOv4 apart
in practical applications. The robustness and scenario-generalizability of the
model are greatly enhanced by data augmentation, which includes geometric
and photometric aberrations. Through its GitHub repository, developers can ac-
cess resources and instructions for the implementation or further development
of YOLOv4. This comprehensive guide covers setup, training, and deployment
on conventional GPUs, making it easier for YOLOv4 to be adopted in a variety
of applications, ranging from personal projects to large-scale systems [43] [44].

21

2.6. EVOLUTION OF YOLO ALGORITHMS

2.6.5 YOLOv6

Impressively performing on multiple measures, YOLOv6 is a huge step for-
ward in the evolution of the YOLO object identification models. With its elab-
orate speed and accuracy optimizations, YOLOv6 is especially well-suited for
real-time industrial applications.

When it comes to performance, YOLOv6 models outperform their prede-
cessors in terms of accuracy and efficiency. For example, when tested on the
COCO dataset using FP16 precision on NVIDIA T4 GPUs, the YOLOv6-S model
obtains a mAP of 43.5% at a processing speed of 495 frames per second (FPS).
In comparison to previous iterations such as YOLOv5, this represents a new
state-of-the-art for the series [45].

Many architectural improvements are also included in YOLOv6, such as
the utilization of a single-path network with the increased model capacity to
better balance detection accuracy and processing load. Using RepVGG blocks
for effective feature processing and a Cross Stage Partial (CSP) link to increase
efficiency without adding too much computational overhead are two noteworthy
aspects [46].

YOLOv6 has variations for real-world applications, such as the YOLOv6-
Nano and YOLOv6-Small, which are made for settings with constrained com-
puting resources but still need good performance. These models maintain
extremely low latency while achieving competitive mAP scores, which is im-
portant for applications like embedded or mobile devices that demand quick
processing times [47] [48].

These improvements combine high accuracy with the efficiency required for
deployment in a variety of operating scenarios, making YOLOv6 a strong option
for developers and researchers working on cutting-edge object identification
tasks.

22

CHAPTER 2. RELATED WORKS

2.6.6 YOLOv7

YOLOv7 is a powerful tool for real-time object identification in settings with
constrained computational resources since it has been skillfully tailored for us-
age on edge devices. Specifically, the YOLOv7-tiny variation uses architectures
and activation functions (such as leaky ReLU) appropriate for lightweight and
mobile computing devices and is optimized to execute efficiently on edge GPUs.
Because of this, it is very suitable for dispersed edge servers and devices, guar-
anteeing quick and precise object identification without requiring a lot of hard-
ware [49].

Moreover, YOLOv7’s usefulness on edge devices like the Nvidia Jetson Nano
is demonstrated by its implementation in real-world applications like crop dis-
ease detection. The computational burden is greatly decreased by improving
YOLOv7 with lightweight network architectures like GhostNetV1 and using
channel pruning. As a result, the model’s parameter size is significantly re-
duced while maintaining excellent accuracy (88.6%) and high detection speeds
(up to 217 frames per second) [50].

These modifications highlight YOLOv7’s ability to satisfy the demanding
specifications of edge computing, offering a reliable answer for applications re-
quiring real-time processing in settings with limited computational resources.

23

2.6. EVOLUTION OF YOLO ALGORITHMS

2.6.7 Summary

By using different frameworks, adopting different backbones, or integrating
anchor boxes, each version aims to optimize a certain aspect of performance.
Average precision (AP) and processing speed increase gradually as a result
of advancements in network architecture and training methodologies. This is
indicative of the continuous progress in object detection technology.

Version Date Anchor Framework Backbone AP (%)

YOLO 2015 No Darknet Darknet24 63.4
YOLOv2 2016 Yes Darknet Darknet24 78.6
YOLOv3 2018 Yes Darknet Darknet53 33.0
YOLOv4 2020 Yes Darknet CSPDarknet53 43.5
YOLOv5 2020 Yes Pytorch YOLOv5CSPDarknet 55.8
YOLOv6 2022 No Pytorch EfficientRep 52.5
YOLOv7 2022 No Pytorch YOLOv7Backbone 56.8
YOLOv8 2023 No Pytorch YOLOv8CSPDarknet 53.9

Table 2.1: YOLO Versions and Their Performance [36]

From YOLO to YOLOv8, the YOLO object detection models have progressed
greatly. Each iteration has addressed unique challenges and improved its pre-
decessors.

The 2015 YOLO model was groundbreaking in speed but lacking in precision
compared to existing detectors. This method treats object recognition as a single
regression problem, using picture pixels to predict bounding box coordinates
and class probabilities. This is innovative.

Later versions, YOLOv2 and YOLOv3, improved accuracy. YOLOv2 used
anchor boxes to predict bounding box offsets, while YOLOv3 was detected at
three scales to improve accuracy.

In YOLOv5, Darknet was replaced by PyTorch, improving speed and accu-
racy. Modern neural network features and optimization methods were added.

YOLOv8, the latest version, continues to improve. The algorithm uses com-
pound scaling and enhanced data augmentation to handle images with different
object sizes and shapes.

24

CHAPTER 2. RELATED WORKS

While PP-YOLO, YOLOX, and YOLO-NAS were produced alongside the core
YOLO series, they prioritized factors like model efficiency for certain platforms
or neural architecture search for backbone design. This thesis solely compares
the primary versions from YOLO to YOLOv8 in consecutive order to ensure a
thorough and consistent development comparison. YOLO has become a pop-
ular computer vision framework by improving object identification speed and
accuracy with each iteration [36].

In Chapter 3, the focus is on the proposed models based on the YOLOv5 and
YOLOv8 architectures.

25

3
Methodology

3.1 Proposed Models: YOLOv5 & YOLOv8 for Aerial
Image Object Detection

YOLOv5 and YOLOv8 were chosen as the object detection algorithms for the
Stanford and VisDrone datasets due to their advanced features and impressive
performance.
YOLOv5 provides a good balance between speed and accuracy, is user-friendly,
has a flexible training process [51], and includes unique features like Mosaic
data augmentation and auto-learning bounding box anchors [52].
YOLOv8, being the latest in the YOLO series, uses cutting-edge technology, has
an improved design, better training methods, and can adapt to various model
sizes. These models can effectively address the unique challenges presented by
the datasets, such as varying object sizes, complex backgrounds, and diverse
environmental conditions [53] [40].
The application of YOLOv5 and YOLOv8 in this research aims to improve the
accuracy and efficiency of object detection tasks, ultimately leading to enhanced
overall performance of the detection systems utilized for these datasets.

27

3.1. PROPOSED MODELS: YOLOV5 & YOLOV8 FOR AERIAL IMAGE OBJECT DETECTION

3.1.1 YOLOv5

In June 2020, Ultralytics introduced YOLOv5, an updated object detection
network framework modeled similarly to YOLOv4. This version features en-
hancements in both speed and accuracy of detection, along with a noticeably
smaller model size. YOLOv5 has garnered significant attention across both in-
dustry and academic circles.
YOLOv5 is an extremely popular single-stage object detection model that comes
in four different sizes: YOLOv5s (small), YOLOv5m (medium), YOLOv5l (large),
and YOLOv5x (extra large). As the size of the model increases from YOLOv5s
to YOLOv5x, both the depth and width of the model also increase, leading to
a higher number of parameters. Glen Jocher oversees the customization of the
model by adjusting the depth_multiple, width_multiple parameters to accom-
modate various detection needs [54]. YOLOv5’s architecture is divided into four
main parts: the input, the backbone network model, the neck network model,
and the output. The backbone consists of a convolutional neural network that
processes detailed images to create feature maps. The neck network integrates
these features from the backbone and passes them to the output, which handles
the detection and classification tasks.

The layout of the YOLOv5s model is depicted in Figure 3.1.

Figure 3.1: Network structure of YOLOv5 [55].

28

CHAPTER 3. METHODOLOGY

Input: YOLOv5 implements mosaic data augmentation on the input side
and includes built-in adaptive anchoring and scaling features. This mosaic
augmentation involves randomly selecting four images, and merging them into
a single training image, which effectively reduces the pixel size of the detection
targets and enhances YOLOv5’s ability to detect smaller objects (Figure 3.2).
After entering the network, the dataset images are resized to 640x640 pixels.
YOLOv5 then applies the k-means clustering algorithm to determine anchor
boxes that best match the annotations in the dataset. These are compared with
preset anchor boxes. If the best recall rate exceeds 0.98, it indicates that the preset
anchor sizes are adequate for the dataset. Otherwise, network parameters are
adjusted accordingly [56].

Figure 3.2: Mosaic data augmentation flow [57].

Backbone: In its backbone architecture, YOLOv5 incorporates FOCUS, SPP,
and CSP techniques. The Focus method performs a slicing operation on each
pixel in the image, similar to local downsampling, which quadruples the input
channel without losing information. The modified image is then processed to
produce a bipartite downsampled feature map that preserves data integrity.
Additionally, YOLOv5 utilizes the CSPNet residual framework(Figure 3.3) in
both the backbone and neck parts of the network. This framework splits the
feature map of the basic layer into two segments and merges them across differ-
ent stages, thereby minimizing computational load while maintaining the full
integrity of the feature information [56].

29

3.1. PROPOSED MODELS: YOLOV5 & YOLOV8 FOR AERIAL IMAGE OBJECT DETECTION

Figure 3.3: Structure of (a) YOLOv4 and YOLOv5 backbone draws from CSPNet
(b) ResNet [58].

Neck: In its neck architecture, YOLOv5 integrates both FPN and Path Ag-
gregation Network (PAN) technologies (Figure 3.4). The shallow feature maps
in this part of the network contain richer location data but less semantic infor-
mation. As layers in the neural network increase, deeper feature maps develop
more semantic content while potentially losing small pixel detail and some po-
sitional data. Nonetheless, retaining both location and semantic information is
crucial for effective target detection, necessitating a deeper network structure
that balances both. The FPN technology transfers rich semantic details from the
upper feature maps to the lower ones, whereas PAN enhances the transmission
of localization details from lower to upper feature maps. Together, these frame-
works significantly improve the capability of feature fusion in the neck part of
the network model [56].

Figure 3.4: The structure of FPN and PAN in YOLOv5 [59].

30

CHAPTER 3. METHODOLOGY

3.1.2 YOLOv8

Launched by Ultralytics in January 2023, YOLOv8 is the most recent progres-
sion in the YOLO series, improving upon the capabilities of predecessors such
as YOLOv5 and YOLOv7. This model is acclaimed for its exceptional detection
speed and accuracy, achieved through a variety of architectural innovations. Its
structure is composed of three main sections: the backbone, neck, and head,
each specifically tailored to boost performance across different scales and use
cases (Figure 3.5).

Figure 3.5: The architectural design of YOLOv8 [60].

The backbone of YOLOv8 incorporates an advanced CSPDarknet53 architec-
ture enhanced by the C2f module from the ELAN design used in YOLOv7. This
module introduces gradient shunt connections that support the efficient flow
of information while preserving a compact structure. It enriches the gradient
flow, significantly improving feature extraction capabilities. The backbone con-
cludes with the Spatial Pyramid Pooling Fast (SPPF) module, a refined version
of the traditional SPP that reduces latency with sequential maximum pooling
layers [61].

31

3.1. PROPOSED MODELS: YOLOV5 & YOLOV8 FOR AERIAL IMAGE OBJECT DETECTION

In the neck, YOLOv8 combines a PAN-FPN structure, which refines traditional
FPN architectures by integrating PAN to enhance the integration of top-down
and bottom-up features. This configuration ensures a balanced integration of
deep semantic and precise positional information, effectively mitigating object
localization errors often seen in standard FPN setups [60].

The head of YOLOv8 adopts a decoupled approach, separating object classifi-
cation and bounding box regression into distinct pathways, each optimized with
specific loss functions binary cross-entropy for classification and a combination
of distribution focal loss and CIoU for box regression. This specialized segmen-
tation not only speeds up model convergence but also increases the accuracy of
object detections [60].

YOLOv8 significantly advances object detection technology by integrating
key features from previous versions with new structural enhancements. This
model uses an anchor-free design and a dynamic task-aligned assigner that opti-
mizes sample distribution during training, improving robustness and precision.
Its adaptability ensures compatibility with various hardware setups, including
Central Processing Unit (CPU) and Graphics Processing Unit (GPU) [61].

Optimized for real-time processing, YOLOv8 is suited for diverse computer
vision and AI applications. It employs a multi-scale approach to handle varying
object sizes effectively and is noted for its precise bounding box predictions,
crucial for detailed tracking and localization tasks [61] [60].

Overall, YOLOv8’s adaptable network and advanced modules demonstrate
its efficiency and broad applicability, redefining performance standards in object
detection.

32

CHAPTER 3. METHODOLOGY

3.2 Datasets Overview

3.2.1 Stanford Drone Dataset

The Stanford Drone Dataset (SDD) [32], created by the Computer Vision
and Geometry Laboratory (CVGL) at Stanford University, encompasses approx-
imately 60 high-resolution aerial videos (1400 × 1904 pixels), taken from eight
diverse outdoor locations across the Stanford campus. Captured by drones op-
erating at an altitude of 80 meters and equipped with 4K cameras, the dataset
notably focuses on dynamic entities such as pedestrians, bicyclists, cars, skaters,
carts, and buses.

Renowned for its extensive annotation set, the SDD contains over 20,000 de-
tailed annotations for a variety of objects, including around 11,200 pedestrians,
6,400 bicyclists, 1,300 cars, 300 skateboarders, 200 golf carts, and 100 buses.
These annotations are essential for tasks like human trajectory prediction and
multi-object tracking in crowded settings. The bounding boxes provided for
each object type such as “Pedestrian,” “Biker,” “Skateboarder,” “Cart,” “Car,”
and “Bus,” particularly emphasize the prevalence of pedestrians and bikers,
who make up approximately 85%-95% of these annotations [32].

Scenes Videos Bicyclist % Pedestrian % Skater % Cart % Car % Bus %

gates 9 51.94 51.94 2.55 0.29 1.08 0.78
little 4 56.04 42.46 0.67 0 0.17 0.67
nexus 12 4.22 64.02 0.60 0.40 29.51 1.25
coupa 4 18.89 80.61 0.17 0.17 0.17 0
bookstore 7 32.89 63.94 1.63 0.34 0.83 0.37
deathCircle 5 56.30 33.13 2.33 3.10 4.71 0.42
quad 4 12.50 87.50 0 0 0 0
hyang 15 27.68 70.01 1.29 0.43 0.50 0.09

Table 3.1: Distribution of Categories Across Scenes from the Stanford Drone
Dataset with All Object Categories

33

3.2. DATASETS OVERVIEW

(a) (b)

Figure 3.6: Two sample images from the Stanford dataset [32].

The dataset is organized into eight zones based on geographical campus loca-
tions, enhancing its utility for studying object interactions and social behaviors,
which are key areas in object detection, tracking, and traffic surveillance. This
structured organization not only supports academic and research initiatives but
also extends to practical applications such as traffic monitoring and security
measures. The dataset offers rich action trajectories and detailed identifiers for
each object type, making it a valuable resource for advancing computer vision
and artificial intelligence technologies.

The SDD is publicly available through Stanford University [32] and features
visuals from significant campus locations like the Gates and Death Circle scenes,
demonstrating its practical utility and broad applicability (see Figure 3.6). After
downloading, the dataset is organized into two primary folders: annotations and
videos. Each contains eight subfolders corresponding to different scenes, where
the videos or annotations are categorized based on their parent directory [62].

34

https://cvgl.stanford.edu/projects/uav_data/

CHAPTER 3. METHODOLOGY

/
videos
bookstore .. 7 videos .mov
coupa...4 videos .mov
deathCircle..5 videos .mov
gates...9 videos .mov
hyang..15 videos .mov
little..4 videos .mov
nexus..12 videos .mov
quad .. 4 videos .mov

annotations
bookstore..........................7 .txt annotations + reference.jpg
coupa 4 .txt annotations + reference.jpg
deathCircle.......................5 .txt annotations + reference.jpg
gates 9 .txt annotations + reference.jpg
hyang.............................15 .txt annotations + reference.jpg
little.............................4 .txt annotations + reference.jpg
nexus.............................12 .txt annotations + reference.jpg
quad................................4 .txt annotations + reference.jpg

Each video within the videos directory corresponds to a specific scene and
is paired with an annotation file (annotation.txt) and an example frame
(reference.jpg) located in the annotations directory. The following details
outline the structure and contents of each entry in the annotations.txt file,
where each line represents a unique annotation and consists of ten or more
columns separated by spaces:

• Track ID: All rows sharing the same ID correspond to the same trajectory.

• xmin: The x-coordinate of the top left corner of the bounding box.

• ymin: The y-coordinate of the top left corner of the bounding box.

• xmax: The x-coordinate of the bottom right corner of the bounding box.

• ymax: The y-coordinate of the bottom right corner of the bounding box.

• frame: Indicates the frame number that this annotation belongs to.

• lost: If set to 1, indicates that the annotation is outside the view screen.
• occluded: If set to 1, indicates that the annotation is obstructed from view.
• generated: If set to 1, indicates that the annotation was interpolated auto-

matically.

• label: The label of the object being annotated, enclosed in quotation marks.

35

3.2. DATASETS OVERVIEW

3.2.2 Stanford Drone Dataset with Grouped Object

The modified version of the Stanford Drone Dataset(SDD) has reorganized
object categories to improve object detection and tracking in aerial imagery. The
updated structure groups similar objects, reducing the complexity of detection
tasks and potentially speeding up computational algorithms. Key groupings
include:

• Pedestrians with Skaters due to similar sizes and motion patterns.

• Cars, Carts, and Buses into one category, reflecting their common features
from an aerial view.

• Bicyclists remain a separate category due to unique characteristics.

This restructuring aims to cut down inference or testing time by simplify-
ing object classification, especially in dynamic settings like university campuses
where the dataset was originally gathered. This should enhance processing
efficiency and accelerate practical application response times.

Scenes Videos Bicyclist % Pedestrian % Car %

gates 9 51.94 54.49 2.15
little 4 56.04 43.13 0.84
nexus 12 4.22 64.62 31.16
coupa 4 18.89 80.78 0.34
bookstore 7 32.89 65.57 1.54
deathCircle 5 56.30 35.46 8.23
quad 4 12.50 87.50 0.00
hyang 15 27.68 71.30 1.02

Table 3.2: Distribution of Grouped Object Categories in Different Scenes from
the Stanford Drone Dataset

Table 3.2 displays the distribution of revised categories across scenes post-
reorganization, streamlining classification for faster processing and broader ap-
plicability in fields like autonomous navigation. This simplification boosts data
handling and enhances trajectory prediction and object tracking. Section 4 eval-
uates the effectiveness of this method.

36

CHAPTER 3. METHODOLOGY

3.2.3 VisDrone Dataset

The VisDrone Dataset, developed by the AISKYEYE [53] team from the Lab
of Machine Learning and Data Mining at Tianjin University, China, is a compre-
hensive benchmark designed for drone-based image and video analysis. This
extensive dataset includes 288 video clips that sum up to 261,908 frames, along-
side 10,209 static images captured using diverse drone-mounted cameras.

Class All Train Val

Pedestrian 79,337 8,844 88,181
People 27,059 5,125 32,184
Bicycle 10,480 1,287 11,767
Car 144,867 14,064 158,931
Van 24,956 1,975 26,931
Truck 12,875 750 13,625
Tricycle 4,812 1,045 5,857
Awning-tricycle 3,246 532 3,778
Bus 5,926 251 6,177
Motor 29,647 4,886 34,533

Table 3.3: VisDrone2019 class-wise distribution [63].

The VisDrone dataset spans 14 cities in China, covering urban to rural settings
and featuring a diverse range of objects including pedestrians, vehicles, and bicy-
cles in scenes from sparse to densely populated. Compiled from multiple drone
platforms under different weather and lighting conditions, it comprises over 2.6
million manually annotated bounding boxes. The dataset includes attributes
like scene visibility, object classification, and occlusion, making it valuable for
advanced computer vision applications [31].

37

http://www.aiskyeye.com/

3.2. DATASETS OVERVIEW

(a) (b)

Figure 3.7: Two sample images from the VisDrone dataset [31].

The VisDrone2019-DET dataset comprises three main directories, each tailored
for different phases of model development: training, validation, and testing.
The structure ensures organized access to:

VisDrone2019-DET
VisDrone2019-DET-train
images..6471 images.jpg
annotations.......................................6471 texts.txt

VisDrone2019-DET-val
images...548 images.jpg
annotations...548 texts.txt

VisDrone2019-DET-test
images..1610 images.jpg
annotations.......................................1610 texts.txt

The Visdrone dataset uses a specific format for labels in its annotation files. Each
label includes the following:

• bbox_left: X-coordinate of the bounding box’s upper-left corner.

• bbox_top: Y-coordinate of the bounding box’s upper-left corner.

• bbox_width: Width of the bounding box in pixels.

• bbox_height: Height of the bounding box in pixels.

• score: Confidence level of the bounding box; 1 in ground truth indicates
evaluation, 0 indicates ignored.

• object_category: Type of object, ranging from 0 (ignored regions) to 11
(various categories including pedestrians).

• truncation: Indicates the extent of truncation; 0 for none, 1 for 1% to 50%
truncation in ground truth.

• occlusion: Degree of occlusion; 0 for none, 1 for 1% to 50%, and 2 for over
50% in ground truth.

38

CHAPTER 3. METHODOLOGY

This format helps ensure clarity and consistency in how objects are anno-
tated within the Visdrone dataset, facilitating ease of use and understanding for
researchers and practitioners.

3.2.4 VisDrone Dataset with Grouped Object

The VisDrone2019 dataset has implemented a grouping strategy akin to that
used in the Stanford Drone Dataset, merging its ten original categories into
three broad groups to facilitate tasks like object detection and tracking in aerial
images.

The revised category groups are as follows:

• Pedestrian: Merges "Pedestrian" and "people," reflecting their similarities
in urban environments.

• CycleVariants: Groups "bicycle," "tricycle," "awning-tricycle," and "mo-
tor," consolidating all two- and three-wheeled vehicles based on size and
mobility.

• AutoMobiles: Combines "car," "van," "truck," and "bus," unifying these
vehicles by common usage and visual characteristics from an aerial per-
spective.

Class All Train Val

Pedestrian 106,396 13,969 120,365
CycleVariants 48,185 7,750 55,935
AutoMobiles 188,624 17,040 205,664

Table 3.4: VisDrone dataset class-wise distribution after grouping

This reorganization streamlines classification reduces computational de-
mands, and facilitates the training process for machine learning models. By
generalizing object categories, the updated VisDrone2019 dataset aims to en-
hance model performance in varied operational tasks involving different vehicle
types and pedestrian movements, optimizing it for aerial surveillance and au-
tonomous navigation applications.

39

3.3. PREPROCESSING AND DATA ORGANIZATION

3.3 Preprocessing and Data Organization

3.3.1 Dataset Organization

Stanford Drone Dataset

The dataset presents three primary issues:

1. The directory structure is not properly organized for implementing object
detection algorithms.

2. The dataset consists solely of videos; object detection models require indi-
vidual frames for training.

3. The existing annotation format does not meet the specifications needed for
use with Yolov5 and Yolov8.

To enhance accessibility, videos, and annotations were reorganized into dedi-
cated folders and renamed following the format: [sceneName]_video[number].mov/txt.
This naming strategy speeds up the retrieval of both videos and annotations
since they have matching names but are located in distinct folders [62].

VisDrone2019-DET Dataset

The dataset presents three primary issues:

1. The annotations are complex and require conversion to be used with pop-
ular detection frameworks like Yolov5 and Yolov8.

2. The dataset has an unbalanced class distribution, leading to potential bi-
ases in model training.

3. High levels of occlusion and object crowding in urban scenes complicate
accurate object detection.

40

CHAPTER 3. METHODOLOGY

3.3.2 Frames Extraction

Stanford Drone Dataset

To facilitate training and detection with object detection algorithms, which
require images, frames were initially extracted from each video. Using a Python
library called CV2, we extracted and organized these frames into specific folders
labeled for their intended use: train, validation, or test. Each frame was saved
under a unique naming format:

[sceneName]_video[Number]_[frameNumber].jpg

VisDrone2019-DET Dataset

For the VisDrone2019 dataset, frame extraction is not required as the dataset
directly provides still images ready for analysis.

3.3.3 Annotation Format

YOLOv5 and YOLOv8 necessitate that annotations adhere to the Darknet
format. The specific requirements include:

• Each image has a separate .txt file containing labels.

• Each object in an image has its own row in the corresponding .txt file.

• The row format is: class_index, bbox_x_center, bbox_y_center, bbox_width,
bbox_height.

• Bounding box coordinates are normalized between 0 and 1 [62].

To transform the original annotations into this format, specific algorithms
have been developed. These algorithms process a single line from the original
annotation file along with the frame’s height and width to normalize the bound-
ing box coordinates.

41

3.3. PREPROCESSING AND DATA ORGANIZATION

1 # Calculate the normalized center of the BB

2 def centerBB(row, heightIm, widthIm):

3 x = ((row['xmax'] + row['xmin']) / 2) / widthIm

4 y = ((row['ymax'] + row['ymin']) / 2) / heightIm

5 return str(x), str(y)

6

7 # Calculate the normalized width and height of the BB

8 def dimBB(row, heightIm, widthIm):

9 widthBB = (row['xmax'] - row['xmin']) / widthIm

10 heightBB = (row['ymax'] - row['ymin']) / heightIm

11 return str(widthBB), str(heightBB)

Stanford Drone Dataset

Each annotation in the Stanford Drone Dataset is stored within a dedicated
folder according to its designated purpose: train, validation, or test. Frames
are uniquely named and saved in a structured format, following the convention:
[sceneName]_video[Number]_[frameNumber].txt.

After completing the preprocessing, the directory structure appears as fol-
lows [62]:

videos_only
annotations_only
video_frames
images
trainall frames for training
validationall frames for validation
testall frames for test

labels
train all annotations for training
validationall annotations for validation
testall annotations for test

42

CHAPTER 3. METHODOLOGY

VisDrone2019-DET Dataset

In the VisDrone dataset, annotations are organized within specific folders
corresponding to their intended usage: training, validation, or testing. The
annotations have been uniformly transformed into the YOLO format, ensuring
consistency across the dataset. Each image’s annotations retain their original
filenames, maintaining alignment with the corresponding image files. This sys-
tematic approach facilitates efficient data management and compatibility with
YOLO-based object detection frameworks.

Figure 3.8: Comparison between different annotation formats

43

3.4. TRAINING YOLOV5 AND YOLOV8 ALGORITHMS

3.4 Training YOLOv5 and YOLOv8 Algorithms

The YOLOv5 and YOLOv8 algorithms underwent the same training proce-
dures with identical datasets to guarantee performance comparability.

3.4.1 Dataset Utilization

The Stanford Drone Dataset and its grouped objects variant were used, with:

• 4,080 images for training,

• 1,020 images for validation,

• 2,000 images for testing.

Images were evenly extracted from videos to ensure uniformity across all
datasets.

The VisDrone Dataset and its grouped version included:

• 6,471 images for training,

• 548 images for validation,

• 1,610 images for testing,

forming a comprehensive base for assessing the object detection algorithms.

3.4.2 Hardware Configuration

Training was supported by Google Colab Pro’s high-performance hardware:

• GPU:The Nvidia Tesla P100 GPU, which has a significant computational
capacity, is crucial for the demanding calculations required in deep learn-
ing.

• CPU and RAM: High-performance CPUs and 25 GB of Random Access
Memory (RAM) were essential for managing large datasets and complex
computational tasks.

44

CHAPTER 3. METHODOLOGY

3.4.3 Training with YOLOv5

For the training of each YOLO model, the parameters were largely kept to the
defaults recommended by the official repository. Initially, a selection was made
from various pre-trained models, each of which had been initially trained on the
COCO dataset. These models were differentiated by their unique architectural
logic, which is illustrated through the varied performances depicted in Figure
3.9.

Figure 3.9: Performance of YOLOv5 pre-trained models [51] .

For this project, three variants of the YOLOv5 algorithm were selected based
on their complexity and number of parameters: YOLOv5s with 7.2 million
parameters, YOLOv5m with 21.2 million parameters, and YOLOv5x with 89
million parameters. To ensure uniformity in experimental conditions, the same
training parameters were applied across all datasets. For the VisDrone Dataset,
the training was initiated using the train.py script.

!python train.py --epochs 100 --data ../VisDrone_Dataset/VisDrone.yaml \

--cfg ./models/yolov5s.yaml --weights yolov5s.pt \

--project ../drive/MyDrive/all_result/VisDrone_Dataset_Result \

--name VisDrone_Dataset_yolov5s --cache

45

3.4. TRAINING YOLOV5 AND YOLOV8 ALGORITHMS

The following parameters were passed to the training script:

• epochs: The model was trained for 100 epochs.

• data: Path to the dataset configuration file.

• cfg: Path to the model configuration file.

• weights: Use of pre-trained weights from the YOLOv5s model.

• project: Destination directory for saving training checkpoints.

• name: Designation for the model training session.

• cache: Enables caching of dataset images to expedite training.

Default parameters used include:

• img: Images were resized to 640x640 pixels.

• batch: The training process utilized batches of 16 images.

In the next section are summarized all the results.

3.4.4 Training with YOLOv8

Initially, a variety of pre-trained models were chosen, each previously trained
on the COCO dataset. These models varied in their architectural designs, leading
to distinct performances, as demonstrated in Figure 3.10.

Figure 3.10: Performance of YOLO models [52] .

46

CHAPTER 3. METHODOLOGY

For this investigation, four versions of the YOLOv8 model were employed,
differentiated by their complexity and parameter count:

• YOLOv8n with 3.2 million parameters,

• YOLOv8s with 11.2 million parameters,

• YOLOv8m with 25.9 million parameters,

• YOLOv8x with 68.2 million parameters.
Consistent training parameters were maintained across all datasets to stan-

dardize experimental conditions. Training for the VisDrone Dataset com-
menced with the execution of the train.py script.

!yolo train epochs=100

data=../VisDrone_Dataset/VisDrone.yaml

model=yolov8n.pt

name=VisDrone_Dataset_yolov8n

project=../drive/MyDrive/all_result/VisDrone_Dataset_Result

The training of the YOLOv8 model was initiated with the following com-
mand, specifying the desired parameters for the training session:

• epochs: Specifies that the model should be trained for 100 epochs.

• data: Provides the path to the dataset configuration file.

• model: The pre-trained model file used, yolov8n.pt, indicating use of the
YOLOv8n variant.

• name: The designation for the training session, was initially mislabeled.

• project: The directory where training checkpoints will be saved.
Additionally, some default parameters are used implicitly unless overridden:

• img: Images are resized to 640x640 pixels for processing.

• batch: The batch size is set to 16 images per batch, which optimizes GPU
usage during training.

47

3.5. TRAINING RESULTS

3.5 Training Results

3.5.1 Comparison of YOLO models on different datasets

The evaluation of the YOLO models (YOLOv5 and YOLOv8) on different
datasets VisDrone-2019, VisDrone-2019 with Grouped Objects, Stanford Drone,
and Stanford Drone with Grouped Objects provides a comprehensive analysis
of their performance in terms of precision (P), recall (R), mAP at IoU threshold
0.5 (mAP@0.5), and mAP at IoU threshold range 0.5 to 0.95 (mAP@0.5-0.95). The
results from these evaluations are summarized in the following table (Table 3.5),
with the highest values in each category bolded to highlight the best-performing
configurations.

Datasets Result Y
o
l
o
v
5
s

Y
o
l
o
v
5
m

Y
o
l
o
v
5
x

Y
o
l
o
v
8
n

Y
o
l
o
v
8
s

Y
o
l
o
v
8
m

Y
o
l
o
v
8
l

VisDrone-2019

P(%) 30.3 38.4 54.8 44.9 49.9 55.4 57.7
R(%) 23.4 37.1 40.2 33.5 39.3 43.0 43.7
mAP@0.5 (%) 20.7 37.2 41.9 34.0 40.4 44.4 45.8
mAP@0.5-0.95 (%) 9.9 21.6 25.1 19.7 24.3 27.0 28.2

VisDrone-2019 Grouped

P(%) 47.6 65.0 69.0 72.7 63.8 70.0 72.1

R(%) 33.4 48.7 53.2 55.8 47.2 53.0 56.0

mAP@0.5 (%) 32.1 53.3 58.5 61.5 52.3 59.3 62.7

mAP@0.5-0.95 (%) 15.4 27.7 31.9 35.0 28.4 33.2 37.9

Stanford Drone

P(%) 62.1 68.7 78.4 70.0 75.9 82.8 76.6
R(%) 56.3 59.7 66.7 60.9 65.2 65.1 70.6
mAP@0.5 (%) 62.1 69.8 77.0 64.9 71.0 72.9 73.3
mAP@0.5-0.95 (%) 28.9 36.7 45.3 32.0 39.8 43.1 44.3

Stanford Drone Grouped

P(%) 77.5 80.1 82.4 72.7 77.6 78.8 77.2

R(%) 69.1 73.5 76.8 66.2 70.6 72.1 75.0

mAP@0.5 (%) 73.6 78.3 80.7 74.9 76.4 75.8 75.5

mAP@0.5-0.95 (%) 32.4 38.5 43.7 31.9 37.9 40.7 39.7

Table 3.5: Comparison of YOLO models on different datasets

48

CHAPTER 3. METHODOLOGY

3.5.2 Performance Analysis

1. VisDrone-2019 vs. VisDrone-2019 Grouped:

• Precision (P): Precision improved significantly in the VisDrone-2019 Grouped
dataset, with YOLOv8n reaching the highest precision of 72.7%.

• Recall (R): Recall also saw improvements, with YOLOv8l achieving the
top score of 56.0%.

• mAP@0.5: The YOLOv8l model exhibited the highest mAP at an IoU
threshold of 0.5, registering 62.7%.

• mAP@0.5-0.95: Consistent enhancements were noted across the IoU spec-
trum, with YOLOv8l achieving the peak at 37.9%.

2. Stanford Drone vs. Stanford Drone Grouped:

• Precision (P): Precision markedly increased in the Stanford Drone Grouped
dataset for nearly all models, with YOLOv8m recording the highest preci-
sion of 82.8%.

• Recall (R): Recall improved in the Grouped dataset as well, with YOLOv5x
showing the highest recall of 76.8%.

• mAP@0.5: There was a notable rise in mAP, with YOLOv5x achieving the
top mark of 80.7%.

• mAP@0.5-0.95: Significant enhancements were observed across the IoU
range in the Stanford Drone dataset, with YOLOv5x attaining the highest
mAP of 45.3%.

This comparative analysis indicates that grouping objects within the datasets
leads to substantial improvements in precision, recall, and mAP across all eval-
uated YOLO models. YOLOv8n was particularly effective in the VisDrone-2019
Grouped dataset, while YOLOv5x demonstrated superior performance in the
Stanford Drone Grouped dataset. These findings underscore the efficacy of
YOLO models in handling grouped objects and provide critical insights for
optimizing object detection tasks in diverse operational contexts.

49

3.5. TRAINING RESULTS

Models Dataset Y
o
l
o
v
5
s

Y
o
l
o
v
5
m

Y
o
l
o
v
5
x

Y
o
l
o
v
8
n

Y
o
l
o
v
8
s

Y
o
l
o
v
8
m

Y
o
l
o
v
8
l

VisDrone-2019

Pedestrian 28 44.5 49.5 34.8 44.5 48.2 51
People 23.5 33.6 39.3 28.1 33.7 37.2 39.6
Bicycle 2.9 15.8 19.1 8 13.1 19.5 20.5
Car 61.2 75.7 78.9 75.8 79.8 81.7 82.5
Van 15.2 40.3 43.7 38.8 45.9 47.7 48.4
Truck 14.5 36 39.1 32 40.2 44 42.5
Tricycle 9.6 22.9 28.8 22.7 28.9 33.8 36.2
Awning-Tricycle 5.4 12.6 16.2 12.4 16.3 17.3 18.8
Bus 19.6 49.2 56.4 50.2 58.8 65.5 66.1
Motor 27.2 40.9 47.6 37.1 44.3 49.7 52.7

VisDrone-2019 Grouped

Pedestrian 43.3 49.3 53.5 40.1 48.2 54.2 56.7

CycleVariants 40.1 46.4 49.7 37.6 43.3 49.3 51.4

Automobiles 76.5 79.9 82 78.3 82.9 84.5 86.2

Stanford Drone

Pedestrian 65.8 67.8 74.2 62.1 69 85.3 76.6
Biker 64.3 67.4 66.5 61.5 65.7 65.2 70.6
Skater 23.8 26.4 28.9 26.7 27.4 28.1 29.4
Cart 25.4 28.8 26.7 26.1 26.8 27.5 29
Car 76.2 79.8 87.4 82.3 85.3 85.5 83.2
Bus 76.9 79.9 87.2 80.2 84.3 85.1 83.5

Stanford Drone Grouped

Pedestrian 67 72.6 76.4 62.6 69.7 71.9 70.8

Biker 66.3 71.8 74.1 62.6 67.2 68.5 69.4

Car 87.4 90.6 91.7 84.8 87.9 88.7 89.1

Table 3.6: Comparison of YOLO models on class-wise different datasets

50

CHAPTER 3. METHODOLOGY

3.5.3 Class-Wise Analysis

1. VisDrone-2019 vs. VisDrone-2019 Grouped:

• Pedestrian and People (Grouped as Pedestrian): In the VisDrone-2019
dataset, YOLOv8l achieved the highest mAPs of 51% for Pedestrians and
39.6% for People. Grouping these classes in the VisDrone-2019 Grouped
dataset increased the mAP to 56.7% for Pedestrians, showing enhanced
detection efficacy.

• CycleVariants: Individual mAPs for Bicycle, Tricycle, Awning-Tricycle,
and Motor were 20.5%, 36.2%, 18.8%, and 52.7% respectively, with YOLOv8l.
Grouping these into ’CycleVariants’ raised the mAP to 51.4%, indicating
improved detection performance.

• Automobiles: The highest mAPs for Car, Van, Truck, and Bus were 82.5%,
48.4%, 44%, and 66.1% respectively. Grouping these as ’Automobiles’ in
the VisDrone-2019 Grouped dataset increased the mAP to 86.2%, demon-
strating an overall enhancement in detection metrics.

2. Stanford Drone vs. Stanford Drone Grouped:

• Pedestrian and Skaters (Grouped as Pedestrian): The highest mAPs in
the Stanford Drone dataset were 76.6% for Pedestrian and 29.4% for Skater,
both achieved by YOLOv8l. Grouping improved the mAP for Pedestrians
to 70.8% in the grouped dataset.

• Bicyclists (Separate Category): The highest mAP for Bikers was 70.6%
(YOLOv8l). In the grouped dataset, it increased slightly to 71.8% (YOLOv8m).

• Cars, Carts, and Buses (Grouped as Car): Car, Cart, and Bus had highest
mAPs of 87.4%, 29%, and 87.2% respectively. Grouping them increased
the mAP for ’Car’ to 91.7%, achieved by YOLOv5x, indicating superior
detection capabilities.

The analysis highlights that YOLOv8 models, especially YOLOv8l and YOLOv8m,
show superior mAP performance when objects are grouped, making them par-
ticularly effective for real-time detection in complex and dynamic environments.
This suggests that object grouping can significantly enhance the performance
of detection models, leading to more accurate and comprehensive detection
outcomes, beneficial for applications requiring high precision and adaptability.

In Chapter 4, the experiments and results section will assess the performance
of these models, including measuring the inference time on a Raspberry Pi 4.
This practical evaluation will offer insights into the real-world applicability and
efficiency of the YOLOv8 models in resource-constrained environments, further
validating their effectiveness in real-time object detection tasks.

51

4
Experiments and Results

4.1 Testing Process

The objective was to assess the YOLOv5 and YOLOv8 models on the Stanford
Drone and VisDrone Datasets, focusing on both standard and grouped object
forms. The evaluation primarily involved precision, recall, and mAP metrics at
various IoU thresholds. This analysis underscored the models’ proficiency in
detecting and classifying objects from elevated urban vantage points, shedding
light on their utility for urban surveillance and monitoring applications. The
results provide valuable insights into the effectiveness of these models in aerial
surveillance scenarios.

4.2 Hardware and Software Setup

The Raspberry Pi, a low-cost single-board computer, has emerged as a ver-
satile tool in various sectors, from industrial automation to personal projects.
The platform’s General Purpose Input/Output (GPIO) ports facilitate easy in-
tegration with sensors, actuators, and other hardware components, making it
ideal for a diverse range of applications. Raspberry Pi boards support multi-
ple operating systems and are available in several models, each with unique
specifications. Despite their differences, all models share core design principles:
affordability, portability, and versatility.

53

4.2. HARDWARE AND SOFTWARE SETUP

4.2.1 Raspberry Pi 4 Specifications

This section outlines the hardware and software setup for YOLO object detec-
tion algorithms on the Raspberry Pi 4. Selected for its balance of performance,
affordability, and accessibility, this device excels in edge computing applications
like real-time object detection.

Hardware Overview

The Raspberry Pi 4 Model B used in this study offers the following specifi-
cations [64]. Below is a table comparing all three models of Raspberry Pi:

Raspberry Pi 3 Raspberry Pi 4 Raspberry Pi 5

CPU Broadcom
BCM2837,
Cortex-A53
64Bit SoC

Broadcom
BCM2711,
Cortex-A72
64Bit SoC

Broadcom
BCM2712,
Cortex-A76
64Bit SoC

CPU Max

Frequency

1.4GHz 1.8GHz 2.4GHz

GPU Videocore IV Videocore VI VideoCore VII

GPU Max

Frequency

400Mhz 500Mhz 800Mhz

Memory 1GB LPDDR2
SDRAM

1GB, 2GB, 4GB,
8GB
LPDDR4-3200
SDRAM

4GB, 8GB
LPDDR4X-4267
SDRAM

PCIe N/A N/A 1xPCIe 2.0
Interface

Max Power

Draw

2.5A@5V 3A@5V 5A@5V (PD
enabled)

Table 4.1: Raspberry Pi Series Comparison

54

CHAPTER 4. EXPERIMENTS AND RESULTS

Software Setup

The Raspberry Pi 4 was configured to optimize the deployment of YOLO
object detection models:

Operating System: Raspberry Pi OS (64-bit) Bullseye was selected for its
enhanced stability and compatibility.

Python Version: Python 3.9.2 was installed to support essential machine
learning libraries.

Deep Learning Libraries: PyTorch 1.11.0 and torchvision 0.12.0 were chosen
for their efficiency on resource-limited devices like the Raspberry Pi.

Environment Upgrade: Due to performance limitations on the Raspberry
Pi 3 with YOLOv5m, an upgrade to Raspberry Pi 4 was necessary, including
reinstallation of the OS for improved remote access functionality.

Network Configuration: SSH and VNC setups were implemented for reli-
able remote access, facilitating easy management and deployment of models.

System Optimization: Adjustments to Python packages and system config-
urations were made to enhance performance, ensuring optimal operation of the
deep learning models.

Performance Considerations

Initial experiments on the Raspberry Pi 4 demonstrated marked enhance-
ments in stability and computational speed over the Raspberry Pi 3 configura-
tion. The YOLOv5 and YOLOv8 models were fine-tuned to accommodate the
computational boundaries of the Raspberry Pi 4, ensuring effective performance
even in resource-constrained environments.

Benchmark data from the Ultralytics website reveal that the inference time
for NCNN on the Raspberry Pi 4 averages 414.73 ms per image (Table 4.2) [65].
Additional results from my experiments will be detailed later, providing deeper
insights into the efficacy and operational efficiency of these configurations.

55

4.3. TESTING ON RASPBERRY PI 4

Format Size on disk (MB) mAP50-95(B) Inference time (ms/im)

PyTorch 6.2 0.6381 1068.42
TorchScript 12.4 0.6092 1248.01
ONNX 12.2 0.6092 560.04
OpenVINO 12.3 0.6092 534.93
TF SavedModel 30.6 0.6092 816.50
TF GraphDef 12.3 0.6092 1007.57
TF Lite 12.3 0.6092 950.29
PaddlePaddle 24.4 0.6092 1507.75
NCNN 12.2 0.6092 414.73

Table 4.2: YOLOv8n on RPi4

4.3 Testing on Raspberry Pi 4

4.3.1 Exporting YOLOv5 to OpenVINO

To export YOLOv5 to OpenVINO for testing on the Raspberry Pi 4, use the
export.py script provided by Ultralytics:

python export.py --weights yolov5s.pt --include openvino

This command converts the YOLOv5 model (yolov5s.pt) into the Open-
VINO format. The exported model can then be used for inference with Open-
VINO, which can enhance performance on CPU-based systems like the Rasp-
berry Pi 4 [66].

4.3.2 Exporting YOLOv8 to NCNN

To export YOLOv8 to NCNN for testing on the Raspberry Pi 4, use the
export.py script from Ultralytics. Run the following command:

python export.py --weights yolov8s.pt --include ncnn

This converts the YOLOv8 model (yolov8s.pt) into the NCNN format. The
exported model can then be used for inference with NCNN, optimizing perfor-
mance on the Raspberry Pi 4.

56

CHAPTER 4. EXPERIMENTS AND RESULTS

Stanford Drone

Image size 640

Metric / Model Yolov5s Yolov5m Yolov5x Yolov8n Yolov8s Yolov8m Yolov8l

P(%) 35.4 34.6 33.7 35.9 37.3 34 32.4
R(%) 24.9 25.1 25.3 14.9 18.6 19 20

mAP@0.5 26 25.4 24.9 22.8 24.8 23.6 22.9
mAP@0.5-0.95 9.2 9 9.2 8.5 9.5 8.8 8.7

Image size 416

Metric / Model Yolov5s Yolov5m Yolov5x Yolov8n Yolov8s Yolov8m Yolov8l

P(%) 35.5 34.9 33.2 36.7 33.9 35.7 33.3
R(%) 16.8 19.2 23 11.3 15.7 15.4 18.8

mAP@0.5 24.1 24 24.4 22.7 22.2 23.5 24
mAP@0.5-0.95 9.3 9.3 9.4 7.5 8.8 8.7 8.4

Different Formats

Metric / Model Yolov5s Yolov5m Yolov5x Yolov8n Yolov8s Yolov8m Yolov8l

Format openvino openvino openvino ncnn ncnn ncnn ncnn

P(%) 35.2 34.2 33.5 30.3 31.9 28.7 29.6
R(%) 25 25.1 25.2 13.5 18.5 19 19.9

mAP@0.5 25.6 24.3 24.8 19.7 21.5 20.4 21.4
mAP@0.5-0.95 9.2 9.1 9.5 7.5 7.6 7.5 7.5

Stanford Drone Grouped

Image size 640

Metric / Model Yolov5s Yolov5m Yolov5x Yolov8n Yolov8s Yolov8m Yolov8l

P(%) 53.8 51.7 49 53.1 48.2 52.5 54.3

R(%) 34.9 33.5 39.8 22.1 28.3 30.5 33
mAP@0.5 37.8 36.5 36.6 32.9 32.3 35 38

mAP@0.5-0.95 12.5 12.5 12.3 10.2 10 12.1 13.5

Image size 416

Metric / Model Yolov5s Yolov5m Yolov5x Yolov8n Yolov8s Yolov8m Yolov8l

P(%) 50.6 48.9 47.3 50.1 44.5 54 52.6
R(%) 29.5 32.2 35.1 14.1 22.1 27.6 28.9

mAP@0.5 35.7 34.1 34.8 28.9 27.9 35.5 35.1
mAP@0.5-0.95 12.5 11.5 12.2 9.1 7.9 13.8 13.3

Different Formats

Metric / Model Yolov5s Yolov5m Yolov5x Yolov8n Yolov8s Yolov8m Yolov8l

Format openvino openvino openvino ncnn ncnn ncnn ncnn

P(%) 53.3 50.9 49.6 51.1 43.3 47.8 47.8
R(%) 33 35.2 40.1 22.7 28.5 30.5 33.4

mAP@0.5 37.1 36.2 37.1 32 29.1 32.2 34.7
mAP@0.5-0.95 12.2 12 12.6 10.1 8.6 11 11.7

Table 4.3: Comparison of different models in Stanford Drone test Dataset

57

4.3. TESTING ON RASPBERRY PI 4

VisDrone

Image Size 640

Metric / Model Yolov5s Yolov5m Yolov5x Yolov8n Yolov8s Yolov8m Yolov8l

P(%) 56.9 51 50.1 50.8 56.1 56 54.9
R(%) 12.7 17.2 20.2 13 16.7 19.4 21.2

mAP@0.5 34.9 34.1 35.1 31.8 36.4 37.6 37.8

mAP@0.5-0.95 21.6 20.7 21.9 20 23.5 24.5 24.8

Image Size 416

Metric / Model Yolov5s Yolov5m Yolov5x Yolov8n Yolov8s Yolov8m Yolov8l

P(%) 46 47.3 49.7 51 55.3 55.1 54.8
R(%) 7.3 11.6 14.4 7.2 10.6 12.3 13.8

mAP@0.5 26.7 29.5 32 29.1 32.9 33.7 34.3

mAP@0.5-0.95 16 16.8 18.6 17.7 19.9 21 21.3

Different Formats

Metric / Model Yolov5s Yolov5m Yolov5x Yolov8n Yolov8s Yolov8m Yolov8l

Format openvino openvino openvino ncnn ncnn ncnn ncnn

P(%) 58.1 51.5 50.9 44.5 50.4 50.4 49.6
R(%) 13.7 18.6 21.8 13 16.7 19.3 21.3

mAP@0.5 36 35.1 36.3 27.8 32.4 33 33.5
mAP@0.5-0.95 22.3 21.5 22.8 16.5 19.3 19.7 20.2

VisDrone Grouped

Image Size 640

Metric Yolov5s Yolov5m Yolov5x Yolov8n Yolov8s Yolov8m Yolov8l

P(%) 73.3 73.1 73.2 79.9 78.8 79.1 78.6
R(%) 27.4 32.3 35.9 24.6 30.1 34 36.4

mAP@0.5 49.8 51.6 53.4 51.6 53.4 55.3 56.1

mAP@0.5-0.95 28.3 29.9 31.7 31.2 32.4 33.8 34.3

Image Size 416

Metric Yolov5s Yolov5m Yolov5x Yolov8n Yolov8s Yolov8m Yolov8l

P(%) 71.2 71.8 72 76.1 77.4 76.5 77
R(%) 19.1 22.7 26.3 15 19.6 22.6 24.5

mAP@0.5 44.9 46.6 48.3 45.2 47.8 48.7 49.7

mAP@0.5-0.95 23.8 25.3 26.7 25.5 27.6 28.3 28.9

Different Formats

Metric / Model Yolov5s Yolov5m Yolov5x Yolov8n Yolov8s Yolov8m Yolov8l

Format openvino openvino openvino ncnn ncnn ncnn ncnn

P(%) 73.5 73 73.6 72.8 72.2 72.2 72.3
R(%) 28.7 33.3 36.2 24.7 30.3 34 36.5

mAP@0.5 50.5 52.1 53.7 46.7 48.5 49.7 50.8
mAP@0.5-0.95 28.8 30.3 31.8 26.6 27.9 28.6 29.3

Table 4.4: Comparison of different models in VisDrone-2019 test Dataset

58

CHAPTER 4. EXPERIMENTS AND RESULTS

4.4 Performance Analysis

4.4.1 Accuracy of Object Detection

This section assesses the object detection accuracy of YOLOv5 and YOLOv8
models on the Raspberry Pi 4, using both the Stanford Drone and VisDrone test
datasets. The evaluation focuses on key metrics including precision, recall, and
mAP across various IoU thresholds, highlighting the models’ effectiveness in ur-
ban object detection scenarios. Results are presented in Tables 4.3 and 4.4, which
showcase performance variations across different model versions and image res-
olutions for the Stanford Drone and VisDrone datasets, respectively. Significant
findings are emphasized with bold and underscored values in these tables. The
comprehensive analysis of model performance under different configurations
and datasets is further elaborated in Chapters 4.4.2 and 4.4.3, providing insights
into the models’ capabilities and limitations..

4.4.2 Comparative Analysis of YOLO Model Performance on
Stanford Drone Dataset

This subsection evaluates YOLO models on the Stanford Drone test Dataset
across different configurations. YOLOv8 models, specifically YOLOv8s and
YOLOv8l, demonstrate significant strengths in precision and mAP across both
standard and grouped configurations. YOLOv8s stands out at higher resolu-
tions (640 * 640 pixels), while YOLOv5x exhibits a high recall, particularly at a
resolution of 416 by 416 pixels. The OpenVINO optimization framework proves
to be highly effective, consistently enhancing model performance in terms of
precision and mAP. This effectiveness can be attributed to several factors:

Model Optimization: OpenVINO applies techniques like quantization, re-
ducing weight and activation precision from 32-bit floating point to 8-bit inte-
gers, enhancing speed without significant accuracy loss [67] [68].

Hardware Acceleration: OpenVINO leverages Intel hardware, utilizing ad-
vanced vector extensions (AVX) instructions for faster inference times [69] [70] [68].

Graph Optimization: The framework optimizes the model’s computational
graph, fusing operations and eliminating redundant computations, leading to
improved precision and overall performance [71] [72].

59

4.4. PERFORMANCE ANALYSIS

In grouped configurations, YOLOv8l excels, indicating its suitability for com-
plex detection tasks involving multiple object classes. This superior performance
can be explained by:

Model Capacity: YOLOv8l’s larger network architecture allows it to learn
more complex features and relationships between different object classes [16].

Multi-scale Feature Extraction: Its advanced feature pyramid network ex-
tracts features at multiple scales, beneficial for identifying objects of various
sizes and complexities simultaneously [73].

Improved Loss Function: YOLOv8 refines the loss function, including so-
phisticated objectness prediction, helping handle scenarios with multiple, po-
tentially overlapping objects [74] [16].

Advanced Data Augmentation: Techniques like mosaic augmentation im-
prove performance on diverse and complex scenes, often encountered in grouped
object scenarios [16] [75].

These findings suggest that while YOLOv8 models offer advanced detection
capabilities, leveraging optimization frameworks like OpenVINO can further
enhance performance, making these models highly adaptable and effective for
various object detection applications.

4.4.3 Comparative Analysis of YOLO Model Performance on
VisDrone Dataset

This section evaluates YOLO model performance on the VisDrone test dataset
under various conditions. YOLOv8 models, particularly YOLOv8l, demonstrate
strong precision and mAP across 640 and 416 pixel resolutions. YOLOv8l’s
consistent high mAP scores at both 0.5 and 0.5-0.95 IoU thresholds indicate
reliable detection capabilities across scenarios. Conversely, YOLOv5x excels
in recall, especially at 416 pixels, suggesting effective object detection within
images. OpenVINO and NCNN optimizations significantly enhance precision
and mAP metrics for YOLO models. YOLOv5x notably benefits from OpenVINO
optimization, improving precision for accurate detection.

OpenVINO’s effectiveness stems from its model optimization techniques,
hardware acceleration capabilities, and graph optimization, as previously dis-
cussed in the Stanford Drone Dataset analysis. In grouped analyses, YOLOv8l
demonstrates exceptional versatility in complex object detection scenarios.

60

CHAPTER 4. EXPERIMENTS AND RESULTS

These results underscore the efficacy of YOLOv8 models and optimization
techniques in achieving advanced object detection on the VisDrone dataset,
particularly in complex scenarios involving multiple object classes and varied
object sizes typical in aerial imagery.

4.4.4 Effects of Class Variations on Performance

This section evaluates how class variations affect the performance on Stanford
test datasets (Table 4.5) and VisDrone test datasets (Table 4.6).

Stanford Drone Dataset Analysis

Resolution Impact:

• Higher resolution (640) generally results in better AP scores across most
object classes and configurations.

• Some models perform relatively better at lower resolution (416), highlight-
ing a trade-off between model complexity and input size.

Model Performance:

• YOLOv5 models, particularly YOLOv5s and YOLOv5x openvino, consis-
tently perform well across different classes and configurations.

• YOLOv8 models show competitive performance but tend to lag slightly
behind YOLOv5 in certain classes, especially at higher resolutions.

Class-Specific Performance:

• For "Pedestrian" and "Biker" classes, YOLOv5 models show a notable per-
formance advantage over YOLOv8.

• In the "Car" and "Bus" classes, YOLOv5 models often achieve higher AP
scores, particularly at higher resolutions.

Grouped Class Performance:

• Grouping classes impacts performance, but YOLOv5 models generally
maintain a slight edge over YOLOv8.

• YOLOv8 models handle grouped scenarios well, indicating potential for
multi-class object detection.

61

4.4. PERFORMANCE ANALYSIS

For the Stanford Drone dataset, YOLOv5 models, particularly YOLOv5s
and YOLOv5x openvino, consistently outperform YOLOv8 models across most
classes and configurations. YOLOv5 models demonstrate a notable performance
advantage for "Pedestrian" and "Biker" classes, and they often achieve higher AP
scores in the "Car" and "Bus" classes, especially at higher resolutions. Although
grouping classes affects performance, YOLOv5 models generally maintain a
slight edge over YOLOv8 models. However, YOLOv8 models handle grouped
scenarios well, indicating their potential for effective multi-class object detection.

The apparent difference in performance between YOLOv8 and YOLOv5 in
the general analysis versus the class-wise analysis for the Stanford dataset is
interesting and requires additional examination. Although straightforward an-
swers are not accessible without further research, various possible causes to this
observation can be considered:

1. Overall vs. Specific Performance: In the general performance analysis,
YOLOv8 shows better overall metrics (mAP, precision) across all classes com-
bined. However, in the class-wise analysis, YOLOv5 appears to demonstrate
superior performance for specific individual classes [76] [77] [78] [79].

2. Class Imbalance: The Stanford dataset have imbalanced class distribu-
tions [80]. YOLOv8 could be handling this imbalance better overall, but YOLOv5
might excel at detecting certain less represented classes [78] [81].

3. Detection Strategies: YOLOv5 and YOLOv8 might employ different strate-
gies for object detection. YOLOv5’s approach might be more effective for certain
object types or sizes common in the Stanford dataset [78] [76].

To justify these results: The general performance metrics (overall mAP, pre-
cision) favor YOLOv8, indicating its strength in handling the dataset as a whole.
The class-wise analysis reveals that YOLOv5 retains advantages for specific ob-
ject categories, suggesting it might be better optimized for certain types of objects
or scene characteristics present in the Stanford dataset.

This discrepancy highlights the importance of considering both overall per-
formance and class-specific metrics when evaluating object detection models.
It also underscores the complexity of model selection, where the best overall
performer may not always be the optimal choice for every specific task or object
class. In practical applications, the choice between YOLOv5 and YOLOv8 for
the Stanford dataset would depend on the specific requirements of the task at
hand whether overall performance or excellence in detecting particular object
classes is more critical.

62

CHAPTER 4. EXPERIMENTS AND RESULTS

Model

Stanford Dataset Stanford Grouped Dataset

Pedestrian Biker Car Bus Pedestrian Biker Car

Yolov5s (640) 30.8 37.2 62.3 24.9 30.7 36.2 46.4
Yolov5m (640) 30.2 36.3 61.3 23.8 29.4 37 43
Yolov5x (640) 29 37.2 61.8 20 30.2 37.8 41.9
Yolov8n (640) 28.4 33.9 59.6 13.5 28.8 33.8 36.2
Yolov8s (640) 28.6 35.5 55.6 27.8 30.1 34.3 32.5
Yolov8m (640) 28.6 35.8 59.5 17.7 29.9 34.6 40.4
Yolov8l (640) 29.2 37.9 58.7 9.5 29.2 36.2 48.5

Yolov5s (416) 22 32.5 60.8 28.3 24.7 31.4 51

Yolov5m (416) 22.7 33.4 63.8 26.2 24 32.3 45.8
Yolov5x (416) 23.9 33.5 65.4 22.6 23.7 33.3 47.4
Yolov8n (416) 23.7 27.7 52.3 32.7 22.1 29.9 34.7
Yolov8s (416) 22.7 31.5 54.6 18.3 23.5 31.6 28.6
Yolov8m (416) 25.5 31.4 59.4 24.1 25 31.8 49.8
Yolov8l (416) 24.9 33.6 55.6 29.1 24.6 32.3 48.4
Yolov5s openvino 30.8 36.4 61.8 23.3 30.5 36.9 43.9

Yolov5m openvino 29 35.2 60.6 22.7 29.1 36.4 43
Yolov5x openvino 28.8 36.8 63.7 18.1 30 37.7 43.6
Yolov8n ncnn 28.4 31.9 56.9 19.7 27.9 32 36.1
Yolov8s ncnn 27.3 32.1 48.7 20.2 28.5 31.6 27.2
Yolov8m ncnn 27.3 32.5 51.3 10.8 28.8 31.9 35.8
Yolov8l ncnn 29.2 34.7 50.5 12.9 28.2 33.4 42.6

Table 4.5: AP values for different models and categories from the Stanford and
Stanford Grouped test datasets

VisDrone Dataset Analysis

Resolution Impact:

• Higher resolution (640) generally yields better AP scores across most
classes. Some models also perform well at 416 resolution, suggesting a
balance between input size and model complexity.

Model Performance:

• YOLOv8 models, particularly YOLOv8l, often outperform YOLOv5 models
in the VisDrone dataset, showing superior performance across several
classes.

Class-Specific Performance:

• For "Pedestrian" and "People" classes, YOLOv8l (640) achieves the highest
AP scores, indicating its effectiveness in detecting smaller objects.

• In the "Car" and "Van" classes, YOLOv8m and YOLOv8l models show ex-
cellent performance, with YOLOv8l (640) achieving the highest AP scores.

Grouped Class Performance:

• In grouped classes, YOLOv8 models generally maintain an advantage,
particularly in "Pedestrian" and "CycleVariants" categories.

• YOLOv5x openvino achieves high AP scores in "AutoMobiles," demon-
strating robustness in detecting larger vehicle classes.

63

4.4. PERFORMANCE ANALYSIS

In the VisDrone dataset, YOLOv8 models, particularly YOLOv8l, frequently
outperform YOLOv5 models, demonstrating superior performance across sev-
eral classes. YOLOv8l (640) achieves the highest AP scores for "Pedestrian" and
"People" classes, indicating its effectiveness in detecting smaller objects. Fur-
thermore, YOLOv8m and YOLOv8l models exhibit excellent performance in the
"Car" and "Van" classes, with YOLOv8l (640) achieving the highest AP scores.
In grouped classes, YOLOv8 models generally maintain an advantage, particu-
larly in "Pedestrian" and "CycleVariants" categories, while YOLOv5x openvino
achieves high AP scores in "AutoMobiles," demonstrating its robustness in de-
tecting larger vehicle classes. Overall, the findings underscore the importance of
selecting appropriate model configurations based on specific class characteristics
and application re- quirements. YOLOv5 models show strong performance in
the Stanford Drone dataset, while YOLOv8 models excel in the VisDrone dataset,
suggesting that model selection should be tailored to the particular dataset and
object classes being analyzed.

Model

VisDrone Dataset VisDrone Grouped Dataset

Pedestrian People Bicycle Car Van Truck Pedestrian CycleVariants AutoMobiles

Yolov5s (640) 47.3 42.6 40.1 67.2 38.6 43.8 46.9 30.5 72
Yolov5m (640) 47.9 42.3 27.9 72.2 39.1 43.4 48.4 31.9 74.7
Yolov5x (640) 49.4 39.9 28.5 74.6 40.5 48.3 50.9 33.1 76.6

Yolov8n (640) 48.3 39 16 68.5 38.5 44.5 48.6 35.3 70.8
Yolov8s (640) 50.2 42.8 32 72.8 43 50.1 50.6 35.5 74
Yolov8m (640) 51.7 41.9 34.2 74.7 44.9 52.6 52 37.8 76
Yolov8l (640) 52.5 42.9 30.7 75.9 46.6 53.7 53.1 38.4 54.2
Yolov5s (416) 45.1 41.8 39.8 58.8 31.1 36.8 44.1 26.6 63.9
Yolov5m (416) 44.6 37.1 22.5 64.4 31.2 36.1 45 27.9 66.9
Yolov5x (416) 44.9 36.5 31.1 67.3 34.3 41.2 46.1 28.8 69.8

Yolov8n (416) 45.4 41.6 22.3 58.1 32.9 35.9 46.8 28 60.7
Yolov8s (416) 47 41.8 28.2 63.1 37 46.1 48.1 30.6 64.8
Yolov8m (416) 48.2 39.8 31 65.6 39.4 45.9 48.6 30.1 67.3
Yolov8l (416) 48.6 41.2 31.6 67.1 39.3 46.4 48.9 31.7 68.5
Yolov5s openvino 47.8 44.7 41.1 69.7 40 45 47.7 30.5 73.2
Yolov5m openvino 48.9 43.8 28.1 74.8 40.5 44.7 48.7 32.5 75.2
Yolov5x openvino 50.1 42.3 30.6 76.2 42.1 49 50.9 33.8 76.3

Yolov8n ncnn 43.4 38 22.5 60 32.9 35.9 44.7 33.8 61.7
Yolov8s ncnn 46.3 42.3 29.9 63.7 37.1 39.3 47.3 34 64.3
Yolov8m ncnn 47.5 41.1 34.2 63.7 37.1 40.3 48.7 35.8 64.7
Yolov8l ncnn 49.2 41.6 29.2 65.5 39.8 41.9 50 36.5 65.8

Table 4.6: AP values for different models and categories from the VisDrone and
VisDrone Grouped test datasets

64

CHAPTER 4. EXPERIMENTS AND RESULTS

4.4.5 Inference Time Measurement

4.4.6 Inference Time Analysis Using Stanford Drone and Grouped
Dataset

This analysis examines the inference times of YOLO models on a Raspberry Pi
4 using the Stanford Drone and Stanford Drone Grouped datasets. Models tested
include YOLOv5 and YOLOv8 variants with default, NNCN, and OpenVINO
weights at image sizes 640 and 416 pixels (Figure 4.1).

Key Findings

YOLOv5s:
• Stanford Drone (640): Default - 1427.5 ms, OpenVINO - 761.3 ms

• Stanford Drone Grouped (640): Default - 1430.6 ms, OpenVINO - 775.0
ms

YOLOv8n:
• Stanford Drone (640): Default - 882.9 ms, NNCN - 401.6 ms; (416): Default

- 415.7 ms
• Stanford Drone Grouped (640): Default - 861.7 ms, NNCN - 422.0 ms;

(416): Default - 414.7 ms

Conclusions

The analysis shows numerous major findings. First, smaller models like
YOLOv8n have faster inference times, making them ideal for real-time appli-
cations that require fast processing. Second, OpenVINO and NNCN weights
improve performance, making them a good optimization technique for resource-
constrained devices. Third, while lowering image sizes to 416 pixels reduces
inference durations, it may affect accuracy, therefore a careful balance between
speed and precision is needed. Finally, grouped datasets improve object de-
tection but increase inference durations due to the complexity of processing
many object categories simultaneously. These findings emphasize the necessity
of carefully evaluating model size, optimization strategies, input image dimen-
sions, and dataset complexity when deploying object identification systems in
real-world applications, especially on edge devices like the Raspberry Pi 4.

65

4.4. PERFORMANCE ANALYSIS

Figure 4.1: Inference time by model and weights (Stanford Drone and Stanford
Drone Grouped Dataset with Grouped Dataset)

4.4.7 Inference Time Analysis Using Visdrone-2019 DET and
Grouped Datasets

Models tested include YOLOv5 and YOLOv8 variants with default, NNCN,
and OpenVINO weights at image sizes 640 and 416 pixels (Figure 4.2).

Key Findings

YOLOv5s:

• Visdrone (640): Default - 1280.5 ms, OpenVINO - 761.3 ms; (416): Default
- 766.8 ms

• Visdrone Grouped (640): Default - 1316.1 ms, OpenVINO - 772.5 ms; (416):
Default - 733.9 ms

YOLOv8n:

• Visdrone (640): Default - 787.4 ms, NNCN - 443.9 ms; (416): Default -
393.7 ms

• Visdrone Grouped (640): Default - 811.6 ms, NNCN - 432.0 ms; (416):
Default - 389.6 ms

66

CHAPTER 4. EXPERIMENTS AND RESULTS

Conclusions

The Raspberry Pi 4 investigation shows that smaller YOLO models, such
as YOLOv8n, are better for real-time applications on resource-constrained de-
vices due to their lower inference times. Performance improvement methods
like OpenVINO for YOLOv5 and NNCN weights for YOLOv8 boost efficiency.
Reducing image sizes to 416 pixels speeds inference but may reduce accuracy,
requiring a balance between speed and precision. Scene complexity increases
inference times for grouped datasets. For NNCN and OpenVINO models, de-
creasing picture size increases post-process inference time unexpectedly. These
findings show that model architecture, optimization techniques, input dimen-
sions, and dataset complexity are crucial when implementing object detection
systems on edge devices to optimise performance in resource-constrained envi-
ronments while maintaining detection accuracy.

These findings support the use of optimized smaller YOLO models for real-
time object detection on resource-constrained devices like the Raspberry Pi 4.

Figure 4.2: Inference time by model and weights (Visdrone-2019 and Visdrone-
2019 with Grouped Dataset)

67

4.4. PERFORMANCE ANALYSIS

4.4.8 Power Consumption Measurement

Measuring power consumption is critical for evaluating the efficiency of edge
devices, such as the Raspberry Pi 4, particularly when running sophisticated
YOLO models in drone-based applications. This analysis examines the energy
demands associated with the operation of YOLOv5 and YOLOv8 under various
configurations, highlighting the paramount importance of balancing perfor-
mance and power usage for drone operations in remote or power-constrained
environments.

In the context of drone-based object detection, energy efficiency becomes
a crucial factor that directly impacts mission duration, operational range, and
overall system reliability. Drones typically have limited battery capacity, and
every milliwatt-hour of energy saved can translate to extended flight time or
increased payload capacity. For instance, in applications such as search and res-
cue operations, environmental monitoring, or urban surveillance using drones,
the ability to operate for longer periods without recharging is invaluable [82].

Moreover, the power consumption of onboard computing systems, including
object detection models, significantly affects the drone’s endurance. Optimizing
the energy efficiency of these models can lead to substantial improvements in
the drone’s operational capabilities. This is particularly relevant in scenarios
where drones need to process real-time video feeds for extended periods [83].

By analyzing the power consumption of different YOLO model configura-
tions on the Raspberry Pi 4, we aim to provide insights that can directly inform
the design and deployment of energy-efficient drone-based object detection sys-
tems. This analysis is crucial for developing sustainable and long-endurance
drone operations, especially in remote areas where power sources for recharg-
ing may be limited or unavailable.

According to the data provided, the Raspberry Pi 4 consumes 0.340 A at idle.
The average power usage of the Raspberry Pi 4 under different configurations
can be calculated by averaging the additional current drawn across all tested
configurations. This will enable the estimation of the total power consumption
when the Raspberry Pi is active.

To determine the average current draw under different configurations, the
current values listed above were measured with an oscilloscope during inference
on a Raspberry Pi.

68

CHAPTER 4. EXPERIMENTS AND RESULTS

The given current values in amperes are:

• Group 1: 0.84, 0.93, 1.1, 0.9, 1.1

• Group 2: 0.83, 0.95, 0.97, 0.98

• Group 3: 0.87, 0.97, 1.1, 0.85, 0.9

First, the average current for each group was calculated:

Average of Group 1 =
0.84 + 0.93 + 1.1 + 0.9 + 1.1

5 = 0.974 A

Average of Group 2 =
0.83 + 0.95 + 0.97 + 0.98

4 = 0.9325 A

Average of Group 3 =
0.87 + 0.97 + 1.1 + 0.85 + 0.9

5 = 0.938 A

Next, the overall average current was computed by taking the mean of these
group averages. When examining the average current values, it was observed
that there were not significant differences between them, so an overall average
current was calculated:

Overall average current = 0.974 + 0.9325 + 0.938
3 = 0.9482 A

The energy consumption of a device running specific tasks, such as object
detection models on a Raspberry Pi, can be calculated using the formula:

Energy (Wh) = Current (A) × Voltage (V) × Time (hours)

Here’s a breakdown of each component:
1. Current (A): This is the amount of electric current, measured in amperes

(A), that the device consumes while performing the task. It is crucial to subtract
the idle current from the total current drawn during the task to isolate the current
solely attributable to the task.

2. Voltage (V): This is the potential difference across the device, measured
in volts (V). For the Raspberry Pi, this is typically 5 volts when powered by a
standard USB power supply.

69

4.4. PERFORMANCE ANALYSIS

3. Time (hours): This is the duration for which the task runs, measured
in hours. Since inference times are often provided in milliseconds for quick
tasks like object detection, they need to be converted into hours by dividing by
3600000 (the number of milliseconds in an hour).

The formula used in our scenario calculates the energy consumed during the
inference task in milli-watt hours (mWh), accounting for the fact that inference
tasks are usually short:

Energy (mWh) = (Current (A)−Idle Current (A))×Voltage (V)×Time (ms)
3600000 ×1000

Here:

• Idle Current (A) is the current the Raspberry Pi draws when it is turned
on but not performing any computational tasks.

• Time (ms) is the inference time in milliseconds, and the result is multiplied
by 1000 to convert watt-hours (Wh) to milli-watt hours (mWh) for more
precise measurement at a smaller scale.

This formula gives a precise measurement of the energy specifically used for
the task, excluding the base energy consumption of the device when idle.

Detailed Energy Consumption Analysis

Energy consumption was meticulously calculated based on the inference
times and the current draw for various configurations of the YOLO models
applied to both the VisDrone and Stanford Drone datasets, including grouped
object scenarios. These calculations adjust for the idle current draw, multiplied
by the voltage (5V) and normalized for the duration of inference, providing a
measure in milli-watt hours (mWh).

• VisDrone-2019 DET Dataset: For both image sizes 640 and 416, config-
urations including default, NCNN, and OpenVINO were analyzed. The
results show that optimizations such as NCNN and OpenVINO effec-
tively reduce energy consumption while maintaining high detection per-
formance.

• VisDrone-2019 DET Grouped Object Dataset: Grouped configurations
exhibited a decrease in energy usage, suggesting that model optimizations
not only enhance detection accuracy but also improve power efficiency.

70

CHAPTER 4. EXPERIMENTS AND RESULTS

• Stanford Drone Dataset: Analyzing this dataset revealed significant in-
sights into how each model configuration consumes energy, with a notable
reduction in energy usage demonstrated by optimized models over stan-
dard configurations.

• Stanford Drone Grouped Dataset: Similar to the VisDrone Grouped con-
figurations, the Stanford grouped data also showed improved energy ef-
ficiency. This underscores the benefits of object grouping and advanced
model optimizations in reducing power consumption.

These results are illustrated in detailed bar charts that compare energy con-
sumption across different models and configurations, underscoring the impact
of various optimizations on power efficiency.
Figures detailing these results (refer to Figures 4.3 for the Stanford dataset and
for the VisDrone dataset Figures 4.4 in the appendix) provide a visual summary
of the power efficiency gains achievable through strategic model optimizations.

Figure 4.3: Energy consumption of Stanford Drone Datasets for each YOLO
model configuration based on inference times and current consumption

71

4.5. SUMMARY OF KEY FINDINGS

Figure 4.4: Energy consumption of VisDrone Datasets for each YOLO model
configuration based on inference times and current consumption

4.5 Summary of Key Findings

This research has provided comprehensive insights into the performance of
YOLOv5 and YOLOv8 algorithms for object detection in drone networks, partic-
ularly when implemented on edge computing devices like the Raspberry Pi 4.
Our extensive analysis across different configurations, optimization techniques,
datasets, and hardware platforms has yielded several key findings:

• YOLO Version: Overall, YOLOv8 demonstrated superior performance,
particularly in terms of accuracy and adaptability to complex scenarios.
YOLOv8l consistently achieved higher mAP scores, especially on the Vis-
Drone dataset, indicating its effectiveness in detecting small objects and
handling diverse urban environments.

• Optimization Technique: The NCNN optimization for YOLOv8 and Open-
VINO for YOLOv5 proved highly effective in enhancing both inference
speed and energy efficiency. These optimizations were crucial for deploy-
ing these models on resource-constrained devices, with NCNN showing
particularly impressive results for YOLOv8 models.

72

CHAPTER 4. EXPERIMENTS AND RESULTS

• Dataset Performance: The VisDrone dataset, especially in its grouped
configuration, yielded the best results in terms of detection accuracy and
model adaptability. The grouped approach in both Stanford Drone and
VisDrone datasets significantly improved detection performance, suggest-
ing its utility in real-world applications.

• Raspberry Pi Platform: Our analysis focused on the Raspberry Pi 4, which
proved to be a capable platform for edge computing applications in drone-
based object detection. The Raspberry Pi 4 demonstrated a good balance
between computational power and energy efficiency, making it suitable
for real-world deployment. For instance, the inference time for YOLOv8n
using NCNN was 414.73 ms, which is acceptable for many real-time appli-
cations considering the device’s compact size and low power consumption.

• Optimal Configuration: Considering the balance between accuracy, speed,
and energy efficiency, the YOLOv8l model, optimized with NCNN, run-
ning on a Raspberry Pi 4, and trained on the grouped VisDrone dataset
emerged as the most promising configuration for drone-based object de-
tection in edge computing scenarios.

These findings underscore the potential of optimized YOLO models in drone-
based edge computing applications. The combination of advanced model ar-
chitectures like YOLOv8, efficient optimization techniques such as NCNN, and
thoughtfully structured datasets offers a powerful solution for real-time object
detection in resource-constrained environments. As edge computing and drone
technologies continue to evolve, these insights provide a solid foundation for
future developments in this field.

73

5
Conclusions and Future Work

5.1 Conclusions

This thesis extensively analyzed the performance of YOLOv5 and YOLOv8
algorithms on the Stanford Drone and VisDrone datasets using a Raspberry
Pi 4 platform, focusing on scenarios involving both individual and grouped
objects. The experimental results highlighted the effectiveness of these models in
handling real-time object detection tasks with varying degrees of computational
constraints and power efficiencies.

1. Performance Insights: The YOLO models demonstrated robust detection
capabilities across both datasets, with significant improvements in detec-
tion accuracy when optimized with OpenVINO and NCNN frameworks.
The research underscored the trade-offs between speed, accuracy, and
power consumption, essential for edge computing applications in drone
networks.

2. Technological Contributions: The adaptation of YOLO models to edge
devices like Raspberry Pi 4 involved significant technical enhancements
that have broad implications for the deployment of intelligent systems in
resource-limited environments. The findings contribute to the growing
body of knowledge in aerial surveillance, providing actionable insights for
improving object detection frameworks in edge computing scenarios.

75

5.2. FUTURE WORK

5.2 Future Work

Looking forward, the rapidly evolving field of object detection presents sev-
eral avenues for further research:

1. Algorithmic Enhancement: Future studies could explore the integration
of more recent advancements in neural network architectures and learn-
ing paradigms. The development of YOLOv10 and subsequent models
could be investigated for their potential to enhance detection performance
further, particularly in environments with even more stringent power and
processing limitations.

2. Broader Application Scenarios: Expanding the application domains to
include underwater and nighttime environments could diversify the utility
of the detection systems. These environments pose unique challenges
such as varying light conditions and obscured views, which could drive
innovations in sensor technology and algorithmic adaptability.

3. Cross-Platform Optimization: Further research could also look into the
cross-platform optimization of these models, assessing their performance
not only on different hardware configurations but also across various oper-
ating systems. This could enhance the models’ adaptability and scalability,
crucial for their deployment in diverse operational settings.

4. Energy Efficiency Improvements: Given the constraints observed in power
consumption, future research should also focus on developing more energy-
efficient algorithms that do not sacrifice performance. This could involve
exploring new methods of data processing and transmission that reduce
the energy footprint of drone-based monitoring systems.

5. Real-Time Data Processing: Enhancing the capability for real-time data
processing and decision-making at the edge would be critical for appli-
cations requiring immediate responses, such as active surveillance and
emergency response scenarios.

In summary, this thesis enhances the use of YOLO algorithms in edge com-
puting, contributing to the field of drone-based monitoring. Future work should
build on these results, focusing on how these solutions can be scaled and applied
in real-world situations.

76

References

[1] Ju Ren et al. “Distributed and Efficient Object Detection in Edge Comput-
ing: Challenges and Solutions”. In: IEEE Network 32 (2018), pp. 137–143.
url: https://api.semanticscholar.org/CorpusID:54213309.

[2] Joel Dick et al. “High speed object tracking using edge computing: poster
abstract”. In: Proceedings of the Second ACM/IEEE Symposium on Edge Com-
puting (2017). url: https : / / api . semanticscholar . org / CorpusID :
22237310.

[3] Razvan-Alexandru Bratulescu et al. “Object Detection in Autonomous Ve-
hicles”. In: 2022 25th International Symposium on Wireless Personal Multime-
dia Communications (WPMC). 2022, pp. 375–380. doi: 10.1109/WPMC55625.
2022.10014804.

[4] Rohit Jadhav et al. “Drone Based Object Detection using AI”. In: 2022
International Conference on Signal and Information Processing (IConSIP). 2022,
pp. 1–5. doi: 10.1109/ICoNSIP49665.2022.10007476.

[5] Panagiotis Aposporis. “Object Detection Methods for Improving UAV
Autonomy and Remote Sensing Applications”. In: 2020 IEEE/ACM In-
ternational Conference on Advances in Social Networks Analysis and Min-
ing (ASONAM). 2020, pp. 845–853. doi: 10.1109/ASONAM49781.2020.
9381377.

[6] Abhishek Kumar Saxena, Rajiv Pandey, and Neeraj Kumar Singh. “Latency
Analysis and Reduction Methods for Edge Computing”. In: 2023 IEEE
World Conference on Applied Intelligence and Computing (AIC) (2023), pp. 480–
484. url: https://api.semanticscholar.org/CorpusID:263627183.

[7] Minh Le et al. “Reliable and efficient mobile edge computing in highly
dynamic and volatile environments”. In: 2017 Second International Confer-

77

https://api.semanticscholar.org/CorpusID:54213309
https://api.semanticscholar.org/CorpusID:22237310
https://api.semanticscholar.org/CorpusID:22237310
https://doi.org/10.1109/WPMC55625.2022.10014804
https://doi.org/10.1109/WPMC55625.2022.10014804
https://doi.org/10.1109/ICoNSIP49665.2022.10007476
https://doi.org/10.1109/ASONAM49781.2020.9381377
https://doi.org/10.1109/ASONAM49781.2020.9381377
https://api.semanticscholar.org/CorpusID:263627183

REFERENCES

ence on Fog and Mobile Edge Computing (FMEC) (2017), pp. 113–120. url:
https://api.semanticscholar.org/CorpusID:10820855.

[8] Reinaldo Padilha França et al. “An Overview of the Edge Computing in
the Modern Digital Age”. In: 2021. url: https://api.semanticscholar.
org/CorpusID:234257350.

[9] Redowan Mahmud and Adel Nadjaran Toosi. “Con-Pi: A Distributed
Container-Based Edge and Fog Computing Framework”. In: IEEE Internet
of Things Journal 9 (2021), pp. 4125–4138. url:https://api.semanticscholar.
org/CorpusID:231572930.

[10] Shivani Mistry and S. Degadwala. “A Comprehensive Review on Object
Detectors for Urban Mobility on Smart Traffic Management”. In: Inter-
national Journal of Scientific Research in Computer Science, Engineering and
Information Technology (2023). url: https://api.semanticscholar.org/
CorpusID:265548940.

[11] Akash Babu. “Reviewing Innovations: Advances in Transportation, Secu-
rity, and Accident Detection”. In: INTERANTIONAL JOURNAL OF SCI-
ENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (2024).
url: https://api.semanticscholar.org/CorpusID:268814157.

[12] Zhengwei Bai et al. “Infrastructure-Based Object Detection and Tracking
for Cooperative Driving Automation: A Survey”. In: 2022 IEEE Intelli-
gent Vehicles Symposium (IV) (2022), pp. 1366–1373. url: https://api.
semanticscholar.org/CorpusID:246411447.

[13] Anuj Puri. “A Survey of Unmanned Aerial Vehicles (UAV) for Traf-
fic Surveillance”. In: 2005. url: https://api.semanticscholar.org/
CorpusID:27195648.

[14] Nikolai Vladimirovich Kim and Mikhail Chervonenkis. “Situation Con-
trol of Unmanned Aerial Vehicles for Road Traffic Monitoring”. In: Math-
ematical Models and Methods in Applied Sciences 9 (2015), p. 1. url: https:
//api.semanticscholar.org/CorpusID:54066803.

[15] Rushikesh Lakhotiya et al. “Image Detection and Real Time Object Detec-
tion”. In: International Journal for Research in Applied Science and Engineering
Technology (2023). url: https://api.semanticscholar.org/CorpusID:
258775010.

78

https://api.semanticscholar.org/CorpusID:10820855
https://api.semanticscholar.org/CorpusID:234257350
https://api.semanticscholar.org/CorpusID:234257350
https://api.semanticscholar.org/CorpusID:231572930
https://api.semanticscholar.org/CorpusID:231572930
https://api.semanticscholar.org/CorpusID:265548940
https://api.semanticscholar.org/CorpusID:265548940
https://api.semanticscholar.org/CorpusID:268814157
https://api.semanticscholar.org/CorpusID:246411447
https://api.semanticscholar.org/CorpusID:246411447
https://api.semanticscholar.org/CorpusID:27195648
https://api.semanticscholar.org/CorpusID:27195648
https://api.semanticscholar.org/CorpusID:54066803
https://api.semanticscholar.org/CorpusID:54066803
https://api.semanticscholar.org/CorpusID:258775010
https://api.semanticscholar.org/CorpusID:258775010

REFERENCES

[16] Rejin Varghese and Sambath. M. “YOLOv8: A Novel Object Detection
Algorithm with Enhanced Performance and Robustness”. In: 2024 Interna-
tional Conference on Advances in Data Engineering and Intelligent Computing
Systems (ADICS) (2024), pp. 1–6. url: https://api.semanticscholar.
org/CorpusID:269988598.

[17] Tran Quang Khoi, Nguyen Anh Quang, and Ngô Khánh Hiu. “Object
detection for drones on Raspberry Pi potentials and challenges”. In: IOP
Conference Series: Materials Science and Engineering 1109 (2021). url: https:
//api.semanticscholar.org/CorpusID:233835205.

[18] Tyler Gizinski and Xiang Cao. “Design, Implementation and Performance
of an Edge Computing Prototype Using Raspberry Pis”. In: 2022 IEEE 12th
Annual Computing and Communication Workshop and Conference (CCWC)
(2022), pp. 0592–0601. url:https://api.semanticscholar.org/CorpusID:
247230791.

[19] Mengxiao Wu and Chi Li. “Edge-based Realtime Image Object Detection
for UAV Missions”. In: 2021 30th Wireless and Optical Communications Con-
ference (WOCC) (2021), pp. 293–294. url: https://api.semanticscholar.
org/CorpusID:244137089.

[20] Hari Kishan Kondaveeti et al. “A Review of Image Processing Applications
based on Raspberry-Pi”. In: 2022 8th International Conference on Advanced
Computing and Communication Systems (ICACCS) 1 (2022), pp. 22–28. url:
https://api.semanticscholar.org/CorpusID:249475451.

[21] Vladimir Vujovic and Mirjana Maksimovic. “Raspberry Pi as a Wire-
less Sensor node: Performances and constraints”. In: 2014 37th Interna-
tional Convention on Information and Communication Technology, Electronics
and Microelectronics (MIPRO) (2014), pp. 1013–1018. url: https://api.
semanticscholar.org/CorpusID:17139187.

[22] Hyun-Kyun Choi et al. “Open source computer-vision based guidance sys-
tem for UAVs on-board decision making”. In: 2016 IEEE Aerospace Confer-
ence (2016), pp. 1–5. url: https://api.semanticscholar.org/CorpusID:
38727127.

[23] Jiashun Suo et al. “E3-UAV: An Edge-Based Energy-Efficient Object De-
tection System for Unmanned Aerial Vehicles”. In: IEEE Internet of Things

79

https://api.semanticscholar.org/CorpusID:269988598
https://api.semanticscholar.org/CorpusID:269988598
https://api.semanticscholar.org/CorpusID:233835205
https://api.semanticscholar.org/CorpusID:233835205
https://api.semanticscholar.org/CorpusID:247230791
https://api.semanticscholar.org/CorpusID:247230791
https://api.semanticscholar.org/CorpusID:244137089
https://api.semanticscholar.org/CorpusID:244137089
https://api.semanticscholar.org/CorpusID:249475451
https://api.semanticscholar.org/CorpusID:17139187
https://api.semanticscholar.org/CorpusID:17139187
https://api.semanticscholar.org/CorpusID:38727127
https://api.semanticscholar.org/CorpusID:38727127

REFERENCES

Journal 11 (2023), pp. 4398–4413. url: https://api.semanticscholar.
org/CorpusID:260646545.

[24] Jianing Deng, Zhiguo Shi, and Cheng Zhuo. “Energy-Efficient Real-Time
UAV Object Detection on Embedded Platforms”. In: IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 39 (2020), pp. 3123–
3127. url: https://api.semanticscholar.org/CorpusID:213569666.

[25] C. Kyrkou et al. “DroNet: Efficient convolutional neural network detector
for real-time UAV applications”. In: 2018 Design, Automation & Test in
Europe Conference & Exhibition (DATE) (2018), pp. 967–972. url: https:
//api.semanticscholar.org/CorpusID:5040275.

[26] Igor Bisio et al. “Accuracy-Versus-Energy Evaluation In Drone-Based Video
Processing For Object Detection”. In: GLOBECOM 2022 - 2022 IEEE Global
Communications Conference (2022), pp. 5886–5891. url: https : / / api .
semanticscholar.org/CorpusID:255597404.

[27] Khizer Mehmood et al. “Efficient Online Object Tracking Scheme for Chal-
lenging Scenarios”. In: Sensors 21.24 (2021). issn: 1424-8220. doi: 10.3390/
s21248481. url: https://www.mdpi.com/1424-8220/21/24/8481.

[28] Akshatha K.R. et al. “Manipal-UAV person detection dataset: A step to-
wards benchmarking dataset and algorithms for small object detection”.
In: ISPRS Journal of Photogrammetry and Remote Sensing 195 (2023), pp. 77–
89. issn: 0924-2716. doi: https://doi.org/10.1016/j.isprsjprs.2022.
11.008. url: https://www.sciencedirect.com/science/article/pii/
S0924271622003008.

[29] Xuexue Li et al. “OGMN: Occlusion-guided multi-task network for object
detection in UAV images”. In: ISPRS Journal of Photogrammetry and Re-
mote Sensing 199 (May 2023), pp. 242–257. issn: 0924-2716. doi: 10.1016/
j.isprsjprs.2023.04.009. url: http://dx.doi.org/10.1016/j.
isprsjprs.2023.04.009.

[30] Abdelmalek Bouguettaya et al. “Vehicle Detection From UAV Imagery
With Deep Learning: A Review”. In: IEEE Transactions on Neural Networks
and Learning Systems 33.11 (2022), pp. 6047–6067. doi: 10.1109/TNNLS.
2021.3080276.

80

https://api.semanticscholar.org/CorpusID:260646545
https://api.semanticscholar.org/CorpusID:260646545
https://api.semanticscholar.org/CorpusID:213569666
https://api.semanticscholar.org/CorpusID:5040275
https://api.semanticscholar.org/CorpusID:5040275
https://api.semanticscholar.org/CorpusID:255597404
https://api.semanticscholar.org/CorpusID:255597404
https://doi.org/10.3390/s21248481
https://doi.org/10.3390/s21248481
https://www.mdpi.com/1424-8220/21/24/8481
https://doi.org/https://doi.org/10.1016/j.isprsjprs.2022.11.008
https://doi.org/https://doi.org/10.1016/j.isprsjprs.2022.11.008
https://www.sciencedirect.com/science/article/pii/S0924271622003008
https://www.sciencedirect.com/science/article/pii/S0924271622003008
https://doi.org/10.1016/j.isprsjprs.2023.04.009
https://doi.org/10.1016/j.isprsjprs.2023.04.009
http://dx.doi.org/10.1016/j.isprsjprs.2023.04.009
http://dx.doi.org/10.1016/j.isprsjprs.2023.04.009
https://doi.org/10.1109/TNNLS.2021.3080276
https://doi.org/10.1109/TNNLS.2021.3080276

REFERENCES

[31] Pengfei Zhu et al. “Detection and tracking meet drones challenge”. In:
IEEE Transactions on Pattern Analysis and Machine Intelligence 44.11 (2021),
pp. 7380–7399.

[32] Alexandre Robicquet et al. “Learning Social Etiquette: Human Trajectory
Prediction In Crowded Scenes”. In: European Conference on Computer Vision
(ECCV). 2016.

[33] Payal Mittal, Raman Singh, and Akashdeep Sharma. “Deep learning-
based object detection in low-altitude UAV datasets: A survey”. In: Image
and Vision Computing 104 (2020), p. 104046. issn: 0262-8856. doi: https:
//doi.org/10.1016/j.imavis.2020.104046. url: https://www.
sciencedirect.com/science/article/pii/S0262885620301785.

[34] Xuan Wang et al. “Small Object Detection Based on Deep Learning for Re-
mote Sensing: A Comprehensive Review”. In: Remote Sensing 15.13 (2023).
issn: 2072-4292. doi: 10.3390/rs15133265. url: https://www.mdpi.com/
2072-4292/15/13/3265.

[35] Alexander Pacha, Jan Hajič, and Jorge Calvo-Zaragoza. “A Baseline for
General Music Object Detection with Deep Learning”. In: Applied Sciences
8.9 (2018). issn: 2076-3417. doi: 10.3390/app8091488. url: https://www.
mdpi.com/2076-3417/8/9/1488.

[36] Juan Terven, Diana-Margarita Córdova-Esparza, and Julio-Alejandro Romero-
González. “A Comprehensive Review of YOLO Architectures in Computer
Vision: From YOLOv1 to YOLOv8 and YOLO-NAS”. In: Machine Learning
and Knowledge Extraction 5.4 (2023), pp. 1680–1716. issn: 2504-4990. doi:
10.3390/make5040083. url: https://www.mdpi.com/2504-4990/5/4/83.

[37] Joseph Redmon et al. You Only Look Once: Unified, Real-Time Object Detec-
tion. 2016. arXiv: 1506.02640 [cs.CV].

[38] Joseph Redmon and Ali Farhadi. YOLO9000: Better, Faster, Stronger. 2016.
arXiv: 1612.08242 [cs.CV].

[39] Alan Henry et al. “Lane Detection and Distance Estimation Using Com-
puter Vision Techniques”. In: Machine Learning, Image Processing, Network
Security and Data Sciences. Ed. by Nilay Khare et al. 2022. isbn: 978-3-031-
24367-7.

[40] Joseph Redmon and Ali Farhadi. YOLOv3: An Incremental Improvement.
2018. arXiv: 1804.02767 [cs.CV].

81

https://doi.org/https://doi.org/10.1016/j.imavis.2020.104046
https://doi.org/https://doi.org/10.1016/j.imavis.2020.104046
https://www.sciencedirect.com/science/article/pii/S0262885620301785
https://www.sciencedirect.com/science/article/pii/S0262885620301785
https://doi.org/10.3390/rs15133265
https://www.mdpi.com/2072-4292/15/13/3265
https://www.mdpi.com/2072-4292/15/13/3265
https://doi.org/10.3390/app8091488
https://www.mdpi.com/2076-3417/8/9/1488
https://www.mdpi.com/2076-3417/8/9/1488
https://doi.org/10.3390/make5040083
https://www.mdpi.com/2504-4990/5/4/83
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1612.08242
https://arxiv.org/abs/1804.02767

REFERENCES

[41] Ultralytics. YOLOv3 Documentation. https://docs.ultralytics.com/
models/yolov3/. Accessed: 2024-04-25. 2022.

[42] Oyku Sahin. “Improving the Performance of YOLO-based Detection Algo-
rithms for Small Object Detection in UAV-Taken Images”. Master’s thesis.
Ankara, Turkey: Bilkent University, Jan. 2023.

[43] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. YOLOv4:
Optimal Speed and Accuracy of Object Detection. 2020. arXiv: 2004.10934
[cs.CV].

[44] Ultralytics. YOLOv4 Documentation. https://docs.ultralytics.com/
models/yolov4/. Accessed: 2024-04-25. 2022.

[45] K. Wong, X. Chen, and L. Zhao. “YOLOv6 v3.0: A Full-Scale Reloading”.
In: Papers With Code (2022). url: https://paperswithcode.com/paper/
yolov6-v3-0-a-full-scale-reloading.

[46] Chuyi Li et al. YOLOv6: A Single-Stage Object Detection Framework for Indus-
trial Applications. 2022. arXiv: 2209.02976 [cs.CV].

[47] Meituan. YOLOv6 Releases. https : / / github . com / meituan / YOLOv6 /
releases. Accessed: 2024-04-26. 2022.

[48] Deci AI. How YOLOv6 Differs From YOLOv5 or YOLOX? https://deci.
ai/blog/yolov6-vs-yolov5-vs-yolox/. Accessed: 2024-04-26. 2022.

[49] Viso.ai. YOLOv7 Complete Guide: Understanding YOLOv7 Inside-Out. https:
//viso.ai/deep-learning/yolov7-guide/. Accessed: 2024-04-26. 2023.

[50] Jiayi Xiao et al. “Real-Time Lightweight Detection of Lychee Diseases with
Enhanced YOLOv7 and Edge Computing”. In: Agronomy 13.12 (2023). issn:
2073-4395. doi: 10.3390/agronomy13122866. url: https://www.mdpi.
com/2073-4395/13/12/2866.

[51] Glenn Jocher and Ultralytics. YOLOv5: YOLOv5 Repository. https : / /
github.com/ultralytics/yolov5. Accessed: 2023-05-12. 2023.

[52] Glenn Jocher, Ayush Chaurasia, and Jing Qiu. Ultralytics YOLOv8. Ver-
sion 8.0.0. 2023. url: https://github.com/ultralytics/ultralytics.

[53] Pengfei Zhu et al. “Vision meets drones: A challenge”. In: arXiv preprint
arXiv:1804.07437 (2018). url: https://github.com/VisDrone/VisDrone-
Dataset.

82

https://docs.ultralytics.com/models/yolov3/
https://docs.ultralytics.com/models/yolov3/
https://arxiv.org/abs/2004.10934
https://arxiv.org/abs/2004.10934
https://docs.ultralytics.com/models/yolov4/
https://docs.ultralytics.com/models/yolov4/
https://paperswithcode.com/paper/yolov6-v3-0-a-full-scale-reloading
https://paperswithcode.com/paper/yolov6-v3-0-a-full-scale-reloading
https://arxiv.org/abs/2209.02976
https://github.com/meituan/YOLOv6/releases
https://github.com/meituan/YOLOv6/releases
https://deci.ai/blog/yolov6-vs-yolov5-vs-yolox/
https://deci.ai/blog/yolov6-vs-yolov5-vs-yolox/
https://viso.ai/deep-learning/yolov7-guide/
https://viso.ai/deep-learning/yolov7-guide/
https://doi.org/10.3390/agronomy13122866
https://www.mdpi.com/2073-4395/13/12/2866
https://www.mdpi.com/2073-4395/13/12/2866
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/ultralytics
https://github.com/VisDrone/VisDrone-Dataset
https://github.com/VisDrone/VisDrone-Dataset

REFERENCES

[54] Glenn Jocher and the Ultralytics Team. Customization of YOLO Model.
https://github.com/ultralytics/ultralytics/issues/7304. Ac-
cessed: 2024-06-16. 2023.

[55] Haiying Liu et al. “SF-YOLOv5: A Lightweight Small Object Detection
Algorithm Based on Improved Feature Fusion Mode”. In: Sensors 22.15
(2022). issn: 1424-8220. doi: 10.3390/s22155817. url: https://www.mdpi.
com/1424-8220/22/15/5817.

[56] Bailin Liu and Huan Luo. “An Improved Yolov5 for Multi-Rotor UAV
Detection”. In: Electronics 11.15 (2022). issn: 2079-9292. doi: 10 . 3390 /
electronics11152330. url: https://www.mdpi.com/2079-9292/11/15/
2330.

[57] Boya Zhao et al. “An Improved Aggregated-Mosaic Method for the Sparse
Object Detection of Remote Sensing Imagery”. In: Remote Sensing 13.13
(2021). issn: 2072-4292. doi: 10.3390/rs13132602. url: https://www.
mdpi.com/2072-4292/13/13/2602.

[58] Olarewaju Lawal, Huamin Zhao, and Z Fan. “Ablation studies on YOLOFruit
detection algorithm for fruit harvesting robot using deep learning”. In: IOP
Conference Series: Earth and Environmental Science 922 (Nov. 2021), p. 012001.
doi: 10.1088/1755-1315/922/1/012001.

[59] Shun Li et al. “TC-YOLOv5: rapid detection of floating debris on raspberry
Pi 4B”. In: Journal of Real-Time Image Processing 20 (Feb. 2023). doi: 10.1007/
s11554-023-01265-z.

[60] Gang Wang et al. “UAV-YOLOv8: A Small-Object-Detection Model Based
on Improved YOLOv8 for UAV Aerial Photography Scenarios”. In: Sensors
23.16 (2023). issn: 1424-8220. doi: 10.3390/s23167190. url: https://www.
mdpi.com/1424-8220/23/16/7190.

[61] Haitong Lou et al. “DC-YOLOv8: Small-Size Object Detection Algorithm
Based on Camera Sensor”. In: Electronics 12.10 (2023). issn: 2079-9292. doi:
10.3390/electronics12102323. url: https://www.mdpi.com/2079-
9292/12/10/2323.

[62] Matteo Bordin. “Autonomous driving from the sky: study, design and
evaluation of communication techniques between UAVs and autonomous
cars”. Academic Year 2020-2021. Master’s Thesis. Padova, Italy: Università
degli Studi di Padova, 2021.

83

https://github.com/ultralytics/ultralytics/issues/7304
https://doi.org/10.3390/s22155817
https://www.mdpi.com/1424-8220/22/15/5817
https://www.mdpi.com/1424-8220/22/15/5817
https://doi.org/10.3390/electronics11152330
https://doi.org/10.3390/electronics11152330
https://www.mdpi.com/2079-9292/11/15/2330
https://www.mdpi.com/2079-9292/11/15/2330
https://doi.org/10.3390/rs13132602
https://www.mdpi.com/2072-4292/13/13/2602
https://www.mdpi.com/2072-4292/13/13/2602
https://doi.org/10.1088/1755-1315/922/1/012001
https://doi.org/10.1007/s11554-023-01265-z
https://doi.org/10.1007/s11554-023-01265-z
https://doi.org/10.3390/s23167190
https://www.mdpi.com/1424-8220/23/16/7190
https://www.mdpi.com/1424-8220/23/16/7190
https://doi.org/10.3390/electronics12102323
https://www.mdpi.com/2079-9292/12/10/2323
https://www.mdpi.com/2079-9292/12/10/2323

REFERENCES

[63] Dawei Du et al. “VisDrone-DET2019: The Vision Meets Drone Object De-
tection in Image Challenge Results”. In: Oct. 2019. doi: 10.1109/ICCVW.
2019.00030.

[64] Raspberry Pi Documentation. Accessed: date-of-access. 2024. url: https:
//www.raspberrypi.com/documentation/.

[65] Ultralytics. Raspberry Pi Benchmark Results. Accessed: 2024-05-19. 2024. url:
https://docs.ultralytics.com/guides/raspberry-pi/#__tabbed_3_

3.

[66] Ultralytics. Ultralytics YOLOv5 Model Export Documentation. Accessed: 2024-
05-19. 2024. url: https://docs.ultralytics.com/yolov5/tutorials/
model_export/#colab-pro-cpu.

[67] Raghuraman Krishnamoorthi. “Quantizing deep convolutional networks
for efficient inference: A whitepaper”. In: ArXiv abs/1806.08342 (2018).
url: https://api.semanticscholar.org/CorpusID:49356451.

[68] Zheming Jin and Hal Finkel. “Analyzing Deep Learning Model Infer-
ences for Image Classification using OpenVINO”. In: 2020 IEEE Inter-
national Parallel and Distributed Processing Symposium Workshops (IPDPSW)
(2020), pp. 908–911. url: https://api.semanticscholar.org/CorpusID:
220891693.

[69] V. V. Zunin. “Intel OpenVINO Toolkit for Computer Vision: Object De-
tection and Semantic Segmentation”. In: 2021 International Russian Au-
tomation Conference (RusAutoCon) (2021), pp. 847–851. url: https://api.
semanticscholar.org/CorpusID:237550161.

[70] Nikita A. Andriyanov. “Analysis of the Acceleration of Neural Networks
Inference on Intel Processors Based on OpenVINO Toolkit”. In: 2020 Sys-
tems of Signal Synchronization, Generating and Processing in Telecommunica-
tions (SYNCHROINFO) (2020), pp. 1–5. url:https://api.semanticscholar.
org/CorpusID:221160380.

[71] Yizhi Liu et al. “Optimizing CNN Model Inference on CPUs”. In: ArXiv
abs/1809.02697 (2018). url:https://api.semanticscholar.org/CorpusID:
52183221.

84

https://doi.org/10.1109/ICCVW.2019.00030
https://doi.org/10.1109/ICCVW.2019.00030
https://www.raspberrypi.com/documentation/
https://www.raspberrypi.com/documentation/
https://docs.ultralytics.com/guides/raspberry-pi/#__tabbed_3_3
https://docs.ultralytics.com/guides/raspberry-pi/#__tabbed_3_3
https://docs.ultralytics.com/yolov5/tutorials/model_export/#colab-pro-cpu
https://docs.ultralytics.com/yolov5/tutorials/model_export/#colab-pro-cpu
https://api.semanticscholar.org/CorpusID:49356451
https://api.semanticscholar.org/CorpusID:220891693
https://api.semanticscholar.org/CorpusID:220891693
https://api.semanticscholar.org/CorpusID:237550161
https://api.semanticscholar.org/CorpusID:237550161
https://api.semanticscholar.org/CorpusID:221160380
https://api.semanticscholar.org/CorpusID:221160380
https://api.semanticscholar.org/CorpusID:52183221
https://api.semanticscholar.org/CorpusID:52183221

REFERENCES

[72] Alexander V. Demidovskĳ et al. “OpenVINO Deep Learning Workbench:
A Platform for Model Optimization, Analysis and Deployment”. In: 2020
IEEE 32nd International Conference on Tools with Artificial Intelligence (ICTAI)
(2020), pp. 661–668. url: https://api.semanticscholar.org/CorpusID:
229703495.

[73] Siwen Wang, Ying Li, and Sihai Qiao. “ALF-YOLO: Enhanced YOLOv8
based on multiscale attention feature fusion for ship detection”. In: Ocean
Engineering (2024). url: https://api.semanticscholar.org/CorpusID:
270053680.

[74] Tahreer Abdul Ridha Shyaa and Ahmed A. Hashim. “Enhancing real hu-
man detection and people counting using YOLOv8”. In: BIO Web of Con-
ferences (2024). url: https://api.semanticscholar.org/CorpusID:
268984394.

[75] Eben Panja, Hendry Hendry, and Christine Dewi. “YOLOv8 Analysis
for Vehicle Classification Under Various Image Conditions”. In: Scientific
Journal of Informatics (2024). url: https://api.semanticscholar.org/
CorpusID:268586114.

[76] Edmundo Casas et al. “YOLOv5 vs. YOLOv8: Performance Benchmark-
ing in Wildfire and Smoke Detection Scenarios”. In: Journal of Image and
Graphics (2024). url: https://api.semanticscholar.org/CorpusID:
269056481.

[77] Mini Han Wang et al. “Optimizing Real-Time Trichiasis Object Detec-
tion: A Comparative Analysis of YOLOv5 and YOLOv8 Performance Met-
rics”. In: 2023 9th International Conference on Systems and Informatics (ICSAI)
(2023), pp. 1–5. url: https://api.semanticscholar.org/CorpusID:
267576314.

[78] Mahmudul Islam Masum et al. “YOLOv5 vs. YOLOv8 in Marine Fisheries:
Balancing Class Detection and Instance Count”. In: ArXiv abs/2405.02312
(2024). url: https://api.semanticscholar.org/CorpusID:269605788.

[79] Mini Han Wang et al. “Comparative Analysis of YOLOv5 and YOLOv8 for
Tear Film Lipid Layer Detection: Architectural Disparities, Performance
Metrics, and Future Implications”. In: 2023 International Conference on Com-
puter Science and Automation Technology (CSAT) (2023), pp. 147–150. url:
https://api.semanticscholar.org/CorpusID:268713424.

85

https://api.semanticscholar.org/CorpusID:229703495
https://api.semanticscholar.org/CorpusID:229703495
https://api.semanticscholar.org/CorpusID:270053680
https://api.semanticscholar.org/CorpusID:270053680
https://api.semanticscholar.org/CorpusID:268984394
https://api.semanticscholar.org/CorpusID:268984394
https://api.semanticscholar.org/CorpusID:268586114
https://api.semanticscholar.org/CorpusID:268586114
https://api.semanticscholar.org/CorpusID:269056481
https://api.semanticscholar.org/CorpusID:269056481
https://api.semanticscholar.org/CorpusID:267576314
https://api.semanticscholar.org/CorpusID:267576314
https://api.semanticscholar.org/CorpusID:269605788
https://api.semanticscholar.org/CorpusID:268713424

REFERENCES

[80] Joshua Andle et al. “The Stanford Drone Dataset Is More Complex Than
We Think: An Analysis of Key Characteristics”. In: IEEE Transactions on In-
telligent Vehicles 8 (2022), pp. 1863–1873. url:https://api.semanticscholar.
org/CorpusID:247596716.

[81] Pablo Ruiz-Ponce et al. “POSEIDON: A Data Augmentation Tool for
Small Object Detection Datasets in Maritime Environments”. In: Sensors
(Basel, Switzerland) 23 (2023). url: https://api.semanticscholar.org/
CorpusID:257945589.

[82] Hazim Shakhatreh et al. “Unmanned Aerial Vehicles (UAVs): A Survey on
Civil Applications and Key Research Challenges”. English (US). In: IEEE
Access 7 (2019). Publisher Copyright: © 2013 IEEE., pp. 48572–48634. issn:
2169-3536. doi: 10.1109/ACCESS.2019.2909530.

[83] Ludovic Apvrille, Tullio Tanzi, and Jean-Luc Dugelay. “Autonomous Drones
for Assisting Rescue Services within the context of Natural Disasters”. In:
Jan. 2014.

86

https://api.semanticscholar.org/CorpusID:247596716
https://api.semanticscholar.org/CorpusID:247596716
https://api.semanticscholar.org/CorpusID:257945589
https://api.semanticscholar.org/CorpusID:257945589
https://doi.org/10.1109/ACCESS.2019.2909530

Acknowledgments

87

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Related Works
	The Difference between UAV Object Detection and Common Object Detection
	Challenges in UAV Object Detection
	Traditional Object Detection Approaches
	Deep Learning Object Detection Approaches
	Two stage-based object detection algorithms
	One stage-based object detection algorithms

	Performance Metrics for Object Detection
	Evolution of YOLO Algorithms
	YOLO: You Only Look Once
	YOLOv2: Better, Faster, and Stronger
	YOLOv3
	YOLOv4 - High-Speed and Precise Object Detection
	YOLOv6
	YOLOv7
	Summary

	Methodology
	Proposed Models: YOLOv5 & YOLOv8 for Aerial Image Object Detection
	YOLOv5
	YOLOv8

	Datasets Overview
	Stanford Drone Dataset
	Stanford Drone Dataset with Grouped Object
	VisDrone Dataset
	VisDrone Dataset with Grouped Object

	Preprocessing and Data Organization
	Dataset Organization
	Frames Extraction
	Annotation Format

	Training YOLOv5 and YOLOv8 Algorithms
	Dataset Utilization
	Hardware Configuration
	Training with YOLOv5
	Training with YOLOv8

	Training Results
	Comparison of YOLO models on different datasets
	Performance Analysis
	Class-Wise Analysis

	Experiments and Results
	Testing Process
	Hardware and Software Setup
	Raspberry Pi 4 Specifications

	Testing on Raspberry Pi 4
	Exporting YOLOv5 to OpenVINO
	Exporting YOLOv8 to NCNN

	Performance Analysis
	Accuracy of Object Detection
	Comparative Analysis of YOLO Model Performance on Stanford Drone Dataset
	Comparative Analysis of YOLO Model Performance on VisDrone Dataset
	Effects of Class Variations on Performance
	Inference Time Measurement
	Inference Time Analysis Using Stanford Drone and Grouped Dataset
	Inference Time Analysis Using Visdrone-2019 DET and Grouped Datasets
	Power Consumption Measurement

	Summary of Key Findings

	Conclusions and Future Work
	Conclusions
	Future Work

	References
	Acknowledgments

