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Abstract

The Artificial Spill Generator firmware for control, monitor and generate
accelerator timing signals, has been developed for the DAQ system of CERN
SPS M2 beamline experiments COMPASS and AMBER [3], within the frame
of the Summer Student Program. In this work, COMPASS experimental
context is described, reporting its field of research, the main purposes of
its creation and the architecture of its spectrometer setup. A more detailed
presentation of its Trigger and DAQ systems is also produced, providing a
description of the bigger architecture in which the Artificial Spill Generator
was firstly devised and eventually deployed. The structure and behaviour
of the M2 beam line of CERN SPS exploited by COMPASS is explained,
providing links with the functioning of the FPGA-based continuously run-
ning DAQ currently used in the experiment. Moreover, the hardware and
software monitoring tools of the DAQ are presented, making comments
on how they interact with the Artificial Spill Generator. Eventually, the
logic and the behaviour of the firmware are reported in detail, explain-
ing the different tasks and measurements associated with such module.
After having passed all the required tests, the Artificial Spill Generator
firmware has been programmed into an FPGA board, which is currently
still implemented in COMPASS and AMBER DAQ systems, improving their
acquisition performances.
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1
Introduction

The following work describes the context and the stages of the development

of the Artificial Spill Generator firmware. The project has been brought on in the

experimental context of the Common Muon and Proton Apparatus for Structure

and Spectroscopy (COMPASS) [23], within the frame of the Summer Student

Program at the European Council for Nuclear Research (CERN). The content of

this piece is divided into three main chapters, where the implementation of the

Artificial Spill Generator firmware is explained with a deductive approach.

First of all, the experimental context of COMPASS is described, summarizing

its main research purposes and the achievements gathered during its 25 years of

work. The pillar topics of its broad physics plan are reported, touching several

subnuclear structure and spectroscopy topics. Together with a brief chronology

of the measurements performed, also the evolution of the experimental setup

is described in detail. Moreover, the various components of the apparatus are

reported, highlighting their main features and how they are related to the theory

that justifies the experiment.

Afterwards, the Trigger and DAQ systems are described. In this way, getting

more into the specifics of the actual data flow of the experiment, the context

and the motivations behind the function of the Artificial Spill Generator become

clearer. The functioning of the Trigger and its components are analyzed and

the original architecture of the DAQ is explained, in order to provide a general
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description of how the data are selected, processed and analyzed, from frontend

electronics to the final storage on tape. Moreover the continuously running

FPGA-based DAQ system currently deployed at COMPASS is delineated, in

order to picture the context in which the Artificial Spill Generator has been

deployed and the reasons behind its implementation.

Eventually, the logic of the firmware is reported. The circuit is described in

an analytic way, treating separately all of its components. The behaviours of

the implemented entities are represented by several block and wave diagrams

that help the reader to properly understand the timing and logic features of the

modules. The firmware can be divided into two main cores, the Generator of

the artificial signals and the Manager: these are described separately, paying

particular attention to their different purposes and features. The behaviour of

the whole circuit is in the end reported by connecting said entities and explaining

how they need to interact with each other. Fundamental measurements on the

beam parameters, as well as several safety features, are also performed by the

module; the necessity of their implementation and their insertion in the logic

are explained in detail. In the end, the simulations and tests performed on

the Artificial Spill Generator firmware are reported, explaining the tools and

techniques applied in order to verify the proper functioning of the module.

The actual implementation, planning and design of the Artificial Spill Gener-

ator have been performed by the author of this piece. Once verified its effective

working, the module has been inserted into COMPASS DAQ pipeline. It con-

tributed with a increase in efficiency of data taking during the 2022 COMPASS

transversity run. It has been deployed for COMPASS collaboration during the

last phase of data taking at the M2 beam line, during 2022 run 3, but it is cur-

rently performing its work also within the context of AMBER. It hopefully will

continue also for the upcoming years of the collaboration.
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2
The Experiment

Figure 1: Bird’s eye view of CERN’s accelerator complex: COMPASS is located
in the Prevessin site, around the center of the Large Hadron Collider (LHC)
(bigger circle). It receives the particles through the M2 beam line, as they are
accelerated by the Super Proton Synchrotrone (SPS) (smaller circle).

COMPASS is a fixed target experiment located in the North Area of CERN

(Fig.1). Its last data taking goes back to 2022, with a rich research program for

the investigation of subnuclear structure and spectroscopy. It is currently in its

last analysis phase, but the new Apparatus for Meson and Baryon Experimental

Research (AMBER) [2] collaboration took over the data taking and the beam
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line, guaranteeing many other years of work to this advantageous collaboration.

Its long and great history effectively begins in 1995 with the Letter of Intent

(LoI) of two different experiments, the Hadron Muon Collaboration (HMC) and

the CHarm Experiment with Omni-Purpose Setup (CHEOPS). At that time,

both collaborations were proposing to build a new fixed target experiment in

the Prevessin site, exploiting the M2 beamline with particles accelerated by

the SPS. Even though their LoIs were produced independently and justified

by different research purposes, they were submitted to the CERN Scientific

Committee in the same year. As a consequence, thanks to their compatible

physics programs and similar experimental requirements, the two collaborations

were merged, resulting in a common environment able to satisfy the demands

of both. COMPASS was born from this union, with its first configuration being

proposed to CERN’s commission in 1996 and approved the following year.

The experimental apparatus was effectively delivered in 2001, after few years

of building and installation. In 2002, just after a year-long technical run, data

taking began with COMPASS I phase and its first experimental configuration.

The measurements exploiting the 𝜇 beam scattering on polarized proton and

deuteron targets lasted from 2002 to 2011, with some interruptions in between.

Apart from a technical shutdown in 2005, the years 2008 and 2009 were instead

devoted to the hadron spectroscopy program, using 𝜋± and 𝑝 beams interacting

with liquid hydrogen and nuclear targets [13].

The second phase of the experiment (COMPASS II) was approved in 2010,

even though the first Primakoff and Deep Virtual Compton Scattering (DVCS)

run began in 2012. From 2015 to 2018 the Drell-Yan (DY) program was instead

carried on, with 𝜋± scattering on a 𝑝 target. During 2016 and 2017 DVCS,

Hard Exclusive Meson Production (HEMP) and Semi-Inclusive Deep Inelastic

Scattering (SIDIS) measurements were also brought on. Just after long shutdown

2, the data taking continued in 2021 and 2022 with SIDIS measurements off a

transversely polarized target [13].
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Coming to more recent times, a new LoI and proposal for further measure-

ments on the M2 beam line were submitted 2019. The experiment will in fact

continue its work under the name of AMBER, with a wider and renewed physics

program, expecting the first measurements to be performed in May 2023 [7]. In

2022 COMPASS collaboration celebrated its 25th anniversary, making it one of

the longer lasting experiments of CERN. Its technical versatility and the im-

portant physics results that it delivered to the scientific community contributed

building its historical resonance. The future AMBER is of course expected to

add further value to the collaboration: its research program aims at providing

precise measurements of the proton radius using elastic 𝜇− 𝑝 scattering, investi-

gating DY processes with conventional hadron beams and eventually measuring

the antiproton production cross section for dark matter search.

In the following pages, the main historical steps of COMPASS collaborations

are presented. A general description of HMC and CHEOPS research plans

and experimental requirements is reported; their differences and similarities

are highlighted, picturing the frame in which COMPASS was first devised and

built. Afterwards, the different phases of the experiment are presented, paying

particular attention to experimental setups used and the physical reasons behind

their specific implementations. The first phase of the experiment (COMPASS I)

is described in more detail with respect to the recent COMPASS II phase. Due

to the huge quantity of available information, a selection of the main topics and

measurements performed during COMPASS history had to be made. For this

reason, a larger representation has been given to the measurements of the muon

beam, instead than those belonging to the hadron program research. Eventually

the studies of COMPASS II are just briefly reported, due to the much greater

complexity of the physics they treat and in order not to digress too far from the

main purpose of this work.
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2.1 HMC and CHEOPS

HMC originally wanted to exploit the SPS M2 beamline with polarized 𝜇±

scattering on a solid state polarized target, with a physics program which

touched several open problems of experimental physics at that time. They

wanted to perform a high precision measurement of the gluon polarization

Δ𝐺/𝐺 by studying open charm leptoproduction events. Moreover, they wanted

to gather data on the quark longitudinal spin distribution functions and their

integrals, produce high precision measurements onΛ/Λpolarizations and even-

tually also investigate the quark transverse spin distribution functions [22]. The

fundamental requirements that had to be satisfied in order to obtain the desired

precisions were a large detector acceptance of around ±200 mrad, a high beam

intensity and a precise hadron identification. On the beam side, this practically

corresponded to reaching a flux of 2𝑥108𝜇/spill1, with energies from 90 to 200

GeV. For the hadron classification 𝜋, K and p had to be correctly separated in the

range 10− 150 GeV/c and 𝜋0 also had to be detected up to 150 GeV/c. Two Ring

Imaging Cherenkov Detector (RICH) and lead glass Electromagnetic Calorime-

ter (ECAL) were the proposed tools to gather such optimal particle identification

(see Fig.2) [22].

On the other hand, CHEOPS was exclusively going to concentrate on charm

physics, setting as main goals the observation and study of charmed and dou-

bly charmed baryons semi-leptonic decays, together with an abundant research

program for exotic hadrons, glueballs and hybrids. For this kind of research,

the usage of a large variety of beam projectiles (𝜋±, 𝑝, 𝐾, heavy ions etc.) and

energies was required, possibly reaching the intensity of 5𝑥107 particles/spill

[21]. The main expected challenge to perform the cited measurements was

to correctly reconstruct charmed baryons. The huge backgrounds due to the

missing neutrinos were the main cause of systematic errors, therefore the asso-

ciated charmed meson tagging was going to be fundamental for a proper event

1As it is typical for circular accelerators, the particles are delivered in bunches called spills. In
Sec. 3.3.1 a proper explanation of the beam delivery at COMPASS experimental hall is reported.
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identification. From the experimental point of view, this meant that CHEOPS

as well was in need of a large acceptance detector, possibly also extending to

the backward emisphere. The proposed experiment was in need of LHC-type

detectors in order to fulfill the requirements on rate and radiation stability and

every component had to be mounted on rails, in order to guarantee a sufficient

setup’s flexibility [21].

HMC and CHEOPS had many other common experimental requirements,

and also the proposed physics researches were for some aspects compatible

and could have been brought on parallely. The decision to merge the two

experiments seemed the best thing to do and the creation of a common apparatus

that could satisfy all their needs represented a smart and profitable investment.

A large geometrical acceptance, together with a good light hadron identification,

were the key requirements for both HMC and CHEOPS. Also the possibility

to use different projectiles and the need of a precise beam tracking system

were other necessary aspects that were requested by the two different physics

program. Eventually, very fast frontend electronics and LHC-type detectors

were an indispensable part of the proposed experimental setups.

Figure 2: Top view of HMC’s detector as first proposed in 1995 [22].
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2.2 COMPASS I

The combination of HMC and CHEOPS research plans resulted in the cre-

ation of a unique experiment, focused on hadron structure and spectroscopy

studies, with the aim of investigating the most hidden aspects of non-perturbative

Quantum Chromodynamics (QCD).

Following the intents of CHEOPS collaboration, one of the main purposes

of COMPASS was to collect high statistics samples of charmed particles. The

hadron beam program was defined with this purpose, hoping to exploit par-

ticle momenta up to 300 GeV/c and to explore the nature of charmed/doubly

charmed baryons and their semileptonic decays. At the same time, the investi-

gation of gluon polarizationΔ𝐺/𝐺 suggested by HMC represented an extremely

interesting topic and it was inserted as well into COMPASS research plan, ex-

pecting to perform cross-section asymmetries measurements exploiting open

charm lepto-production events as workhorse process. In addition to the previ-

ous objectives, COMPASS also proposed to measure transverse spin distribution

functions and fracture functions, considering an overall 4:1 proportion between

longitudinal and transverse target polarization periods.

Figure 3: COMPASS proposed apparatus for the hadron (top) and muon (bot-
tom) beam programs [27].
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Specific measurements require optimal experimental setups and COMPASS

was designed to satisfy the whole spectrum of the necessities defined by its wide

physics program. The muon beam and hadron beam programs were going to

need different and optimized architectures, starting from a shared common

structure.

According to the first COMPASS proposal (see Fig.3), the spectrometer was

going to be divided into two independent stages downstream from the polarized

target, to analyze outgoing particles at different angles: the Large Angle Spec-

trometer (LAS) and Small Angle Spectrometer (SAS). Two dipole Spectrometer

Magnets (SM 1 and 2) were going to be placed at the beginning of both LAS and

SAS with a respective angular acceptance of ±180 mrad and ±30 mrad while two

RICH1/2 detectors were planned to be placed in the LAS and SAS regions, with

the aim of identify light hadrons2. Hadronic Calorimeter (HCAL) 1/2 were also

going to be present at both stages of the spectrometer with the main purpose of

gathering Trigger information, while ECAL1/2 were going to be used to identify

fast particles, 𝛾 and 𝜋0. Muon Wall (MW) 1/2 were planned to be located at the

end of both LAS and SAS, always paired with Muon Filter (MF)1/2 (absorbers

with sufficient thickness in order to make sure to stop all particles beside muons)

[27]. Moreover, to allow to trigger on the scattered muons, a set of fast plas-

tic scintillator hodosocopes was installed in both sections of the spectrometer,

before and after the muon filters.

The structure reported in Fig.3 represents the original proposals for the

architectures of the hadron and muon beam measurements. The experiment was

eventually built with slightly different characteristics and components, which

will be explained in detail in the following pages. The setup, together with the

collaboration and the research purposes, has been updated several times during

its years of work.

2Eventually RICH2 was never inserted in the experimental hall, since the cost benefit ratio
was not going to be convenient.
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In the next paragraphs, the theoretical aspects of its research are presented

and associated to their specific experimental requirements, trying to deliver a

general description of the evolution of the collaboration and of the experiment

itself.

2.2.1 Muon Beam

In the 1996 COMPASS I proposal, the muon beam program was presented

with a detailed description of the theory behind all the measurements that were

going to be performed. The research plan was accompanied and justified by a

series of Monte Carlo simulations, considering incident muonic beam of 100 GeV,

2𝑥108𝜇/spill and 80% polarization. For the target, they considered 6𝐿𝑖𝐷 with

a 50% polarization for the 𝐷 measurements and 𝑁𝐻3 with an 85% polarization

for the 𝑝 measurements. The luminosity during the first years of measurements

was expected to be around 1.9 𝑓 𝑏−1/year, assuming a total SPS proton operation

of 150 days/year, but it eventually turned out to be an underestimated value.

The periods for longitudinal and transverse target polarization were planned

to be separated, due to technical times for changing polarization and to the dif-

ferent physics program they belonged to. The running time was planned to be

split into 80% longitudinal, dedicating this time to the gluon polarization, lon-

gitudinal spin distribution functions and part of the Λ program measurements,

and 20% transverse, with the aim of studying the transverse quark distributions

and part of the Λ program [27].

The theoretical reasons behind the choice of measuring these quantities are

extremely complex and they would need a much wider context for their proper

explanation. A few of the performed measurements are reported in detail in this

work in order to understand the importance of COMPASS work, but the majority

of them are just mentioned, since their treatment is not part of the main purpose

of this piece. In particular, the measurement of the Λ polarization and of the

Λ−Λ spin correlations in the target fragmentation region can help discriminate

between models with polarized strange quarks and gluons, delivering additional

information for the description of the internal structure of nucleons.
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For the same reason, COMPASS also planned to measure the transverse

spin distribution functions Δ𝑇𝑞(𝑥) = 𝑞↑(𝑥) − 𝑞↓(𝑥) in semi-inclusive DIS on

transversely polarized 𝑝 and 𝐷 targets, since the momentum distribution 𝑞(𝑥),
the helicity distribution Δ𝑞(𝑥) and the transverse spin distribution Δ𝑇𝑞(𝑥) can

completely specify the state of the quark inside the nucleon [27].

The Δ𝐺/𝐺 and longitudinal spin distributions measurements represent the

widest and most important part of the study that was firstly proposed by COM-

PASS and are explained more in detail in the following sections.

Gluon Polarization.

The best option for the measurement of gluon polarization at the CERN 𝜇 beam,

with energies in the range 100 − 200 GeV, was expected to be the study of

the longitudinal spin asymmetry of open charm leptoproduction events. The

analysis of such events is based on the reconstruction of the 𝐷0 mesons from

their hadronic decay products, since heavy quarks are produced in leading order

via the Photon Gluon Fusion (PGF) process (see Fig.4) [6].

Figure 4: Photon Gluon Fusion Feynman diagram [27].

In particular, the experiment aimed at measuring the spin asymmetry 𝐴𝑒𝑥𝑝

for charm muonproduction, given by the number 𝑁𝑐𝑐 of charm events for anti-

parallel and parallel𝜇 and target longitudinal spin orientations. These quantities

are related to the virtual photon asymmetry 𝐴𝑐𝑐𝛾𝑁 by means of Eq.1, where the
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parameters 𝑃𝐵 , 𝑃𝑇 , 𝑓 , 𝐷 represent respectively the beam and target polarization,

the fraction of polarizable nucleons in the target and the depolarization of the

virtual 𝛾 with respect to the 𝜇 [27].

𝐴𝑒𝑥𝑝 =
𝑁↑↓
𝑐𝑐 − 𝑁

↑↑
𝑐𝑐

𝑁↑↓
𝑐𝑐 + 𝑁

↑↑
𝑐𝑐

= 𝑃𝐵 · 𝑃𝑇 · 𝑓 · 𝐷 · 𝐴𝑐𝑐𝛾𝑁 (1)

The asymmetry 𝐴𝑐𝑐𝛾𝑁 is eventually given by the ratio of the helicity depen-

dent and helicity averaged cross sections for charm production Δ𝜎𝛾𝑁→𝑐𝑐𝑋 and

𝜎𝛾𝑁→𝑐𝑐𝑋 , which can be expressed as the convolution of the elementary photon-

gluon cross sections with the gluon distributions Δ𝐺 and 𝐺 [27].

Since typically about 60% of charm quarks fragment into a 𝐷0 meson, corre-

sponding in average to 𝑁𝐷0/𝑁 𝑐𝑐 = 1.23𝐷0 mesons per charm event, the event

reconstruction was concentrated on identifying the presence of the 𝐷0 meson.

Unfortunately the detection of the decay vertex cannot be performed at COM-

PASS, due to the multiple scattering in the thick target, therefore the detection

strategy fully relied on the combinatorial search for the hadronic decay prod-

ucts. The simplest decay of the 𝐷0 meson is the two-body 𝐷0 → 𝐾− + 𝜋+,

presenting a branching ratio of (4.01 ± 0.14)%. The fortunate characteristic of

such decay is that in the 𝐷0 c. m. frame, the decay particles emitted at large

angles with respect to the 𝐷0 line of flight have large transverse momenta. On

the contrary, ordinary fragmentation into 𝐾 or 𝜋 prefers lower 𝑝𝑇 and reproduce

almost collinear decays [27].

As in can be seen in Fig.5, such characteristic resulted optimal for the detec-

tion and reconstruction of 𝐷0 decay events. In particular, in the above plots of

Fig.5 a simulation of the 𝜃 angle (w.r.t. 𝐷 line of flight) vs momenta, respectively

for 𝐾 and 𝜋 is reported. The images below instead represent the distribution of

events as a function of 𝑐𝑜𝑠(𝜃𝐾) and 𝑧𝐷 = 𝐸𝐷/𝜈 and the cuts applied to select the

proper 𝐷0 meson decay and to reject the background [27].
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Figure 5: Top: Angle of 𝐾(𝜋) trajectory w.r.t. 𝐷0 line of flight as a function of
𝐾(𝜋) momentum. Bottom: cos𝜃𝐾 as a function of the fraction of virtual photon
energy carried by the𝐷0 meson 𝑧𝐷 = 𝐸𝐷/𝜈. The lines represent the cuts applied
to reject the background [27].

Such analysis allowed COMPASS to gather high statistics of 𝐷0 meson data,

eventually useful for measuring the gluon polarization Δ𝐺/𝐺 and many other

quantities, also belonging to the hadron beam program.

Longitudinal Spin Distribution Functions.

With the aim of finding a possible explanation of the violation of the Ellis-Jaffe

sum rule, several models were proposed at the time of COMPASS proposal. The

most logic approach was to decompose the nucleon spin and try to determine the

spin distribution functions of sea and valence quarks, in order to understand

in which amount every component was contributing to the total spin of the

nucleon. COMPASS proposed to achieve this by measurements of SIDIS events

of polarized leptons on polarized proton and deuteron.
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Parallel to the Δ𝐺 study, this analysis was performed by measuring the

asymmetries for the different hadrons and the different targets (Eq.2). In this

context the optimal particle identification, necessary for the flavour and valence

and sea separations, represented a fundamental requirement of the experimental

setup. For the same reason, the large angular acceptance provided by the

spectrometer magnet 1 just downstream from the target allowed the additional

possibility to perform an analysis of the azimuthal effects in asymmetries and

the topology of hadron jets at high 𝑝𝑇 .

𝐴ℎ =
1

𝑃𝐵𝑃𝑇 𝑓 𝐷

𝑁↑↓
ℎ − 𝑁↑↑

ℎ

𝑁↑↓
ℎ + 𝑁↑↑

ℎ

(2)

2.2.2 Hadron Beam

The study of charmed hadrons covers a wide spectrum, from investigations

of charm production itself, spectroscopy, decay studies up to search for rare

processes. It can be divided into three mutually connected categories, semi-

leptonic decays, lifetimes and non-leptonic decays, but only few examples of

them are reported in the following pages.

Before COMPASS first proposal, the study of semileptonic decays of charmed

baryons had been the domain of experiments at 𝑒+𝑒− colliders, due to the high

statistic of hadronic events containing charm quarks, but by exploring the D-

meson sector also fixed target experiments had become very competitive. The

plan of COMPASS collaboration was to obtain a handle on the inclusive semi-

leptonic decays of different c-baryons using the rates of their exclusive decays

and a sample of D-tagged events, already reconstructed for the purposes previ-

ously cited. Also the measuring of charmed hadrons lifetimes constituted a good

testing ground for the understanding of the effects of the hadronic environment,

especially in the intermediate region where perturbative and non-perturbative

effects overlap. Of course such measures would also have contributed to a more

precise knowledge of absolute charm’s branching ratios [1].
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The technical challenge associated with such measurements was to properly

try and reconstruct the charmed baryons, due to the uncertainties carried by

the missing neutrino. The consequent enhanced backgrounds could only be

reduced with a good tag for the associated charmed meson, hence the necessity

of building a spectrometer with large solid angle and acceptance.

One of the other COMPASS aims was to look for a proof of the existence

of gluonic systems. In those years, QCD had already been consistently tested

and stressed by many experiments, concluding with a confirmation of its via-

bility. Nonetheless, the existence of new classes of non-𝑞𝑞 mesons still awaited

experimental confirmation. Theory predicted the existence of glueballs, ob-

jects composed entirely of valence gluons, together with many other hybrids

states. Of course the major difficulty in the search for such entities arised

from the proliferation of mesonic states with 𝑞𝑞 structure in the mass range

in which states with constituent glue are expected. The spectroscopy of scalar

and pseudoscalar states is particularly difficult, since higher-spin mesons are

often produced more abundantly than states with J=0, therefore scalar contri-

butions remained unrevealed. An additional research in this broad field looked

necessary for COMPASS and the whole scientific community [27].

2.3 Experimental Apparatus

As already stated before, fixed-target experiments for the study of QCD in

its non-perturbative regime require large luminosity and thus high data rate

capability, an excellent particle identification and a wide angular acceptance.

COMPASS was hence built to achieve these main design goals.

The basic layout of COMPASS experiment, as it was built at the beginning of

the collaboration, can be divided into three main parts. The detectors upstream

from the target represent the first section of the experiment, called "beam tele-

scope", where measurements on the incoming beam particles are performed.

The other two parts are placed downstream from the target (respectively LAS

and SAS) and they extend for a total length of 50m. Each of the two spectrometer
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stations is built around an analyzing magnet, preceded and followed by trackers

and completed by a hadron calorimeter and a muon filter station for high energy

𝜇 identification. A RICH detector for light hadron identification has also been

inserted in the LAS. The majority of the above cited components were mounted

on rails since the very beginning of the experiment, in order to be able to move

them accordingly to the necessities of the different physical measurements.

Figure 6: Top view of COMPASS muon setup according to 2004 configuration
[11].

The first section of the experiment, the Beam Momentum Station, is located

about 100 m upstream from the target and it is responsible for measuring the

momentum of the incoming muon. It is provided with an analyzing magnet

and six tracking stations Scintillating Fibers (SciFi) detectors. The precise track

reconstruction of incoming muons is instead performed just upstram from the

target (see Fig.6), where SciFi and silicon microstrip detectors are placed [11].

Located 4 m downstream from the target center, the LAS was built around

the Spectrometer Magnet 1, which has been designed to deliver a deflection of

300 mrad for particles with momentum of 1 GeV/c. In order to cope with such

bending power, the RICH detector was build with a large transverse dimension,

making it capable of detecting and identifying charged hadrons with momenta

in the range 3 − 50 GeV/c. The LAS is eventually completed by the HCAL1
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and the Muon Filter 1, the former being fundamental for gathering the trigger

information and the latter being responsible for muon identification (see Fig.6).

The last section of COMPASS spectrometer (SAS) detects particles at small

angles and larger momenta, precisely ±30 mrad and 𝑝 > 5 GeV/c. Together

with the second spectrometer magnet, it includes electromagnetic and hadronic

calorimeters and it is concluded by a thick muon filter, responsible for stopping

outgoing hadrons. Just like HCAL1, HCAL2 is used in the trigger information,

while ECAL2 mainly detects 𝛾 and 𝜋0 [11].

Regarding the tracking detectors, different techniques and tools need to be

used depending on the position in which they are placed. The particle flux

per unit transverse surface varies by more than five orders of magnitude in

different regions within the overall spectrometer acceptance. Along the beam

and close to the target, detectors must combine a high particle rate capability

with an excellent space resolution (up to a few MHz/channel and 100𝜇m and

better). Due to the already high particle flux, the amount of material along

the beam path has to remain at a minimum, in order to minimize multiple

scattering and secondary interactions. Moving radially away from the beam

axis, the constraints on the particle rate and spacial resolution can be relaxed,

even though larger areas need to be covered. The tracking detectors can be

divided into three main groups: the Very Small Area Trackers (VSAT), the

Small Area Trackers (SAT) and the Large Area Trackers (LAT). The first are

characterized by high flux capabilities and excellent space time resolutions and

they consist in eight SciFi stations and three silicon microstrip detectors (see

Fig.6). The SAT are placed at beam distances greater than 2.5cm and they are

made of three Micromesh Gaseous Structures (Micromegas) [16] and eleven

Gas Electron Multiplier (GEM) stations [28], featuring high space resolution

and minimum material budget. Eventually the LAT cover the largest region

of the spectrometer, providing a good spatial resolution. Particles emerging at

large angles are tracked by three Drift Chambers, while straw drift tubes are

responsible for covering areas closer to the beam axis. From downstream the

RICH counter to the end of the setup, the particles scattered at relatively small
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angles are detected by fourteen Multi Wire Proportional Chambers (MWPCs).

The identification of scattered 𝜇 is performed by the two muon filters, which

include an absorber layer, preceded and followed by tracker stations with mod-

erate space resolution (Muon Walls). The absorber is fundamental for stopping

incoming hadrons. The presence of a muon is confirmed only if compatible sig-

nals are retrieved in both trackers, upstream and downstream from the absorber

[11].

2.4 COMPASS II

The proposal of the second phase of measurements at COMPASS experimen-

tal hall arrived in 2010, with a renewed physics research program and several

necessary setup improvements. The proposal contained mainly studies of chi-

ral perturbation theory, "unpolarized" Generalized Parton Distributions (GPDs)

and Transverse Momentum Dependent (TMD) parton distributions. The new

GPDs theoretical framework allowed the study of the nucleon from a unique

point of view: while Parton Distribution Functions (PDFs) only represented the

structure of the nucleon as a function of the nucleon momentum fraction carried

by a parton of a certain species regardless of the electromagnetic form factor,

the GPD was able to embody both information, such that they could be con-

sidered as momentum-dissected form factors. In a complementary approach,

COMPASS was also planning to study the intrinsic effects of transverse parton

momenta described by TMDs, which become visible in DY and SIDIS processes.

The final goal of the experiment was indeed to build a more complete 3d-picture

of the nucleon, therefore performing studies of nucleon tomography [12].

The concept of GPDs could also help in understanding the original problem

that COMPASS decided to face at the time of its creation: how the nucleon

1/2 spin is shared between the contributions of intrinsic and orbital angular

momenta of quarks of vairous flavours and gluons. Constraining quark GPDs

experimentally, by measuring DVCS or Deep Virtual Meson Production (DVMP),

would have represented a good way of constraining the quark components on
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the nucleon spin budget 1
2 = Σ 𝑓=𝑢,𝑑,𝑠 𝐽 𝑓 + 𝐽 𝑔 .

Parallely with the GPD program, high-statistics data of SIDIS events were to

be recorded in order to extract at leading order 𝛼𝑆(𝐿𝑂) the unpolarized strange

quark distribution function 𝑠(𝑥) as well as fragmentation functions describing

how a quark fragments into hadrons 𝜇𝑝 → 𝜇ℎ𝑋. Another fundamental aspect

of COMPASS-II research plan was to concentrate on the transverse momentum

of partons. This quantity is a central element for the understanding of the 3-

dimensional structure of the nucleon and when it is taken into account, several

new functions are required to properly describe the internal structure of the

nucleon: intrinsic transverse momentum and transverse momentum naturally

couple, therefore their resulting correlations need to be encoded into various

parton distribution and fragmentation functions [4].
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3
Trigger and DAQ

In every High Energy Physics experiment the amount of scattering events

produced in the laboratory has to be the highest possible, in order to be able

to eventually produce statistically significant results. Of course COMPASS as

well had the precise purpose to produce a considerable amount of interactions,

exploiting polarized muons and hadrons scattering on polarized solid and liquid

state targets. In the end though, after a multi-level selection of information

based on specific physical requirements, only a small percentage of the total

produced events are effectively used for the research purposes described in the

previous chapter. This process of filtering the overall amount of interactions is

of course mandatory, in order to select only the events of interest and to reject

the backgrounds. The data reduction happens at different stages in the pipeline

of the trigger and data acquisition systems of the experiment.

In the following sections, the flow of data gathered by the experiment’s de-

tectors is reported, providing a general explanation of the filtering and selection

techniques in use. In particular, the first level trigger system is described, pay-

ing particular attention to the experimental setup used and the physical reasons

behind each hardware’s implementation. The original architecture of the Data

Acquisition System (DAQ) system is reported according to the state of the ex-

periment in 2007, in order to be able to compare it to the updated and currently

deployed FPGA based continuously running version (iFDAQ).
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The Artifical Spill Generator project, which will be treated in detail in Chapter

4, was based on such latter implementation of the DAQ and it has been eventually

inserted into its pipeline.

3.1 Muon trigger system

The trigger system itself has to serve several purposes. Firstly, it has to select

events of interest in a high rate environment, then it has to provide precise event

times for unambiguous association with incident beam muons. Eventually it is

also responsible for generating strobe signals for several other detectors in the

spectrometer.

Figure 7: Detector components used in the Trigger information: veto hodoscopes
(Sec.3.1.1), spectrometer magnets (green), hadronic calorimeters (light blue) and
muon filters (dark blue).

COMPASS trigger system is reported in Fig.7. In view of the high rates in

the central region, the hodoscope system is subdivided into four parts: the in-

ner (H4I, H5I) and the ladder (H4L, H5L) systems covering the quasi-real photon

events, the middle (H4M, H5M) system selecting quasi-real photon events as well

as deep inelastic scattering events and the outer (H3O, H4O) system selecting
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muons up to 𝑄2 ≃ 20𝐺𝑒𝑉2. The middle trigger system uses two planes of the

hodoscopes to detect muons scattered with angles between 4 and 12 mrad, by

measuring the vertical projection 𝜃𝑦 of the scattering angle in the non-bending

plane and checking its compatibility with the target position ("vertical target

pointing trigger"). In addition, two other planes measure the horizontal projec-

tion 𝜃𝑥 and allow to perform a coarse energy cut.

Fig.7 also shows the concrete and iron absorbers used to identify the muon

tracks. In the ladder, middle and outer systems, a 2.4 m thick concrete absorber

is used for muon filtering, together with the material of the hadron calorimeter

HCAL2 located in front of the first hodoscope. Due to the large element width

in the outer system compared to the ladder and middle system, a large lever arm

is needed, therefore the first hodoscope of the outer system, H3O, is installed

directly behind the second spectrometer magnet. This hodoscope has a much

larger central hole, covered by the other systems, to avoid excessive rates in the

7 cm wide strips.

Figure 8: Left: Target pointing trigger. Right: Energy loss trigger.

The first trigger condition ("vertical target pointing") for the measurement of

scattered muons is reported in the Left picture of Fig.8. It forms a geometrical

trigger, in which a set of two hodoscopes with horizontal slabs before and after

the muon absorbers measure the vertical coordinate of the scattered muon at

two positions Z1 and Z2 in the magnet field-free region of the spectrometer.

By requiring a certain combination of fired slabs in the coincidence matrix the

origin of the particle track to the target location can be verified [32].
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Due to the nature of the interactions analyzed at COMPASS for the muon

beam program, its trigger system has to detect muon scattering events on target

nucleons, with a relative energy loss exceeding a selectable value 𝑦𝑚𝑖𝑛 and hap-

pening at relatively small scattering angles (see Right picture in Fig.8). Moreover,

imposing an additional condition of a minimum energy deposit in an hadronic

calorimeter, it is possible to reject background events: like scattering on elec-

trons, elastic and quasi-elastic radiative events as well as events from beam halo

tracks. The trigger can in fact be considered as a tagger for quasi-real photo-

production events (Fig.7) [17].

A second trigger condition is sometimes applied, depending on the physics

program, by measuring the muon energy loss, exploiting the muon track direc-

tion behind the two magnets in the bending plane of the dipole spectrometer.

Two vertical hodoscopes planes at distances 𝑧1 and 𝑧2 from the target are re-

sponsible for measuring the horizontal position 𝑥1 and 𝑥2 of the deflected track.

For an isolated muon track, of course being aware of the magnets transverse

kick, this information is sufficient to determine the horizontal component of the

scattering angle 𝜃𝑥 , its momentum 𝑝′ and its energy 𝑦. In conclusion, the trigger

for scattered muons with a momentum below a preselected threshold 𝑝′𝑚𝑎𝑥 is

realized by requiring a coincidence of elements 𝑥1 and 𝑥2 in the hodoscopes

positioned at 𝑧1 and 𝑧2, fulfilling the condition in Eq.3.

Δ𝑝𝑥
𝑝′ 𝑧𝑚 =

𝑥1 · 𝑧2 − 𝑥2 · 𝑧1
𝑧2 − 𝑧1

(3)

As it can be seen in Fig.9, the position information gathered from the ho-

doscopes H4 and H5 is used to build a coincidence matrix, in which only certain

elements cause the generation of the trigger signal. The additional condition of

the energy deposit in an hadronic calorimeter is eventually convoluted with the

coincidence matrix signal, causing the proper selection of the scattered muon

and the rejection of the muon which did not interact within the target cells [25].
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The selection of muon tracks requires an absorber in front of one of the two

hodoscopes, in order to reject hadron and electron tracks: for this purpose an

absorber of 1.6 m of iron, corresponding to 91 radiation lengths, was chosen. The

effects of multiple scattering on the measured track position are minimized if the

absorber is placed directly in front of the second hodoscope and all detetctors

between the two hodoscopes have a hole in the center that matches the projected

size of the trigger hodoscopes [31].

Figure 9: Muon trigger functioning: scattered muon causes the generation of
trigger signal (red), halo muon is rejected (blue). The energy deposit condition
in an HCAL contributes to the generation of the trigger signal [31].

3.1.1 Veto system

A trigger based only on a coincidence between two hodoscopes planes would

result in a rate of order 106 per spill, much too high for the DAQ system. Most of

these coincidences are caused by muons not interacting in the target since, as it is

clear from Fig.10, the muon beam is not always perfectly focused. The particles

that do not satisfy certain momentum and position requirements when hitting

the target cells are referred to as "Halo Muons" and they need to be discarded
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as they do not respect the specifics of the events researched by COMPASS [26].

The so-called Veto Trigger System was introduced with the purpose of elim-

inating such backgrund events and it simply consists in hodoscopes upstream

the target, leaving the central region around the beam uncovered. Thanks to

the information gathered by such detectors, a large fraction of the unwanted

trigger signals can be eliminated by demanding the absence of a signal in the

veto system, together with a coincidence in two hodoscope planes.

Figure 10: Momentum distribution (left) and horizontal profile at the target
center for incoming particles obtained with a random trigger (right). The shaded
areas correspond to particles passing through both target cells [31].

The first hodoscope of the veto system, 𝑉𝑒𝑡𝑜1 is placed at 𝑧𝑣1 = −800𝑐𝑚 and

the second smaller one is located at 𝑧𝑣2 = −300𝑐𝑚; they are placed at different

positions along the beam in order to veto divergent particles passing through

the hole in one of them, as it can be seen in Fig.11. The application of 𝑉𝑒𝑡𝑜1

reduces the rate of triggered signals to 9%, while 𝑉𝑒𝑡𝑜2 alone reduces it to 46%:

the combination of the two instead leads to the 4% of the rate without any vetoed

signal. Moreover, in order to be able to veto tracks passing through both holes

in𝑉𝑒𝑡𝑜1 and𝑉𝑒𝑡𝑜2, a further𝑉𝑒𝑡𝑜𝑏𝑙 was placed at 𝑧 = −2000𝑐𝑚 upstream from

the target and its inclusion in the trigger condition leads to a further reduction

of 1.4% [31].
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Figure 11: Examples of vetoed (𝜇1, 𝜇3) and not vetoed (𝜇2) muon tracks [31].

The trigger conditions described above are the first to be applied to the scat-

tering events happening in COMPASS experimental hall, consistently reducing

the total amount of data gathered by the detectors. Nevertheless, additional

conditions are of course applied in secondary phases of the data acquisition

process. In the following pages, the orignal and current architectures of the

DAQ system are presented, providing a general description of the flow of data

from frontend electronics to the complete event storage.

3.2 Read-out Electronics and Data Acquisition

The presented DAQ architecture reflects the state of the experiment in 2007,

therefore is not fully descriptive of the current functioning of the system. As for

many other parts of the spectrometer, the DAQ has been updated several times

during the long work life of COMPASS, and even though several components

and techniques have been improved, the approach used in the data acquisition

process remains the same. One of the fundamental features of the readout

electronics and DAQ required since the very first COMPASS proposal, was that

they had to serve different physics programs with different detector setups. The

amount of channels and the rate of the first level trigger made the design of the

system very challenging, requiring LHC type frontend electronics. In order to

cope with the high particle fluxes of 2 · 108 muons per spill of 4.8 s, a typical

event size of 35 kB, trigger rates of about 10 kHz for the muon beam and a design
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value of 100 kHz triggers for the hadron beam, a pipelined and nearly dead-time

free readout scheme had been adopted [30].

The analogue signals from the various detectors were preamplified, discrim-

inated and digitized in most cases close to the detectors, since the gain was

twofold: no loss of signal quality (only short cables required) and cost for cables

considerably reduced. The synchronization of the digitizing and readout units

was performed by the Trigger Control System (TCS) [19], but its main function

was and still is to distribute trigger, time reference and event identification in-

formation to the readout driver modules and to generate the strobes for gating

some of the Analog-to-Digital Converters.

Figure 12: Original COMPASS DAQ system according to 2007 architecture [11].

Upon arrival of the trigger signal, the data were transferred via fast links to

CATH [29] and GeSiCa modules, which were also responsible for distributing

the trigger signals to the front-ends and for initializing them during the system

startup (Fig.12). These readout modules combined the data and transmitted

the subevents at a maximum throughput of 160 MB/s to 512 MB readout spill
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buffer cards. Such electronic components had been developed specifically for

COMPASS, while the final event building system was based on high performance

PCs and standard Gigabit Ethernet components. The event building took place

during both the on and off spill phases, resulting in an average data rate of 70

MB/s. The final events were eventually recorded on tape remotely at CERN’s

central data recording facility, located in the computer center.

In order to match the high rate capabilities of the trigger system and readout

electronics, the data acquisition system had to rely on buffering and parallelism.

The regrouping of the data streams was supported by the spill buffer cards

and the DAQ computers which formed the event building network. Due to

impurities in the trigger system, the output streams contained events which

were still useless for the analysis, therefore to save bandwidth, storage space

and reconstruction time, the output streams were filtered by an Online Filter

(second level trigger). This configuration allowed a simultaneous reading from

the detectors and writing to the event building network without overhead or

bandwidth losses. The online filter increased the purity of the triggers and al-

lowed for a cost effective reduction of the amount of tapes needed for recording.

For the physics program with hadron beam, the online filter was required to

reduce both the bandwidth needed for transferring the data to the computer

centre as well as the bandwidth needed to record the data on the tape drives. In

addition, one could also profit from a reduced CPU time for the reconstruction

of the data. At a trigger rate of 10 kHz and with 12 event builders sharing the

load, the allowed average decision making time was 4 ms per event. For the

two physics programs, two filter algorithms had been developed. In the muon

program the presence of a reconstructed beam track was required: the silicon

microstrip and scintillating fibre detectors upstream of the target, together with

the Beam Momentum Station, had to have recorded a sufficient number of hits

from the beam particle. The algorithms were based on the coincidence between

the trigger time and the times measured by the aforementioned detectors, re-

specting their different time resolutions and allowing for the redundancy of the

detector systems [11].

28



3.3 iFDAQ

Due to the increased requirements in 2014 in terms of data acquisition scal-

ability, reliability and data throughput, the COMPASS experiment developed

the intelligent FPGA-based Data Acquisition System (iFDAQ), using a novel ap-

proach to the event building network. In contrast to traditional event builders

which are based on distributed online computers interconnected via an Ethernet

Gigabit network, the event building task is now completely executed in hard-

ware by FPGA boards and it exploits, for the configuration of the modules, the

IPBUS communication protocol (see Sec.3.3.4) developed at CERN [20]. Such

improved stability opened up the possibility to keep the system continuously

running without interruption of data flow, reducing time consuming synchro-

nization phases at each start and stop of a run.

Figure 13: Topology of the iFDAQ system according to the 2018 setup [24].
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The current COMPASS data acquisition system (iFDAQ) has been commis-

sioned in 2014, replacing the previous DAQ, which had been in use since the very

first conception of the experiment. In the COMPASS spectrometer, there are in

total more than 300,000 detector channels of which the iFDAQ collects hit, time,

and, for a subset of detectors, also amplitude information. The data streams

emerging from the detector frontends are multiplexed and sent to the FPGA

switch, which receives all subevent information and assembles a full event from

these fragments. The recombination and merging of event information during

the event building process follows a strict pattern whose consistency is verified

at each stage. Finally, the data are read out by four readout engine computers

and stored on hard drives (see Fig.13) [24].

Since beam time is highly valuable and it is usually provided 24/7 for most

of the calendar year, high reliability of the DAQ system is of major importance to

High Energy Physics experiments. The overall time period when no physics data

can be taken is called the iFDAQ downtime, while the iFDAQ uptime denotes

the overall time period when the iFDAQ is stable and ready for a proper data

taking. During the data taking going from 2015 to 2017, there were three main

sources of instabilities leading to time periods when no physics data could be

taken (see Fig.14). The first one WAS a memory access error caused by scrambled

data being transferred to the RAM of the readout engines. It was the most time

consuming failure, since it requires to reboot all readout engine computers and

the recovery procedure takes approximately 10 minutes on average. The second

one was an unrecoverable loss of synchronization in the hardware event builder

leading to a safe stop of a run. The safe stop of a run might be considered as one

of the intelligent elements of the iFDAQ since a safe stop prevents more serious

problems which would lead to the higher downtime. The third source of the

downtime is based on unknown software crashes being not fully understood.

Luckily in the meantime COMPASS has gained a lot more data acquisition

stability, currently reaching a 99% and higher DAQ uptime [24].
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Figure 14: Absolute downtime of the iFDAQ per month and corresponding
relative uptime [24].

Another significant contribution to the loss of beam time originates from the

time that is needed to initiate a synchronized data flow through the event builder.

Establishing synchronous processing of data by all involved hardware nodes is

achieved by distributing trigger and spill cycle information to all nodes via the

Trigger Control System (TCS) and applying reset commands and timeouts. To

synchronize the processes correctly, the iFDAQ needs to take advantage of some

proper timing mechanism. The best choice to achieve this is to exploit the signals

generated by SPS, which are naturally synchronized with the proper phases of

the spills (see Fig.16 in Chapter 4).

3.3.1 Spill Synchronization

The beam for the experiments at the CERN M2 beam line is provided by

the SPS, which delivers the particle flux in bursts called spills. Before being

able to deliver a particle spill to COMPASS, the SPS has to be filled with proton

bunches, the bunches have to be accelerated to the desired energy, and the

particle load inside the SPS has to be debunched. Only when the particles

circulate homogeneously distributed in the SPS, a spill of stable particle intensity

can be delivered. After one filling is completely extracted from the machine, the

cycle starts over [24].
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Fig.15 shows the proton intensity in the SPS during two cycles, which to-

gether form an exemplary SPS super-cycle. For COMPASS, the particles in the

SPS are slowly extracted over the course of 4.8 s. After the spill, there are at

least 5 s without spill, since filling the SPS with two injections from the Proton

Synchrotrone (PS) takes approximately 2 s, and ramping up the energy and de-

bunching (flat top region) takes another 3 s. However, the off-spill period can

take significantly longer, depending on the SPS super-cycle.

Figure 15: SPS Particle extraction procedure: proton beam intensity vs time. A
whole SPS super-cycle is reported [24].

To initiate data flow through the event builder and establish correct timing,

three cycles are required (and thus lost) before first physics triggers can be sent

to the frontend electronics. The actual synchronization procedure is explained

in detail in the next chapter of this work, when the context of the creation of the

Artificial Spill Generator project is reported.
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3.3.2 Continuously running mode

To safe time-consuming stop and restart of the data flow between two runs,

the continuously running mode was introduced. It ensures a smooth transition

between two consecutive runs without intervention of the shift crew and without

stop of data flow through the event builder. Moreover, the idea of maintaining

data flow in the event builder has been extended to periods when no data taking

is requested. To do so a new state, the so called Dry Run, was introduced. It

maintains the data flow through the whole acquisition chain and provides a

monitoring data stream to the online monitoring tools but the acquired events

are not written to hard drives. Therefore it serves as verification, monitoring,

and diagnostic stage, even in periods when the experiment is not ready for

data taking. The consecutive step relevant to real data taking is called Run and

its start is possible on the next delivered spill since synchronization is already

established. Using the Dry Run state and a smooth transition between runs,

the data flow in the iFDAQ is only stopped in case of serious errors or in case

of interventions on detectors that require a stop of trigger distribution to the

frontends.

To sum it up, the iFDAQ using the continuously running mode is a self-

running datataking system where decisions related to the continuously running

mode are taken based on delivered events. Before the incorporation of the

continuously running mode, the procedure for starting a new run after another

run was successfully finished was always connected to a loss of beam time.

Firstly, there is loss due to the already mentioned necessary synchronization

phases (the start of run procedure requires three spills for the synchronization

of the TCS with the SPS cycle and the terminating procedure takes one spill to

end up data taking). Secondly, there is beam time loss due to necessary human

intervention: before the incorporation of the continuously running mode, a run

had to be started manually. Hence an inattentive shift crew could have added a

significant part to the beam time loss by not starting the next run right after the

previous run is stopped.
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Eliminating both factors, the continuously running mode contributes to the

efficiency of data taking with a 1.7% gain [24].

3.3.3 iFDAQ Software

The software side of the iFDAQ is used for control and monitoring of the

final three layers of the iFDAQ hardware (FPGA multiplexers, FPGA switch,

and readout engines) and for reading out physics events from readout engines

[5]. It consists in the following processes:

• Master process. It runs on a dedicated computer and acts as the communi-
cation mediator between the iFDAQ processes. It incorporates supervision
of states of the iFDAQ control system and the error handling.

• Slave-control. It runs on the readout engine computers and handles mon-
itoring and configuration of the FPGA cards using direct communication
through IPBUS.

• Slave-readout. It runs on the readout engine computers and handles
decoding and verification of physics data.

• Runcontrol GUI. A Graphical User Interface (GUI) which provides control
of the iFDAQ.

• MessageLogger. A process which collects messages from the slave and
master processes and stores them in a database.

• MessageBrowser. A graphical user interface which allows the user to view
messages from the slave and master processes in real time or retroactively
browse the messages stored in a database.

All the above processes interact with or are part of the hardware components in

the experiment. As it will become clear in Sec., said processes are fundamental

for initializing, monitoring and tuning all of hardware components of the DAQ,

in particular the Artificial Spill Generator module.

3.3.4 IPBUS Protocol

The communication between the different entities is performed through IP-

BUS protocol, which is a simple packet-based control protocol for reading and

modifying memory-mapped resources within FPGA-based IP-aware hardware

[33].
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It defines the following operations:

• A Read of user-definable depth. Two types are defined: address incre-
menting (for multiple continuous registers in the address space) and non-
address-incrementing.

• A Write of user definable depth, again with (non-)incrementing types.

• A Read-Modify-Write bits (RMWbits) atomic bit-masked write, defined
as 𝑋 := (𝑋&𝐴)|𝐵, which allows to set/clear a subset of bits within a 32-bit
register.

• A RMWsum increment operation, defined as 𝑋 := 𝑋 + 𝐴, which is useful
fro adding values to a register.

The IPBUS protocol is transactional, meaning that for each read, write or

RMW operation, the IPBUS client (typically software) sends a request to the

IPBUS device; the device then sends back a response message containing an

error code (equal to 0 for successful transactions), followed by the returned data

in case of reads. Moreover, in order to minimize latency, multiple transactions

can be concatenated into a single IPBUS packet.

The IPBUS suite of software and firmware implements a reliable high-

performance control link for particle physics electronics and has nowadays

successfully replaced VME control in several large projects [20].
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4
Artificial Spill Generator

Figure 16: Yellow line: intensity of particle flux in the SPS accelerator, as ex-
plained in Fig.15 White line: beam energy delivered at the SPS experiments
cited in the image. Red lines: synchronization signals [10].

COMPASS is located at the end of the M2 beamline in the north area of

CERN and it exploits the particles accelerated by SPS. Together with the spills,

three synchronization signals are sent to COMPASS experimental hall (Fig. 16),

namely WWE,WE and EE, in order to properly identify the time limits of the

particle bunches. The Warning Warning Extraction (WWE) is received at the

very beginning of the spill, typically ≈ 1 s before particles arrive. The second

Warning Extraction (WE) sets the actual beginning of the spill and it is received

by the experimental hall a few 10 ms before the particles arrive.
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This signal actually enables the electronics that are responsible for switching

on the Trigger and the DAQ systems of the experiment, allowing the possibility

to acquire data. The last signal Extraction End (EE) is eventually responsible

for signalling the end of the particle flux, therefore it advises the experimental

setup that the data taking can be suspended until the next SPS cycle [15].

The instructions are 2𝜇 s Transistor-Transistor Logic (TTL) signals, adjusted

each time to the SPS super-cycle timing, and they are converted into Nuclear In-

strumentation Module (NIM) signals [14] to be feed into the Field Programmable

Gate Arrays (FPGA) board. They usually follow a precise time scheme, but sev-

eral variations can occasionally occur in the SPS extraction. The flat top region

is generally 4.8 s long, while the WWE instruction usually comes 1 s before WE. In

best super-cycle mode for the north area of CERN, the shortest super-cycle is

14.4 s. WWE,WE and EE are represented in Fig.17 as impulses raising from 0 to 1

but in the incoming description of the Artificial Spill Generator module, due to

the inverted logic of the FPGA (see Sec.4.1), they will be treated as falling values

from 1 to 0. In the same image, the SPS timing structure is reported with respect

to the on/off spill phases as interpreted from COMPASS experiment and DAQ

system.

Figure 17: SPS instructions with respect to DAQ spill phase. The DAQ state refers
to the status of the Finite State Machine internal to COMPASS DAQ system.

The creation of an Artificial Spill Generator internal to COMPASS framework

happens to be necessary for several reasons. The data taking process relies

entirely on the WWE,WE,EE signals, therefore the necessity of generating them

internally and independently from SPS is fundamental.
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Unfortunately, the signal generation procedure can sometimes result in the

production of an imperfect spill structure. For example, the distribution of

timing signals can be stopped during machine developments for maintenance

reason or to perform tests. In addition, due to issues with the level converters of

timing logic at SPS, some of the three signals can be missing. These events and

all the other possible configurations of imperfect signal generation could cause

the failure of the DAQ of the experiments downstream from SPS, therefore a

controlled generation of instructions must be introduced in order to solve this

problem. Moreover, for testing purposes of stand alone DAQs, which does

not rely on the beam, an artificial generation of these signals is essential. The

possibility of selecting these forms is also extremely important for the proper

functioning of the so called Dry-Run mode, which is used to inspect the correct

functioning of the detectors and DAQ. Even if the complete absence or imperfect

generation of SPS signals should be rare, the experiments must be able to deal

with this possibility. For this reason, the artificial instructions can entirely

substitute the real signals.

Together with a generation module, the creation of a monitoring system

for the parallel instruction signals is mandatory. The two sources of signals

(SPS and internal) must be selected accurately from the DAQ control Graphical

User Interface (GUI), setting a 1-bit switch value to 1 for the Real and to 0 for

the Artificial instructions. The transition between the two and the following

forwarded result to the DAQ must be coherent. The superposition of signals

coming from different sources must always be avoided, since it can result in the

representation of a spill structure with false time coordinates, possibly causing

a failure of the DAQ or a huge loss of data. The Artificial Spill Generator module

was created with the purpose of solving several timing and loading issues. In

particular, the main achievement for COMPASS collaboration, which saved a lot

of physics data, was the feature of skipping spills. Since the loading of a faulty

detector takes a lot of time and has to be executed without the arriving of any

SPS signal (which would otherwise re-synchronize the front-end electronics and

lead to a DAQ crash), the DAQ has to be in stop state. The introduction of the
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fast 14.4 s SPS super cycle results in a too short off-spill phase to do the detectors

loading, therefore the Artifical Spill generator allows to skip the next spill and

saves a considerable amount of time to load the detector in the stop mode of the

DAQ.

Eventually, several useful services for the measurement of some important

spill parameters were also added, together with the possibility to visualize them

directly on the DAQ user interface. Such specific tool was implemented on

hardware in order to exploit the low latency and reliability of the FPGA board

and eventually to be inserted in the DAQ pipeline of COMPASS experiment. In

the following pages, the various components present within the firmware and

their logic are presented. The circuit mappings are reported with a deductive

approach, starting from macroscopic block diagrams and eventually explaining

the detailed waveform diagrams of each entity.

4.1 FPGA and VHDL

Figure 18: Picture of FPGA board used for the Artificial Spill Generator imple-
mentation.

Before moving to the actual description of the firmware, a few fundamental

concepts that will be used in the following sections must be introduced. The

logic of the Artificial Spill Generator has been built by means of Very high-
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speed integrated circuit Hardware Description Language (VHDL), eventually

implementing the whole firmware on the FPGA board visible in Fig.18. FPGA

are semiconductor devices that are based around a matrix of configurable logic

blocks, connected via programmable interconnects. They can in fact be repro-

grammed to a desired application or functionality requirement after manufac-

turing. This particular feature distinguishes FPGA from Application Specific

Integrated Circuits (ASICs), which are custom manufactured for specific design

tasks [35]. The board in use for this project was an ARTIX-7 FPGA XC7A-35 with

64 LVDS and 2 LEMO channels, 2 NIM Input/Output pins for Trigger signals, 4

SFP cages for data read-out and slow control and 5 V power supply.

VHDL programming language presents several concepts which are typical of

its nature and which need to be properly introduced for a better understanding

of the rest of this work. First of all, it is mandatory to provide the definitions

of the objects exploited within VHDL codes. Nonetheless, also the "variables"

used in the codes can belong to different classes and types, which present slightly

different characteristics and are used for different purposes. A summary of what

is used in the Artificial Spill Generator codes is reported below [18]:

Objects

• entity: It’s a design block of the logic, representing a specific integrated
circuit with Input and Output signals. Different entities will contain a
different architectures describing its logic behaviour.

• component: A smaller entity can be inserted into the architecture of a
bigger one in order to perform a specific task, therefore becoming one of
its components.

• process: A process describes the logic behaviour of an entity inside its
architecture. Several processes can be part of a single entity, acting either
with concurrent statements (active at the same time) of with sequential
statements.
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Classes
• constant: An object of class constant holds the same value for its entire

life. It is set when the object is created and cannot be changed afterward.

• variable: The only state associated with a variable is its current value,
which can be modified with a variable assignment statement. When this is
executed, the variable immediately assumes its new value and no history
is kept about the previous ones.

• signal: It is used to transport values between different parts of a design,
which could be processes and concurrent statements of the same architec-
ture or entities that compose a design hierarchy

Types
• integer: Usual type containing integer base 10 numbers.

• boolean: Usual type containing TRUE/FALSE values.

• STD_LOGIC: 1-bit binary value, mainly used in this work for impulse signals
and flags.

• STD_LOGIC_VECTOR: Fixed length vector of binary values, mainly used in
this work as 32-bit measured values.

4.2 General Structure

Figure 19: Macroscopic structure of the Artificial Spill Generator firmware.
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The macroscopic structure of the Artificial Spill Generator can be divided

into two main entities: the Generator and the Manager (Fig.19). The former is

responsible for the generation of the artificial signals, which are always present

and independent from SPS ones. The latter has the task to manage parallelly the

Real and Artificial signals, selecting one of the two according to the ext_switch

signal and sending the result to the DAQ system.

The whole module can be controlled remotely from the DAQ’s GUI via an

IPBUS interface [20]. The user is able to tune several parameters, both for

the generation and for the management of the signals, which are sent to hard-

ware through IPBUS communication protocol. The 1-bit signals ext_reset and

ext_enable are also set in the GUI, since they are meant for starting, stopping or

resetting the whole module. The FPGA board eventually returns a series of mea-

surements and flag values that are useful for the control room to have insights

on the phases, the structure and the duration of the spills. The system relies

on the 125 MHz clock internally generated by the FPGA, which corresponds to

a 8 ns time unit (see Tab.15). In the following pages the behaviour of the logic

involved in the above cited macro-structures is described, going into the details

of the different entities and paying particular attention to the physical reasons

behind the choices of the implementation.

4.3 Generator

Signals Bits In/Out Description
clock 1 Input Periodic: 125 MHz.
reset 1 Input Boolean for resetting.
enable 1 Input Boolean for enabling.

WWE_delay_in 32 Input Distance between WWE-WE.
WE_delay_in 32 Input Distance between WE-EE.
SIGNAL_LENGTH 8 Input Duration of the impulses (8 ns units).
WWE_out 1 Output WWE signal
WE_out 1 Output WE signal.
EE_out 1 Output EE signal.

Table 1: Summary of In/Out signals of Generator entity.
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The logic implemented in the Generator entity allows the control room user

to freely tune the main parameters of the artificially generated spill structure,

giving them the possibility to generate impulses of variable length and distance

between one another. For example, the SIGNAL_LENGTH parameter indicates the

duration of each impulse (WWE,WE,EE) in terms of 8 ns units3, while the distances

between WWE-WE, WE-EE and EE-WWE are counted in terms of 1 ms units. These

parameters are set according to the specifics required; they are then sent to

the FPGA via IPBUS protocol and received in input by the Generator. This

component also receives the FPGA’s 125 MHz clock signal, together with the

enable and a reset 1-bit values set in the GUI (see Tab.1).

In order to ease the debugging and to build the logic of the Generator entity

in an analytic way, four different smaller components have been defined with

specific purposes and they have been optimally linked together in order to reach

the final artificial signal generation goal. First of all, a 1 kHz periodic signal

generator was defined (in the following called ms_counter) in order to reach

the 1 ms timescale for the measurement of the intervals between the instruc-

tions. Then a variable_counter entity was designed, even though originally

created for another section of the whole project. Its aim is to raises a 1-bit

end_of_count flag when a specific maximum value is reached. It was used

in this context to keep track of the time intervals between the instructions and

send the flag signal to the Finite State Machine (FSM) component. Moreover, an

ipbus_params_register entity has been defined in order to guarantee a smooth

transition between the possible changes in the parameter values. Mentioned en-

tities are firstly presented in detail and eventually connected to one another, in

order to better explain the overall functioning of the Generator.

3Since the important features of the signals are their rising and falling edges, the length of
the impulse does not carry fundamental information. Nonetheless, the possibility to tune such
value had to be inserted in the logic, in order to provide a good versatility of the circuit for
possible future needs.
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4.3.1 ms_counter entity

Signals Bits In/Out Description
clock_in 1 Input Periodic: 125 MHz.
enable 1 Input Boolean for enabling
clock_out 1 Output Periodic: 1kHz.

Table 2: Summary of In/Out signals of ms_counter entity.

The ms_counter entity is responsible for the generation of a periodic 1 kHz

signal. In order to reach this goal, it receives in input the 125 MHz clk_i signal

together with a 1-bit enable value and it outputs the clk_o wave with a period

of 1 ms. As internal signals, the count_m_tick is defined as a 32-bit logic vector,

with the aim of counting the number of periods of the fast clock before reaching

the desired value. The m_tick is instead the internal signal version of the clk_o,

which is initialized to one and updated to its opposite when the time limit is

reached (see Tab.2).

With a brief calculation, it is clear that the entity needs to count up to 125.000

fast clock periods in order to reach a 1 ms complete slow clock cycle, therefore a

constant variable semiperiod is defined inside the VHDL code as a 32-bit integer

value, in order to have a fixed number to compare to the counter’s result. The

logic needs to be able to update the m_tick signal to its opposite value when the

counter has reached the equivalent of a semiperiod of the slow clock (0.5𝑚𝑠),

counted in terms of 8𝑛𝑠 units. The constant semiperiod value is therefore fixed

at 62500, which in binary format translate to "1111010000100100".

𝑛𝑝𝑒𝑟𝑖𝑜𝑑𝑠 =
𝑇1𝑘𝐻𝑧

2
𝑇𝐹𝑃𝐺𝐴

=
0.5𝑚𝑠
8𝑛𝑠 = 62500 → ”1111010000100100”

The process inside the ms_counter’s logic is only sensitive to the rising edge

of the fast clock signal clk_i. When this event happens, if the enable value is

set to 0, count_m_tick is reset to 0 and m_tick is reinitialized to 1, while if the

enable is instead set to 1, the counter can perform its work. In particular the

logic states that if count_m_tick has reached the semiperiod value, then the
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m_tick needs to be updated to its opposite value and the counter reset. Until

this does not happen, count_m_tick is increased of one unit at each clk_i cycle.

Eventually, the value of m_tick is assigned to clk_o at every activation of the

process, producing the periodic 1kHz signal originally required (Fig.20).

Figure 20: Wave behaviour of the ms_counter component.

4.3.2 variable_counter

Signals Bits In/Out Description
clock 1 Input Periodic: 125 MHz.
enable 1 Input Boolean for enabling.
reset 1 Input Boolean for resetting.

max_clock_cycles 32 Input Max number of clock periods.
result 32 Output Real-time count result.

end_of_count 1 Output 8 ns impulse.

Table 3: Summary of In/Out signals of variable_counter entity.

The variable_counter entity was originally designed to perform the mea-

surements on the time intervals between the spill signals actually forwarded to

the DAQ system (see Sec. 4.5.1), but it turned out to be useful also in this context,

since its logic has been defined with a good versatility.

In particular, together with the 1 kHz clock, enable and reset signals,

this component receives in input the 32-bit logic vector that indicates the max-

imum number of clock cycles that has to be reached. In this way, a single

entity can be applied in multiple contexts: the same would not have been

possible with the definition of a constant value inside the component’s logic.

The variable_counter returns in output the result of the count (only for sim-

ulation purposes) and it raises a 1-bit flag value when the comparison with
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the input signal max_clock_cycles states that the maximum value has been

reached. Another difference with respect to the previous entity is that while

the ms_counterwas built to generate a periodic signal with a specific frequency,

the variable_counter is only meant to produce an impulse of the duration of a

clock cycle (see Tab.3).

Also in this case, the logic of the component is made out of one single

process, which is sensible to the rising edge of the input clock4. When reset=1

or enable=0, the end_of_count flag and the inner signal temp_result are both

reinitialized to 0. Whenever the opposite combination of enable and result

occurs, respectively 1 and 0, the counter performs its duty. By means of an if

statement, temp_result is increased by 1 unit at every clock cycle; when the

maximum value is reached, the counter is reset and the end_of_count is raised

to 1. The temporary counter result is sent in output at each activation of the

process, in order to keep proper track of its value. The 1-bit end_of_count flag

stays high only for 1𝑚𝑠 (Fig.21).

Figure 21: Wave behaviour of the variable_counter component with enable=1.

4.3.3 IPBUS_Register

The creation of an IPBUS_register entity turned out to be fundamental in

order to guarantee the smooth transition of the main parameters of the artificial

signals. Together with the FPGA’s clock signal, the ipbus_params_register re-

ceives as input four 32-bit STD_LOGIC_VECTOR signals, set by the user in the

4From the definition of the entity, there is no particular prescription on the frequency of the
input clock. Nevertheless in this case it has only been used with the 1𝑘𝐻𝑧 clock generated by
ms_counter, as it can be seen in Fig.21. The reason behind this choice will become clear in the
following sections.
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control room. These numerical values represent the duration of the inter-

vals between WWE-WE,WE-EE,EE-WWE instructions and they are called respectively

WWE_delay_in, WE_delay_in and EE_delay_in. The duration of the impulses is

also a tunable parameter, therefore the IPBUS register must be able to read this

value under the name of SIGNAL_LENGTH_in, which is a 8-bit STD_LOGIC_VECTOR.

After processing these information, the register is responsible for sending the

right values to the downstream entities, where the proper signal building is per-

formed. WWE_delay_out,WE_delay_out, EE_delay_out andSIGNAL_LENGTH_out

are outputted, together with a 1-bit soft_reset signal which is responsible for

signalling the change of the registered spill parameters (see Tab.4).

Signals Bits In/Out Description
clock 1 Input Periodic: 125 MHz.

WWE_delay_in 32 Input Time distance between WWE-WE.
WE_delay_in 32 Input Time distance between WE-EE.
SIGNAL_LENGTH 32 Input Duration of impulses (8 ns units).
WWE_delay_out 32 Output Time distance between WWE-WE.
WE_delay_out 32 Output Time distance between WE-EE.
SIGNAL_LENGTH 32 Output Duration of impulses (8 ns units).
soft_reset 1 Output 8 ns impulse.

Table 4: Summary of In/Out signals of IPBUS_register entity.

Even for this component, there is a single active process, sensitive to the rising

edge of the FPGA’s 125𝑀𝐻𝑧 clock received in input. Eight different variables

are defined internally to the said process and initialized to 0, with the aim of

storing two copies of the four signal parameters, registered at a time difference

of a single clock cycle.

At each clock’s rising edge, the input parameters are read and stored in

sl_new,WWE_new,WE_new and EE_new variables, which will always represent the

values instantly set in the GUI. A comparison between the old and new versions

of the parameters is performed at each activation of the process: if a difference

in any of those is retrieved, the values of the new variables are assigned to

the old ones and the soft_reset flag is raised to 1. If instead no difference

in the stored values is percieved, the input parameters are directly transferred
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to the output 32-bit signals, paying attention to perform a zero padding for

SIGNAL_LENGTH, in order to make it a 32-bit long STD_LOGIC_VECTOR. In this

situation, the soft_reset signal remains low. Eventually, in order to solve

initialization issues, if for any malfunctioning the component would not receive

any input data, the soft_reset flag would be raised, with the aim of protecting

the following entities of the logic and, in the end, also the DAQ system.

Figure 22: Wave behaviour of IPBUS_register component for the variation of
WWE_delay_in and WE_delay_in parameters.

In Fig.22 the general functioning of the component is represented. The

case of a synchronized change in the WWE_delay_in and WE_delay_in is re-

ported5, together with their relative variables and soft_reset impulse gener-

ation. EE_delay_in and SIGNAL_LENGTH are not present in the graph just to

simplify its interpretation.

5These parameters represent the set time interval that should pass respectively between
WWE-WE and WE-EE.
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4.3.4 Finite State Machine

Figure 23: Finite State Machine diagram.

The Finite State Machine process rules the transition of the logic between

seven possible states: idle, WWE_state, count1, WE_state, count2, EE_state

and delay (Fig.23). Together with the 125 MHz clock signal, it receives in

input the 1-bit ext_enable and the 32-bit SIGNAL_LENGTH value coming from

the IPBUS_register. The hard_reset signal coming from the control room is

instead convoluted with the IPBUS_register’s soft_reset by means of an OR

port: the result of this operation, simply called reset, is then forwarded to the

FSM6. The computed values of the three different variable_counter entities

and their corresponding end_of_count impulses are also received in input by

the FSM, since they are meant to count the time intervals between the generated

6In this context the collaboration required a different behaviour with respect to the one
implemented for the input parameters in the Manager’s component (see section 4.3.1). Whenever
the spill parameters of the Generator are changed in the control room, the effect must be instantly
visible in the logic, hence the resetting of the state machine either via hard_reset or soft_reset.
This means that any change in the parameters will cause an interruption of the signal generation.
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artificial instructions. At the same time, three enable and reset signals for

the said counters are returned in output, accurately timed depending on the

state in which the machine is found. As the last component in the Generator’s

architecture, the FSM is responsible for properly generating WWE_art,WE_art

and EE_art, which are eventually propagated to the Manager entity (see Tab.5).

Signals Bits In/Out Description
clock 1 Input Periodic: 125 MHz.

ext_enable 1 Input Boolean for enabling.
reset 1 Input Boolean for resetting.

SIGNAL_LENGTH 32 Input Duration of impulses (8 ns units).
result_1 32 Input Result of variable_counter_1 count.

end_of_count_1 1 Input variable_counter_1 8 ns impulse.
enable_1 1 Output Boolean for enabling variable_counter_1.
reset_1 1 Output Boolean for resetting variable_counter_1.
result_2 32 Input Result of variable_counter_2 count.

end_of_count_2 1 Input variable_counter_2 8 ns impulse.
enable_2 1 Output Boolean for enabling variable_counter_2.
reset_2 1 Output Boolean for resetting variable_counter_2.
result_3 32 Input Result of variable_counter_3 count.

end_of_count_3 1 Input variable_counter_3 8 ns impulse.
enable_3 1 Output Boolean for enabling variable_counter_3.
reset_3 1 Output Boolean for resetting variable_counter_3.
WWE_art 1 Output Artificial WWE signal.
WE_art 1 Output Artificial WE signal.
EE_art 1 Output Artificial EE signal.

Table 5: Summary of In/Out signals of the FSM entity within the generator
component.

The actual FSM process is activated by the rising edge of the 125 MHz clock

and it is initialized to the idle state. In this phase every counter is reset and

the output instruction signals WWE_art, WE_art and EE_art are held constant at

1. Whenever the reset and enable equal respectively to 0 and 1, the machine

is able to move to the next state. As a safety measure, an if statement has

been defined in each state, in order to deal with the possible sudden changes of

the ext_reset and ext_enable values. If the condition reset=1 OR enable=0

should happen, each state would be moved back to idle, resulting in an overall
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re-initialization of the machine.

The WWE_state is the phase in which the first instruction impulse is built

(Fig.24). A counter_WWE 32-bit logic vector is used to count up to the input value

of SIGNAL_LENGTH, which fixes the duration of the impulse in 8 ns time units.

During the count, the WWE_art value is lowered to 0 in order to create the falling

edge signal; whenever the time limit is reached it is brought back to 1, stating the

end of the WWE_art instruction. At this point the variable_counter1 entity is

enabled, which is responsible for keeping track of the distance between WWE-WE

instructions during the count_1 phase. The machine is then moved to the next

state.

Figure 24: Wave representaation of the idle-WWE-count1 FSM transition.

The count_1 state is maintained until the variable_counter_1 entity pro-

duces an end_of_count1 impulse that signals the necessity to start developing

the WE_art instruction (Fig.25). In the other transitions reported in Fig.23, the

machine alternates between states in which the creation of the impulses is done

(WE_state and EE_state) and states in which the logic needs to wait for the

proper time value between instructions (count_2 and delay). Eventually, the

order of the states follows a loop pattern, with the aim of reproducing the pe-

riodicity of the Artificial signals. After the final delay state is reached, which

represents the time distance between the EE instruction of the previous spill with

the WWE instruction of the following spill, the loop starts back from the initial

idle state.
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Figure 25: Off-scale wave representation of count_1-WE-count_2 FSM transi-
tion.

The artificial instruction generation is reported in Fig.26 with respect to the

FSM states. The picture is not accurately representing the time behaviour of

the various signals, since the impulses and the difference between them live

on different time scales, respectively ns and ms. An accurate representation of

the WWE,WE,EE and idle states would report them as almost instantaneous with

respect to the states in which the variable_counters are active (see Fig.51).

Figure 26: Off-scale representation of instructions w.r.t. states.

4.3.5 Generator’s Detailed architecture

The Generator’s logic exploits all the previously described components in

order to properly generate the artificial instructions. Three different variable

_counter entities are implemented with the aim of separately keeping track

of the time intervals WWE-WE, WE-EE and EE-WWE, while one single copy of

ms_counter and IPBUS_register is used and the FSM deals with the proper

instruction generation (see Fig.27). Since different components need to work

on different time scales, the FPGA fast clock is only received in input by the

IPBUS_register, the ms_counter and the FSM processes.
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The variable_counter entities instead need to keep track of the time inter-

vals between instructions, therefore they need to perform measurements with 1

ms time units, exploiting the 1 kHz clock signal generated by ms_counter.

Figure 27: Detailed architecture of the Generator component (see Tab.1).

The spill parameters set in the GUI are sent to the IPBUS_register and

properly processed; the delay values between WWE-WE, WE-EE and EE-WWE are then

forwarded separately to the three different variable_counter entities, where

they are interpreted as the maximum number of reachable clock cycles. The

SIGNAL_LENGTH value instead is only read by the FSM process, where specific

states are responsible for the impulse generation and the measurement of their

duration. Also the ext_enable value is only read by the FSM, since it simply

works as a binary switch of the artificial signals generation.

The FSM process is the core entity of the Generator component. By means

of an organized and strictly ruled ordering of its states, it is responsible for the

actual generation of WWE_art, WE_art and EE_art. Depending on the states in

which it is found, the machine can output six different internal signals, aimed

at resetting or enabling the three variable_counter entities. At the same time,
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the end_of_count flags outputted by the variable_counters are read by the

FSM. This feedback allows the machine to know when the maximum number of

clock cycle has been reached and it acts consequently on the change of its states.

Defining different entities for different purposes (like in this case, FSM and

variable_counters) allows the creation of asynchronous processes, it simplifies

the debugging of the code and it improves the effectiveness of the architecture.

4.4 Manager

Figure 28: Detailed architecture of Manager component.

The Manager component represents the core logic of the Artificial Spill Gen-

erator firmware. It is responsible for monitoring the Artificial and Real instruc-

tions, selecting the one to be sent to the DAQ according to the switch signal.

Even though the initial switch value is set from the control room, the Manager is

both able to read it and overwrite it, depending on the different necessities of the

experiment. In the following, the switch=1 value will represent the selection of

the instructions coming from SPS, while the opposite switch=0 will correspond

to the exploitation of the artificially generated signals.
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Signals Bits In/Out Description
WWE_real 1 Input SPS WWE signal.
WWE_art 1 Input Artificial WWE signal.
WE_real 1 Input SPS WE signal.
WE_art 1 Input Artificial WE signal.
EE_real 1 Input SPS EE signal.
EE_art 1 Input Artificial EE signal.
clock 1 Input Periodic: 125 MHz.
switch 1 Input Signal selection(1:Real, 0:Artificial).
ext_reset 1 Input Boolean for resetting.
enable 1 Input Boolean for enabling.

max_waitingtime_WWE 32 Input Limit of Timeout service.
WWE_final 1 Output WWE forwarded to DAQ.
WE_final 1 Output WE forwarded to DAQ.
EE_final 1 Output EE forwarded to DAQ.
result_WWE 32 Output Measured distance between WWE-WE.
result_WE 32 Output Measured distance between WE-EE.
cycle_time 32 Output Measured distance between spills.
timout_WWE 32 Output Real-time value for WWEwaiting time.
actual_switch 1 Output Result of switch internal selection.
dynamic_update 1 Output Flag signalling forced switch.
timeout_flag 1 Output Flag signalling timeout service.
wait_endofspill 1 Output Flag: non-update of parameters.

SPS_in_spill_number 32 Output Received SPS spill signals.
SPS_out_spill_number 32 Output Processed SPS spill signals.
ART_in_spill_number 32 Output Processed Artificial spill signals.

Table 6: Summary of In/Out signals of the Manager entity.

Three main entities contribute to the correct functioning of the Manager

component, namely the Detector, the Selector and the Finite State Machine.

Additional smaller spill_counters are inserted inside the Selector and down-

stream from the FSM, in order to count the number of received and processed

spills. Thanks to the FSM process, several measurements on the spill parameters

are performed and can be readout via IPBUS, together with some useful flag

values that signal specific characteristics of the said spills. The logic behaviour

of the said components is explained in the following sections, together with a

detailed description of how they interact with each other.
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The Input and Output signals of the Manager are shown in Tab.6, even if their

nature will become clear only in the following sections. The whole architecture of

the Manager component is reported (see Fig.28), with a precise explanation of its

main services and purposes. Eventually, the various measurements performed

are contextualized within the logic of the firmware and the requirements of the

experiment.

4.4.1 Detector

Signals Bits In/Out Description
clock 1 Input Periodic: 125 MHz.

max_waitingtime_WWE_in 32 Input Limit of Timeout service.
switch_in 1 Input Incoming switch signal.

max_waitingtime_WWE_out 32 Output Limit of Timeout service.
switch_out 1 Output Outgoing switch signal.
ipbus_change 1 Output 8 ns impulse: changes in IPBUS.
switch_change 1 Output 8 ns impulse: change in switch.

Table 7: Summary of In/Out signals of the Detector entity.

The Detector is responsible for keeping track of any changes in the values

received from the control room, in order to guarantee a smooth transition be-

tween them. It receives in input the maximum number of clock cycles that can

be measured before the arrival of WWE instruction, namely WWE_waitingtime,

together with the boolean ext_switch signal and the FPGA 125 MHz clock. At

the same time it returns in output two 1-bit values aimed at signalling the varia-

tion of any input parameters, simply called ipbus_change and switch_change:

these will eventually result to be fundamental for the correct management of the

spill structure in the FSM process. After being processed, the ext_switch and

WWE_waitingtime values are forwarded to the downstream entities (see Tab.7).
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Figure 29: Detector’s wave behaviour for switch and WWE_waitingtime sudden
changes.

Four different variables (32-bit STD_LOGIC_VECTOR for the IPBUS parameters

and 1-bit for the switch value) are defined inside the Detector and initialized to 0,

in order to store the old and updated values of the parameters received in input.

The process is activated by the rising edge of the 125 MHz clock and its logic

resembles the one of the IPBUS_register entity described in the previous pages

(see section 4.2.3). In particular, every 8𝑛𝑠 all the input parameters are stored in

the new variables. The detection of changes for the waiting time and switch value

are separated by two different if statements, since they conceptually represent

different cases for the treatment of the spill structure. Nevertheless, the logic

behind the variation detection is the same: whenever any difference between

the old and new variables is present, the formers are assigned with the values of

the latters and the 1-bit change impulse is raised to 1. If none of the variables is

subject to any change with respect to the previous clock cycle, the old variables

are assigned with the input parameters and the impulses are brought back to 0.

In Fig.29 the wave representation of the Detector’s signals is reported. As it

is clear from the image, the output values are updated with a three clock cycles

delay with respect to the input ones, corresponding to an overall latency of 24

ns.
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4.4.2 Selector

Figure 30: Detailed architecture of Selector component.

Inside the Selector’s logic there are two concurrent processes, which paralelly

perform the signal selection and the count of the number of incoming SPS

spills (Fig.30). The whole entity receives the Real and Artificial instructions

in input, which are read by the selection process. The WWE_real in particular

is also sent to the spill_counter component, as it will be fundamental for

the proper SPS spill count (see section 4.5.3). The results of the selection are

eventually returned in output and sent to the downstream FSM entity. The

selection process happens according to the definite_switch value received

from the FSM, which is the processed result of what it is originally received in

input as ext_switch by the Detector. Such 1-bit value also works as enabling

signal for the spill_counter, since it is only meant to count the incoming SPS

instructions (definite_switch=1=enable). It eventually returns in output the

measured spill number at every rising edge of the 125 MHz clock (see Tab.8).
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Signals Bits In/Out Description
clock 1 Input Periodic: 125 MHz.

stored_switch 1 Input switch selected in FSM.
ext_reset 1 Input Boolean for resetting..
WWE_real 1 Input SPS WWE signal.
WE_real 1 Input SPS WE signal.
EE_real 1 Input SPS EE signal.
WWE_art 1 Input Artificial WWE signal.
WE_art 1 Input Artificial WE signal.
EE_art 1 Input Artificial EE signal.
WWE_out 1 Output Selected WWE signal.
WE_out 1 Output Selected WE signal.
EE_out 1 Output Selected EE signal.

SPS_in_spill_number 32 Output Received SPS spill signals.

Table 8: Summary of In/Out signals of the Selector entity.

Figure 31: Off-scale Selector’s wave representation.

The actual logic of the Selector is extremely simple. It just consists in a single

process, activated by the rising edge of the FPGA clock signal. By means of an if

statement, the Real signals are selected for the definite_switch=1 case, while

the Artificial ones are returned in output in the opposite definite_switch=0

configuration. To solve initialization issues, since the definite_switch signal

is looped back from the downstream FSM entity, if none of the above conditions

are satisfied, the output WWE,WE,EE instructions are constantly set to 1 (which

means that, due to the inverted logic, a 0 value is outputted).
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In Fig.31 the wave representation of the logic’s behaviour is reported. It’s

important to highlight the fact that the timing of the variation for the definite_

switch signal is not randomly depicted in the picture. Since it is originally set by

the control room’s user, it could be possible a priori to have a sudden change of

its value during the on-spill phase. Nevertheless, the superposition of different

spill structures in the output signals would certainly result in a DAQ failure,

since it could not process two subsequent WWE or WE instructions. The treatment

of this issue and the proper timing of the definite_signal exchange is one of

the main purposes of the FSM, therefore from the Selector’s point of view the

change of the definite_switch value will always conveniently happen after EE

and before WWE instructions.

4.4.3 Finite State Machine

Figure 32: Processes inside Manager’s FSM component.

The internal architecture of the FSM entity is made out of four concurrent pro-

cesses: switch_register, state_change, edge_detection and output_valid.

They all have specific purposes and they eventually contribute to the correct

functioning of the most complex entity in the firmware’s architecture. The con-

nections between the cited processes are reported in Fig.32, even though the

whole structure of the FSM component is not represented in detail.
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state_change exchanges many other signals with different entities in the logic

in order to perform specific measurements, but they are not reported in this

phase to simplify the description of the circuit (see Tab.9). In the picture, the

signals pointing to the white boxes are part of the sensitivity list of the process

that receives them, causing an asynchronous functioning of the whole circuit.

Signals Bits In/Out Description
clock 1 Input Periodic: 125 MHz.

ext_enable 1 Input Boolean for enabling.
ext_reset 1 Input Boolean for resetting.
ext_switch 1 Input switch value set from GUI.
WWE_out 1 Output WWE signal forwarded to DAQ.
WE_out 1 Output WE signal forwarded to DAQ.
EE_out 1 Output EE signal forwarded to DAQ.

Table 9: Summary of In/Out signals of the FSM entity within the Manager’s
component.

The switch_register process simply works as a controlled gate for the

incoming ext_enable and ext_switch. It is activated by the 125 MHz clock and

by the idle_flag 1-bit signal generated by the state_change process. When

idle_flag=1 the circuit is in the idle state, meaning that since it is in the off-spill

phase it is safe to read the incoming switch and enable values and store them

in their internal versions inner_switch and inner_enable variables. These

will eventually be processed by state_change and they will not be allowed to

change again until the next idle state, since their possible mid-spill variation

would result in the superposition of instructions coming from different sources

(see Tab.10).

Signals Bits In/Out Description
clock 1 Input Periodic: 125 MHz.

ext_enable 1 Input Boolean for enabling.
ext_reset 1 Input Boolean for resetting.
inner_enable 1 Input Boolean for enabling.
inner_reset 1 Input Boolean for resetting.

Table 10: Summary of In/Out signals of the switch_register process (Fig.32).
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The main purpose of the edge_detection logic instead is to guarantee the

correct functioning of the state_change process, where the actual FSM struc-

ture is implemented. It is activated by the FPGA clock and by the incoming

WWE_in,WE_in,EE_in instructions. At each clock rising edge, the instructions

are read and stored in their delayed versions WWE_d,WE_d,EE_d, which are then

compared with the input signals at every activation of the process. As it is rep-

resented in Fig.33, the output signals have the structure of impulses, properly

timed in order to highlight the presence of falling and rising edges of the in-

struction values. The main reason why the delayed signals are stored is that it is

fundamental to compare the current values of the signals with the ones they were

assigned to at the previous clock cycle: in this way, if the comparison detects any

difference in them, we can be sure that a rising or lowering edge was present.

Since the process is activated at every variation of the clock but the delayed

signals are read only at its rising edges, the maximum latency reachable for the

transmission of the rising/falling edge information corresponds to a semi-period

of the FPGA clock, namely 4 ns. The logic implemented in the circuit follows the

formulae 𝑓 𝑎𝑙𝑙𝑖𝑛𝑔_𝑒𝑑𝑔𝑒 = 𝑑𝑒𝑙𝑎𝑦𝑒𝑑∧ 𝑖𝑛𝑝𝑢𝑡 and 𝑟𝑖𝑠𝑖𝑛𝑔_𝑒𝑑𝑔𝑒 = 𝑑𝑒𝑙𝑎𝑦𝑒𝑑∧ 𝑖𝑛𝑝𝑢𝑡,
which have been applied separately to the three instruction signals WWE,WE,EE.

In Fig.33 the wave behaviour of said process is presented, considering only the

WWE signal and not the complete set of instructions (see Tab.11).

Signals Bits In/Out Description
clock 1 Input Periodic: 125 MHz.
WWE_in 1 Input Selected WWE signal.
WE_in 1 Input Selected WE signal.
EE_in 1 Input Selected EE signal.
WWE_fe 1 Input WWE falling edge.
WE_fe 1 Input WE falling edge.
EE_fe 1 Input EE falling edge.
WWE_re 1 Input WWE rising edge.
WE_re 1 Input WE rising edge.
EE_re 1 Input EE rising edge.

Table 11: Summary of In/Out signals of the edge_detection process (Fig.32).
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Figure 33: Off-scale edge_detectionwave representation for WWE instruction.

The output_valid process works as a controlled gate for outputting the

instruction signals WWE_out,WE_out,EE_out and eventually send them to the

DAQ. It is activated by the rising edge of the 125𝑀𝐻𝑧 clock, the inner_enable

and the output_flag signals, the latter being generated by the state_change

process. At each rising edge of the clock, if the condition inner_enable=1 and

output_flag=1 is satisfied, the WWE_in,WE_in EE_in instructions are directly

forwarded respectively to WWe_out,WE_out,EE_out, otherwise the output values

are kept constant at 1 in order to avoid working with undefined signals. In this

way the state_changeprocess can regulate the signals sent to the DAQ, properly

timing them according to the states in which the logic is found (see Tab.12).

Signals Bits In/Out Description
clock 1 Input Periodic: 125 MHz.

inner_enable 1 Input Boolean for enabling.
output_flag 1 Input Flag for enabling output.
WWE_in 1 Input Selected WWE signal.
WE_in 1 Input Selected WE signal.
EE_in 1 Input Selected EE signal.
WWE_out 1 Output WWE signal forwarded to the DAQ.
WE_out 1 Output WE signal forwarded to the DAQ.
EE_out 1 Output EE signal forwarded to the DAQ.

Table 12: Summary of In/Out signals of the output_valid process (Fig.32).

The actual state_change process follows the diagram reported in Fig.34,

where the transition between the states idle, pre_warning, measure, stop

is described. It is activated exclusively by the 125𝑀𝐻𝑧 clock and it is initial-

ized with the idle state. This represents the one state in which the logic is

found in between different spills and it will be described in detail in the fol-
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lowing sections. In this phase the majority of the circuit’s safety checks are

performed, the measurements are reset, the definite_switch value is chosen,

the idle_flag is set to 1 and the output is blocked via output_flag=0. The

next state is only reachable when the WWE_fe=1 comes from the edge_detection

process, signalling the beginning of the spill with the pre-warning instruction

(see Tab.13).

Figure 34: Logic Diagram of the FSM’s process state_change.

In this state the machine is still waiting for the the arrival of the WE instruction,

signalled by WE_fe=1, which states the actual beginning of the on-spill phase:

when this happens the logic is moved to the measure state, where the DAQ

effectively starts collecting data from the detectors. When the particle spill

reaches its end, the EE_fe impulse moves the machine to the final stop state.

The latter is responsible for sending in output the measured values collected

throughout the spills and it resets several spill-specific flags which are no longer

useful. The machine is moved back to the idle state when EE_re=1, making

this state last only for a short amount of time with respect to the previous ones.

While the others are present in between instructions, therefore on the seconds

scale, this one is only available for the duration of the single EE instruction,
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corresponding to a SIGNAL_LENGTH value in the scale of micro seconds. The

state vs instructions relation is reported in Fig.35, even though clearly off-scale

due to graphical impossibilities. A more truthful representation of the impulses

can be seen in Fig.51.

Signals Bits In/Out Description
clock 1 Input Periodic: 125 MHz.

inner_enable 1 Input Boolean for enabling.
inner_switch 1 Input Fixed switch signal.
ext_reset 1 Input Boolean for resetting.
WWE_fe 1 Input WWE falling edge.
WE_fe 1 Input WE falling edge.
EE_fe 1 Input EE falling edge.
WWE_re 1 Input WWE rising edge.
WE_re 1 Input WE rising edge.
EE_re 1 Input EE rising edge.

output_flag 1 Output Flag for enabling output.

Table 13: Summary of In/Out signals of the state_change process (Fig.32). A
complete record of the signals is reported in Tab.6.

Figure 35: Off-scale representation of instructions vs state_change states.

4.5 enable,switch and reset

One of the first requirements of the firmware was to implement the func-

tioning of the ext_enable, ext_switch and ext_reset signals. As it has been

stated already, the first is meant to work as an on/off command for the whole

circuit, allowing or not its communication with the DAQ, while the second sig-

nal represents which instruction source has to be selected by the logic. The

last one was instead implemented to give the possibility to completely reset

65



the whole hardware from the control room. Reaching the state_change entity,

these signals need to be analyzed with particular attention, since they repre-

sent the orders from the GUI which could have a larger impact on the correct

functioning of the whole circuit and, as a consequence, on the DAQ.

Figure 36: Top: wrong ext_enable behaviour, Bottom: correct inner_enable
behaviour.

Considering the ext_enable signal, some care has to be applied when con-

sidering its consequences on the instruction transmission. Its main purpose is to

switch on and off the whole circuit and the forwarding of the instructions to the

DAQ. The timing of such intervention has to be micromanaged. The commands

from the GUI are always sent regardless of the spill phase, therefore the circuit

could potentially be switched off mid-spill, causing a partial generation of the

instructions. Since this would correspond to a certain DAQ failure, the logic

must be able to prevent this from happening (Fig.36).
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Thanks to the switch_register, the ext_enable signal is read and trans-

ferred to the inner_enable only when idle_flag=1. During its states loop, the

state_change component keeps referring to the stored inner_enable value, al-

lowing its update only at the next idle state. In this way, the rising or lowering

edge of the ext_enable signal happening mid-spill are only processed at the

beginning of the next bunch of particles. The downside of this behaviour is

that it can potentially represent a data loss in the case in which the ext_enable

switches from 0 to 1 in the middle of the spill. Nonetheless, when the opposite

situation occurs, it is able to save the data of the last spill, waiting for it to end

before processing the ext_enable=0 information. This precaution represents a

huge gain for the experiment, since it guarantees a constant functioning of the

DAQ. At last, the inner_enable value directly acts on the output_valid entity,

allowing or blocking the forwarding of the instructions to the DAQ.

A similar treatment has to be used with the ext_switch value, even though

more complications occur due to the different nature of the signal (Fig.37). Just

like the ext_enable, also the ext_switch is transferred to its internal version

inner_switch thanks to the switch_register entity, exclusively during the

idle state. In this way the switch value received before the particles start

coming will be kept constant throughout the whole spill. Nonetheless, with

the introduction of the Timeout service (which will be explained in detail in

the section 4.5)the necessity of storing another processed version of the switch

value, namely definite_switch, becomes fundamental. This signal is most of

the time just another identical copy of inner_switch, initialized during the idle

state. The only moment in which they represent different values is when the

Timeout service comes into action, forcing the selection of the Artificial signals

instead of the Real ones (inner_switch=1 and definite_switch=0).
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Figure 37: Top: wrong ext_switch behaviour, bottom: correct inner_switch
behaviour

On the other hand, the ext_reset is not paired with any internally registered

signal. Its purpose is to work as a hard shutdown for the whole circuit, regardless

of the spill phase in which the logic is found. The possibility to completely reset

the whole hardware had to be implemented, even though it is clearly an action

which should be avoided. If the value of the ext_reset signal is raised to

1 from the GUI, all the counters in the circuit are reset, together with all the

data stored for the spill measurements. At the same time, the state_change

component is re-initialized to the idle state, regardless of the current spill phase

(see Fig.34). Since in this way the crash of the DAQ would be certain, for the

optimal functioning of the firmware ext_reset will always be set at a constant

0 value.
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4.6 Measurements

Together with the development of the Artificial Spill Generator firmware,

a series of important measurements were requested by the collaboration. The

real-time monitoring of the main spill parameters can give important insights

on the experiment’s state to the control room during data taking runs. The logic

is therefore enriched with a series of components dedicated to these measure-

ments, which are eventually transmitted in output and transferred to the GUI via

IPBUS protocol. First of all, the measurement of the effective distances between

WWE-WE and WE-EE instructions is performed. Moreover the cycle_time, which

is the time distance between different spills measured at each WWE’s falling edge,

is also continuously monitored. Eventually, for statistical purposes, the circuit

collects the number of incoming SPS spill signals and of Real and Artificial in-

structions effectively forwarded to the DAQ. The following sections contain the

detailed explanation of how these measurements are performed and inserted in

the previously described logic7.

4.6.1 Measurement of signal distances

The effective measurement of the time distances between WWE-WE,WE-EE in-

structions provide useful information for both monitoring the state of the ex-

periment and accelerator performance, enriching the data taking process. These

values can be useful for hardware synchronization and for proper spill timing

visualization, but they can also provide additional material for the event storage

and reconstruction. For example, the WE-EE interval fixes the beginning and

the end of the particles bunches, therefore it can be used as a cardinal trigger

information for selecting the appropriate interaction events within the flat-top

region of the spill.

7The results of the measurements explained in the following paragraphs are eventually
reported and visualized in real time in the control room’s GUI. Due to the variability of such
values (depending on the beam states and SPS timings) and hence to their non fully informative
feature, they are not reported in this work.
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In order to measure the effective distances between WWE-WE and WE-EE, a

dedicated counter entity has been exploited. It receives in input the 1 kHz clock

signal, together with the enable,validate,reset 1-bit values and it eventually

outputs the 32-bit STD_LOGIC_VECTOR with the counted result. Its internal logic

is extremely simple: it is made out of two concurrent processes, one dedicated

to the effective count and one which works as a gated output. The former is

activated as usual by the rising edge of the clock signal and it is responsible

for resetting the count when reset=1 and enabling it when enable=1, storing

the temporary result into an internal 32-bit signal. The latter instead is used to

return the final result in output only when validate=1.

Figure 38: Wave behaviour of instruction distances measurement.

Two copies of such entity are inserted inside the Manager’s FSM component,

in order to compute separately the WWE-WE and WE-EE time distances (see Fig.43).

The validate signal has been constantly set to 1 for the simulation phases,

since it was useful to retrieve the counted result in real time, while in the final

version of the firmware, it is raised to 1 only when the ultimate result is ready.

The 32-bit format for the count of clock periods happens to be enough for

the measurement limits for the COMPASS experiment and SPS cycle: a 32-bit

binary number covers the decimal representation up to a 232 − 1 = 4294967295

value, corresponding to the maximum number of countable clock cycles. The
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period of the 1 kHz clock being 1 ms, the maximum time difference measurable

is 4294967295 · 8𝑥10−9 = 4294967.295 s which abundantly covers the nominal

value for the SPS cycle time (see Sec.4.5.2).

Together with the WWE_counter, WE_counter entities, dedicated internal

signals have been defined in order to properly time the state_change phases

with the said counters. In particular, in the idle state all the counted results are

reset to 0; only when the machine is found in the pre-warning state, so when the

first lowering edge of WWE occurs, the WWE_counter is enabled via res_WWE=0,

en_WWE=18. At the next state change, the counter is stopped with en_WWE=0 but

not reset and the WWE-WE time distance result is stored in memory. The same

behaviour is implemented for the measurement of the WE-EEdistance, exploiting

of course a different counter component. Both retrieved values are sent in output

during the stop state via validate=1 and the counters are eventually reset

(Fig.38).

4.6.2 Cycle time

The so called cycle time is another fundamental parameter for the monitoring

of the incoming spill structure: it is defined as the time distance between WWE

instructions belonging to consecutive spills. Firstly, its measurement happens

to be extremely important to compare the effective and nominal SPS cycle time

values, in order to be sure that the information received from SPS corresponds

to what is actually received by the experiment. Secondarily, such value can

work as a checksum with other event-specific time coordinates stored during

data taking, which are fundamental for the final event building and analysis.

Moreover, when the artificial signals are being used, the cycle time measurement

represents a good verification method for the correct functioning of the whole

firmware.

8As it can be seen in Fig.43, the enable signals of the counters are convoluted with the
inner_enable value by means of an AND port. In this way, said entities need to be switched on
by both the control room and the correct state_change’s signals.
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Such measurement is performed by exploiting the counter entity described

before, even though for this case additional difficulties must be taken into con-

sideration (see Fig.43). The cycle time represents by definition the time interval

that the logic takes to perform a whole loop of states, using as a reference the

lowering edge of the WWE signal (see Fig.39). This measurement overlaps between

two different but contiguous spills, therefore the logic must be adapted in order

not to concentrate only on the spill structure, as all the entities described before

are doing, but also on storing the time coordinates of different spills happening

one after the other. Together with these improvements, the circuit must also

take care of the possible ext_switch or ext_enable differences that might occur

between consequent spills, since they could cause a wrong measurement of the

cycle time.

Figure 39: Off-scale wave representation of cycle_timemeasurement with con-
stant switch and enable signals.

In order to solve the issue of a possible sudden change of ext_switch or

ext_enable, an internal version of such signals is defined: cycle_switch,

cycle_enable. In every state of the Manager’s FSM, a comparison between

the inner and external versions of the above signals is performed; if any differ-

ence is retrieved, the cycle_counter component is reset via res_cycle=1 and

en_cycle=0. This implementation is necessary because, in the case of two sub-

sequent spills belonging to different sources, the measurement of the cycle time

would loose its reason to exist. The distance between WWE instructions would

represent a time interval with no specific physical meaning, therefore at every
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variation of the switch, the cycle time result returned in output is reset to 0. A

similar behaviour is expected for sudden changes of the enable signal: even

though the circuit always keeps track of the incoming instructions, it must be

able to measure the cycle time only if the instructions are returned in output too.

In order to be sure not to store any cycle time values when the WWE,WE,EE signals

are not processed by the DAQ, at any rising or lowering edge of the ext_enable,

the logic must be able to return a coherent result and reset itself (see Fig.40).

Figure 40: Reset cycle_time measurement due to exchange of instruction
source.

The cycle_enable and cycle_switch signals are only read during the

pre-warning state, when the beginning of the spill is certain and the lowering

edge of WWE has already occurred. In this context the counter is enabled via

res_cycle=0, en_cycle=1 and is kept active for the whole loop of states, if

none of the switch or enable values change. Even in this case, the validate

signal was kept constant at 1 for the simulation phases, in order to have a real-

time insight of the functioning of the circuit. In the final version instead, the

validate signal is raised to 1 only in the idle state, when the WWE lowering

edge signal has already arrived, but the logic has not yet been moved to the

pre-warning state. In this way, the difference in time between the stop and start

instructions for the counter is only one clock cycle (See Fig.41).
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Figure 41: Close-up wave behaviour of cycle time counter w.r.t FSM states.

4.6.3 Number of spills

Signals Bits In/Out Description
clock 1 Input Periodic: 125 MHz.
enable 1 Input Boolean for enabling.
ext_reset 1 Input Boolean for resetting.
WWE 1 Input Incoming WWE signal.

spill_result 32 Output Result of spill number count.

Table 14: Summary of In/Out signals of the spill_counter entity.

For statistical purposes, the collaboration wanted to be able to monitor the

overall number of complete spills received and processed by the experiment.

Such count is performed separately, by considering the amount of spills received

from SPS and the number of Real and Artificial instructions eventually processed

by the DAQ. Therefore a dedicated spill_counter entity has been defined and

inserted in three different copies within the circuit (see Tab.14).

Said entity receives in input the 125 MHz clock, the enable and reset sig-

nals and only a WWE instruction, used to state the beginning of a spill. Two

concurrent processes are defined within the spill_counter entity: the usual

edge_detection process highlights the presence of a falling or rising edge of

the WWE signal, while the counting is performed in the parallel process. Here,

the spill number is increased whenever a falling edge of WWE is detected, pro-

vided that the reset and enable values are found respectively in 0 and 1. As

usual, the opposite configuration would simply result in the complete reset of

the counter, setting the spill_number back to its initial 0 value. Eventually the

result is returned in output in the form of a 32-bit STD_LOGIC_VECTOR.
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Figure 42: Spill’s number counting with respect to received and processed WWE
instructions.

Since the behaviour of such entity is extremely simple, the difference in the

nature of the required measurements has to be found in the position of said

component within the circuit, rather than in its internal logic (see Fig.43). For

example, the measurement of the incoming Real signals has to be performed in

the Manager’s Selector component (see Fig.30). In this case, the WWE_real signal

is intercepted upstream from the selection component, in which the choice

between SPS or artificial signals is performed. The counted result is eventually

returned to the GUI, bypassing the rest of the firmware’s logic.

For the processed SPS and Artificial signals, the components are inserted

downstream from the Manager’s FSM. The WWE signal sent to the DAQ is convo-

luted to the said entities, in order to make sure to count the processed spills. The

differentiation between Artificial and Real signals is performed exploiting the

definite_switch value, received in input by the two spill_counter entities as

an enable value. Since definite_switch represents the source of information

effectively processed by the FSM (respectively equal to 1 for SPS and 0 for inter-

nal signals), it can be used as a pure enable for the Real signal selection, while

its logic opposite can enable the selection of the Artificial signals (see Fig.42).
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Figure 43: Detailed FSM’s architecture with measurement tools.

The results of the measurements explained above can be visualized in real

time from the control room’s GUI. In the following images, two screenshots of

the Detector Control System (DCS) are reported, in order to allow the reader

to properly picture the look of the experiment’s interface devoted to the DAQ

control and monitoring. In particular, Fig.44 shows the panel in which the

main parameters are set and visualized. At the center of the picture the "spill

structure type" (corresponding to the firmware’s switch value) can be selected,

choosing between SPS or ART sources. The "spill structure status" represent

instead the enable signal. The values reported below are those measured and

retrieved by the Artificial Spill Generator module: "Spill Cycle Time" reports the

summed WWE-WE,WE-EE values, while the "Spill Time" only reports the WE-EE

time distance. Eventually, the "SPS cycle time" is the measured cycle_time

value and the "Spill Count" simply reports the result of the addition of the

SPS_out_spill_number and ART_out_spill_number.
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Figure 44: DCS Panel: switch and enable values are set, WWE-EE, WE-EE,
cycle_time and SPS_out+ART_out are read.

In Fig.45 instead, the above values are reported as a function of time. It is

particularly interesting to notice how the Spill Cycle time and Spill Time remain

constant most of the time, reflecting the fact that the spills delivered at COMPASS

experimental hall maintain always the same structure. A different behaviour is

seen for the SPS Cycle Time, which can be discontinuous, due to the particle

beam delivery to the other experiments at CERN M2 beam line, and for the Spill

Count, which is of course constantly increasing.
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Figure 45: DCS Panel: spill parameters trending plot.

4.7 Timeout

The main purpose of the Artificial Spill Generator is to guarantee the optimal

functioning of the DAQ, constantly providing the necessary spill synchroniza-

tion signals WWE,WE,EE. In order to do so, the hardware module must be able to

fully substitute the information received by SPS with the artificially generated

one. It can occur that the transmission of the Real signals is for some reason

interrupted or ill-processed, therefore the firmware was built with several safety

measures that can properly manage this situation, without propagating the is-

sues directly to the DAQ and causing its crash. In order to limit the loss of

data and the possible system’s failure, the logic is equipped with a monitoring

counter that keeps track of the time passed between EE and WWE SPS instructions:

if such measure exceed a fixed threshold, meaning that the SPS transmission is

not being correctly received by the experimental hall, the firmware automati-

cally switches to the artificial generator (see Fig.46) and the user is informed via

the GUI of the DAQ (Sec.4.6.2).
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Figure 46: Wave behaviour of Timeout service.

This monitoring process is performed by a variable_counter entity (see

Section 4.2.2), activated during the idle state of the Manager’s FSM. This com-

ponent is responsible for counting the WWE waiting time in terms of 8𝑛𝑠 clock

periods and confronting it with the value received in input from the control

room. Whenever the counter reaches its maximum value, the component raises

a 1-bit force_switch flag which consequently acts on the FSM, forcing the

switch value from 1 (Real signals) to 0 (Artificial signals).

The logic of this process is described in detail in the following pages, paying

particular attention to the variety of signals used and their different purposes.

Since the overall switch signal’s behaviour happens to be quite peculiar, a dedi-

cated section has been inserted. The exploitation of adynamic_switch_register

for the IPBUS communication protocol completely changes the nature of such

signal, providing a better logic versatility as well as a much greater circuit

complexity. First of all, the switch circuit mapping is going to be described,

connecting the nature of each signal with its processing entities. The specific

implementation of the dynamic_switch_register and its logic behaviour are

then reported, eventually concluding the explanation with the precise presen-

tation of the timeout service’s logic.
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4.7.1 Switch signals

As explained before, the selection of the instruction source is performed by

setting the ext_switch value from the GUI. Such value is then processed by the

switch_register entity within the Manager’s FSM component, which transfers

the delayed information in the inner_switch signal exclusively during the idle

state, e.g. in the off-spill phase. The inner_switch information is read by the

state_change process and looped back to the Manager’s Selector component,

under the name of definite_switch, after having it properly processed and

controlled with the timeout service. In this way, the selection process knows

which source to read in order to look for the spill synchronization signals,

sending the results down again to the state_change entity. At the same time,

the definite_switch signal is also looped back to the dynamic switch register,

which rules the exchange of information via IPBUS protocol (see Fig.47). This

particular entity is both responsible for receiving the GUI orders and sending

them to the firmware module and for reading the definite_switch value from

the module and looping it back to the GUI. The detailed behaviour of such entity

will be described in the Section 4.6.2.

By looping back the information to the GUI, the control room’s user will know

that the module has forced itself into reading the artificial signals regardless of

the fixed input. In this sense, the insertion of the dynamic_switch_register

has the aim of mediating between the firmware’s independence and the user’s

lawful requirement to select a specific instruction source. Clearly, any other

hierarchy would be counterproductive for the whole system. If the user had

no limit in exchanging the switch value, he could easily cause the DAQ failure

in several possible ways: for example by switching it mid-spill or selecting the

Real instruction source when SPS is not correctly transmitting the signals. On

the other hand, the Artificial Spill Generator cannot be completely independent

in the selection of the instruction generators: the user must always be able to

control the spill signals source, in order to switch between the different DAQ

modes during data taking.
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Figure 47: Complete loop of the switch signal’s information.

4.7.2 Dynamic switch register

In the circuit, all the registers employed in the IPBUS communication proto-

col exploit the built-in package available in the CERN’s IPBUS firmware [9]. In

the code reported in Listing 1, two different types are defined. The ipb_wbus

arrays represent the exchanged information from master to slave, while the

ipb_rbus vector instead manages the exchange of information in the opposite

direction. As it can be seen in the code, these two types present a different

structure due to their different natures and purposes. They both rely on a 32-

bit STD_LOGIC_VECTOR to deliver data and they present a similar purpose 1-bit

value which comes before the data itself to enable the writing and the reading

processes (respectively ipb_strobe and ipb_ack). Moreover the ipb_rbus is

provided with a timeout service in the case in which the data are not properly

received from the slaves.
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1 library IEEE;

2 use IEEE.STD_LOGIC_1164.all;

3 package ipbus is

4 -- The signals going from master to slaves

5 type ipb_wbus is

6 record

7 ipb_addr: std_logic_vector(31 downto 0);

8 ipb_wdata: std_logic_vector(31 downto 0);

9 ipb_strobe: std_logic;

10 ipb_write: std_logic;

11 end record;

12 type ipb_wbus_array is array(natural range <>) of ipb_wbus;

13

14 -- The signals going from slaves to master

15 type ipb_rbus is

16 record

17 ipb_rdata: std_logic_vector(31 downto 0);

18 ipb_ack: std_logic;

19 ipb_err: std_logic;

20 ipb_timeout: std_logic_vector(15 downto 0);

21 end record;

22 type ipb_rbus_array is array(natural range <>) of ipb_rbus;

23

24 end ipbus;

Listing 1: IPBUS types [9]

For IPBUS protocol communication of the majority of the parameters in-

volved in the firmware, static_registers are used, even though they only

manage the exchange of information in one direction. They are deployed

within the circuit either for translating the information set by the GUI to the

firmware or for retrieving from the circuit the measured results and make

them available in the GUI. In the logic there is a natural distinction between

the values set from the user and the ones provided from the firmware itself.

Signals like ext_reset,ext_enable and max_WWE_waitingtime are always and

only fixed by the user and interpreted as orders by the circuit. On the other

hand, all the measures performed (for example WWE-WE,WE-EE time intervals,

as well as the cycle_time or the SPS_in,SPS_out,ART_out spill numbers) and

the flags wait_endofspill,timeout_flag are always calculated by the circuit

and delivered to the GUI. In Listing 2, the code that rules the behaviour of the

static_registers is reported 1.

1The codes reported in Listings 1 and 2 are not written by the author of this thesis. They
were provided by COMPASS collaboration, based on the CERN’s firmware components publicly
available online [9].
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1 library IEEE;

2 use IEEE.STD_LOGIC_1164.all;

3 use ieee.numeric_std.all;

4 library work;

5 use work.ipbus.all;

6 entity ipbus_reg is

7 port(

8 clk : in std_logic;

9 reset : in std_logic;

10 ipbus_in : in ipb_wbus; --request

11 ipbus_out : out ipb_rbus; --answer

12 read : out std_logic;

13 write : out std_logic;

14 update : in std_logic;

15 d : in std_logic_vector(31 downto 0);

16 q : out std_logic_vector(31 downto 0)

17 );

18 end ipbus_reg;

19 architecture rtl of ipbus_reg is

20 signal reg : std_logic_vector(31 downto 0);

21 signal ack : std_logic;

22 begin

23 process(clk) begin

24 if rising_edge(clk) then

25 write <= ’0’;

26 if ipbus_in.ipb_strobe = ’1’ and ipbus_in.ipb_write = ’1’ then

27 reg <= ipbus_in.ipb_wdata; --data are written

28 write <= ’1’;

29 elsif update = ’1’ then

30 reg <= d;

31 end if;

32 if reset = ’1’ then

33 reg <= (others => ’0’);

34 end if;

35 ipbus_out.ipb_rdata <= reg; --data are read

36 ack <= ipbus_in.ipb_strobe and not ack;

37 end if;

38 end process;

39 read <= ipbus_in.ipb_strobe and not ipbus_in.ipb_write;

40 ipbus_out.ipb_timeout <= X"0000";

41 ipbus_out.ipb_ack <= ack;

42 ipbus_out.ipb_err <= ’0’;

43 q <= reg;

44 end rtl;

Listing 2: Modified version of the IPBUS package [8].

The dynamic_switch_register has the unique characteristic to be able to

work at the same time in both communication directions. It is only used to

provide the necessary behaviour of the switch signal, which means that in its

default mode it must be able to read the fixed value from the GUI and forward it

to the firmware. At the same time, in the case in which the timeout service states

the absence of SPS transmission, it must also be able to retrieve the forced value

from the circuit and overwrite it on the GUI, in order to inform the user of the

actual source of instructions processed by the circuit at that time. The necessity
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of exploiting a single entity, instead of two parallel ones communicating in

opposite directions, is that the whole process needs to act on a single copy of

the switch signal and not on two redundant versions of the same wire.

As it can be seen from Listing 3, the overwriting behaviour is ruled by the

update value, which states that the dynamic_switch_register has to read the

switch value from the GUI and forward it to the firmware when update=0,

while it must invert its communication direction when update=1. The latter is a

1-bit value generated by the FSM’s state_change process and looped back to the

IPBUS slaves. It consists in a simple copy of the max_reached value generated

by the timeout’s logic, which will be better explained in Section 4.6.3.

1 library IEEE;

2 use IEEE.STD_LOGIC_1164.all;

3 use ieee.numeric_std.all;

4 library work;

5 use work.ipbus.all;

6 entity dynamic_reg is

7 port(

8 clk : in std_logic;

9 reset : in std_logic;

10 ipbus_in : in ipb_wbus; --request

11 ipbus_out : out ipb_rbus; --answer

12 read : out std_logic;

13 write : out std_logic;

14 update : in std_logic;

15 d : in std_logic_vector(31 downto 0);

16 q : out std_logic_vector(31 downto 0)

17 );

18 end dynamic_reg;

19 architecture Behavioral of dynamic_reg is

20 signal reg : std_logic_vector(31 downto 0);

21 signal ack : std_logic;

22 begin

23 master_to_slave : process(clk) is

24 begin

25 if rising_edge(clk) then

26 if update=’0’ then --if input comes from master

27 if ipbus_in.ipb_strobe = ’1’ and ipbus_in.ipb_write = ’1’ then

28 reg <= ipbus_in.ipb_wdata;

29 end if;

30 elsif update=’1’ then

31 reg <= d;

32 end if;

33 end if;

34 end process;

35 ipbus_out.ipb_rdata <= reg; --read data from FSM or master according to update

36 ipbus_out.ipb_timeout <= X"0000";

37 ipbus_out.ipb_ack <= ipbus_in.ipb_strobe;

38 ipbus_out.ipb_err <= ’0’;

39 q <= reg;--always output what read

40 end architecture;

Listing 3: dynamic_switch_register’ logic.
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4.7.3 Timeout and flags

The logic of the timeout service is entirely contained within the FSM’s idle

state and it follows these simple steps. First of all, a 1-bit max_reached value

is defined internally to the FSM component, in order to signal the reaching

of the maximum waiting time for the WWE instruction. Secondarily, different

cases are evaluated according to the values of the inner_switch. Eventually,

depending on each specific combination of max_reached and inner_switch, the

1-bit definite_switch signal is assigned with a different value.

The simplest scenario corresponds to max_reached=0 and inner_switch=0:

in this case the input received by the GUI imposes to analyze the artificial

signals. As a consequence, the timeout service is not required, since it is only

meant to switch the source from Real to Artificial. For this combination, the

output_flag (which is forwarded to the output_valid component to enable

the outputting of instructions to the DAQ, see Fig.32) is raised to 1 and the

definite_switch is assigned to 0, stating the necessity to analyze the spill

information received by the Artificial generator. Instead, if the Real signals

are required (meaning inner_switch=1), it becomes necessary to subdivide

again the logic according to the values of the force_switch signal generated

by the variable_counter component. In the case in which inner_switch=1

and force_switch=0, the variable_counter entity needs to start counting the

waiting time for WWE instruction; until the above conditions are satisfied, the

definite_switch signal is assigned to 1, as the inner_switch suggests.

Figure 48: switch’s wave behaviour within Timeout service. The blue
arrow represents the back propagation of the information through the
dynamic_switch_register.
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When the maximum value of clock periods is reached, meaning that SPS

has failed into transmitting the WWE instruction on time, the variable_counter

entity raises to 1 its force_switch value. This causes the logic to fall in the

max_reached=0, inner_switch=1 and force_switch=1 combination: in this

case, the definite_switch signal is set to 0, stating the necessity to move the

analysis to the artificial signals. At the same time the max_reached signal and an

timeout_flag are raised to 1, the latter being sent to the GUI to inform the user

that the switch signal has been forced by the firmware and that temporarily no

other input will be processed by the module.

When max_reached=1, the circuit knows that the switch value is no longer

the one originally set from the GUI, but better its forced version generated

by the logic itself. In this scenario, the timeout_flag is kept constant at 1

and the waiting time and cycle time counters are reset to 0. At this point a 4

clock periods dead time (corresponding to 32 ns) needs to be introduced, in

order to guarantee the proper functioning of the dynamic_switch_register.

The IPBUS protocol exchanges information between the GUI and the firmware

with a lower frequency with respect to the one of the Artificial Spill Generator

(respectively 25 MHz and 125 MHz), therefore the module needs to wait a

consistent amount of time before the information is looped back to the dynamic

register and overwritten (see Fig.48). After the 32 ns delay, when the updated

version of the inner_switch finally reaches the logic (inner_switch=0) the

forcing process has reached its end: the max_reached signal is brought back to

0, together with the timeout_flag at the next clock cycle.

At this point the module is brought back to its original state, after having

switched the source from Real to Artificial. The users can again change the inputs

from the GUI and the module would be ready to process them accordingly (see

Fig.49 for the detailed architecture).
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Figure 49: Detailed Manager’s architecture with Timeout service and Measure-
ments

4.8 Top Entity

For the implementation of the whole firmware, each entity described in the

previous pages was written on separate files. The behaviour of each component

was properly simulated with dedicated test benches, exploiting the Xilinx Vi-

vado Suite [34]. In Fig.50 an example of the simulation interface is reported. For

simplicity, the signals generated in the corresponding test bench do not follow

the effective period of the SPS supercycle, but they act on the 𝜇s timescale, since

the aim of the simulation was just to verify the effective behaviour of the logic

with respect to the SPS instructions structure. The measurements of the time in-

tervals WWE-WE, WE-EE and the counting of the waiting time for WWE instruction

are also visible in the picture.

The smaller entities were inserted into more complicated files as VHDL

components, thanks to the automatic building hierarchy of the Vivado pro-

gram. Eventually, the Generator and the Manager were properly inserted into a

top.vhd file provided by the collaboration, where all the necessary links of sig-

nals were performed according to the FPGA specifics and to the other modules

already present in the firmware.
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Figure 50: Simulation of the firmware’s behaviour for the case of superposition
of Real and Artificial signals.

As it can be seen in Tab.15, the whole module presents several features and

provides different useful services. First of all it can be switched on and off via

ext_enable and ext_reset signals, automatically synchronizing said instruc-

tions to the spill phase in which the experiment is found. In addition, it allows

the user to choose between two different sources of signal information (Artificial

and Real) via the ext_switch signal, which is both read and overwritten by the

module itself according to the instructions given by the Timeout service. Even-

tually, it provides the GUI with several useful measurements of fundamental

spill parameters, like the time distances between WWE-WE,WE-EE (respectively

result_WWE,result_WE in Tab.15), the cycle_time value and the number of

incoming SPS signals (SPS_in_spill_number) and processed SPS and Artificial

spills (respectively SPS_out_spill_number,ARTR_out_spill_number). Its con-

tribution to the collaboration allows a safer and more controlled management

of the WWE,WE,EE signals and of the relative DAQ usage (see Fig.19).
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Signals Bits In/Out Description
clock 1 Input Periodic: 125 MHz.

ext_switch 1 Input switch value set from GUI.
ext_enable 1 Input From GUI: boolean for enabling.
ext_reset 1 Input From GUI: boolean for resetting.

max_waitingtime_WWE 32 Input Max value for Timeout.
WWE_real 1 Input SPS WWE signal.
WE_real 1 Input SPS WE signal.
EE_real 1 Input SPS EE signal.
WWE_final 1 Output WWE forwarded to DAQ.
WE_final 1 Output WE forwarded to DAQ.
EE_real 1 Output EE forwarded to DAQ.
result_WWE 32 Output Distance between WWE-WE.
result_WE 32 Output Distance between WE-EE.
cycle_time 32 Output Distance between spills.
timeout_WWE 32 Output Real-time WWEwaitingtime.
dynamic_update 1 Output Flag signalling forced switch.
actual_switch 1 Output switch selected by FSM.
timeout_flag_out 1 Output Flag: Timeout reached.
wait_endofspill 1 Output Flag: no update of parameters.

SPS_in_spill_number 32 Output Received SPS spills.
SPS_out_spill_number 32 Output Processed SPS spills.
ART_out_spill_number 32 Output Processed Artificial spills.

Table 15: Summary of In/Out signals of the top entity.

4.9 Simulation and Tests

The firmware was simulated, tested and synthetized with the tools avail-

able in Vivado’s software, thanks to which the FPGA board was eventually

programmed through a simple USB connection. Once the bitstream had been

downloaded into the FPGA, the GUI and its interaction with the firmware were

simulated by means of Pyhton scripts, exploiting the IPBUS Ethernet based pro-

tocol. The script reported in Listing 4 rules the communication from the server

to the FPGA. In these simple lines each input parameter, which will eventually

be set by the user in the control room, is transferred to the FPGA by means of the

ipbus_write customized function. WE_DELAY,SPILL_LENGTH,SPILL_PAUSE re-

spectively represent the time distances between WWE-WE,WE-EE,EE-WWE instruc-
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tions interpreted by the Generator, while MAX_TIME represents the maximum

waiting time of the timeout service and ENABLE and SPILL_SWITCH are simply

different names for the usual ext_enable,ext_switch values.

1 !/usr/bin/python

2 import sys

3 import uhal

4 from argparse import ArgumentParser

5 DEBUG=1

6 uhal.setLogLevelTo(uhal.LogLevel.WARNING)#Open Connection

7 manager=uhal.ConnectionManager("file://connection.xml")

8 hw = manager.getDevice("arts_amber")

9 def ipbus_write(register,value,DEBUG=0): #Write IPBUS Register

10 hw.getNode(register).write(value)

11 hw.dispatch()

12 if DEBUG:

13 var = hw.getNode(register).read()

14 hw.dispatch()

15 print("%s = 0x%8.8x (%i)"%(register ,var,var))

16 hw.dispatch()

17 return var

18 else:

19 return 0

20

21 print ("===== SETTING ART. SPILL GENERATOR PARAMETERS====")

22 ipbus_write("TF_LENGTH",624,DEBUG) #624 = 100kHz Art. Trigger

23 ipbus_write("SIGNAL_WIDTH",10,DEBUG) # in 16 ns units

24 ipbus_write("WE_DELAY",2,DEBUG) #in ms

25 ipbus_write("SPILL_LENGTH",1,DEBUG) #in ms

26 ipbus_write("SPILL_PAUSE",9,DEBUG) #in ms

27 ipbus_write("MAX_TIME",625000000,DEBUG) #in 16 ns units, 10 sec

28 ipbus_write("ENABLE",1,DEBUG)

29 if len(sys.argv)>1: #0=Internal Signals, 1=SPS Signal

30 ipbus_write("SPILL_SWITCH",int(sys.argv[1]),DEBUG)

31 else:

32 print("Default Internal Spill Generator")

33 ipbus_write("SPILL_SWITCH",0,DEBUG)

Listing 4: Python code for Writing on FPGA via IPBUS protocol.

The nodes are retrieved by the code according to the connection.xml file, as

it can be seen from line 7 in Listing 4. Such file represents the mapping of read

and written variables and their corresponding registers withing the firmware.

Each variable has a different name, which corresponds to a different address in

the logic. The registers in the circuit were created with specific integer addresses,

reported in the connection file in their corresponding hexadecimal format.
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A different code was used to read the information from the FPGA (see Listing

6). By running multiple times Listings 4 and 6, different configurations of

the firmware were simulated and tested, in order to check its behaviour in an

heterogeneous set of possible scenarios.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <node id="TOP">

3 <node id="STATUR_REG" address="0x00000087" permission="r">

4 <node id "UCF_STATUS" mask="0x1" permission="r" />

5 <node id "LOCKED_MAIN" mask="0x2" permission="r" />

6 <node id "TCS_SYNC" mask="0x4" permission="r" />

7 <node id "IDELAYCTRL_RDY" mask="0x8" permission="r" />

8 </node>

9 <node id="SIGNAL_WIDTH" address="0x00000088" permission="rw" />

10 <node id="TF_LENGTH" address="0x0000008A" permission="rw" />

11 <node id="WE_DELAY" address="0x0000008C" permission="rw" />

12 <node id="SPILL_LENGTH" address="0x0000008E" permission="rw" />

13 <node id="SPILL_PAUSE" address="0x00000090" permission="rw" />

14 <node id="SPILL_SWITCH" address="0x00000096" permission="rw" />

15 <node id="MAX_TIME" address="0x00000098" permission="rw" />

16 <node id="ENABLE" address="0x0000009A" permission="rw" />

17 <node id="WWE_TIME" address="0x0000008B" permission="r" />

18 <node id="WE_TIME" address="0x00000097" permission="r" />

19 <node id="ACTUAL_SWITCH" address="0x00000099" permission="r" />

20 <node id="TEST_OUT" address="0x0000008F" permission="r" />

21 <node id="DYNAMIC0" address="0x000000C8" permission="rw" />

22 <node id="DYNAMIC_UPDATE" address="0x00000092" permission="rw" />

23 <node id="OPEN_6" address="0x00000094" permission="rw" />

24 <node id="test2" address="0x00000091" permission="rw" />

25 <node id="fw" address="0x00000093" permission="rw" />

26 <node id="IP" address="0x00000095" permission="rw" />

27 <node id="MAC" address="0x0000008d" permission="rw" />

Listing 5: File connection.xml: linking registers addresses to their variable

names.

A second phase of tests was performed in the laboratory, before deploying

the Artificial Spill Generator module in the experiment. The Real signals were

simulated analogically by exploiting a dual timer, a multiplexer and a delay gen-

erator, accurately tuning the time distances between the impulses in order to test

the majority of possible scenarios and the relative functioning of the firmware.

The actual instruction generation was checked with a classic oscilloscope (see

Fig.51), which allowed the verification of the structure of the spill instructions

as well as the comparison between the measurements retrieved with IPBUS

protocol and their actual values.
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1 !/usr/bin/python

2 import sys

3 import uhal

4 from argparse import ArgumentParser

5 DEBUG=1

6 #Open Connection

7 uhal.setLogLevelTo(uhal.LogLevel.WARNING)

8 manager = uhal.ConnectionManager("file://connection.xml")

9 hw = manager.getDevice("arts_amber")

10 #Read IPBUS Register

11 def ipbus_read(register):

12 var = hw.getNode(register).read()

13 hw.dispatch()

14 prnt ("%s = 0x%8.8x (%i)"%(register,var,var))

15 print("====ART. SPILL GENERATOR PARAMETERS====")

16 ipbus_read("TF_LENGTH")#624=100kHz Art.Trigger

17 ipbus_read("SIGNAL_WIDTH")#in 16ns units

18 ipbus_read("WE_DELAY")#in ms

19 ipbus_read("SPILL_LENGTH")#in ms

20 ipbus_read("SPILL_PAUSE")#in ms

21 ipbus_read("ACTUAL_SWITCH")

22 ipbus_read("ENABLE")

23 MAX_TIME=ipbus_read("MAX_TIME")

24 print("MAX_TIME: %.6f ms, %.6f sec"%(MAX_TIME*16.0/1000000.,MAX_TIME*16.0/1000000000.0))

25 WWE_time=ipbus_read("WWE_time")

26 print("WWE_time: %.6f ms, %.6f sec"%(WWE_time*16.0/1000000.,WWE_time*16.0/1000000000.0))

27 WE_time=ipbus_read("WE_time")

28 print("WE_time: %.6f ms, %.6f sec"%(WE_time*16.0/1000000.,WE_time*16.0/1000000000.0))

Listing 6: Python code for Reading from FPGA via IPBUS protocol.

Figure 51: Effective WWE,WE,EE representation from the oscilloscope. The
timescale used is not the nominal SPS one.
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5
Conclusions

After having passed the whole set of laboratory tests, the Artificial Spill

Generator has been deployed and programmed into FPGA board, which was

eventually inserted into the DAQ pipeline of COMPASS, and now AMBER,

collaborations. The Artificial Spill Generator firmware was exploited during the

very end of COMPASS 2022 data taking and it is currently deployed also inside

AMBER’s DAQ system.

It contributed with a consistent gain in terms of DAQ up time and, as a

consequence, with an increase in data taking efficiency and therefore physics

data recorded by the experiment. Having a smooth transition between Dry Run

and Run modes guarantees an optimal exploitation of the beam time, allowing

a variable flux of data in the event building system without storing any on tape.

Moreover, the possibility to visualize in real time from GUI the measured spill

parameters, allows the collaboration to have fundamental insights on the sta-

tus of the experiment, DAQ and beam. Eventually, the proper management of

the two sources of synchronization signals allows an accurate and safe treat-

ment of the incoming spills, preventing the DAQ from crashing because of the

superposition of said structures.

Regarding the possible future improvements of the firmware, additional fea-

tures could be inserted in order to ease the work of the shift crew in the control

room. An automatic synchronization and tuning of spill parameters, with re-
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spect to SPS timing scheme and its particle delivery to the experiments of the

M2 beam line, could avoid several human interventions and manual parameters

setting of the artificial signals. Moreover, the number of spills skipped and not

processed by the DAQ as a result of the safe stop implemented by the logic,

could still be counted and visualized in real time in the GUI, providing useful

statistical information for the amount of lost data.
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