
Gateway Architectures for
Interaction between the Current

Internet and Future Internet
Architectures

Piergiacomo De Marchi

Padova 2017

Relatore: Prof. Maria Elena Valcher
Co-Relatori: Prof. Adrian Perrig

Prof. Nicola Dragoni

University of Padova
Department of Information Engineering
Via Gradenigo 6/b,
35131 Padova, Italy
Phone +39 049 827 7500
info@dei.unipd.it
www.dei.unipd.it

Summary (English)

It is challenging for future Internet architectures to be deployed, given the dom-
inance of today’s Internet. A way to facilitate deployment of new Internet
architectures is to provide a Gateway to transparently facilitate communication
between the current and the future Internet. Moreover, a Gateway can exploit
properties of the future Internet architectures to provide improved functionality
even for legacy-to-legacy communication.

In this project, we design, analyze, and implement a gateway for the SCION se-
cure Internet architecture. First, the SCION Gateway enables communication
between legacy IPv4 or IPv6 hosts and SCION hosts, and second, it enables
legacy IP traffic to be encapsulated and transported over the SCION network,
hence obtaining SCION security properties even for legacy traffic. In this work,
we develop the SCION Gateway and we analyze the security implications/ben-
efits for legacy traffic to be interfaced with SCION. We analyze then how the
SCION Gateway can provide DDoS defense properties for the legacy hosts it
serves, without requiring any change to the legacy network besides obtaining
SCION network access.

We show that the interfacing between legacy Internet and SCION is possible
and efficient through the SCION Gateway, without requiring any major network
changes. We then analyze and demonstrate the security benefits that can be
achieved for the legacy network and hosts. We anticipate that the SCION
gateway can provide beneficial properties for real deployments.

ii

Preface

This thesis was prepared within the Network Security Group of the ETH Zürich
University in fulfilment of the requirements for acquiring a double M.Sc. in
Computer Science Engineering from the University of Padova and the Technical
University of Denmark.

The thesis deals with the necessity of a new gateway architecture for the inter-
action between the current Internet and the future Internet architectures and
emphasizes how this must be scalable and secure. It also deals with the design,
implementation and evaluation of a new type of application-level gateway which
interconnects the Internet with the SCION architecture.

The thesis consists of an extensive analysis of today’s Internet problems and the
requirements a new network architecture should satisfy to solve them, an exten-
sive background on the working principles of old and new gateway technologies
and finally, an exhaustive design of a secure and scalable gateway solution for the
Internet-SCION interconnection. The thesis also describes the implementation
choices made during the development process of the aforementioned gateway
system and the evaluation results obtained.

iv

This written document is delivered together with an electronic archive which
contains all the developed software (https://drive.google.com/open?id=
13opRbxUmdw7vgjhBtW7UnFyJF9UN9Tix), and a demo video that shows a few
tests carried out for one of the common scenarios (https://drive.google.
com/open?id=1ujqHT8Z_Rcd-6npMQmsccPRTkyTpu8V8).

Supervisor: Maria Elena Valcher meme@dei.unipd.it (UNIPD)
Co-Supervisors: Adrian Perrig adrian.perrig@inf.ethz.ch (ETH)

Nicola Dragoni ndra@dtu.dk (DTU)

Padova, 4-December-2017

Piergiacomo De Marchi

https://drive.google.com/open?id=13opRbxUmdw7vgjhBtW7UnFyJF9UN9Tix
https://drive.google.com/open?id=13opRbxUmdw7vgjhBtW7UnFyJF9UN9Tix
https://drive.google.com/open?id=1ujqHT8Z_Rcd-6npMQmsccPRTkyTpu8V8
https://drive.google.com/open?id=1ujqHT8Z_Rcd-6npMQmsccPRTkyTpu8V8

Acknowledgements

Gratus animus virtus est non solum maxima, sed etiam mater virtutum
omnium reliquarum.

– Cicero, Orationes Pro Cn. Palatio 80

I would like to express my special thanks and gratitude to my family that always
supported me as much as they could, particularly during the academic years.
My sister Arianna, my first supporter and my best friend, always there to show
me that there is a way out when things go wrong. My beloved mom Mariarosa,
constantly caring about me, listening to all my needs and treating me as her
crowning jewel. My father Antonio, my hero and my inspiration to do better
and better. Dad you taught me how to become a man and to love your neighbor
as you love yourself and I wish you were here today. I made you a promise that
day, that I would have made you proud of me, and I hope to be a step closer to
keep my word after today.

vi

Contents

Summary (English) i

Preface iii

Acknowledgements v

1 Introduction 1
1.1 Today’s Internet Problems . 2

1.1.1 The Internet Protocol (IP) 4
1.1.2 The Border Gateway Protocol (BGP) 4
1.1.3 Lack of Authentication and Trust 5
1.1.4 Attacks . 6
1.1.5 Transition to a New Architecture 7

1.2 Goals of SCION . 7
1.2.1 Availability in the Presence of Adversaries 7
1.2.2 Transparency and Control 8
1.2.3 Efficiency, Scalability, and Extensibility 10
1.2.4 Support for Global but Heterogeneous Trust 10
1.2.5 Deployability . 11
1.2.6 Non-Goals . 11

1.3 Motivations behind a SCION-Internet interconnection 12
1.4 Thesis Contribution . 13
1.5 Thesis Structure . 14

2 Background on Gateway Technology 17
2.1 Interprocess Communication . 18
2.2 Datagrams and Virtual Circuits 19
2.3 Gateways Basic Concepts and Degree of Gateway Participation . 20
2.4 Gateways: From Past to Present 22

viii CONTENTS

2.4.1 Interconnection of X.25 Networks 22
2.4.2 Interconnection of ARPA Research Networks 24
2.4.3 Interconnection of IoT Networks and the Internet 27
2.4.4 Interconnection of Wireless Sensors Networks and the In-

ternet . 28

3 Backround on SCION 31
3.1 Overview . 32
3.2 Control Plane . 33

3.2.1 Beacon Server . 33
3.2.2 Path Server . 34
3.2.3 Certificate Server . 34
3.2.4 Border Router . 34
3.2.5 Path Construction . 34
3.2.6 Path Revocation . 35

3.3 Data Plane . 36
3.3.1 SCION packets . 36

3.4 Security Aspects . 38
3.4.1 Algorithm Agility . 38
3.4.2 Authentication . 38
3.4.3 SCION Control Message Protocol (SCMP) 39

3.5 Important Background Concepts 39
3.5.1 SVC address . 40
3.5.2 Another Internet Naming Service (RAINS) 40
3.5.3 SCION Daemon . 41

4 Design 43
4.1 Problem Space . 44

4.1.1 IP-in-SCION Encapsulation 44
4.1.2 Routing and Connectivity 44
4.1.3 Addressing . 45
4.1.4 Support for Layer-4 Protocols 45
4.1.5 Support for SCION-only ASes 45

4.2 The SCION-IP Gateway . 46
4.2.1 Routing . 46
4.2.2 Mapping Legacy IP Addresses to SCION ASes 49
4.2.3 Encapsulation . 53
4.2.4 Decapsulation . 55
4.2.5 SIG Negotiation . 62
4.2.6 Client Protocol Negotiation 62

4.3 Common Scenarios (Life of a Packet) 64
4.4 Cases Not Covered . 66

4.4.1 SCION Hosts without IP Stack 66
4.4.2 Transparent Layer-3 Translation (AS Level) 66

CONTENTS ix

4.4.3 Transparent Layer-3 Translation (Service Level) 66
4.5 Need of many SIG services per AS 67
4.6 Introduced Benefits for the Legacy Traffic: DoS Mitigation . . . 68

5 Implementation 69
5.1 Tools Needed . 70
5.2 Topology of Development and Testing Environment 70
5.3 Structuring the Codebase . 72
5.4 SIG Software Blocks . 76

5.4.1 IP Receiver . 77
5.4.2 SCION Sender . 77
5.4.3 SCION Receiver . 80
5.4.4 IP Sender . 82
5.4.5 Delayed Packets Sender 86

5.5 Limitations . 90

6 Evaluation 93
6.1 Environment Setup . 94
6.2 Communication Performance . 96

6.2.1 Simple TCP Communication 97
6.2.2 Latency Aspects . 97
6.2.3 Goodput Aspects . 106
6.2.4 Response to SCION Network Losses 107

6.3 Scalability Issues . 108
6.3.1 Discovery Time for New ASes 108
6.3.2 Discovery Time for ASes that leave the SCION network . 109

6.4 DoS and DDoS Mitigation . 109
6.4.1 Traffic Filtering on Sending SIG 110
6.4.2 Origin Tracking . 110

7 Conclusions 113
7.1 Future Work . 114

Bibliography 117

Abbreviations 125

x CONTENTS

1

Introduction

The success of the Internet architecture is far beyond the initial expectations and
is massively influencing all the aspects of the modern society. However, security,
scalability and availability of this architecture do not match its importance and
frequently lead to serious consequences that in certain cases we can not even
quantify.

Patches to the Internet have been often constrained by its intrinsic design so in
the last decade researchers have proposed alternative solutions for a future In-
ternet architecture. NEBULA [1], NIRA [2] and XIA [3] are only a few examples
which address a subset of today’s Internet problems.

SCION (Scalability, Control and Isolation on Next-generation networks) is the
only future Internet architecture proposal that is under active deployment and
use, and its aim is to solve security, scalability and availability issues that plague
current networks. SCION achieves properties of: high availability, transparency,
scalability and support for heterogeneous trust – preserving today’s Internet
economic aspects unaltered – thanks to the Isolation Domains (ISDs) concept
[4] [5] [6] [7]. An ISD constitutes an interconnected logical set of Autonomous
Systems (ASes) administered by a subset of them called ISD Core. The ISD is
governed by a policy called Trust Root Configuration (TRC) negotiated by the
ISD Core.

2 Introduction

The SCION project counts among its collaborators and sponsors the Euro-
pean Research Council (ERC), Google, KDDI, the National Science Foundation
(NSF), Swisscom and SWITCH. Such a new Internet architecture seems really
promising and efficient, but much more than this is needed in order to over-
come the current status quo of the worldwide networks. Virtually all today’s
electronic devices are connected to the Internet. Stopping or changing this is
not a step than can happen overnight, so in order to successfully deploy SCION
architecture a good interoperation with the current legacy Internet and all its
working principles and protocol stacks is required.

In this thesis work we present the SCION-IP Gateway (SIG), the key that
enables communications between SCION and the legacy IP world. Specifically,
it enables IP end-hosts to transparently benefit from SCION network and obtain
improved security and availability over their communications. Furthermore,
being immune to IP spoofing and thanks to an ad-hoc authenticated IP-mapping
system, the SIG provides also DoS and DDoS defense proprieties for the legacy
hosts it serves.

We show then that the interconnection between SCION and the legacy Internet
is possible and efficient through the SIG without introducing any infrastructure
changes, apart from setting the SIG’s IP address as default gateway for all the
end-hosts within the AS the SIG belongs to.

In this introductory chapter, we first analyze more in details today’s Internet
vulnerabilities that plague our networks and that are the motivations for the
adoption of a new architecture [7] (Section 1.1). We later explain how the SCION
architecture addresses some of these problems [7] (Section 1.2). We then describe
the motivations to have an interconnection between SCION and Internet that
led to the choice of designing and implementing the SIG (Section 1.3). Finally,
in the last sections, we briefly illustrate the contribution to this research work
(Section 1.4) and provide the overall structure of the thesis (Section 1.5).

1.1 Today’s Internet Problems

“Internet Hourglass” is the widely accepted definition of the current Internet
architecture. The similarity between the shape of the Internet architecture and
the shape of an hourglass is immediately recognizable by having a look at Fig.1.1.
The Internet has been evolving a lot over the last 40 years: from the very first
packet switching researches in the 1960s, the introduction of the TCP/IP stack
and Ethernet LANs in the 1970s, the development of DNS and TCP congestion
control in the 1980s, the BGP, CIDR and NATs adoption in the 1990s, the

1.1 Today’s Internet Problems 3

Figure 1.1: An (incomplete) illustration of the hourglass Internet architecture
(reprinted from [8]).

advent of the last decade new access technologies (wireless, broadband, LANs,
WiMAX, etc.) and, naturally, the unceasing expansion of the application-layer
protocols and services (VoIP, peer-to-peer, video streaming, social networks,
multiplayer gaming, etc.). As a matter of fact though, only parts of the Internet
protocol stack (application and physical layers) have changed significantly – and
keep changing – while the core protocols (network and transport layers) have
been ossified[8].

This discrepancy, together with the continuous expansion of the Internet, has
led to numerous issues and vulnerabilities of the current architecture. It would
require an entire book to mention all of them, so in this section, as in the official
SCION book [7], we only present an overview of the salient ones that motivate
the adoption of a future Internet architecture.

4 Introduction

1.1.1 The Internet Protocol (IP)

IP is the principal communication protocol of the Internet that allows packets
forwarding between the end hosts. The first version (IPv4) was defined in 1981
and extended by IPv6 in 1998 [9]. IP routes packets from source to destination
choosing a single path that is unknown to the end hosts. The forwarding process
is done only on the basis of the next-hop and the complete path cannot be
tracked or influenced either by the end hosts, or by the middle routers. This
approach is trivial, but it comes with different drawbacks:

• Lack of separation between routing and forwarding: Forwarding of
IP packets only depends on the forwarding tables on routers which change
dynamically and can alter working paths and even break them.

• Lack of transparency and control: Being able to select and verify a
path is a desirable property, for example, in case an end host wants to
avoid the sent packets to be routed through an adversary or an untrusted
network, or in case it wants to choose the favourite path according to
a specific metric. Unfortunately, IP does not provide this and does not
provide multiple paths utilization either.

• Stateful routers: Forwarding tables maintained on routers to select the
next-hop has drawbacks. Performing a route table lookup for each packet
is very time consuming, therefore high-performance networking equipment
usually relies on Ternary Content-Addressable Memory (TCAM) hard-
ware that is extremely expensive and energy-consuming. Furthermore,
the memory size of the forwarding tables saturates the capacity of the
TCAM hardware. Finally, routers that keep track of network communi-
cation states can suffer from Denial-of-Service (DoS) attacks that aim to
exhaust these states [10].

1.1.2 The Border Gateway Protocol (BGP)

BGP is the routing protocol adopted by the Internet that connects independent
networks or ASes as Internet Service Providers (ISPs). Each AS advertises to
the outside world its reachability transmitting the list of the IP address prefixes
it owns through a BGP update message. Such BGP updates accumulate the
identifiers of the ASes through which they have passed, and they contain a list
of the advertised prefixes together with the next-hop to reach them. Each AS
collects such messages to create its locale routes. Two main types of business
relationships between ASes exist: the customer-provider relationship (where

1.1 Today’s Internet Problems 5

one AS pays another to forward its traffic) and the peering relationship (where
two ASes agree that connecting to each other without payment is mutually
beneficial). ISPs then select the best routes based on polices that reflect these
business relationships [11]. BGP comes with numerous drawbacks:

• Outages: Control plane and data plane are not separated on the Internet,
so the forwarding process may stop during route changes – that can derive
from attacks to the routing system. Furthermore, when BGP update
messages are shared, it may require up to tens of minutes for the network
to converge to a stable state [12] and this can lead to traffic interruptions.

• Lack of fault isolation: BGP is a global distributed protocol and the
BGP updates messages are spreaded all over the world among all the ASes.
Due to lack of hierarchy or isolation of different areas, a single faulty BGP
speaker can affect the routing of all the globe (as in the AS 7007 incident
[13]).

• Lack of scalability: The amount of messages BGP has to handle is
proportional to the number of global destinations. This plays against the
scalability of the system and also prevents BGPSec (a proposal for a secure
BGP) from frequently disseminating freshly signed routing updates.

• Single path: At the end of the BGP process, only one single path is
chosen to reach a given destination. Although some protocols allow to use
multiple paths in parallel, BGP does not provide path control to end-hosts
and does not provide multiple AS-level paths.

1.1.3 Lack of Authentication and Trust

Authentication is another important feature that the original Internet protocols
lacked and it is becoming more and more fundamental since attackers exploit
its absence in order to inject malicious packets to attack the network.

Today’s Internet most used authentication infrastructures are: RPKI that pro-
vides the roots of trust for BGPSec; TLS that allows web severs authentication;
and DNSSEC that provides authentication for DNS. However, the current situa-
tion is still unsatisfactory starting from the fact that all the mentioned protocols
suffer the compromise of a single entity (i.e., if a single entity is compromised,
so is the whole chain of trust). BGPSec and DNSSEC both rely on a single or
a very small set of roots of trust, while for TLS any one among the hundreds of
Certificate Authorities (CAs) can issue a certificate for any domain. Further-
more, the Internet Control Message Protocol (ICMP) does not even present an

6 Introduction

authentication method and allows injection of fake or spoofed packets. Finally,
the Internet also lacks of an infrastructure that enables two end-hosts to estab-
lish and share a secret key for end-to-end encryption and authentication, and
mainly relies on Trust-On-First-Use (TOFU) approaches [14].

1.1.4 Attacks

In this section some attacks against which Internet has little or no protection
are presented.

1.1.4.1 Prefix Hijacking

Since BGP does not provide a fault isolation mechanism, many Internet outages
are caused by a malicious or erroneous announcement of IP prefixes. This prob-
lem is called prefix hijacking. The most known example happened in February
2008 when Pakistan’s internal censorship attempt turned out in a global outage
of YouTube for about two hours [15].

A similar attack is prefix redirection, where an attacker eavesdrops the traffic
towards a destination by hijacking its prefix to receive its packets, but also engi-
neers BGP updates such that the packets finally reach the intended destination.
A striking case is reported in [16] where the attacker redirected the traffic to
make a detour across another continent.

The overall problem is exasperated by the fact that defining BGP routing poli-
cies is a very complicated and manual task, hence error-prone.

1.1.4.2 Spoofing and DDoS Attacks

ICMP is a very common protocol to send error or diagnostic messages and is used
by tools as ping and traceroute, but the ICMP packets are not authenticated
and their source address can be easily spoofed, possibly leading to DoS and
DDoS attacks [17] [18], or the disconnection of two BGP routers [19]. Regular
IP packets are also not authenticated and their origin can also be spoofed.

The most glaring examples of DDoS attacks are the one against Estonia in April
2007 that disrupted many of their critical infrastructures [20] and the very re-
cent one on Dyn’s DNS infrastructure [21] [22] that produced an unprecedented

1.2 Goals of SCION 7

amount of traffic – exceeding 1 Tbps – using Internet-of-Things (IoT) devices.

1.1.4.3 Forged TLS Certificates

Even a single compromised trust root can be used to create and distribute rogue
TLS certificates. A famous case is the one that involves the Iranian government
who used a forged certificate for Google and Yahoo services in order to perform
a Man-In-The-Middle (MITM) against its citizens. The attack was supposed to
be mounted on the DigiNotar CA, who signed the certificates [23] [24]. CAs hold
a significant power since they can produce valid certificates. However, browsers
and OS vendors hold even more power since they control which CAs are trusted
by default.

1.1.5 Transition to a New Architecture

Changing two fundamental Internet protocols as IP and BGP is an extremely
hard task, but necessary in the long run. Obviously, the transition will not
happen overnight and the only way to promote it is to provide methods and
tools that can gradually replace these old protocols and lead the evolution to-
wards the desired future network’s properties. The re-designing of a clean-state
architecture needs then to fix the problems that affected the old architecture,
maintaining, though, a high level of interoperability with the old functionality
and mechanisms that were adopted by its predecessor.

1.2 Goals of SCION

In this section we present what are the high-level goals of a secure Internet
architecture as proposed by the official SCION book [7]. We illustrate why they
are important and how they can be achieved. We also briefly describe which
are non-goals for an inter-domain point-to-point communication architecture
excluded by the design.

1.2.1 Availability in the Presence of Adversaries

SCION aims to be a point-to-point communication infrastructure highly avail-
able even in the presence of distributed adversaries: as long as there is an

8 Introduction

attacker-free path, this should be discovered and used with guaranteed band-
width.

Availability in presence of adversaries is very challenging. An on-path adver-
sary may drop, delay, or alter packets that should be forwarded, or even inject
additional packets. An off-path adversary may setup hijack attacks to control
the traffic through the elements under its control, and then perform on-path at-
tacks. The off-path attacker could attract traffic through the peripherals under
its control by announcing forged paths or promoting attractive network met-
rics. Conversely, an attacker may also render some paths out of its control less
attractive, for example using congestion techniques. An adversary controlling a
large botnet may perform significant Distributed Denial-of-Service (DDoS) at-
tacks to congest some links or the resources of some network elements. Finally,
an adversary could also interfere with the discovery process of genuine paths
(e.g., by flooding the control plane with bogus paths).

1.2.2 Transparency and Control

SCION aims to provide transparency and control for the forwarding paths and
the trust roots.

1.2.2.1 Transparency and Control over Forwarding Paths

Network path transparency means that endpoints know and can verify the for-
warding path taken by network packets. This is very helpful when transmitting
sensitive data because one can choose which ISDs to traverse and which not.

By ensuring transparency, also path control can be achieved. This enables ASes
to control the incoming paths segments through which they are reachable. Given
such segments, senders can then create end-to-end paths. Path control brings
many beneficial features:

• Separation of control plane and data plane: To enable the path
control, the control plane (used to determine paths) has to be separated
by the data plane (used to forward packets). This separation enhances
availability since the forwarding can be affected by routing changes or
other control-plane operations.

• Enabling of multipath communication: The sender can choose mul-
tiple paths to forward its packets. This also enhances availability [25].

1.2 Goals of SCION 9

• Defending against network attacks: If the path is carried in the
packet’s header (which is one way to achieve path control), the receiver
can reverse it to return the response to the original sender thus mitigating
reflection attacks. Path control can also mitigate DoS and DDoS attacks
by circumventing malicious network entities or congested links.

Path control also presents some fragile aspects that need to be handled properly:

• Respecting ISPs’ forwarding policies: Senders’ freedom of choosing
paths can not violate ISPs’ policies that have then to provide a set of
policy-compliant paths that senders can choose from.

• Preventing malicious path creation: A malicious sender may exploit
path control, for example in order to create a network loop that increas-
ingly consumes network resources.

• Scalability of path control: Source routing does not scale because a
source would need to know the overall network topology. To make path
control scale, a source can choose only among a small set of paths.

• Permitting traffic engineering: Fine-grained path control would in-
hibit ISPs from performing traffic engineering, so SCION provides end-
hosts path control at the granularity of AS on the level of ingress/egress
interfaces allowing ISPs to fully control internal paths. ISPs can fur-
ther perform traffic engineering based on per-path bandwidth allocations,
which can be encoded in the forwarding information.

1.2.2.2 Transparency and Control over Trust Roots

Roots of trust are nowadays used for the verification of Internet entities as a
web server public key in a TLS communication, or a DNS response in DNSSEC.
Because of intermediate CA certificates, that are not explicitly listed but im-
plicitly trusted, in today’s Internet it is not always possible to know all the trust
roots an end-host or user is trusting. Independent studies have counted over
300 roots of trust in the TLS PKI [26], but because of lack of transparency they
may be more. SCION aims to provide transparency of trust roots which means
an end-host or user can always know the complete chain of trust it needs to rely
upon for the validation of a specific certificate. Control over trust roots instead
allows users to decide which roots of trust they want to rely upon.

10 Introduction

1.2.3 Efficiency, Scalability, and Extensibility

Security and availability usually come at the expenses of efficiency and scalabil-
ity. High performances and scalability, however, are necessary for a new Internet
architecture to succeed in the current socioeconomic environment. Therefore,
SCION seeks high efficiency, meaning that the packet forwarding has to be at
least as efficient as the current IP forwarding system. Furthermore, SCION seeks
improved scalability compared to the current Internet architecture, in particular
with respect to BGP protocol and the size of the routing tables.

To achieve this, SCION’s approach is to avoid storing state information on
routers whenever possible, and to encode them on packets’ headers, instead
(cryptographically protecting them). This considerably reduces the complex-
ity of router systems and accelerates the forwarding process. In fact, it was
observed that modern block ciphers as AES can be computed faster than per-
forming memory lookups. For example, on current PC platforms, computing
AES requires about 50 cycles while fetching a byte from the main memory about
200 cycles [27]. Moreover, achieving high parallelism in hardware block ciphers
is cheap thanks to their simplicity and small number of gates, while the same
parallelism on high-speed memory systems is complex and expensive. Avoiding
state information on routers not only improves the network efficiency, but also
prevents state-exhaustion attacks [10] and state inconsistencies across routers.

Efficiency and scalability are favoured also by having the end-hosts assisting with
the network-layer functionality such as path selection. This results in a simpler
forwarding plane and more efficient routers. Furthermore, end-hosts are the
entities on the network that know better their internal state, bit-error recovery,
duplicate suppression, delivery of acknowledgments and preferred or undesirable
paths so, by having more control, they can contribute to the efficiency of the
network.

SCION aims also to be an extensible architecture that means new functionalities
should be easily built and deployed.

1.2.4 Support for Global but Heterogeneous Trust

Given the plenty of different jurisdictions and interests of today’s Internet, an
important challenge is to scale the authentication of entities (e.g., ASes, DNS
servers, or domains for TLS) to a global environment.

Both monopoly and oligopoly RPKI models do not scale well because mutually

1.2 Goals of SCION 11

distrusting entities do not agree on a single root of trust (monopoly model),
and because the security of many roots of trust depends on its weakest point.
SCION then seeks to support a global environment with heterogeneous trust.

1.2.5 Deployability

If early adopters can not obtain enough benefits migrating from Internet to
SCION, initial deployment is unlikely to happen. In this respect, SCION has
to guarantee already to its first deploying ISP a competitive advantage with
respect to its competitors. To this end SCION provides: high-availability un-
der control-plane or data-plane attacks (e.g., providing built-in DDoS defenses),
path transparency and control, trust-root transparency and control, high ef-
ficiency, robustness to configuration errors, fast recovery from failures, high
forwarding efficiency and multipath forwarding.

To encourage the migration, SCION needs also to provide an efficient inter-
connection to the today’s Internet entities (see Section 1.3), like web servers,
RPKI authorities and CAs, in order to allow users to keep benefiting from the
information currently available on the Internet network.

The migration should require minimal infrastructure changes and the deploy-
ment should be possible re-utilizing current ISPs’ infrastructures (only requiring
the upgrading or the substitution of few border routers). Also the configuration
settings of the new architecture can not drastically differ from the current one
in order to reduce the amount of personnel training.

Finally, economic aspects are imperative. ISPs should be provided with new
business models and adapted selling strategies and the migration cost should be
reduced to the minimum. SCION should not disrupt current Internet business
models, but maintain the same topology and business relationships (e.g., support
peering).

1.2.6 Non-Goals

Some aspects are not current goals of SCION, but may become such in the
future thanks to improvements or layers above the communication one (under
development). Multicast or efficient content dissemination is not part of the
basic infrastructure due to the extra complexity it would introduce. Software
vulnerabilities of network components are also out of the scope of the SCION
design. Malicious Internet content is preferably addressed by a layer above the

12 Introduction

communication infrastructure and hence also not analyzed during the design of
SCION.

1.3 Motivations behind a SCION-Internet inter-
connection

Changing fundamental network protocols as IP and BGP is not an easy step that
can happen overnight, but in the long run, technological evolution is necessary
and inevitable. Consequently, SCION needs to provide a set of models and tools
that can favor the transition towards the desired properties. Among them the
SCION-IP Gateway (SIG), that is the topic of this thesis work, is a fundamental
block.

The purpose of the SIG is a full interconnection between SCION and Internet
networks. Any SCION AS that deploys a SIG service can communicate with
the legacy IP world and with legacy IP hosts inside other SCION ASes. The
SIG takes care of encapsulating the IP traffic into the SCION one at the sender
side, decapsulating the SCION traffic into the original IP packets at the receiver
side and correctly routing the information to the right legacy end-host through
the SCION network. The SIG also takes care of mapping in which SCION AS
a certain destination IP address belongs to in order to provide correct routing
information through SCION.

Such a gateway is extremely important during the transition to a future Internet
architecture for specific reasons:

• Current data is on the Internet: At the present time, the entire global
information resides on servers connected only to the Internet network and
this will remain as such for many years onward. It will take a consider-
able time to have these servers connected also to a new future Internet
architecture as SCION or to have all the information replicated on new
SCION-servers. If SCION users want to keep accessing this information a
gateway module is needed between the two architectures.

• SCION limited resources and time: As every new project and busi-
ness, SCION starts from a state of disadvantage compared to current
network service providers and network equipment manufacturers. The
SCION team has limited resources and an inexperience dictated by time
compared to them, this implies they can not address all the network is-
sues from the very beginning, and they can not provide to end users an

1.4 Thesis Contribution 13

analogous SCION system/feature for all the available Internet ones. For
example, SCION bases its time synchronization on Network Time Proto-
col (NTP) Internet servers and does not provide their SCION counterpart,
yet. Deploying all the corresponding features will require time, meanwhile
SCION has to benefit from some Internet services through the SIG gate-
way.

• Economical inferiority of SCION: Economically speaking SCION can
not yet compete with current Internet companies and their self-sustainable
business models, so it needs to go alongside with them and not contrast
them. In this way SCION can attract the interest of these companies
rather than nourish their rivalry. Through the SIG gateway, SCION def-
initely encourages Internet companies to collaborate toward a better and
more secure global connectivity infrastructure by providing an intercon-
nection with itself and exporting some of its newly introduced benefits.

1.4 Thesis Contribution

The primary contribution of this thesis is the design (Chapter 4), development
(Chapter 5) and evaluation (Chapter 6) of a new application-level gateway tech-
nology which allows the interconnection of the Internet network with SCION,
the only future Internet architecture proposal that is under active deployment
and use, whose aim is to solve security, scalability and availability issues that
plague current networks.

The thorough investigation of gateways technologies and architectures, their his-
tory, principles and techniques is also a substantial contribution, as the subject
is quite old and the related literature dates back to the 1980s and is almost not
existent (Chapter 3).

The SCION architecture [7] is an extremely huge project, and its implemen-
tation is composed of more than 600 MB of Python and go software libraries
developed by the Network Security Group of the ETH University. The SCION
implementation is an academic proof-of-concept at the moment, so there is still
no documentation written for it. Most of the time during the first three months
of this thesis work was spent to fully understand SCION’s design and imple-
mentation.

A big portion of time during the fourth month instead was used to deepen my
understanding of DoS and DDoS attacks and their countermeasures, in order
to design and evaluate a SIG’s defense mechanism for the encapsulated legacy
traffic (Section 4.6 and Section 6.4).

14 Introduction

During this thesis project I learnt the Python programming language from
scratch, together with the two syntaxes for the Vagrant and Ansible configura-
tion files. Approximately 2500 lines of code were written (for an amount of 1,5
MB of software produced) for a complex multithreading system which threads
all access the same variables, buffers and data structures. A good knowledge of
the Python multithreading principles and the behaviour of its data structures
in a concurrent context was fundamental during the development phase.

1.5 Thesis Structure

The rest of this document is organized as follows.

In chapter 1 we provide an overview of the SCION problem space extensively
explaining today’s Internet problems and the requirements a new Internet archi-
tecture should fulfill to solve them. In the chapter it is also emphasized the com-
plexities of the transition to a new architecture, as SCION, which motivates the
need to develop the SCION-IP Gateway (SIG) module for the SCION-Internet
interconnection.

In chapter 2 we provide an extended background on gateway technologies and
the motivations behind the willingness of interconnecting different networks. In
the chapter different gateway technologies are also discussed and some examples
of gateway systems are presented.

In chapter 3 a high level overview of the SCION architecture is presented to bet-
ter understand the following chapters. SCION aims to solve security, scalability
and availability problems that plague the today’s communication networks. In
the chapter, SCION’s key concepts and working principles are described, to-
gether with some minor details that are necessary for the comprehension of the
following chapters.

In chapter 4 we describe how the SIG module that interconnects the SCION
network with the legacy IP world was designed and in which scenarios it works
or does not work. The SIG-related challenges introduced by the proposal of a
new Internet architecture are discussed, together with the way the SIG service
intends to address them. The security benefits introduced by our solution, even
for legacy-to-legacy traffic, are finally described.

In chapter 5 the prototype implementation details are discussed, together with
the tools and technologies needed to develop the system. The topology of the
development and testing environment and the way the codebase was structured

1.5 Thesis Structure 15

are also described.

In chapter 6 an extensive evaluation of the developed prototype is illustrated.
The most salient aspects tested are the interprocess-communication performance
between SCION and legacy hosts, the scalability issues the SIG has to face when
the SCION network grows and the benefits introduced by the legacy DoS and
DDoS mitigation mechanism provided by the SIG.

Finally, in chapter 7 some conclusions over the proposed solution are drawn and
some brief insight in the future possibilities that the solution opens are given.

16 Introduction

2

Background on Gateway
Technology

The motivations for building computer communication networks – programs and
data exchange and sharing, remote access to resources, live updates, entertain-
ment, etc. – are also the reasons for interconnecting networks. This is a conse-
quence of the observation that the power of a communication system depends
on the number of potential participants. Interconnecting different networks not
only increases the number of the connected end-users and end-systems, and
hence the power of the communication system, but can also provide extra func-
tionality and benefits to the cooperating networks and their participants.

In this chapter we first introduce some concepts involved in computer com-
munication networks and describe how these networks provide an interprocess
communication facility (Section 2.1). We then compare the datagram and vir-
tual circuit approaches to exchange traffic between processes (Section 2.2). We
discuss the gateway device and its possible degree of participation in provid-
ing various levels of end-to-end- service (Section 2.3). We finally present some
examples of gateway technologies proposed and used over time since the 80’s
(Section 2.4).

18 Background on Gateway Technology

2.1 Interprocess Communication

When discussing computer networks communication, it is important to notice
that the communication takes place, on request, at the process level (i.e. com-
puter programs in execution) and not at the host level. Processes are the main
actors of the communication network and they are the ones that send and receive
the exchanged data. They run in host computers or other forms of hosts.

The protocols used for enabling the communication compose an interprocess
communication system [28]. Fig.2.1 shows how combining the network and the
host network interface can be seen as providing an interprocess communication
system.

Figure 2.1: Communication network (reprinted from [28]).

A new host that connects to an existing network, and wants to be enabled to
communicate, must implement the protocol layers that match the communi-
cation protocols used by such a network. The new host must then join the
interprocess communication system to enable its own processes to communicate
with other processes running in different hosts of the considered network.

The interconnection of different networks strictly requires that the processes
running in the hosts of the interconnected networks make use of a common
interprocess communication system. This can be achieved in different ways:

2.2 Datagrams and Virtual Circuits 19

by converting the networks to a new interprocess communication system, by
converting one or more levels of a network protocol to new protocols compatible
with other networks, or by translating messages between pairs of interprocess
communication systems at their points of contact [28].

2.2 Datagrams and Virtual Circuits

Commonly, there are two main approaches to provide an interface for packet-
switched interprocess communications: through individual datagrams, or through
a higher level service in the form of a virtual circuit [28] [29].

Datagrams are independent single messages. They are not acknowledged so
they are intrinsically unreliable. In packet-switched networks large files are
split into fixed size datagrams that are sent in-order, but can arrive out-of-order
at the destination point. Datagrams are simple to implement since networks
and gateways do not need to record and update state information. Due to their
unreliable format structure, each datagram must carry complete address infor-
mation to be sent over a communication network. Processes exchange datagrams
through simple send and receive operations.

Virtual circuits are reliable by design thanks to acknowledgment techniques
and always provide in-order delivery. They are difficult to implement because
networks and gateways need to record and update state information. Virtual
circuits are established through a message exchange step with the goal of setting
up the circuit; when use terminates, another message exchange step is used to
tear down the circuit. Data are transmitted using a short form of address or a
virtual circuit identifier in place of a complete address, this is possible thanks
to the state tracking performed by the network’s devices as already discussed.
To use a virtual circuit a process must first create it. Also this time, data
is exchanged between processes through simple send and receive operations.
Finally, the process must terminate the circuit.

Datagrams provide a transaction-oriented service while virtual circuits provide
a connection-oriented service and both are needed in a communication network
environment. Datagrams are more efficient for transaction-oriented informa-
tion requests as Internet Videos, Voice Communication, Notifications of new
Emails, etc. The most known example of datagram network is the Internet
which uses the IP network protocol. Also the User Datagram Protocol (UDP)
at the transport level of the OSI model is a very famous example. Virtual
circuits are useful in connection-oriented contexts as remote Terminal Access
and File Transfer between computers. Well known examples of virtual circuits

20 Background on Gateway Technology

networks are the Asynchronous Transfer Mode (ATM) and the General Packet
Radio Service (GPRS).

2.3 Gateways Basic Concepts and Degree of Gate-
way Participation

Two or more communication networks are interconnected via a device, or a
pair of devices, called gateway. Such a device appears simply as a host in that
network (Fig.2.2).

Figure 2.2: Interconnected networks (reprinted from [28]).

Some gateways simply take the messages coming from one network; unwrap
them from that network’s packaging and read their content; compute a routing
function based on that content or the content of the previous package header;
wrap that content in the other network’s packaging; and finally send the new
packages over the other network using the previously computed routing func-
tion. Since different networks may use different telecommunications technolo-
gies, such as POTS, SS7, Next Generation Networks (2G, 2.5G, 3G and 4G/LTE
radio access networks) or PBX systems, this type of gateway is called media-
conversion gateway. The most known example is Voice over Internet Protocol
(VoIP) media-conversion gateway which performs the conversion between Time-
division multiplexing (TDM) voice to a media streaming protocol, such as the
Real-time Transport Protocol (RTP), that is a network protocol for delivering
audio and video over IP networks [30].

Other gateways instead translate the protocol used in one network to the one

2.3 Gateways Basic Concepts and Degree of Gateway Participation 21

used in another network. They replace messages from one network with different
messages, that share the same protocol semantic, and send the latter over the
other network. This type of gateways is called protocol-translation gateway. The
simplest and most commonly used protocol-translation gateway is the one that
converts between Modbus Remote Terminal Unit (RTU) and Modbus TCP [31].

The distinction between media-conversion and protocol-translation gateways is
of one degree: the former fill the gap between the differing link and physical layer
protocols of the networks they interconnect, while the latter fill the gap between
differing network and higher layer protocols of the networks they interconnect.

The protocol-translation approach is not a trivial solution and it raises several
issues. The complexity of its design seems to be inversely correlated with the
protocol layer to be translated (the lower the protocol layer, the higher the
complexity) [28].

At the lowest levels (physical and link levels), protocol translation does not cause
any problem thanks to the hop-by-hop nature of the transport flow. It has to be
taken into account, though, that different protocols have a different impact on
reliability, throughput and delay characteristics of the overall communication
system.

At the network and transport levels, the management of message size, address-
ing and flow control become crucial for the performances of the interprocess
communication system. Since the message size can vary over time during the
communication, one must take care of fragmentation and reassembly of mes-
sages. That is, the division of a long message into smaller pieces for their
transmission over a small message size network, and the reconstruction of the
original message at the reception of all these pieces on the destination side.
Address translation between different networks also complicates the protocol
translation and it becomes a hard problem when a network (or a transport level
protocol) presents a larger address space than the network (or protocol) it has
to be translated into. To further complicate the problem, when end-to-end flow
control mechanisms are used – that is the common case for many transport level
protocols – many other difficulties arise if the units controlled by a protocol and
the other differ from each other. For example, if a protocol processes ASCII
symbols and the other binary octets. Even more issues arise when different flow
control models are used. For example, if the two protocol have different buffer
space allocations and different transmission rates, or the sender makes use of
the Stop-and-Wait approach and the receiver makes use of the Selective-Repeat
one.

At higher levels, even more difficulties arise because of the increased state in-
formation used and the lower likelihood of a one-to-one translation of the dif-

22 Background on Gateway Technology

ferent protocols’ messages. Furthermore, a higher level protocol message is
further multiplexed by all the lower levels which add their overhead informa-
tion. Translating a higher level protocol means then also separately translating
all the information coming from these lower levels.

A gateway can be seen as a single entity connected to both the networks it
interconnects, or can be seen as having one “half” in each network [32][28] as
shown in Fig.2.3. These gateway halves can be either independent computer
devices, or extensions of the ordinary switching nodes, or software applications
running on one of these previous two solutions (application-level gateways).

Figure 2.3: Gateway halves (reprinted from [28]).

2.4 Gateways: From Past to Present

In this section we briefly describe some examples of interconnected networks that
made or make use of a gateway system to obtain interprocess communication.
Some of these technologies were used in the past, others are more recent. Notice
that, this section is not meant to be an extensive list of gateway technologies.

2.4.1 Interconnection of X.25 Networks

X.25 is one of the oldest packet-switched services available and it was devel-
oped before the Open Systems Interconnection model (OSI model) in 1984
by ITU Telecommunication Standardization Sector (ITU-T), formerly called
Comité Consultatif International Téléphonique et Télégraphique (CCITT). X.25

2.4 Gateways: From Past to Present 23

is a protocol suite for packet-switched Wide Area Network (WAN) communi-
cation. An X.25 WAN consists of Packet-Switching Exchange (PSE) nodes as
networking hardware, and Integrated Services Digital Network (ISDN) connec-
tions, leased lines, or old telephone connections as physical links. X.25 was
widely adopted during the 1980s by telecommunication companies and financial
transaction systems as Automated Teller Machines (ATMs). The X.25 family
of protocols has been replaced to large extent by simpler protocols, particularly
the Internet Protocol (IP), but it is still in use for niche applications as within
the payment industry [33].

Figure 2.4: PDN virtual circuit (reprinted from [28]).

Public Data Networks (PDNs) following the CCITT X.25 Recommendation [34]
have to be interconnected with each other according to the interface specified in
CCITT Recommendation X.75 [35]. The X.25 Recommendation specifies that
the interface between customer’s equipment, called Data Terminal Equipment
(DTE), and the network equipment, called Data Circuit-Terminating Equip-
ment (DTE), relies on a virtual circuit approach which provides an interface for
transport level protocols [28]. Fig.2.4 shows an X.25 PDN virtual circuit.

The interface provided by the X.75 Recommendation is similar. The equipment
available at both sides is this time called Signaling Terminal Equipment (STE)
and the STE-STE interface behaves as the DTE-DCE one. The STE-STE in-
terconnection is a split-gateway, as the one of Fig.2.3, and each half of it is a
physical device managed by PDN connected to itself. Fig.2.5 shows an example
of four PDN networks connected by STE-STE interconnections.

Interconnecting different PDN’s via X.75 gateways results in a series of consec-
utive virtual circuits, as shown in Fig.2.6, where each block is independent and
preserves its own flow control and error recovery procedures.

24 Background on Gateway Technology

Figure 2.5: Interconnection of PND’s (reprinted from [28]).

Figure 2.6: PDN transmission path (reprinted from [28]).

2.4.2 Interconnection of ARPA Research Networks

The research sponsored by the Advanced Research Projects Agency (ARPA)
on networks interactions resulted in the development of an Internet protocol
(IP) [36] and a Transmission Control Protocol (TCP) [37] to support the same
functionality of PDN’s X.25/X.75 services [28]. The IP is a level-3 datagram
protocol of the OSI model, while TCP stands at level-4 protocol. The union of
interconnected networks using these protocols is called an Internet. The net-
works used are of different kinds (e.g., the ARPANET [38], satellite networks,

2.4 Gateways: From Past to Present 25

radio networks and cable networks) and we refer to them with the general conno-
tation of Local Networks, even though they may extend over oceans and entire
continents. The interface to a local network is called Local Network Protocol
(LNP). In Fig.2.7 an end-to-end datagram connection through a local network
is represented.

Figure 2.7: End-to-end connection (reprinted from [28]).

In the ARPAmodel two networks connect to each other through a single gateway
device that is a host shared among two or more networks, as shown in Fig.2.8.
Each host communicates with the gateway within its same network as it would
do with any other host within it. The information needed to route the message
is enclosed in the IP packet’s header, while the message is carried in the IP
packet’s payload. A sending host first builds such an IP datagram and then
forwards it to the selected gateway in its own network, wrapped within a Local
Network packet. The receiving gateway receives such datagram, unwraps it to
extract the IP packet and analyzes its IP header to determine the next gateway
(or destination host) address in one of the networks it is directly connected. The
gateway then wraps again the IP datagram into a Local Network packet and
sends it to the extracted address.

The IP protocol does not provide flow control or error control for the transferred
messages since only the IP headers are checksummed. The simplicity of the IP
protocol allows a gateway to be simple and to be implemented also in small
devices. The gateway does not even need to keep state information due to the
datagram approach used by the IP protocol that does not require connections
or virtual circuits. To provide a reliable end-to-end service ARPA Internet
makes use of the TCP protocol that ensures in-order delivery, flow control,

26 Background on Gateway Technology

Figure 2.8: ARPA model of interconnected networks (reprinted from [28]).

positive acknowledgments with timeout and retransmission, sequence numbers,
etc. Fig.2.9 shows an example of ARPA interprocess communication system
where the virtual circuit and the flow control between the two processes are
present only over the TCP protocol.

Figure 2.9: ARPA model of transmission path (reprinted from [28]).

2.4 Gateways: From Past to Present 27

2.4.3 Interconnection of IoT Networks and the Internet

A typical Internet of Things (IoT) architecture can be divided into three do-
mains: sensing domain, network domain and application domain [39], as shown
in Fig.2.10. The sensing domain is fundamental for the IoT architecture, it en-

Figure 2.10: Three domains of IoT architecture (reprinted from [39]).

ables “things” to interact which each other. It is composed of “smart things”, as
embedded system devices, and its purpose is to collect information about phys-
ical targets using technologies as WSNs, RFID, NFC, FieldBus, Barcode and
Zigbee. This information may be preliminarily processed before being sent to
the network domain. Generally speaking the sensing domain’s task is to enable
low power consumption, low costs and protocol lightweight. Network domain
is built over existing Internet infrastructures, such as WiFi, PSTN, 2G, 3G,
LTE and Satellite. Its main aim is to transfer the information from the sensing
domain to the destination host. Application domain is the one responsible of
processing the information and provide the needed services. The information
from the network domain is handled and various services are provided to the
end users.

The IoT gateway that bridges the information between the sensing domain and
the network domain is one of the most important components of the overall
IoT architecture. It acts as proxy and every one is different from each other,
based on the applications and requirements. However there are some common
pattern among them: they implement multiple interfaces since they need to
connect different sensing technologies (e.g, Bletooth, Zigbee, Wifi) with different
networking technologies (e.g, PSTN, 2G/3G, LTE, LAN, DSL); they perform
protocol-translation between two different sensing domain protocols or between
a sensing domain protocol and a network domain protocol; they need to be
managed by back-end IoT servers and to manage the “smart things” attached

28 Background on Gateway Technology

to them.

In [40] a proposal for a novel Smart IoT gateway is presented and its architecture
is shown in Fig.2.11. The gateway respects the common patterns described
above. It is responsible for protocol-translation and data fusion of different

Figure 2.11: The architecture of Smart IoT gateway (reprinted from [40]).

sensor data and introduces three important benefits. Firstly, it presents slots
for pluggable modules that adopt different communication protocols. Secondly,
it presents unified external interfaces for a rapid and quick software development.
Finally, it introduces flexible protocols to translate data coming from different
sensors into a uniform format.

2.4.4 Interconnection of Wireless Sensors Networks and
the Internet

A Wireless Sensor Network (WSN) is a wireless network that consists of spa-
tially distributed autonomous embedded systems using sensors to cooperatively
monitor physical or environmental conditions [41]. Due to the minimalist na-
ture of the sensors involved, called motes, data storage capacity is very limited.
Motes usually make use of low power radio transreceivers, therefore also their
communication range is limited. WSNs are usually placed in dangerous or sensi-
tive locations, so there is the need for a reliable way to retrieve data from them,
monitor and configure them remotely, under any circumstances. WSN gateway
technologies serve to this purpose [42].

Wireless radio technologies, like IEEE 802.11, can not be used directly with
WSNs because of their high power consumption. Low-power and low-rate tech-

2.4 Gateways: From Past to Present 29

nologies, such as IEEE 802.15.4 or proprietary technologies, are used instead and
they usually operate in 433MHz or 868/916MHz frequency bands [43]. Further-
more, also the communication protocols used by WSNs should be designed to
fit their limited resources, because Internet protocols would introduce too much
overhead. Consequently, WSNs typically make use of proprietary communica-
tion protocols. To connect such networks to the wide-area networks, such as
WANs, LANs and cellular networks a gateway usually needs two interfaces, one
for the wide-area network and one for the WSN.

To serve this purpose different proposals have been suggested. For example,
the modular application-level gateway in [43] contains the protocols of both the
networks and the protocol-translation phase happens at the application layer.
This WSN gateway allows re-configuration of services and protocols to best
adapt to different heterogeneous wide-area networks and different combination
of protocols that may be used. The modular gateway is shown in Fig.2.12.
Its functionalities can be divided into control plane and data plane [43]. Data

Figure 2.12: The modular WSN gateway architecture (reprinted from [43]).

plane entities administer the user access to the WSN, providing them with
different interfaces to the WSN. Through the control plane, the user who has
administrative privileges can configure and update the data plane entities. The
control plane can also monitor the data plane status.

Another WSN gateway proposal focuses instead only on the WSN-GSM inter-
connection [41] and is shown in Fig.2.13. This gateway approach makes use of a

30 Background on Gateway Technology

Figure 2.13: System hardware structure (reprinted from [41]).

Global System for Mobile Communications, originally Groupe Spécial Mobile,
(GSM) modem for the Internet connection and a mote to connect the gateway
to the WSN. Non-volatile memory and AT91RM9200-EK evaluation kit (EK)
form the core of the system. This gateway also uses the protocol-translation
approach. Packets from the WSN and complying with protocol IEEE 802.15.4
are first captured by the mote, then converted to the USB protocol, and finally
to the General Packet Radio Service (GPRS) one and sent through the Internet
via the GSM modem. Packets from the Internet follow the inverse procedure.

3

Backround on SCION

This chapter is a high level overview of the next generation architecture SCION
[4] [6] [5] [7] whose goals consist of solving security, scalability and availabil-
ity problems that plague the current communication networks, and they have
been already extensively described in Section 1.2. SCION provides a point-
to-point communication framework to achieve such properties and the infras-
tructure should remain available even in presence of powerful adversaries. As
long as an attacker-free path is discovered between two communicating end-
points, this should be discovered and used with guaranteed bandwidth for the
communication. In the following we give a summary of SCION’s key concepts
and mechanisms as the Isolation Domains (ISDs) and Trust Root Configuration
(TRC) (Section 3.1), the control plane and all its fundamental SCION’s net-
work elements (Section 3.2), the data plane and the structure of SCION packets
(Section 3.3), and the infrastructure’s security aspects introduced (Section 3.4).
In the last section we introduce some specific background concepts needed for
the comprehension of Chapter 4 (Section 3.5). These are the SVC addresses,
the RAINS naming service and the SCION Daemon.

32 Backround on SCION

3.1 Overview

AnAutonomous System (AS) is a collection of networks that are maintained
and administered as a single entity and internally connected using common rout-
ing protocols. In SCION, a set of ASes is logically grouped into an Isolation
Domain (ISD), a key concept of the SCION architecture to provide trans-
parency and an heterogeneous trust environment. Every ISD is administered by
a set of ASes called the ISD Core, and each AS within this set is called a Core
AS. Each ISD is associated to a human-readable, globally unique namespace and
contains a configuration file, called the Trust Root Configuration (TRC),
which states which roots of trust the ISD relies on to validate bindings between
entities and their public keys or addresses. To join an ISD, an AS needs first
to accept the ISD’s TRC file. Subsequently, all the ASes within the same ISD
need to agree on the entities that operate the trust root(s) and determine an
internal policy. ISDs may also overlap or their topology may present a hierar-
chical structure which comprises sub-ISDs. Fig.3.1 shows a simple example of
such topology and its building blocks.

ISD
core

TRC

ISD
core

ISD

AS
Prov.-Cust. link
Peering link

ISD
core

K

A

B

E

Z1

ISD

TRC

D

Z3

J

C

ISD

ISD
core

TRC

H

I

ISD

TRC

Core link

Z2

G

F

Figure 3.1: Autonomous systems (ASes) grouped into four ISDs. The core
ASes are connected via core links. Non-core ASes are connected
via customer-to-provider or peering links. AS H participates in
two ISDs. (reprinted from [7]).

Compared to today’s Internet, SCION is split into smaller logical pieces (the
ISDs) which operate independently relying only on the locally accepted roots
of trust. From a security perspective SCION is designed with the principle of
privilege separation, that means all the control mechanisms are separated from
the data plane as described in the following.

3.2 Control Plane 33

3.2 Control Plane

The control plane’s task is to discover the available paths, communicate these
to the end-hosts and route the traffic through them accordingly. SCION makes
use of two different level of routing, intra-ISD and inter-ISD, which both use
Path Construction Beacons (PCBs) to explore routing paths possibilities.
A PCB is built by a Core AS and then floods it either within an ISD (to
discover intra-ISD paths), or amongst Core ASes (to discover inter-ISD paths).
Traversing different ASes, the PCBs collect cryptographically protected AS-level
path information. Such information is chained together to create a transmission
path segment which traverses a sequence of consecutive ASes. PCBs allow
hence the traversed ASes to learn the path segments to reach their Core ASes
and allow each Core AS, in turn, to acquire information on how to reach other
Core ASes. With this mechanism, border routers do not need to maintain inter-
domain routing tables anymore because all the needed AS-level path information
is carried by the packets. This concept is called Packet-Carried Forwarding
State (PCFS). Unlike today’s Internet where a packet is forwarded according
to routing tables, in SCION it is forwarded according to a fixed path information,
contained in the packet itself, that comprehends all the routing information
needed.

In the following the SCION architecture’s fundamental elements and the proce-
dures to build, use and revoke a SCION path are described.

3.2.1 Beacon Server

Beacon Servers (BSs) are the elements responsible for path discovery and
dissemination of PCBs information. BSs in a Core AS periodically generate
intra-ISD PCBs and flood them to all the ASes within the same ISD. BSs in non-
Core ASes receive such PCBs and propagate them to their own customer ASes.
During inter-ISD propagation, PCBs are flooded along policy-compliant paths
in order to discover multiple paths between any pair of Core ASes. To ensure
consistency of the paths information, local servers run a fault tolerant protocol
to agree on a master Beacon Server which, in turn, periodically generates a
policy-compliant set of PCBs to announce the paths through which it wants the
ASes to be reached and forwards it to all its customer ASes.

34 Backround on SCION

3.2.2 Path Server

Path Servers (PSs) are the elements responsible for storing mappings from
AS identifiers to sets of such announced path segments and, similarly to today’s
DNS systems, they are organized as a hierarchical caching system. Each AS,
with the help of the master BS, selects a set of path segments through which it
wants to be reachable and upload it to a PS in the ISD core. PSs learn path
segments by extracting such information from the PCBs fetched by local BSs. A
PS keeps updating the registered segments to face possible link failures that may
happen, segments expiration or better segments that may become available.

3.2.3 Certificate Server

Certificate Servers (CSs) are the elements responsible for the validation of
the received information by using cached copies of TRCs retrieved from the
ISD Core, and other ASes’ certificates. They manage keys and certificates for
securing intra-ISD communication. CSs are queried by BSs whenever they need
to validate the authenticity of a PCBs.

3.2.4 Border Router

Boarder Routers (BRs) are the elements responsible for the connection be-
tween different ASes in SCION and their main task is to forward packets. BRs
handle control packets and data packets differently. When a control packet is
received, it is immediately forwarded to the appropriate server. When a data
packet is received instead, the BR checks if the final destination is within the
same AS or not. If this is the case, the BR simply forwards the packet to the
end-host, otherwise it forwards it to the next BR, selected according to the path
information carried by such a packet.

3.2.5 Path Construction

A SCION path is a combination of bidirectional and reversible multiple path
segments. Path segments between Core ASes and non-Core ASes are either
called up-segments (towards the ISD Core), or down-segments (from the
ISD Core to a non-Core AS). In case the destination AS is in another ISD,
a core-segment between the two ISD Cores is needed to achieve end-to-end
communication.

3.2 Control Plane 35

Establishing an end-to-end communication is enabled by a combination of up to
three path segments. The source end-host first learns the up-segments to reach
its Core AS by querying the local PS which, in turn, forwards the resolution
request to the Core PS. In case the destination is within the same ISD, the Core
PS answers sending up to m down-segments to the local PS. If the targeted host
is outside the ISD, the Core PS queries all the down-segments from the Core PS
within the destination ISD, before responding to the local PS. In both cases, the
local PS responds to the source end-host with up to k up- and down-segments
and possibly also core-segments, if needed.
Special cases may apply if the up- and down-segments intersect at a non-Core
AS or a peering link is present between the two segments. In the former case,
a shorter path where the extraneous part of the path is removed is chosen. In
the latter case, a shortcut path via the peering link is used.
After the selection of a valid path, this is encoded in the SCION packet header.
The final destination end-host can respond either inverting the path stored
within the received packet, or choosing a new path using the same procedure,
described above.

Possible link failures are not automatically resolved and must be handled by
the end-hosts, possibly requesting new paths. On the other hand, PCBs are
disseminated every few second, hence new paths are quickly established and
available to be fetched. This approach used by SCION greatly masks possible
link failures. The availability of a link is continuously checked using SCMP
messages (Section 3.4.3) and, in case a link breaks, a new PCB dissemination is
triggered. Furthermore, since multipath communication is in place, another way
end-hosts can use to face link failures is simply switching to another available
path.

3.2.6 Path Revocation

Unlike DNS, where revocation relies only on TTL-based revocation, SCION pro-
vides an explicit path revocation mechanism. Apart from expiration, revoking
a path should be allowed only with proper authorization to prevent an adver-
sary from disconnecting an entire AS from the global connection by repeatedly
revoking the paths to that AS. Revocation in SCION is based on AS interface
revocation and works as follow:

• If an interface has to be revoked by an AS, the corresponding BS informs
all end-hosts to make them aware of the revoked interfaces within an AS.

• If an end-host receives a packet containing the revoked interface, it issues a
revocation message which is propagated along the reversed path contained

36 Backround on SCION

in the header of such packet received. Additionally, the end-hosts along
the path forward the message to their local PS, so that the affected paths
get removed.

• BS in downstream-ASes have to be informed about the revocation, because
they should not be able to register new paths containing the revoked in-
terface and they also need to deregister affected paths.

3.3 Data Plane

After discovering the paths, the data plane is responsible for forwarding the
packets using the discovered paths. BRs forward SCION packets according the
AS-level path information carried in their headers, without the need to inspect
the final destination’s address or consult any routing table. Only the BR in the
destination AS needs to inspect the destination address of a SCION packet to
forward it to the local end-host.

A fundamental aspect of the SCION data plane design is the separation of the
locator (path towards the destination AS) and the identifier (the destination
address). In this way, an AS can choose any type of identifier arbitrarily for its
hosts as long as its BRs can interpret where to forward a specific packet.

3.3.1 SCION packets

SCION packets are structured as in Fig.3.2. A SCION packet is composed of a

Figure 3.2: SCION packet details. On the left side, there is the high level
layout of a SCION Packet. The SCION Common Header (SCH)
and the SCION Path are shown in details on the right side.

3.3 Data Plane 37

payload, which encapsulate a layer-4 protocol (e.g., TCP or UDP) message, and
a SCION header. The header, in turn, consists of a mandatory SCION common
header (SCH), which encodes the most important fields as the packet length,
the type of addresses used and the current position in the chosen path. After the
SCH, the SCION header embeds the source and destination addresses, that may
be optional in case the packet’s context is unambiguous without address (e.g.,
forward packets on loopback). Next, the used SCION path is enclosed, which
consists of up to three parts (Up-, Down- and – possibly – Core-Path). Each
path segment presents an Info Field (IF) that is shown in Fig.3.3(a). It specifies

Figure 3.3: SCION Path Fields in detail.

the type of the path and contains information needed for the Opaque Field (OF)
validation, such as the length of the path segment, the ISD’s identifier and the
timestamp of the ISD which initiated the propagation of the path. Each path
segment also contains an Opaque Field (OF) (shown in Fig.3.3(b)), for each AS
traversed by the considered path, this field contains information needed by BRs
for packet forwarding, like ingress and egress interfaces, expiration time and a
Message Authentication Code (MAC). The expiration time expressed by a 1-
byte value is relative and the absolute expiration time is computed as follows
(in seconds):

Timestamp+ ((1 + ExpT ime) ·
⌊24 · 60 · 60

256

⌋
) (3.1)

Thus, the minimal lifetime of an OF is around 5 minutes, while the maximum
lifespan is around 24 hours.
The last SCION header’s field is for the optional Extension Header(s) that
provide extra parameters to a SCION packet.

38 Backround on SCION

3.4 Security Aspects

SCION presents an arsenal of security mechanisms to protect its network from
malicious ASes and to provide a secure control plane. Following an overview of
the most relevant ones. Their details can be found in papers [4] and [44].

Similarly to BGP [45], every AS signs the PCBs it forwards to enable their
validation by all the entities. To achieve path correctness also the information
within each PCFS would need to be cryptographically protected, but signatures
would hamper the forwarding performance. Thus, every AS makes use of a
secret symmetric key that is shared among BSs and BRs, this one is used to
efficiently compute a Message Authentication Code (MAC) over the per-AS
forwarding information. The MAC field is also called Hop Field (HF) and its
structure only depends on the AS itself, without need of coordination among
different ASes. The HF is computed over ingress and egress interfaces and
has an expiration time. The specified interfaces uniquely identify the links to
the previous and following connected ASes. If a router is connected via the
same outgoing interface to three different ASes, three different egress interfaces
identifiers are assigned. The HF’s expiration time can have the granularity
of seconds or hours, depending on the kind of path. In the following of this
overview section we only consider long lasting paths with an HFs that presents
an expiration time of the order of 12 hours.

3.4.1 Algorithm Agility

SCION is developed in algorithm agility, meaning that the algorithms can be
easily and quickly replaced. The validation of the HF is per-AS, meaning that
an AS can independently update its keys or cryptographic mechanisms without
the need to agree on those with neighboring ASes. Multiple signatures are
supported, so an AS can readily deploy a new signature system and add new
signatures as well.

3.4.2 Authentication

SCION authentication is based on digital certificates, which bind identifiers with
public keys and carry digital signatures that are verifiable by the roots of trust.
The challenges that SCION aims to solve are achieving trust agility to enable
flexible selection of trust roots, provide resilience to compromised private keys,
and efficient key revocation.

3.5 Important Background Concepts 39

In today’s architectures, participants mutually agree on either a single (monopoly
model) or several (oligopoly model) roots of trust which are equally and fully
trusted. The main problem of the monopoly model is that it represents a single
point of failure, while the one of the oligopoly model is it exposes several points
of failure and is as much secure as its weakest point. SCION allows each ISD
to define its own roots of trust using TRC files. In this way, compromising a
private key associated with a trust root can not help to forge certificates outside
the ISD. The TRC has a version number, a list of public keys which identifies
the roots of trust, and policies to specify how many signatures are needed to
perform a specific action.

3.4.3 SCION Control Message Protocol (SCMP)

The control plane includes the SCION Control Message Protocol (SCMP)
that is an adaptation of the ICMP protocol to the SCION architecture and is also
authenticated. Introducing authentication for SCMP messages is very challeng-
ing, since the naive approach of simply using signatures would create bottlenecks
at routers in case many SCMP messages would be created in response to a link
failure. For this and other purposes, SCION deploys an efficient key deriva-
tion mechanism called Dynamically Re-creatable Key (DRKey) [46].In
DRKey, each AS makes use of a local secret key known to BRs in order to
derive on-the-fly a per-AS secret key using an efficient pseudorandom function
(PRF). Modern hardware implementations of block ciphers are even faster than
DRAM memory lookups, thus, deriving suck key results in a speedup over fetch-
ing it from the memory. In order to validate an SCMP message received, the
destination AS can fetch the derived key through an additional request message
from the originating AS, which is protected by a relatively slow symmetric op-
eration. However, local caching ensures such key is fetched infrequently. The
result of the SCMP protocol is secured network control messages with minimal
overhead.

3.5 Important Background Concepts

In this section some features of the SCION architecture are explained more
in details because they are needed for the comprehension of some concepts
expressed in chapter 4.

40 Backround on SCION

3.5.1 SVC address

In SCION, a Service address (SVC address) is a 2-bytes field used by SCION
applications to register their UDP, SSP and TCP sockets. The SVC field spec-
ifies the kind of service that is bound to that socket (e.g, path service, SIG
service, beacon service, certificate service, etc.), and for non-SCION services
the SVC field is set to None. For example the SVC for a beacon server is 0x0000
and for a path server is 0x0001.

This service addressing scheme greatly facilitates control plane anycast commu-
nication. If, for example, a BS wishes to register segments with a remote AS’s
PS, it does not need to know the actual address of a remote PS. Instead, it is
only required the SCION SVC of the PS (i.e., 0x0001), such that the SCION
border router in the remote AS can select an alive instance of the PS service to
deliver the packet to.
To implement this primitive, all the SCION BRs keep running a discovery service
within their ASes to keep lists of alive instances for all the supported services. In
this way, when a BR detects a packet directed to one of the supported services,
an alive instance of that service is selected pseudo-randomly and the packet is
sent to it.

3.5.2 Another Internet Naming Service (RAINS)

The details of the RAINS Protocol and the RAINS Client Protocol are specified
in an Internet-Draft [47]. RAINS is fundamentally a message-exchange protocol
whose goal is name resolution. Briefly, a client sends queries to a specific query-
server, that is listening on an SVC address (see Section 3.5.1), and expects
responses. The query-server may also send queries to other query-servers and/or
authority-servers to receive information about a given name. A query-server
forwards assertions, shards, and zones to other servers to respond to specific
queries, or based on some other interest presumed by the query-server.

At the current status of SCION, query- and intermediate- servers are organized
into a hierarchical cache. Every AS runs a service anycast query-server, and the
queries that can not be served out of that query-server’s cache are delegated to
the service anycast query-server of one or more upstream ASes.

3.5 Important Background Concepts 41

3.5.3 SCION Daemon

SCION provides a background process for its end-hosts and provides an API for
applications and libraries to interact with its control plane. End-hosts can use
the daemon to connect to SCION and interact with other SCION hosts. The
SCION Daemon provides functionality for path lookup, name resolution, trust
management, topology information and extension services.

An application which is using the SCION Daemon to connect to the SCION
network can use the daemon’s API to fetch the available path(s) toward a specific
destination. These can then be used to send messages over SCION to such
destination.

42 Backround on SCION

4

Design

In this chapter we describe how the SIG module that interconnects the SCION
network with the legacy IP world was designed and in which scenarios it works or
does not work. Part of its design was first proposed by the ETH Zürich Network
Security Group [7] and was further improved during this research work.

In the following, we first describe the challenges introduced by the proposal of
a new Internet architecture that are related to the SIG (Section 4.1): ensuring
maximum interoperability with the current Internet through minimal infras-
tructure changes, enabling transparent operations for legacy end-hosts in the IP
domain, preventing downgrade attacks to the legacy Internet. We then intro-
duce the SCION-IP Gateway (SIG) explaining the way it addresses the presented
challenges and the benefits it introduces in terms of security, even for legacy-
to-legacy traffic (Section 4.2). We show all the possible real use case scenarios
case-by-case demonstrating how the maximum interoperability is achieved (Sec-
tion 4.3). Next, we discuss some rare cases not addressed by the current design
since the design goals were to enable the common communications in an effi-
cient way (Section 4.4). Finally, we explain how the SIG service also introduces
benefits for the legacy traffic that passes through and helps mitigating DoS and
DDoS attacks (Section 4.6).

44 Design

4.1 Problem Space

First, we describe the requirements for the SCION-IP Gateway on interconnect-
ing the two networks.

4.1.1 IP-in-SCION Encapsulation

Transporting legacy IP traffic over the SCION network obviously requires to
encapsulate the IP traffic into SCION packets.

The tunneling protocol used by SCION is intentionally chosen non-reliable to
avoid issues with stacking retransmission timers [48][49]. In fact, wrapping a
reliable protocol with another reliable one can cause retransmission storms in
case of packet loss and this can lead to link congestion and could also be used
to set up a DoS attack. In addition, if a reliable tunneling protocol is used
and the lower layer retransmission timer is slower than the upper one, when the
lower layer starts loosing packets it increases its timeout. At this point the upper
layer, which has a faster timeout, will not receive a timely acknowledgement and
will queue a retransmission. Having the upper layer timeout still faster than the
lower layer’s one implies that the upper layer will queue up more retransmissions
faster than the lower layer can process them, leading to a stall of the upper layer
connection.[49].

Another consideration about the encapsulation protocol regards its isolation
from the IP traffic. Recalling that the SCION packet payload size is variable
(depends on path length, MTU and SCION extensions used in its header [7])
and recalling that IP-path MTU discovery only allows to decrease the MTU
(there is no mechanism to increase it again), the IP MTU for a SCION encap-
sulated connection will decrease over time as the path changes, which results in
bandwidth wastage. The SCION encapsulation protocol should then isolate the
IP traffic from the underlying SCION MTU.

4.1.2 Routing and Connectivity

A complete interoperability between the two networks results in SCION to be
transparent to all the legacy IP hosts communicating with each others, that
means all these hosts will keep communicating in the standard way, dictated
by the current legacy Internet, without being aware that SCION is working
in between. Proper interoperability also implies that routing must be fully

4.1 Problem Space 45

supported between two legacy IP hosts independently of the fact that they are
both inside two different SCION ASes or if one of the two is inside a legacy (i.e.
non SCION) AS.

Due to this transparency, the same routeability rules are preserved for public
and private IP ranges(RFC1918) [50]. The hosts in SCION ASes that want to
be reachable by legacy hosts in other SCION or legacy ASes must have public
IP addresses.

4.1.3 Addressing

Legacy hosts do not support SCION’s name resolution service (RAINS) and they
only rely on the legacy name resolution service (DNS). DNS service, though,
does not provide any interoperability with SCION addresses and legacy hosts
do not know how to route their traffic to a SCION AS – they are not even aware
that SCION is working in their between as already mentioned. The immediate
consequence is that it is responsibility of the SIG to make sure that the legacy
addressing of hosts inside SCION ASes is possible only using their bare IP
address.

4.1.4 Support for Layer-4 Protocols

We already mentioned in Section 4.1.1 the isolation between the encapsulation
protocol used and the IP traffic. In particular, due to the numerosity of the
different layer-4 Internet protocol solutions (as SCTP, L2TPv3, ICMP2, etc.),
any interoperability solution adopted by SCION must be layer-4 agnostic, i.e.,
it must work for any layer-4 protocol used in the legacy Internet.

4.1.5 Support for SCION-only ASes

Some ASes (as AS E in Fig.4.1) may decide to be connected directly to both
SCION and legacy Internet, others (as AS F in Fig.4.1) may decide to be only
connected to SCION, as in the case of a bank institution that needs to benefit
from all the SCION security improvements and wants to abandon the Internet
weaknesses. Both cases should be fully supported be the SIG design.

46 Design

4.2 The SCION-IP Gateway

The SCION-IP Gateway (SIG) is responsible for the interconnection between
SCION and Internet networks. Every SCION AS that wants to communicate
with the legacy IP world or wants to connect with the legacy hosts inside other
SCION ASes must deploy at least one SIG service. This service takes care of en-
capsulating the IP traffic into the SCION one at the sender side, decapsulating
the SCION traffic into the original IP packets at the receiver side and cor-
rectly routing the information to the right legacy end-host through the SCION
network. The SIG also takes care of mapping in which SCION AS a certain des-
tination IP address belongs to in order to provide correct routing information
through SCION.

All the legacy traffic into (or out of) a SCION AS goes through the SIG ser-
vice. This gives an extremely important role on the communication to the SIG
that must then be fast, fault-tolerant (i.e. capable to handle packets-delay and
packets-loss) and reliable also in case of faulty or malicious injected packets or
power outages.

In this section we describe in details the actual design of the SCION-IP Gate-
way. The description is split in subsections, each one of them either addresses
one of the requirements previously described in Section 4.1, or introduces new
consequent considerations.

4.2.1 Routing

Recalling that the SIG1 must be transparent to the legacy end-hosts, there are
two possible cases for a SCION AS: either it has a direct connection to the
legacy Internet or it has not.

In the simplest case, when the SCION AS has a direct connection to the Internet
(as the AS E in Fig.4.1), all the outgoing legacy traffic is sent to the SIG simply
setting its IP address as default-gateway on all the legacy hosts inside the AS –
read Section 4.5 to understand what happens when more than one SIG service is
present inside the same AS. For the incoming legacy traffic instead, the AS’s IP
border routers are used to advertise on the outside the AS’s local IP addresses.
The SIG IP address is then set up as the next-hop for all those IP border
routers in such a way that all the incoming legacy traffic, that obviously has to
go through such border routers, is forwarded to the SIG.

1In the following the term “SIG” refers to “SIG service” and is used for brevity.

4.2 The SCION-IP Gateway 47

BA

SC
IO

N
LE

G
AC

Y
IP

1.0.0.0/8
C

D E F

I SI SI

II
SISISI

I

(2,1,2.0.0.0/8) (3,1,3.0.0.0/8)

(6,1,6.0.0.0/8)(5,1,5.0.0.0/8)(4,1,4.0.0.0/8)

SCION Internet

IP Internet

SIG

SIG

SIG

6.0.0.0/8

5.0.0.0/8

4.
0.
0.
0/
8

1.0.0.0/8

Figure 4.1: Types of networks we consider, differing in whether they connect
to the SCION Internet, and whether they deploy a SCION-IP
Gateway (SIG) service. The SCION components appear in blue,
and the legacy IP components appear in red (reprinted from [7]).

In the more complicated case, when the SCION AS has not a direct connection
to the Internet (as the AS F in Fig.4.1), the interconnection with the legacy
world has to be offered by another SCION AS (as the AS E in Fig.4.1) through
its SIG service. All the outgoing legacy traffic from F is routed to the local SIG
that encapsulates it into SCION packets and forward them to the SIG service
in the SCION AS E. The SIG in E then decapsulates them into the original IP
packets and sends these ones on the legacy Internet through its direct connection
to it. For the incoming legacy traffic, the SIG in E advertises on the outside
legacy world F’s IP addresses. It then encapsulates the legacy traffic directed to
F into SCION packets and route them to the SIG in F that, in turn, decapsulates
them and forward to the proper local IP end-hosts.

The second case (when the SCION AS has not a direct Internet connection)
introduces a further difficulty. The SCION AS under consideration (in our case
the AS F in Fig.4.1) has to be previously associated with another SCION AS
that presents a direct link to the Internet (in our case the AS E in Fig.4.1)
that, in turn, has to accept the task to mediate between the SIG in F and the
Internet. This requires mutual trust and rigid regulations between the owners
of the SCION ASes E and F. Agreements among them may be regulated by a

48 Design

specific global or local authority, but also on private bases. The latter, perhaps
through a customer-provider or a peering relationship (see Section 1.1.2), is in
line with the SCION decentralized approach that aims to discourage the usage of
a single central authority. For availability reasons, the AS F may also have more
than one association with other SCION ASes – and possibly more associations
with different SIG services inside SCION AS E, if present – in case the SIG in AS
E simply crashes, or in case of bureaucratic problems between the institutions
that own the ASes E and F.

An Outgoing Associations Config table, where the records are SIG service
address and respective encapsulation port pairs, is not needed by a SCION AS
without direct Internet connection (as AS F). A simpler list containing only the
associated AS identifiers is enough instead (see Fig.4.2). SIG service address
or encapsulation-port may change for a considered associated AS (as AS E
for example), but the SIG in F would realize it within 500ms – in the case it
wants to communicate with AS E. This happens through the SIG negotiation
procedure better described in Section 4.2.5, where the SIG in F uses the SIG
SVC address for AS E to learn the new address(s) or encapsulation-port(s) of
its SIG service(s).

Figure 4.2: Outgoing associations list for AS F (without direct Internet con-
nection) and incoming associations list for AS E (with direct In-
ternet connection). Both the lists may have more than one record.

An Incoming Associations Config table, where the records are SIG service
address and respective encapsulation port pairs, is needed instead by a SCION
AS with direct Internet connection (as AS E). Knowing only the associated AS
identifier is not enough in this case, otherwise every host from an associated
AS could pretend to be a valid SIG service to the SIG in E. The Incoming
Associations Config table for AS E can be seen in Fig.4.2. Also in this case,
SIG service address or encapsulation-port may change for a considered remote
associated AS (as AS F for example). Updating the Incoming Associations
Config table of the SIG in E requires more effort this time. As long as the SIG
in E is receiving traffic from the associated AS F, it has to query the SIG SVC

4.2 The SCION-IP Gateway 49

address for AS F every 60s and, possibly, update its own Incoming Associations
Config table. This, in order to sanitize the table’s entries relative to AS F and
avoid impersonation attacks or simply believing that another host is a valid SIG
in AS F due to delays after some network’s updates in AS F.

Keeping the Incoming and Outgoing Associations Config tables up to date is
very important to avoid traffic drop and, in the worst case scenario, the com-
plete disconnection of a SCION AS from the Internet network or impersonation
attacks.

Notice that, AS E may have more than one SIG service running, but may want
to disallow one or more of them from serving the traffic coming from the SIG
service of the associated AS F. This can be in order to prioritize, through specific
SIG(s) in E, local traffic (coming from within AS E), or remote traffic coming
from other associated ASes, for performance reasons. In this scenario, any SIG
service in AS F has to be aware to which SIG service in AS E can send its
encapsulated traffic and to which not. Every SIG in AS E must then have a
filtering rule that allows, or impedes, to itself to answer to any SIG SVC address
call coming from AS F.

4.2.2 Mapping Legacy IP Addresses to SCION ASes

When the SIG service receives an outgoing legacy IP packet from the SCION
AS in which it operates, it has to determine the SCION AS the destination IP
belongs to, if any. A mechanism that maps from legacy public2 IP to SCION AS
is needed and it must also be verifiable, in such a way none AS can claim an IP
address space it does not own (either maliciously or due to misconfiguration).
The goal is achieved by having each SCION AS exporting its own IP Allocation
Config (IAC) using its certificate server. The IAC contains the list of all the
IP ranges the AS owns and the public key of that AS. Fig.4.3 shows the IACs
of three different random ASes.

For origin validation purposes [51][52], the list of the IP address ranges inside
the IAC is signed by the corresponding issuing RPKI authority [53] that can
be the IANA, a Regional Internet Registry (RIR), a Local Internet Registry
(LIR), or a National Internet Registry (NIR). The IAC also encloses the proper
SCION ISD-AS identifier and timestamps (used also as IAC table version), that
are omitted in Fig.4.3 for brevity’s sake. Every IAC is finally signed by the
SCION AS’s private key, which is the private key corresponding to the public
one contained in the signed IP prefixes list.

2Recalling that only public IP addresses are mapped as explained in Section 4.1.2.

50 Design

IP Allocation Config
ISD-AS: 13-559

IP Allocation Config
ISD-AS: 7-3303

IP Allocation Config
ISD-AS: 8-8447

SIG

IP ranges:
- 82.130.64.0/18
- 86.119.0.0/16
- 89.206.64.0/18
Public key:
- af92fcc32a3..

RIR

AS

IP ranges:
- 92.104.0.0/14
- 95.152.96.0/19
- 2a06:d581:3000::/36
Public key:
- 356fee66f7df6..

RIR

AS

IP ranges:
- 193.187.224.0/20
- 2001:67c:211c::/48
Public key:
- 0c2ec54e018ec..

RIR

AS

IPv4/IPv6 ISD-AS
82.130.64.0/18 13-559
86.119.0.0/16 13-559
89.206.64.0/18 13-559
92.104.0.0/14 7-3303
95.152.96.0/19 7-3303
193.187.224.0/20 8-8447
2001:67c:211c::/48 8-8447
2a06:d581:3000::/36 7-3303
... ...

Figure 4.3: IACs of three ASes collected by the SIG service, and compiled
to a mapping from IP address ranges to SCION ISD-AS numbers
(reprinted from [7]).

The SIG service periodically needs to fetch the updated IACs of all the remote
SCION ASes, with a procedure described in Section 4.2.2.1, and also has to
quickly offer its own updated IAC table to remote ASes that need to fetch it. In
case a new SIG service comes on-line it has to immediately start polling remote
IACs, and pushing its own for other ASes to speed up the discovery process of
itself. Whenever the SIG fetches a new IAC it has to verify its signature. Based
on all the received IACs the SIG builds a local mapping of IP ranges to SCION
ASes. This mapping is made available for queries by local SCION clients, in
case they want to learn in which SCION AS a given IP address is living.

If an outgoing legacy IP packet arrives to the SIG service with a destination IP
address that is not in the local mapping, it is assumed to be in a legacy (i.e.,
non-SCION) AS and then routed to the legacy Internet. In case of a SCION
AS with direct Internet connection (as the AS E in Fig.4.1), the IP packet is
directly forwarded through this direct link. In case of a SCION AS without
a direct Internet connection (as the AS F in Fig.4.1), the IP packet has to be
first encapsulated into a SCION packet by the SIG in F, then forwarded to
the associated SIG in E, decapsulated there and finally routed to the Internet
through E’s direct link to it.

4.2 The SCION-IP Gateway 51

4.2.2.1 IAC Polling

The SIG needs to regularly fetch all the possible updated IAC tables from every
remote AS in order to build and update its own mapping of IP ranges to SCION
ASes. In the following, two proposals are analyzed and the second one is the
one adopted by the SIG service. The first one has a relevant rule on explaining
the reasons behind the adoption of the second solution.

The simplest way someone can think about to solve this IACs fetching problem
is to have the SIG polling all the SIG services in other remote ASes on a 24
hours bases. If, on the one hand, this method certainly does not introduce any
complexity and infrastructure changes for the overall SCION architecture, on the
other hand, it introduces scalability issues – and for this reasons it is the one not
adopted for the SIG service development. A small set of 400’000 ASes (among
the 232 possible ones) querying each other over 24 hours would already cause
∼ 1.9 · 106QPS traffic, only considering the ideal case (see following example
for details). This is a serious traffic waste, particularly when considering that
extremely few prefix changes normally happen among all the global ASes (the
CIDR report for the 20th of June 2017 [54] shows that only 11’449 prefix changes
happened in the previous 7 days). It has to be considered, though, that ASes
granularity is much higher in SCION than the current Internet so prefix changes
could happen more frequently than today, but this still would not justify the
enormous traffic used to globally fetch the IACs. This reflects in the opposite
instead: a 24 hours update frequency may not be enough anymore and lowering
it would highly increase the already high dedicated traffic – that in our example
it is already ∼ 1.9 · 106QPS for only a small set of 400’000 ASes).

Example Recalling that the current SCION implementation uses 12 bits for
the ISD identifier and 20 bits for the AS identifier [7], a global amount of 4’096
ISDs and 1’048’576 ASes per ISD may be found in the SCION network. As-
suming only a small subset of all the possible ASes, say 400’000, and only one
SIG service per each AS. Every SIG service needs to fetch updates for every
single IAC belonging to a remote SIG service, that means that SIG needs to
send 399’999 queries. Every SIG service needs to interrogate every other SIG
service every 24 hours, this means an overall amount of ∼ 160 ·109 queries, that
reflects into ∼ 1.9 · 106QPS. This is a huge number of queries over the network
and it is only the ideal case. In fact, some SIG services may be down and reissue
queries and some queries may be lost and resent. These issues rapidly increase
the ∼ 1.9 · 106QPS value.

The second solution proposed requires more development effort and few changes
to the current CSs in the SCION infrastructure, but the performance improve-

52 Design

ments are worthy the changes. This is why this is the solution adopted for the
SIG service development. The SIG regularly pushes the IAC table version to
the local CS that, in turn, registers it with every Core AS in the same ISD. This
push is done through a keep-alive message that piggybacks the entry (ISD-AS,
IAC ver). The SIG can always poll one Core AS in every ISD to fetch updates
(possible new IAC version) and the response received is an entry (ISD-AS, IAC
ver). In case a newly received IAC version defers from the previously stored one,
the SIG can directly query the respective AS itself to fetch its updated IAC.
The sending frequency of the keep-alive message to the local CS is 500ms. The
SIG polls one Core AS in every ISD with a frequency of 5 hours, as suggested
by [52] when RPKI data is used as input to operational routing decisions. With
this second approach, the number of queries is largely reduced since the SIG
only needs to contact one Core AS per ISD and globally there are many less
ISDs than ASes. Furthermore, queries are much lighter in this case since the
response now is an entry (ISD-AS, IAC ver) instead of all the IAC itself. Finally,
a polling frequency of 5 hours instead of 24 hours allows to have a more updated
mapping of IP ranges to SCION ASes and hence fewer routing errors.

It should be noted also that, whenever an AS leaves the SCION network, all the
other ASes should update their local mappings removing the entries associated
with the leaving AS. A mechanism to implement this does not introduces further
complexity to be implemented. Whenever an AS leaves the SCION network, it
immediately stops to pushing its own IAC version to the local CS that, it turn,
stops to registering it with every Core AS within the same ISD. If a CS does
not receive a keep-alive message which piggybacks the entry (ISD-AS, IAC ver)
for a specific AS within 2000ms, it discards the last received (ISD-AS, IAC ver)
entry received from such AS. Whenever other ASes will poll the CS within a
Core AS, they will realize they can not poll this IAC version anymore and they
will decide to discard all the prefixes that were associated with that IAC table.

4.2.2.2 Populating Local IAC

Automating the process of mapping the IP prefixes inside an AS and keep them
up to date is not trivial. IP address blocks are not assigned to ASes, IP prefixes
and ASes numbers are assigned to organizations or people. This means that,
if some IP prefixes are used on the public internet, there is no guarantee that
the AS that used to announce them is assigned to the same organization those
prefixes were assigned to [55].

Several suggestions for ASes lookup tools have been made, but they come with
some drawbacks:

4.2 The SCION-IP Gateway 53

• Querying an Internet Routing Registry (IRR) database is a good practice,
but these records are far away from being accurate [56][57][58].

• Some of the RIR databases provide accurate information thanks to proper
developed tools, but only relative to the allocations they have made. The
RIPE RIS project [59][60] is a good example that makes use of a whois
server [61].

• Live lookups up of ASes announcements on the public Internet done by
checking the BGP route table only tell who is currently announcing a
particular IP prefix on a particular AS, but this is not enough information,
while live lookups done through external route servers/looking glass (like
traceroute.org [62]) are very dependent on third party websites and very
cumbersome.

For all the previous considerations it has been decided that the local IAC table
of a SIG has to be manually maintained by the AS’s system administrator. Since
the IP prefixes or AS changes already require the human interaction, manually
updating the entries of the IAC only introduces a negligible amount of work
(particularly because, as already shown, the global weekly changes of prefixes
are very few and rare [54]).

4.2.3 Encapsulation

The SIG encapsulation protocol designed is built on top of the UDP/SCION
protocol [7], that means it is wrapped in a non-reliable protocol to satisfy the
considerations done is Section 4.1.1.

To respect also the other considerations done in Section 4.1.1 and isolate the
IP traffic from the SCION MTU, the SIG converts the incoming IP packets
into a byte stream to a specific remote SIG service (see Fig.4.4). In this way
the number of bytes sent always corresponds to the current SCION MTU size
and does not depend on the IP packets’ size (some IP packets may be split in
pieces and others may be merged together inside the same SIG packet in order
to respect the SCION MTU size). A one-to-one conversion from IP packet
to SIG packet would not be efficient, while the stream of bytes solution always
maximizes the number of bytes that can be sent, respecting the SCION MTU. A
stream contains original layer-3 (i.e., IP) and above contents for the encapsulated
IP packet(s).

To rise the performances of the buffering phase, the SIG scans the destination
address of each incoming IP packet received and build and maintains a different

54 Design

P1 P2 P3 P4 P5

I
P

T
C
P

P
a
y
l
o
a
d

I
P

T
C
P

P
a
y
l
o
a
d

I
P

U
D
P

P
a
y
l
o
a
d

I
P

U
D
P

P
a
y
l
o
a
d

I
P

I
C
M
P

seq: 0 index: 1 seq: 1 index: seq: 2 index: 0 seq: 3 index:

Figure 4.4: Encapsulation of five IP packets (reprinted from [7]).

unique byte stream per each different remote SIG service it wants to communi-
cate to. This means that all the traffic between two SIG services belonging to
two different SCION ASes is transported in the same stream.

To optimize transmission time and SIG’s memory usage, the encapsulated IP
packets are stored in the byte stream without boundaries and padding informa-
tion.

Each SIG payload starts with a SIG header (as shown in Fig. 4.5) that com-
prehends: a four-byte sequence number, a two-byte index field and two unused
bytes.

0 32 48 64

sequence number index unused

Figure 4.5: Format of the SIG header (reprinted from [7]).

• The sequence number is used for packet reordering and detect packet loss
by a receiving SIG service. It starts from zero for a given direction of the
traffic and pair of SIG services, and monotonically increases by one every
SIG packet sent. It resets when the value reaches 232 or when the SIG
restarts. Fig.4.4 shows how the sequence number increases by one per each
of the five UDP/SCION packets that encapsulate the five IP packets.

• The index field allows the receiver to resynchronize in case of packet loss.
It points to the next start of an encapsulated packet inside a SIG payload,
if any (in Fig.4.4 both the cases are shown). The index is multiplied by
eight to get the byte offset from the beginning of the SIG payload. The
index value is zero if there are no encapsulated packets that start in this
SIG payload (see packet with sequence number 2 in Fig.4.4). The index
value is one when an encapsulated packet starts an the start of the SIG
payload.

4.2 The SCION-IP Gateway 55

Thanks to sequence number and index field, packet reordering and packet loss
can be detected and the receiving SIG can resume operation at the start of the
next correctly received encapsulated packet.

4.2.4 Decapsulation

The SIG decapsulation phase is reciprocal to the encapsulation one, but it re-
quires more considerations and design effort due to the complications that may
arise due to SIG packet(s) delay or loss, or due to possible packet injection at-
tacks. In this section we explain how the QoS of the encapsulated legacy traffic
is improved through the reordering of the received SIG packets (before decap-
sulating them) by the receiving SIG service and through a timeout mechanism
that decides when declaring a SIG packet lost. It follows an analysis of three
network behavioural problems, that can disrupt the SIG communication, and
their respective solutions: intermittent packet loss, IP header sanitization and
light authentication between communicating SIG services.

4.2.4.1 Reordering

Reordering the SIG packets at the receiving side is imperative [63] [64]. IP
packets received at the sending side may be received out of order by the sending
SIG, and hence stored out of order in the proper byte stream. This means they
may also be sent out of order to the receiving SIG, and finally to the destination
legacy end-host. If the receiving SIG service does not reorder at least the SIG
packets, an extra layer of entropy on the order of the legacy IP packets received
by the destination legacy end-host would be further introduced. This would
then cause lot of extra timeouts and retransmissions for the encapsulated legacy
traffic.

The SIG always reorder the received SIG packets, based on their sequence num-
bers, before decapsulating them. If a a SIG packet with sequence number X is
received, but one ore more immediately preceding ones (with, for example, se-
quence numbers: (X − 1) mod 232, (X − 2) mod 232, (X − 3) mod 232, ...) are
not, the SIG waits a timeout to expire before considering all the delayed packets
lost and resume the reordering and decapsulation process from the packet with
sequence number X. The timeout is measured from the reception of the packet
with sequence number X and is equal to 1

2RTT of the path in use (see Section
4.2.4.2 for more details).
As a SIG packet’s sequence number is a value mod 232, and it is unpre-
dictable how long it can take for the sequence numbers (X−1) mod 232, (X−2)

56 Design

mod 232, (X − 3) mod 232, ... to be reused, the respective packets can not be
marked as lost for a long period, but considered as such only in the precise mo-
ment their timeouts expire. The consequence is that the SIG can not keep track
of the lost packets, but should still drop SIG packets that are received after
their timeout expired. This situation is unlikely to happen during the normal
behaviour of the network, but it could be caused by malfunctioning equipment
or packet injection attacks (see Section 4.2.4.5 for details and proposed solution).

4.2.4.2 Timeout and RTT

The timeout after which the receiving SIG declares a SIG packet lost also has
important implications on the QoS. If the timeout is too short, many genuine
SIG packets would be declared lost too early. If the timeout is too long, the delay
introduced, waiting for the delayed SIG packet(s), on forwarding the decapsu-
lated legacy IP datagrams to their destination(s) would rapidly increase. Both
the situations would cause many retransmissions on the encapsulated legacy
traffic, and in certain cases also the interruption of legacy services.

In case a SIG packet is not received, the receiving SIG waits a timeout equal
to 1

2RTT of the SCION path in use before declaring it lost. The timeout is
measured starting from the correct reception of a SIG packet with sequence
number greater than the one expected.

The way the SIG measures and update the Round-Trip Time (RTT) is anal-
ogous to the way TCP does it [65]. The value we actually consider is the
Smoothed Round-Trip Time (SRTT) that is shown in (4.1) when the first RTT
measurement R is made:

SRTT = R (4.1)

and in and (4.2) for every consequent RTT measurement R′ (that happens per
each SIG packet received):

SRTT = (1− α) · SRTT + α ·R′ (4.2)

α is a parameter that determine how fast we forget the past, the smaller it is
the little influence the past has on the current value. The value recommended
by RFC [65] is α = 1

8 .

To measure the RTT relative to the path that is used by the sending SIG, the
receiver SIG service has first to reverse that path. It then sends a probe message
to the sending SIG service and measures the time it takes to receive the respec-
tive answer. The probe message is a simple SCION Control Message Protocol
(SCMP) (see Section 3.4.3). What complicates this procedure is that SCION

4.2 The SCION-IP Gateway 57

provides multipath communication by default, that means possibly having many
paths between two communicating SIG services, and hence one different RTT
for each. The receiving SIG should then probe the sending SIG through each of
the used paths to measure all the different RTT values.

4.2.4.3 Intermittent Packet Loss

In the case that SIG packets are lost with a rapid intermittence, the receiving
SIG experiences the reception of many IP fragments that can not be recomposed
in the original IP datagram(s). These fragments then do not carry information,
but are still transmitted and consume bandwidth. Fig.4.6 shows an example of
this scenario.

Figure 4.6: Example of intermittent packet loss where SIG packets with se-
quence numbers: 1, 3, 5, 7 are lost. Green IP packets come from
host 5.5.5.5, while orange ones comes from 5.5.5.10. Red crosses
symbolize lost packets.

When the receiving SIG realizes an intermittent packet loss is occurring, it
could drop the entire block of affected SIG packets, but this would not reduce
the bandwidth usage on the SCION network and these packets may encapsulate
IP packets coming from other different legacy hosts, and it might be that none
– or very few – of the packets sent by some specific hosts have been lost, as
explained in the following example.

Example In Fig.4.6 some SIG packets received by the SIG service in SCION
AS F are shown. The green traffic comes from host 5.5.5.5 in AS E, while
orange traffic comes from 5.5.5.10, also in AS E. Since packets with sequence
numbers: 1, 3, 5, 7 are lost, the SIG service in F can not reconstruct any of the
IP packets coming from 5.5.5.10, but can reconstruct all the ones coming from
5.5.5.5, except for packet P2. This means that the traffic coming from 5.5.5.5
is almost not affected from the intermittent packet loss and possibly should not
be dropped.

What the receiving SIG can do when it realizes an intermittent packet loss is in

58 Design

place is to communicate it to the sending SIG that has to immediately choose
and start using one or more alternative available communication SCION path(s)
(recalling the SCION multipath feature).

4.2.4.4 IP Header Sanitization

The SIG service fully relies on the received IP packets’ structure to populate
its byte streams. If malfunctions or crafted packet injections occur and no
countermeasures are taken, the SIG service can be put on the knees.

If a malformed IP packet with a wrong Total Length field is received en-
capsulated into a SIG packet by the receiving SIG service, it can cause loss of
synchronization between sending and receiving SIG services. For space reasons
the SIG header contains only one index field (not one for each IP datagram
encapsulated in that SIG packet), and there are no boundaries between encap-
sulated IP datagrams in the same SIG packet so, the only way the SIG has
to identify the start of the next encapsulated packet is to use the value of the
Total Length field of the current encapsulated packet. The Total Length field
of the IP packet pointed by the index field of the SIG header is used as offset
(from the first byte of the pointed IP packet) to identify the start of the second
encapsulated IP packet, if any. The Total Length field of the second IP packet
is used as offset (from the first byte of the second IP packet) to identify the
start of the third encapsulated IP packet, if any. So on and so forth. In case
of malformed Total Length field(s) the receiving SIG is helpless, so the solution
must come from the sending SIG that must check that the Total Length field
of each legacy IP packet received must coincide with its real length, if not the
IP packet must be dropped. Explicitly checking the correctness of the Total
Length field is a consequence of the fact that relying only on the correctness of
the IP’s CRC may not be enough due to a reasonable hash collision probability
[66] [67].

4.2.4.5 Dropping Old Packets

The SIG service fully relies on the sequence numbers and index fields of the
received SIG packets for the resynchronization and decapsulation operations. If
considerable delays or crafted replay attacks [68] occur and no countermeasures
are taken, the SIG service can be completely disrupted.

During the normal behaviour of the communication between two SIG services,
a delayed packed should either arrive within 1

2RTT at the receiver side or never

4.2 The SCION-IP Gateway 59

arrive. Only in extraordinary conditions such a packet can arrive after 1
2RTT .

These are: failures of communication equipment (like border routers, for exam-
ple), or replay attacks. Recalling that the sequence number of a SIG packet is
a value mod 232, when the SIG service receives a SIG packet with a sequence
number different than the one expected, it can not understand if this packet
is an extremely delayed one (whose 1

2RTT timeout already expired) or a new
one. If it is a very delayed packet and the SIG adopts the usual reordering
and decapsulation process, synchronization between sending and receiving SIG
services is lost. Every SIG header has then also to include a timestamp field
to prevent this to happen. The SIG header of Fig.4.5 becomes hence the one
of Fig.4.7. The 64-bits timestamp field is the one used by the Network Time

0 32 48 64

sequence number index unused

timestamp

Figure 4.7: Format of the SIG header with timestamp field added.

Protocol (NTP). It consists of 32-bit part for seconds and a 32-bit part for
fractional second, it presents a time scale that rolls over every 232 seconds (136
years) and has a theoretical resolution of 2−32 seconds [69].

If a SIG packet with timestamp older than a certain range is received, it is
immediately discarded. For our purposes this range is approximately 1

2RTT .
This approach allows to avoid the usage of a replay cache (like the one proposed
by the Kerberos authentication system [70]), where all the packets received are
stored, that may become very problematic [71] [72]. Security now depends on
SIG services’ clocks remaining roughly synchronized and on the trust of the
mechanism which sets the system clock.

4.2.4.6 Light Authentication between Communicating SIG Services

The SIG service fully relies on the sequence numbers and index fields of the
received SIG packets for the resynchronization and decapsulation operations.
If crafted packet injections occur and no countermeasures are taken, the SIG
service can be completely disrupted.

In the case a SIG packet is received with a sequence number that considerably
differs from the one expected, but which timestamp has an acceptable value,
the receiving SIG accepts it as a genuine one and assumes all the packets with
sequence numbers in the middle as in late. Two examples are provided in the
following.

60 Design

Example If the expected sequence number is 22, but the received SIG packet
carries the sequence number 4’200’000’000 is received, the SIG service assumes
that all the packets with sequence numbers in the range [22, 4’199’999’999] are
in late. If such packets are not received within 1

2RTT from the reception of
packet with sequence number 4’200’000’000, they will be considered lost.

Example If the expected sequence number is 22, but the received SIG packet
carries the sequence number 10 is received, the SIG service assumes that all the
packets with sequence numbers in the range [22, 4’294’967’295] ∪ [0, 9] are in
late. If such packets are not received within 1

2RTT from the reception of packet
with sequence number 10, they will be considered lost.

This scenario is unlikely to happen, but may be due to a faulty behaviour of the
network equipment. If so, it means that the packets with sequence numbers in
the middle have been lost for real and the receiving SIG has simply to resume
from the latest correctly received packet. If network faults are not involved, it
means someone maliciously injected one or more crafted packets into the SCION
network targeting the SIG. In this second case, the SIG must be able to protect
itself.

If we consider the first example provided, the goal of the attacker is to have
the SIG dropping as many packets with sequence numbers in the range [22,
4’199’999’999] as possible. In fact, very few of these packets will be received
within 1

2RTT from the reception of packet with sequence number 22. The result
is a resource depletion DoS attack which falls into the category of malformed
packets [18] [73].

This attack can disrupt the overall communication between two SIG services
in two different SCION ASes, and what is most important is that such attack
can be also performed by an off-path attacker within the SCION network. In
fact, everyone that knows the receiving SIG’s address can send a SIG packet
to it with a crafted SIG header’s sequence number field. The solution is to
authenticate the communication between two SIG services and, due to the high
amount of traffic shared, this has to be done in a light and fast way. Symmet-
ric cryptographic operations, such as computation and verification of a Mes-
sage Authentication Code (MAC) for each SIG packet is the most efficient
one and the Keyed-Hash Message Authentication Code (HMAC) is the
NIST suggested algorithm to use [74].

Running HMAC on the entire SIG packet is not necessary, but suggested to
ensure also the integrity of the message. If HMAC is run over all the SIG packet,
considering that the SCION maximum length of a packet is 65’535 bytes, the

4.2 The SCION-IP Gateway 61

fastest hashing algorithm to use is SHA-256 (see Fig.2 in [75]). To accelerate
the computation of the MAC, the SIG can decide to run HMAC only over:
the source ISD-AS (32-bit), the destination ISD-AS (32-bit), the SIG header
comprising the timestamp (128-bit) and a random nonce to introduce some
entropy (64-bit). In this case the fastest hashing algorithm to use is SHA3-256
(see Fig.1 in [75]). In both the cases the SIG header has to include a 256-bit
field for the MAC in its header (see Fig.4.8 and Fig.4.9). Only in the second
case a 64-bit field for the nonce is needed (see Fig.4.9).

0 32 48 64

sequence number index unused

timestamp

MAC

Figure 4.8: Format of the SIG header with MAC field added. MAC algorithm
run over the entire SIG packet. HMAC with SHA-256 used.

0 32 48 64

sequence number index unused

timestamp

nonce

MAC

Figure 4.9: Format of the SIG header with nonce and MAC fields added.
MAC algorithm run over: source ISD-AS, destination ISD-AS,
SIG header comprising the timestamp and nonce field. HMAC
with SHA3-256 used.

Embedding a MAC field in the SIG header, the origin of every SIG packet can be
now authenticated by the receiver and the injection attack previously explained
is no longer viable, assuming that an attacker does not know the symmetric
secret key used by the two SIG services to compute the MACs. This symmetric
key is securely set up and derived by both the SIG services using the SCION
DRKey mechanism explained in Section 3.4.3.

62 Design

4.2.5 SIG Negotiation

When the SIG service wants to sent encapsulated traffic to another AS, it needs
first to determine destination address and port of the SIG service(s) in that
AS. Such information can be retrieved contacting the SIG SVC address for that
remote AS, but this is not the intended procedure for high volume traffic, as
the one produced by the encapsulated traffic3.

Instead, the sending SIG service first queries the remote SIG SVC address for
that AS, and a remote service answers with its own address, SCION control port
and encapsulation port. The latter is used because otherwise the encapsulated
traffic could not be distinguished from the SCION control one. The sending SIG
then uses the retrieved information to directly contact to remote SIG service.

As long as the sending SIG service wants to communicate with the remote SIG,
it sends a keep-alive message to it every 500ms. If the respective response is not
received within one second, the sending SIG will use the SIG SVC again and will
start sending the encapsulated traffic to the new address it receives as response.
This allows failover in case the remote SIG instance becomes unreachable.

As already mention in Section 4.2.2.1, the keep-alive message piggybacks an
entry (ISD-AS, IAC ver) thanks to which the remote SIG service can also quickly
realize if the IAC table of the sending SIG changed and, possibly, update its
own local mapping of IP ranges to remote SCION ASes.

If there is no SIG service in the remote AS (or there is not any instance of it
running), the remote border router will answer with an SCMP Unknown Host
in response to the SIG SVC query.

4.2.6 Client Protocol Negotiation

End-hosts that support also SCION architecture can always decide which con-
nection try first when presented with a domain to resolve or a bare IP address,
possibly necessitating additional lookups. Purely legacy end-hosts instead have
only the Internet connection available and do not have access to RAINS data
[47] that means they can not extract information from SCION addresses. In
this section we only consider the SCION-enabled clients and their behaviour.
Notice that where we mention SCION hosts, it is implied a dual-stacked host

3Border routers’ processing is heavier for packets with SVC destinations because they have
to select a specific service instance.

4.2 The SCION-IP Gateway 63

with both IP and SCION network connectivity. Also note that for local traffic
within the same AS, the SIG is not involved.

4.2.6.1 Without DNS/RAINS

A SCION client faced with a SCION address will try a SCION connection first.
If this fails, it can then try a legacy IP connection. When a SCION client is faced
with an IP address of a remote AS instead, it queries the IAC of a local SIG
service to retrieve the corresponding ISD-AS. If a mapping is found, the client
will try a SCION connection. If no mapping is found, the client will attempt a
legacy IP connection through encapsulated traffic.

4.2.6.2 With DNS/RAINS

When a SCION host is presented with an host name as destination and not a
SCION or IP address, it will perform both RAINS and DNS lookups on that
host name. The SCION client will always prefer the RAINS answer over the
DNS one for positive responses. This means that, if both RAINS and DNS have
an entry for a name, the client uses the RAINS answer. If instead there is no
entry provided by RAINS, the client can fall back using the DNS answer, if any.
If the RAINS answer is a bare IP (i.e., not a SCION address), the client should
treat it as a legacy host. If the answer is a SCION address, or if it is an IP
address coming from DNS, the SCION client treats it as if it had been given
directly that address (see Section 4.2.6.1).

4.2.6.3 Protocol Mismatch

It can happen that a client tries to connect with a protocol the destination
service does not support. Errors must then be properly handled and the client
must be informed appropriately.

• IP client→ SCION service. The destination host – it has to be recalled
that it is dual-stacked – will generate an error depending on the protocol
used (ICMP port unreachable for UDP, for example). This reply will be
routed to the source (if the destination is a remote AS, the SIG will be
used), and the client will be informed by its operating system.

• SCION client→ IP service on IP host. The destination host will gen-
erate an ICMP port unreachable reply that will be routed to the source

64 Design

in the same way of the previous case discussed. The ICMP error does
not contain enough information to make the client’s application or socket
understand the issue, but in this case the destination host is not dual-
stacked and can not provide more information to a SCION service. This
error is applied indistinctly to all the SCION connection attempts to the
destination host.

• SCION client → IP service on SCION host. The destination host
will generate an SCMP port unreachable reply which will be routed back
to the source client as normal SCION traffic, and the client will be in-
formed by its operating system.

4.3 Common Scenarios (Life of a Packet)

We next discuss the common scenarios that occur during the translation between
SCION and IP. We refer to Fig.4.1 for the description and for clarity we will
use the color blue for the SCION components and red for the legacy IP ones.

1) IP host in SCION AS → IP host in SCION AS
We start with the case of two IP hosts in two different SCION ASes communi-
cating with each other. In Fig.4.1, this could be E.I→ F.I or vice versa4. We do
not consider communication with AS D in this scenario since it does not deploy
a SIG service.
We assume that the client host E.I connects to a web server F.I and it knows the
corresponding IP address, say 6.6.6.6 (possibly through a DNS lookup). The
web server listens on port 80 and makes use of TCP as transport protocol. E.I
has E’s SIG service set as default gateway.
Once packets from E.I arrives to the local SIG service (in AS E), the address and
encapsulation port of the destination SIG (in AS F) are needed. E’s SIG service
then queries its aggregated IAC table (see Fig.4.3) to identify the ISD-AS asso-
ciated with the IP address of F.I and send a SIG SVC message to it. A remote
SIG instance in AS F will answer with its address, say (6,1,6.0.0.1), a SCION
control port P and an encapsulation port Q. E’s SIG will then encapsulate E.I’s
packets as shown in FIg.4.4 and send them to (6,1,6.0.0.1) on the port Q.
If no SIG service is present in the remote AS (as for AS D for example), the
remote border router will answer with an SCMP Unknown Host as response to
the SIG SVC message and E.I’s packets will be sent via legacy Internet.

2) IP host in SCION AS w/ IP connectivity → IP host in IP AS

4Notice that E.I denotes a legacy IP host inside the SCION AS E.

4.3 Common Scenarios (Life of a Packet) 65

In this case, a connection from an IP host in a SCION AS with direct IP
connectivity (as AS E) to an IP host in a non-SCION AS (such as AS A) is
established. E’s SIG service, that is the default-gateway for the legacy hosts
in AS E, tries to map the destination IP address, say 1.1.1.1, to the respective
ISD-AS identifier. Naturally it fails because AS A is not aware of SCION.
E’s SIG then needs to fall back to IP routing. As AS A has surely announced
its IP prefixes through its BGP-speaking border routers, the SIG service in AS
E can use its direct Internet connection to send (non-encapsulated) IP packets
to AS A reaching then the host with address 1.1.1.1.

3) IP host in IP AS → IP host in SCION AS w/ IP connectivity
This case represents the reverse direction of the connection of the previous case:
a connection from an IP host in a non-SCION AS (such as AS A) to an IP
host in a SCION AS with a direct link to the Internet world (such as AS E). As
above, since AS E has surely annunced its IP prefixes through its BGP-speaking
border routers, AS A sends (non-encapsulated) traffic to AS E.
The incoming IP packets at AS E are routed from the border routers to E’s SIG
service that, in turn, will forward them to the proper legacy destination hosts
within AS E as they are without further processing.

4) IP host in IP AS → IP host in SCION AS w/o IP connectivity
We now extend Case 3 above assuming that AS A connects to a SCION AS
that has no direct Internet connectivity (as AS F). In this case, AS F relies on
some other SCION AS with direct IP connectivity (as AS E) to advertise its IP
prefixes on the legacy IP world making them available for legacy ASes.
Neither the client in AS A, nor AS A itself realize that AS E is used as proxy,
thus send the IP packets destined for the legacy host in F, say F.I with IP
address 6.6.6.6, to AS E. E’s border router forwards such proxy traffic to E’s
SIG service, which then encapsulate it and forwards it to a SIG service instance
in AS F. The negotiation protocol is similar to the one described in Case 1,
but this time it takes into account the restrictions imposed by the Outgoing
Associations Config and Incoming Associations Config tables of AS F and AS
E respectively (see Section 4.2.1).
The return traffic is covered in the explanation of Case 5.

5) IP host in SCION AS w/o IP connectivity → IP host in IP AS
This last case models the return traffic of Case 4 above. The destination address
of A.I, say 1.1.1.1, does not appear in the default-gateway’s IAC table that tells
to the SIG to which ISD-AS send the encapsulated traffic. E’s SIG service uses
its direct IP connectivity to forward the (decapsulated) return traffic, coming
from F’s SIG, to the legacy AS A.

66 Design

4.4 Cases Not Covered

Some possible combinations of IP and SCION networking are not covered by
the functionality of the SIG service. These are rare cases or ones that bring only
minimal gain in supporting them.

4.4.1 SCION Hosts without IP Stack

A SCION host without the IP communication stack is a special case that adds lot
of complexity when communicating with IP hosts. The SIG service described is
designed for dual-stacked SCION hosts as default case and SCION hosts without
the IP stack are currently not supported.

4.4.2 Transparent Layer-3 Translation (AS Level)

The SIG service could provide transparent layer-3 translation only under the
following conditions:

• To connect to the remote side a fixed maximum payload size (meaning
either fixed path, or a small payload size) is needed. See the above En-
capsulation requirement Section 4.2.3 for more details.

• The SIG service understand and can translate the L4 protocol used (so it
can update the checksum, for example)

• All the traffic above layer-3 is completely L3-independent (i.e., not some-
thing like IPSEC in AH mode, nor something that embeds layer-3 ad-
dresses).

The SIG service does not support these three conditions for general traffic, so
this is a not covered case.

4.4.3 Transparent Layer-3 Translation (Service Level)

Supporting the connection between hosts in the IP Internet world and hosts in
SCION ASes, the translation should be done on the SCION host, but this would
not introduce any benefit over a simply IP connection hence it is not covered.

4.5 Need of many SIG services per AS 67

4.5 Need of many SIG services per AS

The SIG service is the core component that allows legacy traffic communication
among remote SCION ASes. If it becomes unavailable for any reason, the entire
incoming and outgoing legacy traffic for its AS is disrupted. If we assume,
for example, a critical scenario where a SCION AS without direct Internet
connectivity (as the AS F in Fig.4.1) belongs to a Bank institution that wants to
benefit from SCION features, and its SIG service is not working or not reachable,
the result is that none from the Internet world can communicate with that Bank
institution anymore with obvious economic implications for the bank. This
critical scenario brings to light the problem of having a single SIG service in an
AS because it would become a single point of failure for the SCION-Internet
interconnection for that AS.

To be resistant against DoS and DDos, power outages or simply network links
interruptions, each AS should deploy more than one SIG service. This would
not only guarantee reliability and fault tolerance of the SIG service, but would
also prevent its congestion in case of heavy traffic conditions since the traffic
could be balanced between the different SIG instances within the local AS.

As mentioned in Section 4.2.1, a legacy host inside a SCION AS has the local
SIG service set as default-gateway. Since no infrastructure changes are desired
for the legacy hosts that want to benefit from the SCION architecture through
the SIG, nothing more than setting their default-gateway should be needed by
them to communicate with a local SIG service, even if multiple instances of it
are running inside the local AS. First Hop Redundancy Protocols (FHRP) [76]
can help a legacy host inside a SCION AS to choose the appropriate address to
set as default-gateway. On Cisco equipment, there are some different protocols
options to choose from, including Hot Standby Router Protocol (HSRP), Virtual
Router Redundancy Protocol (VRRP) and Gateway Load Balancing Protocol
(GLBP) [77]. HSRP and VRRP provide default-gateway redundancy having
one router operating as the active gateway router and one or more other routers
held in standby mode. GLBP enables all the available gateway routers to share
the workload and be active simultaneously. GLBP in particular would allow to
dynamically balance the outgoing traffic from an AS among the different SIG
services and to avoid to congest a specific one. To balance also the incoming
encapsulated traffic to a remote AS, the SCION border routers could provide a
smart way to answer to SIG SVC queries (i.e., answer them with the address of
the SIG service that is currently less congested).

68 Design

4.6 Introduced Benefits for the Legacy Traffic:
DoS Mitigation

Interconnecting the legacy Internet with the SCION network through the SIG
service also brings benefits to the legacy world. More specifically, the SIG’s
design provide a way to mitigate DoS and DDoS attacks carried out through
the encapsulated legacy traffic transported between one SCION AS to another.
Thanks to the fact that the encapsulated traffic between two SIG services in two
different ASes is authenticated (see Section 4.2.4.6) and the fact that every AS
publishes its IAC table (which contains the list of the legacy IP addresses the
AS contains) and this list is signed by the SCION AS’s private key (see Section
4.2.2), the receiving SIG can always identify from which AS the encapsulated
traffic is coming from. In case a DoS attack is in place from one AS to another
remote one, through the encapsulated traffic, and special agreements are in place
between the owners of the two ASes, the owner of the receiving under attack
AS may require the help of the owner of the sending AS to stop such attack.
Having the sending SIG service dropping the malicious legacy IP packets would
allow to stop the attack near its origin (i.e., within the AS where the attacker is
residing), with benefits in terms of the overall bandwidth for both SCION and
Internet networks.

It has to be noticed that, despite every SIG packet is authenticated through
the usage of a MAC (see Section 4.2.4.6), IP spoofing could trick the receiving
SIG into thinking that the provenance of the malicious encapsulated IP packets
received is another AS than the correct one. A trivial mechanism to prevent this
is to use ingress traffic filtering [78] on the sending SIG that has then to drop
all the IP packets with a spoofed source IP address before encapsulating them.
Impeding IP spoofing is also fundamental to prevent powerful DDoS attacks as
the amplification attacks, where the attacker sends a packet with the spoofed
address of the victim to the broadcast IP address of a network, causing then all
the hosts of the targeted network to send a reply to such victim [18].

5

Implementation

In this chapter we provide the implementation details of the SIG prototype
developed during this thesis work. We describe tools and technologies needed
during the development phase, the algorithms used and the protocols, data
structures and file formats chosen.

Due to time constrains and the high interaction of each single module of the
SIG system with the others, following an agile model for software development
was not possible, so we used the waterfall model approach instead. A prototype
that allows the communication between two ASes through their SIG services
was implemented and further evaluated, but not all the features of Section 4.2
were deployed due to external impediments and time limitations, considered the
size of the project (see Section 5.5).

In the following, the background knowledge, tools and technologies needed to
design and develop the SIG service are introduced (Section 5.1) and the topology
of the development and testing environment is described (Section 5.2). We
then explain how the codebase was structured to efficiently develop the SIG
and respect the design requirements (Section 5.3). Next, we briefly provide an
overview of the main software blocks developed that compose the SIG service,
and we show some scripts of the most interesting Python methods developed
(Section 5.4). Finally, all the limitations imposed by external factors on the
software development for this thesis work are explained (Section 5.5).

70 Implementation

5.1 Tools Needed

During this thesis work a significant previous knowledge about the SCION de-
sign and its implementation was needed, together with different tools to develop
and evaluate the SIG module.

SCION is an extensive design [7] than involves all the major blocks of the net-
work infrastructure (beacon servers, path servers, border routers, certificate
servers, etc.). Its implementation is composed of more that 600 MB of Python
and go software, developed by the Network Security Group of the ETH Univer-
sity, that can be found at https://github.com/netsec-ethz/scion.

For this thesis work some time was spent in learning the Python programming
language, the Vagrant tool and the Ansible automation platform together with
their syntaxes to write the configuration files required to set up the virtual ma-
chine environments needed. A considerable time was also used for an extensive
reading and understanding of the implemented SCION software in the GitHub
repository due to the absence of its documentation. Knowledge about working
with pcap files and live monitoring was required so the Python library pcapy
had to be learned. Forging packets was also necessary so the Python library
scapy had to be learned.

During this project, approximately 2500 lines of code were written (for an
amount of 1,5 MB of software produced) for a complex multithreading system
which threads all iterate concurrently on the same variables, buffers and data
structures. Buffering the legacy IP traffic before converting it to SCION packets
(as explained in Section 4.2.3) extremely increased the complexity of the system
and required a good knowledge of the Python multithreading principles and the
behaviour of its data structures in a concurrent context. Finally, a considerable
time has been spent researching and learning about DoS and DDoS attacks and
countermeasures with the goal of finding a way to protect the SIG service from
bandwidth and resource depletion attacks [18].

5.2 Topology of Development and Testing Envi-
ronment

To better understand the following sections, we already describe the topology
of the testing environment adopted during this thesis work. Naturally, for each
connection we needed two communicating ASes, each one deploying at least one
border router (that can be a legacy or SCION border router depending on the

https://github.com/netsec-ethz/scion

5.2 Topology of Development and Testing Environment 71

kind of the AS), a SIG service (if and only if it is a SCION AS), and at least
one active legacy IP host per each AS. A block diagram of such environment
is shown in Fig.5.1. The environment is composed of three ASes and more

Figure 5.1: Topology of the testing environment adopted. It comprises two
SCION ASes (i.e., AS11 that is a Core AS and AS12, that is a
non-Core AS) within the same ISD (i.e., ISD1) and a non-SCION
AS (i.e., AS13). Every AS contains one legacy IP host (namely a2,
b2, c2). The two SCION ASes also contain a SIG service (namely
a1, b1), while the non-SCION AS contains a legacy IP border
router (namely c3).

specifically two SCION ASes, namely AS11 and AS12, and one non-SCION AS,
namely AS13. AS11 and AS12 belong to the same SCION ISD, namely ISD1,
and communicate through the SCION network. AS11 presents also a direct
connection to the Internet network. AS13 is only connected to the Internet
instead. Every As contains a legacy IP host (more specifically, AS11 contains
a2, AS12 contains b2 and AS13 contains c2), while only the two SCION ASes
deploy a SIG service (more specifically, AS11 deploys a1 and AS12 deploys b1).
AS13 deploys a legacy IP router, namely c3, for enabling Internet connection.
Fig.5.1 also shows the addresses of the network interfaces used by each entity.
Our goal was to make the legacy hosts a2, b2 and c2 communicate with each
other through the usage of the SIG services a1 and b1.

Naturally, all the three ASes deploy also all the other network components
needed for the communication as SCION and non-SCION border routers, SCION
and non-SCION certificate servers, SCION beacon servers, SCION path servers
and so on. These components are not represented in Fig.5.1 and will be later
kept out of discussion for the sake of brevity.

72 Implementation

5.3 Structuring the Codebase

When it comes to maintainability and readability having a good codebase’s
structure is imperative and a good categorization is needed. All the software
developed for this thesis work can be found in the vagrant directory in the
GitHub SCION repository of the Network Security Group (NETSEC) of the
ETH University (https://github.com/netsec-ethz/scion).

Inside the vagrant directory can be found a directory for each of the fundamen-
tal entities of the topology in Fig.5.1 (a1, a2, b1, b2, c2), each one contains the
necessary files for that entity to operate:

vagrant

sig

a1

a2

b1

b2

c2

Entities a1 and b1 are SIG services and their directory structure are the same.
We then only represents a1’s one:

https://github.com/netsec-ethz/scion

5.3 Structuring the Codebase 73

a1

pcapy-0.11.1
...

sig.gen

ISD1/AS11

br1-11-1

topology.yml

...

bs1-11-1

topology.yml

...

cs1-11-1

topology.yml

...

endhost

topology.yml

...

ps1-11-1

topology.yml

...

sb1-11-1

topology.yml

...

...

dispatcher
...

...

Vagrantfile

gw.py

74 Implementation

pcapy-0.11.1 contains the library used by the SIG for sniffing the IP traffic.
sig.gen contains topology and configuration files for the entity a1; this directory
has to be renamed gen and copied within the scion folder on the host where a1 is
desired to be run (see Section 6.1). Among the rest, inside the sig.gen folder it
is present a directory for each network component inside the AS (beacon servers,
border routers, certificate servers, path servers and SIBRA servers), every one
of these directories include the topology.yml file with the local topology of the
AS as shown in listing 5.1.

1 BeaconServers :
2 bs1−11−1:
3 Addr : 1 2 7 . 0 . 0 . 1 0
4 Port : 30078
5 BorderRouters :
6 br1−11−1:
7 Addr : 1 2 7 . 0 . 0 . 9
8 I n t e r f a c e :
9 Addr : 1 6 9 . 2 5 4 . 0 . 1

10 Bandwidth : 1000
11 IFID : 18
12 ISD_AS: 1−12
13 LinkType : CHILD
14 MTU: 1280
15 ToAddr : 1 6 9 . 2 5 4 . 0 . 2
16 ToUdpPort : 50000
17 UdpPort : 50000
18 Port : 30093
19 Ce r t i f i c a t e S e r v e r s :
20 cs1−11−1:
21 Addr : 1 2 7 . 0 . 0 . 1 1
22 Port : 30059
23 Core : true
24 ISD_AS: 1−11
25 MTU: 1400
26 PathServers :
27 ps1−11−1:
28 Addr : 1 2 7 . 0 . 0 . 1 2
29 Port : 30092
30 S ib raSe rve r s :
31 sb1−11−1:
32 Addr : 1 2 7 . 0 . 0 . 1 3
33 Port : 30078
34 Zookeepers :
35 1 :
36 Addr : 1 2 7 . 0 . 0 . 1
37 Port : 2181

Listing 5.1: topology.yml topology file for a1.

Vagrantfile is the configuration file used by the Vagrant tool to set up a Virtual
Machine (VM) using VirtualBox according the specifics imposed by itself. These
specifics are mainly related to network configuration and memory usage, a1’s

5.3 Structuring the Codebase 75

Vagrantfile is shown on listing 5.2 and shows how the network setup respects
the one of Fig.5.1.

1 # −∗− mode : ruby −∗−
2 # vi : s e t f t=ruby
3 Vagrant . r equ i r e_ver s i on ">= 1 . 9 . 1 "
4

5 Vagrant . c on f i gu r e (2) do | c on f i g |
6 c on f i g .vm. hostname = "a1"
7 c on f i g .vm. box = "ubuntu/ xen ia l 64 "
8 # Link between a1 and b1
9 c on f i g .vm. network "private_network " , ip : " 1 69 . 2 5 4 . 0 . 1 " ,

v irtualbox__intnet : "gwnet"
10 # Link between a1 and a2 (endhost)
11 c on f i g .vm. network "private_network " , ip : " 1 69 . 2 5 4 . 1 . 1 " ,

v irtualbox__intnet : "gwnet−a"
12 # Link between a1 and c2 (endhost)
13 c on f i g .vm. network "private_network " , ip : " 1 69 . 2 5 4 . 3 . 1 " ,

v irtualbox__intnet : "gwnet−c"
14 c on f i g .vm. synced_fo lder ’ . ’ , ’/ vagrant ’
15 c on f i g .vm. prov ide r " v i r tua lbox " do | vb |
16 vb .memory = "1024"
17 end
18 end

Listing 5.2: Vagrantfile of a1.

gw.py is the Python implementation of the SIG service that can be consulted
in the digital archive provided together with this written work.

Entities a2, b2 and c2 are legacy IP hosts and their directory structure are the
same. We then only represents a2’s one:

a2

Vagrantfile

ansible.yml

The Vagrantfile of a2 is presented in listing 5.3.

1 # −∗− mode : ruby −∗−
2 # vi : s e t f t=ruby
3 Vagrant . r equ i r e_ver s i on ">= 1 . 9 . 1 "
4

5 Vagrant . c on f i gu r e (2) do | c on f i g |
6 c on f i g .vm. hostname = "a2"
7 c on f i g .vm. box = "ubuntu/ xen ia l 64 "
8 # Link between a1 and a2 (endhost)
9 c on f i g .vm. network "private_network " , ip : " 1 69 . 2 5 4 . 1 . 2 " ,

10 virtualbox__intnet : "gwnet−a" , auto_conf ig : fa l se

76 Implementation

11 c on f i g .vm. synced_fo lder ’ . ’ , ’/ vagrant ’
12 c on f i g .vm. prov ide r " v i r tua lbox " do | vb |
13 vb .memory = "256"
14 end
15 c on f i g .vm. p rov i s i on " s h e l l " , i n l i n e : <<−SHELL
16 apt−get update
17 apt−get i n s t a l l −y python
18 SHELL
19 c on f i g .vm. p rov i s i on " an s i b l e " do | a n s i b l e |
20 an s i b l e . playbook = " an s i b l e . yml"
21 an s i b l e . ga l axy_ro l e_f i l e = " . . / requ i rements . yml"
22 an s i b l e . galaxy_roles_path = " . . / r o l e s "
23 end
24 end

Listing 5.3: Vagrantfile of a2.

The ansible.yml configuration file instead is used by the Vagrantfile one to
set up the network interface of a2 and set a1 as a2’s default-gateway (listing
5.4).

1 − hos t s : a l l
2 become : true
3

4 r o l e s :
5 − r o l e : dresden−weekly . network−i n t e r f a c e s
6 network_manage_devices : no
7 network_inter faces :
8 − dev i ce : enp0s8
9 auto : true

10 method : s t a t i c
11 address : 1 6 9 . 2 5 4 . 1 . 2
12 netmask : 24
13 up :
14 − ip route add 169 . 254 . 2 . 0/24 v ia 1 69 . 2 5 4 . 1 . 1
15 − ip route add 169 . 254 . 4 . 0/24 v ia 1 69 . 2 5 4 . 1 . 1

Listing 5.4: ansible.yml file of a2.

5.4 SIG Software Blocks

In this section the Python script gw.py (i.e., the core of the entire implemen-
tation process) is decomposed into blocks (IP_Receiver, SCION_Sender, IP
Sender, Delayed Packets Sender and SCION Receiver) that are further an-
alyzed individually for a better understanding of their functioning. All these
blocks are concurrent threads of the gw.py script, they all run simultaneously

5.4 SIG Software Blocks 77

and interact with the same variables, buffers and data structures. For a bet-
ter management of the gw.py script and in order to prevent errors, all these
threads can be simultaneously killed by the threading.Event() object called
run_event shared by all of them.

5.4.1 IP Receiver

The IP_Receiver thread’s task is to capture the IP packets received by the
SIG service itself, check their IP destination address and buffer them into the
correct byte stream as explained in Section 4.2.3. In our environment only two
SIG services are present (i.e., a1 and b1), this means that a1 only preserves a
byte stream of IP packets directed to b1 and vice versa. This byte stream in
the gw.py script is called ip_buf and is a deque thread-safe list-like container
with memory-efficient appends and pops operations.

The SIG service makes use of the pcapy open_live utility to capture incoming
IP packets in transit on its legacy Internet interface. Whenever an IP packet
is received, its source IP address is first checked. If it does not belong to the
prefixes owned by the local AS and written in the SIG’s local IAC table, it
means the packet has a spoofed source address and the SIG drops it. Notice
that, due to limitations of the implemented SCION software (see Section 5.5),
the IAC table was simply hard-coded in the gw.py script. If the source IP
address is a genuine one instead, the SIG further processes it and checks if its
Total Length field matches the real length of the packet to avoid the issues
explained in Section 4.2.4.4. Only if the Total Length field is correct, the packet
is deprived of its Ethernet header and appended as sequence of bytes in ip_buf,
otherwise it is dropped. The SIG service does not need to encapsulate ARP
packets hence these ones are always dropped.

5.4.2 SCION Sender

The SCION_Sender thread’s task is to extract the information bytes from ip_buf,
encapsulate them inside SCION packets and send them to the correct remote
SIG service, using the SCION path(s) fetched from the SCION Daemon 3.5.3.
Recalling that, a1 and b1 have only one byte stream each (as mentioned in
Section 5.4.1), it is not needed a priority mechanism that chooses from which
deque container extract the bytes to be encapsulated and sent over the only
one SCION interface available. However, such mechanism could have used a
Round-robin scheduling mechanism or could have prioritized the oldest packets
received based on stored timestamps.

78 Implementation

When the SCION_Sender thread is first created, it requests to the SCION Dae-
mon the SCION path(s) for the only available remote SIG service (i.e., a1
requests the path(s) for b1 and vice versa). Listing 5.5 shows the methods
_get_path and _try_sciond_api needed to request the path(s). In a real life
scenario the path(s) should be frequently updated with consequent _get_path()
requests, but in our environment this is not needed since the topology available
comes from the static configuration file topology.yml, as already described in
Section 5.3.

1 de f _get_path (s e l f , api , f l u s h=False) :
2 """Request path v ia SCIOND API . """
3 path_entr ies = s e l f . _try_sciond_api (f l u s h)
4 path_entry = path_entr ies [0]
5 s e l f . path_meta = path_entry . path ()
6 fh_info = path_entry . f i r s t_hop ()
7 fh_addr = fh_info . ipv4 ()
8 i f not fh_addr :
9 fh_addr = s e l f . dst . host

10 port = fh_info . p . port or SCION_UDP_EH_DATA_PORT
11 s e l f . f i r s t_hop = (fh_addr , port)
12

13

14 de f _try_sciond_api (s e l f , f l u s h=False) :
15 f l a g s = l ib_sc iond . PathRequestFlags (f l u s h=f l u s h)
16 s t a r t = time . time ()
17 whi le time . time () − s t a r t < API_TOUT:
18 t ry :
19 path_entr ies = l ib_sc iond . get_paths (s e l f . dst . isd_as ,

s rc_ia=s e l f . addr . isd_as , f l a g s=f l a g s , connector=s e l f .
_connector)

20 except l ib_sc iond . SCIONDLibError as e :
21 l o gg ing . e r r o r ("Error during path lookup : %s " % e)
22 cont inue
23 r e turn path_entr ies
24 l o gg ing . c r i t i c a l ("Unable to get path from l o c a l ap i . ")
25 k i l l _ s e l f ()

Listing 5.5: _get_path and _try_sciond_api methods needed by the SIG
service with address self.addr.isd_as to request the path(s)
for the remote SIG service with address self.dst.isd_as.

Whenever the size of the ip_buf is greater than the current SCION MTU, a
number of bytes equal to the SCION MTU is extracted from the deque con-
tainer to build the payload of a SIG packet. The SIG header is also built,
with the information state kept by the SCION_Sender, and appended to the
SIG payload. The SIG packet created is then encapsulated as payload of a
regular SCION packet and sent through the path(s) previously fetched. Time
constraints impeded to implement the improvements of Section 4.2.4.5 and Sec-
tion 4.2.4.6, so the SIG header used for this implementation is the one of Fig.4.5.
The SCION_Sender thread increment by one the sequence number field of the

5.4 SIG Software Blocks 79

SIG header every time a packet is sent, while the index field is calculated
by the method _offset_next_encap_pck(). Listing 5.6 shows the methods
_create_payload() and _offset_next_encap_pck() used to create the SIG
packet (i.e., the SCION packet’s payload) and to calculate the index field of
the SIG packet’s header.

1 de f _create_payload (s e l f , spkt) :
2 format = ’ ! IHH%ss ’ % SCION_PAYLOAD_LENGTH
3 pld = bytearray ()
4 f o r i in range (0 , SCION_PAYLOAD_LENGTH) :
5 pld . append (s e l f . buf . p op l e f t ())
6

7 s e l f . index = s e l f . o f f s e t + 1
8 encap_pck = pack (format , s e l f . sn , s e l f . index , s e l f . unused ,

pld)
9

10 pr in t (’ sn : %s \nindex : %s \nencap_pck : %s ’ % (s e l f . sn , s e l f .
index , encap_pck))

11

12 # ca l c o l a t e the index f i e l d
13 i f s e l f . no_encap_counter > 0 :
14 # no encapsu lated packets s t a r t in t h i s payload
15 s e l f . o f f s e t = −1
16 s e l f . no_encap_counter −= 1
17 e l s e :
18 s e l f . _offset_next_encap_pck (pld)
19 s e l f . index = s e l f . o f f s e t
20

21 r e turn PayloadRaw(encap_pck)
22

23

24 de f _offset_next_encap_pck (s e l f , payload) :
25 pr ev i ou s_o f f s e t = s e l f . o f f s e t
26

27 whi le s e l f . o f f s e t < SCION_PAYLOAD_LENGTH:
28

29 ip_header = payload [s e l f . o f f s e t : s e l f . o f f s e t +
IP_header_length]

30 i f l en (ip_header) != IP_header_length :
31 # Extract miss ing header
32 tmp = bytearray ()
33 f o r i in range (0 , (IP_header_length − l en (ip_header))

) :
34 tmp . append (s e l f . buf . p op l e f t ())
35 ip_header = ip_header + tmp
36

37 # Re−append pr ev i ou s l y ext rac t ed peace o f header
38 f o r i in range (l en (tmp)) :
39 s e l f . buf . append l e f t (tmp [l en (tmp)−1− i])
40

41 # Extract Total Length f i e l d o f IP packet
42 iph = unpack (’ !BBHHHBBH4s4s ’ , ip_header)
43 ip_length = iph [2]
44

80 Implementation

45 s e l f . o f f s e t = s e l f . o f f s e t + ip_length
46

47 # Update o f f s e t and counter f o r packets with index=0
48 s e l f . no_encap_counter = in t ((s e l f . o f f s e t − (

SCION_PAYLOAD_LENGTH − pr ev i ou s_o f f s e t)) /
SCION_PAYLOAD_LENGTH)

49 s e l f . o f f s e t = s e l f . o f f s e t % SCION_PAYLOAD_LENGTH

Listing 5.6: _create_payload() and _offset_next_encap_pck()
methods used to create the SIG packet (that is the SCION
packet’s payload) and to calculate the index field of the SIG
packet’s header respectively.

Identifying the correct value of the index field for a SIG packet’s header is not
a trivial process. The index field is always equal to self.offset + 1 (line 7),
where self.offset is a variable used to determine the ending point of the cur-
rently analyzed IP encapsulated packet inside ip_buf. At the first interaction
(i.e., with sequence number equal to zero), the value of the self.offset vari-
able is zero, and it is updated by the _offset_next_encap_pck() method every
time a new SCION packet is created. _offset_next_encap_pck() iterates un-
til self.offset is equal or grater than the payload length of the considered
SCION packet (line 29), in that moment self.offset points to the end of the
last IP packet that can be totally, or partially, encapsulated within the SCION
packet under construction. At every iteration of the while loop (lines 29–47), the
self.offset value is updated summing to it the total length of the currently
considered IP packet. This length is extracted from the Total Length field of
such IP packet’s header (lines 31–45). It can happen that the currently analyzed
IP packet’s header is not fully comprised in the sequence of bytes extracted from
ip_buf, in this case the missing part has to be extracted, analyzed to find the
necessary Total Length field and, finally, re-appended to ip_buf (lines 33–41).
Once the while loop ends, self.offsetmodulo SCION_PAYLOAD_LENGTH
is calculated and will be used to set the index field of the next SCION packet.
In case an encapsulated IP packet’s length is grater than twice or more the
SCION_PAYLOAD_LENGTH value, self.no_encap_counter keeps track of
the number of future created SCION packets that will carry an index field equal
to zero.

5.4.3 SCION Receiver

The SCION_Receiver thread’s task is to receive and store the SCION pack-
ets directed to the SIG service itself through its SCION network interface.
It keeps track of the expected SIG’s header’s sequence number through the
self.sn_expected variable. Listing 5.7 shows SCION_Receiver’s _packet_put()

5.4 SIG Software Blocks 81

function. If a SCION packet received matches such expected sequence number,
it is immediately stored within a dictionary of received SCION packets called
self.spcks_dict[] (lines 25–26), otherwise, SCION_Receiver checks how late
the package has arrived and decides whether discard or keep it, according the
discussion done in Section 4.2.4.2 (lines 6–23).

1 de f _packet_put (s e l f , packet) :
2 spck = packet . pack ()
3

4 sn , index , unused , payload = s e l f . _unpack_scion_pck (spck)
5

6 # i f packets l o s t
7 i f sn != s e l f . sn_expected :
8 current_time = datet ime . datet ime . now()
9

10 i f (sn in s e l f . delayed_spcks) and ((s e l f . delayed_spcks [sn
] [1] − current_time) . tota l_seconds () <= HALF_RTT) :

11 # delayed packet a r r i v ed in time . Store i t
12 s e l f . spcks_dict [sn] = SCION_Packet (sn , index , unused ,

payload)
13

14 e l i f not (sn in s e l f . delayed_spcks) :
15 # the packets l o s t / delayed can be more than 1
16 whi le (s e l f . sn_expected <= sn) :
17 pr in t (’ packet with sn= %s was l o s t ’ % s e l f .

sn_expected)
18 s e l f . lost_or_delayed . i n s e r t (0 , (s e l f . sn_expected ,

current_time)) # i n s e r t on the l e f t −−−> TO BE REMOVED USING
pop ()

19 s e l f . delayed_spcks [s e l f . sn_expected] = (True ,
current_time)

20

21 s e l f . sn_expected = (s e l f . sn_expected + 1)%
4294967296

22

23 s e l f . spcks_dict [sn] = SCION_Packet (sn , index , unused ,
payload)

24

25 e l s e :
26 s e l f . spcks_dict [sn] = SCION_Packet (sn , index , unused ,

payload)

Listing 5.7: _packet_put() method of the SCION_Receiver thread that
decides whether store or drop the received SCION packet.

More specifically, if the SCION packet just received has already been declared
as in late (i.e., inserted in the dictionary self.delayed_spcks[] together with
its expected arrival time, using its sequence number as key), and its expected
arrival time does not defer more that 1

2RTT from the current time, the packet
is kept and stored in self.spcks_dict[] (lines 10–12). If such SCION packet

82 Implementation

is not in self.delayed_spcks[], it means it is a new one1 to be stored in
self.spcks_dict[], and the packets with sequence numbers between the ex-
pected one and the one of the packet just received are either in late or lost and
must be inserted in self.delayed_spcks[] (line 14–23). self.lost_or_delayed[]
is a list object used to store the expected arrival time of a packet that is in late
(or may be lost), this list is fundamental for the Send_Delayed_Packets thread
to quickly retrieve the oldest not-received packet without the need of scanning
all the self.delayed_spcks[] dictionary. In all the other cases, the received
SCION packet is dropped.

Using the dictionary self.spcks_dict[] to store the received SCION pack-
ets requires more memory and is less performing than a buffer approach, but
greatly facilitates the reordering process of the packets – particularly in case of
delayed or lost packets. To quickly identify the needed packets, the keys of this
dictionary are the sequence numbers of the stored SCION packets.

5.4.4 IP Sender

The IP_Sender thread’s task is to decapsulate the SCION packets received,
stored in the self.spcks_dict dictionary, and send the original legacy IP
packets to the correct legacy destination through the SIG’s Internet interface.
IP_Sender maintains a state information variable called sn_to_send that rep-
resents the sequence number of the current SCION packet to be decapsulated
and sent. This one is increased by one, according the modulo 232 operation, at
every interaction in such a way the SIG can only send packets in the order they
have been received (i.e., not introducing further entropy on their order for the
end destination).

The sending procedure used by the IP_Sender thread is not trivial and requires
some implementation choices to be introduced:

• self.splitIP_tail[] is a dictionary whose element splitIP_tail[SN]
contains the last fragment of the last encapsulated IP packet in the SCION
packet with sequence number equal to SN-1, or is None when index is
equal to 0 or 1 for the SCION packet with sequence number SN (see
Fig.5.2).

1Notice that, it could also be a really old one that is extremely in late or a replayed one
injected by an attacker, as explained in Section 4.2.4.5. The implemented version of the SIG
header has not a timestamp value so the SIG can not detect and drop this. We assume then
to work in an environment where this scenario can not happen.

5.4 SIG Software Blocks 83

• self.splitIP_head[] is a dictionary whose element splitIP_head[SN]
is a tupla and contains either a value True and the first fragment of the
last IP packet encapsulated in the SCION packet with sequence number
equal to SN, or a value False and an intermediary fragment when index
is equal to 0 for the SCION packet with sequence number SN, or None
when the last IP packet encapsulated in the SCION packet with sequence
number equal to SN ends within the SCION packet itself (see Fig.5.2).

Figure 5.2: Possible values for the elements of the dictionaries
self.splitIP_tail[] (in purple) and self.splitIP_head[]
(in green). The arrows show the portion of bytes that composes
a dictionary’s element. Some elements may be None. Notice that
an element of self.splitIP_head[] is a tuple, but their second
element that is a Boolean is not represented for sake of brevity.
self.splitIP_head[3][1]= False, while the Boolean is True
for all the other elements of self.splitIP_head[] in this image,
except for self.splitIP_head[5] that is None.

Listings 5.8 shows the sending procedure used by IP_Sender. At every interac-
tion, it tries to decapsulate and send the IP packets in the SCION packet with
sequence number equal to sn_to_send (that in the listing is indicated only
with sn). If the index field of such SCION packet is equal to 0, its payload
is inserted in self.splitIP_head[sn] together with a False value that indi-
cates that no IP packets start in such payload (lines 6–12). In this case no IP
packets can be decapsulated and sent since the SCION packet’s payload embeds
only one of the fragments that compose an original IP packet, and the other
fragments are still missing.

84 Implementation

1 de f _send_procedure (s e l f , sn) :
2 spck = s e l f . d i c t [sn]
3 index = spck . index
4 payload = spck . payload
5

6 # no IP packets s t a r t s in t h i s payload
7 i f index == 0 :
8

9 s e l f . sp l i t IP_head [sn] = (False , payload) # tup l e : (
IP_pck_starts_in_this_elem , part_of_payload_of_fragmented_pck
)

10

11 # packet processed , time to remove i t from d i c t i ona ry
12 de l s e l f . d i c t [sn]
13 e l s e :
14 s e l f . _send_previous_fragmented_ip_pck (spck)
15 s e l f . _send_ip_pcks_in_this_encap_pck (spck)
16

17

18 de f _send_previous_fragmented_ip_pck (s e l f , spck) :
19 sn = spck . sn
20 index = spck . index
21

22 i f s e l f . sp l i t IP_head . get ((sn−1)%4294967296) i s not None :
23 i f index == 1 :
24 # i f the prev ious IP pck had index=0 i t has not been

sent yet and i t has to be sent
25 pld = b ’ ’
26 e l s e :
27 # when index>1 part o f the prev ious IP pck i s in the

cur rent encap pck
28 pld = spck . payload [: index]
29

30 i t e r a t o r = (sn−1)%4294967296
31 re t r i eved_fragments = []
32 whi le (True) :
33 i f s e l f . sp l i t IP_head . get (i t e r a t o r) i s None :
34 # part o f pck has been l o s t
35 pld = None
36 break
37 e l i f s e l f . sp l i t IP_head [i t e r a t o r] [0] == True :
38 # s t a r t i n g po int o f the IP pck found
39 pld = s e l f . sp l i t IP_head [i t e r a t o r] [1] + pld
40 re t r i eved_fragments . append (i t e r a t o r)
41 break
42 e l i f s e l f . sp l i t IP_head [i t e r a t o r] [0] == False :
43 # s t a r t i n g po int o f the IP pck not found
44 pld = s e l f . sp l i t IP_head [i t e r a t o r] [1] + pld
45 re t r i eved_fragments . append (i t e r a t o r)
46

47 i t e r a t o r = (i t e r a t o r − 1) % 4294967296
48

49 i f pld i s not None :
50 e the rne t = scapy . Ether (s r c=’ 0 8 : 0 0 : 2 7 : e2 : f 7 : 59 ’ , dst=’

5.4 SIG Software Blocks 85

0 8 : 0 0 : 2 7 : 0 b : 3 c : de ’ , type=0x0800)
51 scapy . sendp (e the rne t / scapy .Raw(pld) , i f a c e=

ETH_LEGACY_IP)
52

53 f o r i in ret r i eved_fragments :
54 # remove from d i c t i ona ry fragments sent c o r r e c t l y
55 de l s e l f . sp l i t IP_head [i]
56

57 e l s e :
58 # i t means that the packet with sequence number = SN−1

was a l r eady sent or l o s t / in l a t e
59 s e l f . s p l i t I P_ t a i l [sn] = spck . payload [: index]
60

61

62 de f _send_ip_pcks_in_this_encap_pck (s e l f , spck) :
63 sn = spck . sn
64 index = spck . index
65 pld = spck . payload
66

67 s e l f . o f f s e t = index −1
68

69 whi le s e l f . o f f s e t <= SCION_PAYLOAD_LENGTH:
70 ip_header = pld [s e l f . o f f s e t : s e l f . o f f s e t +

IP_header_length]
71

72 i f l en (ip_header) != IP_header_length :
73

74 s e l f . sp l i t IP_head [sn] = (True , ip_header)
75 # packet processed , time to remove i t from d i c t i ona ry
76 de l s e l f . d i c t [sn]
77 break
78

79 e l s e :
80 iph = unpack (’ !BBHHHBBH4s4s ’ , ip_header)
81 ip_len = iph [2]
82

83 ip_pck = pld [s e l f . o f f s e t : s e l f . o f f s e t + ip_len]
84 i f s e l f . o f f s e t + ip_len <= SCION_PAYLOAD_LENGTH:
85 e the rne t = scapy . Ether (s r c=’ 0 8 : 0 0 : 2 7 : e2 : f 7 : 59 ’ ,

dst=’ 0 8 : 0 0 : 2 7 : 0 b : 3 c : de ’ , type=0x0800)
86 scapy . sendp (e the rne t / scapy .Raw(ip_pck) , i f a c e=

ETH_LEGACY_IP)
87

88 s e l f . o f f s e t = s e l f . o f f s e t + ip_len
89

90 e l s e :
91 s e l f . sp l i t IP_head [sn] = (True , ip_pck)
92 # packet processed , time to remove i t from

d i c t i ona ry
93 de l s e l f . d i c t [sn]
94 break

Listing 5.8: _send_procedure() method of the SCION_Receiver thread
that decapsulates and send the legacy IP traffic.

86 Implementation

If index is different from 0, procedures _send_previous_fragmented_ip_pck()
and _send_ip_pcks_in_this_encap_pck() are called (lines 13–16).

_send_previous_fragmented_ip_pck() scans backward all the previous IP
fragments stored in self.splitIP_head[] to retrieve all the ones, if any, asso-
ciated with the first IP fragment encapsulated in the considered SCION packet
(lines 32–47). If these fragment(s) are present, the full IP packet is rebuilt and
sent over the Internet interface, while the retrieved fragment(s) are removed from
the dictionary self.splitIP_head[] (lines 49–55). For sending the packets the
scapy library is used to update their Ethernet header information. If IP_Sender
realizes that one of the fragment(s) that should compose the original IP packet
is not retrievable, the _send_previous_fragmented_ip_pck() method is ex-
ited. Such missing fragment could be lost or only delayed, so IP_Sender lets
the decision to whether discard all the associated fragments or not to the thread
Send_Delayed_Packets.
If the IP fragment immediately preceding the first one encapsulated in the
considered SCION packet is not retrieved, it means that the SCION packet
preceding the one under consideration could be delayed. The first IP frag-
ment encapsulated in the SCION packet under consideration is then inserted
in self.splitIP_tail[] for a future analysis by the Send_Delayed_Packets
thread (lines 57–59).

_send_ip_pcks_in_this_encap_pck() scans instead all the legacy IP packets
encapsulated within the considered SCION packet, decapsulates them and send
them over the Internet interface. Starting from the value of the index field
as offset, the header of the first encapsulated IP packet is parsed to retrieve
its Total Length field that is used to determine the starting point of the next
encapsulated IP packet. This mechanism is used to retrieve all the IP packets
encapsulated within the SCION packet under consideration. Every one fully
retrieved (i.e., not fragmented) is sent using the scapy library in the same way
used by _send_previous_fragmented_ip_pck() (lines 84–88). In case the last
parsed IP packet encapsulated is not fully retrieved, but only a fragment of
it is present inside the considered SCION packet, this fragment is inserted in
self.splitIP_head[] (lines 72–77 and 90–94). Further iterations of IP_Sender
will try to merge it with the missing fragments possibly retrieved within the next
received SCION packets.

5.4.5 Delayed Packets Sender

The Send_Delayed_Packets thread’s task is to scan the dictionary of SCION
packets arrived in late and, if they are received within 1

2RTT from their expected
reception time, decapsulate them into the original IP packets and send these last

5.4 SIG Software Blocks 87

ones to the correct legacy destination through the SIG’s Internet interface.

Listings 5.9 shows the _run() method of Send_Delayed_Packets that is the
core of all the thread’s functioning.

1 de f _run(s e l f) :
2 pr in t (’ Send_Delayed_Packets Started ’)
3

4 whi le (s e l f . run_event . i s_se t ()) :
5 current_time = datet ime . datet ime . now()
6

7 i f s e l f . lost_or_delayed :
8 sn , a r r iva l_t ime = s e l f . lost_or_delayed . pop () #

return and remove delayed pck with sho r t e s t time to l i v e
9 i f (current_time − arr iva l_t ime) . tota l_seconds () >

HALF_RTT:
10 # packet i s too much in la t e , d i s ca rd preced ing

fragments and i t (N.B. pop () a l r eady done)
11 s e l f . _discard_preceding_fragments (sn)
12 s e l f . _discard_fol lowing_fragments (sn)
13

14 i f sn in s e l f . d i c t :
15 #not i c e that i f the pck was l o s t , s e l f . d i c t [

sn] i s empty
16 de l s e l f . d i c t [sn]
17 i f sn in s e l f . delayed_spcks :
18 # not i c e that i f the pck was l o s t , s e l f .

delayed_spcks [sn] i s (False , None)
19 de l s e l f . delayed_spcks [sn]
20

21 e l s e :
22 # try to send t h i s pck and r e l a t e d fragments
23

24 success_with_preceding = False
25 success_with_fo l lowing = False
26 i f sn in s e l f . d i c t :
27 #not i c e that i f the pck was l o s t , s e l f . d i c t [

sn] i s empty
28 success_with_preceding = s e l f .

_send_preceding_fragments (sn)
29 success_with_fo l lowing = s e l f .

_send_following_fragments (sn)
30

31 i f success_with_preceding and
success_with_fo l lowing == False :

32 # not a l l f ragments sent , but s t i l l time to
t ry so r e i n s e r t tup l e in prev ious po s i t i o n

33 s e l f . lost_or_delayed . append ((sn , ar r iva l_t ime
))

34 e l s e :
35 # a l l fragments sent proper ly
36

37 i f sn in s e l f . d i c t :
38 # not i c e that i f the pck was l o s t , s e l f .

88 Implementation

d i c t [sn] i s empty
39 de l s e l f . d i c t [sn]
40 i f sn in s e l f . delayed_spcks :
41 # not i c e that i f the pck was l o s t , s e l f .

delayed_spcks [sn] i s (False , None)
42 de l s e l f . delayed_spcks [sn]
43

44 pr in t (’ ∗∗∗∗∗ Send_Delayed_Packets sender ex i t ed ∗∗∗∗∗ ’)
45 sys . e x i t (1)

Listing 5.9: _run() method of the Send_Delayed_Packets thread that
decides when to discard or send the decapsulated packets.

Send_Delayed_Packets first checks if self.lost_or_delayed[] is not empty
that means one or more SCION packets have been received in late and stored
within self.delayed_spcks[]. If self.lost_or_delayed[] is not empty,
its oldest element (i.e., the one with the shortest time to live) is retrieved
with a pop() operation (lines 7–8). It can be noticed that the usage of the
list self.lost_or_delayed[] allows to quickly retrieve such element, with-
out the need to scan all the self.delayed_spcks[] dictionary. If the differ-
ence between the current time and the arrival time for the retrieved packet
is greater than 1

2RTT , the packet is too late and must be discarded together
with all the IP fragments associated with it (lines 9–20). For this purpose the
_discard_preceding_fragments() and _discard_following_fragments()
methods are invoked. If the difference between the times is equal or lower,
Send_Delayed_Packets tries instead to decapsulate the current SCION packet,
retrieve its preceding and following IP fragments, if any, recompose possibly
split IP packets, and send all the retrieved legacy traffic through the SIG’s Inter-
net interface (lines 21–42). The methods _send_preceding_fragments() and
_send_following_fragments() are called for this purpose. If all the IP packets
are sent correctly, the related entries are removed from self.delayed_spcks[].

_send_preceding_fragments() is analogous to the method
_send_previous_fragmented_ip_pck() used by the thread IP_Sender, while
_discard_preceding_fragments() is its simplified version where the fragments
are only retrieve (and not recomposed) and are not sent, but deleted.

_send_following_fragments() is analogous to the method
_send_ip_pcks_in_this_encap_pck() used by the thread IP_Sender, while
_discard_following_fragments() is its simplified version where the fragments
are only retrieve (and not recomposed) and are not sent, but deleted. Differently
from _send_following_fragments(), _discard_following_fragments() does
not use the Total Length field of the IP headers to retrieve the next encapsulated
IP packet, but interacts over the self.splitIP_tail[] and self.splitIP_head[]
dictionaries as shown in Listing 5.10.

5.4 SIG Software Blocks 89

1 de f _discard_fol lowing_fragments (s e l f , sn) :
2

3 i f s e l f . s p l i t I P_ t a i l . get ((sn + 1) % 4294967296) i s not None :
4 # in t h i s case the next fragment i s the t a i l
5

6 # there can be only one f o l l ow i n g IP fragment
7 de l s e l f . s p l i t I P_ t a i l [(sn + 1) % 4294967296]
8

9 e l i f s e l f . sp l i t IP_head . get ((sn + 1) % 4294967296) i s not None
:

10 # in t h i s case the next fragment i s a middle fragment o f
a pck that had index=0

11

12 i t e r a t o r = (sn + 1) % 4294967296
13 re t r i eved_fragments = []
14 whi le (True) :
15 i f (s e l f . sp l i t IP_head . get (i t e r a t o r) i s None) or (s e l f

. sp l i t IP_head [i t e r a t o r] [0] == True) :
16 # e i t h e r the next pck i s l o s t or i t conta in s the

t a i l o f the fragmented IP
17

18 i f (s e l f . s p l i t I P_ t a i l . get (i t e r a t o r) i s not None)
and (s e l f . sp l i t IP_head [i t e r a t o r] [0] == True) :

19 de l s e l f . s p l i t I P_ t a i l [i t e r a t o r]
20 break
21 e l i f s e l f . sp l i t IP_head [i t e r a t o r] [0] == False :
22 # s t a r t i n g po int o f the IP pck not found
23 re t r i eved_fragments . append (i t e r a t o r)
24

25 i t e r a t o r = (i t e r a t o r + 1) % 4294967296
26

27 i f r e t r i eved_fragments :
28 f o r i in ret r i eved_fragments :
29 de l s e l f . sp l i t IP_head [i]

Listing 5.10: _discard_following_fragments()
method of the Send_Delayed_Packets thread that discards
the following IP fragments associated with the SCION packet
under consideration. With “following” is ment the fragments
belonging to SCION packets with sequence number greater
than the one of the considered SCION packet.

Using Send_Delayed_Packets, together with the self.lost_or_delayed[] list
and the self.delayed_spcks[] dictionary, is fundamental in terms of perfor-
mances. As already explained, for each packet delayed or lost it has to be
counted the time it has expired until it reaches 1

2RTT and the packets is de-
clared lost or discarded. It is obviously not possible to keep a thread run-
ning per each packet delayed or lost since this could lead to a CPU deple-
tion DoS attack [18]. The list self.lost_or_delayed[] is then used to store
the times in which SCION packets have arrived to the SIG, while the thread

90 Implementation

Send_Delayed_Packets keeps scanning such a list checking if the missing pack-
ets have arrived in time or not.

5.5 Limitations

The SCION architecture is a recent project and its current implementation is a
prototype that can emulate a customized topology of the SCION architecture
on local-host. Different blocks of the architecture are still under development,
or not yet implemented, and this obviously has had some repercussions on the
development of the SIG system. Also the high level of complexity of this thesis
project and the overall SCION architecture, together with the time constraints
imposed, impeded to implement all the features designed for the SIG system and
explained in chapter 4. Furthermore, being still an academic proof-of-concept,
there is no documentation yet for the more than 600 MB of GitHub SCION code.
This also slowed down a bit the development of the SIG system. Finally, three
major upgrades – among the frequent ones performed by the 27 contributing
software developers –, of the GitHub SCION repository’s software, imposed
significant changes on the SIG implementation during the months, leading to a
considerable delay on its final implementation.

SCION does not yet deploy the SIG SVC messages and any form of keep-alive
messages mechanism needed by the SIG services to push updates of their local
IAC table to the local CS and the Core ASes in the same ISD (see Section
4.2.2.1). This made impossible the implementation of the IAC upgrading system
and the SIG negotiation mechanism (see Section 4.2.5).

Currently the RAINS system (Section 3.5.2) is under development, therefore the
Client Protocol Negotiation of Section 4.2.6 could not be implemented either.

As already mentioned, the SCION prototype can emulate a customized topology
of the SCION architecture on local-host. The basic one used and described in
Section 5.2 already counts 15 different emulated hosts running on local-host.
These, together with all the processes needed by VirtualBox to emulate them
and run the private networks of Fig.5.1, resulted in a high CPU usage that
did not allow to emulate further ASes, or hosts within them, on the machine
used2. The available scenarios to perform our tests have then been limited
(read Chapter 6), and the number of ip_buf buffers per each SIG service has
been limited to one impeding to develop a priority-mechanism that chooses from

2The machine used for running the environment and performing our tests was a Lenovo
MT 3493 Desktop PC mounting an Intel Core i3-3220 CPU @ 3.30GHz ×4 with 8 GB of
RAM. The machine was running Ubuntu 16.04 LTS Operating System

5.5 Limitations 91

which buffer to extract the legacy traffic to be encapsulated and sent over the
only one available SCION network interface.

Finally, the MCU of the SCION link between a1 and b1 in Fig.5.1 comes from the
static configuration file topology.yml, so testing any relation between latency
aspects and a variable MTU could not be performed in Chapter 6.

92 Implementation

6

Evaluation

In this chapter the SIG service designed in Chapter 4 and developed in Chapter
5 is evaluated according all the different scenarios of Section 4.3. The tests per-
formed have a specific focus on the evaluation of the SIG service’s interprocess
communication performance (as the interprocess latency and goodput of the
communication), the system’s scalability issues (as the discovery time of new,
or “old”, SCION ASes that may join, or leave, the SCION network), and the
performance of the introduced legacy DoS and DDoS mitigation mechanism (see
Section 4.6).

AS already explained, all our tests were performed on local-host according to
the topology of Fig.5.1. Running our tests on a single machine has lead to
results that may be different from the ones that can be measured on a real
network, where all the border routers, hosts and SIG services are running on
different devices. In fact, latency aspects may defer between local-host and a
real network since are topology- and distance-dependent. However, even if the
performance obtained on local-host may differ from the ones of a real physical
network, the main behaviours of the SIG service and the main performance
differences between the different scenarios of Section 4.3 are still observable.

In the following, we first describe the environment setup procedure (Section
6.1), where we provide the details of how to install and run the tools needed
for our test-bed and we explain how they work. We then describe the method-

94 Evaluation

ology followed to setup each one of our evaluation tests and their results. We
start with the evaluation of the SIG’s communication performance (Section 6.2),
where we observe an interesting correlation between the interprocess latency
and the sender’s transmission rate, and we provide details on how to measure
the communication goodput for all the different scenarios. Next, we evaluate
the scalability issues, as the discovery time of a new SCION AS that joins the
SCION network (and the time required to propagate and fetch its IAC table)
and the discovery time of an AS which leaves the SCION network (Section 6.3).
Finally, we quantify the benefits introduced by the SIG service for the encapsu-
lated legacy traffic on the mitigation of DoS and DDoS attacks against legacy
IP hosts (Section 6.4).

6.1 Environment Setup

The topology of the testing environment has been already shown in Fig.5.1. In
this section we describe the procedure to set up such testing-bed on local-host.

The first step is to install the last release of VirtualBox on the machine used
for the tests. If the machine makes use of the UEFI firmware instead of the
traditional BIOS, the secure boot could impede the execution of VirtualBox.
If so, there will be the need to generate a public-private key pair, which will
be used to sign the kernel modules, and to execute the Machine Owner Key
(MOK) utility to import and enroll such public key so that it can be trusted
by the system. This procedure is extensively explained online on the askubuntu
pages1. Once VirtualBox is correctly installed, the last releases of Vagrant and
Ansible tools have to be installed.

The network configuration for each entity of Fig.5.1 (a1, a2, b1, b2, c2, c3) is
stored in its own folder (see Section 5.3) in the Vagrant and ansible.yml files.
To create and run a VirtualBox VM for one of the mentioned entities, say a1, the
commands in Listing 6.1 have to be run within the directory vagrant/sig/a1.

1 vagrant up
2 vagrant ssh

Listing 6.1: Vagrant commands used to create and run a VM.

Since the VMs running a1 and b1 deploy also SCION connectivity, the SCION
architecture must be imported and run on these two entities. This is done

1VirtualBox + Secure Boot + Ubuntu = fail: https://askubuntu.com/questions/900118/
vboxdrv-sh-failed-modprobe-vboxdrv-failed-please-use-dmesg-to-find-out-why

https://askubuntu.com/questions/900118/vboxdrv-sh-failed-modprobe-vboxdrv-failed-please-use-dmesg-to-find-out-why
https://askubuntu.com/questions/900118/vboxdrv-sh-failed-modprobe-vboxdrv-failed-please-use-dmesg-to-find-out-why

6.1 Environment Setup 95

following the procedure described in the README.md file of the SCION GitHub
reository2. Briefly, the SCION repository must be cloned within the two VMs,
the required packages with their dependencies must also be installed and the
SCION topology must be generated and imported within each VM. The topol-
ogy file used for our environment is shown in Listing 6.2. After the generation
of such topology, the resulting gen folder must be copied in both a1 and b1
within /go/src/github.com/netsec-ethz/scion/. Finally, the directories
/go/src/github.com/netsec-ethz/scion/gen/ISD1/AS12 and
/go/src/github.com/netsec-ethz/scion/gen/ISD1/AS11must be deleted from
a1 and b1, respectively.

1 −−− # TwoASes Topology
2 d e f a u l t s :
3 zookeepers :
4 1 :
5 manage : fa l se
6 addr : 1 2 7 . 0 . 0 . 1
7 ASes :
8

9 1−11:
10 core : true
11 mtu : 1400
12 1−12:
13 c e r t_ i s su e r : 1−11
14 CAs :
15 CA1−1:
16 ISD : 1
17 countryName : US
18 stateOrProvinceName : Minnesota
19 loca l i tyName : Minnetonka
20 organizationName : my company
21 organizat ionalUnitName : my o rgan i z a t i on
22 CA1−2:
23 ISD : 1
24 countryName : US
25 stateOrProvinceName : Minnesota
26 loca l i tyName : Minnetonka
27 organizationName : my company
28 organizat ionalUnitName : my o rgan i z a t i on
29 l i n k s :
30 − {a : 1−11, b : 1−12, l t ype : PARENT, mtu : 1280}

Listing 6.2: Topology file used to generate the testing environment.

To run SCION within a1 and b1, the command of Listing 6.3 should be run
within the /go/src/github.com/netsec-ethz/scion/ directory on both the
VMs.

1 . / s c i on . sh run

2SCION: https://github.com/netsec-ethz/scion

https://github.com/netsec-ethz/scion

96 Evaluation

Listing 6.3: Command to run the SCION infrastructure with the created
topology.

At this point all our hosts are configured and running. The last step to complete
our setup is to enable the network forwarding on c3 that is our only legacy
router. This is done with the bash commands in Listing 6.4, which sets to 1
its ip_forward variable and enables the IP packets forwarding between its two
interfaces (enp0s8 and enp0s9) through its iptables.

1 echo "1" | sudo tee /proc / sys /net / ipv4 / ip_forward
2 sudo i p t a b l e s −A FORWARD − i enp0s8 −o enp0s9 −j ACCEPT
3 sudo i p t a b l e s −A FORWARD − i enp0s9 −o enp0s8 −j ACCEPT

Listing 6.4: Commands to enable network forwarding on c3.

We can now start the gw.py scripts within a1 and b1 with the commands of
listing 6.5 and start performing our evaluation tests.

1 sudo python3 / vagrant /gw . py −a 169 . 2 5 4 . 0 . 1 −p 30100 −d 1 −s 11
2

3 sudo python3 / vagrant /gw . py −a 169 . 2 5 4 . 0 . 2 −p 40500 −d 1 −s 12

Listing 6.5: Commands used to start the SIG services in a1 and b1
respectively.

6.2 Communication Performance

In this section, the outcome of the tests performed to measure the interprocess
communication performance of the different scenarios of Section 4.3 are reported
and further analyzed.

Despite the fact we described five different scenarios in Section 4.3, when it
comes to test the communication performance, Scenarios 2) and 3) are equivalent
to each other and Scenarios 4) and 5) are equivalent to each other too. Thus,
from now onward we refer to Case A) for the performance of Scenario 1), to
Case B) for the performance of Scenarios 2) and 3), and to Case C) for the
performance of Scenarios 4) and 5).

More precisely, the three Cases refer to the connectivity between two hosts in
the following contexts:

6.2 Communication Performance 97

• Case A) IP host in SCION AS ←→ IP host in SCION AS

• Case B) IP host in SCION AS w/ IP connectivity ←→ IP host in IP AS

• Case C) IP host in IP AS←→ IP host in SCION AS w/o IP connectivity

6.2.1 Simple TCP Communication

In this section, a trivial test to check the functioning of a TCP connection
between two legacy IP hosts, which connect to each other through SCION using
the SIG’s encapsulation service, was performed for Case A), Case B), and Case
C).

The tests were conducted simply running the netcat utility on the client and
server hosts. The connections tested have been between hosts a2↔b2 (Case
A)), a2↔c2 (Case B)) and b2↔c2 (Case C)). The command ran on the server
side is shown in listing 6.6 for the host a2, while the command ran on the client
side is shown in listing 6.7 for the host b2. In the listing 6.7 is also shown how
we generated the 1 KB size file example.txt with random content.

1 sudo netcat − l 80 > log . txt

Listing 6.6: netcat server listening on port 80 to save the received
information on file log.txt.

1 base64 /dev/urandom | head −c 1024 > example . txt
2 sudo netcat 1 6 9 . 2 5 4 . 2 . 2 80 < example . txt

Listing 6.7: Generate a random file of 1 KB size and run netcat client
which connects to host 169.254.2.2 on port 80 to transfer the
generated file example.txt.

Every time the file example.txt was correctly copied into the log.txt file on
the server side.

6.2.2 Latency Aspects

For this section, the interprocess latency between different pairs of hosts of the
topology in Fig.5.1 was measured according to Cases A), B) and C). These tests
were performed using the ping utility [79]. Their output was then parsed and
the results plotted into the graphs of the following subsections.

98 Evaluation

For every pair of hosts three runs of the ping utility were performed for an
amount of time of 10 minutes each. For every run, a different sender’s trans-
mitting frequency was used (the “ping” requests were sent with intervals of 200,
500 and 800 ms, respectively). All the experiments were conducted in absence
of packet loss.

6.2.2.1 Case A)

During these tests the interprocess latency between the hosts a2 and b2 was
tested. The host a2 was used to send the “ping” requests, while the host b2 to
answer with the “pong” responses.
Listings 6.8 shows the three commands used to run the three tests and their
output is shown graphically in Fig.6.1, Fig.6.2 and Fig.6.3.

1 ping −c 3000 − i 0 . 2 1 6 9 . 2 5 4 . 2 . 2 > ping_a2_to_b2_interval_02 . txt
2 ping −c 1200 − i 0 . 5 1 6 9 . 2 5 4 . 2 . 2 > ping_a2_to_b2_interval_05 . txt
3 ping −c 750 − i 0 . 8 1 6 9 . 2 5 4 . 2 . 2 > ping_a2_to_b2_interval_08 . txt

Listing 6.8: ping commands used to run the three tests of Case A).

Figure 6.1: Interprocess latency between hosts a2 and b2 using a time interval
between each request of 0.2s.

For the test shown in Fig.6.1, performed with a time interval of 0.2s, the min-
imum, average and maximum latency values are respectively 209.639, 671.952
and 1034.003 ms, while the mean deviation is 153.724 ms.

6.2 Communication Performance 99

Figure 6.2: Interprocess latency between hosts a2 and b2 using a time interval
between each request of 0.5s.

For the test shown in Fig.6.2, performed with a time interval of 0.5s, the min-
imum, average and maximum latency values are respectively 210.050, 1301.160
and 1953.530 ms, while the mean deviation is 433.151 ms.

Figure 6.3: Interprocess latency between hosts a2 and b2 using a time interval
between each request of 0.8s.

100 Evaluation

For the test shown in Fig.6.3, performed with a time interval of 0.8s, the min-
imum, average and maximum latency values are respectively 223.045, 1921.754
and 2746.816 ms, while the mean deviation is 716.697 ms.

6.2.2.2 Case B)

During these tests the interprocess latency between the hosts a2 and c2 was
tested. The host a2 was used to send the “ping” requests, while the host c2 to
answer with the “pong” responses. Notice that, the legacy border router c3 that
is present in AS13 is set as default-gateway for the host c2.
Listings 6.9 shows the three commands used to run the three tests and their
output is shown graphically in Fig.6.4, Fig.6.5 and Fig.6.6.

1 ping −c 3000 − i 0 . 2 1 6 9 . 2 5 4 . 4 . 2 > ping_a2_to_c2_interval_02 . txt
2 ping −c 1200 − i 0 . 5 1 6 9 . 2 5 4 . 4 . 2 > ping_a2_to_c2_interval_05 . txt
3 ping −c 750 − i 0 . 8 1 6 9 . 2 5 4 . 4 . 2 > ping_a2_to_c2_interval_08 . txt

Listing 6.9: ping commands used to run the three tests of Case B).

Figure 6.4: Interprocess latency between hosts a2 and c2 using a time interval
between each request of 0.2s.

For the test shown in Fig.6.4, performed with a time interval of 0.2s, the mini-
mum, average and maximum latency values are respectively 43.411, 181.861 and
686.728 ms, while the mean deviation is 89.126 ms.

6.2 Communication Performance 101

Figure 6.5: Interprocess latency between hosts a2 and c2 using a time interval
between each request of 0.5s.

For the test shown in Fig.6.5, performed with a time interval of 0.5s, the mini-
mum, average and maximum latency values are respectively 43.287, 141.696 and
420.978 ms, while the mean deviation is 53.099 ms.

Figure 6.6: Interprocess latency between hosts a2 and c2 using a time interval
between each request of 0.8s.

102 Evaluation

For the test shown in Fig.6.6, performed with a time interval of 0.8s, the mini-
mum, average and maximum latency values are respectively 50.984, 142.115 and
437.495 ms, while the mean deviation is 54.284 ms.

6.2.2.3 Case C)

During these tests the interprocess latency between the hosts b2 and c2 was
tested. The host c2 was used to send the “ping” requests, while the host b2 to
answer with the “pong” responses. Notice that, the legacy border router c3 that
is present in AS13 is set as default-gateway for the host c2. The presence of c3
between the communication is what differentiates the tests performed for Case
A) and Case C).
Listings 6.10 shows the three commands used to run the three tests and their
output is shown graphically in Fig.6.7, Fig.6.8 and Fig.6.9.

1 ping −c 3000 − i 0 . 2 1 6 9 . 2 5 4 . 2 . 2 > ping_c2_to_b2_interval_02 . txt
2 ping −c 1200 − i 0 . 5 1 6 9 . 2 5 4 . 2 . 2 > ping_c2_to_b2_interval_05 . txt
3 ping −c 750 − i 0 . 8 1 6 9 . 2 5 4 . 2 . 2 > ping_c2_to_b2_interval_08 . txt

Listing 6.10: ping commands used to run the three tests of Case C).

Figure 6.7: Interprocess latency between hosts c2 and b2 using a time interval
between each request of 0.2s.

For the test shown in Fig.6.7, performed with a time interval of 0.2s, the min-
imum, average and maximum latency values are respectively 201.864, 639.901
and 989.419 ms, while the mean deviation is 155.357 ms.

6.2 Communication Performance 103

Figure 6.8: Interprocess latency between hosts c2 and b2 using a time interval
between each request of 0.5s.

For the test shown in Fig.6.8, performed with a time interval of 0.5s, the min-
imum, average and maximum latency values are respectively 215.229, 1269.475
and 1800.543 ms, while the mean deviation is 431.746 ms.

Figure 6.9: Interprocess latency between hosts c2 and b2 using a time interval
between each request of 0.8s.

104 Evaluation

For the test shown in Fig.6.9, performed with a time interval of 0.8s, the min-
imum, average and maximum latency values are respectively 219.867, 1897.027
and 2748.755 ms, while the mean deviation is 713.837 ms.

6.2.2.4 Overall Considerations

The interesting result of the latency tests is not the latency values measured,
which usually depend a lot on the network topology and the performance of the
links and devices used. Having used the not-performing pcapy Python library
to sniff the SIG’s incoming legacy IP traffic, we actually measured quite long
latency values – considering we are working on localhost.

The interesting part of the latency tests is that, differently from any other com-
munication, if the encapsulation process is involved, the sender’s transmission
rate influences a lot the latency of the communication. Comparing the aver-
age latency of Case A) and Case C) with the one of Case B), it can be seen
that the average latency decreases a lot, increasing the sender’s transmission
rate used by the sender, for Cases A) and C), while it does not for Case B)
(Fig.6.10). The same trend is followed also by the mean deviation among the

Figure 6.10: Average latency for Case A), Case B) and Case C). The different
colors distinguish the sender’s transmission time interval.

different measurements of latency (Fig.6.11).

The reason behind this behaviour is that, in our implementation of the SIG ser-

6.2 Communication Performance 105

Figure 6.11: Mean deviation of latency measurements for Case A), Case B)
and Case C). The different colors distinguish the sender’s trans-
mission time interval.

vice every SCION packet has a fixed size (i.e., 128 bytes), equal to the SCION
MTU of the path between a1 and b1 (in Listing 5.1 is shown the MTU of the
link between the BR in AS11 and the BR in AS12), and the sending SIG needs
to receive at least 128 bytes of information before building and forwarding a
SCION packet. Naturally, if the same information arrives with a slower fre-
quency (e.g., 0.8s instead of 0.2s) the sending SIG will take more time to receive
slots of 128 bytes of information to be forwarded in the form of SCION packets.
Thus, the interprocess-communication average latency is shorter with a higher
sender’s transmission frequency.
Furthermore, also the mean deviation of the latency measurements is smaller
with a higher sender’s transmission frequency. It has to be considered that not
always the same amount of legacy IP packets received by the SIG provides 128
bytes of information and sometimes more packets are required (e.g., 4 packets
instead of 2). The result is that, using a low sender’s transmission frequency,
when the SIG has to wait only 2 packets instead of 4, the overall interprocess-
latency will be considerably shorter. In the case the sender’s transmission rate
is high instead, waiting only 2 packets instead of 4 is not a big time differ-
ence, so the final latency will not be affected as much as in the case of a lower
transmission rate, resulting in a lower mean deviation.

Analyzing the graphs of Fig.6.10 and Fig.6.11 it can be understood that the
latency lowers exponentially lowering the sender’s transmission interval, until

106 Evaluation

it reaches its minimum value when the transmission interval is enough short to
cause the the SIG to have always at least X bytes (in our case X = 128 bytes) of
information in its ip_buf (i.e., to be always capable to build and send a SCION
packet). The guess then is that, since the size of the SCION packets is correlated
to the SCION MTU of the path used, the smaller the SCION MTU is, the faster
the latency will reach its minimum value. This is because it will take less time
for the SIG to have always X bytes of information in its buffer. Measuring the
coefficient of this proportion would have required to perform more latency tests,
but we did not do it because lack of time.

6.2.3 Goodput Aspects

One of the most important tests that can be performed to evaluate the commu-
nication performance is measuring the goodput (application level throughput)
of a TCP session between two hosts. Our goal was to evaluate the goodput for
Case A), Case B), and Case C).

Unfortunately, due to some issues with the external libraries used and lack of
time we could not perform such tests, but in the following we describe anyway
its setup. The technical reasons that impeded to run the tests are related to the
external Python library used by our gw.py script to alter and send IP packets
(scapy). The method sendp() provided by this library to send layer-2 packets
through an interface can not handle packets of large size and throws the excep-
tion OSError: [Errno 90] Message too long. We realized this weakness of
the library very late and we did not implement a proper IP packets fragmenta-
tion mechanism due to lack of time. The workaround we tried to use in numerous
attempts to test the goodput has been: setting the system’s MTU of the involved
machines to a small value (100, 400, 512 and 1024 bytes respectively), setting
theMaximum Segment Size (MSS) of the TCP testing application in use to
the same small value and disabling the TCP Segmentation Offload (TSO).
After these arrangements, though, the size of the transmitted packets (sniffed
using the tcpdump tool) was not respecting the imposed maximum thresholds on
MTU and MSS and it was always bigger, causing the scapy library to throw the
OSError: [Errno 90] Message too long exception. The commands used to
change the system’s MTU and to disble the TSO are shown in listing 6.11, while
the traffic analyzing tools used, for which we tried to set the MSS to the values
specified above, are iperf, iperf3, netperf and flowgrind.

1 sudo i f c o n f i g enp0s8 mtu 1500 up
2 sudo e th t oo l −K enp0s8 t so o f f

Listing 6.11: Command to set a new system’s MTU on the interface
enp0s8.

6.2 Communication Performance 107

The goodput test should have been performed for Case A), Case B) and Case C)
simply running one of the automated tests provided by one of the aforementioned
tools. In the following we describe only how we tried to perform the tests using
iperf3, the other tools work similarly. iperf3 is a client-server application for
traffic analyzing which can perform some tests between two machines. To run
a test a server instance must be running on one host (listings 6.12 shows the
command used to run it), and a client one must be running on the second host.

1 i p e r f 3 −s

Listing 6.12: Command used to run the iperf3 server instance.

In listings 6.13 there are some of the tests we tried to perform from the client
instance. The option -c is used to set the server’s address, -M is used to set
up the TCP MSS, -u is used to perform a UDP analysis instead of the default
TCP one and -l is used to set up the size of UDP packets.

1 i p e r f 3 −c 1 69 . 2 5 4 . 4 . 1
2 i p e r f 3 −c 1 69 . 2 5 4 . 4 . 1 −M 512
3 i p e r f 3 −c 1 69 . 2 5 4 . 4 . 1 −u
4 i p e r f 3 −c 1 69 . 2 5 4 . 4 . 1 −u − l 400

Listing 6.13: Command used to run some iperf3 client instances with
different options.

Simply running the iperf3 client and server instances with the commands de-
scribed above between the hosts a2↔b2 (Case A)), a2↔c2 (Case B)) and b2↔c2
(Case C)) should return the expected goodput value in Mbits/sec. We would
have then compared and further analyzed the results of the different case sce-
narios.

6.2.4 Response to SCION Network Losses

With this test we want to evaluate how a reliable layer-4 protocol as TCP, that
is encapsulated by the SIG service and transported over SCION, reacts in case
of SCION packet loss. The metric we used to measure this behaviour is again
the goodput of the interprocess communication, as in Section 6.2.3, hence the
test methodology – and the problems that arose – does not change from the
previous section.

The tool iperf3 should be used in this test following the same methodology
of Section 6.2.3, the only difference is that, this time, the sending SIG service
emulates a network packet loss by dropping some random outgoing SCION

108 Evaluation

packets that should be forwarded to the receiving SIG service. The dropping
process on the sending SIG is based on a simple function, called for each outgoing
SCION packet, which returns 0 or 1 with a different probability. If it returns 0
the packet is dropped, otherwise forwarded. If, for example, a packet loss of 1%
wants to be introduced on the SCION path between a1 and b1, then the above
function has to return 0 with a probability of 1%.

The only meaningful communication to be tested this time would be between
the hosts a2↔b2 (Case A)) and between the hosts b2↔c2 (Case C)), since the
connection a2↔c2 (Case B)) does not involve the SCION network. To properly
analyze the behaviour of the communication, different tests should be performed
for each scenario using different packet loss probabilities, which should go from
1% to 5%.

6.3 Scalability Issues

Due to the limitation described in Section 5.5 (specifically the lack of SIG SVC
and keep-alive messages implementations, among the SCION tools available),
the IAC upgrade mechanism was not implemented in this thesis work, therefore
measuring the scalability issues for the SIG service infrastructure was not pos-
sible. However, we describe in the following how the discovery time of a new
SCION AS that joins the SCION network, or of an AS which leaves it, should
be evaluated.

In the following we assume that the IAC polling mechanism discussed in Section
4.2.2.1 is implemented and working.

6.3.1 Discovery Time for New ASes

In this test we extends the topology of listing 6.2 and Fig.5.1 adding a new ISD,
namely ISD2, which contains two ASes, namely AS21 and AS22, where AS21 is
a Core AS and AS22 is a non-Core AS that deploys the SIG service named d1.
AS11 and AS12 already know AS21, but AS22 is not yet enabled.

Once AS22 is activated, d1 pushes its IAC table version to the local CS that,
in turn, pushes it to the AS21’s CS. The first push is done within 500ms from
AS22’s activation. At the time of the AS22’s activation we also start a timer on
our local-host. The SIG service a1 polls one Core AS for each ISD available (in
our case only AS21 in ISD2) every 5 hours, so sooner or later it will realize the

6.4 DoS and DDoS Mitigation 109

presence of the new IAC table version in AS21’s CS. In that precise moment,
a1 queries AS22 to fetch its IAC. Once the IAC is fully received by a1, we stop
the timer on our localhost and we check the time expired. Such test should be
computed more times and with more ISDs and ASes that are enabled at random
times, in order to have a good estimation of the average discovery time.

6.3.2 Discovery Time for ASes that leave the SCION net-
work

The setup for this tests is the same as to the one described in Section 6.3.1 with
ISD2, AS21, AS22 and the SIG service d1 within AS22.

This time we start from the state where AS22 is already activated and a1 and
b1 already fetched AS22’s IAC table. At a random time we deactivate AS22
and we start a timer on local-host. The local CS and AS21’s CS will discard
AS22’s (ISD-AS, IAC ver) entry after 2000ms. The SIG services a1 and b1 poll
one Core AS for each ISD available (in our case only AS21 in ISD2) every 5
hours, so sooner or later they will realize the absence of the IAC table version
for AS21 and they will decide to update their local mappings removing the
entries associated with AS22. In that precise moment we stop the timer on our
local-host and we check the time expired. Such test should be computed more
times and with more ISDs and ASes that are disabled at random times, in order
to have a good estimation of the average discovery time.

6.4 DoS and DDoS Mitigation

As discussed in Section 4.6, the SIG service provides to the legacy encapsulated
traffic DoS and DDoS mitigation thanks to the authenticated traffic between
SIG services and the traffic filtering performed by the sending SIG. Due to the
limitation described in Section 5.5 (specifically the absence of the implementa-
tion of an authentication mechanism between two SIG services) we had to run
our tests under the big assumption that all the SCION packets sent from the
sending SIG could be authenticated by the receiving SIG service.

110 Evaluation

6.4.1 Traffic Filtering on Sending SIG

During our first test, we checked the traffic filtering mechanism of the sending
SIG service trying to perform a Smurf attack [17] against the host b2. During
a Smurf attack, a large number of ICMP packets with the intended victim’s
spoofed source IP are broadcast to a network using an IP broadcast address.
Most devices in that network will respond to this by sending a reply to the
source IP address. If the number of machines that respond is very large, the
victim’s computer will be flooded with traffic. We set up and ran different new
hosts within AS12, namely b3, b4, b5 and b6, all with an IP address belonging to
169.254.2.0/24 and we ran an infinite ping test using a spoofed source address
from the host a2. The spoofed address used was the one of b2 (169.254.2.2)
and the destination address used was the broadcast IP address for the network
169.254.2.0/24. Our goal was to set up an amplification DDoS attack against
b2 [18]. We first performed such attack disabling any defence mechanism on the
sending SIG service a1 and the attack took only 80 seconds to completely make
b2 machine unresponsive. Then we activated the traffic filtering mechanism
on the sending SIG and performed again the same attack. The SIG service a1
immediately realized that the address 169.254.2.2 was not belonging to the
local network 169.254.1.0/24 and started to drop all the packets coming from
this host then preventing the DDoS attack against b2.

Notice that, our traffic filtering protection can defend the system also from
different attacks other that the Smurf one.

6.4.2 Origin Tracking

Our second test was executed under the big assumption above described that
each SCION packet coming from the sending SIG could be authenticated by
the receiving SIG. Whit this test we showed how we could stop a DDoS attack,
which generated legacy traffic was encapsulated and sent through SCION, right
on the sending SIG service (i.e., on the originating AS).

Under this condition, we set up and ran different new hosts within AS11, namely
a3, a4, a5 and a6, all with an IP address belonging to 169.254.1.0/24. From
each one of them we performed a simple SYN flood attack [80] targeting
host b2. The SYN flood attack is a DoS method that expoits the TCP three-
way-handshake for establishing connections by exhausting the server’s allocated
states for a specific listening application, preventing legitimate connections from
being established. Since none of the attackers’ addresses were spoofed, but be-
longing to the local network, all their traffic was encapsulated by the SIG a1,

6.4 DoS and DDoS Mitigation 111

decapsulated by b1 and, finally, forwarded to b2. The attack was performed in
parallel by a3, a4, a5 and a6, using the packet generator and analyzer hping3
through the command shown in listing 6.14.

1 sudo hping3 −c 10000 −d 120 −S −w 64 −p 21 −−f l o od 169 . 2 5 4 . 2 . 2

Listing 6.14: Command ran on attackers’ hosts to set up the SYN flood
DDoS attack of our test.

The command’s option -c indicates the number of packets to send, the option
-d their size, -S indicates that only TCP SYN packets are sent, -w indicates the
TCP window size, -p is the targeted port and finally, –flood indicates to send
the packets as fast as possible.
During this test, we continuously check b2’s connectivity using a new legacy
host, namely b3, within AS12. It took only 104 seconds to completely make b2
machine unresponsive.

The previous DDoS attack has been successfully performed due to the lack
protection mechanisms on b2. Therefore, we added the iptables rule of listing
6.15 to host b2. The rule allows all the incoming connection till the limit is
reached. –limit-burst specifies the number of matches that are allowed before
the –limit of 1 per second is applied for the incoming TCP SYN requests.

1 sudo i p t a b l e s −A INPUT −p tcp −−syn −m l im i t −− l im i t 1/ s −−l im i t−
burst 3 −j RETURN

Listing 6.15: Command ran on the victim’s host to limit the incoming TCP
SYN requests.

With such rule the attack explained above was prevented on the host b2, but
we could still realize from b2’s log files that a SYN flood attack was targeting
the host. The consequence was a considerably high bandwidth wastage on the
Internet and SCION networks between the SIG a1 and the legacy IP host b2.

Our goal was to stop the attack right on the origin AS (AS11) to prevent the
bandwidth wastage described. We pretended that b2 (or b2’s system admin)
reported to b1 (or b1’s system admin) the attackers’ addresses through an au-
tomatic or non-automatic tool and that b1, in turn, reported these ones to a1.
What we did in practice has been simply to add some iptables rules on a1 which
started to drop the packets coming from the malicious addresses. We could then
check, using the tcpdump tool, that no traffic was reaching b1’s SCION interface
anymore, but due to lack of time we could not estimate properly the savings in
term of bandwidth on Internet and SCION links between a1 and b2.

The simple DDoS attack we decided to perform was the SYN flood attack,

112 Evaluation

but many different others (as UDP flood, TCP HTTP ACK flood, HTTP slow
POST, etc.) may be very effective when their packets are encapsulated and
transported through two communicating SIG services. These attacks may even
require more complex protection mechanisms on the destination side, as some
sort of IPS system. However, independently from the kind of attack, every time
the IPS detects it, the SIG architecture described can always stop it on its source
AS with great savings in term of bandwidth.

7

Conclusions

This thesis project extensively highlights several of today’s Internet architecture
problems, like the ones associated with the IP and BGP protocols, the lack of
authentication and trust, some attacks against which Internet has little or no
protection and the difficulties encountered in the transition to new architec-
tures. This thesis then introduces the main goals that a secure new Internet
architecture, as SCION, should achieve, why they are important and how they
can be obtained. Such goals are: availability in presence of adversaries, trans-
parency and control, efficiency, scalability, extensibility, support for global but
heterogeneous trust and deployability.

The problems faced during such a big transition towards the desired properties
of a new architecture, as SCION, are then illustrated. Such transition can not
happen overnight, but, according to the ETH Zürich Network Security Group,
it is imperative in the long run. Consequently, SCION needs to provide a set of
models and tools that can favor it. As a response to this, this thesis presents
the SCION-IP Gateway (SIG), which is the fundamental building block for a
full interconnection between SCION and Internet networks.

An exhaustive description of the challenges introduced by our proposal is illus-
trated (ensuring maximum interoperability with the current Internet through
minimal infrastructure changes, enabling transparent operations for legacy end-
hosts in the IP domain, preventing downgrade attacks to the legacy Internet),

114 Conclusions

followed by an extensive design description of the SIG service, its iterations with
the SCION and Internet elements and the explanation of how it addresses the
presented challenges. The security benefits introduced by our solution, even for
legacy-to-legacy traffic, are then described, together with all the possible real
use case scenarios for achieving maximum interoperability. Furthermore, the
DoS and DDoS mitigation mechanism introduced by the SIG for legacy traffic
is discussed.

In accordance with the design specifications, a prototype implementation was
developed, and it is working to the point where it can be called a minimal viable
product. The prototype fulfills many of the requirements specified in Section
4.2, apart from the ones that were constrained by the technological limitations
described in Section 5.5.

The developed prototype was tested under many aspects, like interprocess-
communication performance, scalability issues and benefits introduced by DoS
and DDoS mitigation for legacy traffic. An interesting proportion between
sender’s transmission rate and interprocess latency of a communication which
involves encapsulated traffic, was found. A proportion between the mean de-
viation of such latency measurements and the sender’s transmission rate was
also found. The DoS and DDoS protection mechanism showed great savings in
terms of bandwidth for the SCION and Internet networks.

7.1 Future Work

Some limitation expressed in Section 5.5 impeded the development of some
design blocks described in Section 4.2, in fact, some external SCION architecture
modules necessary for the SIG prototype are still under development by the ETH
NETSEC team. The very first improvement for this dissertation work would
then be the implementation of the missing features of Section 4.2, in particular
the IAC upgrading system, the SIG negotiation mechanisms and the protocol
negotiation technique.

We want to point out that developing a performant software was out of the
scope of this thesis, so many parts of the developed one may be subject to
optimization. A first example would be the addition of an IP fragmentation
mechanism to the IP_Sender thread, in such a way to allow a better path MTU
discovery between the legacy hosts within a SCION AS and the local SIG service.
This would also allow to overcame the issues encountered during our goodput
tests, as explained in Section 6.2.3. The SIG prototype is currently written
using the Python programming language – and makes use of non-performant

7.1 Future Work 115

libraries as scapy and pcapy –, while an implemented go version (as different
modules in the SCION GitHub repository) would be more performant.

Our tests were conducted on local-host, while the best way to evaluate the
interprocess-communication performance would be on a real physical network
comprising different hosts.

Another interesting aspect to further analyze would be related to the policies
that system administrators should respect on creating and updating the Incom-
ing and Outgoing Associations Config tables (Section 4.2.1) and the local IAC
tables (Section 4.2.2.2).

116 Conclusions

Bibliography

[1] T. Anderson, K. Birman, R. Broberg, M. Caesar, D. Comer, C. Cotton, M.
J. Freedman, A. Haeberlen, Z. G. Ives, A. Krishnamurthy, W. Lehr, B. T.
Loo, D. Mazières, A. Nicolosi, J. M. Smith, I. Stoica, R. V. Renesse, M.
Walfish, H. Weatherspoon and C. S. Yoo.

[2] X. Yang, D. Clark and A. W. Berger. Nira: A new inter-domain rout-
ing architecture. IEEE/ACM Transactions on Networking, 15(4):755–788,
2007.

[3] D. Han, A. Anand, F. Dogar, B. Li, H. Lim, M. Machado, A. Mukundan, W.
Wu, A. Akella, D. G. Andersen, J. W. Byers, S. Seshan and P. Steenkiste.
Xia: Efficient support for evolvable internetworking. Proceedings of the
9th USENIX Conference on Networked Systems Designand Implementa-
tion, pages 23–23, 2012.

[4] X. Zhang, H. Hsiao, G. Hasker, H. Chan, A. Perrig, D. G. Andersen. Scion:
Scalability, control, and isolation on next-generation networks. Proceedings
of the IEEE Symposium on Security and Privacy, 2011.

[5] D. Barrera, L. Chuat, A. Perrig, R. M. Reischuk and P. Szalachowski. The
scion internet architecture: An internet architecture for the 21st century.
Communications of the ACM, 60(6):56–65, 2017.

[6] D. Barrera, R. M. Reischuk, P. Szalachowski and A. Perrig. Scion five years
later: Revisiting scalability, control, and isolation on next-generation net-
works. arXiv/1508.01651 (under review for Communications of the ACM),
2015.

[7] A. Perrig, P. Szalachowski, R. M. Reischuk and L. Chuat. SCION: A

118 BIBLIOGRAPHY

Secure Internet Architecture. Springer, Berlin, Heidelberg, To be published
in 2017.

[8] S. Akhshabi and C. Dovrolis. The evolution of layered protocol stacks leads
to an hourglass-shaped architecture. In F. Peruani N. Ganguly B. Mitra
A. Mukherjee, M. Choudhury, editor, Dynamics On and Of Complex Net-
works, volume 2 of Modeling and Simulation in Science, Engineering and
Technology, pages 55–88. Springer New York, 2013.

[9] S.E. Deering and R. M. Hinden. Internet protocol, version 6 (ipv6) speci-
fication. RFC 2460, RFC Editor, 1998.

[10] M. Schuchard, E. Y. Vasserman, A. Mohaisen, D. F. Kune, N. Hopper and
Yongdae Kim. Losing control of the internet: Using the data plane to
attack the control plane. Proceedings of the Symposium on Network and
Distributed Systems Security (NDSS), 2011.

[11] M. Caesar and J. Rexford. Bgp routing policies in isp networks. IEEE
network, 19(6):5–11, 2005.

[12] C. Labovitz, A. Ahuja, A. Bose and F. Jahanian. Delayed internet rout-
ing convergence. ACM SIGCOMM Computer Communication Review,
30(4):175–187, 2000.

[13] S. Misel. Wow, as7007! Merit NANOG Archive, apr, 199(7):1997–04, 1997.

[14] D. Wendlandt, DG. Andersen and A. Perrig. Perspectives: Improving ssh-
style host authentication with multi-path probing. In USENIX Annual
Technical Conference, volume 200, 2008.

[15] Hijacking, YouTube. A RIPE NCC RIS case study, 2008.

[16] J. Cowie. The new threat: Targeted internet traffic misdirection. Popu-
lar Mechanics, http://www. renesys. com/2013/11/mitm-internethijacking,
2013.

[17] S. Kumar. Smurf-based distributed denial of service (ddos) attack ampli-
fication in internet. In Internet Monitoring and Protection, 2007. ICIMP
2007. Second International Conference on, pages 25–25. IEEE, 2007.

[18] M. D. Donno, N. Dragoni, A. Giaretta and A. Spognardi. A taxonomy
of distributed denial of service attacks. To appear in Proceedings of the
International Conference on Information Society (i-Society), 2017.

[19] F. Gont. Icmp attacks against tcp. 2010.

[20] S. Herzog. Revisiting the estonian cyber attacks: Digital threats and multi-
national responses. Browser Download This Paper, 2011.

BIBLIOGRAPHY 119

[21] B. Krebs. Ddos on dyn impacts twitter, spotify, reddit. KrebsOnSecurity
(October 16, 2016),.’l. ttps: t’krebsonsecurit). COitJ, 20(16):1, 2016.

[22] N. Perlroth. Hackers used new weapons to disrupt major websites across
us. New York Times, 21, 2016.

[23] E. Galperin, S. Schoen, P. Eckersley. A post mortem on the iranian dig-
inotar attack. EFF Blog, September, 2011.

[24] T. Sterling. Second firm warns of concern after dutch hack, 2011.

[25] D. Andersen, H. Balakrishnan, F. Kaashoek and R. Morris. Resilient over-
lay networks, volume 35. ACM, 2001.

[26] I. Mironov T. Wobber M. Abadi, A. Birrell and Y. Xie. Global authenti-
cation in an untrustworthy world. In HotOS, 2013.

[27] K. Akdemir, M. Dixon, W. Feghali, P. Fay, V. Gopal, J. Guilford, E.
Ozturk, G. Wolrich and R. Zohar. Breakthrough aes performance with
intel aes new instructions. White paper, June, 2010.

[28] J. B. Postel. Internetwork protocol approaches. IEEE Transactions on
Communications, 28(4):604–611, 1980.

[29] D. Boggs, J. Shoch, E. Taft, R. Metcalfe. Pup: An internetwork architec-
ture. IEEE Transactions on Communications, 28(4):612–624, 1980.

[30] GENBAND. What is a Media Gateway? https://www.genband.com/
company/glossary/media-gateway, 2017. [Online; accessed 12-June-
2017].

[31] Real Time Automation (RTA). Connect Modbus TCP/IP Devices to
a Modbus RTU Controller. http://www.rtaautomation.com/product/
460mcmrs/, 2014. [Online; accessed 12-June-2017].

[32] V. DiCiccio, C. A. Sunshine, J. A. Field, E. G. Manning. Alternatives for
interconnection of public packet switching data networks. Proceedings of
the Sixth Symposium on Data Communications, pages 120–125, 1979.

[33] J. Knopp. X.25 within the payment card industry. Technical report, Mas-
terCard, 2012.

[34] Recommendation, CCITT. Recommendation x.25/interface between data
terminal equipment (dte) and data circuit-terminating equipment (dec) for
terminals operating in the packet mode on public data networks. Orange
Book, 2, 1977.

https://www.genband.com/company/glossary/media-gateway
https://www.genband.com/company/glossary/media-gateway
http://www.rtaautomation.com/product/460mcmrs/
http://www.rtaautomation.com/product/460mcmrs/

120 BIBLIOGRAPHY

[35] Recommendation, CCITT. Proposal for provisional recommendation x.75
on international interworking between packet switched data networks.
CCITT Study Group VII Contribution, (207), 1978.

[36] J. Postel. Dod standard internet protocol. RFC 760, RFC Editor, January
1980.

[37] J. Postel. Dod standard transmission control protocol. RFC 761, RFC
Editor, January 1980.

[38] J. McQuillan, I. Richer and E.Rosen. The new routing algorithm for the
arpanet. IEEE Transactions on Communications, 28(5):711–719, 1980.

[39] H. Chen, X. Jia and H. Li. A brief introduction to iot gateway. In Com-
munication Technology and Application (ICCTA 2011), IET International
Conference on, pages 610–613. IET, 2011.

[40] S. Guoqiang, C. Yanming, Z. Chao and Z. Yanxu. Design and imple-
mentation of a smart iot gateway. In Green Computing and Communica-
tions (GreenCom), 2013 IEEE and Internet of Things (iThings/CPSCom),
IEEE International Conference on and IEEE Cyber, Physical and Social
Computing, pages 720–723. IEEE, 2013.

[41] K. Romer and F. Mattern. The design space of wireless sensor networks.
IEEE wireless communications, 11(6):54–61, 2004.

[42] L. D. T. Steenkamp, S. Kaplan and R.H. Wilkinson. Wireless sensor net-
work gateway. In AFRICON, 2009. AFRICON’09., pages 1–6. IEEE, 2009.

[43] L. Wu, J. Riihijarvi and P. Mahonen. A modular wireless sensor network
gateway design. In Communications and Networking in China, 2007. CHI-
NACOM’07. Second International Conference on, pages 882–886. IEEE,
2007.

[44] S. Matsumoto, R. M Reischuk, P. Szalachowski, T. H. J. Kim, and A. Per-
rig. Designing a global authentication infrastructure. arXiv preprint
arXiv:1506.03392, 2015.

[45] M. Lepinski and S. Turner. An overview of bgpsec. IETF Draft, 2012.

[46] T. H. J. Kim, C. Basescu, L. Jia, S. B. Lee, Y. C. Hu, and A. Perrig.
Lightweight source authentication and path validation. In ACM SIGCOMM
Computer Communication Review, volume 44, pages 271–282. ACM, 2014.

[47] B. Trammell. Rains (another internet naming service) protocol specifica-
tion. Internet-draft, 2016.

BIBLIOGRAPHY 121

[48] O. Honda, H. Ohsaki, M. Imase, M. Ishizuka and J. Murayama. Under-
standing tcp over tcp: effects of tcp tunneling on end-to-end throughput
and latency. In M. Atiquzzaman and S. I. Balandin, editors, Performance,
Quality of Service, and Control of Next-Generation Communication and
Sensor Networks III, volume 6011 of , pages 138–146, October 2005.

[49] O. Titz. Why TCP Over TCP Is A Bad Idea. http://sites.inka.de/
bigred/devel/tcp-tcp.html, 2001. [Online; accessed 18-June-2017].

[50] Y. Rekhter,R. G. Moskowitz, D. Karrenberg, G. J. de Groot and E. Lear.
Address allocation for private internets. BCP 5, RFC Editor, 1996.

[51] Juniper Networks. Understanding Origin Validation for BGP.
https://www.juniper.net/documentation/en_US/junos/topics/
concept/bgp-origin-as-validation.html, 2015. [Online; accessed
22-June-2017].

[52] R. Bush. Origin validation operation based on the resource public key
infrastructure (rpki). BCP 185, RFC Editor, 2014.

[53] M. Lepinski and S. Kent. An infrastructure to support secure internet
routing. RFC 6480, RFC Editor, 2012.

[54] CIDR Report. CIDR REPORT for 20 Jun 17. http://www.cidr-report.
org/as2.0/#Aggs, 2017. [Online; accessed 20-June-2017].

[55] N. Hilliard. ASN to IP Mapping. http://seclists.org/nanog/2015/
Mar/219, 2015. [Online; accessed 28-July-2017].

[56] A. Khan, H. Kim and T. Kwon. How complete and accurate is the inter-
net routing registry (irr)? 4th CAIDA-WIDE-CASFI Joint Measurement
Workshop, 2011.

[57] A. Toonk. How Accurate are the Internet
Route Registries (RIR). https://bgpmon.net/
how-accurate-are-the-internet-route-registries-irr/, 2009.
[Online; accessed 23-June-2017].

[58] E. Zmijewski. Route Hygiene: The Dirt on the Internet. http://dyn.
com/blog/compliance-scoring-by-country/, 2009. [Online; accessed
23-June-2017].

[59] C. Alaettinoglu and P. Design. Ripe/ris project bgp analysis cidr at work.
NANOG Oct. 2001, IETF August 2001, 2001.

[60] RIPE NCC. Routing Information Ser-
vice (RIS). https://www.ripe.net/analyse/
internet-measurements/routing-information-service-ris/

http://sites.inka.de/bigred/devel/tcp-tcp.html
http://sites.inka.de/bigred/devel/tcp-tcp.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/bgp-origin-as-validation.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/bgp-origin-as-validation.html
http://www.cidr-report.org/as2.0/#Aggs
http://www.cidr-report.org/as2.0/#Aggs
http://seclists.org/nanog/2015/Mar/219
http://seclists.org/nanog/2015/Mar/219
https://bgpmon.net/how-accurate-are-the-internet-route-registries-irr/
https://bgpmon.net/how-accurate-are-the-internet-route-registries-irr/
http://dyn.com/blog/compliance-scoring-by-country/
http://dyn.com/blog/compliance-scoring-by-country/
https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris/routing-information-service-ris
https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris/routing-information-service-ris
https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris/routing-information-service-ris

122 BIBLIOGRAPHY

routing-information-service-ris, 2016. [Online; accessed 23-
June-2017].

[61] L. Daigle. Whois protocol specification. RFC 3912, RFC Editor, September
2004.

[62] T. Kernen. traceroute.org. http://www.traceroute.org/#Looking%
20Glass, 2011. [Online; accessed 23-June-2017].

[63] M. Przybylski, B. Belter and A. Binczewski. Shall we worry about packet
reordering. In Computational Methods in Science and Technology, pages
141–146, 2005.

[64] J. C. R. Bennett, C. Partridge and N. Shectman. Packet reordering is not
pathological network behavior. IEEE/ACM Trans. Netw., 7(6):789–798,
December 1999.

[65] V. Paxson, M. Allman, J. Chu and M. Sargent. Computing tcp’s retransmis-
sion timer. RFC 6298, RFC Editor, June 2011. http://www.rfc-editor.
org/rfc/rfc6298.txt.

[66] C. Abad. Ip checksum covert channels and selected hash collision. 2001.

[67] J. Preshing. Hash Collision Probabilities. http://preshing.com/
20110504/hash-collision-probabilities/, 2011. [Online; accessed 27-
June-2017].

[68] P. Syverson. A taxonomy of replay attacks [cryptographic protocols]. Pro-
ceedings of the Computer Security Foundations Workshop VII, 7(6):187–
191, December 1994.

[69] D. L. Mills. Network time protocol (ntp). RFC 958, RFC Editor, September
1985. http://www.rfc-editor.org/rfc/rfc958.txt.

[70] S. P. Miller, B. C. Neuman, J. I. Schiller and J. H. Saltzer. Kerberos
authentication and authorization system. In In Project Athena Technical
Plan. Citeseer, 1987.

[71] S. M. Bellovin and M. Merritt. Limitations of the kerberos authentication
system. ACM SIGCOMM Computer Communication Review, 20(5):119–
132, 1990.

[72] D. Mazières. Replay Prevention in Authentication Systems. http://
web.mit.edu/6.033/1998/www/reports/r05-dm.html, 1998. [Online; ac-
cessed 28-June-2017].

[73] J. Mirkovic and P. Reiher. A taxonomy of ddos attack and ddos defense
mechanisms. SIGCOMM Comput. Commun. Rev., 34(2):39–53, April 2004.

https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris/routing-information-service-ris
https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris/routing-information-service-ris
http://www.traceroute.org/#Looking%20Glass
http://www.traceroute.org/#Looking%20Glass
http://www.rfc-editor.org/rfc/rfc6298.txt
http://www.rfc-editor.org/rfc/rfc6298.txt
http://preshing.com/20110504/hash-collision-probabilities/
http://preshing.com/20110504/hash-collision-probabilities/
http://www.rfc-editor.org/rfc/rfc958.txt
http://web.mit.edu/6.033/1998/www/reports/r05-dm.html
http://web.mit.edu/6.033/1998/www/reports/r05-dm.html

BIBLIOGRAPHY 123

[74] Q. H. Dang. The keyed-hash message authentication code (hmac). Federal
Inf. Process. Stds. (NIST FIPS) - 198-1, 2008.

[75] R. K. Dahal, J. Bhatta, T. N. Dhamala. Performance analysis of sha-2 and
sha-3 finalists. The International Journal on Cryptography and Information
Security, 3(3):1–10, 2013.

[76] J. Pavlik, A. Komarek, V. Sobeslav and J. Horalek. Gateway redundancy
protocols. In Computational Intelligence and Informatics (CINTI), 2014
IEEE 15th International Symposium on, pages 459–464. IEEE, 2014.

[77] P. Dubey, S. Sharma and A. Sachdev. Review of first hop redundancy
protocol and their functionalities. International Journal of Engineering
Trends and Technology (IJETT), 4(5), 2013.

[78] P. Ferguson and D. Senie. Network ingress filtering: Defeating denial of
service attacks which employ ip source address spoofing. RFC 2267, RFC
Editor, January 1998.

[79] M. Muuss. The story of the ping program. Retrieved March, 30:2010, 1983.

[80] W. M. Eddy. Syn flood attack. In Encyclopedia of Cryptography and Se-
curity, pages 1273–1274. Springer, 2011.

124 BIBLIOGRAPHY

Abbreviations

AES Advanced Encryption Standard

AS Autonomous System

BGP Border Gateway Protocol

BGPSec BGP Security Extension

BR Boarder Router

BS Beacon server

CA Certification Authority

CS Certificate server

DDoS Distributed Denial of Service

DNS Domain Name System

DoS Denial of Service

DRKey Dynamically Re-creatable Key

ICMP Internet Control Message Protocol

IoT Internet of Things

IP Internet Protocol

IPS Intrusion Prevention System

ISD Isolation Domain

126 Abbreviations

ISP Internet Service Provider

MAC Message Authentication Code

MTU Maximum Transmission Unit

OSI Open Systems Interconnection

PCB Path Construction Beacon

PCFS Packet-Carried Forwarding State

PS Path server

QoS Quality of Service

RAINS Another Internet Naming Service

RPKI Resource Public Key Infrastructure

RTT Round-Trip Time

SCMP SCION Control Message Protocol

SIBRA Scalable Internet Bandwidth Reservation Architecture

SIG SCION-IP Gateway

SSP SCION Stream Protocol

SVC Service

TCP Transport Control Protocol

TLS Transport Layer Security

TRC Trust Root Configuration

TTL Time To Live

UDP User Datagram Protocol

VM Virtual Machine

WAN Wide Area Network

WSN Wireless Sensor Network

	Summary (English)
	Preface
	Acknowledgements
	Contents
	1 Introduction
	1.1 Today's Internet Problems
	1.1.1 The Internet Protocol (IP)
	1.1.2 The Border Gateway Protocol (BGP)
	1.1.3 Lack of Authentication and Trust
	1.1.4 Attacks
	1.1.5 Transition to a New Architecture

	1.2 Goals of SCION
	1.2.1 Availability in the Presence of Adversaries
	1.2.2 Transparency and Control
	1.2.3 Efficiency, Scalability, and Extensibility
	1.2.4 Support for Global but Heterogeneous Trust
	1.2.5 Deployability
	1.2.6 Non-Goals

	1.3 Motivations behind a SCION-Internet interconnection
	1.4 Thesis Contribution
	1.5 Thesis Structure

	2 Background on Gateway Technology
	2.1 Interprocess Communication
	2.2 Datagrams and Virtual Circuits
	2.3 Gateways Basic Concepts and Degree of Gateway Participation
	2.4 Gateways: From Past to Present
	2.4.1 Interconnection of X.25 Networks
	2.4.2 Interconnection of ARPA Research Networks
	2.4.3 Interconnection of IoT Networks and the Internet
	2.4.4 Interconnection of Wireless Sensors Networks and the Internet

	3 Backround on SCION
	3.1 Overview
	3.2 Control Plane
	3.2.1 Beacon Server
	3.2.2 Path Server
	3.2.3 Certificate Server
	3.2.4 Border Router
	3.2.5 Path Construction
	3.2.6 Path Revocation

	3.3 Data Plane
	3.3.1 SCION packets

	3.4 Security Aspects
	3.4.1 Algorithm Agility
	3.4.2 Authentication
	3.4.3 SCION Control Message Protocol (SCMP)

	3.5 Important Background Concepts
	3.5.1 SVC address
	3.5.2 Another Internet Naming Service (RAINS)
	3.5.3 SCION Daemon

	4 Design
	4.1 Problem Space
	4.1.1 IP-in-SCION Encapsulation
	4.1.2 Routing and Connectivity
	4.1.3 Addressing
	4.1.4 Support for Layer-4 Protocols
	4.1.5 Support for SCION-only ASes

	4.2 The SCION-IP Gateway
	4.2.1 Routing
	4.2.2 Mapping Legacy IP Addresses to SCION ASes
	4.2.3 Encapsulation
	4.2.4 Decapsulation
	4.2.5 SIG Negotiation
	4.2.6 Client Protocol Negotiation

	4.3 Common Scenarios (Life of a Packet)
	4.4 Cases Not Covered
	4.4.1 SCION Hosts without IP Stack
	4.4.2 Transparent Layer-3 Translation (AS Level)
	4.4.3 Transparent Layer-3 Translation (Service Level)

	4.5 Need of many SIG services per AS
	4.6 Introduced Benefits for the Legacy Traffic: DoS Mitigation

	5 Implementation
	5.1 Tools Needed
	5.2 Topology of Development and Testing Environment
	5.3 Structuring the Codebase
	5.4 SIG Software Blocks
	5.4.1 IP Receiver
	5.4.2 SCION Sender
	5.4.3 SCION Receiver
	5.4.4 IP Sender
	5.4.5 Delayed Packets Sender

	5.5 Limitations

	6 Evaluation
	6.1 Environment Setup
	6.2 Communication Performance
	6.2.1 Simple TCP Communication
	6.2.2 Latency Aspects
	6.2.3 Goodput Aspects
	6.2.4 Response to SCION Network Losses

	6.3 Scalability Issues
	6.3.1 Discovery Time for New ASes
	6.3.2 Discovery Time for ASes that leave the SCION network

	6.4 DoS and DDoS Mitigation
	6.4.1 Traffic Filtering on Sending SIG
	6.4.2 Origin Tracking

	7 Conclusions
	7.1 Future Work

	Bibliography
	Abbreviations

