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Introduction

The study of cosmological perturbations brought to light misleading interpretations
and solutions of questionable physical meaning. In fact the invariance of General Rel-
ativity under gauge transformations introduces a redundant degree of freedom that is
eliminated by a gauge choice. However the gauge-dependent quantities studied in the
literature could not be considered physical, because they could change value and depen-
dence on time under gauge transformations. Furthermore there are some cases in which
the perturbation seems to grow when it is not even within the particle horizon.

A first step toward the solution of the gauge problem was made by Hawking [1],
who formulated the perturbation equations in a covariant way but did not totally solve
the problem of gauge ambiguity, because in order to define a density perturbation it is
still necessary a time slicing, which breaks the invariance of the approach. A different
attempt was made by Sakai [2], who found preferential coordinate systems in order to
exclude fictitious solutions for density perturbations, which are the ones moving with
the average density of matter.

The very solution of the problem was the introduction of gauge-invariant variables
through which to describe cosmological perturbations and their study. This idea was
conceived by Bardeen [6] in 1980, and then was developed by Kodama and Sasaki [7].
By writing the perturbations in terms of invariant quantities the formulation results no
more ambiguous, and the corresponding perturbation equations yield results that are
physically significant and trustworthy.

In this thesis we will follow the historical path of the gauge problem and its resolu-
tion, emphasizing the innovation that the introduction of invariant quantities has led to
cosmological perturbation theory. In chapter 1 an introduction to cosmological pertur-
bation theory and gauge transformations is presented. In chapter 2 the gauge problem is
studied in deep for the non conformal synchronous gauge and the conformal Newtonian
gauge, to highlight the meaningless results that particular choices of gauge could lead to.
Chapter 3 follows Bardeen’s approach to the subject, defining gauge-invariant quantities
separately for scalar, vector and tensor perturbations. We will also derive perturbation
equations for these variables and solve them without losing any generality. To make
more intuitive the physical meaning of the new variables introduced in chapter 3, in
chapter 4 they are examined in the conformal Newtonian gauge, in which they assume a
particularly simple form. The solution of Einstein’s equations in terms of these invariant
quantities shows that the gauge problem is finally solved.
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Notation
To lighten the formulation we will adopt the notation

c = 8πG = 1

where c is the velocity of light and G the gravitational constant.
Along this thesis we will need to distinguish between the background universe and

the physical one, so the covariant derivative with respect to the three-dimensional back-
ground universe will be denoted with a slash, while a semicolon will denote the covariant
derivative with respect to the three-dimensional perturbed universe.

Greek indices will range from 0 to 3, Latin indices will mark only spatial coordinates
and range from 1 to 3.
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Chapter 1

Cosmological perturbations and
gauge transformations

Einstein’s equations describe the spacetime geometry as a function of the stress-
energy tensor Tµν . Explicitly they read

Gµν ≡ Rµν −
1
2Rgµν = Tµν (1.1)

where Gµν is the Einstein’s tensor, while Rµν is the Ricci’s tensor, contraction of the
curvature tensor, R ≡ Rγγ and gµν is the metric tensor.

Einstein’s equations can be seen as a system of nonlinear second order differential
equations for the metric components gµν , thus no general methods exist through which
it is possible to obtain all solutions. There are only a few exact solutions of physical
interest, such as the Schwarzschild solution for a spherical simmetric gravitational field
and the Friedmann-Lemaitre-Robertson-Walker (FLRW) solution for an homogeneus
and isotropic universe. [3] [4]

1.1 Cosmological perturbations

The exact solutions of Einstein’s equations describe only particular cases of sym-
metries. We can extend our knowledge of the physical universe by considering small
deviations from these symmetries: this is the so called perturbation theory.

A gravitational perturbation can be written as a small variation of the metric [5]:

gij → gij + δgij (1.2)

where the unperturbed metric represents the background universe, which we will consider
to be the FLRW metric for homogeneous and isotropic universes

ds2 = a2(τ)[−dτ2 + 3gijdx
idxj ] (1.3)
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where a(τ) is the scale factor, τ is the conformal time and 3gij is the metric tensor for a
3-dimensional space of uniform curvature K, and the choice of the space coordinates is
left arbitrary.

The unperturbed energy-momentum tensor is the one that represents a perfect fluid
at rest relative to the comoving coordinates, so that the only non-zero components are

T 0
0 = −ρ0 (1.4a)
T ij = P0δ

i
j (1.4b)

where ρ0(τ) is the background energy density and P0(τ) the background pressure. Let
us define the quantities

w = P0
ρ0

(1.5)

c2
s = dP0

dρ0
(1.6)

that will be useful later on.
The homogeneity and isotropy of the background allow a separation of the time

dependence and the spatial one, so without losing any generality we can expand an
arbitrary perturbation over spatial spherical harmonics Q(n). Through these functions
perturbations can be classified in scalar, vector and tensor quantities, according to how
they transform under spatial coordinate transformations in the background spacetime
[6][7].

A scalar perturbation has a spatial dependence derived from scalar harmonics, which
are the solutions of the scalar Helmholtz’s equation:

∆Q(0) + k2Q(0) = 0 (1.7)

where −k2 is the eigenvalue of the Laplace-Beltrami operator ∆.
Vectors and tensor quantities associated with scalar perturbations must be con-

structed from covariant derivatives of Q(0) and the spatial metric tensor; let us define
the vector

Q
(0)
i = −1

k
Q

(0)
|i (1.8)

and the traceless symmetric tensor

Q
(0)
ij = 1

k2Q
(0)
|ij + 1

3
3gijQ

(0) . (1.9)

A vector perturbation is proportional to Q(0)
i , but it has a divergenceless component

that cannot be constructed from scalar harmonics; instead it must be proportional to
vector harmonic functions, which are solutions of the vector Helmholtz’s equation

∆Q(1)i + k2Q(1)i = 0 . (1.10)
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The second rank traceless symmetric tensor associated with the vector harmonics is

Q(1)ij = − 1
2k (Q(1)i|j +Q(1)j|i) . (1.11)

In the same way a tensor perturbation will be proportional to the solutions of the
tensor Helmholtz’s equation

∆Q(2)ij + k2Q(2)ij = 0 . (1.12)

1.1.1 Scalar perturbations

First of all we will consider scalar perturbations. The metric tensor components g00,
g0i and gij under spatial coordinate transformations transform as a scalar, a vector and
a tensor respectively. Hence let us consider the perturbation of the metric

g00 = −a2(τ)[1 + 2A(τ)Q(0)(~x)] (1.13a)

g0i = −a2B(0)(τ)Q(0)
i (~x) (1.13b)

gij = a2[1 + 2HL(τ)Q(0)(~x)]3gij(~x) + 2H(0)
T (τ)Q(0)

ij (~x) (1.13c)

where ~x denotes the dependence on the spatial coordinates. A(τ) is the amplitude of
the perturbation in the lapse function, which represents the ratio between the proper-
time distance and the coordinate-time distance between two neighboring constant time
hypersurfaces. B(0)(τ) is interpreted as the amplitude of a perturbation in the shift
vector, which represents the rate of deviation of a constant space-coordinate line from a
line normal to a constant time hypersurface. HL is the amplitude of perturbation of a
unit spatial volume, and HT represents the amplitude of anisotropic distortion of each
constant time hypersurface.

Let us define the 4-velocity uµ as the velocity of the rest frame of matter, i.e. the
frame in which the energy flux vanishes. The three-velocity associated to uµ is

ui

u0 = v(0)(τ)Q(0)i(~x) , (1.14)

and to first order the normalization uµuµ = −1 gives the perturbation of the zeroth
component

u0 = a−1(1−AQ(0)) . (1.15)

In this frame the energy density ρ is given by

ρ = −T 0
0 = ρ0(τ)[1 + δ(τ)Q(0)(~x)] (1.16)

where Tµν is the stress-energy tensor and δ(τ) the amplitude of the perturbation that
depends on the conformal time.

The spatial stress-energy tensor T ij is represented by an isotropic pressure

P = 1
3T

i
i = P0(τ)[1 + πL(τ)Q(0)(~x)] = P0 + δP (1.17)
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where πL is the amplitude of the isotropic perturbation, and a traceless anisotropic stress

T ij = P0[(1 + πLQ
(0))δij + π

(0)
T (τ)Q(0)i

j ] (1.18)

where πT is the amplitude of the anisotropic perturbation. Transforming back from this
reference frame to the coordinate frame the only components that change at first order
are

T 0
i = (ρ0 + P0)(v(0) −B(0))Q(0)

i (1.19a)
T i0 = −(ρ0 + P0)v(0)Q(0)i . (1.19b)

The difference between the pressure perturbation and what expected from the back-
ground pressure-energy density is the so called entropy perturbation, and it is expressed
by:

η(τ)Q(0) = 1
w

(wπL − c2
sδ)Q(0) . (1.20)

1.1.2 Vector perturbations

In the case of vector perturbations the scalar quantities considered must be unper-
turbed. Therefore in the metric tensor the component g00 is unchanged, while g0i and
gij vary as

g0i = −a2(τ)B(1)(τ)Q(1)
i (~x) (1.21a)

gij = a2[3gij(~x) + 2H(1)
T (τ)Q(1)

ij (~x)] (1.21b)

where the quantities implied are interpreted in the same way as the ones described above.
Define the three-velocity as

ui

u0 = v(1)Q(0)i (1.22)

in the same way we did for scalar perturbations. The stress-energy tensor changes as

T 0
i = (ρ0 − P0)(v(1) −B(1))Q(1)

i (1.23a)

T ij = P0[δij + π
(1)
T Q

(1)i
j ] (1.23b)

1.1.3 Tensor perturbations

Tensor perturbations affect only the traceless part of the metric tensor and the stress-
energy tensor:

gij = a2(τ)[3gij(~x) + 2H(2)
T (τ)Q(2)

ij (~x)] (1.24)

T ij = P0[δij + π
(2)
T (τ)Q(2)i

j ] . (1.25)

Note that no density or isotropic pressure perturbation is associated with vector or tensor
perturbations [6][7].
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1.2 Gauge transformations

General Relativity is invariant under diffeomorphisms: it can be easily seen by writ-
ing the action of the metric, the Einstein-Hilbert action. Considering diffeomorphisms
δgµν = Lgµν , where Lgµν is the Lie derivative of the metric tensor, it is immediate to
observe that this object is invariant [8].

This invariance generates a redundant degree of freedom, that must be suppressed
because it has no physical meaning. The traditional way to do it is through a gauge
fixing.

A gauge is a one-to-one correspondence between the background spacetime and the
physical one, i.e. the perturbed one. Let us think at the two spacetimes like two mani-
folds: a gauge is a map from the background to the physical universe. Obviously there
are infinite possible maps between the two, and they are all equivalent for General Rela-
tivity. So we have to choose one of them to obtain physical solutions: the perturbations
defined above are clearly gauge dependent, for their dependence on the point of the
spacetime where they are calculated.

Figure 1.1: Φ is the map from the background spacetime (the one on the right) to
the physical one (on the left) at different hypersurfaces with constant perturbation of
the energy density.

A change of this correspondence is a gauge transformation. It is very important to
distinguish between gauge tranformations and coordinate transformations: the first ones
change the point in the background spacetime corresponding to a point in the physical
spacetime, while the second ones only change the labeling of the points in the background
and physical spacetime together [6][9].

For a more rigorous formulation of this concept let us now define two vector fields X
and Y: their integral curves define two flows φλ and ψλ from the background spacetime
M0 to the perturbed one Mλ, where λ is a parameter that indicates the model of the
chosen physical spacetime. Thus X and Y are everywhere transverse toMλ and points
lying on the same integral curve of either of the two are to be regarded as the same
point within the respective gauge: φλ and ψλ are both point identification maps, i.e.
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two different gauge choices.
We can define the gauge transformation Φλ: M0 →M0

Φλ := φ−λ ◦ ψλ . (1.26)

This mathematical formulation is made clearer by figure 1.2.

Figure 1.2: Representation of the gauge transformation Φλ

The tensor fields TXλ and T Yλ defined by the gauges φλ and ψλ are connected at first
order by:

T Yλ = TXλ + λLξTXλ (1.27)

where ξµ is a generator of the diffeomorfism Φλ, i.e. the gauge tranformation, and LξTXλ
is the Lie derivative of TXλ along the vector ξµ [10].

Particularly the Lie derivative along ξµ of the metric tensor operates like

Lξgµν = ξµ;ν + ξν;µ . (1.28)

1.2.1 Active and passive approach

There are two ways to calculate how perturbations change under small gauge trans-
formations: the active and the passive approach [11].

In the active approach the focus is on how the perturbations change under a mapping,
once the generator of the gauge transformation ξµ has been specified. The map is then
the exponential map, and a generic tensor T varies like

T̃ = eLξT . (1.29)
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Splitting the tensors to the first order and separating the terms we obtain at zeroth
order

T̃0 = T0 , (1.30)

and at first order
δ̃T 1 = δT1 + LξT1 . (1.31)

Applying the map to coordinate functions we get the relation between coordinates
of a point q and the ones of another point p:

xµ(q) = eLξxµ(p) = e
ξσ ∂

∂xσ

∣∣
pxµ(p) (1.32)

that expanded at first order gives

xµ(q) = xµ(p) + λξµ(p) . (1.33)

The passive approach instead specifies the relation between two coordinate systems
directly, and the change of the perturbation is calculated with respect to this coordinate
change. In this view the transformation is taken at the same physical point, while in the
active view it is taken at the same coordinate point. The transformation at first order
from the coordinate system xµ to x̃µ is

x̃µ(q) = xµ(q)− λξµ(q) . (1.34)

Let us consider the energy density ρ and split it into an homogeneous background
quantity and a perturbation at first order as

ρ(xµ) = ρ0(x0) + λδρ(xµ) . (1.35)

The energy density is a scalar and does not change under coordinate transformations,
so

ρ(xµ) = ρ̃(x̃µ) . (1.36)

Expanding both sides of (1.36) using (1.34) and (1.35) we obtain:

ρ0(x0) + λδρ(xµ) = ρ0(x̃0) + λδ̃ρ(x̃µ)

= ρ0(x0)− λ∂ρ0
∂x0 (x0)ξ0(xµ) + λδ̃ρ(xµ)

(1.37)

where x0 and ξ0 (with upper indices) are the 0-component of xµ and ξµ. The transfor-
mation rule is then

δ̃ρ = δρ+ ∂ρ0
∂x0 ξ

0 . (1.38)

From now on we will use the passive approach to study cosmological perturbations.
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Chapter 2

Gauge problem

The perturbations defined in the previous chapter are clearly gauge dependent. In
lot of cases this brings to misleading interpretations or even to non physical solutions
[12]. There are no physical reasons to choose between gauges that give very different
results, each mathematically correct. Furthermore, if the gauge condition imposed leaves
a residual gauge freedom, the perturbation equations will have solutions which have no
physical reality, and can be annulled by a gauge transformation [6].

In this chapter we will see a few examples of non physical results obtained from
particular choices of gauge, considering only the case of scalar perturbations in the dust
solution of the Einstein-de Sitter model, i.e. setting K = 0 and w = 0.

2.1 Non-comoving synchronous gauge
The most evident example of the absurd results that a gauge choice can bring is the

matter-dominated limit of the non-comoving synchronous gauge [12].
The condition of the synchronous gauge is the one that allows synchronization of

clocks in different space points, and it’s expressed by g00 = 1 and g0i = 0.
Matter-dominated limit means that the matter dominates the energy density, so

that we can ignore the other components. By "matter" it is meant non-relativistic
matter, whose pressure is so small compared to the energy density that we can ignore
it and consider P = w = 0. According to our present understanding, the universe
was radiation-dominated for the first few ten thousand years, after which it became
matter-dominated [13].

The major problem, dealing with this gauge, has to do with those perturbations
whose spatial wavelengths λ are larger than the particle horizon, such that

λ = 2πa(t)
q

� ct (2.1)

where q is the wavenumber in comoving coordinates, and t is the proper time.
Let us define the quantity

φ(t) ≡ a2

ȧ
uj|j (2.2)
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where the dot denotes the derivative with respect to the time t, and the new variable
η = ln t so that

d

dt
= ȧ

a

d

dη
. (2.3)

In the following we will denote with a prime the derivative with respect to η [12].
Let’s call hij the component of the perturbation of the metric tensor introduced in

(1.2) that represents density perturbations only, rescaled of a factor a2. The perturbed
Einstein’s field equations yield to the equations [12][14]:

h′′ + 1
2h
′ − 3δ = 0 (2.4)

δ′ + φ− 1
2h
′ = 0 (2.5)

φ′ + 1
2φ = 0 (2.6)

where h ≡ hii, and δ is the energy perturbation defined in equation (1.16).
There are four different independent solutions of these equations, each varying as

emη for some eigenvalue m, and four different eigenvectors (δ, φ, h, h′)emη. The time
dependence (with respect to t) of a mode with eigenvalue m is

(δ, φ, h, h′) ∝ t
2m
3 . (2.7)

Explicitly the four eigenmodes are:

m = −3
2 (δ, φ, h, h′) ∝

(1
2 , 0, 1,−

3
2

)
t−1 (2.8a)

m = −1
2 (δ, φ, h, h′) ∝

(
0,−1

2 , 2,−1
)
t−

1
3 (2.8b)

m = 0 (δ, φ, h, h′) ∝ (0, 0, 1, 0) (2.8c)

m = 1 (δ, φ, h, h′) ∝
(1

2 , 0, 1, 1
)
t

2
3 . (2.8d)

Every solution is the linear combination of the four modes above. To recognize the
physical validity of a solution we have to check whether it is due to the combination of
gauge solutions: we have to find the most general solution due to gauge transformations,
and to verify if the combination of the four modes above could be seen as a gauge mode.
In this case we have to reject the solution, because no possible measurements could
distinguish its presence or absence.

Let us consider the change of coordinates

x̃µ = xµ + ξµ(x) . (2.9)
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The most general form allowed for ξµ is

ξ0 = ψ(~x) (2.10a)

ξi =
∫
dt
ψ|i
a2 + χi(~x) (2.10b)

where ψ and χ are functions of the spatial coordinates alone. The perturbation of the
metric tensor varies as

hij = 2 ȧ
a
ψδij + 2ψ|ij

∫
dt

a2 + χi|j + χj|i (2.11)

that yields

h = 6 ȧ
a
ψ + 2∇2ψ

∫
dt

a2 + 2χj|j . (2.12)

The quantities φ and δ change as:

φ = ∇
2ψ

ȧa
(2.13)

δ = 3 ȧ
a
ψ . (2.14)

It can be verified that h, φ and δ in this form satisfy equations (2.4), (2.6) and (2.5).
If χi = 0 and ψ ∝ eiqjxj equations (2.12), (2.13) and (2.14) can be seen as the linear

combination of the solutions (2.8a) and (2.8b):

(δ, φ, h, h′) ∝
(1

2 , 0, 1,−
3
2

)(
t

t0

)−1
+
(

0,−1
2 , 2,−1

)(
t

t0

)− 1
3

(2.15)

where t0 is the time such that

t0 =
(4

3

) 1
2 a(t0)

q
(2.16)

which is, apart from a factor of order unity, the horizon crossing time of the mode q. At
times much before t0 the solution (2.15) is dominated by the t−1 mode, at times much
after t0 by the t−

1
3 mode.

We have seen that the synchronous gauge does not fix entirely the gauge degrees of
freedom, in fact it brings solutions that are constructed from a gauge transformation.
There is still a residual degree of freedom that must be eliminated in order to get physical
solutions.

One way to remove this gauge freedom is to impose another gauge condition: the
uniform Hubble constant gauge, that fixes the condition that any physical measurements
of φ and δ at any epoch are reported in the coordinate system which has, at that epoch,
h = h′ = 0.

Introducing the new variable
s ≡ t

t0
, (2.17)
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we can obtain two linearly independent solutions of δ:
the decaying solution

δ = 2s−
1
3

2s
2
3 + 3

(2.18)

and the growing solution

δ = 2s
4
3 + s

2
3

2s
2
3 + 3

(2.19)

Consider the limits of these solutions in the cases in which the perturbation is well
within the horizon s � 1 and very far from it s � 1. For the decaying solution we
obtain:

δ → s−1 s� 1 (2.20a)

δ → s−
1
3 s� 1. (2.20b)

For the growing mode we get:

δ → s
2
3 s� 1 (2.21a)

δ → s
2
3 s� 1. (2.21b)

We can see that, crossing the horizon, in the decaying mode the trend of the perturbation
changes, i.e. in this gauge a discontinuity at the horizon is present. But there is a more
substantial problem: the perturbation increases with time. In particular, it goes to
infinity when it is not even within the particle horizon. This solution, obtained with no
mathematical errors, is physically absurd. This is due to the gauge choice we made at
the very beginning of this section; the choice of a gauge condition that may simplify the
calculation could lead to non-sense physical results.

2.2 Conformal Newtonian gauge
Let’s now consider the conformal Newtonian gauge for scalar perturbations, that is

expressed, in terms of the spherical harmonics that describe the perturbation, by the
condition: (

B(0)Q
(0)
i

)|i
= 0 (2.22a)(

H
(0)
T Q

(0)
ij

)|j
= 0 . (2.22b)

This time we will adopt a different approach: starting from the perturbation in the
conformal synchronous gauge we will make a gauge transformation to get the solution
in the Newtonian gauge [15].

The synchronous gauge, in comoving coordinates, is described by g00 = −a2(τ) and
g0i = 0. Set the residual gauge freedom, the energy density perturbation in the growing
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mode depends on the peculiar gravitational potential ϕ through the cosmological Poisson
equation. Some calculations give

δS = τ2

6 ∇
2ϕ (2.23)

where the subscript S denotes that the quantity is the one characteristic of the syn-
chronous gauge. We can see that the coordinate frame change did not resolve the growing
problem, and the perturbations grows as infinite as the time increase.

Let us consider the gauge transformation described in equation (1.34) from the syn-
chronous and the Newtonian gauge, and write the spatial component of ξµ as

ξi = ∂ib+ di (2.24)

with ∂idi = 0. The gauge transformation brings

AN (τ, ~x) = ξ̇0 + ȧ

a
ξ0 (2.25a)

HL,N (τ, ~x) = HL,S(τ, ~x) + 1
3∇

2b+ ȧ

a
ξ0 (2.25b)

H
(0)
T,N (τ, ~x) = H

(0)
T,S(τ, ~x) (2.25c)

where the subscripts S and N indicate the synchronous and the Newtonian gauge re-
spectively, the dot denotes the derivative with respect to τ and the spherical harmonics
associated with the perturbation amplitudes are included in the spatial dependence of
the amplitudes themselves, for simplicity of notation. The parameters ξ0 and b can be
fixed using the fact that ξ0 = ḃ, and the property of the synchronous gauge:

−τ
2

3 (ϕ|ij −
1
3∇

2ϕ) + 2b|ij − 2
3∇

2b = 0 (2.26)

that brings easily

b = τ2

6 ϕ (2.27a)

ξ0 = τ

3ϕ . (2.27b)

In particular, the energy density perturbation can be calculated from:

δN = δS + ρ̇0ξ
0 (2.28)

where ρ0 is the energy density of the background universe, i.e. the Einstein-de Sitter
model. In the Newtonian gauge the energy density perturbation is:

δN = −2ϕ+ τ2

6 ∇
2ϕ . (2.29)

We can note that the quantity is changed by a factor that depends on the gravitational
potential, but not on the conformal time. The problem of the growing mode that we
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have seen in the synchronous gauge is persistent also in the Newtonian gauge. In this
example we have also practically seen that the quantity has changed with the change of
the gauge.

Is becoming clearer and clearer that the quantities here defined are not of physical
interest, because they change not only their value but also their dependence on time with
a gauge transformation. How could such quantities be physically reliable? Moreover we
have seen repeatedly that a gauge choice could lead to correct mathematical solutions
which have no physical meaning, for example in the cases which we examined the en-
ergy density perturbation increases to infinity. A new approach to study cosmological
perturbations is clearly required.
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Chapter 3

Gauge-invariant variables

In the previous chapter we have seen how the choice of a particular gauge could
lead to unphysical results. The gauge problem was overcome for the fist time by James
Bardeen, who proposed the introduction of gauge-invariant variables [6]. He understood
the need to express cosmological perturbation only in terms of invariant quantities,
indeed they are the only quantities that have a real physical meaning: quantities whose
course and meaning depend on the gauge choice could not have any physical meaning.
Nevertheless these new invariant variables, to have genuine physical significance, have to
be constructed from the natural variables of the problem that is matter of consideration,
in this case the perturbation considered. Therefore he proposed a new approach to
studying cosmological perturbations in a total covariant and unambiguous way.

In this chapter we will follow Bardeen’s paper, to understand the innovation that his
idea brought to the subject.

3.1 Definition of the variables

3.1.1 Scalar perturbations

Let us consider the perturbation of the metric tensor: two independent gauge-
independent quantities can be constructed from the amplitudes of the perturbation,
ΦA and ΦH :

ΦA ≡ A+ 1
k
Ḃ(0) + 1

k

ȧ

a
B(0) − 1

k2

(
Ḧ

(0)
T + ȧ

a
Ḣ

(0)
T

)
(3.1)

ΦH ≡ HL + 1
3H

(0)
T + 1

k

ȧ

a
B(0) − 1

k2
ȧ

a
Ḣ

(0)
T . (3.2)

In fact let us consider the general gauge transformation:

τ̃ = τ + T (τ)Q(0) (3.3a)
x̃i = xi + L(0)(τ)Q(0)i . (3.3b)

17



Therefore the amplitudes of the perturbation change as

Ã = A− Ṫ − ȧ

a
T (3.4a)

B̃(0) = B(0) + L̇(0) + kT (3.4b)

H̃L = HL −
1
3kL

(0) − ȧ

a
T (3.4c)

H̃
(0)
T = H

(0)
T + kL(0) (3.4d)

Let us see if under this transformation ΦA and ΦH are actually invariant:

Φ̃A = Ã+ 1
k

˙̃
B

(0)
+ 1
k

ȧ

a
B̃(0) − 1

k2

(
¨̃
H

(0)
T + ȧ

a
˙̃
H

(0)
T

)
= A− Ṫ − ȧ

a
T + 1

k
Ḃ(0) + 1

k
L̈(0) + Ṫ + 1

k

ȧ

a
B(0) + 1

k

ȧ

a
L̇(0) + ȧ

a
T

− 1
k2 Ḧ

(0)
T −

1
k
L̈(0) − 1

k2
ȧ

a
Ḣ

(0)
T −

1
k

ȧ

a
L̇(0)

= A+ 1
k
Ḃ(0) + 1

k

ȧ

a
B(0) − 1

k2

(
Ḧ

(0)
T + ȧ

a
Ḣ

(0)
T

)
= ΦA

(3.5)

Φ̃H = H̃L + 1
3H̃

(0)
T + 1

k

ȧ

a
B̃(0) − 1

k2
ȧ

a
˜̇H(0)
T

= HL −
1
3kL

(0) − ȧ

a
T + 1

3H
(0)
T + 1

3kL
(0) + 1

k

ȧ

a
B(0) + 1

k

ȧ

a
L̇(0)

+ ȧ

a
T − 1

k2
ȧ

a
Ḣ

(0)
T −

1
k

ȧ

a
L̇(0)

= HL + 1
3H

(0)
T + 1

k

ȧ

a
B(0) − 1

k2
ȧ

a
Ḣ

(0)
T

= ΦH .

(3.6)

Neither ΦA nor ΦH vary. Note that there are four gauge dependent variables and two
gauge functions T and L(0), so the independent quantities must be two.

Under the transformation (3.3a) the velocity v(0) changes as ṽ(0) = v(0) + L̇(0), so we
can define an invariant velocity as it follows:

v(0)
s ≡ v(0) − 1

k
Ḣ

(0)
T . (3.7)

The energy density perturbation δ is not gauge-independent, thus it must be com-
bined with other quantities in order to be invariant. One restriction for the new variable
is that it has to reduce to δ as soon as the perturbation comes inside the horizon. A
first possibility is

εm ≡ δ + 3(1 + w) 1
k

ȧ

a
(v(0) −B(0)) , (3.8)
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that is equal to δ in every gauge in which v(0) = B(0), so we can interpret it as the
density perturbation from the reference frame of the matter.

Another invariant combination is

εg ≡ δ − 3(1 + w) 1
k

ȧ

a

(
B(0) − 1

k
Ḣ

(0)
T

)
, (3.9)

that is equal to δ when B(0) = 1
k Ḣ

(0)
T , that corresponds to the Newtonian gauge.

3.1.2 Vector perturbations

Considering vector perturbations, the only gauge-invariant quantity that we can
construct from the amplitudes of the perturbation is

Ψ ≡ B(1) − 1
k
Ḣ

(1)
T . (3.10)

To test it, like we did for scalar perturbations, let us consider the general gauge trans-
formation

x̃i = xi + L(1)(τ)Q(1)i (3.11)

and remember that there is no ambiguity for the time coordinate. The perturbation
amplitudes change then as

B̃(1) = B(1) + L̇(1) (3.12a)

H̃
(1)
T = H

(1)
T + kL(1) (3.12b)

and consequently

Ψ̃ = B̃(1) − 1
k

˙̃
H

(1)
T

= B(1) + L̇(1) − 1
k
Ḣ

(1)
T − L̇

(1)

= B(1) − 1
k
Ḣ

(1)
T

= Ψ.

(3.13)

One possible choice of a gauge-invariant velocity for the matter is, in analogy with
the one defined in (3.7), the shear velocity

v(1)
s ≡ v(1) − 1

k
Ḣ

(1)
T (3.14)

from which we can define
vc ≡ v(1) −B(1) = v(1)

s −Ψ (3.15)

that is the source of Ψ in Einstein’s equations, and represents the velocity of the normal
to time-constant hypersurfaces.
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3.1.3 Tensor perturbations

No gauge transformation can be constructed from the harmonic tensor Q(2)ij , and
the direct consequence of this fact is that all the quantities considered in this case
are already gauge-invariant. We can then consider H(2)

T and π(2)
T as the natural gauge

invariant variables regarding tensor perturbations.

3.2 Perturbation equations
Now that we have defined a set of invariant variables we can study cosmological

perturbations using a totally covariant form, that makes the survey more physically
direct. In general, the perturbed Einstein’s equations are

δGµν = δRµν −
1
2δ

µ
νR = δTµν . (3.16)

3.2.1 Scalar perturbations

Starting from the variation of the Ricci’s tensor under scalar perturbation is possible
to construct two invariant combinations of the perturbed Einstein’s tensor, and through
equation (3.16) relate them to the perturbed stress-energy tensor. The equations ob-
tained are

2k
2 − 3K
a2 ΦH = ρ0εm (3.17)

and
−k

2

a2 (ΦA + ΦH) = P0π
(0)
T (3.18)

that are express only in terms of invariant quantities. Note that for a perfect fluid
equation (3.18) gives ΦA = −ΦH .

The dynamics of scalar perturbations is derived from the continuity equation

Tµν;µ = 0. (3.19)

The momentum equation Tµi;µ = 0, elaborated in terms of invariant quantities, gives:

v̇(0)
s + ȧ

a
v(0)
s = kΦA + k

1 + w
(c2
sεm + wη)− 2

3
k

1 + w

(
1− 3K

k2

)
wπ

(0)
T . (3.20)

We can interpret ρ0(1+w) as the inertial mass per unit volume, so that the second term
of the right hand side of the equation is related to the acceleration of the rest frame
of matter due to the pressure-gradient force, and the third term is proportional to the
acceleration due to the divergence of the anisotropic part of the stress tensor. Both terms
are the corresponding acceleration times the scale factor a. Besides the first term is the
gravitational acceleration in the Newtonian gauge associated with the perturbation.

The energy equation, starting from Tµ0;µ = 0, can be obtained firstly in the conformal
synchronous gauge, in which the calculation is easier. Then, having obtained an invariant
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formula, it can be generalized to every gauge. After some computation we get the
equation

Φ̇H + ȧ

a
ΦH = −1

2
(ρ0 + P0)a2

k
v(0)
s −

P0a
2

k2
ȧ

a
π

(0)
T (3.21)

that can be expressed also like

˙[ρ0a3εm] = −
(

1− 3K
k2

)
(ρ0 + P0)a3kv(0)

s − 2
(

1− 3K
k2

)
ρ0a

2ȧπ
(0)
T (3.22)

where the dot is applied over the whole quantity [ρ0a
3εm]. This form is more familiar,

in the sense that equation (3.22) has some similarity with the special relativistic energy
equation, even though it is not exactly the same.

3.2.2 Vector perturbations

Using the same approach of the previous section, we can derive the equations that
describe vector perturbations. Taking the 0 − 0 component of Einstein’s equations we
get

1
2
k2 − 2K

a2 ΨQ(1)
i = (ρ0 + P0)vcQ(1)

i . (3.23)

The equation of motion is obtained starting from the continuity equation of matter, that
gives

v̇c = ȧ

a
(3c2

s − 1)vc + kw

1 + w
π

(1)
T . (3.24)

3.2.3 Tensor perturbations

In the case of tensor perturbations there is only one equation obtainable, that is

1
a2

(
Ḧ

(2)
T + 2 ȧ

a
Ḣ

(2)
T + (k2 + 2K)H(2)

T

)
= P0π

(2)
T . (3.25)

3.3 Solutions of the perturbation equations
We are going to search a general solution for the perturbation equations. We will

consider the approximation w = c2
s = const and K = 0, that is well justified for pertur-

bation on the scale of galaxies.

3.3.1 Scalar perturbations

Define the new variables:
β ≡ 2

3w + 1 (3.26)

x ≡ kτ (3.27)

f ≡ xβ−2εm = 2
3β
−2xβΦH . (3.28)
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Note that β ranges from 2 (w = 0) to 1
2 (w = 1), and let us denote with a prime the

derivative with respect to x. Bringing together equations (3.17), (3.20) and (3.21), and
expressing them in terms of the new variables, we can get the equation

f ′′+ 2x−1f ′+
(
c2
s − β(β + 1)x−2

)
f = −xβ−2

[
wη− 2

3wπ
(0)
T + 2βx

(
x−2wπ

(0)
T

)′]
(3.29)

The solution of this equation for an arbitrary source can be derived by constructing the
Green’s function. Applying the condition that the perturbation vanishes at x = 0, and
considering the approximations for the limit csx� 1, i.e. outside the sound horizon, we
get

f(x) ' (2β + 1)−1
[
xβ
∫ x

0
dy y−1

(2
3
β + 1
2β − 2wπ

(0)
T − wη

)
+ x−β−1

∫ x

0
dy y2β(−2β(2β + 1)y−2wπ

(0)
T + wη)

]
. (3.30)

Let us briefly have some comments about this result: it is composed of a growing mode
and a decaying mode, in a way similar to what we have seen in section 2.1. The entropy
perturbation contributes in amounts of the same order in growing and decaying mode
to f , and consequently to εm and ΦH .

If the perturbation is turned off for x� 1, by the time it reaches the particle horizon
x = 1 the contribution to the decaying mode is negligible compared to the one of the
growing mode.

The anisotropic stress contribution is of the same order of the entropy one in the
growing mode, while in the decaying mode is of order x−2 relative to the entropy per-
turbation term. If the anisotropic perturbation turns off at a certain time x1 � 1, then
by the time in which it reaches the particle horizon x = 1 the contribute to the energy
density perturbation amplitude in the growing mode is wπ(0)

T , while the contribute in
the decaying mode is x2β−1

1 wπ
(0)
T , very small compared to the growing one. Note that

the contribution to εm is always small if wπ(0)
T � 1, while the anisotropic perturbation

term can be larger than one in ΦH = x−2εm if the perturbation is applied very early in
time, i.e. x2 < wπ

(0)
T .

3.3.2 Vector perturbations

The solution of equation (3.24), assuming no perturbation initially and after the
perturbation has been on for a sufficient amount of time, is

vc ≈
x

1− 2β
w

1 + w
π

(1)
T , (3.31)

and after the perturbation turns off

vc ∝
1

a4(ρ0 + P0) ≈ x
−2(β−1) . (3.32)
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Using equation (3.23) to gain the form of Ψ we get:

Ψ = 2
k2 − 2Ka2(ρ0 + P0)vc ≈ 4β(β + 1)x−2vc . (3.33)

Notice that even if wπ(1)
T � 1, Ψ could be larger than one: it means that it does not

exist a gauge in which all the perturbations are small, hence a time-like observer cannot
be at rest relative to a coordinate system in which Ḣ

(1)
T = 0, i.e. in which the shear

velocity vs is equal to v(1).

3.3.3 Tensor perturbations

The solution of the tensor perturbation equation is the one that corresponds to
gravitational waves of amplitude H(2)

T , and it is not any different from the solutions
found in the literature for particular gauges, because the variables in question are already
invariant.
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Chapter 4

Conformal Newtonian gauge

In this chapter we will briefly see how the study of cosmological perturbations changes
using the variables introduced by Bardeen [13]. The most direct and intuitive example
is the conformal Newtonian gauge, because in this particular gauge the potentials ΦA

and ΦH assume a very simple and naturally physical form.
In this gauge, by definition,

B(0) = H
(0)
T = 0 , (4.1)

so the two potentials ΦA and ΦH introduced by Bardeen become:

ΦA = A (4.2)

ΦH = HL . (4.3)
The amplitude ΦA measures the fractional perturbation in the lapse function and repre-
sents the Newtonian spatial curvature, while ΦH is the amplitude of the spatial metric
perturbations, and plays the role of the gravitational potential in the Newtonian approx-
imation [6][16].

The metric for scalar perturbations is then explicitly described by

g00 = −a2(τ)(1 + 2ΦA) (4.4a)
g0i = 0 (4.4b)
gij = a2(τ)[1 + 2ΦHQ

(0)δij ] (4.4c)

where we have made explicit the spatial metric as the Minkowskian one, expressed by
a Kronecker delta. Note that the metric is diagonal; this simplifies the calculations and
leads to simple geodesic equations. In this gauge no gauge modes are present, so the
description is not obscured in the meaning by unphysical modes [17].

Furthermore the invariant velocity v(0)
s introduced in (3.7) and the gauge-invariant

energy density εg defined in (3.9) assume the trivial form:

v(0)
s = v(0) (4.5)

εg = δ . (4.6)
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4.1 Einstein’s equations

Let us now derive the perturbed Einstein’s equations using the invariant approach.
To construct Einstein’s equations we need to find the form of the Ricci’s tensor for the
perturbed metric in the gauge we are considering. The Ricci’s tensor is by definition:

Rµν ≡ Γανµ|α − Γααµ|ν + ΓααβΓβνµ − ΓανβΓβαµ (4.7)

where Γανµ is the Christoffel’s symbol, that is defined by

Γανµ ≡
1
2g

ασ(gνσ|µ + gµσ|ν − gνµ|σ) (4.8)

so we need to know firstly how the Christoffel’s symbols vary under scalar perturbations
of the metric [18]. Using the definition of the metric in this gauge we get:

Γ0
00 = H+ Φ̇A (4.9a)

Γ0
0k = ΦA|k (4.9b)

Γ0
ij = Hδij −

(
2H(ΦA − ΦH)− Φ̇H

)
δij (4.9c)

Γi00 = ΦA|i (4.9d)
Γi0j = Hδij + Φ̇Hδ

i
j (4.9e)

Γijk = ΦH|kδ
i
j + ΦH|jδ

i
k − ΦH|iδjk (4.9f)

where we considered only the terms at first order in ΦA and ΦH and defined H ≡ ȧ
a ,

that is the Hubble parameter. In the form of the perturbed connection coefficients the
unperturbed quantities and the perturbations are separated: the latter are represented
by the terms in which Bardeen’s potentials appear, usually the second terms. Notice
that in some cases the unperturbed value is zero and only the perturbation is present,
i.e. in Γ0

0k and Γi00.
Using the definition of the Ricci’s tensor (4.7) it is possible to calculate its form; the

components of the perturbed Ricci’s tensor are:

R00 = −3Ḣ − 3Φ̈H +∇2ΦA + 3H(Φ̇A + Φ̇H) (4.10a)
R0i = −2(Φ̇H −HΦA)|i (4.10b)
Rij = (Ḣ+ 2H2)δij + [Φ̈H −∇2ΦH −H(Φ̇A − 3Φ̇H)

− (2Ḣ+ 4H2)(ΦA − ΦH)]δij − (ΦH + ΦA)|ij .
(4.10c)

Raising an index and contracting it we get the Ricci’s scalar R as:

R = 6
a2 (Ḣ+H2) + 1

a2 [6Φ̈H − 2∇2(2ΦH + ΦA)

− 6H(Φ̇A − Φ̇H)− 12(Ḣ+H2)ΦA] .
(4.11)
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Finally, we can construct the Einstein’s tensor, whose components are:

G0
0 = R0

0 −
1
2R = − 3

a2H
2 + 1

a2 (2∇2ΦH − 6HΦ̇H + 6H2ΦA) (4.12a)

G0
i = R0

i = 2
a2 (Φ̇H −HΦA)|i = −Ri0 = −Gi0 (4.12b)

Gij = Rij −
1
2δ

i
jR = 1

a2 (−2Ḣ − H2)δij + 1
a2 [−2Φ̈H +∇2(ΦA + ΦH)

+ 2HΦ̇A + (4Ḣ+ 2H2)ΦA]δij −
1
a2 (ΦH + ΦA)|ij .

(4.12c)

Let us observe that, like in equations (4.9), we can distinguish the unperturbed terms
from the perturbation terms, in which the potentials ΦA and ΦH are present.

Let us consider from now on, for simplicity of calculation, only the case of a perfect
fluid. The perturbation in the stress-energy tensor is then

δT 0
0 = −εg (4.13a)

δT 0
i = (ρ0 + P0)v|i = −δT i0 (4.13b)

δT ij = δPδij . (4.13c)

where δP is the perturbation of the pressure.
We can finally write the perturbed Einstein’s equations:

∇2ΦH − 3H(Φ̇H −HΦA) = −1
2a

2εg (4.14a)

(Φ̇H −HΦA)|i = 1
2a

2(ρ0 + P0)v|i (4.14b)

−Φ̈H +HΦ̇A + (2Ḣ+H2)ΦA + 1
3∇

2(ΦA + ΦH) = 1
2a

2δPδij (4.14c)

−(∂i∂j + 1
3δ

i
j∇2)(ΦH + ΦA) = 0 (4.14d)

where we separated the spatial component δGij into its trace and traceless part. Equation
(4.14b) can be simplified considering that the spatial average of a perturbation is always
zero. As a consequence, the equality of gradients of the two perturbations implies the
equality of the perturbations themselves. Hence equation (4.14b) becomes

Φ̇H −HΦA = 1
2a

2(ρ0 + P0)v . (4.15)

Equation (4.14d) gives
ΦH = −ΦA (4.16)

which means that there is only one degree of freedom left, and we can identify ΦH with
the opposite of ΦA in all the other Einstein equations, and call it simply Φ.

26



4.2 Matter-dominated limit
Let us see the results of Einstein’s equations in the matter dominated limit. Let us

recall that in this limit we can ignore the pressure, so we can assume P0 = w = δP = 0.
Equations (4.14a), (4.15) and (4.14c) assume the simpler form:

∇2Φ = 1
2a

2ρ0(εg − 3Hv) (4.17a)

Φ̇ +HΦ = −1
2a

2ρ0v (4.17b)

Φ̈ +HΦ̇ + (2Ḣ+H2)Φ = 0 . (4.17c)

From Friedmann’s equations, that describe the FLRW background universe, we can
obtain the relation

2Ḣ+H2 = 0 , (4.18)

that inserted in equation (4.17c) gives the second order equation

Φ̈ +HΦ̇ = 0 (4.19)

whose solution is
Φ(τ, ~x) = C1(~x) + C2(~x)τ−5 (4.20)

where the coefficient C1 and C2 depend only on the spatial coordinates. The second
term is clearly the decaying mode and is proportional to τ−5, while the first term is
not growing any more, yet it is constant in time. The coefficients C1 and C2 can be
determined from the initial value of Φ. Unless there are very special initial conditions,
that make the value of C1 vanishing, the decaying term soon becomes negligible compared
to the constant one, and we can then write

Φ(τ, ~x) = Φ(~x) . (4.21)

For the matter-dominated limit of the conformal Newtonian gauge the Bardeen’s poten-
tial is constant in time for scalar perturbations.

From the form of Φ and using equation (4.17a) and (4.17b) we can derive the energy
density perturbation δ = εg, that is

εg = −2Φ + 2
3H2∇

2Φ . (4.22)

Passing to the Fourier space we can easily obtain the behaviour of εg for superhori-
zon and subhorizon scales. As of superhorizon scales k � H, then the energy density
perturbation stays constant

εg = −2Φ , (4.23)

whereas for subhorizon scales k � H, so

εg = −2
3

(
k

H

)2
Φ ∝ τ2 ∝ a ∝ t

2
3 (4.24)
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i.e. it grows proportional to the scale factor. We can see that the perturbation begins
to grow when it comes inside the particle horizon. Let us also notice that at subhorizon
scales general relativistic effects become negligible and we can consider a Newtonian
description, in which the energy density and the velocity perturbations of the conformal
Newtonian gauge become the corresponding quantities of the Newtonian description.
The Bardeen’s potential then can be interpreted as the Newtonian gravitational potential
due to scalar density perturbations, like we have mentioned at the beginning of this
chapter.

What we have reached in this formulation is an important result, as we can see that
we have finally solved the gauge problem: Φ and εg are physical variables that do not
change under gauge transformations, and their behaviours are of physical understanding.
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Conclusions

In the study of cosmological perturbations a problem of coherence and physical mean-
ing emerged, the so called gauge problem. General Relativity invariance under gauge
transformation leads to redundant degrees of freedom, that are classically eliminated
through a gauge choice. However we have seen that choosing a specific gauge instead
of another one could lead to different results. In the study of the non conformal syn-
chronous gauge and the comoving Newtonian gauge we have observed that the energy
density perturbation assumes an infinite value on superhorizon scales.

To overcome this problem of non-physical meaning of the results we have followed
the approach of Bardeen, who proposed the use of gauge-invariant variables. We have
defined the two invariant Bardeen’s potentials ΦA and ΦH for scalar perturbations,
the potential Ψ for vector perturbations and we ascertained that the natural quantities
suggested by tensor perturbations are already invariant. We have defined also gauge-
invariant velocities and energy density perturbations. All these quantities are built from
the natural variables that the physical perturbation suggested, so they can be referred
to the corresponding non-invariant quantities, yet the study of these new variables is not
misleading nor contradictory for changes among gauges.

To make more intuitive the physical meaning of the invariant variables, we have
studied them specifically in the conformal Newtonian gauge, in which they assume a
particularly simple form. We have consider scalar perturbations of the metric, and we
have derived the perturbed Einstein’s equations of a perfect fluid in terms of ΦA and
ΦH . The solution we found for the matter dominated limit has made clear that the
gauge problem has finally been solved. In fact the behaviour of the potential is neither
meaningless nor unphysical any more; on the contrary it is plausible both on superhorizon
and subhorizon scales.
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