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Notation
An The alternating group on n letters;
A The class of abelian groups;
Cn The cyclic group with n elements;
Dn The dihedral group with 2n elements;
D The class of groups with nilpotent derived subgroup;
diam(Γ) The diameter of the graph Γ;
distΓ(a, b) The distance between the vertices a and b in Γ;
F A generic class (or formation) of groups;
FG The product of the formations F and G;
F(G) The Fitting subgroup of G;
φ(G) The Frattini subgroup of G;
φF(G) The intersection of all the F-maximal subgroups of G;
G A generic finite group;
|G : H| The index of H in G;
Γ̃F(G) The preliminary non-F graph of G;
ΓF(G) The non-F graph of G;
IF(G) The set of isolated vertices of Γ̃F(G);
N The class of nilpotent groups;
Nt The class of groups with Fitting length less or equal then t;
R(G) The soluble radical of G;
Sn The symmetric group on n letters;
S The class of soluble groups;
Sp The class of p-groups;
U The class of supersoluble groups;
wU The class of widely supersoluble groups;
Z(G) The center of G;
Z∞(G) The hypercenter of G;
x ∼ y x and y are connected by an edge;
x ≈ y x and y are in the same connected component.



Chapter 1

Introduction

This thesis is about finite groups and some graphs related to them. All the
groups, unless otherwise specified, are considered to be finite. The study of
groups with graphs was introduced at first by Paul Erdős who defined the
non-commuting graph of a group G: a graph whose vertices are elements
in G \ Z(G) and two vertices are connected if the subgroup generated by
the corresponding elements is not abelian. Following the steps of Erdős, at
the end of the 20th Century, it was introduced the generating graph. This
graph is built in the following way: take a preliminary graph Ṽ (G) = (G,E),
where two vertices are connected if the corresponding elements generate the
group G. The generating graph V (G) is obtained by deleting the isolated
vertices of Ṽ (G). This graph has been studied in the literature, obtaining
many results in the case of finite groups. In the following years many such
graphs have shown up in the mathematical community: for instance the
non-nilpotent graph, the non-soluble graph and some generalization of the
generating graph. Apart from the graphs related to generation, all the other
ones are built taking a class X of groups (e. g. nilpotent groups, soluble
groups) with the following procedure: firstly it is defined a preliminary graph
Γ̃X(G) = (G,E), where two vertices are connected if the subgroup generated
by the corresponding elements is not in the class X; then it is studied the
graph ΓX(G) (which we call non-X graph) obtained by removing the isolated
vertices of Γ̃X.

From now on, with an abuse of notation, we use the words “vertex” and
“element” meaning the same thing; this should create no confusion.

In the first part of the work we summarize the main results related to
these different graphs present in the literature, while in the second part we
obtain some original results.

In particular we dedicate a chapter to the study of the non-nilpotent
graph. In [AZ10], it was made an attempt to find the best possible bound
to the diameter of the non-nilpotent graph of a finite group. It was obtained
a bound of 6. We improve this bound to 3 and we show that it is the best
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8 Chapter 1. Introduction

possible. Moreover we prove that two vertices outside the Fitting subgroup
have distance at most 2.

After that, in the main part of the work, we try to carry out a generaliza-
tion of these graphs already studied in the literature. In particular we study
the graphs obtained when the class X is an hereditary saturated formation F
of soluble groups containing all the abelian groups. We study mainly the set
of isolated vertices of the preliminary graph, in particular we are interested
in understanding when it is a subgroup. On this line of investigation we
define regular formations, which are formations in which the set of isolated
vertices correspond to the intersection of all the F-maximal subgroups and
we give a characterization of them in function of the soluble strongly critical
groups for F. We prove in fact

Theorem 1.1. Let F be an hereditary saturated formation, with A ⊆ F ⊆ S.
Then F is regular if and only if every finite group G which is soluble and
strongly critical for F has the property that G/ soc(G) is cyclic.

We give examples of regular formations, among which there are the for-
mations of nilpotent groups and soluble groups, which actually motivated
the definition of regularity.

Since there are examples of non-regular formations in which the isolated
vertices form a subgroup, we weaken the definition of regularity to that of
semiregular formations.

Semiregular formations are all the formations in which the set of isolated
vertices form a subgroup for every finite group. Given a formation with
some technical properties, we investigate the structure of groups of minimal
order with respect to the property that the isolated vertices do not form a
subgroup, if it exists.

With this approach we show that some notable formations are semireg-
ular, in fact we prove

Theorem 1.2. The following formations are semiregular:

1. the formation U of the finite supersoluble groups.

2. the formation D = NA of the finite groups with nilpotent derived sub-
group.

3. the formation Nt of the finite groups with Fitting length less or equal
then t, for any t ∈ N.

4. the formation SpN
t of the finite groups G with G/Op(G) ∈ Nt.

Moreover, we exhibit an example of hereditary saturated formation which
is not semiregular: the formation wU of widely supersoluble groups.

We then investigate when the non-F graph is connected; we say that F is
connected if the non-F graph is connected for every finite group. We prove
that the formations of Theorem 1.2 are connected and that



9

Theorem 1.3. Let F be an hereditary saturated formation, with A ⊆ F ⊆ S.
If F is regular, then F is connected.

Finally, we investigate when the non-F graph is planar and we prove:

Theorem 1.4. Let F be a 2-recognizable, hereditary, semiregular formation,
with N ⊆ F, and let G be a finite group. Then ΓF(G) is planar if and only if
either G ∈ F or G ∼= S3.

These last two theorems generalize some of the work made by Abdollahi
and Zarrin in [AZ10] for the non-nilpotent graph.

The results of this chapter were proven using properties of soluble groups,
since in our conditions it is possible to reduce general questions to the uni-
verse of soluble groups, thanks to the work in [GKPS06]; however it is impor-
tant to say that the paper uses the Classification of Finite Simple Groups,
so our proofs rely indirectly on it too.

Finally, the research carried out in this part is restricted to formations of
groups with certain properties. Although the considered formations contain
most of the notable classes, we are not able to give precise statements for a
generic class: this leaves many open questions which could be the object of
further research.
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Chapter 2

Some examples

In this chapter we are going to analyze some examples of the graphs pointed
out in the introduction.

1 The non-commuting graph

The non-commuting graph is one of the first ones which has shown up in
literature. Define Γ̃A(G) = (G,E), where the vertices are the elements of G
and two vertices are joined if the corresponding elements do not commute.
Let us define also:

IA(G) := {g ∈ G : (g, x) /∈ E ∀x ∈ G},

the set of isolated vertices of Γ̃A(G). We have that

IA(G) = {g ∈ G : [g, x] = 1 ∀x ∈ G} = Z(G).

The non-commuting graph is the graph obtained from Γ̃A(G), by removing
the isolated vertices:

ΓA(G) = (G \ IA(G), E).

This graph was studied in several papers, see for instance [AAM06]. We
highlight here some of its main properties. Of course we consider G to be a
non-abelian group, otherwise the graph is trivial. Firstly, we have

Proposition 2.1. ΓA(G) is connected and diam(ΓA(G)) = 2.

Proof. Let x ∈ G, the neighbors of x are the elements of G \ CG(x). If
we consider x, y ∈ G \ Z(G), we have that the set of vertices connected to
both of them is X := G \ (CG(x) ∪ CG(y)). If CG(x) and CG(y) are proper
subgroups, their union can’t be G (groups can’t be union of two proper
subgroups), so X is non-empty and this means that there exists z such that
x ∼ z ∼ y. Hence diam(ΓA(G)) ≤ 2 and the graph is connected. Suppose
now diam(ΓA(G)) = 1: it means that the graph is complete. Let a be a
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12 Chapter 2. Some examples

non-central element. [a, a−1] = 1, so a = a−1 ⇒ a2 = 1, otherwise they
should be connected. Moreover let b be a central element; ab is non-central,
so a2b2 = (ab)2 = 1, hence b2 = 1. Every element of the group has order 2
and it is well known that groups with exponent 2 are abelian, contradiction.
The diameter is exactly 2.

We have also many other graph theoretic properties for ΓA(G), whose
proofs can be found in [AAM06]:

Proposition 2.2. ΓA(G) is Hamiltonian.

Proposition 2.3. ΓA(G) is planar if and only if G is isomorphic to one of
S3, D4 or Q8.

Proposition 2.4. If ΓA(G) is regular, then G is nilpotent of class at most 3
and G = P ×A where A is an abelian group and P is a p-group with ΓA(P )
regular.

We end this section by recalling the question posed by Paul Erdös, which
gave rise to the study of such graph, more for historical reasons than for the
effective use of the result in this work.

Question 2.5. Let G be a (not necessarily finite) non-abelian group whose
non-commuting graph has no infinite clique. Is it true that ΓA(G) has a finite
clique number?

The problem was solved by B. H. Neumann in [Neu76] with the following:

Theorem 2.6. Let G be a (not necessarily finite) non-abelian group, whose
non-commuting graph has no infinite clique. Then |G : Z(G)| is finite and
ω(ΓA(G)) is finite.

2 The non-soluble graph

In this section we analyze another graph which, in this case, is related to the
property of solvability, see [HR13]. We define Γ̃S(G) := (G,E) the graph,
built exactly as above, with just a difference: two vertices are connected if
the subgroup generated by them is not soluble. Let IS(G) be the set of
isolated vertices of Γ̃S(G). The non soluble graph is then

ΓS(G) := (G \ IS(G), E).

In [GKPS06], the set IS(G) is proved to be actually a subgroup: the soluble
radical of G. To study this graph, the notion of solvabilizer was introduced,
which has an analogous in the other graphs, and it is a useful tool. The
solvabilizer of an element x in G is the set

solG(x) := {y ∈ G : 〈x, y〉 is soluble},
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which represents the set of vertices which are not connected to x. We define
also the solvabilizer of a subset S of G as the set of elements of G which
generate a soluble subgroup with every element of S; in other words:

solG(S) :=
⋂
s∈S

solG(s).

With this definition we have

solG(G) = IS(G) = R(G).

Finally, we state a very important result, that we are going to use quite
often:

Theorem 2.7. [GKPS06, Theorem 6.4] Let x, y /∈ IS(G), then there exists
s ∈ G such that x ∼ s ∼ y. This means, in particular, that ΓS(G) is
connected and diam ΓS(G) ≤ 2.

3 The generating graph

In this section we talk about one of the most important graphs associated
to finite groups, which is different from the other ones investigated in this
thesis, but it is widely studied, since it helps to understand the way elements
of a group generate the group itself. Moreover, it offers many tools to prove
theorems about the graphs of our interest.

Let us define Ṽ (G) := (G,E) to be the graph on the elements of G, with
g, h ∈ G connected if 〈g, h〉 = G; the generating graph of G is the graph
V (G) := (G \ I, E), where I is the set of isolated vertices of Ṽ (G).

Firstly, we give a proposition about the set of isolated vertices I.
Proposition 2.8. The Frattini subgroup is always a subset of I, which is
not always a subgroup.

Proof. The first part of the statement follows from the fact that if H ≤ G
and G = φ(G)H, then H = G. The second part follows considering the
group S3 × S3, in which |I| = 15, and since the order of the group is 36, it
can’t be a subgroup.

The generating graph is quite a mysterious object for a generic group,
but in some cases we have more information, for example when the group is
a finite non-abelian simple group, the generating graph is connected, with
diameter equal to 2. Moreover we have the following

Theorem 2.9. [CL13, Luc17] Let G be a finite soluble group, then

• V (G) is connected;

• diam(V (G)) ≤ 3.

The problem of whether the graph is connected or not for a generic finite
group is still open.
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Chapter 3

The non-nilpotent graph

In this chapter we are going to analyze the non-nilpotent graph ΓN(G) of
a group G. One of the main reference about this graph is [AZ10]. We will
now recall some of the main known facts. First of all, we consider the set of
isolated vertices: it turns out that IN(G) = Z∞(G), the hypercenter of G.
The hypercenter of a finite group G is defined to be the greatest element of
the upper central series. We define also

nilG(x) := {y ∈ G : 〈x, y〉 ∈ N}

which is called the nilpotentizer of x and

nilG(S) :=
⋂
s∈S

nilG(s),

where we omit the subscript G when there is no possibility of confusion.
With this notation we have nil(G) = Z∞(G). In their paper, Abdollahi and
Zarrin proved

Proposition 3.1. ΓN(G) is connected with diameter at most 6.

They also proved that in many cases, for example when the nilpotentizers
are subgroups for every element of the group, the diameter is equal to 2. This
led them to conjecture that diam(ΓN(G)) = 2 for every finite group G, but
this is false. Andrew Davis, Julie Kent and Emily McGovern, three students
of the Missouri State University, investigated the non-nilpotent graph of the
semidirect product 〈a〉 o S4, where |a| is odd and aσ = asgn(σ) for every
σ ∈ S4. Let g = aiσ ∈ G. If 〈a, g〉 is not nilpotent, then σ 6∈ A4, while
if 〈(1, 2)(3, 4), g〉 is not nilpotent then σ is a 3-cycle. This implies that
the vertices a and (1, 2)(3, 4) do not have a common neighbor in the graph
ΓN(G), so distΓN(G)(a, (1, 2)(3, 4)) ≥ 3. However this is the worst possible
situation. Indeed our main result is the following.

Theorem 3.2. If G is a finite group, then diam(ΓN(G)) ≤ 3.
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16 Chapter 3. The non-nilpotent graph

Our second result says that if distΓN(G)(x, y) = 3, then at least one of
the two elements x and y belong to the Fitting subgroup F(G) of G.

Theorem 3.3. If G is a finite group and x, y /∈ F(G), then distΓN(G)(x, y) ≤
2.

1 Proofs of Theorems 3.2 and 3.3

Throughout this section, we will say that g is a p-element, where p is a prime,
meaning that the order of g is a power of p.

Lemma 3.4. Let G be a finite group and let g ∈ G. If H is a subgroup of G
and g /∈ H, then there exist a prime p and a positive integer n such that gn

is a p-element and gn /∈ H.

Proof. Let |g| = pn1
1 · · · pnr

r , with p1, . . . , pr distinct primes. For 1 ≤ i ≤ r, set
mi =

∏
j 6=i p

nj

j . Since 〈gm1 , . . . , gmr〉 = 〈g〉 6≤ H, there exists i ∈ {1, . . . , r}
such that the pi-elements gmi

i does not belong to H.

Lemma 3.5. Let p be a prime and x a p-element of a finite group G. If
x /∈ Z∞(G), then there exist a prime q 6= p and a q-element y such that
〈x, y〉 is not nilpotent.

Proof. Suppose, by contradiction, that 〈x, y〉 is nilpotent for every q-element
y and every prime q 6= p. Let K := 〈Q | Q ∈ Sylq(G), q 6= p〉. Then K is
a normal subgroup of G and K ≤ CG(x). Moreover |G/K| is a p-group, so
if P is a Sylow subgroup of G containing x, then G = KP. Let g be an
arbitrary element of G and write g = ab, with a ∈ K and b ∈ P. Then
〈x, xg〉 = 〈x, xab〉 = 〈x, xb〉 ≤ P. By a theorem of R. Baer (see for example
[Isa08, 2.12]) x ∈ Op(G). In particular, if z is a p-element of G, then 〈x, z〉 is
a p-group. Now let g be an arbitrary element of G and write g = αβ, where
α is a p-element, β a p′-element and [α, β] = 1. We have 〈x, g〉 = 〈x, αβ〉 =
〈x, α, β〉 = 〈x, α〉〈β〉 ∼= 〈x, α〉×〈β〉, since β ∈ K ≤ CG(x). But, as we noticed
before, 〈x, α〉 is a p-group, and so 〈x, g〉 ∼= 〈x, α〉 × 〈β〉 is nilpotent. This
implies x ∈ nil(G) = Z∞(G), against our assumption.

Proof of Theorem 3.2. Let x1, x2 be two distinct elements of G \Z∞(G). By
Lemma 3.4, there exist two positive integers m1, m2 and two primes p1, p2

such that xm1
1 is a p1-element, xm2

2 is a p2-element and xm1
1 , xm2

2 /∈ Z∞(G).
By Lemma 2, there exist two primes q1 6= p1 and q2 6= p2, a q1-element z1

and a q2-element z2 such that 〈xm1
1 , z1〉 and 〈xm2

2 , z2〉 are not nilpotent. If
〈z1, z2〉 is not nilpotent, then (x1, z1, z2, x2) is a path in the graph ΓN(G)
joining x1 and x2 and distΓN(G)(x1, x2) ≤ 3. So we may assume that 〈z1, z2〉
is nilpotent. If q1 6= q2, then 〈z1, z2〉 = 〈z1z2〉. This implies that 〈x1, z1z2〉 =
〈x1, z1, z2〉 and 〈x2, z1z2〉 = 〈x2, z1, z2〉 are not nilpotent, and (x1, z1z2, x2)
is a path in ΓN(G). If q1 = q2, then q1 6= p2. If 〈x1, z2〉 is not nilpotent, then
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(x1, z2, x2) is a path in ΓN(G). Otherwise 〈xm1
1 , z2〉 ≤ 〈x1, z2〉 is nilpotent,

hence 〈xm1
1 , z2〉 = 〈xm1

1 z2〉 and (x1, z1, x
m1
1 z2, x2) is a path in ΓN(G).

Lemma 3.6. Let G be a finite group. If x, y /∈ F(G) and gcd(|x|, |y|) = 1,
then distΓN(G)(x, y) ≤ 2.

Proof. Assume, by contradiction, distΓN(G)(x, y) > 2. Since x, y /∈ F by
[Isa08, 2.12] there exist g and h in G such that 〈x, xg〉 and 〈y, yh〉 (and
consequently also 〈x, xg−1〉 and 〈y, yh−1〉 are not nilpotent). If 〈xg, yh−1〉 were
nilpotent, then [xg, y−h] = 1 and (x, xgyh

−1
, y) would a path in ΓN(G). So

〈xg, yh−1〉 (and consequently also 〈x, yh−1g−1〉 and 〈xgh, y〉) is not nilpotent.
We prove, by induction on n, that 〈x(gh)n , y〉 is not nilpotent, for every n ∈ N.
Indeed, assuming that 〈x(gh)n , y〉 is not nilpotent, then 〈x(gh)n , y(gh)−1〉 is also
non nilpotent, otherwise [x(gh)n , y(gh)−1

] = 1 and (x, x(gh)ny(gh)−1
, y) would

be a path in ΓN(G). But then, taking n = |gh|, we get that 〈x, y〉 is not
nilpotent and distΓN(G)(x, y) = 1, against our assumption.

Lemma 3.7. Let G be a finite soluble group and let p be a prime. If g1, g2 ∈
G\nil(G) are p-elements such that distΓN(G)(g1, g2) > 2, then g1, g2 ∈ Op(G).

Proof. Let C1 := CG(g1) and C2 := CG(g2). By Lemma 3.5, there exist a
prime q 6= p and a q-element x such that 〈g1, x〉 is not nilpotent. Let K
be a p-complement in G containing x. It must be K ⊆ C1 ∪ C2 (indeed if
y ∈ K \ (C1 ∪C2), then (g1, y, g2) would be a path in ΓN(G)). Hence either
K ≤ C1 or K ≤ C2. However x ∈ K \ C1, so we must exclude the first
possibility and conclude K ≤ C2. In particular |G : C2| is a p-power and
therefore G = C2P, being P a Sylow p-subgroup of G containing g2. As in
the proof of Lemma 3.5, applying Baer’s theorem we conclude g2 ∈ Op(G).
With the same argument we can prove g1 ∈ Op(G).

Proof of Theorem 3.3. By Lemma 3.4, we may assume that there exists two
primes p and q such that x is a p-element and y is a q-element. By Lemma
3.6, we may assume p = q. If x, y /∈ R(G) (where R(G) denotes the soluble
radical of G), then, by [GKPS06, Theorem 6.4], there exists z ∈ G such
that 〈x, z〉 and 〈y, z〉 are not soluble. Hence (x, z, y) is a path in ΓN(G)
and distΓN(G)(x, y) ≤ 2. So it is not restrictive to assume x ∈ R(G). In
particular H = R(G)〈y〉 is a soluble group containing x, so by Lemma 3.7,
either distΓN(G)(x, y) ≤ distΓN(H)(x, y) ≤ 2 or x, y ∈ F(H). However in the
second case, we would have x ∈ F(H) ∩ R(G) ≤ F(R(G)) ≤ F(G).
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Chapter 4

A generalization: non-F graphs

1 Summary of the results

In this chapter we are going to build the general framework pointed out in
the introduction.

Consider F to be a class of groups. A group (resp. subgroup) is called
an F-group (resp. F-subgroup) if it belongs to F. We say that F is hereditary
whenever if G ∈ F and H ≤ G, then H ∈ F. If F is hereditary, it is
interesting to consider the intersection φF(G) of all maximal F-subgroups
of G, that is, the subgroups which are maximal with respect to being an
F-group. It turns out that if F ∈ {A,N,S}, then φF(G) = IF(G) for any
finite group G. Indeed IA(G) = Z(G), IN(G) = Z∞(G) [AZ10, Proposition
2.1], IS(G) = R(G) [GKPS06, Theorem 1.1]. This motivates the following
definition: we say that F is regular if F is hereditary and φF(G) = IF(G) for
every finite group G.

The first question that we address in this chapter is how to characterize
the hereditary saturated formations that are regular. Recall that a formation
F is a class of groups which is closed under taking homomorphic images and
subdirect products. The second condition ensures the existence of the F-
residual GF of each group G, that is, the smallest normal subgroup of G
whose factor group is in F. A formation F is said to be saturated if G ∈ F
whenever the Frattini factor G/Φ(G) is in F. A group G is critical for F (or
F-critical) if G /∈ F and every proper subgroup of G lies in F, while a group
G is strongly critical for F if G /∈ F and every proper subgroup and proper
quotient of G lies in F.

Theorem 4.1. Let F be an hereditary saturated formation, with A ⊆ F ⊆ S.
Then F is regular if and only if every finite group G which is soluble and
strongly critical for F has the property that G/ soc(G) is cyclic.

19
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It follows from Theorem 4.1 that a formation is not in general regular.
For example, if U is the formation of the finite supersoluble groups, then there
exists a strongly critical group G for U such that soc(G) is an elementary
abelian group of order 25 and G/ soc(G) is isomorphic to the quaternion
group Q8. It is an interesting question to see if and when IF(G) is a subgroup
of G.

Consider the class F of finite groups in which normality is transitive. The
group G =: 〈a, b, c | a5 = 1, b5 = 1, c4 = 1, [a, b] = 1, ac = a2, bc = b3〉 is
critical for F (see [Rob69]). Then 〈a, g〉 and 〈b, g〉 are proper subgroups for
every g ∈ G, so they belong to the class, while 〈ab, y〉 = G does not belong
to the class. Thus a, b ∈ IF(G) but ab /∈ IF(G). So in general IF(G) is not
a subgroup of G.

We say that a formation F is semiregular if IF(G) ≤ G for any finite
group G. In Section 4 we will investigate the structure of a group G which is
minimal with respect to the property that IF(G) is not a subgroup. To state
our result we need to recall another definition: we say that F is 2-recognizable
whenever a group G belongs to F if all 2-generated subgroups of G belong
to F.

Theorem 4.2. Let F be an hereditary saturated formation, with A ⊆ F ⊆ S.
Assume that F is 2-recognizable and not semiregular and let G be a finite
group of minimal order with respect to the property that IF(G) is not a sub-
group of G. Then G is a primitive monolithic soluble group. Moreover, if
N = soc(G) and S is a complement of N in G, then the following hold.

1. N = soc(G) = GF.

2. N〈s〉 ∈ F for every s ∈ S; in particular S is not cyclic.

3. if n ∈ N and s ∈ S, then ns ∈ IF(G) if and only if N〈s, t〉 ∈ F for all
t ∈ S; in particular ns ∈ IF(G) if and only if s ∈ IF(G).

4. Suppose that F is locally defined by the formation function f and, for
every prime p, let f(p) be the formation of the finite groups X with the
property that X/Op(X) ∈ f(p). If K ≤ S, we have that NK ∈ F if
and only if K ∈ f(p), in particular IF(G) = NI

f(p)
(S), where p is the

unique prime dividing |N |.

As an application of the previous theorem we will prove.

Theorem 4.3. The following formations are semiregular:

1. the formation U of the finite supersoluble groups.

2. the formation D = NA of the finite groups with nilpotent derived sub-
group.
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3. the formation Nt of the finite groups with Fitting length less or equal
then t, for any t ∈ N.

4. the formation SpN
t of the finite groups G with G/Op(G) ∈ Nt.

Moreover, we show that the hereditary saturated formation of widely
supersoluble groups is not semiregular.

We will say that a formation F is connected if the graph ΓF(G) is con-
nected for any finite group G. In Section 7 we consider the case when F is a
2-recognizable hereditary saturated semiregular formation with A ⊆ F ⊆ S.
In particular we investigate the structure of a group G of minimal order with
the property that ΓF(G) is not connected (when F is not connected) and we
use this information to prove the following result.

Theorem 4.4. Let F be an hereditary saturated formation, with A ⊆ F ⊆ S.
If F is regular, then F is connected.

A corollary of this result is [AZ10, Theorem 5.1], stating that the non-
nilpotent graph ΓN(G) is connected for any finite group G. Moreover our
approach allows to prove:

Theorem 4.5. If F ∈ {U,D,SpN
t,Nt}, then F is connected.

Recall that a graph is said to be embeddable in the plane, or planar, if
it can be drawn in the plane so that its edges intersect only at their ends.
Abdollahi and Zarrin proved that if G is a finite non-nilpotent group, then
the non-nilpotent graph ΓN(G) is planar if and only if G ∼= S3 (see [AZ10,
Theorem 6.1]). We generalize this result proving:

Theorem 4.6. Let F be a 2-recognizable, hereditary, semiregular formation,
with N ⊆ F, and let G be a finite group. Then ΓF(G) is planar if and only if
either G ∈ F or G ∼= S3.

2 Some preliminary results

This section contains some auxiliary results, that will be needed in our proofs.

Definition 4.7. Let G be a finite group. We denote by V (G) the subset of
G consisting of the elements x with the property that G = 〈x, y〉 for some y.

Proposition 4.8. Let G be a primitive monolithic soluble group. Let N =
soc(G) and H a core-free maximal subgroup of G. Given 1 6= h ∈ H and
n ∈ N , hn ∈ V (G) if and only if h ∈ V (H).

Proof. Clearly if hn ∈ V (G), then h ∈ V (H). Conversely assume that h ∈
V (H) and let n ∈ N. There exists k ∈ H such that 〈h, k〉 = H. For any
m ∈ N, let Hm := 〈hn, km〉. Since HmN = 〈h, k〉N = G, either Hm = G or
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Hm is a complement of N in G. In particular, if we assume, by contradiction,
hn /∈ V (G), then Hm is a complement of N in G for any m ∈ G, and
consequently Hm = Hgm for some gm ∈ G. If Hm1 = Hm2 then m−1

1 m2 =
(km1)−1(km2) ∈ Hm1 ∩ N = 1 so m2 = m1. Since NG(H) = H, H has
precisely |G : H| = |N | conjugates in G and therefore {Hm | m ∈ N}
is the set of all the conjugates in G. This implies 1 6= hn ∈

⋂
g∈GH

g =
CoreG(H) = 1, a contradiction.

Lemma 4.9. Let F be a saturated formation with F ⊆ S and let G be a
finite group. Suppose G /∈ F but every proper quotient is in F. Then either
R(G) = 1 or G is a primitive monolithic soluble group and soc(G) = GF.

Proof. If R(G) 6= 1, we have G/R(G) ∈ F, hence G/R(G) is soluble, which
implies that G is soluble. If G contains two different minimal normal sub-
groups, N1 and N2, then G = G/(N1 ∩ N2) ≤ G/N1 × G/N2 ∈ F, against
our assumption. So soc(G) is the unique minimal normal subgroup of G.
Moreover G/ soc(G) ∈ F, hence soc(G) = GF. Finally, since F is a saturated
formation and G /∈ F, it must be φ(G) = 1, so G is a primitive monolithic
soluble group.

The following is immediate.

Lemma 4.10. Let g, h ∈ G and N � G.

(a) If gN and hN are adjacent vertices of ΓF(G/N), then g and h are
adjacent vertices of ΓF(G).

(b) If g ∈ IF(G), then gN ∈ IF(G/N).

(c) IF(G)σ = IF(G) for every σ ∈ Aut(G).

Proposition 4.11. [Ski11, Theorem A] Let F be a saturated formation. Let
H ≤ G and N � G. Then

(a) If H ∈ F, then HφF(G) ∈ F;

(b) If N � φF(G), then φF(G)/N = φF(G/N).

3 Proof of Theorem 4.1

Let F be an hereditary saturated formation, with A ⊆ F ⊆ S.

First we claim that φF(G) ⊆ IF(G). Since F contains all the cyclic groups,
by Proposition 4.11 (a), 〈x〉φF(G) ∈ F for any x ∈ G. The conclusion follows
from the fact that F is hereditary.
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Suppose that F is regular and let G be a soluble strongly critical group for
F. By Lemma 4.9, G is a primitive monolithic soluble group. Moreover, since
G is critical for F, all the maximal subgroups of G are in F, and therefore
IF(G) = φF(G) = φ(G) = 1. Let N = soc(G) and S a complement of N in
G. Fix 1 6= n ∈ N. Since n /∈ IF(G), 〈n, g〉 /∈ F for some g ∈ G. Since G is
F-critical, it must be 〈n, g〉 = G and therefore G/N is cyclic.

Conversely, suppose that F is not regular and every soluble strongly crit-
ical group G for F is such that G/ soc(G) is cyclic. Let G be a small-
est finite group such that φF(G) ⊂ IF(G). Of course G /∈ F, otherwise
G = φF(G) = IF(G). Let x ∈ IF(G) \ φF(G) and let H be an F-maximal
subgroup of G which does not contain x.

Step 1. G = 〈x,H〉.

Proof. Suppose, by contradiction, 〈x,H〉 < G. Then x ∈ IF(〈x,H〉) =
φF(〈x,H〉), hence, by Proposition 4.11 (a), 〈x,H〉 = φF(〈x,H〉)H ∈ F,
against the fact that H is an F-maximal subgroup of G.

Step 2. If 1 6= M � G, then G/M ∈ F.

Proof. By Lemma 4.10 and the minimality ofG, xM ∈ IF(G/M) = φF(G/M),
hence G/M = 〈xM,HM/M〉 = φF(G/M)HM/M ∈ F, since HM/M ∼=
H/(M ∩H) ∈ F.

Step 3. G is a primitive monolithic soluble group and soc(G) = GF.

Proof. From Step 2 we are in the hypotheses of Lemma 4.9. If R(G) = 1, by
[GKPS06, Theorem 6.4], for every 1 6= g1 ∈ G there exist g2 ∈ G such that
〈g1, g2〉 is not soluble, and then 〈g1, g2〉 /∈ F, since F contains only soluble
groups. So, IF(G) = 1, hence φF(G) = 1, which means IF(G) = φF(G),
against the assumptions on G.

Let N = soc(G), S a complement of N in G and write x = n̄s̄ with
n̄ ∈ N, s̄ ∈ S.

Step 4. There exists 1 6= n∗ ∈ N ∩ IF(G).

Proof. We may assume s̄ 6= 1 (otherwise x = n̄ ∈ N ∩ IF(G)) and s̄ /∈ V (S)
(otherwise, by Proposition 4.8, 〈x, g〉 = G /∈ F for some g ∈ G and x =
n̄s̄ /∈ IF(G)). Since CG(N) = N, there exists m ∈ N such that xm 6= x. We
claim that n∗ = [m,x−1] ∈ N ∩ IF(G). Indeed let g ∈ G. Since s̄ 6∈ V (S),
K := 〈x, xm, g〉 = 〈x, n∗x, g〉 = 〈n̄s̄, n∗n̄s̄, g〉 ≤ N 〈s̄, g〉 < G. In particular,
again by the minimality of G, x, xm ∈ IF(K) = φF(K), henceK = φF(K) 〈g〉
and, since 〈g〉 ∈ F, K ∈ F. Since 〈n∗, g〉 ≤ K, we conclude 〈n∗, g〉 ∈ F.

Step 5. S is not cyclic.
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Proof. Suppose, by contradiction, S = 〈s〉 . Since N is an irreducible S-
module and n∗ 6= 1, we have 〈n∗, s〉 = G. However n∗ ∈ IF(G), so this would
imply G ∈ F.

Step 6. N ⊆ IF(G).

Proof. Suppose, by contradiction, that there exist m ∈ N and g ∈ G such
that 〈g,m〉 6∈ F. This implies K := N 〈g〉 /∈ F. By the previous step, K < G.
By Lemma 4.10, (n∗)s ∈ IF(G) for any s ∈ S. So in particular X = {(n∗)s |
s ∈ S} ⊆ IF(K). However, by the minimality of G, IF(K) = φF(K) is a
subgroup of G, so 〈X〉 = N ≤ φF(K) and consequently K = φF(K)〈g〉 ∈
F.

Step 7. G is a strongly critical group for F.

Proof. By Step 2, we just need to prove that every maximal subgroup of G
is in F. Notice that S ∼= G/N ∈ F, and so does every conjugate of S. The
other maximal subgroups of G are of the form K := NM , with M maximal
in S. In particular, by the minimality of G, IF(K) = φF(K), and, by the
previous step, N ≤ φF(K). Hence K = φF(K)M ∈ F, since M ∈ F.

Finally, G is a soluble strongly critical group for F, so G/N ∼= S is cyclic,
but we excluded this possibility in Step 5. We have a contradiction, so F
must be regular.

4 Proof of Theorem 4.2

To prove the theorem we need the following lemma.

Lemma 4.12. Suppose that F is a 2-recognizable formation. If IF(G) is a
subgroup of G and G = IF(G)〈g〉 for some g ∈ G, then G ∈ F.

Proof. Let x be an arbitrary element of G. We have x = igα for some
i ∈ IF(G) and α ∈ N. Moreover 〈g, igα〉 = 〈g, i〉 ∈ F, since i ∈ IF(G). Hence
g ∈ IF(G), so G = IF(G) and, because F is 2-recognizable, G ∈ F.

Proof of the Theorem 4.2. Let x, y ∈ IF(G) such that xy /∈ IF(G). There
exists g ∈ G such that 〈xy, g〉 /∈ F. Notice that the minimality property of G
implies G = 〈x, y, g〉 . Let M be a non-trivial normal subgroup of G and set
I/M := IF(G/M) � G/M . By Lemma 4.10, xM, yM ∈ IF(G/M). Since
G = 〈x, y, g〉, we have 〈gM〉 I/M = G/M . By Lemma 4.12, G/M ∈ F. So
we are in the hypotheses of Lemma 4.9. If R(G) = 1, then, as in the proof of
Theorem 4.1, IF(G) = 1, in contradiction with the assumption that IF(G)
is not a subgroup of G. So G is a primitive monolithic soluble group and
N = soc(G) = GF.

We will show now that there is an element 1 6= n∗ ∈ N ∩ IF(G). We
write x in the form x = n̄s̄, with n̄ ∈ N and s̄ ∈ S. If s̄ = 1, then



5. Proof of Theorem 4.3 25

x ∈ N ∩ IF(G) and we are done (notice that xy 6∈ IF(G) implies x 6= 1).
Suppose s̄ 6= 1. Since G /∈ F, x /∈ V (G), hence s̄ /∈ V (S) by Proposition 4.8.
Since CN (x) 6= N, there exist m ∈ N such that xm 6= x.We claim that n∗ :=
[m,x−1] ∈ N ∩ IF(G). Indeed let g ∈ G. Since s̄ 6∈ V (S), K := 〈x, xm, g〉 =
〈x, n∗x, g〉 = 〈n̄s̄, n∗n̄s̄, g〉 ≤ N 〈s̄, g〉 < G. In particular x, xm ∈ IF(K) and
K = IF(K) 〈g〉 and therefore K ∈ F by Lemma 4.12.

We prove now that N ⊆ IF(G). As in Step 6 of the proof of Theorem
4.1, assume by contradiction that 〈g,m〉 /∈ F, for some m ∈ N and g ∈ G.
Setting K := N 〈g〉 , it follows, with the same argument, that N ≤ IF(K)
and consequently K = IF(K) 〈g〉 ∈ F by Lemma 4.12, a contradiction.

Let s be an arbitrary element of S and let H := N〈s〉 . Since N ⊆
IF(G) ∩H ⊆ IF(H), we deduce that H ∈ F from Lemma 4.12. This proves
(2).

Let now n ∈ N and s ∈ S. If ns ∈ IF(G), then ns /∈ V (G) and
therefore s /∈ V (S) by Proposition 4.8. Let t be an arbitrary element of S
and set H := N〈s, t〉 < G. Since H < G, by the minimality of G, IF(H) is a
subgroup ofG, and thereforeN〈s〉 ≤ IF(H), and consequentlyH = IF(H)〈t〉
and H ∈ F by Lemma 4.12. If, on the contrary, ns /∈ IF(G), then there exist
n∗ ∈ N and s∗ ∈ S such that 〈n∗s∗, ns〉 /∈ F, hence N〈s, s∗〉 /∈ F. This
proves (3).

Finally, we prove (4). Let K ≤ S. Suppose H := NK ∈ F. Let U/V
be a p-chief factor of H with U ≤ N . Since H ∈ F, we have AutH(U/V ) =
H/CH(U/V ) ∈ f(p); moreover, since N is abelian, N ≤ CH(U/V ), so
CH(U/V ) = N CK(U/V ) and hence AutK(U/V ) ∼= AutH(U/V ) ∈ f(p).
Let 1 = N0 � N1 � · · · � Nt = N with Ni/Ni−1 a chief factor of H
for every i. Since N is a p-group, AutK(Ni/Ni−1) ∈ f(p) for every i, so
K/T ∈ f(p) with T :=

⋂t
i=1 CK(Ni/Ni−1). Since CT (N) ≤ CK(N) = 1,

T is a p-group, hence Kf(p) ≤ T ≤ Op(K) and K ∈ f(p). Conversely,
suppose K ∈ f(p). Let 1 = N0 � · · · � Nt = N = NK0 � · · · � NKs =
NK = H be a chief series of H and denote by F(H) the Fitting subgroup
of H. If 1 ≤ i ≤ t, then AutH(Ni/Ni−1) is an epimorphic image of H/F(H),
since F(H) ≤ CH(Ni/Ni−1). On the other hand, F(H) = N Op(K), hence
H/F(H) ∼= K/Op(K) ∈ f(p), and so AutH(Ni/Ni−1) ∈ f(p). Consider
now AutH(NKj/NKj−1) for 1 ≤ j ≤ a and let q be the prime dividing
|NKj/NKj−1|. Then we have H/CH(NKj/NKj−1) ∼= K/CK(Kj/Kj−1) =
AutK(Kj/Kj−1) ∈ f(q), since NKj/NKj−1

∼= Kj/Kj−1 is a chief factor of
K and K ∈ F. So H satisfies all the local conditions, and then it is in F.

5 Proof of Theorem 4.3

Proposition 4.13. The formation U of finite supersoluble groups is semireg-
ular.

Proof. The formation U is 2-recognizable since every U-critical group is 2-
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generated (see for instance [BH09, Example 1]). Assume by contradiction
that U is not semiregular and let G be a group of minimal order with respect
to the property that IU(G) is not a subgroup. We can apply Theorem 4.2.
Let N = soc(G): we have |N | = pk for a prime p and some k. Let q 6= p
be another prime divisor of the order of a complement S of N in G and
choose s ∈ S with |s| = q. By Theorem 4.2, N〈s〉 ∈ U. Applying Maschke’s
Theorem, N can be decomposed into a direct sum of irreducible submodules
and, since N〈s〉 is supersoluble, these submodules must have order p. So
s acts faithfully on a cyclic group of order p, hence q divides p − 1 and in
particular q < p. If p | |S|, then p would be the greatest prime divisor of
|S|. Since S ∈ U, the Sylow p-subgroup of S is normal in S. However, since
S acts faithfully and irreducibly on the finite p-group N , Op(S) = 1. This
implies gcd(|N |, |S|) = 1 and since N 〈s〉 ∈ U for every s ∈ S, the exponent
of S divides p− 1. The local definition f(p) of U is the formation of abelian
group with exponent dividing p − 1, therefore, since p does not divide |S|,
NK ∈ U if and only if K is abelian, hence IU(G) = N Z(S) is a subgroup of
G, so we reached a contradiction.

Proposition 4.14. The formation D of the finite groups with nilpotent de-
rived subgroup is semiregular.

Proof. The D-critical groups are 2-generated (see for instance [BH09, Exam-
ple 2]), so D is 2-recognizable. Suppose by contradiction it is not semiregular
and let G be a minimal example of group such that ID(G) is not a subgroup.
We can apply Theorem 4.2. Let N = soc(G) and S a complement of N . We
will prove that if H ≤ S, then NH ∈ D if and only if H is abelian. Since
D has local screen f with f(q) the formation of the abelian groups for ev-
ery prime q, if H is abelian, then NH ∈ D. On the other hand, suppose
NH ∈ D. Let 1 = N0 � · · · � Nl = N be a composition series of N as H-
module. Let Vi := Ni/Ni−1 and Ci := CH(Vi). For every 1 ≤ i ≤ l, we have
that H/Ci ∼= AutNH(Vi) is abelian, since Vi is a chief factor of a group in D.
Then we have that H/T is abelian, with T :=

⋂l
i=1Ci. Therefore H ′ ≤ T .

Since CT (N) ≤ CH(N) = 1, T is a p-group, but |S′| is not divisible by p (oth-
erwise, since S′ is nilpotent, we would have Op(S) 6= 1), so H ′ ≤ T ∩ S′ = 1
and H is abelian. Hence ID(G) = N Z(S), a contradiction.

Let Nt the formations of finite groups with Fitting length less or equal
then t. It is a 2-recognizable, saturated formation [BH09, Example 3]. As
an immediate application of Theorem 4.2, we prove its semiregularity by
proving that the formation f(p) = SpN

t−1 is semiregular for every prime p.
We will need two preliminary lemmas.

Lemma 4.15. SpN is regular for every prime p.

Proof. Let G = N o S be a strongly-critical group for SpN. The socle N
of G is a q-group. If q = p, then, since S ∼= G/N ∈ SpN and Op(S) = 1,
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if follows S ∈ N and G ∈ SpN, so it must be q 6= p. If K < S, then
NK ∈ SpN. Since CS(N) = 1, we deduce Op(NK) = 1, hence NK ∈ N,
which implies that NK is a q-group (otherwise CK(N) 6= 1). We have then
that all proper subgroups of S are q-groups, but S itself is not a q-group, so
S must be cyclic of order a prime r 6= q. We deduce from Theorem 4.1 that
SpN is regular.

Lemma 4.16. SpN
t is a 2-recognizable saturated formation for every t and

every prime p.

Proof. The formation SpN
t is saturated (see [DH11, IV, 3.13 and 4.8]).

We prove by induction on t that SpN
t is a 2-recognizable. We have seen

in Lemma 4.15 that SpN is 2-recognizable for every prime p. Let t 6= 1
and let G be a group of minimal order with respect to the property that
every 2-generated subgroup of G is in SpN

t but G is not. Clearly G is
strongly critical for SpN

t, so, by Lemma 4.9, G = NoS, where N = soc(G)
is an elementary abelian group of prime power order and S ∈ SpN

t. If
N is a p-group, then G ∈ SpN

t, hence N is a q-group with q 6= p. If
K < S, then NK ∈ SpN

t. Since CK(N) = 1, it must be Op(NK) = 1
so NK ∈ Nt. Moreover the Fitting subgroup F(NK) of NK coincides
with Oq(NK) = N Oq(K) and therefore K ∈ SqN

t−1, so S is critical for
SqN

t−1. Since, by induction, SqN
t−1 is 2-recognizable, the group S is 2-

generated. By Proposition 4.8, G itself is 2-generated and hence G ∈ SpN
t,

a contradiction.

Proposition 4.17. SpN
t is semiregular for every t and every prime p.

Proof. We prove by induction on t that SpN
t is semiregular for every t. By

Lemma 4.15 we may assume t > 1. Suppose by contradiction that SpN
t is

not semiregular and let G be a minimal example of group such that ISpNt(G)
is not a subgroup. We can apply Theorem 4.2. Let N = soc(G) and S a
complement of N . Since S ∈ SpN

t, if N were a p-group, then G would
be in SpN

t, hence N is a q-group with q 6= p. Let now s, t ∈ S and
K := 〈s, t〉: since F(NK) = N Oq(K), we have NK ∈ SpN

t if and only if
NK ∈ Nt, if and only if K ∈ SqN

t−1. Hence by induction we conclude that
ISpNt(G) = NISqNt−1(S) is a subgroup, a contradiction.

Proposition 4.18. Nt is semiregular for every t.

Proof. Since f(p) = SpN
t−1, the statement follows from Theorem 4.2 and

Proposition 4.15.

6 wU is not semiregular

In this section we exhibit an example of an hereditary saturated formation
which is not semiregular.
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Definition 4.19. We say that H ≤ G is P-subnormal in G if either H = G
or there is a chain of subgroups

H = H0 < H1 < · · · < Hn = G

such that |Hr : Hr−1| is a prime number for every r = 1, . . . , n.

Consider the formation wU, which is the class of groups with every Sylow
subgroups P-subnormal in the group. For further reference see [VVT10]. In
the paper it is proven that

Theorem 4.20. wU is an hereditary saturated formation with A ⊆ wU ⊆ S,
with local screen f(p) = {G ∈ S : Syl(G) ⊆ A(p− 1)}, where A(p− 1) is the
formation of the abelian groups with exponent dividing p− 1.

We prove that

Proposition 4.21. wU is 2-recognizable.

Proof. It is immediate from the fact that U is 2-recognizable and that every
wU-critical group is also a U-critical group, see [VVT10, Theorem 2.9].

Theorem 4.22. wU is not semiregular.

Proof. Consider the group S := P o 〈ι〉, where P = 〈x, y〉 is the unique non-
abelian group of order 27 and exponent 3 and ι is an involution such that
xι = x−1 and yι = y−1. The group S acts irreducibly in a unique way on
N := F3

7 and we will show that IwU(G), with G := N oS, is not a subgroup.
If g is an element of order 2, the order of Kh := 〈g, h〉 divides 73322 for every
h ∈ G, so Kh has abelian Sylow subgroups. Therefore, if Kh = NH, with
H ≤ S, we have that Syl(H) ⊆ A(6). Since S ∈ wU, we conclude Kh ∈ wU
with the same reasoning of Theorem 4.2 (4). So, all the elements of order
2 are isolated, then they are in IwU(G), but the subgroup generated by all
these elements is the whole group, which is not in wU and if IwU(G) was a
subgroup, we would have a contradiction since wU is 2-recognizable.

7 Connectedness of ΓF

In this section we study for which formations the graph ΓF(G) is connected
for every finite group G. In the spirit of the previous sections we will build,
under the additional assumption that F is semiregular, a smallest group G
such that ΓF(G) is not connected. First we need a preliminary lemma.

Lemma 4.23. Let G be a 2-generated finite soluble group, with G /∈ F. If
x, y ∈ V (G), then x and y belong to the same connected component of ΓF(G).
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Proof. Consider the graph ∆(G) whose vertices are the elements of V (G)
and in which g1, g2 are adjacent if and only if 〈g1, g2〉 = G. If G is soluble
then ∆(G) is a connected graph (see [BBE06, Theorem 1]). The conclusion
follows from the fact that ∆(G) is a subgraph of ΓF(G).

Theorem 4.24. Let F be a 2-recognizable, hereditary, saturated formation,
with A ⊆ F ⊆ S. Assume that F is semiregular and suppose that there exists
a finite group G such that ΓF(G) is not connected. If G has minimal order
with respect to this property, then G is a primitive monolithic soluble group,
N = soc(G) = GF and N ⊆ IF(G). Moreover, the same statements of
point (2-4) of Theorem 4.2 hold. With the same notation, we have also that
Γ
f(p)

(S) is not connected.

Given a finite group X, we will write x1 ∼ x2 to denote that x1 and x2 are
two adjacent vertices of ΓF(X) and x1 ≈ x2 if x1 and x2 belong to the same
connected component of ΓF(X). We divide the proof in the following steps.

Step 1. G is a primitive monolithic soluble group and N = soc(G) = GF.

Proof. Suppose there exists 1 6= M � G such that G/M /∈ F. Set I/M :=
IF(G/M) � G/M and let a1M,a2M /∈ I/M . We have a1M ≈ a2M by
minimality of G. Since, by Lemma 4.10 (a), g1M ∼ g2M implies g1 ∼ g2,
we can “lift” a path from a1M to a2M in ΓF(G/M) to a path from a1 to
a2 in ΓF(G), so a1 ≈ a2. So there exists a unique connected component of
ΓF(G), say Ω, containing G \ I. If I ∈ F, then every element of I \ IF(G)
must be adjacent to an element of G \ I, so I \ IF(G) ⊆ Ω. But this implies
Ω = G\IF(G), and consequently ΓF(G) is connected. Therefore I /∈ F. Since
F is 2-recognizable, this implies IF(I) < I. Let H be a maximal subgroup of
G containing I. Since ΓF(H) is connected, there exists a unique connected
component of ΓF(G), say ∆, containing H \IF(H). Of course I \IF(I) ⊆ H \
IF(H), so I\IF(I) ⊆ ∆. Recall that G\I ⊆ Ω.Moreover if x ∈ IF(I)\IF(G),
then x ∼ y for some y ∈ G \ I, so IF(I) \ IF(G) ⊆ Ω. If ∆ ∩ Ω 6= ∅, then
∆ = Ω = G \ IF(G) and ΓF(G) is connected. So we may assume ∆∩Ω = ∅,
and consequently (H \IF(H))∩(H \I) = ∅, i.e. H = I∪IF(H). Since H /∈ F
and F is 2-recognizable, IF(H) 6= H, and consequently H = I. If g ∈ G \ I,
then G = 〈g〉 I, so G/M = 〈gM〉 I/M = 〈gM〉 IF(G/M) and, by Lemma
4.12, G/M ∈ F, a contradiction. So all the proper factors of G are in F and
we may use Lemma 4.9. If R(G) = 1, then IF(G) = 1. Let a, b ∈ G, both
different from 1. By [GKPS06, Theorem 6.4] there is a path in ΓS(G) from a
to b. This path is also a path in ΓF(G) since H /∈ S implies H /∈ F for every
group H. So if R(G) = 1, then ΓF(G) is connected. Hence we conclude that
G is a primitive monolithic soluble group and N = soc(G) = GF.

Step 2. N ⊆ IF(G).
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Proof. Since IF(G) � G and N is the unique minimal normal subgroup, if
IF(G) 6= 1, then N ⊆ IF(G). Hence we may assume by contradiction that
IF(G) = 1. Let S be a complement of N in G. Suppose that S = 〈s〉 is cyclic.
Since S is a maximal subgroup of G, 〈g, s〉 = G for any g /∈ 〈s〉 , hence there
exists a connected component Λ of ΓF(G) containing s and G\〈s〉 .Moreover,
every nontrivial element of S, being non-isolated in ΓF(G), is adjacent to
some element ofG\S, so Λ = G\{1} and ΓF(G) is connected, a contradiction.
So we may assume that S is not cyclic. Take now n1, n2 ∈ N \ {1} and for
i ∈ {1, 2} let Mi < S such that ni /∈ IF(NMi) (this is possible since S is
not cyclic). We have Ni := N ∩ IF(NMi) < N , so N1 ∪N2 6= N and there
exists n ∈ N \ (N1 ∪ N2). We have then n1 ≈ n in ΓF(NM1) and n2 ≈ n
in ΓF(NM2), therefore n1 ≈ n2 in ΓF(G). Hence there exists a connected
component Π of ΓF(G) containing N \ {1}. Let now g = ns be an arbitrary
element of G \ N. First assume g /∈ V (G). Since N 6≤ CG(g), there exists
n∗ ∈ N \ {n} with the property that g = (n∗s)x for some x ∈ G. We claim
that g ∈ Π. Since n∗n−1 6= 1, there exists ḡ = n̄s̄ such that ḡ ∼ n∗n−1.
Set H := N〈s, s〉 (it is a proper subgroup of G, since for Proposition 4.8,
s /∈ V (S)). If g /∈ IF(H), then ns ≈ n∗n−1 (since ΓF(H) is connected) and
then g ∈ Π. Assume g ∈ IF(H). We have n∗s 6∈ IF(H), (otherwise, since
IF(H) is a subgroup, (n∗s)(ns)−1 = n∗n−1 ∈ IF(H)), but then n∗s ≈ n∗n−1

in ΓF(H) and consequently n∗s ∈ Π. This implies g = (n∗s)x ∈ Πx = Π
(notice that Πx = Π since N \ {1} ∈ Π ∩ Πx). Suppose now g ∈ V (G).
Choose n1, n2 ∈ N and t ∈ S such that n2 ∼ n1t and set H := N 〈s, t〉 . If
H = G, then t ∈ V (S) and consequently n1t ∈ V (G). Since G is soluble,
it follows from Lemma 4.23 that g ≈ n1t ≈ n2 and g ∈ Π. If H < G, then
ms /∈ IF(H) for some m ∈ N (otherwise N ≤ IF(H)). By Proposition 4.8,
ms ∈ V (G) and, again by Lemma 4.23, g ≈ ms. Moreover, since ΓF(H) is
connected, ms ≈ n2. So g ≈ n2 and therefore g ∈ Π. We reached in this way
the conclusion that ΓF(G) is connected, against the assumptions on G.

Step 3. Statements (2-4) of Theorem 4.2 hold.

Proof. We can use the same argument of the proof of Theorem 4.2.

Step 4. Γ
f(p)

(S) is not connected.

Proof. Suppose that Γ
f(p)

(S) is connected. Let s, t ∈ S such that s ∼ t in
Γ
f(p)

(S). We claim that ns ≈ mt for every n,m ∈ N . Suppose 〈s, t〉 = S.
By Proposition 4.8 ns,mt ∈ V (G) so, by Lemma 4.23, they are in the same
connected component of ΓF(G). Suppose instead that 〈s, t〉 < S. We have
that H := N 〈s, t〉 < G is not in F since 〈s, t〉 /∈ f(p). Therefore ns and mt
are not isolated in H and, for minimality, ΓF(H) is connected, so ns ≈ mt in
ΓF(G) too. Choose now two non-isolated vertices n1s1, n2s2 ∈ ΓF(G) with
n1, n2 ∈ N and s1, s2 ∈ S. Since they are not isolated, s1, s2 /∈ I

f(p)
(S),

hence there is a path s1 = z0 ∼ · · · ∼ zl = s2 in Γ
f(p)

(S) and since zi ∼ zi+1,
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we have, for every m,h ∈ N and every i, that mzi ≈ hzi+1 in ΓF(G) and so
n1s1 ≈ n2s2, a contradiction.

Proof of Theorem 4.4. Suppose G has minimal order with respect to the
property that ΓF(G) is not connected. By Theorem 4.24, G is a prim-
itive monolithic group and N � IF(G) = φF(G). By Proposition 4.11,
φF(G)/N = φF(G/N) = G/N , hence φF(G) = G, a contradiction.

Proof of Theorem 4.5. It follows applying Theorem 4.24, noticing that:

• If F ∈ {U,D}, then Γ
f(p)

(S) = ΓA(S) is connected.

• If F = SpN
t for some prime p and some t, then Γ

f(p)
(S) = ΓSqNt−1(S)

for some other prime q. Therefore we can use induction on t, consid-
ering that SpN is regular for every p and that Theorem 4.4 holds.

• If F = Nt for some t, then Γ
f(p)

(S) = ΓSpNt−1(S) for some prime p
and we can use the point above.

8 Planarity of ΓF

The generating graph ∆̃(G) of a finite group G is the graph whose vertices
are the elements of G and in which two vertices g1 and g2 are adjacent if
and only if 〈g1, g2〉 = G. Moreover ∆(G) is the subgraph of ∆̃(G) induced
by the subset of its non isolated vertices. Notice that if G is a 2-generated
F-critical group, then ΓF(G) ∼= ∆(G).

Proof of Theorem 4.6. One implication is easy: if G ∈ F then ΓF(G) is a null
graph, while if G ∼= S3 and S3 /∈ F, then ΓF(G) ∼= ∆(G) is planar, as it is
noticed in [Luc20]. Conversely, suppose G /∈ F and ΓF(G) is planar. Since F
is 2-recognizable, there exist a, b ∈ G such that 〈a, b〉 /∈ F. Since ∆(〈a, b〉) is a
subgraph of ΓF(G), it must be planar. Finite groups with planar generating
graph have been completely classified in [Luc20]. In particular, if ∆(X) is
planar, then either X is nilpotent or X ∈ {S3, D6}. Since N ⊆ F, 〈a, b〉
is not nilpotent, so either 〈a, b〉 ∼= S3 or 〈a, b〉 ∼= D6. Since D6

∼= S3 × C2

and C2 ∈ F, D6 /∈ F implies S3 /∈ F. Let A be the set of the non-central
involutions of D6 and let B the set of the elements of D6 of order divisible
by 3: then ΓF(D6) contains the complete bipartite graph whose partition has
the parts A and B, so it is not planar. Hence 〈a, b〉 can only be isomorphic
to S3. We show that all the elements of G have order less or equal to 3.
Suppose in fact that there is g ∈ G such that |g| ≥ 4. Since ΓF(G) is
planar, g /∈ IF(G) would imply that it generates a copy of S3 with another
element, but this is impossible since |g| ≥ 4. We have then that g ∈ IF(G)
and therefore |IF(G)| ≥ 4. We claim that this is not possible. Indeed G
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contains X = 〈a, b〉 ∼= S3 /∈ F. Since F is semiregular, I := IF(G) is a normal
subgroup of G. Since I ∩X = 1, for every x, y ∈ I we have

〈ax, by〉
I ∩ 〈ax, by〉

∼=
〈ax, by〉I

I
∼=
〈a, b〉I
I
∼= 〈a, b〉 ∼= S3 /∈ F,

hence 〈ax, by〉 /∈ F. But then ΓF(G) contains the complete bipartite graph
on the two parts aI and bI and then it is not planar. We have so proved
that all the elements of G have order order less or equal than 3. Groups
with this property have been classified in [Neu37]. Since G is not nilpotent
and contains a subgroup isomorphic to S3, G ∼= A o 〈x〉, with A ∼= Ct3
and x acting on A sending every element into its inverse. In particular the
subgraph of ΓF(G) induced by the 3t involutions is complete, so it is planar
only if t = 1, i.e. G ∼= S3.

9 Some open questions

The material contained in this chapter leaves a lot of open questions which
could be object for further research; in this section we propose some of them.

Firstly, given a class of groups F, we give the following definition:

Definition 4.25. The F-izer of the element x in a subset S of a group G is
the set

IF,S(x) := {y ∈ S : 〈x, y〉 ∈ F}.

This is the set of elements in S which generate with x an element in
F or, in other words, the elements in S which are not connected to x in
Γ̃F(G). It is a notion which generalizes the one of centralizer, nilpotentizer
and solvabilizer when F is respectively the class of abelian, nilpotent and
soluble groups. Apart from centralizer which are subgroups, the other ones
(and hence F-izers) are in general only subsets. Both in [AZ10] and in
[HR13] it was posed the problem of studying groups in which nilpotentizers
and solvabilizers are subgroups for every element. This could be extended to
F-izers and it could be interesting to understand which properties F should
have in order to be such that every F-izer is a subgroup for every group, as
in the case of F = A.

Another interesting problem is to study the subgroup of isolated vertices
in semiregular formations. We have that for F ∈ {A,N,S}, IF(G) is a
well known characteristic subgroup of G, but for F ∈ {U,D,Nt}, which are
notable formations, we have no description apart from the graph theoretic
one.

We were not able to find a non-connected formation. It would be inter-
esting to find a semiregular formation which is not connected, if it exists.

For the graphs studied in the literature, we find many problems which
have not been analyzed in this thesis and could be seen in this general frame-
work, such as: estimation of other graph parameters (e.g. clique number,
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genus, connectivity), existence of hamiltonian cycles, estimation on the num-
bers of edges, properties shared by groups with isomorphic non-F graphs and
many others.

These are just examples, but plenty of questions are available to the
interested reader.
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