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Introduction

Class Field Theory is an important branch of Algebraic Number Theory. Its
main purpose is to study and classify the abelian extensions of local and
global �elds through objects de�ned in terms of the ground �eld. It started
to be developed after 1850 and its main pioneers were David Hilbert, Helmut
Hasse, Emil Artin and Claude Chevalley. The theory revolves around the
notion of class �eld and it is strictly related to other important areas of
Number Theory like Iwasawa Theory and the Birch and Swinnerton-Dyer
conjecture. An explicit construction of class �elds of number �elds has not
been fully developed yet and it is the main purpose of the Hilbert's twelfth
problem. Anyway, it has been solved for the particular cases of Q and
imaginary quadratic �elds thanks to the theory of complex multiplication.
The purpose of this thesis is to expose and prove the theorems of local and
global class �eld theory and to use elliptic curves with complex multiplication
to study the case of imaginary quadratic �elds. The thesis is divided in �ve
chapters which are connected according to the diagram at page 5.

In the �rst chapter we introduce the main de�nitions and results on Tate
cohomology of groups, a branch of homological algebra that is crucial in the
proofs of the main theorems of class �eld theory. Then, we de�ne the basic
notions of orders and primes of a number �eld which will be used in the
study of global class �eld theory.

In the second chapter we study class �eld theory of local �elds. It consists
in two main results, the "local Artin reciprocity law" and the "local existence
theorem", which lead to an elegant classi�cation of �nite abelian extensions
of local �elds. The proof of the �rst result is based on Tate cohomology, the
proof of the second one uses the notion of Lubin-Tate formal group laws.

The next step is the exploration of global class �eld theory, i.e. of class
�eld theory for global �elds. We will especially consider the case of number
�elds. There are two possible formulations of the main theorems for this
theory. The �rst one is based on the notion of idele, a group associated
to any number �eld that permits to state the "global reciprocity law", the
"global existence theorem" and the consequent corollaries in an elegant way.
The second one is in terms of ideals. It is a less modern approach but it is
useful for applications on the problem of splitting of primes. In this thesis
we prove the results in terms of ideles and we only state those in terms
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4 CHAPTER 0. INTRODUCTION

of ideals. We also de�ne the Hilbert class �eld of a number �eld, i.e. its
maximal abelian unrami�ed extension, and we study its main properties.
In particular, we prove the principal ideal theorem, which ensures that any
ideal of a number �eld becomes principal in its Hilbert class �eld.

The chapter "Elliptic curves" introduces the basic notions for elliptic
curves de�ned in the projective plane by a Weierstrass equation. We put on
the set of points of any elliptic curve a structure of abelian group, we de�ne
and study isogenies and we state the existence and the uniqueness of the dual
isogeny. Our main purpose is to study elliptic curves de�ned over C by using
complex lattices and, in particular, to classify their endomorphism rings in
order to give the de�nition of elliptic curves with complex multiplication.

Finally, the last chapter exposes the main results of the thesis. We use
the theory of elliptic curves with complex multiplication to study global
class �eld theory for imaginary quadratic �elds. We will use di�erent tools:
modular functions and the Chebotarev Density Theorem. First, we prove
the following central theorem:

Theorem 0.1. If E is a complex elliptic curve with complex multiplication

then the j-invariant j(E) is an algebraic integer.

Then we de�ne the ring class �elds RO of an imaginary quadratic number
�eld, a notion that extends the Hilbert class �eld to the case of non-maximal
orders. The �rst main theorem of complex multiplication characterizes the
ring class �elds in terms of the j-invariant of suitable elliptic curves with
complex multiplication.

Theorem 0.2. If E is a complex elliptic curve with End(E) ∼= O where O
is an order in an imaginary quadratic �eld K, then RO = K(j(E)).

The second main theorem of complex multiplication characterizes ray
class �elds K(m) of an imaginary quadratic �eld K in terms of torsion points
of an elliptic curve E and of a function h : E → C.

Theorem 0.3. Let K be an imaginary quadratic �eld, m a modulus for

K and E a complex elliptic curve with complex multiplication such that

End(E) ∼= OK . Then

K(m) = K(j(E), h(E[m]))

An interesting possibility to continue this work is to study the results
found by Dasgupta and Kakde who gave a solution to the Hilbert's twelfth
problem in more general situations.
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Chapter 1

Preliminaries

1.1 Tate Cohomology of groups

The purpose of this section is to introduce brie�y the main de�nitions and
results in Tate Cohomolgy. This theory will be fundamental for the proofs of
the main theorems of local and global class �eld theory since we will study
them with a cohomological approach.

1.1.1 G-modules

De�nition 1.1. Let G be a group. A G-module is an abelian group (M,+)
endowed with an action of G such that

g(m1 +m2) = gm1 + gm2

for any g ∈ G, m1,m2 ∈M .

We also de�ne

MG := {m ∈M : gm = m ∀ g ∈ G}

IGM := ⟨gm−m : g ∈ G,m ∈M⟩

MG :=M/IGM

A homomorphism of groups ϕ : M1 → M2 between two G-modules is a

homomorphism of G-modules if

ϕ(gm) = gϕ(m)

for any g ∈ G,m ∈M .

For any G-module M over a �nite group G we also introduce a norm
map

NmG :M →M,m 7→
∑
g∈G

gm

7



8 CHAPTER 1. PRELIMINARIES

It is immediate to observe that

NmG(M) ⊂MG

and

IGM ⊂ Ker(NmG)

Another important notion is that of induced G-module.

De�nition 1.2. Let H ≤ G be groups and M an H-module. We de�ne the

G-module

IndGHM := {ϕ : G→M : ϕ(hg) = hϕ(g) ∀ h ∈ H, g ∈ G}

endowed with the operations

(ϕ1 + ϕ2)(x) = ϕ1(x) + ϕ2(x)

(gϕ)(x) = ϕ(xg)

A G-module M is called induced if there exists an abelian group M ′ such
that

M ∼= IndG{1}(M
′)

1.1.2 De�nition of Tate groups

In this subsection we want to de�ne homology and cohomology groups for
a G-module M and, starting from them, to de�ne Tate cohomology groups
of M . We start with a series of de�nitions and results that come from the
homological algebra.

De�nition 1.3. A G-module I is injective if for any pair of G-modules

N ⊂M , any homomorphism from N to I extends to M .

A G-module P is projective if for any pair of G-modules N ⊂ M and any

homomorphism f : P → M/N there exists g : P → M which equals f when

composed with the projection.

An injective resolution (Ii, f i) for a G module M is an exact sequence

0 M I0 I1 · · ·f0 f1

where Ii is an injective G-module for any i.
A projective resolution (P i, gi) for M is an exact sequence

· · · P 1 P 0 M 0
g1 g0

where P i is a projective G-module for any i.
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Proposition 1.1. The category of G-modules has enough injectives, i.e.

every G-module can be embedded into an injective G-module, and enough

projectives, i.e. any G-module is the image of a homomorphism whose do-

main is a projective G-module. Then any G-module admits both an injective

and a projective resolution.

Proof. See [8, Proposition 1.5, pag. 60].

Proposition 1.2. The functor (·)G : G−Mod→ G−Mod is left-exact.

The functor (·)G : G−Mod→ G−Mod is right-exact.

Now, we use the previous de�nitions and propositions to de�ne homology
and cohomology groups. We �x a G-module M and we �nd an injective and
a projective resolution for it:

0 M I0 I1 · · ·f0 f1

· · · P 1 P 0 M 0
g1 g0

The last proposition tells us that we can derive two complexes:

0 (I0)G (I1)G · · ·f−1 f0 f1

· · · (P 1)G (P 0)G 0
g1 g0 g−1

De�nition 1.4. The r-th cohomology group of the G-moduleM is de�ned

as

Hr(G,M) :=
Ker(f r)

Im(f r−1)

The s-th homology group of M is de�ned as

Hs(G,M) :=
Ker(gs−1)

Im(gs)

With the following proposition we want to prove that homology and
cohomology groups are well-de�ned. In particular, they do not depend on
the choice of the injective and projective resolutions. The proposition will be
used also to de�ne homomorphisms through the homology and cohomology
groups.

Proposition 1.3. Let M,N be G-modules, ϕ : M → N a homomorphism

of G-modules and (Ii, f i), (J j , gj) injective resolutions of, respectively, M
and N . Then ϕ induces a morphism of complexes (ϕi) between ((Ii)G, f i)
and ((J j)G, gj) and the induced maps between the cohomology groups do not
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depend on the choice of the ϕi. The situation is described in the following

commutative diagram:

0 (I0)G (I1)G · · ·

0 (J0)G (J1)G · · ·

f−1 f0

ϕ0

f1

ϕ1

f−1 g0 g1

An analogous statement holds for homology groups.

Proof. See [8, Proposition A.8, pag. 93].

It is immediate from the de�nitions that

H0(G,M) =MG

H0(G,M) =MG

Hr(G, I) = 0

Hr(G,P ) = 0

whenever I is injective and P is projective.
Finally, we can give the crucial de�nition of Tate groups.

De�nition 1.5. Let M be a G-module over a �nite group G. Then the r-th

Tate group of M is denoted Hr
T (G,M) and it is de�ned as:

� Hr(G,M) if r > 0;

� MG/NmG(M) if r = 0;

� Ker(NmG)/IGM if r = −1;

� H−r−1(G,M) if r < −1.

Using the Snake lemma it is possible to prove the following.

Proposition 1.4. Let

0 →M ′ →M →M ′′ → 0

be a short exact sequence of G-modules.

Then for suitable boundary maps we have the following long exact sequences:

0 → H0(G,M ′) → · · · → Hr(G,M ′′) → Hr+1(G,M ′) → · · ·

· · ·Hr(G,M
′′) → Hr−1(G,M

′) → · · · → H0(G,M
′′) → 0

· · · → Hr
T (G,M

′) → Hr
T (G,M) → Hr

T (G,M
′′) → Hr+1

T (G,M ′) → · · ·
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For any G-module M we also have the exact sequence

0 → H−1
T (G,M) → H0(G,M) → H0(G,M) → H0

T (G,M) → 0

where the middle map is the norm map.
In order to simplify some proofs and considerations we give another equiva-
lent de�nition of cohomology groups which is more concrete than the previous
one.

De�nition 1.6. Let G be a group, M a G-module and r ≥ 0 an integer. Set

G0 = {1}.
We de�ne the sets of r-cochains as

Cr(G,M) := {ϕ : Gr →M}

and the maps

dr : Cr(G,M) → Cr+1(G,M)

(drϕ)(g1, ..., gr+1) = g1ϕ(g2, ..., gr+1) +
r∑
j=1

(−1)jϕ(g1, ..., gjgj+1, ..., gr+1)

+ (−1)r+1ϕ(g1, ..., gr)

The sequence

C0(G,M) C1(G,M) C2(G,M) · · ·d0 d1 d2

is a complex and so we can de�ne:

� the group of r-cocycles as Zr(G,M) := Ker(dr);

� the group of r-coboundaries as Br(G,M) := Im(dr−1);

� the r-th cohomology group as Hr(G,M) := Zr(G,M)/Br(G,M).

1.1.3 Maps between cohomology groups

In this subsection we want to de�ne some homomorphisms between coho-
mology groups that will be used in the sequel. If G1 and G2 are groups and
M1 and M2 are, respectively, a G1-module and a G2-module, we say that
two homomorphisms ϕ : G2 → G1 and ψ :M1 →M2 are compatible if

ψ(ϕ(g)m) = gψ(m)

for any g ∈ G2 and m ∈ M1. Obviously, any pair of compatible homomor-
phisms induces homorphisms

Hr(G1,M1) → Hr(G2,M2)

Using this technique we de�ne the following maps:
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� If H ≤ G are groups and M is a G-module, the inclusion H ↪→ G
and the identity map on M are compatible and we call the induced
homorphisms as the restriction homomorphisms

Res : Hr(G,M) → Hr(H,M)

� If H⊴G are groups andM is a G-module, the quotient map G→ G/H
and the inclusion MH ↪→ M are compatible and we call the induced
homomorphisms as the in�ation homomorphisms

Inf : Hr(G/H,MH) → Hr(G,M)

Proposition 1.5. Let G be a group, H⊴G, M a G-module and r a positive

integer. Assume that H i(H,M) = 0 for any 0 < i < r. Then the sequence

0 Hr(G/H,MH) Hr(G,M) Hr(H,M)
Inf Res

is exact.

Proof. See [8, Proposition 1.34, pag. 71].

Proposition 1.6. Let G be a �nite group, H ≤ G a p-Sylow of G and M a

G-module. Then the restriction homomorphisms

Hr(G,M) → Hr(H,M)

are injective on the p-primary components of Hr(G,M).

Proof. See [8, Corollary 1.33, pag. 71].

1.1.4 The main results in Tate Cohomology

In this subsection we state some important facts in cohomology of groups
which will be necessary in the sequel.

Proposition 1.7. Let H ≤ G be groups, M an H-module and r ≥ 0 an

integer. Then

Hr(G, IndGHM) ∼= Hr(H,M)

As a consequence, Hr(G,M) = 0 for any positive integer r and any induced

G-module M .

Proof. See [8, Proposition 1.11, pag. 62].

Proposition 1.8. Let G be a �nite group and M an induced G-module.

Then

Hr
T (G,M) = 0

for any integer r.
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Proof. See [8, Proposition 3.1, pag. 78].

Proposition 1.9. Let G be a group, {Mi}i a family of G-modules and r ≥ 0
an integer. Then

Hr(G,
∏
i

Mi) ∼=
∏
i

Hr(G,Mi)

Proof. See [8, Proposition 1.25, pag. 68].

Proposition 1.10. If G is a group and we consider Z as a G-module with

trivial action we have an isomorphism

H1(G,Z) ∼= Gab

Proof. We consider the exact sequence

0 → IG → Z[G] → Z → 0

where the augmentation ideal IG is the free Z-submodule of Z[G] generated
by {g−1 : g ∈ G×} and the augmentation map Z[G] → Z is

∑
ngg 7→

∑
ng.

Since H1(G,Z[G]) = 0 (because Z[G] is projective) we get the exact sequence

0 → H1(G,Z) → IG/I
2
G → Z[G]/IG → Z → 0

and, since the middle map is zero, we �nd an isomorphism

H1(G,Z) ∼= IG/I
2
G

The proof is concluded by composing the previous isomorphism with the
inverse of the isomorphism

G/G′ → IG/I
2
G, g 7→ (g − 1) + I2G

Proposition 1.11. If G is a �nite group and we consider Z, Q and Q/Z as

G-modules with trivial action, we have:

� H0
T (G,Z) = Z/|G|Z and H1(G,Z) = 0;

� Hr
T (G,Q) = 0 for any integer r;

� H1(G,Q/Z) = Hom(G,Q/Z).

Proof. See [8, Lemma 3.3, pag. 80].

Now, we state and prove Tate's Theorem which will be crucial in proving
theorems of class �eld theory. During the proof we will need the following
lemma.
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Lemma 1.1. If G is a �nite group and M is a G-module such that

H1(H,M) = H2(H,M) = 0

for any H ≤ G, then for any r ∈ Z we have

Hr
T (G,M) = 0

Proof. See [8, Theorem 3.10, pag. 83].

Theorem 1.1. Let G be a �nite group and M a G-module. If for any

H ≤ G we have H1(H,M) = 0 and H2(H,M) cyclic of order equal to |H|
then Hr

T (G,Z) ∼= Hr+2
T (G,M) for any integer r.

Proof. We �x γ a generator of H2(G,M) and we consider a cocycle ϕ in the
class of γ. We de�ne the splitting G-module of ϕ as

M(ϕ) :=M ⊕ (
⊕
σ∈G×

Zxσ)

with the action
σxτ := xστ − xσ + ϕ(στ)

where xσ is a formal symbol and x1 := ϕ(1, 1). We de�ne a homomorphism

α :M(ϕ) → IG, α(m) = 0 onM, α(xσ) = σ − 1

and we observe that we have the following exact sequences:

0 → IG → Z[G] → Z → 0

0 →M →M(ϕ) → IG → 0

The cohomology exact sequence of the second one over H ≤ G is

0 → H1(H,M(ϕ)) → H1(H, IG) → H2(H,M) → H2(H,M(ϕ)) → 0

because H1(H,M) = 0 and

H2(H, IG) ∼= H1(H,Z) = 0

(recall that Z[G] is an induced G-module). Res(γ) generates H2(H,M) (it
can be seen introducing the corestriction homomorphism) and, since ϕ is the
coboundary of the cochain σ 7→ xσ, we discover that the fourth arrow in the
previous diagram is just the zero map. Then the third arrow is surjective
and hence an isomorphism because

H1(H, IG) ∼= H0
T (H,Z) ∼= Z/|H|Z

Then the last exact sequence tells us that

H1(H,M(ϕ)) = H2(H,M(ϕ)) = 0

The previous lemma implies that Hr(H,M(ϕ)) = 0 for any integer r and so
the cohomology sequences of the exact sequence

0 →M →M(ϕ) → Z[G] → Z → 0

give the desired isomorphisms.
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1.1.5 The Herbrand quotient

The Herbrand quotient is a powerful instrument used to study cohomology
of �nite cyclic groups.

Proposition 1.12. Let G be a �nite cyclic group and M a G-module. Then

for any r ∈ Z we have Hr
T (G,M) ∼= Hr+2

T (G,M).

Proof. See [8, Proposition 3.4, pag. 81].

De�nition 1.7. Let G be a �nite cyclic group and M a G-module such that

its cohomology groups are �nite. Then the Herbrand quotient of M is

h(M) :=
|H0

T (G,M)|
|H1

T (G,M)|

The Herbrand quotient has the following properties.

Proposition 1.13. Let G be a �nite cyclic group. Then:

1. If 0 → M ′ → M → M ′′ → 0 is a short exact sequence of G-modules

then if two of their Herbrand quotients are de�ned so is the third and

we have h(M) = h(M ′)h(M ′′).

2. h(M) = 1 for any �nite G-module M .

3. If ϕ : M → N is a homomorphism of G-modules and Ker(ϕ) and

N/ϕ(M) are �nite, then h(M) and h(N) are both de�ned whenever

one of them is so and in this case they are equal.

Proof. See [8, Proposition 3.6, 3.8, Corollary 3.9, pag. 81,82].

1.1.6 Galois Cohomology

During the proofs of the theorems of class �eld theory we will mainly use
Tate cohomology for modules over Galois groups, so now we prove some basic
results in Galois cohomology that will be used in the sequel. First of all we
observe that if L/K is a �nite Galois extension of �elds with Galois group
G we have that both (L×, ·) and (L,+) are G-modules in a natural way.

Proposition 1.14. H1(G,L×) = 0 for any �nite Galois extension L/K
with Galois group G.

Proof. We want to prove that any cocycle in C1(G,L×) is a coboundary, i.e.
that for any map ϕ : G→ L× such that

ϕ(στ) = σϕ(τ)ϕ(σ)
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for any σ, τ ∈ G (it is called a cross homomorphism) there exists x ∈ L×

such that ϕ(σ) = σ(x)/x for any σ ∈ G. The well-known Theorem on the
independence of the characters implies that the map∑

σ∈G
ϕ(σ)σ

is not everywhere zero and so there exists a ∈ L× such that

b =
∑
σ∈G

ϕ(σ)σ(a) ̸= 0

So for any τ ∈ G we have

τ(b) =
∑
σ∈G

τ(ϕ(σ))τ(σ(a)) =
∑
σ∈G

ϕ(τ)−1ϕ(τσ)τ(σ(a)) = ϕ(τ)−1(b)

⇒ ϕ(τ) = b/τ(b) = τ(b−1)/b−1

Proposition 1.15. Hr(G,L) = 0 for any r > 0 and for any �nite Galois

extension L/K with Galois group G.

Proof. We know that there exists x ∈ K such that

{σ(x) : σ ∈ G}

is a normal basis for L over K. Then we have an isomorphism of G-modules

K[G] → L,
∑
σ∈G

aσσ 7→
∑
σ∈G

aσσ(x)

Finally, K[G] = IndG{1}K implies

Hr(G,L) ∼= Hr({1},K) = 0

1.1.7 Cohomology of pro�nite groups

During the proofs of theorems of class �eld theory we will work also with Ga-
lois groups of in�nite Galois extensions and we know that they are pro�nite
groups, i.e. Hausdor�, compact and totally disconnected topological groups.
In order to work with them we introduce cohomology groups for pro�nite
groups.
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De�nition 1.8. Let G be a pro�nite group.

We de�ne a discrete G-module as a G-module M such that the action

G×M →M

is continuous if M is endowed with the discrete topology. As we did for ordi-

nary G-modules, if r ≥ 0 is an integer, the r-th cohomology group Hr
cts(G,M)

can be equivalently de�ned using injective resolutions of discrete G-modules

or continuous cochains.

Proposition 1.16. Let G be a pro�nite group, M a discrete G-module and

r ≥ 0 an integer. Then

Hr
cts(G,M) =

⋃
H⊴G, H open

Hr(G/H,MH)

where the inclusion

Hr(G/H,MH) ↪→ Hr
cts(G,M)

is given by the usual in�ation homomorphism.

Proof. See [8, Proposition 4.2, pag. 87].

1.2 Orders of number �elds

De�nition 1.9. Let K be a number �eld. An order O of K is a subring of

K which is also a free Z-module of rank equal to the dimension of K over Q.

Proposition 1.17. The ring of integers OK is the unique maximal order of

a number �eld K.

Proof. We already know that OK is an order of K, so we just need to prove
that any order is contained in it. Take O an order of K and α ∈ O. We
consider the Z-submodule of O generated by the powers of α and {α1, ..., αk}
a Z-basis of it. Any αi is a �nite Z-linear combination of powers of α, so we
can take a positive integer N greater than all the exponents with which α
appears in these combinations. Then,

αN = c1α1 + ...+ ckαk

with ci ∈ Z and it implies that α is an algebraic integer.

As a �rst example, we can see that Z is the only order of Q.

Proposition 1.18. An order of a number �eld is a Noetherian integral do-

main of Krull dimension one.
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Proof. Let O be an order of K. Since it is a �nitely generated Z-module,
all of its ideals are so and consequently they are also �nitely generated O-
modules. Then O is Noetherian. Now, let p be a non-zero prime ideal of O
and take n a non-zero integer in p ∩ Z. Then, nO ⊂ p ⊂ O and so p and
O are free Z-modules of the same rank. Therefore, O/p is a �nite integral
domain, hence a �eld and so p is maximal.

Di�erently from the ring of integers OK , a generic order is not necessarily
a Dedekind domain. Anyway, we can always de�ne fractional ideals to be
�nitely generated submodules of K over the order and also the product of
fractional ideals could be de�ned as usual. The main di�erence with the
Dedekind case is that not all the fractional ideals are necessarily invertible
and so we have to restrict our attention to fractional ideals that admit an
inverse. We also observe that all the principal fractional ideals are trivially
invertible. From these considerations we derive the following de�nitions.

De�nition 1.10. Let K be a number �eld and O an order in K. We de-

note as I(O) and P (O), respectively, the groups of invertible and principal

fractional ideals of O. Then we de�ne the Picard group of O as

Pic(O) := I(O)/P (O)

Obviously, Pic(OK) is just the ideal class group of K.
Now, we are mainly interested in studying orders of imaginary quadratic
�elds because they will be important in the development of theory of complex
multiplication. First, we observe that all of them could be considered as Z-
modules generated by 1 and a suitable τ ∈ K. We will denote an order of
this kind as [1, τ ].

Proposition 1.19. All the orders of an imaginary quadratic �eld K could

be written as

O = Z+ fOK

for a certain f ∈ N (which is called the conductor of the order and satis�es

the equality [OK : O] = f).

Proof. First of all we prove that O = Z+ fOK is an order of K.
If OK = [1, τ ] it is obvious that O = [1, fτ ] and so it is an additive subgroup
and a free Z-module of rank 2.
It is also a subring: if n,m ∈ Z and a, b ∈ OK , then

(n+ fa)(m+ fb) = nm+ f(ma+ nb+ fab)

So it is an order and we also get the equality

[OK : O] = [[1, τ ] : [1, fτ ]] = f
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Now, let O be an order in an imaginary quadratic �eld K and assume
OK = [1, τ ]. O is a Z-submodule of rank 2 of OK and it contains 1, so
there exists n ∈ N such that nτ ∈ O. We take f ∈ N to be the smallest
positive integer which satis�es this property. So [1, fτ ] ⊂ O and we prove
the converse to conclude. If α ∈ O ⊂ OK , then α = a+ bτ for a, b ∈ Z and
bτ = α− a ∈ O. It implies that f divides b and so α ∈ [1, fτ ].

De�nition 1.11. The discriminant Disc(O) of an imaginary quadratic

order O = [1, τ ] is the discriminant of the minimal polynomial of τ .
An imaginary quadratic discriminant is a negative integer which is a

square modulo 4. It is also called fundamental if it is not the multiple

of another imaginary quadratic discriminant by a non trivial square of an

integer.

It is just an exercise to show that the de�nition of discriminant of an
imaginary quadratic order does not depend on the choice of τ and that it is
compatible with the de�nition of discriminant of the ring of integers.
Now, we observe that by de�nition any discriminant of an imaginary quadratic
order is an imaginary quadratic discriminant and also that fundamental dis-
criminants coincide with discriminants of imaginary quadratic �elds. Fur-
thermore, the last proposition gives us the following corollary.

Corollary 1.1. If D is an imaginary quadratic discriminant then there exists

a unique imaginary quadratic order O of discriminant D and if K is the

imaginary quadratic number �eld containing it we have that D = f2DK

where DK is the discriminant of the number �eld and f is the conductor of

O.

Proof. Let D = f2D′, where f ∈ N and D′ is a fundamental discriminant.
Then there exists an imaginary quadratic �eld K such that DK = D′ and
we �x O := Z+ fOK . In particular, if OK = [1, τ ], then O = [1, fτ ]. Now,
if x2 + bx+ c is the minimal polynomial of τ , x2 + fbx+ f2c is the minimal
polynomial of fτ and

Disc(O) = f2b2 − 4f2c = f2(b2 − 4c) = f2DK

Uniqueness follows trivially from the last proposition because f21D1 = f22D2

if and only if f1 = f2 and D1 = D2 (where D1 and D2 are fundamental
discriminants).

1.3 Primes of number �elds

De�nition 1.12. Let K be a �eld. A function | · | : K → R≥0 is called an

almost-absolute value on K if the following conditions are satis�ed:

� |x| = 0 ⇔ x = 0 for any x ∈ K;
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� |xy| = |x||y| for any x, y ∈ K.

An almost-absolute value is called an absolute value if also the triangular

inequality is satis�ed:

|x+ y| ≤ |x|+ |y| for any x, y ∈ K

An absolute value is called nonarchimedean if we also have:

|x+ y| ≤ max{|x|, |y|} for any x, y ∈ K

We say that two almost-absolute values | · |1 and | · |2 are equivalent if there

exists λ ∈ R>0 such that | · |2 = | · |λ1 .

As a �rst example let p be a prime ideal of a number �eld K and denote
as ordp(x) the p-adic valuation for any x ∈ K (i.e. the rami�cation index of
p in xOK). Then we choose r > 1 a real number and we de�ne the p-adic
absolute value as

|x| :=
(
1

r

)ordp(x)
Theorem 1.2. Let K be a number �eld. Then every almost-absolute value

of K is equivalent to exactly one of the following:

� the p-adic absolute value for a prime ideal p of K;

� the absolute value x 7→ |σ(x)| for a real embedding σ : K ↪→ R;

� the absolute value x 7→ |σ(x)| for a pair of conjugate complex embed-

dings {σ, σ̄} with σ : K ↪→ C.

The notion of prime of a number �eld will be crucial in global class �eld
theory.

De�nition 1.13. Let K be a number �eld. A prime (or a place) of K is an

equivalence class of almost-absolute values of K. We denote a generic prime

by v and the completion of K with respect to one of its absolute values (there

is at least one of them in every equivalence class) by Kv. We aslo denote by

Ov the ring of integers of Kv and by Uv its group of units.

We say that a prime v is:

� �nite if it associated to a prime ideal of K (and in this case we denote

the ideal as pv);

� real if it is associated to a real embedding (and we denote as av the

image of a under the embedding for any a ∈ K);

� complex if it is associated to a pair of conjugate complex embeddings.
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We observe that the completion of a number �eld with respect to a real
prime is R and with respect to a complex prime is C. We want to choose
a representative for any equivalence class and we call them normalized

almost-absolute values. We make this choice in the following way:

� |x|v =
(

1
NK/Q(p)

)ordp(x)
if v is a �nite prime associated to p;

� |x|v = |σ(x)| if v is a real prime associated to σ;

� |x|v = |σ(x)|2 if v is a complex prime associated to σ.

In the end, we state two important results which will be crucial in the
sequel. The �rst one is called the weak approximation theorem while the
second is known as the product formula.

Theorem 1.3. Let K be a �eld, x1, ..., xn ∈ K, ϵ > 0 and | · |1, ..., | · |n
nontrivial inequivalent almost-absolute values on K. Then there exists x ∈ K
such that

|x− xi|i < ϵ

for any i = 1, ..., n.

Proof. See [7, Theorem 7.20, pag. 114].

Theorem 1.4. Let K be a number �eld and x ∈ K×. Then∏
v prime of K

|x|v = 1

Proof. See [7, Theorem 8.8, pag. 138].
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Chapter 2

Local Class Field Theory

The �rst step in the exploration of class �eld theory is the study of its local
version. Local class �eld theory was introduced by Hasse in 1930 and its
main purpose is the classi�cation of abelian extensions of local �elds.
We recall that a local �eld K must be one of the following:

� R or C (archimedean local �eld);

� a complete discrete valuation �eld with �nite residue �eld (nonar-
chimedean local �eld).

First of all, we �x some notations for a nonarchimedean local �eld K. We
will denote by:

� OK the ring of integers of K;

� mK the maximal ideal of OK ;

� UK the group of units of OK ;

� k := OK/mK the residue �eld of K.

2.1 Statements of the main theorems

In this �rst section we want to state the main theorems of local class �eld
theory and to prove some corollaries. We recall that if L/K is a �nite
unrami�ed extension of nonarchimedean local �elds we have an isomorphism
Gal(L/K) ∼= Gal(l/k) inherited from the action of Gal(L/K) on OL and we
denote as FrobL/K the preimage of the map x 7→ x|k| (which is a generator

of Gal(l/k) as a cyclic group). We also denote by Kab the extension of
K generated by all of its abelian extensions, by Kun the extension of K
generated by all of its unrami�ed extensions and by FrobK the generator of
Gal(Kun/K) which is just FrobL/K when restricted to a �nite unramifed
extension L/K. We start by stating the local reciprocity law.

23
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Theorem 2.1. If K is a local �eld, there exists a unique homomorphism

ϕK : K× → Gal(Kab/K)

such that:

� if L/K is a �nite abelian extension, ϕK induces an isomorphism

ϕL/K : K×/NmL/K(L×) → Gal(L/K)

� if K is nonarchimedean, ϕK(π)|L = FrobL/K for any �nite unrami�ed

extension L/K and any prime element π of K.

The maps ϕK and ϕL/K are called the local Artin maps for K and
L/K respectively.
Now, we state the local existence theorem. We call norm groups of a
local �eld K its subgroups of the form Nm(L×) := NmL/K(L×) for a �nite
abelian extension L/K.

Theorem 2.2. Let K be a local �eld. A subgroup of K× is a norm group if

and only if it is open of �nte index.

Finally, we prove some corollaries to the stated theorems. The �rst one
is central in local class �eld theory because it gives an elegant classi�cation
of �nite abelian extensions of a local �eld.

Corollary 2.1. Let K be a local �eld. Then there is a one-to-one inclusion-

reversing correspondence between the set of its �nite abelian extensions and

the set of the open subgroups of �nte index of K× (or, equivalently, the set

of its norm subgroups) given by

L 7→ Nm(L×)

Proof. The de�ned map is trivially surjective thanks to the local existence
theorem. In order to prove that it is injective and inclusion-reversing we
need to show that for any �nite abelian extensions L and L′ of K we have

L ⊂ L′ ⇔ Nm(L′×) ⊂ Nm(L×)

The �rst implication follows immediately from the transitivity of the norm.
For the opposite direction we consider the following diagram:

K×/Nm(L′×) Gal(L′/K)

K×/Nm(L×) Gal(L/K)

ϕL′/K

id

ϕL/K
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We recall that the map

Gal(LL′/K) → Gal(L/K)×Gal(L′/K), σ 7→ (σ|L, σ|L′)

is injective and it is immediate to see that its image is the set of couples
(ϕL/K◦id◦ϕ−1

L′/K(τ), τ) for τ ∈ Gal(L′/K). ThenGal(LL′/K) ∼= Gal(L′/K)

and so L ⊂ L′.

Corollary 2.2. Let K be a local �eld, L/K a �nite abelian extension and

Nm(L×) ≤ H ≤ K×. Then there exists a �nite abelian extension M of K
such that H = Nm(M), i.e. H is a norm group.

Proof. We call M the �xed �eld of ϕL/K(H mod Nm(L×)) and we consider
the following commutative diagram:

K× Gal(L/K)

K× Gal(M/K)

ϕL/K

id res

ϕM/K

It follows immediately that

Nm(M×) = ϕ−1
M/K(1) = ϕ−1

M/K(res(Gal(L/M))) = ϕ−1
M/K(res(ϕL/K(H)))

= id(H) = H

Corollary 2.3. Let K be a local �eld and L1/K and L2/K �nite abelian

extensions. Then:

� Nm((L1L2)
×) = Nm(L×

1 ) ∩Nm(L×
2 );

� Nm((L1 ∩ L2)
×) = Nm(L×

1 )Nm(L×
2 ).

Proof. Both the results follow immediately from the fact that the de�ned
bijection is inclusion-reversing, since:

� L1L2 is the smallest �nite abelian extension of K that contains both
L1 and L2;

� Nm(L×
1 )∩Nm(L×

2 ) is the largest open subgroup of �nite index of K×

which is contained in Nm(L×
1 ) and in Nm(L×

2 );

� L1 ∩L2 is the largest �nite abelian extension of K that is contained in
L1 and L2;

� Nm(L×
1 )Nm(L×

2 ) is the smallest subgroup of K× which contains both
Nm(L×

1 ) and Nm(L×
2 ) and it is a norm group from the previous corol-

lary.
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2.2 Proof of the local reciprocity law

In this section we prove the existence of a local Artin map for any local �eldK
and uniqueness in the archimedean case. Uniqueness in the nonarchimedean
case will be proved at the end of the following section as a consequnce of the
proof of local existence theorem.

Theorem 2.3. If K is a local �eld, there exists a unique homomorphism

ϕK : K× → Gal(Kab/K)

such that:

� if L/K is a �nite abelian extension, ϕK induces an isomorphism

ϕL/K : K×/NmL/K(L×) → Gal(L/K)

� if K is nonarchimedean, ϕK(π)|L = FrobL/K for any �nite unrami�ed

extension L/K and any prime element π of K.

As a �rst step, we prove the theorem in the archimedean case.
If K = C, we de�ne

ϕC : C× → Gal(C/C)

as the obvious trivial map. All the stated properties are obviously satis�ed.
If K = R, we de�ne

ϕR : R× → Gal(C/R)

as the map which sends the elements of R>0 to 1 and the others to the
conjugation automorphism. Obviously it is the unique map which satis�es
the stated properties.
Now, we prove the existence of ϕK for nonarchimedean local �elds. In order
to simplify the notation, from now on we denote by

H2(L/K) := H2(Gal(L/K), L×)

whenever L/K is a Galois extension.

2.2.1 Galois cohomology for local �elds

Lemma 2.1. Let L/K be a �nite unrami�ed extension of nonarchimedean

local �elds. Then the map

NmL/K : UL → UK

is surjective.
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Proof. We denote by l and k the residue �elds of L and K and by G the
Galois group of L/K. Recall that

G ∼= Gal(l/k)

First of all we observe that

1 = h(l×) =
|H0

T (G, l
×)|

|H1
T (G, l

×)|
= |H0

T (G, l
×)|

⇒ H0
T (G, l

×) = 0

and
H0
T (G, l)

∼= H2
T (G, l) = 0

Hence the maps
Nm : l× → k×, T r : l → k

are surjective. Now, for a generic nonarchimedean local �eld E with residue
�eld e, we consider the homorphisms

αE : UE → e×, u 7→ u modmE

and
βE,m : 1 +mm

E → e, 1 + aπm 7→ a modmE

and we observe that they are surjective and

ker(αE) = 1 +mE , ker(βE,m) = 1 +mm+1
E

In order to conclude, we have to work with the following commutative dia-
grams:

UL l× 1 +mm
L l

UK k× 1 +mm
K k

αL

Nm Nm

βL,m

Nm Tr

αK βK,m

Finally, we take u ∈ UK . The �rst commutative diagram tells us that there
exists v0 ∈ UL such that αK(u) = αK(Nm(v0)) and then

u/Nm(v0) ∈ 1 +mK

With analogous considerations on the second diagram we �nd v1 ∈ 1 + mL

such that u/Nm(v0v1) ∈ 1 + m2
K . Proceeding in this way we can �nd a

sequence {vi}i such that u/Nm(v0 · · ·vi) ∈ 1+mi+1
K . If v := limi→+∞ v0 · · ·vi,

we have u/Nm(v) ∈
⋂
1 +mm

K = {1} and we can conclude.

Proposition 2.1. Hr
T (G,UL) = 0 for any integer r and for any �nite un-

rami�ed extension of local �elds L/K with Galois group G.
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Proof. From the previous lemma we have that H0
T (G,UL) = 0 and, since G

is cyclic, to conclude we just need to prove the proposition for r = 1. We �x
a prime element π ∈ K and we observe that, since

L× ∼= UL × πZ ∼= UL × Z

we have

H1(G,L×) ∼= H1(G,UL)×H1(G,Z)

Since H1(G,L×) = 0, the same holds for H1(G,UL).

2.2.2 The invariant map

Theorem 2.4. Let K be a nonarchimedean local �eld. There exists an iso-

morphism

invK : H2(Kun/K) → Q/Z

such that for any �nite unrami�ed extension L/K it induces an isomomor-

phism

invL/K : H2(L/K) → 1

[L : K]
Z/Z

Proof. First of all, we set L/K a �nite unrami�ed extension with Galois
group G and we de�ne the isomorphism invL/K . We consider the exact
sequence

0 → UL → L× → Z → 0

and, since H2(G,UL) = H3(G,UL) = 0, we get an isomorphism

ordL : H2(L/K) → H2(G,Z)

Then we consider the exact sequence

0 → Z → Q → Q/Z

and, since H1(G,Q) = H2(G,Q) = 0, we get an isomorphism

δ : H2(G,Z) → H1(G,Q/Z)

Now, we know that H1(G,Q/Z) ∼= Hom(G,Q/Z) and we consider the iso-
morphism

v : Hom(G,Q/Z) → 1

[L : K]
Z/Z, v(f) = f(FrobL/K)

Finally we can de�ne

invL/K := v ◦ δ ◦ ordL
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Now, invK can be de�ned starting from these isomorphisms. It is possi-
ble because, if K ⊂ L ⊂ E is a tower of �nite unrami�ed extensions, the
following diagram is commutative:

H2(L/K) Q/Z

H2(E/K) Q/Z

invL/K

Inf id

invE/K

The map invK is called the invariant map of K.
Now, our purpose is to extend the de�nition of the invariant map toH2(Ksep/K),
where Ksep is the separable closure of K.

Lemma 2.2. If L/K is a �nite extension of nonarchimedean local �elds of

degree n, the following diagram is commutative.

H2(Kun/K) Q/Z

H2(Lun/L) Q/Z

invK

Res n

invL

The restriction homomorphism is induced by the compatible homomorphisms

Gal(Lun/L) → Gal(Kun/K)

Kun× ↪→ Lun×

which are, respectively, the restriction and the natural inclusion.

Proof. The commutative diagram of the statement comes from the compo-
sition of the following commutative squares.

H2(Kun/K) H2(ΓK ,Z) H1(ΓK ,Q/Z) Q/Z

H2(Lun/L) H2(ΓL/Z) H1(ΓL,Q/Z) Q/Z

ordK

Res

δ

e Res e Res fe

ordL δ

The commutativity of the �rst square comes from the commutativity of

Kun× Z

Lun× Z

ordK

e

ordL
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The commutativity of the second square comes from the fact that the bound-
ary map commutes with the restriction homomorphism.
The commutativity of the third square comes from the fact that

FrobL|Kun = FrobfK

Now, we continue to consider a �nite extension of nonarchimedean local
�elds L/K and we observe the following commutative diagram.

0 1
[L:K]Z/Z H2(Kun/K) H2(Lun/L)

0 H2(L/K) H2(Ksep/K) H2(Ksep/L)

Res

Inf Inf

Res

Since the in�ation homomorphisms are injective we �nd that the same
holds for the left vertical arrow. We prove an important lemma.

Lemma 2.3. If L/K is a �nite Galois extension of nonarchimedean local

�elds with Galois group G, there exists an open subgroup V of UL stable

under G such that Hr(G,V ) = 0 for any positive integer r.

Proof. We choose a normal basis {σ(α) : σ ∈ G} of L over K (where α ∈ L)
and we de�ne the free G-module

A :=
∑
σ∈G

OKσ(α)

We can assume A ⊂ OL and, since it is open in it, there exists a positive
integer N such that πNOL ⊂ A where π is a prime element of K. Now we
set

M := πN+1A

V i := 1 + πiM

V := V 0

We observe that

M ·M = π2N+2A ·A ⊂ π2N+2OL ⊂ π · πN+1A ⊂ πM

From these considerations we �nd that V is an open subgroup of UL stable
under G and {V i}i≥1 is a descending family of open subgroups of V with
trivial intersection, so we only have to prove that V has trivial cohomology.
We observe that we have an isomorphism

M/πM → V i/V i+1, m 7→ 1 + πim
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and, since M/πM is free over G, it implies that Hr(G,V i/V i+1) = 0 for
any positive integer r. Now, if f is a r-cocycle with values in V , there exist
a (r − 1)-cochain g1 with values in V and a r-cocycle f1 with values in V 1

such that f = dr−1(g1) + f1. Proceeding inductively we �nd that, for any
n > 0, there exist a (r − 1)-cochain gn+1 with values in V n and a r-cocycle
fn+1 with values in V n+1 such that fn = dr−1(gn+1) + fn+1. The product

g :=
∞∏
n=1

gn is de�ned by a Cauchy sequence, so it converges and we get

f = dr−1(g), which implies Hr(G,V ) = 0 for any positive integer r.

Now we can prove thatH2(L/K) has order [L : K] and so it is isomorphic
to 1

[L:K]Z/Z. We just need to show that |H2(L/K)| ≤ [L : K] and we do it

by induction on [L : K].

� For the base case we prove the claim for cyclic extensions. We consider
V as in the previous lemma and we notice that UL/V is �nite because
UL is compact. Then

|H2(L/K)| = |H2(L/K)|
|H1(G,L×)|

= h(L×) = h(UL)h(Z) = h(V )
|H0

T (G,Z)|
|H1(G,Z)|

= |Z/[L : K]Z| = [L : K]

� We assume the claim is true for any positive integer n < [L : K]. It
is possible to prove that Gal(L/K) is solvable (see [7, Corollary 7.59,
pag. 131]) and it implies that there exists a tower of Galois extensions
K ⊊ E ⊊ L. The in�ation-restriction exact sequence

0 → H2(E/K) → H2(L/K) → H2(L/E)

�nally tells us that

|H2(L/K)| ≤ |H2(L/E)||H2(E/K)| = [L : K]

Finally, we can prove the existence of the invariant map for Ksep/K.

Theorem 2.5. Let K be a nonarchimedean local �eld. There exists an iso-

morphism

invK : H2(Ksep/K) → Q/Z

such that for any �nite Galois extension L/K it induces an isomorphism

invL/K : H2(L/K) → 1

[L : K]
Z/Z

Proof. From the above discussions and results we have that

H2(L/K) ⊂ H2(Kun/K)
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for every �nite Galois extension L/K. Then, since

H2(Ksep/K) =
⋃

L/K finite Galois

H2(L/K)

we have that
Inf : H2(Kun/K) → H2(Ksep/K)

is an isomorphism and we can conclude by composing its inverse with

invK : H2(Kun/K) → Q/Z

2.2.3 The local Artin map

Let L/K be a �nite Galois extension of nonarchimedean local �elds with
Galois group G.
For any subgroup H of Gal(L/K) there exists a �eld K ⊂ E ⊂ L such that
H = Gal(L/E). We know that H1(Gal(L/E), L×) = 0 and the properties
of the invariant map tell us that H2(L/E) is cyclic of order equal to [L : E].
Then hypoteses of Tate's theorem are satis�ed and we �nd an isomorphism

Gab = H−2(G,L×) ∼= H0(G,L×) = K×/Nm(L×)

When L/K is a �nite abelian extension, we de�ne the local Artin map of
the extension as the inverse of the previous isomorphism

ϕL/K : K×/Nm(L×) → Gal(L/K)

Proposition 2.2. Let K ⊂ E ⊂ L be a tower of �nite abelian extensions of

nonarchimedean local �elds. Then the following diagram commutes:

K× Gal(L/K)

K× Gal(E/K)

ϕL/K

id

ϕE/K

where the right vertical arrow is just the restriction homomorphism.

Proof. See [8, Proposition 3.3, pag. 107].

As a consequence of the previous proposition we can �nally de�ne the
local Artin map of K

ϕK : K× → Gal(Kab/K)

The last thing we have to prove is the following proposition.
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Proposition 2.3. If L/K is a �nite unrami�ed extension of nonarchimedean

local �elds and π is a prime element in K, we have that

ϕL/K(π) = FrobL/K

Proof. We set G := Gal(L/K), n = [L : K] and σ := FrobL/K . As a �rst
claim we prove that the cochain

ϕ : G2 → L×

ϕ(σi, σj) = 1 if i+ j ≤ n− 1

ϕ(σi, σj) = π if i+ j > n− 1

represents a generator of H2(L/K).
In order to do it, we use the de�nition of invL/K . We choose f ∈ H1(G,Q/Z),
f(σi) = i

n +Z and we consider f̄ : G→ Q, f̄(σi) = i
n as a lifting of f . Then

δ−1f̄(σi, σj) = σif̄(σj)− f̄(σi+j) + f̄(σi)

and the claim follows from the identi�cation of Z with πZ because

δ−1f̄(σi, σj) = 0 if i+ j ≤ n− 1

δ−1f̄(σi, σj) = 1 if i+ j > n− 1

Now we conclude the proof following the proof of Tate's Theorem, recalling
that we have the following chain of isomorphisms:

G ∼= H−2(G,Z) ∼= H−1(G, I) ∼= H0(G,L×) = K×/Nm(L×)

The de�nitions of the �rst two isomorphisms immediately imply that the
image of σ in H−1(G, I) is (σ − 1) + I2. Then, the boundary map de�ning
the third isomorphism comes from the snake lemma applied to the diagram

H−1(G, I)

(L×)G L×(ϕ)G IG 0

0 L×G L×(ϕ)G IG

H0(G,L×)



34 CHAPTER 2. LOCAL CLASS FIELD THEORY

We choose xσ + IGL
×(ϕ) ∈ L×(ϕ)G as an element which sends to

σ − 1 + I2 ∈ IG.
Finally, the image of σ − 1 + I2 in H0(G,L×) is

NmG(xσ) =
n−1∑
i=0

σixσ

= xσ +
n−2∑
i=1

(xσi+1 − xσi + ϕ(σ, σi+1)) + x1 − xσn−1 + ϕ(σ, σn−1)

=

n−1∏
i=1

ϕ(σ, σi) = π

2.3 Proof of the local existence theorem

In this section we want to prove the local existence theorem.

Theorem 2.6. Let K be a local �eld. A subgroup of K× is a norm group if

and only if it is open of �nte index.

As a �rst step, we prove it for archimedean local �elds.
If K = C, the only norm subgroup is C× = Nm(C×) and it is open of �nite
index, so we just need to prove that it is the only one. If H ≤ C× is open
of �nite index, there exists a positive integer n such that C×n ⊂ H, but
C×n = C× for every n so H = C×.
If K = R, the only norm subgroups are R× = Nm(R×) and R>0 = Nm(C×)
and they are open of �nite index, so we just need to prove that there are no
more. If H ≤ R× is open of �nite index, there exists a positive integer n
such that R×n ⊂ H, but R×n is R× if n is odd and R>0 if n is even, so H is
one of them.
Then, we have to prove the theorem for nonarchimedean local �elds, which
is the most di�cult part. First of all, we introduce the notion of Lubin-Tate
formal group laws and we brie�y recall the theory of Newton polygon.

2.3.1 Lubin-Tate formal group laws

De�nition 2.1. Let R be a commutative ring. A commutative formal

group law is a power series F ∈ R[[X,Y ]] such that

� F (X,Y ) = X + Y+ terms of degree ≥ 2;

� F (X,F (Y,Z)) = F (F (X,Y ), Z);

� F (X,Y ) = F (Y,X).
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A homomorphism f : F → G between commutative formal group laws is a

power series f ∈ TR[[T ]] such that

f(F (X,Y )) = G(f(X), f(Y ))

LetK be a nonarchimedean local �eld with |k| = q and π a prime element
in it. We de�ne

LT (π) := {f ∈ OK [[T ]] : f ≡ πT mod T 2, f ≡ T q mod π}

Proposition 2.4. For any f ∈ LT (π) there exists a unique commutative

formal group law Ff over OK such that f is an endomorphism of Ff .
We call {Ff}f∈LT (π) as the family of the Lubin-Tate formal group laws

associated to π.

Proof. See [8, Proposition 2.12, pag. 33].

Proposition 2.5. For any f, g ∈ LT (π) and any a ∈ OK there exists a

unique homomorphism

[a]g,f : Ff → Fg

such that:

� [a]g,f ≡ aT mod T 2;

� g ◦ [a]g,f = [a]g,f ◦ f .

Furthermore, if we set

[a]f := [a]f,f

the inclusion

OK ↪→ End(Ff ), a 7→ [a]f

is a ring homomorphism.

Proof. See [8, Proposition 2.14, Corollary 2.17, pag. 34].

2.3.2 Newton polygon

De�nition 2.2. Let K be a local �eld and consider the polynomial

p(x) = a0 + · · ·+ anx
n

in K[x] with aoan ̸= 0. We de�ne the Newton polygon of p as the convex

hull of the set of points

{(i, vK(ai)) : i = 0, ..., n}
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Theorem 2.7. Let K be a local �eld and p a polynomial as the one considered

in the previous de�nition. If {l1, ..., lr} is the set of the slopes of the line

segments of the Newton polygon of p, {j1, ..., jr} is the set of the lenghts of

their projections and {α1, ..., αs} are the roots of p in K we have:

� li ̸= lj whenever i ̸= j;

� −vK(αi) ∈ {l1, ..., lr};

� the number of roots with valuation equal to −li is, at most, ji.

Proof. See [7, Proposition 7.44, pag. 125].

2.3.3 Construction of Kπ and ϕπ

Let K be a nonarchimedean local �eld with |k| = q, π a prime element of
OK and f a polynomial of degree q in LT (π). If n is a positive integer we
set

Λf := {x ∈ Ksep : |x| < 1}
Λf,n := {x ∈ Λf : [π]nf (x) = 0}

where Λf,n ⊂ Λf are two OK-modules with the operations de�ned by

x+Λf
y := Ff (x, y)

a ∗ x := [a]f (x)

We observe that Λf,n is just the set of roots of f (n) because [π]f = f
and because f (n)/T is a product of Eisenstein polynomials, i.e. its roots
have positive valuations from the theory on Newton polygons. Now, for any
positive integer n we set

Kπ,n := K[Λf,n]

The previous considerations and the fact that f (n) is separable imply that
Kπ,n/K is a Galois extension and it is independent of the choice of f . Indeed,
if f and g are two di�erent polynomials in LT (π), the isomorphism [1]g,f
induces an isomorphism of OK-modules Λf,n → Λg,n. By induction, we
choose

� π1 a non-zero root of f ;

� πn a root of f − πn−1.

Now, the polynomial f/T is Eisenstein, so the extension K[π1]/K is totally
rami�ed of degree q − 1. From the results about Newton polygons we know
that vK[π1](π1) =

1
q−1 , so it is a prime element. Then the polynomial f − π1

is Eisenstein and K[π2]/K[π1] is a totally rami�ed extension of degree q.
Proceeding in this way we �nd that K[πn]/K is a totally rami�ed extension
of degree (q − 1)qn−1.
Obviously, K[πn] ⊂ Kπ,n because f (n)(πn) = 0 and we want to prove that
they are equal.
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Proposition 2.6. LetK be a nonarchimedean local �eld. AnyK-automorphism

of Kπ,n induces an OK-automorphism of Λf,n and

AutOK
(Λf,n) ∼= (OK/m

n)×

Proof.

� Obviously, if α is a root of f (n), the same holds for σ(α) where
σ ∈ Gal(Kπ,n/K). Furthermore, if α ∈ OK , we have

σ([a]f (α)) = σ( lim
m→+∞

[a]f,m(α)) = lim
m→+∞

σ([a]f,m(α))

= lim
m→+∞

[a]f,m(σα) = [a]f (σα)

where [a]f,m is the sum of the terms of degree ≤ m of [a]f .

� In order to prove that

AutOK
(Λf,n) ∼= (OK/m

n)×

we just need to show that

Λf,n ∼= OK/m
n

and we will do it by induction. Since Λf,1 has q elements, the structure
theorem for �nitely generated modules over a PID implies that

Λf,1 ∼= OK/m

Now, we assume the statement is true in the case n− 1 and we prove
it in the case n. Thanks to the results on the Newton polygon, we
observe that if
α ∈ Λf,n−1, then the roots of the polynomial f − α stands in Λf,n, i.e.
the map

Λf,n → Λf,n−1, x 7→ [π]f (x)

is surjective. Then we have an exact sequence

0 → Λf,1 → Λf,n → Λf,n−1 → 0

where the third arrow is the surjective map previously de�ned. Finally,
Λf,n has qn elements and, since Λf,1 is a cyclic module, the same holds
for Λf,n and then

Λf,n ∼= OK/m
n
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Thanks to the previous proposition we have

(q − 1)qn−1 = [K[πn] : K] ≤ [Kπ,n : K] = |Gal(Kπ,n/K)| ≤ (q − 1)qn−1

and it implies that
Kπ,n = K[πn]

and
(OK/m

n)× ∼= Gal(Kπ,n/K)

Proposition 2.7. π is a norm from Kπ,n for any positive integer n.

Proof. We de�ne

fn(T ) := (f/T ) ◦ f (n−1) = π + · · ·+ T (q−1)qn−1

and we observe that fn(πn) = 0. Then fn is the minimum polynomial of πn
over K and then, if n > 1, we have

NmKπ,n/K(πn) = (−1)(q−1)qn−1
π = π

If n = 1 the statement follows from the transitivity of the norm.

Finally, we set

Kπ :=
⋃
n≥1

Kπ,n

We observe that Kπ is a Galois extension of K since it is the union of an
increasing sequence of Galois extensions of K. Now, using the fact that
Kπ ∩Kun = K we de�ne the map

ϕπ : K× → Gal(Kπ ·Kun/K)

in the following way: if x = uπm where u ∈ UK , ϕπ(x) acts on Kun as
FrobmK and on Kπ according to

ϕπ(x)(λ) := [u−1]f (λ)

with λ ∈ Λf,n for some n. It is immediate to see that ϕπ is a group homo-
morphism. Another immediate consequence of the de�nition is that, if Km

is the unrami�ed extension of K of degree m, ϕπ(x) induces the identity on
Kπ,n ·Km whenever x ∈ (1 +mn) · ⟨πm⟩. Indeed, FrobmK is just the identity
on Km and if u ∈ 1 + mn the same holds for its inverse and [u−1]f (λ) = λ
for λ ∈ Λf,n follows from the isomorphism

(OK/m
n)× ∼= Gal(Kπ,n/K)

Proposition 2.8. Let K be a nonarchimedean local �eld. Then Kπ · Kun

and ϕπ are independent of the choice of π.

Proof. See [8, Theorem 3.9, pag. 40].

From now on we will denote ϕ′ := ϕπ for any prime element π.
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2.3.4 Local Kronecker-Weber Theorem: end of the proof

Lemma 2.4. If L/K is a �nte extension of nonarchimedean local �elds and

Nm(L×) is of �nite index in K×, then it is open.

Proof. Since
Nm(L×) ∩ UK = Nm(UL),

UK/Nm(UL) injects into K
×/Nm(L×), so Nm(UL) is of �nite index in UK

and it is also closed because continuous image of a compact set. Then it
is open in UK , which is open in K×, so Nm(UL) is open in K× and it is
contained in Nm(L×). Then Nm(L×) must be open too.

Lemma 2.5. Let K be a nonarchimedean local �eld. Then

ϕK(x)|Kπ ·Kun = ϕ′(x)

Proof. Let π be a prime element of K. We know that ϕK(π) and ϕ′(π)
act in the same way on Kun. Furthermore, π ∈ Nm(K×

π,n) and so ϕK(π)
acts trivially on Kπ,n and the same holds for ϕ′(π) = ϕπ(π). The statement
follows because the prime elements of K generate K×.

The last step to prove the local existence theorem is the proof of the local
Kronecker-Weber Theorem.

Theorem 2.8. Let K be a nonarchimedean local �eld and π a prime element

of OK . Then

Kab = Kπ ·Kun

Proof. We denote as Km the unrami�ed extension of K of degree m and we
set

Kn,m := Kπ,n ·Km

Un,m := (1 +mn) · ⟨πm⟩
We know that, if x ∈ Un,m, ϕπ(x) induces the identity on Kn,m and then the
same holds for ϕK(x). It implies that Un,m ⊂ Nm(K×

n,m) and the following
equality proves that they are equal:

(K× : Un,m) = (UK : 1 +mn)(⟨π⟩ : ⟨πm⟩) = (q − 1)qn−1m

= [Kπ,n : K][Km : K] = [Kn,m : K]

where the last equality comes from the fact that Km ∩Kπ,n = K. If L/K
is a �nite abelian extension we know that Nm(L×) is of �nite index in K×,
hence it is open and so there exist n,m ≥ 0 such that Un,m ⊂ Nm(L×).
Now, if x ∈ K×, we �nd that

ϕK(x) fixes Kn,m ⇒ x ∈ Nm(K×
n,m) = Un,m ⊂ Nm(L×) ⇒ ϕK(x) fixes L

and, since any element of Gal(L ·Kn,m/K) arises as the image of an element
of K× through ϕK , we have L ⊂ Kn,m. The statement follows.
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Finally, we can prove the local existence theorem for nonarchimedean
local �elds. The existence of the local Artin map implies that any norm
subgroup of K× is of �nite index in K×, hence open. Conversely, for any
open subgroup of �nite index ofK× there exist n,m ≥ 0 such that it contains
Un,m = Nm(K×

n,m). Since it contains a norm group, it is a norm group too.

2.3.5 Uniqueness of the local Artin map

Finally, we can also conclude the proof of the local reciprocity law by proving
the uniqueness of the local Artin map.

Theorem 2.9. If K is a nonarchimedean local �eld and ϕK is a local Artin

map for K, then ϕK is unique.

Proof. We assume that ϕK and ϕ are two local Artin maps for K and we
�x a prime element π of OK . We know that the image of π under any local
Artin map induces the identity on Kπ and the Frobenius automorphism on
Kun, hence we have that ϕK(π) and ϕ(π) induces the same automorphism
on Kπ · Kun = Kab, so they are equal. We can conclude because K× is
generated by its prime elements.

2.4 An example: cyclotomic extensions of Qp

Let p be a prime positive integer, n > 1 a positive integer and ζn a primitive
n-th root of 1 over Qp.
The Galois group of Qp(ζn)/Qp is cyclic, hence abelian, so we can study the
action of elements of Q×

p on Qp(ζn) described by the local Artin map. We
distinguish three cases.

First case: we assume n to be coprime with p. In this situation, the poly-
nomial Xn − 1 is separable over Fp and its splitting �eld is Fpf , where f is

the smallest positive integer such that n divides pf − 1. Then, Qp(ζn)/Qp is
an unrami�ed extension of degree f and the action of the local Artin map is
described in the following way: if u · pt ∈ Q×

p with u ∈ Z×
p , its image under

the local Artin map acts as the t power of the Frobenius automorphism.

Second case: we assume n to be a power of p. We set

f(T ) = (T + 1)p − 1 ∈ LT (p)

and from the theory previously developed we immediately have that
Qp(ζpr) = (Qp)p,r. Then the extension is totally rami�ed of degree (p−1)pr−1

and we can describe the action of u · pt ∈ Q×
p under the local Artin map as

follows. We observe that ζpr − 1 is a root of f (r), so we just need to �nd the
value [u−1]f (ζpr − 1). Since Zp/prZp ∼= Z/pZ, there exists an integer v such
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that [u−1]f = [v]f = (T + 1)v − 1. Then ζpr − 1 is sent to ζvpr − 1.

Third case: the general case is just an immediate consequence of the previous
cases. Indeed, if n = m · pr with p and m coprime, we have that

Qp(ζn) = Qp(ζm)Qp(ζpr)

Qp(ζm) ∩Qp(ζpr) = Qp

and the properties of the local Artin map tell us that we can describe it using
the actions on Qp(ζm) and Qp(ζpr).
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Chapter 3

Global Class Field Theory

The main purpose of global class �eld theory is to classify the abelian ex-
tensions of global �elds. In this chapter we will put our attention on the
particular case of number �elds, i.e. on the �nite extensions of Q. There
are two di�erent ways to approach and to state the main theorems of global
class �eld theory. The most modern and elegant formulation is based on
the notion of ideles introduced by Chevalley. Otherwise, it is possible to
formulate it in terms of ideals and the linked results are often more useful
for applications. In this chapter we will state and prove the main theorems
in terms of ideles and then we will only state the results given in terms of
ideals.

3.1 Adele rings and Idele groups

In this section we want to introduce the notions of adele ring and idele group
of a number �eld and to study their main properties. First of all we need to
introduce the topological notion of restricted product.

De�nition 3.1. The restricted product of a family of topological spaces

(Xi)i with respect to a family of open sets (Ui)i where Ui ⊂ Xi for any i is
the topological space∏′

(Xi, Ui) := {(xi)i ∈
∏

Xi : xi ∈ Ui for almost all i}

The topology is de�ned by taking as a basis of open sets the family

{
∏

Vi : Vi is an open subset of Xi and Vi = Ui for almost all i}

De�nition 3.2. Let K be a number �eld. The adele ring of K is the

topological ring

AK :=
∏′

v prime of K

(Kv,Ov)

43
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where Kv is the completion of K with respect to the prime v and Ov is its

ring of integers. Addition and multiplication are de�ned componentwise.

De�nition 3.3. Let K be a number �eld. The idele group of K is the

topological group

IK :=
∏′

v prime of K

(K×
v ,O×

v )

Multiplication is de�ned componentwise.

We observe that as a set IK is just A×
K . Anyway, the topology of IK

is not the subspace topology inherited from AK (but it injects continuosly
inside it). If S is a �nite set of primes of K, we de�ne

IK,S :=
∏
v∈S

K×
v ×

∏
v/∈S

O×
v

Obviously, IK,S ≤ IK . Now, we de�ne some important functions involving
IK that will be useful in the sequel:

� The map

iK : K× → IK , a 7→ (a, a, a, ...)

is an injective homomorphism. In particular, we can see K× as a sub-
group of IK . It is well-de�ned because any element of K× is contained
only in �nitely many prime ideals of OK .

� The map

αK : IK → IK , (av)v 7→
∏

v finite prime

p
ordpv (av)
v

where pv is the prime ideal of OK associated to v is a surjective ho-
momorphism between the idele class group and the group of fractional
ideals of K.

� The map

iKv : K×
v → IK , a 7→ (1, ..., 1, a, 1, ...1)

where a is in the position associated to Kv is an injective homomor-
phism.

The map iK leads to the following fundamental de�nition.

De�nition 3.4. Let K be a number �eld. The idele class group of K is

the topological group CK := IK/K×.

Now, we recall the notion of norm of ideals and we de�ne norm of ideles.
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De�nition 3.5. Let L/K be a �nite extension of number �elds with ideal

groups IK and IL and idele groups IK and IL.
The map

NmL/K : IL → IK

is de�ned by setting

NmL/K(B) = pf(B/p)

for any prime ideal B of L where p = B ∩ OK and f(B/p) is the inertia

degree of B over p. Then the map is obtained with a multiplicative extension.

The map

NmL/K : IL → IK
is de�ned by

(NmL/K((aw)w))v =
∏

w over v

NmLw/Kv
(aw)

The following proposition tells us that it is possible to extend norm maps
to ideal and idele class groups and that they commute with the map αK .

Proposition 3.1. Let L/K be a �nite extension of number �elds. The

following diagram is commutative:

L× IL IL

K× IK IK

NmL/K NmL/K

αL

NmL/K

αK

Proof. For the commutativity of the left square see [7, Corollary 8.4, pag.
136]. The commutativity of the right square follows from the obvious equality

ordB(l) = [Lw : Kv]ordp(NmLw/Kv
(l))

for any prime v of K, any prime w of L which lies over v and any l ∈ Lw.

3.2 Idelic class �eld theory

In this section we want to state the main theorems of global class �eld theory
in terms of ideles. First of all we need to de�ne a map which is central in
this theory. We �x a �nite abelian extension of number �elds L/K and a
prime v of K. We observe that for any prime w of L which lies over v the
decomposition groups

D(w) = {σ ∈ Gal(L/K) : σw = w}

and the local Artin maps

ϕv : K
×
v → Gal(Lw/Kv)
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coincide, i.e. D(w) and ϕv are independent of the choice of w. Now, we
de�ne

ϕL/K : IK → Gal(L/K), ϕL/K(a) =
∏

v prime of K

ϕv(av)|L

We observe that the product is well-de�ned because if v is a �nite prime and
if we choose w in order to have Lw/Kv unrami�ed, ϕv(av) = 1 whenever
av ∈ Uv. Properties of the local Artin maps imply that if K ⊂ L1 ⊂ L2 is a
tower of �nite abelian extensions of number �elds we have

ϕL2/K(a)|L1 = ϕL1/K(a)

and so if we vary L through the �nite abelian extensions of K we get a
homomorphism

ϕK : IK → Gal(Kab/K)

De�nition 3.6. Let L/K be a �nite abelian extension of number �elds. ϕK
and ϕL/K are called the (idelic) global Artin maps of K and L/K.

Finally, we can state the global reciprocity law and the existence theorem.

Theorem 3.1. Let K be a number �eld. Then the following properties hold:

� ϕK(K×) = 1;

� if L/K is a �nite abelian extension, ϕK induces an isomorphism

ϕL/K : IK/(K× ·Nm(IL)) → Gal(L/K)

or, equivalently,

ϕL/K : CK/Nm(CL) → Gal(L/K)

Theorem 3.2. Let K be a number �eld. If N is an open subgroup of �nite

index of CK , then there exists a unique �nite abelian extension L/K such

that Nm(CL) = N .

As usual, class �eld theory is mainly interested in classifying abelian
extensions of number �elds. In this sense we give the following consequence
of the previous theorems.

Corollary 3.1. Let K be a number �eld. There is a one-to-one correspon-

dence between �nite abelian extensions of K and open subgroups of �nite

index of CK given by the map

L 7→ Nm(CL)

It also satis�es the following properties:
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� L1 ⊂ L2 ⇔ Nm(CL2) ⊂ Nm(CL1);

� Nm(CL1·L2) = Nm(CL1) ∩Nm(CL2);

� Nm(CL1∩L2) = Nm(CL1) ·Nm(CL2).

The proof of this corollary just follows the same steps as the proof of the
corollaries to the main theorems of local class �eld theory.
Open subgroups of �nite index of CK are called norm groups. If N is
a norm group, we call the unique �nite abelian extension L/K such that
Nm(CL) = N as the class �eld of K belonging to N .

3.3 Proof of the global reciprocity law

In this section we prove the Artin global reciprocity law.

Theorem 3.3. Let K be a number �eld. Then the following properties hold:

� ϕK(K×) = 1;

� if L/K is a �nite abelian extension, ϕK induces an isomorphism

ϕL/K : IK/(K× ·Nm(IL)) → Gal(L/K)

or, equivalently,

ϕL/K : CK/Nm(CL) → Gal(L/K)

3.3.1 Cohomology of ideles

In this subsection we will give to IL and CL a structure of G-modules where
G = Gal(L/K) and we will study their properties under a cohomological
point of view. First of all, if a = (aw)w ∈ IL and σ ∈ G, we set

σ(a) := (σ(aw))σw

The action on CL is inherited from this one since L× is G-invariant. It is
immediate to observe that the norms on ideles and idele classes previously
de�ned are exactly the norms given by the structures of G-modules. Fur-
thermore, IGL = IK and CGL = CK .

De�nition 3.7. Let K be a number �eld and S a �nite set of primes of K
which contains all the in�nite ones. Then we de�ne the set of S-units of K
as

U(S) := {α ∈ K× : ordpv(α) = 0 ∀ v /∈ S}
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The set of T -units of L where T is a �nite set of primes of L is invariant
under the action of G, so it can be considered as a G-submodule of L×.
Similarly, IL,T is a G-submodule of IL. Furthermore, the usual unit theorem
holds for S-units, i.e.

U(S) ∼= Z|S|−1 × U(S)tors

Now, we observe that if v is a prime of K, w1 and w2 are primes of L which
lie over v sucht that w1 = σw2 for σ ∈ G and Gwi = Gal(Lwi/Kv), then the
isomorphisms

Gw2 → Gw1 , τ 7→ στσ−1

Lw1 → Lw2 , x 7→ σ−1x

are compatible and they induce isomorphisms

Hr(Gw1 , L
×
w1
) ∼= Hr(Gw2 , L

×
w2
)

Similarly
Hr(Gw1 , Uw1)

∼= Hr(Gw2 , Uw2)

From now one we will denote by Gv := Gw, L
v := Lw and Uv := Uw for any

prime v of K and any prime w of L which lies over v.

Proposition 3.2. Let L/K be a �nite cyclic extension of number �elds, S
a �nite set of primes of K and T the set of primes of L which lie over the

primes in S. Then

h(IL,T ) =
∏
v∈S

[Lv : Kv]

Proof. We have

h(G, IL,T ) = h(G,
∏
v∈S

∏
w|v

L×
w) · h(G,

∏
v/∈S

∏
w|v

Uw)

=
∏
v∈S

h(G,
∏
w|v

L×
w) =

∏
v∈S

h(Gv, Lv×)

=
∏
v∈S

|H2(Gv, Lv×)| =
∏
v∈S

[Lv : Kv]

For the third equality see [8, Proposition 2.3, pag. 204].
For the fourth equality see [8, Proposition 2.5(b), pag. 205] and [8, Corollary
2.6(a), pag. 206].
The last equality comes from the isomorphism

H2(Gv, Lv×) ∼=
1

[Lv : Kv]
Z/Z

given by the invariant map.
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Proposition 3.3. Let L/K be a �nite cyclic extension of number �elds, S a

set of primes of K which contain all the in�nite ones and T the set of primes

of L which lie over the primes in S. Then

h(U(T )) =

∏
v∈S

[Lv : Kv]

[L : K]

Proof. See [8, Proposition 3.1, pag. 208].

3.3.2 The �rst inequality

In this subsection we want to prove the following inequality, known as the
�rst inequality.

Theorem 3.4. Let L/K be a �nite cyclic extension of number �elds. Then

(IK : K× ·Nm(IL)) ≥ [L : K]

The proof is based on the following two lemmas.

Lemma 3.1. If K is a number �eld and S is a �nite set of primes which

contains the in�nte ones and a set of generators for the ideal class group

Cl(K), then

IK = K× · IK,S

Proof. Since S contains a set of generators for Cl(K), any fractional ideal
of K can be written as the product of ideals in S and a principal ideal, i.e.

IK/⟨S⟩ ·K× = 0

Then, we can conclude because the map αK de�nes an isomorphism

IK/IK,S ·K× ∼= IK/⟨S⟩ ·K×

Lemma 3.2. h(CL) = [L : K] whenever L/K is a �nite cyclic extension of

number �elds.

Proof. We �x a �nite set S of primes of K which contains:

� all the in�nite primes;

� all the primes that ramify in L;

� the �nite primes associated to a set of generators of Cl(L);
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and we denote by T the set of primes of L which lie over S.
Thanks to the previous lemma and to the fact that L× ∩ IL,T = U(T ) we
�nd

CL = IL/L× = L× · IL,T /L× ∼= IL,T /L× ∩ IL,T = IL,T /U(T )

and it implies

h(CL) =
h(IL,T )
h(U(T ))

= [L : K]

where the last equality follows from the results on cohomology of ideles.

The �rst inequality follows from the previous lemma because

(IK : K× ·Nm(IL)) = |H0
T (G,CL)| ≥ |H0

T (G,CL)|/|H1
T (G,CL)|

= h(CL) = [L : K]

3.3.3 The second inequality

Now, we want to prove the opposite direction of the inequality. In order to
do it we state a more general theorem.

Theorem 3.5. Let L/K be a �nite Galois extension of degree n of number

�elds with Galois group G. Then

� (IK : K× ·Nm(IL)) is �nite and it divides n;

� H1(G,CL) = 0;

� H2(G,CL) is �nite and its order divides n.

Lemma 3.3. If the �rst point of the theorem holds in the case of �nite cyclic

extensions of prime degree p, then the theorem holds in general.

Proof. We split the proof into three steps.
First step: we assume that the �rst point of the theorem holds for cyclic
extensions of prime degree p and we prove that all the other points hold for
cyclic extension of prime degree p. The third point of the theorem follows
immediately because

IK/K× ·Nm(IL) ∼= CK/Nm(CL) = H0
T (G,CL)

∼= H2(G,CL)

while the second point follows from the fact that h(CL) = [L : K].
Second step: we assume that the theorem holds for cyclic extensions of prime
degree p and we prove it holds for extensions L/K such that Gal(L/K) is a
p-group. Let G := Gal(L/K), we will prove the claim by induction on |G|.
Notice that, since it is a p-group, it has a normal subgroup H of �nite index
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p and set K ′ := LH . We consider the following in�ation-restriction exact
sequences.

0 → H1(G/H,CK′) → H1(G,CL) → H1(H,CL)

0 → H2(G/H,CK′) → H2(G,CL) → H2(H,CL)

By induction, H1(G/H,CK′) = 0 and H1(H,CL) = 0, so
H1(G,CL) = 0.

Similarly, |H2(G/H,CK′)| divides p and |H2(H,CL)| divides [L:K]
p , so

|H2(G,CL)| divides [L : K].
Finally, the �rst point follows from the equality

(CK : NmL/K(CL)) = (CK : NmK′/K(CK′))(NmK′/K(CK′) : NmL/K(CL))

and from the surjectivity of the obvious map

CK′/NmL/K′(CL) → NmK′/K(CK′)/NmL/K(CL)

Third step: we assume that the theorem holds for extensions L/K such
that Gal(L/K) is a p-group and we prove that it holds in general. If
G := Gal(L/K) and H is a p-Sylow of G, we know that the restriction ho-
momorphisms Hr

T (G,CL) → Hr
T (H,CL) are injective on the p-primary com-

ponents. Then the theorem follows since H1(H,CL) = 0 and |H0
T (H,CL)|

and |H2(H,CL)| divide [L : LH ].

Lemma 3.4. If the �rst point of the theorem holds in the case of �nite cyclic

extensions L/K of prime degree p such that K contains a p-th root of 1, then
the theorem holds in general.

Proof. Let ζ be a primitive p-th root of 1,K ′ := K[ζ], L′ := L·K ′. Obviously,
[K ′ : K] = m < p and so L ∩ K ′ = K. We consider the following diagram
where the rows are exact and the squares commute.

CL CK CK/Nm(CL) 0

CL′ CK′ CK′/Nm(CL′) 0

CL CK CK/Nm(CL) 0

NmL/K

NmL′/K′

NmL′/L NmK′/K

NmL/K

Now, the compositions of the maps in the �rst two columns are just exponen-
tiations by m and so the same holds for the third column. CK/Nm(CL) is
killed by p and so, since it is coprime with m, the composition of the maps in
the third column is an isomorphism. Finally it implies that (CK : Nm(CL))
divides (CK′ : Nm(CL′)) and it divides [L : K] by hypotesis.



52 CHAPTER 3. GLOBAL CLASS FIELD THEORY

Thanks to the previous lemmas we only need to prove the second in-
equality in the case of �nite cyclic extensions L/K of prime degree p such
that K contains a p-th root of 1. We will prove it in a more general case, in
particular we will consider L/K to be a �nite abelian extension of exponent
p. In particular Gal(L/K) ∼= (Z/pZ)r for a suitable positive integer r and
Kummer theory tells us that L = K[ p

√
α1, ..., p

√
αr] for suitable αi ∈ K.

We also �x S to be a �nite set of primes of K which contains:

� all the in�nite primes;

� all the divisors of p;

� all the primes that ramify in L;

� a set of generators for Cl(K);

� enough primes so that all αi are in U(S).

We set M := K[U(S)
1
p ], which is the Kummer extension corresponding

to

U(S) ·K×p/K×p ∼= U(S)/U(S) ∩ K×p = U(S)/U(S)p ∼= (Z/pZ)s

where s = |S| and the last isomorphism comes from the unit theorem and the
fact that µp ⊂ U(S)tors. Then K ⊂ L ⊂M and [M : L] = pt where t = s−r.

Lemma 3.5. If L/K is a �nite abelian extension of number �elds and A is

a �nite set of primes of K which contain the ini�nite ones and those which

ramify in L, the set

{ϕv(πv) : v /∈ A}

generates Gal(L/K).

Proof. For any v /∈ A we denote by (pv, L/K) := ϕv(πv) seen as an element
of G := Gal(L/K). If H is the subgroup generated by the set considered in
the statement and E is its �xed �eld we �nd that

(pv, E/K) = (pv, L/K)|E = 1

for any v /∈ A. Then all the primes of K which do not lie in A split in E. In
order to prove that H = G we claim that E = K. We de�ne

D := {(av)v ∈ IK : av = 1 ∀ v ∈ A}

Obviously D ⊂ Nm(IL) since Lw = Kv whenever w|v, v /∈ A.
Furthermore, if a = (av)v ∈ IK , thanks to the weak approximation theorem
we can �nd b ∈ K× which is close to av for v ∈ A. Then there exists α ∈ D
such that (bα)v = av for any v /∈ A and it implies that bα is close to a. Then
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K× ·D is dense in IK . Now, we assume by contradiction that E ̸= K and so
we can �nd a �eld K ′ such that K ⊂ K ′ ⊂ L, K ̸= K ′ and K ′/K is cyclic.
Then

D ⊂ Nm(IL) ⊂ Nm(IK′)

which implies that K× · Nm(IK′) is dense in IK . This subgroup must be
open and, hence, closed and so

K× ·Nm(IK′) = IK

Then, thanks to the �rst inequality, we have K ′ = K, a contradiction, and
the proof is concluded.

Thanks to [8, Lemma 6.2, pag. 215], which is proved using the properties
of S and the previous lemma, we can �nd a �nite set of primes of K called
T which is disjoint from S and such that

{ϕv(πv) : v ∈ T}

is a basis for Gal(M/L) seen as a vector space over Fp. Obviously t = |T |.
Now we set

E :=
∏
v∈S

K×p
v ×

∏
v∈T

K×
v ×

∏
v/∈S ∪ T

Uv

and we observe that it is a subgroup of IK contained in Nm(IL). Indeed, if
a = (av)v ∈ E, we can see that any component is a norm:

� if v ∈ S the isomorphism

K×
v /Nm(L×

w)
∼= Gal(Lw/Kv)

implies that the left group is killed by p and so K×p
v ⊂ Nm(L×

w);

� if v ∈ T it follows immediately from the fact that Lw = Kv;

� if v /∈ S ∪ T , Lw is unrami�ed over Kv and so the norm map Uw → Uv
is surjective.

Now we need to prove an auxiliary lemma.

Lemma 3.6. Let K be a local �eld with char(K) = 0 and n a positive

integer. Then

(K× : K×n) = n
|µn|
|n|

and if K is nonarchimedean

(UK : UnK) =
|µn|
|n|

where |µn| is the number of n-th roots of 1 in K and |n| is the absolute value
of n.
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Proof. If K = C, the �rst equation is just

1 = n
n

n2

If K = R and n is even, the �rst equation is just

2 = n
2

n

If K = R and n is odd, the �rst equation is just

1 = n
1

n

If K is nonarchimedean, the isomorphism K× ∼= UK × Z tells us that we
only need to prove the second equation. The exponential map de�nes an
isomorphism from a subgroup of �nite index of OK to a subgroup of �nite
index of UK and it implies

h(UK) = h(OK) = (OK : nOK) =
1

|n|

where the modules are considered over Z/nZ and it acts trivially. Finally

(UK : UnK) =
|Ker(NmZ/nZ(UK))|

|n|
=

|µn|
|n|

The following two lemmas are crucial to conclude the proof of the second
inequality.

Lemma 3.7. It holds

(IK,S ∪ T : E) = p2s

Proof. Since K contains a primitive p-th root of 1 and S contains all the
primes with non-trivial valuation on p, we have

(IK,S ∪ T : E) =
∏
v∈S

(K×
v : K×p

v ) =
∏
v∈S

p
|µp|
|p|v

=
p2s∏

v∈S
|p|v

= p2s

thanks to the product formula.

Lemma 3.8. It holds

(U(S ∪ T ) : K× ∩ E) = ps+t
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Proof. The unit theorem implies that

(U(S ∪ T ) : U(S ∪ T )p) = ps+t

and it is immediate to see that

U(S ∪ T )p ⊂ K× ∩ E

so we only need to prove the opposite inclusion. Let b ∈ K× ∩E, L := K[b
1
p ]

and
D :=

∏
v∈S

K×
v ×

∏
v∈T

Upv ×
∏

v/∈S ∪ T

Uv

To conclude we need to show that L = K and we split the proof into three
steps.
First step: D ⊂ Nm(IL). In order to prove the claim we take (av)v ∈ D and

we prove that any component is a norm from Kv[b
1
p ].

� v ∈ S: it is obvious since Kv[b
1
p ] = Kv;

� v ∈ T : it follows from the equality

(K×
v : NmKv[b

1
p ]) = [Kv[b

1
p ] : Kv]

where the latter divides p;

� v /∈ S ∪ T : it follows from the fact that Kv[b
1
p ]/Kv is an unrami�ed

extension.

Second step: D ·K× = IK . We observe that

IK,S/D ∼=
∏
v∈T

Uv/U
p
v

and we consider the obvious map

U(S) →
∏
v∈T

Uv/U
p
v

Its kernel is U(S) ∩ L×p and thanks to Kummer theory the order of
U(S)/U(S) ∩ L×p is pt. Then, since |p|v = 1 for v ∈ T , we have

(U(S) : U(S) ∩ L×p) =
∏
v∈T

(Uv : U
p
v )

and it implies that the considered map is surjective.
Consequently, IK,S = D · U(S) and �nally

IK = IS ·K× = D · U(S) ·K× = D ·K×
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Third step: L = K. By contradiction, we assume L ̸= K and, since L/K
is abelian and hence solvable, there exists a �eld K ′ such that K ⊂ K ′ ⊂ L
and K ′/K is cyclic and non-trivial. Now

D ⊂ Nm(IL) ⊂ Nm(IK′)

and so

IK = D ·K× = Nm(IK′) ·K×

Then the �rst inequality implies K ′ = K, a contradiction.

Finally, we know that (IK : K× ·Nm(IL)) divides (IK : K× · E) and

(IK : K× · E) = (K×IK,S ∪ T : K×E) =
(IK,S ∪ T : E)

(U(S ∪ T ) : K× ∩ E)

=
p2s

ps+t
= pr = [L : K]

It concludes the proof of the second inequality.

3.3.4 End of the proof

Lemma 3.9. If L/K is a �nite abelian extension of number �elds,

ϕL/K(a) = 1 for any a ∈ K×.

Proof. We are going to prove the lemma only in the case of sub�elds of
cyclotomic extensions. Then it can be proved in general thanks to [8, Lemma
8.5, pag. 222] and [8, Lemma 8.6, pag. 223]. First, we assume L = Q[ζm]
and K = Q, where m is a positive integer and ζm is a primitive m-th root
of 1. We can assume m = lr with l a prime positive integer.
Given a ∈ R× we have ϕ∞(a) = [sgn(a)].
Given a = ups ∈ Q×

p we have ϕl(a) = [u−1] if p = l and ϕp(a) = [ps] if p ̸= l.
We observe that

ϕ∞(−1) = [−1], ϕl(−1) = [−1], ϕp(−1) = [1]

ϕl(l) = [1], ϕp(l) = [1]

ϕq(q) = [q], ϕl(q) = [q−1], ϕp(q) = [1]

and thanks to these equalities we �nd that∏
ϕv(a) = 1
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for any a ∈ Q×. Then, the statement holds for any cyclotomic extension
L/K where L = K[ζm] thanks to the commutativity of the diagram

IK Gal(L/K)

IQ Gal(Q[ζm]/Q)

ϕL/K

NmK/Q

ϕQ[ζm]/Q

where the right vertical arrow is the restriction map. Now, if L/K is abelian
and it is contained in a cyclotomic extension M of K, the statement follows
from the fact that

ϕL/K = res ◦ ϕM/K

where res : Gal(M/K) → Gal(L/K) is just the restriction homomorphism.

Finally, we can conclude the proof. The �rst lemma of this subsection
tells us that K× ⊂ Ker(ϕL/K) and it is immediate to see that also
Nm(IL) ⊂ Ker(ϕL/K). Then ϕL/K is surjective and it induces a surjective
homomorphism

ϕL/K : IK/K× ·Nm(IL) → Gal(L/K)

Thanks to the second inequality it is an isomorphism.

3.4 Proof of the existence theorem

In this section we prove the existence theorem.

Theorem 3.6. Let K be a number �eld. If N is an open subgroup of �nite

index of CK , then there exists a unique �nite abelian extension L/K such

that Nm(CL) = N .

First, we need to prove the following lemmas.

Lemma 3.10. Let K be a number �eld. If U ≤ V is a norm group in CK
then so is V .

Proof. If U = Nm(CL) for a suitable �nite abelian extension L/K, the
Reciprocity law gives the isomorphism

CK/U ∼= Gal(L/K)

The image of V/U is a subgroup of Gal(L/K) and if M is its �xed �eld we
get

CK/V ∼= Gal(M/K)

and it implies V = Nm(CM ).
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Lemma 3.11. If p is a prime positive integer and K is a number �eld which

contains a primitive p-th root of 1, any open subgroup V of CK such that

CK/V is �nite and killed by p is a norm group.

Proof. Let S a �nite set of primes of K which contains

� all the in�nite primes;

� all the primes dividing p;

� a set of generators for Cl(K).

We �x also L := K[U(S)
1
p ] and

E :=
∏
v∈S

K×p
v ×

∏
v/∈S

Uv

We claim that K× ·E = K× ·Nm(IL). Obviously, (IK : K× ·Nm(IL)) = p|S|

and

(IK : K× · E) = (IK,S ·K× : E ·K×) =
(IK,S : E)

(IK,S ∩ K× : E ∩ K×)

=

∏
v∈S

(K×
v : K×p

v )

(U(S) : U(S)p)
=
p2|S|

p|S|
= p|S|

where the third equality follows from [8, Proposition 9.2, pag. 224]. Fur-
thermore, E ⊂ Nm(IL) because

� if v ∈ S, the isomorphism

K×
v /Nm(L×

w)
∼= Gal(Lw/Kv)

implies K×p
v ⊂ Nm(L×

w);

� if v /∈ S, Lw is unrami�ed over Kv and the norm map Uw → Uv is
surjective.

Then the claim is true and we denote by U the inverse image of V in IK .
Now, IpK ⊂ U and, since U is open,

∏
v∈S

1×
∏
v/∈S

Uv ⊂ U for a suitable �nite set

S of primes ofK. Then E ·K× ⊂ U and we can conclude because E ·K×/K×

is a norm group.

Lemma 3.12. If L/K is a �nite cyclic extension of number �elds, U is an

open subgroup of �nite index of CK and Nm−1
L/K(U) is a norm group, then

U is a norm group.
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Proof. We set U ′ := Nm−1
L/K(U) and, since it is a norm group, we �x M

a suitable �nite extension of L such that U ′ = NmM/L(CM ). We claim
that M/K is an abelian extension. Obviously M/K is Galois because U ′ is
invariant. Since

Gal(L/K) ∼= Gal(M/K)/Gal(M/L)

and Gal(L/K) is cyclic, we just need to prove that Gal(M/L) lies in the
center of Gal(M/K). We consider the Artin map

ϕM/L : CL → Gal(M/L)

and, since it is surjective, we only have to show that

ϕM/L(x) = σϕM/L(x)σ
−1 = ϕM/L(σx)

for any x ∈ CL and σ ∈ Gal(M/K). It follows immediately from the facts
that Ker(ϕM/L) = U ′ and NmL/K(σx/x) = 1 and so M/K is abelian.
Finally, NmM/K(CM ) ⊂ U and so U is a norm group.

Finally, we can conclude the proof of the existence theorem. We �x U an
open subgroup of CK of �nite index and we prove by induction on its index
that it is a norm group. The case n = 1 is obvious. For the inductive step,
let p be a prime which divides (CK : U) and, thanks to the previous lemma,
assume K contains a primitive p-th root of 1. There exists a subgroup V
of CK such that U ⊂ V and (CK : V ) = p and we know that it must be a
norm group, i.e. V = Nm(CL) for a suitable �nite abelian extension L/K.
If U ′ := Nm−1

L/K(U), the norm map induces an isomorphism CL/U
′ ∼= V/U

which implies that U ′ is a norm group by induction. Finally, the previous
lemma again implies that U is a norm group.

3.5 Global class �eld theory in terms of ideals

In this section we give a formulation of global class �eld theory in terms of
ideals without proving the results. It will be useful for applications in the
chapter about Complex Multiplication.

De�nition 3.8. Let K be a number �eld and S a �nite set of primes of K.

We denote by IK,S the free abelian group generated by the prime ideals that

are not contained in S.

De�nition 3.9. Let K be a number �eld. A modulus for K is a function

m : {primes of K} → Z≥0

which takes value 0 at complex primes, 0 or 1 at real primes and non-negative

values at �nite primes. We denote

m =
∏

p prime of K

pm(p)



60 CHAPTER 3. GLOBAL CLASS FIELD THEORY

Given a modulus m we denote as S(m) the set of primes which have a
positive value under m.
Now, if K is a number �eld and m is a modulus, we de�ne

Km,1 :=

{
a ∈ K× : ordp(a− 1) ≥ m(p) for all finite p dividing m

ap > 0 for all real p dividing m

}
It is easy to see that Km,1 injects into IK,S(m) and it leads to the following
de�nitions.

De�nition 3.10. Let K be a number �eld and m a modulus for K.

A subgroup of IK,S(m) which contains Km,1 is called a congruence subgroup

modulo m.
The ray class group modulo m is the quotient ClmK := IK,S(m)/Km,1.

A �nite abelian extension L/K which is unrami�ed at all primes not in the

support of m and such that Nm(IL,S(m)L) ⊂ Km,1 (where S(m)L is the set

of primes of L which lie over primes in S(m)) is called a ray class �eld

modulo m and it is denoted as K(m).

It is possible to prove the following.

Proposition 3.4. Let K be a number �eld and m a modulus for K. If a ray

class �eld K(m) for K modulo m exists, then it is unique.

Now, we want to de�ne the global Artin map for a �nite abelian extension
L/K. First of all, we recall that for any prime ideal B of L we can de�ne
its decomposition group as

D(B) := {σ ∈ Gal(L/K) : σB = B}

Furthermore, if B lies over a prime ideal p of K and it is unrami�ed over it
we have that

D(B) ∼= Gal(LB/Kp) ∼= Gal(l/k)

where l and k are the residue �elds of the completions, the �rst isomorphism
is de�ned by extending the automorphisms and the second one by considering
the action of the automorphisms on OL. We know that l and k are �nte,
hence Gal(l/k) is a cyclic group generated by x 7→ x|k|. We denote its inverse
image under the previous chain of isomorphisms as (p, L/K). Finally, we can
de�ne the global Artin map.

De�nition 3.11. Let L/K be a �nite abelian extension of number �elds and

S a �nite set of primes of K that contains all those which ramify in L. We

de�ne the global Artin map of L/K with respect to S as

ψL/K,S : IK,S → Gal(L/K),
∏

pni
i 7→

∏
(pi, L/K)ni

Now, we give the crucial notion of conductor for abelian extensions of
local and global �elds.
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De�nition 3.12. If L/K is a �nite abelian extension of local �elds we de�ne

its conductor c(L/K) as:

� c(L/K) = 0 if L and K are archimedean and equal;

� c(L/K) = 1 if L = C and K = R;

� c(L/K) = min{n ∈ N : 1 + mn
K ⊂ Nm(L×)} if L and K are nonar-

chimedean.

If L/K is a �nite abelian extension of number �elds we de�ne its conductor

c(L/K) as the modulus

c(L/K) : {primes of K} → Z≥0, v 7→ c(Lw/Kv)

It is well-de�ned because L/K is Galois and so the local conductors are in-

dependent of the choice of w.

It is possible to prove the following.

Proposition 3.5. Prime ideals in the support of the conductor of a �nite

abelian extension of number �elds L/K are exactly the prime ideals of K
which ramify in L.

Finally, we can state the main theorems of global class �eld theory in
terms of ideals.

Theorem 3.7. Let K be a number �eld and m a modulus for K. If H is

a congruence subgroup modulo m, then there exists a �nite abelian extension

L/K such that H = Km,1 ·Nm(IL,S(m)). In particular, a ray class �eld K(m)
for K modulo m exists.

Theorem 3.8. Let K be a number �eld, m a modulus for K and L/K a

�nite abelian extension. Then c(L/K) divides m if and only if L lies in

K(m).

Theorem 3.9. Let K be a number �eld, m a modulus for K and L/K a

�nite abelian extension contained in K(m). Then the global Artin map of

L/K induces an isomorphism

IK,S(m)/(Km,1 ·Nm(IL,S(m)L))
∼= Gal(L/K)

where S(m)L is the set of primes of L which lie over primes in S(m).

From the theorems we can deduce that we have an isomorphism

ClmK
∼= Gal(K(m)/K)

and we can also derive the following corollary.
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Corollary 3.2. Let K be a number �eld, m a modulus for K and set

Nm(ClL,m) := Km,1 ·Nm(IL,S(m)L)mod Km,1

for any abelian extension L/K contained in K(m).
There is a one-to-one correspondence between the set of �nite abelian exten-

sions of K contained in K(m) and the set of subgroups of ClmK given by the

map

L 7→ Nm(ClL,m)

It also has the following properties:

� L1 ⊂ L2 ⇔ Nm(ClL2,m) ⊂ Nm(ClL1,m);

� Nm(ClL1·L2,m) = Nm(ClL1,m) ∩Nm(ClL2,m);

� Nm(ClL1∩L2,m) = Nm(ClL1,m) ·Nm(ClL2,m).

Now, we can introduce the important de�nition of Hilbert class �eld.

De�nition 3.13. Let K be a number �eld. The Hilbert class �eld of K
is the maximal abelian unrami�ed extension of K. We denote it as HK .

It is immediate to see that the Hilbert class �eld is the ray class �eld of K
with respect to the trivial module. It implies that we have an isomorphism

ClK ∼= Gal(HK/K)

and, in particular, [HK : K] = hK where hK is the class number of K.

3.6 The principal ideal theorem

In this section we want to prove an important result in class �eld theory:
the principal ideal theorem. The statement is the following.

Theorem 3.10. Let K be a number �eld and HK its Hilbert class �eld.

Then every ideal of OK becomes principal in OHK
.

First of all, we recall some notions from group theory. Given a group G,
we denote by G′ its commutator subgroup and by Gab := G/G′ its abelian-
ization.

De�nition 3.14. We �x a group G, a subgroup H ≤ G of �nite index and

a right transversal T for H in G. We de�ne the transfer map as

VG,H : Gab → Hab, g mod G′ 7→
∏
t∈T

tg(t ◦ g)−1 mod H ′

where t ◦ g is the only element of T such that Htg = H(t ◦ g).
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Proposition 3.6. If G is a group and H ≤ G is a subgroup of �nite index,

then VG,H is a well-de�ned group homomorphism and it is independent of

the choice of a right transversal for H in G.

Proof. Let T and S be two di�erent right transversals for H in G. For any
t ∈ T there exists a unique s ∈ S such that Ht = Hs, i.e. for any t ∈ T
there exists a unqiue ht ∈ H such that htt ∈ S. We also observe that
Hhttg = H(t ◦ g), i.e. (htt) ◦ g = ht◦g(t ◦ g). Then VG,H is independent of
the choice of the right transversal because∏
s∈S

sg(s ◦ g)−1 mod H ′ =
∏
t∈T

httg(ht◦g(t ◦ g))−1 mod H ′

=
∏
t∈T

httg(t ◦ g)−1h−1
t◦g mod H

′

=
∏
t∈T

tg(t ◦ g)−1
∏
t∈T

ht
∏
t∈T

h−1
t◦g mod H

′

=
∏
t∈T

tg(t ◦ g)−1 mod H ′

Finally, VG,H is a group homomorphism:

VG,H(xy) =
∏
t∈T

t(xy)(t ◦ xy)−1 mod H ′

=
∏
t∈T

tx(t ◦ x)−1
∏
t∈T

(t ◦ x)y((t ◦ x) ◦ y)−1 mod H ′

=
∏
t∈T

tx(t ◦ x)−1
∏
s∈T

sy(s ◦ y)−1 mod H ′ = VG,H(x)VG,H(y)

Proposition 3.7. The transfer map VG,G′ : Gab → (G′)ab is the zero homo-

morphism for any �nitely generated group G such that (G : G′) <∞.

Proof. We consider a more general setting: we �x H ≤ G a subgroup of
�nite index and we prove that the diagram

Gab Hab

IG/I
2
G (IH + IHIG)/IHIG

VG,H

δ δ

S

is commutative, where IG (and, similarly, IH) is the kernel of the augmen-
tation map

Z[G] → Z,
∑
σ∈G

nσσ 7→
∑
σ∈G

nσ
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the vertical isomorphisms are the maps

δ(σ) = σ − 1

and, if T is a set of representatives of the right cosets of G/H containing 1,
we de�ne

S(x) = (
∑
t∈T

t)x

First, we prove that the maps δ are isomorphisms. We observe that the set

{(δσ)t : σ ∈ H, t ∈ T, t ̸= 1}

is a Z-basis of IH + IHIG since it generates it and

0 =
∑
σ,t

nσ,t(δσ)t =
∑
σ,t

nσ,tσt−
∑
σ,t

nσ,tt

implies that all the nσ,t = 0. If we consider the map

IH + IHIG → H, (δσ)t 7→ σ

it is immediate to see that it is surjective and a left inverse for δ. In the
settings of the diagram it is also injective because the equality

δσδ(σ′t) = δ(σσ′)t− δσ − (δσ′)t

implies that δσδ(σ′t) is sent to σσ′σ−1σ′−1 which lies in the commutator
subgroup.
Now, the diagram commutes if and only if

S(δσ mod I2G) =
∑
t∈T

δσt mod IHIG

where σt ∈ H, tσ = σtt
′ with t′ ∈ T . Then the equality

δt+ tδσ = δt′ + δσt + δσtδt
′

implies

S(δσ mod I2G) ≡
∑
t∈T

δσt ≡
∑
t∈T

tδσ ≡ (
∑
t∈T

t)δσ mod IHIG

and the claim is proved. Finally, to conclude the proof we need to prove that
if H = G′ then S is the zero map. It is shown in [10, Theorem 7.6, pag.
412].
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Proposition 3.8. If K ⊂ L ⊂ M is a tower of �nite abelian unrami�ed

extensions of number �elds such that Gal(M/K)′ = Gal(M/L), SK is a

�nite set of primes of K and SL is the set of primes of L that lie over them,

then the following diagram is commutative:

IK,SK
Gal(M/K)ab

IL,SL
Gal(M/L)ab

ψL/K

V

ψM/L

where the �rst vertical arrow is just extension of ideals and V := VGal(L/K),Gal(L/M).

Proof. Let p be a prime ideal in IK,SK
and let q1, ..., qr be the prime ideals

of L which lie over p. We write

Gal(M/K) =
⋃
i,j

Gal(M/L)τig
j

where g = (r,M/K) for a prime ideal r of M which lies over p and varying
j from 0 to m− 1 where m is the order of (p, L/K). Then, if qi = L ∩ τi(r),
we have

(qi,M/L) = (τi(r),M/L) = τig
mτ−1

i =
m−1∏
j=0

τig
jg(τig

j ◦ g)−1

Finally,

V ((p, L/K)) =
∏
i

(qi,M/L)

Finally, we consider a number �eld K and we call HK its Hilbert class
�eld and HHK

the Hilbert class �eld of HK . The extension HHK
/K is

unrami�ed and Galois and, since HK is the largest subextension of HHK

that is abelian over K, we also have

Gal(HHK
/K)′ = Gal(HHK

/HK)

Then we get the following commutative diagram:

Cl(K) Gal(HK/K)

Cl(HK) Gal(HHK
/HK)

ψHK/K

V
ψHHK

/HK

Horizontal arrows are isomorphisms and the map V is the zero map thanks
to one of the previous propositions. Then also the left vertical map is the
zero map and the proof of the theorem is concluded.
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3.7 An example: the Hilbert class �eld of Q(
√
−5)

As an example of the developed theory we want to compute the Hilbert class
�eld of the imaginary quadratic �eld K := Q(

√
−5) and, in particular, we

want to prove that it is L := Q(
√
5,
√
−1). The situation is described in the

following picture:

Q(
√
5,
√
−1)

Q(
√
−5) Q(

√
5) Q(

√
−1)

Q

where all the extensions are Galois of degree 2. It is well-known that

hK = 2 = [Q(
√
5,
√
−1) : Q(

√
−5)]

and obviously any Galois extension of degree 2 is abelian, so we just need to
prove that L/K is unrami�ed. We know that the only rational primes which
ramify in Q(

√
−5) are 2 and 5, while 5 is the only rational prime which

ramify in Q(
√
5) and 2 is the only one which ramify in Q(

√
−1). Now, we �x

a prime ideal p of OK and p a prime positive integer such that pZ = p ∩ Z
and we distinguish three cases to prove that p is unrami�ed in Q(

√
5,
√
−1):

� p = 2: in this case, p = (2, 1 +
√
−5) and pOK = p2. If

pOL := (

g∏
i=1

qi)
e

where the qi are the primes of L which lie over 2Z and their inertia
degrees over it are f , we have gef = 4. Since 2Z is rami�ed in K and
it is unrami�ed in Q(

√
5), the only possibilities are

g = 2, e = 2, f = 1

or
g = 1, e = 2, f = 2

In both these two cases p is unrami�ed in L;

� p = 5: we just proceed with an argument similar to that of the previous
case;

� p ̸= 2, 5: in this case pZ is unrami�ed in Q(
√
−5) and in Q(

√
−1).

Then the sub�eld of L/Q �xed by the inertia sugroup of its Galois
group relative to any prime ideal of L which lies over p contains them
and, then, it is just L, so pZ is unrami�ed in L and the same holds for
p.



Chapter 4

Elliptic curves

Theory of elliptic curves is one of the most important branches of the mod-
ern mathematics. The theory is mainly developed in the �eld of algebraic
geometry but it is strictly related and has a lot of consequences in number
theory, complex analysis and many more research areas. The most famous
example of application of the theory of elliptic curves is the proof of Fer-
mat's Last Theorem, which states that if x, y, z, n are positive integers such
that xn + yn = zn, xyz ̸= 0, then n = 1, 2. In this chapter we will see the
main de�nitions and results related to elliptic curves in order to de�ne ellip-
tic curves with complex multiplication and to use them to study class �eld
theory for imaginary quadratic �elds. In order to simplify the exposition
we will assume our curves to be de�ned over a �eld K with char(K) ̸= 2, 3
and we will work only with plane projective curves de�ned by a Weierstrass
equation.

4.1 Weierstrass equations

De�nition 4.1. Let K be a �eld. An elliptic curve E over K is a smooth

plane projective curve in P2(K) de�ned by a Weierstrass equation:

y2z = x3 + axz2 + bz3, a, b ∈ K

We observe that, taking {z = 0} as the hyperplane at in�nity, the a�ne
part of an elliptic curve is described by the equation y2 = x3 + ax + b and
the unique point at in�nity is (0, 1, 0). Furthermore, since elliptic curves are
smooth by de�nition, the Weierstrass equation must satisfy the condition
4a3 + 27b2 ̸= 0.

De�nition 4.2. If E/K is an elliptic curve de�ned by a Weierstrass equation

y2 = x3 + ax+ b, we de�ne

∆(E) := −16(4a3 + 27b2)

67



68 CHAPTER 4. ELLIPTIC CURVES

j(E) := −1728
(4a)3

∆(E)

The numbers ∆(E) and j(E) are called respectively the discriminant

and the j-invariant of E. Note that j(E) is well-de�ned because ∆(E) ̸= 0.
In order to have an idea of how elliptic curves look like over R, we plot

y2 = x3 + ax+ b

varying the parameters:

Lemma 4.1. Two elliptic curves

y2 = x3 + ax+ b

and

y2 = x3 + a′x+ b′

de�ned over a �eld K are isomorphic over Kal (an algebraic closure of K)

if and only if there exists λ ∈ (Kal)× such that a = λ4a′ and b = λ6b′.

Proof. See [14, Lecture 13, Theorem 13.13, pag. 5].

The name and the importance of the j-invariant come from the following
result.

Proposition 4.1. Two elliptic curves E1/K and E2/K de�ned over a �eld

K are isomorphic over Kal if and only if j(E1) = j(E2).
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Proof. First, we prove that if j(E1) = j(E2) then E1 and E2 are isomorphic.
Assume that E1 and E2 are de�ned respectively by the equations
y2 = x3 + ax+ b and y2 = x3 + a′x+ b′. The equality j(E1) = j(E2) implies
that a3b′2 = a′3b2. The isomorphism ϕ : E2 → E1 wanted will be of the form
ϕ(x′, y′) = (u2x′, u3y′) for a suitable u ∈ Kal. We distinguish the following
cases:

� a = 0 ⇒ b ̸= 0 ⇒ a′ = 0, we take u = ( bb′ )
1
6 ;

� b = 0 ⇒ a ̸= 0 ⇒ b′ = 0, we take u = ( aa′ )
1
4 ;

� ab ̸= 0 ⇒ a′b′ ̸= 0, we take u = ( aa′ )
1
4 = ( bb′ )

1
6 ;

Conversely, we assume that E1 and E2 are isomorphic over Kal. From the
previous lemma we know that there exists λ ∈ (Kal)× such that a = λ4a′

and b = λ6b′. Then:

j(E1) = 1728
(4a)3

16(4a3 + 27b2)
= 1728

λ12(4a′)3

16λ12(4a′3 + 27b′2)
= j(E2)

4.2 The group law of an elliptic curve

The goal of this section is to de�ne a group law on the points of an ellip-
tic curve. In order to do so, we �rstly recall the statement of the Bézout
intersection theorem.

Theorem 4.1. Given two plane projective curves over an algebraically closed

�eld, the number of points of intersection counted with multiplicity is equal

to the product of the degrees of the two curves.

Proof. See [3, Corollary 4.6, pag. 31].

In particular, we are interested in the number of points of intersection
between an elliptic curve and a line and the theorem tells us that they are
three if counted with multiplicity. Now, let E/K be an elliptic curve over an
algebraically closed �eld K and P and Q two points of E. We also set O to
be the unique point of E in the hyperplane at in�nity. We de�ne P ∗ Q to
be the third point of intersection of E with the line joining P and Q. Notice
that if P = Q the line joining them is just the tangent line at P . Then, we
de�ne

P +Q := (P ∗Q) ∗O

The most di�cult part in proving that it de�nes a group law is to show that
the operation is associative. We will prove it in a particular case and then
we will give all the instruments to prove it in general. First we recall the
Cayley-Bacharach Theorem.
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Theorem 4.2. Let K be an algebraically closed �eld and P1, ..., P8 distinct

points in P2(K) which belong to a non-singular cubic curve. Then there

exists a unique point P9 such that every cubic curve which contains P1, ..., P8

must contain also P9.

Proof. See [3, Exercise 4.13, pag. 32].

Lemma 4.2. Addition of points of an elliptic curve is associative, i.e.

(P +Q) +R = P + (Q+R)

for any P,Q,R ∈ E.

Proof. We take P,Q,R points of E and we set P ′ := P ∗Q and R′ := Q ∗R.
We prove the lemma only in the case the set

S := {P ′, Q,O,R′, P ′ ∗O,Q ∗R′, P ′ ∗Q,O ∗R′}

contains eight distinct points. We de�ne the following projective lines:

r := P ′ ∨Q, s := O ∨R′, t := (P ′ ∗O) ∨ (Q ∗R′)

r′ := P ′ ∨O, s′ := Q ∨R′, t′ := (P ′ ∗Q) ∨ (O ∗R′)

Now, the points of S are eight distinct points of E and using the previous
theorem we �nd that the ninth point is

(P ′ ∗O) ∗ (Q ∗R′) = (P ′ ∗Q) ∗ (O ∗R′)

This equality implies that

(O ∗ (P ∗Q)) ∗R = P ∗ (O ∗ (Q ∗R))

which is just
(P +Q) ∗R = P ∗ (Q+R)

and associativity follows.

Proposition 4.2. The set (E,+) of points of an elliptic curve with addition

is an abelian group with identity O.

Proof. From the previous Lemma we already know that the addition is as-
sociative.
Addition is commmutative:

P +Q = (P ∗Q) ∗O = (Q ∗ P ) ∗O = Q+ P

O is an identity for (E,+):

P +O = (P ∗O) ∗O = P
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Finally, if we de�ne −P := P ∗O, we �nd that

P + (−P ) = P + (P ∗O) = (P ∗ (P ∗O)) ∗O = O ∗O = O

because the tangent line to E at O has multiplicity three in O. So any
element has an opposite and hence (E,+) is an abelian group.

In order to help computations and to simplify some proofs in the next
sections, we give explicit algebraic formulas for the additive group law.

Proposition 4.3. Let E be an elliptic curve de�ned by an equation

y2 = x3 + ax+ b

Let P1 = (x1, y1) and P2 = (x2, y2) be points of E.
Then if x1 = x2 and y1 = −y2 we have P1 + P2 = O (in particular,

−P1 = (x1,−y1)).
Otherwise we have P1 +P2 = (m2 − x1 − x2, 2mx1 +mx2 −m3 − y1), where
m is calculated in the following way:

� if x1 ̸= x2, m := y2−y1
x2−x1 ;

� if x1 = x2 and y1 = y2 ̸= 0, m :=
3x21+a
2y1

.

Proof. See [11, Group Law Algorithm 2.3, pag. 53].

Notice that it is possible to prove the associativity of the group law by
using these formulas and making computations in the various cases. The
formulas also tell us that addition of points can be de�ned on elliptic curves
over a generic �eld K.

4.3 Isogenies

In this section, we introduce the notion of isogenies and we study their main
properties.

De�nition 4.3. Let E1/K and E2/K be two elliptic curves over a �eld K.

An isogeny α : E1 → E2 is a projective morphism from E1 to E2 which

sends the identity of E1 to the identity of E2.

Obviously composition of isogenies is again an isogeny.
Given α, β : E1 → E2 isogenies, we de�ne (α + β)(P ) := α(P ) + β(P ). We
want to prove it is again an isogeny.

Proposition 4.4. If α, β : E1 → E2 are isogenies, then α+β is an isogeny.
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Proof. Obviously, (α + β)(O) = α(O) + β(O) = O + O = O. In order to
prove that it is a morphism we just need to prove that, for any elliptic curve
E, the map

E × E → E, (P,Q) 7→ P +Q

is a morphism. The formulas of the previous section tell us that it is ev-
erywhere a morphism except eventually for couple of points of the following
kinds:

(P, P ), (P,−P ), (P,O), (O,P )

Then, if Q is any point of E, we de�ne

τQ : E → E, τQ(P ) = P +Q

and we observe that it is a morphism. Given two points Q1 and Q2 of E, the
map τ−1

Q2
◦τ−1

Q1
◦+◦(τQ1×τQ2) is again the addition map and it is everywhere

a morphism except eventually for couple of points of the following kinds:

(P −Q1, P −Q2), (P −Q1,−P −Q2), (P −Q1,−Q2), (−Q1, P −Q2)

In this way we can �nd a �nite number of maps that are the addition on
E × E and such that for any point of E at least one of these maps is a
morphism in it. Then the addition map is a morphism.

Now, we state some important properties of isogenies.

Proposition 4.5. Any non-zero isogeny is surjective.

Proof. See [11, Theorem 2.3, pag. 20]

Proposition 4.6. Any isogeny is a group homomorphism.

Proof. See [11, Theorem 4.8, pag. 71]

Proposition 4.7. Let E0, E1, E2 and E3 be elliptic curves and let

ϕ : E0 → E1, α, β : E1 → E2, ψ : E2 → E3

be non-zero isogenies. Then:

� α ◦ ϕ = β ◦ ϕ⇒ α = β;

� ψ ◦ α = ψ ◦ β ⇒ α = β.

Proof. Since the involved isogenies are non-zero (and, hence, surjective) we
have that

α ◦ ϕ = β ◦ ϕ⇒ (α− β) ◦ ϕ = 0 ⇒ α− β = 0 ⇒ α = β

The second statement follows similarly.
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The most important example of isogeny is the multiplication by m map,
with m ∈ Z. In particular, given an elliptic curve E, we de�ne

[m] : E → E, [m](P ) := mP

where mP is de�ned considering the group law on E.

Proposition 4.8. If E/K is an elliptic curve and m ∈ Z, m ̸= 0, then [m]
is a non-zero isogeny.

Proof. The statement is obvious for m = 1, since [1] is just the identity
map. Proceeding by induction we get that, if m > 1, [m + 1] = [m] + [1]
is an isogeny because it is the sum of two isogenies. Furthermore, [−1] is
an isogeny because it is just the map P 7→ −P , which is a morphism of
varieties from the formulas in the previous section (and obviously −O = O).
A similar induction argument will give us that [m] is an isogeny for any
m < 0. Now, we want to prove that [m] is non-zero for any m ̸= 0. It is
obvious for m = 1,−1 and since [mn] = [m] ◦ [n] we just need to prove it for
m = 2 and m odd. We consider P0 = (x0, y0) a generic point of E and we
observe that [2](P0) = O if and only if y0 = −y0 if and only if y0 = 0 if and
only if x30 + ax0 + b = 0. So there are only �nitely many points of E that
are killed by [2]. It implies that [2] is not constant and also that, if P is one
of these points, [m](P ) = P if m is odd, and so these maps are not constant
too.

This result immediately implies that [m] = [n] if and only if m = n for
any m,n ∈ Z.
Now, we want to de�ne the degree of an isogeny. In order to do so, we denote
by K(E) the function �eld of an elliptic curve over K and we observe that
any non-zero isogeny α : E1 → E2 between elliptic curves over K induces a
homomorphism of �elds α∗ : K(E2) → K(E1) de�ned as α∗(ϕ) = ϕ ◦ α. It
is injective, so we can see K(E1)/K(E2) as an extension of �elds and it is
possible to prove that it is �nite (see [11, Theorem 2.4, pag. 20]). Then we
have the following de�nition.

De�nition 4.4. Let E1 and E2 be elliptic curves de�ned over a �eld K and

α : E1 → E2 an isogeny. The degree of α is denoted as deg(α) and it is

just the degree of the �eld extension K(E1)/K(E2) if α is non-zero. If α is

constant we set deg(α) = 0.

It is an immediate consequence of this de�nition that the degree of the
composition of two isogenies is the product of their degrees.
Finally, we can de�ne the concept of dual isogeny which will be crucial in
the study of endomorphism rings of elliptic curves.

Theorem 4.3. For any isogeny α : E1 → E2 between two elliptic curves

there exists a unique isogeny α̂ : E2 → E1 such that α̂ ◦ α = [deg(α)].
The isogeny α̂ is called the dual isogeny of α.
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Proof. See [11, Theorem 6.1, pag. 81].

We observe that 0̂ = 0. Furthermore, the dual isogeny has the following
properties.

Proposition 4.9. For any α and β isogenies between elliptic curves E1 and

E2, γ isogeny between E2 and E3 and m ∈ Z, the following properties hold:

1. [m] ◦ α = α ◦ [m];

2. α ◦ α̂ = [deg(α)];

3. α̂+ β = α̂+ β̂;

4. γ̂ ◦ α = α̂ ◦ γ̂;

5. [̂m] = [m];

6. deg([m]) = m2;

7. deg(α) = deg(α̂);

8. ˆ̂α = α.

Proof.

1. It follows trivially from the fact that α is a group homomorphism;

2. α ◦ α̂ ◦ α = α ◦ [deg(α)] = [deg(α)] ◦ α⇒ α ◦ α̂ = [deg(α)];

3. See [11, Theorem 6.2, pag. 83];

4. α̂ ◦ γ̂ ◦ γ ◦ α = α̂ ◦ [deg(γ)] ◦ α = [deg(γ)] ◦ [deg(α)] = [deg(γ ◦ α)];

5. We proceed by induction. The statement is clear for m = 0, 1. If the
statement is true for m ≥ 1, then

̂[m+ 1] = ̂[m] + [1] = [̂m] + [̂1] = [m] + [1] = [m+ 1]

A similar argument gives the proof for m < 0;

6. [deg([m])] = [̂m] ◦ [m] = [m] ◦ [m] = [m2] ⇒ deg([m]) = m2;

7. [deg(α)] ◦ [deg(α)] = [deg(α)2] = [deg([deg(α)])] = [deg(α ◦ α̂)]
= [deg(α)deg(α̂)] = [deg(α)] ◦ [deg(α̂)]

⇒ deg(α) = deg(α̂);

8. α ◦ α̂ = [deg(α)] = [deg(α̂)].



4.4. ENDOMORPHISM RINGS AND ALGEBRAS 75

4.4 Endomorphism rings and algebras

De�nition 4.5. Let K be a �eld and E1/K, E2/K two elliptic curves. The

set Hom(E1, E2) of isogenies from E1 to E2 is a group under addition.

If E/K is an elliptic curve, End(E) := Hom(E,E) is the endomorphism

ring of E (multiplication is given by composition of isogenies).

We will consider End(E) as a Z-algebra. Recalling the results of the
previous section we know that charEnd(E) = 0, since Z injects into it via
the map m 7→ [m]. The surjectivity of non-zero isogenies also tells us that
End(E) has no zero divisors. We observe that

αα̂ = [deg(α)] ∈ Z

and

α+ α̂ = 1− αα̂− (1− α)(1− α̂) ∈ Z

so any enodomorphism α is a root of the polynomial

x2 − (α+ α̂)x+ αα̂ ∈ Z[x]

and then End(E) is integral over Z.
Furthermore, the map ·̂ : End(E) → End(E) is an involution of rings.

De�nition 4.6. Let E/K be an elliptic curve. The Q-algebra

End0(E) := End(E)⊗Z Q

is called the endomorphism algebra of E.

From the properties of the tensor product we know that End(E) and Q
injects into End0(E) with intersection Z. Since Q is the fraction �eld of Z
all the elements of the endomorphism algebra can be written as pure tensors
and so, with an abuse of notation, as qα with q ∈ Q and α ∈ End(E). We
also have that qα = αq for any α ∈ End0(E) and q ∈ Q. We can extend the
map ·̂ to End0(E) by setting q̂α := qα̂. The map

·̂ : End0(E) → End0(E)

is called the Rosati involution of E. We also de�ne the trace map

Tr(α) := α+ α̂

and the norm map

Nm(α) := αα̂

Proposition 4.10. The following properties hold:
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1. ˆ̂α = α, α̂+ β = α̂ + β̂, α̂β = β̂α̂, q̂ = q for any α, β ∈ End0(E),
q ∈ Q.

2. The norm map is multiplicative and it takes values in Q≥0. It satis�es

Nm(α) = Nm(α̂) and Nm(α) = 0 if and only if α = 0.

3. The trace map is a Q-linear map with values in Q and it satis�es

Tr(α) = Tr(α̂). Furthermore, Tr(α) = 0 ⇒ α2 ∈ Q≤0.

Proof.

1. We write α = qϕ, β = rψ with q, r ∈ Q and ϕ, ψ ∈ End(E). Take
s ∈ Z such that sq, sr ∈ Z. Then:
ˆ̂α =

̂̂
qϕ = q

ˆ̂
ϕ = qϕ = α;

α̂+ β = ̂1
s (sqϕ+ srψ) = 1

s (sq̂ϕ+ sr̂ψ) = α̂+ β̂;

α̂β = q̂rϕψ = qrϕ̂ψ = qrψ̂ϕ̂ = β̂α̂;
q̂ = q̂1 = q1̂ = q1 = q.

2. In the same settings of the previous point we have:
Nm(α) = qϕq̂ϕ = q2[deg(ϕ)] ∈ Q≥0;

Nm(αβ) = αβα̂β = αββ̂α̂ = αNm(β)α̂ = Nm(α)Nm(β);
Nm(α̂)α = αNm(α̂) = αα̂ ˆ̂α = αα̂α = Nm(α)α⇒ Nm(α̂) = Nm(α);
Nm(α) = 0 ⇒ q2[deg(ϕ)] = 0 ⇒ q = 0 or ϕ = 0 ⇒ α = 0.

3. If α, β ∈ End0(E) and q, r ∈ Q, then:
Tr(α) = α+α̂ = 1−αα̂−(1−α)(1−α̂) = 1−Nm(α)−Nm(1−α) ∈ Q;
Tr(qα+ rβ) = qα+ rβ + ̂qα+ rβ = q(α+ α̂) + r(β + β̂)

= qTr(α) + rTr(β);

Tr(α̂) = α̂+ ˆ̂α = α̂+ α = α+ α̂ = Tr(α);
Tr(α) = 0 ⇒ α̂ = −α⇒ Nm(α) = αα̂ = −α2

⇒ α2 = −Nm(α) ∈ Q≤0.

Now, our purpose is to classify the endomorphism rings of elliptic curves.
It is the starting point for the study of elliptic curves with complex mul-
tiplication. We start by classifying the endomorphism algebras of elliptic
curves.

Theorem 4.4. Let E/K be an elliptic curve over a �eld K. Then End0(E)
is isomorphic to one of the following:

� the �eld of rationals Q;

� an imaginary quadratic �eld;
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� a quaternion algebra over Q, i.e. a Q-algebra which admits a Q-basis
{1, α, β, αβ} such that α2, β2 ̸= 0 and αβ = −βα.

Proof. If End0(E) = Q there is nothing to prove.
Now, we assume there is α ∈ End0(E) which is not in Q. We can assume

Tr(α) = 0 (we can eventually substitute it with α − Tr(α)
2 ) and it implies

that α2 ∈ Q≤0. So, if End0(E) = Q(α), then it is an imaginary quadratic
�eld.
Finally, we assume there is β which is not in Q(α). As we did before, we

can assume Tr(β) = 0 and, by eventually replacing β with β− Tr(αβ)
2α2 α, also

that Tr(αβ) = 0. Then α = −α̂, β = −β̂ and it implies

αβ = −α̂β = −β̂α̂ = −βα

It follows that Q(α, β) is spanned by {1, α, β, αβ} and to prove that it is
a quaternion algebra we just need to see that these elements are linearly
independent. It is clear for 1, α and β, so we assume by contradiction that
αβ = a+ bα+ cβ where the coe�cients are in Q. It implies that

(α− c)β = a+ bα⇒ β =
a+ bα

α− c
∈ Q(α)

but we know that it is not true.
The last thing to prove is that in the last case any γ ∈ End0(E) belongs
to Q(α, β). By contradiction we assume the opposite and, as we did before,
we assume Tr(γ) = Tr(αγ) = 0, which implies αβγ = −βαγ = βγα. So α
commutes with βγ and we claim that whenever δ /∈ Q and ρ are elements
of the endomorphism algebra which commute, ρ ∈ Q(δ). The statement will
follow immediately.
As usual, we can assume Tr(δ) = Tr(ρ) = Tr(δρ) = 0 (we substitute α with
α− a and β with β − b− cα for suitable a, b, c ∈ Q) which implies
δρ = −ρδ and, since δ and ρ commute, we have δρ = 0. So ρ = 0 ∈ Q(δ).

Corollary 4.1. Let E/K be an elliptic curve over a �eld K. Then End(E)
is isomorphic to one of the following:

� the ring of integers Z;

� an order in an imaginary quadratic �eld;

� an order in a quaternion algebra over Q (a subring which is also a free

Z-module of rank 4).

Proof. We only need to prove that End(E) is a free Z-module of rank equal
to the Q-dimension of End0(E): the statement follows because Z is the only
free Z-module of rank 1 which is also a subring of Q and by de�nition in the
other two cases. We observe that it is possible to choose a Q-basis {e1, ..., er}
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of End0(E) (where r is its dimension) such that its elements are contained
in End(E) and Tr(eiej) = 0 whenever i ̸= j. Then, for any Z-module A
contained in End0(E) we set

A∗ := {α ∈ End0(E) : Tr(αϕ) ∈ Z ∀ ϕ ∈ A}

It is easy to see that A∗ is a Z-module too and that A ⊂ B ⇒ B∗ ⊂ A∗.
Now, we take A := ⟨e1, ..., er⟩Z and we observe that

A ⊂ End(E) ⊂ End(E)∗ ⊂ A∗

If we take α = a1e1 + ...+ arer ∈ A∗ with ai ∈ Q, then

Tr(αei) = aiTr(e
2
i ) ∈ Z

and this implies that ai is an integer multiple of 1
Tr(e2i )

. Finally, we get that

{ e1
Tr(e21)

, ..., er
Tr(e2r)

} is a Z-basis of A∗ and from the previous chain of inclusions

we deduce that End(E) is a free Z-module of rank r.

4.5 Elliptic curves over C

The last section of this chapter is devoted to elliptic curves de�ned over C.
We start with some de�nitions.

De�nition 4.7. A lattice Λ in C is a discrete additive subgroup of C that

is free of rank 2 as Z-module. If ω1 and ω2 are two Z-generators of Λ we

can write Λ = [ω1, ω2].
A fundamental parallelogram for a lattice Λ (related to a basis {ω1, ω2})
is a set of the form {x+ tω1 + rω2 : t, r ∈ R, 0 ≤ t, r < 1}.
Two lattices Λ1 and Λ2 are said to be homotetic if there exists λ ∈ C
di�erent from zero such that Λ1 = λΛ2.

De�nition 4.8. A meromorphic function f on the complex plane is called

an elliptic function for a lattice Λ if f(z + ω) = f(z) for any ω ∈ Λ and

any z ∈ C where the function is de�ned.

The order of an elliptic function is the number of its poles in a fundamental

parallelogram of Λ counted with multiplicity.

We immediately observe that the well-known Liouville's Theorem implies
that holomorphic elliptic functions are constant. It is also possible to prove
that the order of an elliptic function also coincides with the number of zeros
in a fundamental parallelogram counted with multiplicity (see [14, Lecture
14, Theorem 14.18, pag. 7]).

De�nition 4.9. If Λ is a lattice of C and k ∈ Z, k > 1, we de�ne:
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� the Eisentstein series of weight 2k as

G2k(Λ) :=
∑

ω∈Λ,ω ̸=0

1

ω2k

� the Weierstrass ℘-function as

℘(z; Λ) :=
1

z2
+

∑
ω∈Λ,ω ̸=0

(
1

(z − ω)2
− 1

ω2

)

Proposition 4.11. The following properties hold:

1. G2k(Λ) converges absolutely for all k > 1;

2. ℘(z; Λ) is an even elliptic function of order 2 that is everywhere holo-

morphic outside Λ;

3. ℘′(z; Λ) = −2
∑
ω∈Λ

1

(z − ω)3
is an odd elliptic function of order 3 that

is everywhere holomorphic outside Λ.

Proof.

1. We �x d as the minimum distance between elements of Λ. We want
to estimate the number of lattice points ω such that r ≤ |ω| < r + d

2
for r a positive real number. In order to do so, we observe that the
radial projections of two distinct points of Λ on the circumference
|z| = r must be separated by an arch whose length is, at least, d

2 .
So we �nd that the number of lattice points we are interested in is
bounded by 4πr

d . Extending the argument to the case of an annulus
of width 1, we immediately see that the number of lattice points ω
such that n ≤ |ω| < n + 1 for n a positive integer is bounded by
c(n+ 1) := 8π

d2
(n+ 1).

Then,
∑

ω∈Λ,|ω|≥1

1

|ω|2k
≤

∞∑
n=1

c(n+ 1)

n2k
<∞.

The statement follows because∑
ω∈Λ,ω ̸=0

1

ω2k
=

∑
ω∈Λ,|ω|≥1

1

|ω|2k
+

∑
ω∈Λ,0<|ω|<1

1

|ω|2k

and the second summation is �nite.

2. First of all we prove that the series de�ning ℘ converges uniformly
on every compact subset C of C ∖ Λ. Since C is compact we can �x
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r > 0 such that |z| ≤ r for any z ∈ C. Furthermore, for almost all the
elements ω ∈ Λ we have |ω| ≥ 2r. Then,∣∣∣∣ 1

(z − ω)2
− 1

ω2

∣∣∣∣ = ∣∣∣∣ z(2ω − z)

ω2(z − ω)2

∣∣∣∣ ≤ r(|2ω|+ | − z|)
|ω|2(|ω| − |z|)2

≤ 10r

|ω|3

and we see that it converges with an argument similar to that used
in the previous point. The uniform convergence follows. Then, ℘ is
holomorphic outside Λ and from the formula we see that it has poles
of order 2 on points of Λ. It is easy to see that it is periodic: if ω0 ∈ Λ,
then

℘(z + ω0) =
1

(z + ω0)2
+

∑
ω∈Λ,ω ̸=0

(
1

(z + ω0 − ω)2
− 1

ω2
)

=
1

z2
+

∑
ω′∈Λ,ω′ ̸=0

(
1

(z − ω′)2
− 1

ω′2 ) = ℘(z)

Finally, ℘ is even:

℘(−z; Λ) = 1

(−z)2
+

∑
ω∈Λ,ω ̸=0

(
1

(−z − ω)2
− 1

ω2
)

=
1

z2
+

∑
−ω∈Λ,ω ̸=0

(
1

(−z + ω)2
− 1

ω2
) = ℘(z; Λ)

3. The formula for ℘′ follows immediately from the de�ning formula for
℘. Since ℘ is an elliptic function that is holomorphic outside Λ, the
same holds for its derivative and from the formula we see that it has
poles of order 3 on points of Λ. Finally, ℘′ is odd:

℘′(−z; Λ) = −2
∑
ω∈Λ

1

(−z − ω)3
= −2

∑
−ω∈Λ

1

(−z + ω)3
= −℘′(z; Λ)

Given a lattice Λ of C, we de�ne

g2(Λ) := 60G4(Λ)

g3(Λ) := 140G6(Λ)

∆(Λ) := g2(Λ)
3 − 27g3(Λ)

2

j(Λ) := 1728
g2(Λ)

3

∆(Λ)
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where ∆(Λ) and j(Λ) are called respectively the discriminant and the
j-invariant of the lattice. We will prove soon that the j-invariant is well-
de�ned.
Then, we de�ne EΛ to be the elliptic curve over C de�ned by the equation:

y2 = 4x3 − g2(Λ)x− g3(Λ)

We see that this curve could be written in Weierstrass form as

y2 = x3 − g2(Λ)

4
x− g3(Λ)

4

In particular, we see that ∆(EΛ) = ∆(Λ). These de�nitions are justi�ed by
the following results.

Lemma 4.3. Given a lattice Λ, the function ℘ has the following Laurent

series at z = 0:

℘(z) =
1

z2
+

∞∑
n=1

(2n+ 1)G2n+2(Λ)z
2n

Proof. See [14, Lecture 14, Theorem 14.28, pag. 11].

Proposition 4.12. For any z /∈ Λ we have that

℘′(z)2 = 4℘(z)3 − g2(Λ)℘(z)− g3(Λ)

Proof. The Laurent expansion of ℘ at z = 0 gives the following:

� ℘(z) = 1
z2

+ 3G4(Λ)z
2 + 5G6(Λ)z

4 + · · ·

� ℘′(z) = − 2
z3

+ 6G4(Λ)z + 20G6(Λ)z
3 + · · ·

� ℘(z)3 = 1
z6

+ 9G4(Λ)
z2

+ 15G6(Λ) + · · ·

� ℘′(z)2 = 4
z6

− 24G4(Λ)
z2

− 80G6(Λ) + · · ·

We set f(z) := ℘′(z)2 − 4℘(z)3 + g2(Λ)℘(z) + g3(Λ) and, using the previous
formulas, we �nd that f is an elliptic function such that f(0) = 0, hence it
is also holomorphic because ℘ and ℘′ have poles only on points of Λ. Then
f is constant and so it is identically zero.

Proposition 4.13. ∆(Λ) ̸= 0 for any lattice Λ. In particular, EΛ is smooth.

Proof. First of all we observe that the discriminant of the polynomial

f(x) := 4x3 − g2(Λ)x− g3(Λ)
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is equal to 16∆(Λ), so we just need to prove that f(x) has three distinct
roots. If Λ = [ω1, ω2], z1 = ω1

2 , z2 = ω2
2 and z3 = ω1+ω2

2 , then we have
f(℘(zi)) = 0 for any i. Indeed,

f(℘(zi)) = 4℘(zi)
3 − g2(Λ)℘(zi)− g3(Λ) = ℘′(zi)

2

and

℘′(zi) = ℘′(zi − 2zi) = ℘′(−zi) = −℘′(zi) ⇒ ℘′(zi) = 0

Now, the function z 7→ ℘(z) − ℘(zi) is elliptic of order 2 and so it has two
zeros counted with multiplicity. Its derivative in zi is ℘

′(zi) = 0 so it is a
double zero and in particular it is the only zero of the de�ned function. So
the roots of f are distinct.

Theorem 4.5. The map ΦΛ : C/Λ → EΛ de�ned by ΦΛ(z) = (℘(z), ℘′(z))
if z /∈ Λ and ΦΛ(z) = O otherwise is an isomorphism of additive groups.

Proof. The map is obviously well-de�ned. We only prove that the given
function is a bijection.

� ΦΛ is injective: assume ΦΛ(z1) = ΦΛ(z2) with z1, z2 in a fundamental
parallelogram. We have to distinguish two cases.
If ℘′(z1) ̸= 0, we consider the function z 7→ ℘(z)−℘(z1) = ℘(z)−℘(z2).
Since it is an elliptic function of order 2 its zeros are ±z1 and we �nd
that z1 = z2 or z1 = −z2. If the latter holds,

℘′(z1) = ℘′(−z2) = −℘′(z2) = −℘′(z1) ⇒ ℘′(z1) = 0

contrary to our assumption, so z1 = z2.
If ℘′(z1) = 0, ΦΛ(z1) is a point of order 2 and from the proof of
the previous proposition we know that the same holds for z1. Since
℘(z1) = ℘(z2), again the proof of the last proposition implies that
z1 = z2.

� ΦΛ is surjective: we �x (x0, y0) ∈ EΛ and we consider the map
z 7→ ℘(z)−x0. It is an elliptic function of order 2, so we can �x z0 ∈ C×

such that ℘(z0) = x0. By eventually replacing z0 with its opposite we
�nd ΦΛ(z0) = (x0, y0).

For a complete proof see [14, Lecture 15, Theorem 15.1, pag. 1].

Finally, we state the Uniformization Theorem.

Theorem 4.6. If E/C is a complex elliptic curve, then there exists a complex

lattice Λ such that E = EΛ.

Proof. See [14, Lecture 15, Corollary 15.12, pag. 8].
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Now, we put our attention on the j-invariant of a lattice. First we see
that

j(EΛ) = −1728
−g2(Λ)3

∆(EΛ)
= 1728

g2(Λ)
3

∆(Λ)
= j(Λ)

Proposition 4.14. Two lattices Λ1 and Λ2 are homotetic if and only if they

have the same j-invariant. In particular, Λ1 and Λ2 are homotetic if and

only if EΛ1 and EΛ2 are isomorphic.

Proof. We assume Λ1 = λΛ2 with λ ∈ C×. Then

j(Λ1) = j(λΛ2) = 1728
g2(λΛ2)

3

∆(λΛ2)
= 1728

λ12g2(Λ2)
3

λ12∆(Λ2)
= j(Λ2)

Conversely, we assume j(Λ1) = j(Λ2). The corresponding elliptic curves
have the same j-invariant and so they are isomorphic. Then we know that
there exists λ ∈ C× such that

g2(Λ2) =
g2(Λ1)

λ4
= g2(λΛ1), g3(Λ2) =

g3(Λ1)

λ6
= g3(λΛ1)

In order to conclude we just need to show that ℘(z; Λ), and hence Λ because
it is the set of poles of ℘, is completely determined by the values of g2(Λ)
and g3(Λ) for any lattice Λ. We know that

℘′(z)2 = 4℘(z)3 − g2(Λ)℘(z)− g3(Λ) ⇒ 2℘′(z)℘′′(z) = 12℘(z)2℘′(z)− g2(Λ)℘
′(z)

⇒ ℘′′(z) = 6℘(z)2 − g2(Λ)/2

and, if we put an := (2n+ 1)Gn+2, the Laurent series of ℘ at z = 0 is

℘(z) =
1

z2
+

∞∑
n=1

anz
2n

Then, comparing the coe�cients of z2n we �nd that

(2n+ 2)(2n+ 1)an+1 = 6(
n−1∑
k=1

akan−k + 2an+1)

and it implies that any coe�cient is determined by the previous ones. Since
a1 = g2(Λ)/20 and a2 = g3(Λ)/28 our claim is proved.

Now, we observe that C/Λ has a natural structure of complex torus if Λ
is a lattice. We want to de�ne what is a morphism of complex tori and to
state a correspondence between them and isogenies between the associated
elliptic curves.
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De�nition 4.10. If Λ1 and Λ2 are complex lattices, we say that

ϕ : C/Λ1 → C/Λ2

is a morhpism of complex tori if ϕ(0) = 0 and there exists a holomorphic

function f : C → C such that π2 ◦ f = ϕ ◦ π1 (where π1 and π2 are the

natural projections, πi : C → C/Λi).

Proposition 4.15. Let Λ1 and Λ2 be complex lattices. Then:

1. The map

Φ : {α ∈ C : αΛ1 ⊂ Λ2} → {morphisms fromC/Λ1 toC/Λ2}, α 7→ ϕα

where ϕα(z+Λ1) = αz+Λ2 is an isomorphism of additive groups (and

also of rings if Λ1 = Λ2).

2. The map

Ψ : {α ∈ C : αΛ1 ⊂ Λ2} → Hom(EΛ1 , EΛ2), α 7→ ψα

where ψα(P ) = ΦΛ2 ◦ϕα◦Φ−1
Λ1

(P ) is an isomorphism of additive groups

(and also of rings if Λ1 = Λ2).

Proof. We prove only the �rst statement.
Φ is well-de�ned: obviously ϕα is a morphism of complex tori because the
multiplication by α is holomorphic in C. Furthermore, ϕα(0) = 0 and it is
well-de�ned because if ω ∈ Λ1, then αω ∈ Λ2.
Φ is a group homomorphism: for any z ∈ C we have

ϕα+β(π1(z)) = π2((α+ β)z) = π2(αz) + π2(βz) = (ϕα + ϕβ)(π1(z))

If Λ1 = Λ2, Φ is a ring homomorphism: for any z ∈ C we have

ϕαβ(π(z)) = π(αβz) = ϕα(π(βz)) = (ϕαϕβ)(π(z))

Φ is injective: we assume that ϕα = ϕβ . Then (α− β)z ∈ Λ2 for any z ∈ C
and so α− β = ((α− β)z)′ = 0 because the map z 7→ (α− β)z is continuous
from a connected space (C) to a discrete one (Λ2) and so it is constant.
Φ is surjective: we �x ϕ : C/Λ1 → C/Λ2 a morphism of complex tori and
f : C → C a holomorphic function such that π2 ◦ f = ϕ ◦ π1. Now, for any
ω ∈ Λ1 we de�ne the holomorphic function gω(z) := f(z + ω)− f(z). Since
π2(gω(z)) = ϕ(π1(z + ω))− ϕ(π1(z)) = 0, the image of gω(z) is contained in
Λ2 and so it is constant. It implies f ′(z + ω) = f ′(z) for any z ∈ C, ω ∈ Λ1,
so f ′ is holomorphic and bounded, hence constant by Liouville's Theorem.
Finally, we obtain that f(z) = αz + β with α, β ∈ C. We can conclude
because π2(β) = π2(f(0)) = ϕ(π1(0)) = ϕ(0) = 0 and so β ∈ Λ2.
For a proof of the second statement see [14, Lecture 16, Theorem 16.4, pag.
4].
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We can immediately see that ϕα is a group homomorphism for any α ∈ C
such that αΛ1 ⊂ Λ2. Then the �rst point of the previous proposition imme-
diately implies that every morphism of complex tori is also a group homo-
morphism.
Now we prove that conjugation in C and dualization in End(EΛ) have the
same e�ects if we consider the isomorphism described in the previous propo-
sition (in the case Λ1 = Λ2).

Proposition 4.16. Let Λ be a complex lattice. Then for every ψ ∈ End(EΛ)
we have that

Ψ−1(ψ) = α⇒ Ψ−1(ψ̂) = ᾱ

Proof. We consider the polynomial p(x) := x2 − Tr(ψ)x + Nm(ψ). We
know that p ∈ Z[x] and p(x) = (x− ψ)(x− ψ̂) in End(EΛ). Then, if we set
β = Ψ−1(ψ̂), we get that α and β are the roots of p in C. We distinguish
two cases:

� α ∈ Z: it implies that also ψ ∈ Z and we know that ψ̂ = ψ. So
β = α = ᾱ;

� α is a complex algebraic integer in an imaginary quadratic �eld: it
follows immediately that β = ᾱ.

From now on, when the endomorphism ring of a complex elliptic curve E
is an order in an imaginary quadratic �eld, we will consider it as a subring
of C via the inclusion

[·] : End(E) ↪→ C, [ψ] = Ψ−1(ψ)

We say that the pair (E, [·]) is normalized.
We conclude our treatment of complex elliptic curves with an useful corollary
of the previous results.

Corollary 4.2. If E is a complex elliptic curve then End(E) is commutative.

Proof. If E is a complex elliptic curve, the Uniformization Theorem tells us
that there exists a complex lattice Λ such that E = EΛ. Then, End(E)
is isomorphic to {α ∈ C : αΛ ⊂ Λ}. The latter is a subring of C, so it is
commutative and the same holds for the former.

So, for a complex elliptic curve End(E) is isomorphic to Z or to an
imaginary quadratic order. It will be the starting point for the theory of
complex multiplication that we will see in the next chapter.
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Chapter 5

Complex Multiplication

In the previous chapter we proved the classi�cation Theorem for the endo-
morphism ring of an elliptic curve. In particular we saw that if E is an elliptic
curve then End(E) is isomorphic to Z, an order in an imaginary quadratic
�eld or an order in a quaternion algebra over Q. We also proved that for
a complex elliptic curve only the �rst two cases are possible. Starting from
these results, we give the following important de�nition.

De�nition 5.1. Let E/K be an elliptic curve over a �eld K. Then we say

that E has complex multiplication if End(E) ≇ Z.

In particular, a complex elliptic curve has complex multiplication if and
only if its endomorphism ring is an order in an imaginary quadratic �eld.
The main purpose of this chapter is to use the theory of elliptic curves with
complex multiplication to study class �eld theory in detail for the case of an
imaginary quadratic �eld.

5.1 Proper ideals

We observe that any fractional ideal of an order in an imaginary quadratic
�eld is a lattice in C.

De�nition 5.2. Let O be an order in an imaginary quadratic �eld and a a

fractional O-ideal. We say that a is proper if O = {α ∈ C : αa ⊂ a}.

Since the inclusion O ⊂ {α ∈ C : αa ⊂ a} always holds and the latter is
an order we see that any fractional OK-ideal is proper.

Proposition 5.1. Let K be an imaginary quadratic �eld, O an order of K
and Λ a lattice in C. Then End(EΛ) = O if and only if Λ is homotetic to a

(fractional) proper O-ideal.

Proof. If Λ is homotetic to a proper O-ideal, obviously End(EΛ) = O.
In order to prove the converse, we assume Λ = [1, τ ] and O = [1, ω].

87
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End(EΛ) = O implies ω ∈ Λ and so there exist a, b ∈ Z, b ̸= 0 such that
ω = a + bτ . Then bΛ = [b, bτ ] = [b, ω − a] ⊂ [1, ω] = O, so Λ is homotetic
to a sublattice of O and it is closed under multiplication by O, i.e. it is an
O-ideal. Obviously, it is also proper.

Proposition 5.2. Let O be an order in an imaginary quadratic �eld. A

(fractional) O-ideal a is proper if and only if it is invertible.

Proof. If a is invertible and λ ∈ C×, then

λa ⊂ a ⇒ λaa−1 ⊂ aa−1 ⇒ λO ⊂ O ⇒ λ ∈ O

and so a is proper. For the converse, we �x a := α[1, τ ] a proper O-ideal,
O := [1, ω] and ax2+ bx+ c ∈ Z[x] to be the minimal polynomial of τ . Since
a and [1, τ ] are homotetic we have that O = {λ ∈ C : λ[1, τ ] ⊂ [1, τ ]} and
it implies ω ∈ [1, τ ], so we can assume ω = nτ with n ∈ Z. Furthermore,
ωτ ∈ [1, τ ] and then nτ2 ∈ [1, τ ] and a|n. Obviously aτ [1, τ ] ⊂ [1, τ ] and
so aτ ∈ O = [1, nτ ], which implies a = n and O = [1, aτ ]. Now, if we set
ā := ᾱ[1, τ̄ ] we �nd

aā = N(α)[1, τ, τ̄ , τ τ̄ ] =
N(α)

a
[a, aτ,−b, c] = N(a)[1, aτ ] = N(a)

where the third equality follows from gcd(a, b, c) = 1 and

N(a) = [O : a] =
1

a
[[1, aτ ] : α[1, aτ ]] =

1

a
[O : αO] =

N(α)

a

Finally, a is an invertible O-ideal with inverse 1
N(a) ā.

Thanks to the previous results we can see that for any imaginary quadratic
orderO, the Picard group Pic(O) coincides with the set of (fractional) proper
O-ideals modulo homotety. Indeed, in any class of Pic(O) we can �nd an
invertible (and so proper) O-ideal and it is easy to see that two O-ideals lie
in the same class if and only if they are homotetic.

5.2 Modular functions

In this section we introduce the de�nition of modular functions and we study
their main properties. These notions will be crucial in the proofs of the main
theorems of complex multiplication. First of all we denote by

H := {τ ∈ C : Im(τ) > 0}

the upper-half of the complex plane and by

SL2(Z) :=
{(a b

c d

)
∈M2(Z) : ad− bc = 1

}
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the special linear group of degree 2 over Z. Now, we let SL2(Z) act on H in
the following way: (

a b
c d

)
· τ :=

aτ + b

cτ + d

for all

(
a b
c d

)
∈ SL2(Z) and τ ∈ H. The action is well-de�ned thanks to

the following lemma.

Lemma 5.1. Let γ ∈ SL2(Z) and τ ∈ H. Then γ · τ ∈ H.

Proof. We set γ =

(
a b
c d

)
∈ SL2(Z) and τ = x + iy with x, y ∈ R, y > 0.

We need to prove that Im
(
aτ+b
cτ+d

)
> 0. We have

aτ + b

cτ + d
=

(ax+ b+ iay)(cx+ d− icy)

|cτ + d|2

=
(ax+ b)(cx+ d) + acy2 + i(ay(cx+ d)− cy(ax+ b))

|cτ + d|2

and so

Im
(aτ + b

cτ + d

)
=
y(ad− bc)

|cτ + d|2
> 0

De�nition 5.3. A modular function is a map

f : H → C

such that:

� f is meromorphic;

� f is invariant under the action of SL2(Z), i.e. f(γ · τ) = f(τ) for all
γ ∈ SL2(Z) and τ ∈ H;

� f is meromorphic at the cusps.

What does it mean to be meromorphic at the cusps? Since f is invariant
under the action of SL2(Z) we have, for any τ ∈ H,

f(τ) = f
((1 1

0 1

)
· τ

)
= f(τ + 1)

Furthermore, for every z ∈ Z, the function q = q(τ) := e2πiτ de�nes a
bijection between Hz := {τ ∈ H : z ≤ Re(τ) < z + 1} and the punctured
unitary open disk D0.
Then there exists a meromorphic function f̄ : D0 → C such that f̄ ◦ q = f .
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Obviously f̄ admits a Laurent expansion and so f admits a so called
q-expansion

f =

+∞∑
k=−∞

ckq
k

with ck ∈ C for any k. Finally, we say that f is meromorphic at the cusps if
{ck : k < 0, ck ̸= 0} is �nite.
Now, we recall that if Λ = [u, v] is a complex lattice where u = ux+ iuy and
v = vx + ivy, then the area V ol(Λ) of any fundamental parallelogram of Λ

is the absolute value of the determinant of

(
ux uy
vx vy

)
. Thanks to this fact

we can prove the following lemma.

Lemma 5.2. If Λ = [u, v] is a complex lattice and Λ′ = [s, t] is a sublattice

of Λ with

s = au+ bv

t = cu+ dv

where a, b, c, d ∈ Z, then

[Λ : Λ′] = n⇔ det

(
a b
c d

)
= ±n

Proof. We write u = ux + iuy, v = vx + ivy, s = sx + isy and t = tx + ity.
Then (

sx sy
tx ty

)
=

(
a b
c d

)(
ux uy
vx vy

)
It follows that

[Λ : Λ′] = n⇔ V ol(Λ′) = nV ol(Λ) ⇔ det

(
sx sy
tx ty

)
= ±n det

(
ux uy
vx vy

)
⇔ det

(
a b
c d

)
= ±n

De�nition 5.4. The j-function is the map

j : H → C, τ 7→ j([1, τ ])

where j([1, τ ]) is the j-invariant of the complex lattice [1, τ ].

Proposition 5.3. The j-function is a holomorphic modular function.

Proof. We need to prove that j satisi�es the properties in the de�nition of
modular function.
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� j is holomorphic on H. Since the discriminant of a lattice is always
non-zero, we only have to prove that gi(τ) := gi([1, τ ]) is holomorphic
for i = 2, 3. We prove it for g2, a similar argument works for g3.
We know that the series which de�ne g2 converges absolutely and to
see that it is holomorphic we must prove that it converges uniformly
on compact subsets of H. Obviously, g2(τ + 1) = g2(τ) and so it is
enough to prove it in the region |Re(τ)| ≤ 1

2 and Im(τ) ≥ ϵ where ϵ is
an arbitrary positive real number, ϵ < 1. We claim that, under these
conditions,

|x+ τy| ≥ ϵ

2

√
x2 + y2

for any x, y ∈ Z and it concludes the proof.
Let τ = a + ib with a, b ∈ R. The claim is trivial if |x + ay| ≥ ϵ

2 |x|.
Instead, if |x+ ay| < ϵ

2 |x|, then |x| < |y| and the claim follows;

� j is invariant under the action of SL2(Z): it follows from the previous
lemma;

� j is meromorphic at the cusps: it is a consequence of the following
proposition.

Proposition 5.4. The q-expansion of the j-function is

j(τ) =
1

q
+

∑
n≥0

cnq
n

with cn ∈ Z for any n.

Proof. See [12, Proposition 7.4, pag. 59].

Proposition 5.5. A holomorphic modular function is a polynomial in j. If
the function is also holomorphic at in�nity then it is constant.

Proof. We assume that f : H → C is a holomorphic function which is also
holomorphic at in�nity. Then the limit

f(∞) = lim
Im(τ)→∞

f(τ)

exists and it is �nite in C. Now, we consider a sequence (τk)k of points in
H ∪ ∞ and we study the sequence f(τk). We can assume τk ∈ D for any k
where

D :=
{
τ ∈ H : |Re(τ)| ≤ 1

2
, Im(τ) >

1

2

}
Indeed,

f(τ +m) = f
((1 m

0 1

)
· τ

)
= f(τ)
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for any τ ∈ H and any m ∈ Z and if Im(τ) < 1
2 (and |Re(τ)| ≤ 1

2) then

Im
(−1

τ

)
=
Im(τ)

|τ |2
> 2Im(τ)

since |τ | < 1√
2
and

f
(−1

τ

)
= f

((0 −1
1 0

)
· τ

)
= f(τ)

Now, if the imaginary parts of the τk are bounded, they lie in a compact
set and so we can �nd a subsequence of f(τk) which converges. If they are
unbounded, we can �nd a subsequence of τk such that the sequence of their
images converges to f(∞). Then, f(H ∪ ∞) is compact and, thanks to the
Maximum Modulus Principle, we can conclude that f is constant.
If we only assume that f is holomorphic, then its q-expansion has only �nitely
many terms with a negative power of q and, thanks to the previous proposi-
tion, there exists a polynomial p such that f−p◦j is holomorphic at in�nity.
Then it is constant, i.e. f is a polynomial in j.

5.3 Integrality of the j-invariant

In this section we want to prove that the j-invariant of a complex elliptic
curve with complex multiplication is an algebraic integer. First of all, for
any positive integer n we introduce the groups

Dn :=
{(a b

c d

)
∈M2(Z) : ad− bc = n

}
Sn :=

{(a b
0 d

)
∈M2(Z) : ad = n, d > 0, 0 ≤ b < d

}
and, thanks to the fact that Sn is �nite, the polynomial

Fn(X) :=
∏
α∈Sn

(X − j ◦ α)

Lemma 5.3. For any α ∈ Dn there exists a unique γ ∈ SL2(Z) such that

γα ∈ Sn.

Proof. See [12, Lemma 9.3, pag. 72].

Proposition 5.6. The coe�cients of Fn(X) lie in Z[j].

Proof. We write

Fn(X) =

|Sn|∑
m=0

smX
m
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It is immediate to see that sm(τ) is a holomorphic function on H which is
symmetric on the j ◦ α's for any m. We split the proof into four steps.
First step: sm(τ) is invariant under the action of SL2(Z). We �x γ ∈ SL2(Z).
We know that for any α ∈ Sn there exists a unique δα ∈ SL2(Z) such that
δααγ ∈ Sn and, since Sn is �nite, it implies that the map

Sn → Sn, α 7→ δααγ

is a bijection. The invariance of j under SL2(Z) implies

{j ◦ αγ : α ∈ Sn} = {j ◦ α : α ∈ Sn}

and it concludes the proof of the claim.
Second step: sm ∈ C[j]. From the previous step we have that, for any m,

sm(τ + 1) = sm(τ) and so sm admits a q-expansion. If α =

(
a b
0 d

)
∈ Sn,

we have

j ◦ α(τ) = e−2πiaτ+b
d +

∞∑
k=0

cke
2πik aτ+b

d

where the ck are the coe�cients of the q-expansion of j.
Then qn+1(j ◦ α)(τ) → 0 as q → 0 and so, for any m, there exists a positive
integer N such that qNsm(τ) → 0 as q → 0. Then, for any m, sm is a
holomorphic modular function and so sm ∈ C[j].
Third step: sm ∈ Z[[q, q−1]]. We �x a positive integer n, ζn = e

2πi
n , Q = q

1
n

and α =

(
a b
0 d

)
∈ Sn. Then j ◦ α admits a Q-expansion

j ◦ α = ζ−abn Q−a2 +
∞∑
k=0

ckζ
abk
n Qa

2k

with coe�cients in Z[ζn]. Now, if σ ∈ Gal(Q(ζn)/Q) and σ(ζn) = ζrn with r
and n coprime, from the comparison of the related Q-expansions we imme-
diately �nd (

j ◦
(
a b
0 d

))σ
= j ◦

(
a rb
0 d

)
Furthermore, j ◦α only depends on b (modd) and, since r and d are coprime,
we �nd {

j ◦
(
a rb
0 d

)
:

(
a b
0 d

)
∈ Sn

}
= {j ◦ α : α ∈ Sn}

and it follows
{(j ◦ α)σ : α ∈ Sn} = {j ◦ α : α ∈ Sn}

Finally, the Q-expansion of sm lies in Z[ζn] ∩ Q = Z and, since we already
know that it also admits a q-expansion, we �nd sm ∈ Z[[q, q−1]].
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Fourth step: sm ∈ Z[j]. Thanks to the previous two steps we only need to
prove that

C[j] ∩ Z[[q, q−1]] = Z[j]

If f is an element of the former, we can write

f = adj
d + ...+ a0 ∈ C[j]

Now, for any k = 0, ..., d, the polynomial akj
k+ ...+a0 belongs to Z[[q, q−1]]

and, thanks to the q-expansion of j, it implies that ak ∈ Z for any
k = 0, ..., d.

Thanks to the proposition we �nd that there exists a polynomial

Gn(X,Y ) ∈ Z[X,Y ]

such that Gn(X, j) = Fn(X). We also set Hn(X) := Gn(X,X). Before
proving the main result we need two more lemmas.

Lemma 5.4. j ◦β is integral over Z[j] for any β ∈M2(Z) of positive deter-
minant.

Proof. If β ∈ Dn, there exists γ ∈ SL2(Z) such that γβ ∈ Sn. Now

0 = Fn(j ◦ γβ) = Fn(j ◦ β)

and the statement follows because Fn is monic with coe�cients in Z[j].

Lemma 5.5. Hn is non constant and with leading coe�cient ±1 whenever

n is not a perfect square.

Proof. We �x α =

(
a b
0 d

)
∈ Sn, ζn = e

2πi
n and Q = q

1
n . We observe that

j − j ◦ α = (Q−n +

∞∑
k=0

ckQ
nk)− (ζ−abn Q−a2 +

∞∑
k=0

ckζ
abk
n Qa

2k)

By hypotesis n is not a perfect square and so the leading terms do not cancel.
Then the Q-expansion of Fn(j, j) has terms with negative powers of Q and
the leading coe�cient is a root of unity, hence ±1 since we know it has
coe�cients in Z. Anyway, Fn(j, j) also admits a q-expansion and thanks to
the form of the q-expansion of j we can conclude.

Finally, we can prove the following.

Theorem 5.1. If E is a complex elliptic curve with complex multiplication

then the j-invariant j(E) is an algebraic integer.
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Proof. We set O := End(E) and we assume it is an order of the imaginary
quadratic �eld K. We distinguish two cases.
First case: O = OK . We choose ρ ∈ OK in the following way:

� ρ = 1 + i if K = Q(i);

� ρ =
√
−D if K = Q(

√
−D) with D a positive square-free integer.

Then n := |NK/Q(ρ)| is not a perfect square. Thanks to the Uniformization
Theorem we can choose τ ∈ H such that j(τ) = j(E). Now, ρ[1, τ ] ⊂ [1, τ ]
and, since

[[1, τ ] : [ρ, ρτ ]] =
V ol([ρ, ρτ ])

V ol([1, τ ])
=

det

(
ρx ρxτx − ρyτy
ρy ρxτy + ρyτx

)
det

(
1 τx
0 τy

)
=
ρ2xτy + ρ2yτy

τy
= |ρ|2 = n

there exist a, b, c, d ∈ Z such that

ρτ = aτ + b

ρ = cτ + d

and α :=

(
a b
c d

)
∈ Dn. Finally

Hn(j(E)) = Fn(j(E), j(E)) = Fn(j(ατ), j(τ)) = 0

and it proves the claim because Hn lies in Z[x] and its leading coe�cient is
±1.
Second case: O is a generic order of K.
If we write O = [ω1, ω2] ⊂ OK = [1, τ ], then there exist a, b, c, d ∈ Z such
that

ω1 = aτ + b

ω2 = cτ + d

and α :=

(
a b
c d

)
∈ Dn with n > 0. Finally, we know that j(E) = j(ατ) is

integral over Z[j(τ)] and we can conclude since, from the previous case, j(τ)
is integral over Z.
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5.4 The Chebotarev Density Theorem and other

preliminaries

For the following proofs we need to introduce the Dirichlet density of a set
of �nite primes.

De�nition 5.5. Let K be a number �eld and S a set of �nite primes of K.

Then the Dirichlet density of S is

δ(S) = lim
s→1+

∑
p∈S

N(p)−s

−log(s− 1)

It is possible to prove that if S is �nite then δ(S) = 0 (see [2, pag. 169]).
We will use the following result, known as Chebotarev Density Theorem.

Theorem 5.2. If L/K is a Galois extension of number �elds and

S = {p : p finite prime of K, p unramified in L, (p, L/K) = ⟨σ⟩}

where ⟨σ⟩ is the conjugacy class of σ ∈ Gal(L/K), then

δ(S) =
|⟨σ⟩|

[L : K]

Proof. See [2, Theorem 8.17, pag. 170].

Two other important results that will be used in the sequel are stated in
the following proposition.

Proposition 5.7. Let K be a quadratic imaginary number �eld and O an

order in it. Then:

� if n ∈ N then any class of Pic(O) contains a proper O-ideal with norm

that is prime to n;

� any class of Pic(O) contains in�nitely many ideals of prime norm.

Proof. For the �rst result see [2, Corollary 7.17, pag. 142]. For the second
one see [14, Lecture 20, Theorem 20.11, pag. 6].

5.5 Ring class �elds

In order to state the �rst main theorem of complex multiplication we need
to introduce the notion of ring class �eld for imaginary quadratic �elds. The
idea behind this concept is to extend the de�nition of Hilbert class �eld,
which is naturally associated to the ideal class group of OK , to non-maximal
orders. We �x an imaginary quadratic �eld K. First of all, if f ∈ Z, we
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de�ne PK,Z(f) as the subgroup of IK,(f) generated by the principal ideals
αOK such that there exists a positive integer a coprime with f which satis�es
α ≡ amodfOK . It is immediate to see that PK,Z(f) is a congruence subgroup
modulo (f), i.e. it contains K(f),1.

De�nition 5.6. Let K be an imaginary quadratic �eld and O an order

of conductor f in K. The ring class �eld of O is denoted by RO and

it is de�ned as the abelian extension associated to the congruence subgroup

PK,Z(f) by the existence theorem.

It is immediate to observe that the ring class �eld of OK is just the
Hilbert class �eld, i.e. ROK

= HK . We can also observe that the primes of
K which ramify in RO divide the conductor of O.

Proposition 5.8. Let K be an imaginary quadratic �eld and O an order of

conductor f in K. Then we have an isomorphism

Pic(O) ∼= IK,(f)/PK,Z(f)

Proof. We say that an O-ideal a is coprime with f if a + fO = O and we
observe that it implies that a is proper. Indeed, if α ∈ K and αa ⊂ a we
have

αO = α(a+ fO) = αa+ αfO ⊂ a+ fOK ⊂ O

We denote by I(O, f) the subgroup of I(O) generated by the O-ideals that
are coprime with f and by P (O, f) its subgroup of principal fractional
O-ideals. We will prove the statement through a chain of isomorphisms

IK,(f)/PK,Z(f) ∼= I(O, f)/P (O, f) ∼= I(O)/P (O) = Pic(O)

We de�ne

A := {OK − ideals prime to f}

B := {O − ideals prime to f}

F : A→ B, F (a) = a ∩ O

G : B → A, G(a) = aOK

We prove that:

� F is well-de�ned. If a ∈ B, we observe that a+ fO = O if and only if
the multiplication by f from O/a to itself is an isomorphism, i.e. if and
only if f and N(a) are coprime. Then, if a ∈ A, the obvious injection

O/O ∩ a ↪→ OK/a

tells us that a ∩ O ∈ B.
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� G is well-de�ned. If a ∈ B, then

aOK + f = (a+ fO)OK = OOK = OK

� G ◦ F = idA. If a ∈ A we have

a = a(a ∩ O + fO) ⊂ (a ∩ O)OK + fa

⊂ (a ∩ O)OK + (a ∩ O) ⊂ (a ∩ O)OK

The other inclusion is trivial.

� F ◦G = idB. If a ∈ B we have

aOK ∩ O = (aOK ∩ O)(a+ fO) ⊂ a+ f(aOK ∩ O)

⊂ a+ afOK ⊂ a+ aO ⊂ a

The other inclusion is trivial.

� G is multiplicative: it is obvious.

Then, the map F can be extended to an isomorphism

F̄ : IK,(f) → I(O, f)

In order to get the �rst isomorphism we just need to prove that

F̄ (PK,Z) = P (O, f)

or, equivalently,

αOK ∈ PK,Z(f) ⇔ α ∈ O, N(α) prime to f

If α ∈ OK , α ≡ a mod fOK , a ∈ Z coprime with f , then N(α) ≡ a2 mod f
and it implies gcd(N(α), f) = gcd(a2, f) = 1. The implication (⇒) is proved
since we have also fOK ⊂ O and so α ∈ O. For the converse we assume
O = [1, fw] and so there exists a ∈ Z such that α ≡ a mod fOK . Then
gcd(a, f) = 1 because gcd(N(α), f) = 1 and N(α) ≡ a2 mod f , so the claim
is proved.
Now, we de�ne

H : I(O, f)/P (O, f) → I(O)/P (O), H([a]) = [a]

We prove that:

� H is a well-de�ned group homomorphism. It is obviously a group
homomorphism and it is well-de�ned since P (O, f) ⊂ P (O).
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� H is injective. It follows from the equality

P (O, f) = I(O, f) ∩ P (O)

The inclusion (⊂) is trivial. For the opposite direction we consider
αO = ab−1 ∈ I(O, f) ∩ P (O, f) where α ∈ K and a and b are
O-ideals prime to f . If m = N(b) we have

mαO = mab−1 = a ·mb−1 = ab̄ ⊂ O

which implies mαO ∈ P (O, f). Then the same holds for

αO = (mαO)(mO)−1

� H is surjective. It follows from the fact that any class of Pic(O)
contains an ideal with norm that is prime to f .

5.6 The �rst main theorem of complex multiplica-

tion

The purpose of this section is to prove the �rst main theorem of complex
multiplication which gives a concrete construction of ring class �elds of imag-
inary quadratic �elds in terms of the j-invariants of suitable elliptic curves.

Theorem 5.3. If E is a complex elliptic curve with End(E) ∼= O where O
is an order in an imaginary quadratic �eld K, then RO = K(j(E)).

Corollary 5.1. If E is a complex elliptic curve with End(E) ∼= OK where

K is an imaginary quadratic �eld, then HK = K(j(E)).

We �x an imaginary quadratic �eld K and an order O in it. We set

EllO(C) := {j(E) : E/C elliptic curve, End(E) ∼= O}

Now, we want to de�ne an action of Pic(O) on EllO(C) in the following
way: from the Uniformization Theorem and the results on proper ideals we
know that if E is an elliptic curve over C with End(E) ∼= O then there
exists a proper fractional O-ideal b such that E = Eb. Now, if a is a proper
fractional O-ideal, we set

[a] · j(Eb) := j(Ea−1b)

where we use the square brackets to indicate classes. Obviously, it is a
well-de�ned group action thanks to the fact that homotetic lattices de�nes
isomorphic elliptic curves. We prove some important properties of this ac-
tion.
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Proposition 5.9. The action of Pic(O) on EllO(C) is free and transitive.

Proof. The action is free because

[a] · j(Eb) = j(Eb) ⇔ a−1b = λb, λ ∈ C× ⇔ [a] = 1

Furthermore, the �nite sets Pic(O) and EllO(C) have the same cardinality
because the map

Pic(O) → EllO(C), [a] 7→ j(Ea)

is a bijection thanks to the properties we studied. Then the action is also
transitive.

Before proceeding, we need also to prove the following.

Proposition 5.10. If E is a complex elliptic curve with complex multipli-

cation by O and σ ∈ Aut(C), then j(Eσ) = j(E)σ and End(Eσ) ∼= O.

Proof. The �rst equality follows immediately from the fact that the j-invariant
of E is a rational combination of the coe�cients of a Weierstrass equation
for E. For the other equality, we observe that for any σ ∈ Aut(C) and if
E = EΛ for a suitable complex lattice Λ we have σ(EΛ) = Eσ(Λ). Indeed,

g2(σ(Λ)) = 60G4(σ(Λ)) = σ(60)σ(G4(Λ)) = σ(g2(Λ))

and the same holds for g3. Then

End(EσΛ) = End(Eσ(Λ)) = {α ∈ C : ασ(Λ) ⊂ σ(Λ)}
∼= {α ∈ C : αΛ ⊂ Λ} = End(EΛ) = O

Now, we de�ne a group homomorphism

F : Gal(Kal/K) → Pic(O)

in the following way:
F (σ) · j(E) = j(Eσ)

for any σ ∈ Gal(Kal/K) and any complex elliptic curve E with End(E) ∼= O.

Proposition 5.11. The function F is well-de�ned.

Proof. Thanks to the properties of the action of Pic(O) on EllO(C), the
values of F are uniquely determined by the given condition. Then we only
need to prove that for any two complex elliptic curves E1 and E2 with
complex multiplication by O and any proper fractional O-ideal a we have

j(Eσ1 ) = [a] · j(E1) ⇒ j(Eσ2 ) = [a] · j(E2)



5.6. THE FIRSTMAIN THEOREMOF COMPLEXMULTIPLICATION101

We assume that j(E2) = [b] · j(E1) for a suitable proper fractional O-ideal
b. Then

j(Eσ2 ) = j(E2)
σ = ([b] · j(E1))

σ = [b]σ · j(E1)
σ = [b] · j(Eσ1 ) = [b][a] · j(E1)

= [a][b] · j(E1) = [a] · j(E2)

For a proof of the third equality see [12, Proposition 2.5, pag. 113].

We �x a complex elliptic curve E with End(E) ∼= O and we compute

ker(F ) = {σ ∈ Gal(Kal/K) : F (σ) = 1}
= {σ ∈ Gal(Kal/K) : F (σ) · j(E) = j(E)}
= {σ ∈ Gal(Kal/K) : j(E) = j(Eσ)}
= {σ ∈ Gal(Kal/K) : j(E) = j(E)σ} = Gal(Kal/K(j(E)))

Then, K(j(E))/K is Galois and we can consider F as an injective homo-
morphism

F : Gal(K(j(E))/K) → Pic(O)

In particular, since Pic(O) is an abelian group, we can observe thatK(j(E))/K
is an abelian extension.

Lemma 5.6. If p is a prime of K which satis�es:

� p ∩ O is a proper O-ideal of norm p, where p is a prime integer;

� p is unrami�ed in K and p is unrami�ed in K(j(E));

� any element of EllO(C) is the j-invariant of an elliptic curve de�ned by

a Weierstrass equation with coe�cients in OK(j(E)) and with discrim-

inant that is not divided by any prime q of K(j(E)) which lies over p
(i.e., E has good reduction modulo q);

� for every prime q of K(j(E)) which lies over p, the elements of EllO(C)
are distinct modulo q.

then F (σp) = [p ∩ O].

Proof. See [14, Lecture 21, Theorem 21.1, pag. 3].

Proposition 5.12. The map F is surjective.

Proof. If α is a class in Pic(O), we know that there are in�nitely many
primes of K such that the �rst condition of the previous lemma is satis�ed
and [p ∩ O] = α. The other conditions of the lemma excludes only �nitely
many primes, so there exists a prime p of K such that

F (σp) = [p ∩ O] = α

Then F is surjective.
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Finally we have an isomorphism

Gal(K(j(E))/K) ∼= Pic(O)

In particular, we have that

[K(j(E)) : K] = [RO : K]

The next step in the proof is to show that RO ⊂ K(j(E)) and it will be
enough to conclude.
Given a �nite extension of number �elds L/K we denote by

SL/K := {p : p prime ideal of K which splits completely in L}

Given two sets A and B we write A⊂̇B if there exists a �nite set C such
that A ⊂ B ∪ C.
We want to prove the following proposition.

Proposition 5.13. If M/K and L/K are �nite extensions of number �elds

and M/K is Galois, then

SM/K⊂̇SL/K ⇒ L ⊂M

Proof. We denote by L′ the Galois closure of L and by N a Galois extension
of K which contains M and L′. We also �x σ ∈ Gal(N/M). Thanks to
the Chebotarev Density Theorem we can �nd in�nitely many primes p of K
which are unrami�ed in N and such that there exists a prime B of N which
lies over p and satis�es (B, N/K) = σ. If B′ = B ∩ OM , we have

(B′,M/K) = (B, N/K)|M = σ|M = 1

and so p ∈ SM/K . Since there are in�nitely many primes which satisfy these
properties and SM/K⊂̇SL/K = SL′/K (the last equality is a well-known fact),
we can assume p ∈ SL′/K . It implies

σ|L′ = (B, N/K)|L′ = (p, L′/K) = 1

Then σ ∈ Gal(N/L′) and it implies Gal(N/M) ⊂ Gal(N/L′). Then L′ ⊂M
and the statement follows.

Now, we want to use the previous proposition to conclude. We need the
following two lemmas.

Lemma 5.7. It holds

SK(j(E))/Q ⊂̇ {p ∈ Z : p prime, ∃α ∈ O s.t. p = N(α)}
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Proof. Let p ∈ SK(j(E))/Q such that it does not divide the conductor of O, it
is unrami�ed in K(j(E)) and there is a prime p of K which lies over p such
that F (σp) = [p ∩ O]. With these restrictions we exclude only �nitely many
primes. Now, since p splits completely in K(j(E)), the same holds for p and
so σp = 1. Then

[p ∩ O] = F (σp) = F (1) = 1

and it implies that p ∩ O is a principal O-ideal. Furthermore, since O/p∩O
injects into OK/p, then

N(p ∩ O) = [O : p ∩ O] = [OK : p] = p

and the statement is proved.

Lemma 5.8. It holds

{p ∈ Z : p prime, ∃α ∈ O s.t. p = N(α)} ⊂̇ SRO/Q

Proof. Let f be the conductor of O and �x a prime p ∈ Z such that it
does not divide f and it is unrami�ed in K. If p = N(α) for a suitable
α ∈ O, then pOK = pp̄ with p ̸= p̄ and p = αOK . It implies p ∈ PK,Z(f), so
(p, RO/K) = 1 and p splits completely in RO. If τ is the complex conjugation
we have that

ker(ϕτ(RO)/K,f ) = τ(ker(ϕRO/K,f )) = τ(PK,Z(f))

= PK,Z(f) = ker(ϕRO/K,f )

and so τ(RO) = RO (see [2, Corollary 8.7, pag. 163]). Finally, RO/Q is
Galois and so p splits completely in RO.

Thanks to the previous two lemmas we have

SK(j(E))/Q ⊂̇ SRO/Q

The extension K(j(E))/Q is Galois. Indeed, if τ is the complex conjugation,
we have End(Eτ ) ∼= End(E) ∼= O and it implies that

j(E)τ = j(Eτ ) ∈ K(j(E))

Finally, we can conclude that RO ⊂ K(j(E)).

5.7 The second main theorem of complex multipli-

cation

The purpose of the second main theorem of complex multiplication is to
describe ray class �elds of imaginary quadratic �elds. In order to state it we
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need to introduce some terminology. If E is a complex elliptic curve with
complex multiplication by OK we de�ne the set of its torsion points as

Etors = {P ∈ E : [α](P ) = 0, ∃ α ∈ OK}

and, if m is an integral ideal of OK , the set of its m-torsion points is

E[m] = {P ∈ E : [α](P ) = 0 ∀ α ∈ m}

Furthermore, if Λ is a complex lattice such that E = EΛ and ΦΛ : C/Λ → E
is the usual isomorphism, we de�ne the function

h : E → C

in the following way:

� if j(E) ̸= 0, 1728, h(ΦΛ(z)) =
g2(Λ)g3(Λ)

∆(Λ) ℘(z; Λ)

� if j(E) = 1728, h(ΦΛ(z)) =
g2(Λ)2

∆(Λ) ℘(z; Λ)
2

� if j(E) = 0, h(ΦΛ(z)) =
g3(Λ)
∆(Λ)℘(z; Λ)

3

where z ∈ C. It is easy to see that h is independent of the choice of Λ.

Theorem 5.4. Let K be an imaginary quadratic �eld, m a modulus for

K and E a complex elliptic curve with complex multiplication such that

End(E) ∼= OK . Then

K(m) = K(j(E), h(E[m]))

Proof. See [12, Theorem 5.6, pag. 135].

It is immediate to deduce the following computation of the maximal
abelian extension of an imaginary quadratic �eld.

Corollary 5.2. Let K be an imaginary quadratic �eld and E a complex

elliptic curve with complex multiplication such that End(E) ∼= OK . Then

Kab = K(j(E), h(Etors))
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