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Introduction

Class Field Theory is an important branch of Algebraic Number Theory. Its
main purpose is to study and classify the abelian extensions of local and
global fields through objects defined in terms of the ground field. It started
to be developed after 1850 and its main pioneers were David Hilbert, Helmut
Hasse, Emil Artin and Claude Chevalley. The theory revolves around the
notion of class field and it is strictly related to other important areas of
Number Theory like Iwasawa Theory and the Birch and Swinnerton-Dyer
conjecture. An explicit construction of class fields of number fields has not
been fully developed yet and it is the main purpose of the Hilbert’s twelfth
problem. Anyway, it has been solved for the particular cases of Q and
imaginary quadratic fields thanks to the theory of complex multiplication.
The purpose of this thesis is to expose and prove the theorems of local and
global class field theory and to use elliptic curves with complex multiplication
to study the case of imaginary quadratic fields. The thesis is divided in five
chapters which are connected according to the diagram at page 5.

In the first chapter we introduce the main definitions and results on Tate
cohomology of groups, a branch of homological algebra that is crucial in the
proofs of the main theorems of class field theory. Then, we define the basic
notions of orders and primes of a number field which will be used in the
study of global class field theory.

In the second chapter we study class field theory of local fields. It consists
in two main results, the "local Artin reciprocity law" and the "local existence
theorem", which lead to an elegant classification of finite abelian extensions
of local fields. The proof of the first result is based on Tate cohomology, the
proof of the second one uses the notion of Lubin-Tate formal group laws.

The next step is the exploration of global class field theory, i.e. of class
field theory for global fields. We will especially consider the case of number
fields. There are two possible formulations of the main theorems for this
theory. The first one is based on the notion of idele, a group associated
to any number field that permits to state the "global reciprocity law", the
"global existence theorem" and the consequent corollaries in an elegant way.
The second one is in terms of ideals. It is a less modern approach but it is
useful for applications on the problem of splitting of primes. In this thesis
we prove the results in terms of ideles and we only state those in terms
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4 CHAPTER 0. INTRODUCTION

of ideals. We also define the Hilbert class field of a number field, i.e. its
maximal abelian unramified extension, and we study its main properties.
In particular, we prove the principal ideal theorem, which ensures that any
ideal of a number field becomes principal in its Hilbert class field.

The chapter "Elliptic curves" introduces the basic notions for elliptic
curves defined in the projective plane by a Weierstrass equation. We put on
the set of points of any elliptic curve a structure of abelian group, we define
and study isogenies and we state the existence and the uniqueness of the dual
isogeny. Our main purpose is to study elliptic curves defined over C by using
complex lattices and, in particular, to classify their endomorphism rings in
order to give the definition of elliptic curves with complex multiplication.

Finally, the last chapter exposes the main results of the thesis. We use
the theory of elliptic curves with complex multiplication to study global
class field theory for imaginary quadratic fields. We will use different tools:
modular functions and the Chebotarev Density Theorem. First, we prove
the following central theorem:

Theorem 0.1. If E is a complex elliptic curve with complex multiplication
then the j-invariant j(E) is an algebraic integer.

Then we define the ring class fields Rp of an imaginary quadratic number
field, a notion that extends the Hilbert class field to the case of non-maximal
orders. The first main theorem of complex multiplication characterizes the
ring class fields in terms of the j-invariant of suitable elliptic curves with
complex multiplication.

Theorem 0.2. If E is a complex elliptic curve with End(E) = O where O
is an order in an imaginary quadratic field K, then Rp = K(j(E)).

The second main theorem of complex multiplication characterizes ray
class fields K (m) of an imaginary quadratic field K in terms of torsion points
of an elliptic curve F and of a function h : E — C.

Theorem 0.3. Let K be an imaginary quadratic field, m a modulus for

K and E a complex elliptic curve with complex multiplication such that
End(E) = Ok. Then

An interesting possibility to continue this work is to study the results
found by Dasgupta and Kakde who gave a solution to the Hilbert’s twelfth
problem in more general situations.
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Chapter 1

Preliminaries

1.1 Tate Cohomology of groups

The purpose of this section is to introduce briefly the main definitions and
results in Tate Cohomolgy. This theory will be fundamental for the proofs of
the main theorems of local and global class field theory since we will study
them with a cohomological approach.

1.1.1 G-modules

Definition 1.1. Let G be a group. A G-module is an abelian group (M, +)
endowed with an action of G such that

g(my +mg) = gmy + gmy

forany g € G, my,mo € M.
We also define
MY :={meM:gm=mVgeG}

IcM :={(gm—-—m:9g€ G,m e M)
Mg = M/IgM

A homomorphism of groups ¢ : My — My between two G-modules is a
homomorphism of G-modules if

¢(gm) = go(m)
forany g€ G,m e M.

For any G-module M over a finite group G we also introduce a norm
map
ng:M—>M,mb—>ng
geG
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It is immediate to observe that
Nmg(M) c M¢

and
IcM C Ker(Nmg)

Another important notion is that of induced G-module.

Definition 1.2. Let H < G be groups and M an H-module. We define the
G-module

Ind$M :={¢:G — M: ¢(hg) = ho(g)Vh e H, g € G}
endowed with the operations
(91 + ¢2)(z) = ¢1(z) + d2(x)

(99)(z) = ¢(zg)

A G-module M 1is called induced if there exists an abelian group M’ such
that
~ G

1.1.2 Definition of Tate groups

In this subsection we want to define homology and cohomology groups for
a G-module M and, starting from them, to define Tate cohomology groups
of M. We start with a series of definitions and results that come from the
homological algebra.

Definition 1.3. A G-module I is injective if for any pair of G-modules

N C M, any homomorphism from N to I extends to M.

A G-module P is projective if for any pair of G-modules N C M and any
homomorphism f : P — M/N there exists g : P — M which equals f when
composed with the projection.

An injective resolution (I', f*) for a G module M is an exact sequence

f() fl

0 M 10 It

where I' is an injective G-module for any 1.
A projective resolution (P*,g") for M is an exact sequence

1 0

b, pt 9, po M 0

where P’ is a projective G-module for any i.
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Proposition 1.1. The category of G-modules has enough injectives, i.e.
every G-module can be embedded into an injective G-module, and enough
projectives, i.e. any G-module is the image of a homomorphism whose do-
main is a projective G-module. Then any G-module admits both an injective
and a projective resolution.

Proof. See |8, Proposition 1.5, pag. 60]. O

Proposition 1.2. The functor ()¢ : G — Mod — G — Mod is left-exact.
The functor (-)g : G — Mod — G — Mod is right-ezact.

Now, we use the previous definitions and propositions to define homology
and cohomology groups. We fix a G-module M and we find an injective and
a projective resolution for it:
fl

f()

0 M 10 It

1 0

b, pt 9, po M 0

The last proposition tells us that we can derive two complexes:
—1 0 1
0 5 o L e L

gt 1 q° 0 gt
= (P)g —— (PY)g — 0
Definition 1.4. The r-th cohomology group of the G-module M is defined
as

w(c.an - Ker)

The s-th homology group of M is defined as

er(gs—1
Hy(G, M) := W

With the following proposition we want to prove that homology and
cohomology groups are well-defined. In particular, they do not depend on
the choice of the injective and projective resolutions. The proposition will be
used also to define homomorphisms through the homology and cohomology
groups.

Proposition 1.3. Let M, N be G-modules, ¢ : M — N a homomorphism
of G-modules and (I', f*), (J7,¢’) injective resolutions of, respectively, M
and N. Then ¢ induces a morphism of complezes (¢;) between ((I'), f7)
and ((J9C, ¢7) and the induced maps between the cohomology groups do not
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depend on the choice of the ¢;. The situation is described in the following
commutative diagram:

—1 0 1
0 f (IO)G f (Il)G f o

e e

01— (JOG L (JHE L ...

An analogous statement holds for homology groups.
Proof. See |8, Proposition A.8, pag. 93|. O
It is immediate from the definitions that

HY(G,M) =M

HO(G7 M) = MG
H'(G,1) =0
H,(G,P)=0

whenever [ is injective and P is projective.
Finally, we can give the crucial definition of Tate groups.

Definition 1.5. Let M be a G-module over a finite group G. Then the r-th
Tate group of M is denoted H7.(G, M) and it is defined as:

H™(G, M) if r > 0;

MC/Nmg(M) if r = 0;

Ker(Nmg)/IgM if r = —1;

H_, 1(G,M) ifr < —1.
Using the Snake lemma it is possible to prove the following.
Proposition 1.4. Let

0—-M —-M— M —0

be a short exact sequence of G-modules.
Then for suitable boundary maps we have the following long exact sequences:

0— HYG,M)— - - = H(GM' - H ™G, M)~ ---

o H(G,M") = H._1(G,M') = - -+ = Ho(G,M") = 0
= Hip(G,M') — Hp(G, M) — Hp(G,M") — HP (G, M) — - - -
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For any G-module M we also have the exact sequence
0— Hp' (G, M) = Hy(G, M) — H°(G,M) — H}(G,M) — 0

where the middle map is the norm map.

In order to simplify some proofs and considerations we give another equiva-
lent definition of cohomology groups which is more concrete than the previous
one.

Definition 1.6. Let G be a group, M a G-module and r > 0 an integer. Set
GO = {1}.

We define the sets of r-cochains as
C"(G,M):={¢:G" — M}

and the maps

d:C"(G,M) — C"™H(G, M)

(dT¢)(gl) ~~7gr+1) = gl¢(92) ~-"g7"+l) + Z(—l)j¢(gl, cy9595+1, "')gT-‘rl)
7=1

+ <_1)T+1¢(917 "'797“)

The sequence
0 d° 1 d! 2 d?
c°(G,M) — C'(G,M) — C*(G,M) — - --
1s a complex and so we can define:
e the group of r-cocycles as Z"(G, M) := Ker(d");
e the group of r-coboundaries as B"(G, M) := Im(d");

e the r-th cohomology group as H" (G, M) := Z"(G,M)/B" (G, M).

1.1.3 Maps between cohomology groups

In this subsection we want to define some homomorphisms between coho-
mology groups that will be used in the sequel. If G; and G2 are groups and
My and M, are, respectively, a Gi-module and a Gao-module, we say that
two homomorphisms ¢ : Go — G and ¢ : M} — My are compatible if

P(¢(g)m) = gy(m)

for any g € G5 and m € M;. Obviously, any pair of compatible homomor-
phisms induces homorphisms

HT.(Gl, Ml) — HT(GQ, MQ)

Using this technique we define the following maps:
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o If H < (G are groups and M is a G-module, the inclusion H — G
and the identity map on M are compatible and we call the induced
homorphisms as the restriction homomorphisms

Res: H (G,M) — H"(H, M)

e If H<G are groups and M is a G-module, the quotient map G — G/H
and the inclusion M < M are compatible and we call the induced
homomorphisms as the inflation homomorphisms

Inf: H"(G/H,M") - H"(G, M)

Proposition 1.5. Let G be a group, H G, M a G-module and r a positive
integer. Assume that H'(H, M) = 0 for any 0 < i < r. Then the sequence

0 —— HY(G/H, M) s gr(G, My Loy g (H, M)
15 exact.

Proof. See |8, Proposition 1.34, pag. 71]. O

Proposition 1.6. Let G be a finite group, H < G a p-Sylow of G and M a
G-module. Then the restriction homomorphisms

H"(G,M)— H"(H,M)
are injective on the p-primary components of H" (G, M).

Proof. See |8, Corollary 1.33, pag. 71]. O

1.1.4 The main results in Tate Cohomology

In this subsection we state some important facts in cohomology of groups
which will be necessary in the sequel.

Proposition 1.7. Let H < G be groups, M an H-module and » > 0 an

integer. Then
H"(G, Ind%M) = H"(H, M)

As a consequence, H" (G, M) = 0 for any positive integer r and any induced
G-module M.

Proof. See [8, Proposition 1.11, pag. 62]. O

Proposition 1.8. Let G be a finite group and M an induced G-module.
Then
HH(G,M)=0

for any integer r.
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Proof. See [8, Proposition 3.1, pag. 78|. O

Proposition 1.9. Let G be a group, {M;}; a family of G-modules and r > 0
an integer. Then

v (G [ M) = ][ H' (G, M)
i i
Proof. See [8, Proposition 1.25, pag. 68]. O

Proposition 1.10. If G is a group and we consider Z as a G-module with
trivial action we have an isomorphism

H\(G,Z) = G™
Proof. We consider the exact sequence
0—=1Ig—ZG—-7Z—0

where the augmentation ideal I is the free Z-submodule of Z[G] generated
by {g—1:g € G*} and the augmentation map Z[G] — Zis Y ngg — > _ ng.
Since H1(G,Z|G]) = 0 (because Z[G] is projective) we get the exact sequence

0— H\(G,7) = Ig/13 — Z[G]/Ig — 7 — 0
and, since the middle map is zero, we find an isomorphism
H1(G,Z) = I/ 1,

The proof is concluded by composing the previous isomorphism with the
inverse of the isomorphism

G/G = Ig/IE, g (9 —1) + IZ
O

Proposition 1.11. If G is a finite group and we consider Z, Q and Q/Z as
G-modules with trivial action, we have:

e HY(G,Z)=7/|G|Z and H (G,Z) = 0;
e H7(G,Q) =0 for any integer r;
o HY(G,Q/Z) = Hom(G,Q/7Z).
Proof. See 8, Lemma 3.3, pag. 80]. O

Now, we state and prove Tate’s Theorem which will be crucial in proving
theorems of class field theory. During the proof we will need the following
lemma.
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Lemma 1.1. If G is a finite group and M is a G-module such that
HY(H,M) = H*(H,M)=0
for any H < G, then for any r € Z we have
H7(G,M)=0
Proof. See 8, Theorem 3.10, pag. 83|. O]
Theorem 1.1. Let G be a finite group and M a G-module. If for any

H < G we have H*(H,M) = 0 and H?*(H, M) cyclic of order equal to |H|
then HY.(G,Z) = H3P2(G, M) for any integer 7.

Proof. We fix v a generator of H2(G, M) and we consider a cocycle ¢ in the
class of «v. We define the splitting G-module of ¢ as

M(3) =M e (D Za,)

oceGX
with the action
0%y i= Tor — To + G(0T)
where z, is a formal symbol and x; := ¢(1,1). We define a homomorphism
a:M(¢) = Ig, a(m) =00n M, a(z,) =0 —1
and we observe that we have the following exact sequences:
0—Ic—Z[G]—-Z—0
0—-M— M(p) = Ieg—0
The cohomology exact sequence of the second one over H < G is
0— H'(H,M(¢)) — H'(H,Ig) — H*(H,M) — H*(H,M(¢)) = 0
because H'(H, M) = 0 and
H*(H,Ig)= H' (H,7Z) =0
(recall that Z[G] is an induced G-module). Res(7y) generates H?(H, M) (it
can be seen introducing the corestriction homomorphism) and, since ¢ is the
coboundary of the cochain o — x,, we discover that the fourth arrow in the
previous diagram is just the zero map. Then the third arrow is surjective
and hence an isomorphism because
HY(H, I6) = H(H,Z) = 7| H|Z
Then the last exact sequence tells us that
H'(H,M(¢)) = H*(H,M($)) = 0
The previous lemma implies that H"(H, M (¢)) = 0 for any integer r and so
the cohomology sequences of the exact sequence

0—M— M(p) > Z[G]| =Z —0

give the desired isomorphisms. O
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1.1.5 The Herbrand quotient

The Herbrand quotient is a powerful instrument used to study cohomology
of finite cyclic groups.

Proposition 1.12. Let G be a finite cyclic group and M o G-module. Then
for any r € Z we have H} (G, M) = H(G, M).

Proof. See [8, Proposition 3.4, pag. 81]. O

Definition 1.7. Let G be a finite cyclic group and M o G-module such that
its cohomology groups are finite. Then the Herbrand quotient of M is

|EYG. M)
WM) = L)

The Herbrand quotient has the following properties.
Proposition 1.13. Let G be a finite cyclic group. Then:

1. If0 - M — M — M"” — 0 is a short exact sequence of G-modules
then if two of their Herbrand quotients are defined so is the third and
we have h(M) = h(M")h(M").

2. (M) =1 for any finite G-module M.

3. If ¢ : M — N is a homomorphism of G-modules and Ker(¢) and
N/p(M) are finite, then h(M) and h(N) are both defined whenever

one of them is so and in this case they are equal.

Proof. See [8, Proposition 3.6, 3.8, Corollary 3.9, pag. 81,82]. O

1.1.6 Galois Cohomology

During the proofs of the theorems of class field theory we will mainly use
Tate cohomology for modules over Galois groups, so now we prove some basic
results in Galois cohomology that will be used in the sequel. First of all we
observe that if L/K is a finite Galois extension of fields with Galois group
G we have that both (L*,-) and (L, +) are G-modules in a natural way.

Proposition 1.14. HY(G,L*) = 0 for any finite Galois extension L/K
with Galois group G.

Proof. We want to prove that any cocycle in C*(G, LX) is a coboundary, i.e.
that for any map ¢ : G — L™ such that

¢(oT) = 0¢(7)¢(0)
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for any o,7 € G (it is called a cross homomorphism) there exists z € L*
such that ¢(0) = o(z)/x for any 0 € G. The well-known Theorem on the
independence of the characters implies that the map

> dlo)o

oeG

is not everywhere zero and so there exists a € L* such that

b= ¢(o)o(a) #0

oceG

So for any 7 € G we have

(b)) = Y 7(d(0) =Y o) o(ro)r(o(a)) = ¢(7) 7 (b)

ceG ceG

= ¢(r) =b/r(b) = 7(b™1)/b7"
O

Proposition 1.15. H"(G,L) = 0 for any r > 0 and for any finite Galois
extension L/K with Galois group G.

Proof. We know that there exists x € K such that
{o(z):0 € G}

is a normal basis for L over K. Then we have an isomorphism of G-modules

G]— L, Z ae0 Z aso(x)

ceG oceG
Finally, K[G] = Ind{}, K implies

H'(G, L) = H"({1},K) =0

1.1.7 Cohomology of profinite groups

During the proofs of theorems of class field theory we will work also with Ga-
lois groups of infinite Galois extensions and we know that they are profinite
groups, i.e. Hausdorff, compact and totally disconnected topological groups.
In order to work with them we introduce cohomology groups for profinite
groups.
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Definition 1.8. Let G be a profinite group.
We define a discrete G-module as a G-module M such that the action

GxM-—M

is continuous if M is endowed with the discrete topology. As we did for ordi-
nary G-modules, if r > 0 is an integer, the r-th cohomology group H], (G, M)
can be equivalently defined using injective resolutions of discrete G-modules
or conlinuous cochains.

Proposition 1.16. Let G be a profinite group, M a discrete G-module and
r > 0 an integer. Then

Hgts(G7M): U HT(G/I—LMH)
H<G, H open

where the inclusion

H"(G/H,M") — H

cts(Gv M)

s given by the usual inflation homomorphism.

Proof. See |8, Proposition 4.2, pag. 87]. O

1.2 Orders of number fields

Definition 1.9. Let K be a number field. An order O of K is a subring of
K which is also a free Z-module of rank equal to the dimension of K over Q.

Proposition 1.17. The ring of integers O is the unique mazimal order of
a number field K.

Proof. We already know that O is an order of K, so we just need to prove
that any order is contained in it. Take O an order of K and @ € 0. We
consider the Z-submodule of O generated by the powers of « and {a1, ..., ax }
a Z-basis of it. Any «; is a finite Z-linear combination of powers of «, so we
can take a positive integer N greater than all the exponents with which «
appears in these combinations. Then,

aN =101 + ... + g
with ¢; € Z and it implies that « is an algebraic integer. O

As a first example, we can see that Z is the only order of Q.

Proposition 1.18. An order of a number field is a Noetherian integral do-
main of Krull dimension one.
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Proof. Let O be an order of K. Since it is a finitely generated Z-module,
all of its ideals are so and consequently they are also finitely generated O-
modules. Then O is Noetherian. Now, let p be a non-zero prime ideal of O
and take n a non-zero integer in p N Z. Then, nO C p C O and so p and
O are free Z-modules of the same rank. Therefore, O/p is a finite integral
domain, hence a field and so p is maximal. O

Differently from the ring of integers O, a generic order is not necessarily
a Dedekind domain. Anyway, we can always define fractional ideals to be
finitely generated submodules of K over the order and also the product of
fractional ideals could be defined as usual. The main difference with the
Dedekind case is that not all the fractional ideals are necessarily invertible
and so we have to restrict our attention to fractional ideals that admit an
inverse. We also observe that all the principal fractional ideals are trivially
invertible. From these considerations we derive the following definitions.

Definition 1.10. Let K be a number field and O an order in K. We de-
note as 1(O) and P(O), respectively, the groups of invertible and principal
fractional ideals of O. Then we define the Picard group of O as

Pic(O) :=1(0)/P(0O)

Obviously, Pic(Ok) is just the ideal class group of K.
Now, we are mainly interested in studying orders of imaginary quadratic
fields because they will be important in the development of theory of complex
multiplication. First, we observe that all of them could be considered as Z-
modules generated by 1 and a suitable 7 € K. We will denote an order of
this kind as [1, 7].

Proposition 1.19. All the orders of an imaginary quadratic field K could
be written as
O=7Z+ fOg

for a certain f € N (which is called the conductor of the order and satisfies
the equality [Ok : O] = f).

Proof. First of all we prove that O = Z + fOg is an order of K.

If Og = [1,7] it is obvious that O = [1, f7] and so it is an additive subgroup
and a free Z-module of rank 2.

It is also a subring: if n,m € Z and a,b € Ok, then

(n+ fa)(m + fb) = nm + f(ma+ nb+ fab)
So it is an order and we also get the equality

Ok : O] =[[L7]: [L frl] = f
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Now, let O be an order in an imaginary quadratic field K and assume

Ok = [1,7]. O is a Z-submodule of rank 2 of Ok and it contains 1, so
there exists n € N such that nt € O. We take f € N to be the smallest
positive integer which satisfies this property. So [1, f7] C O and we prove
the converse to conclude. If @« € O C Ok, then o = a + b1 for a,b € Z and
br = a—a € O. It implies that f divides b and so « € [1, f7]. O

Definition 1.11. The discriminant Disc(O) of an imaginary quadratic
order O = [1,7] is the discriminant of the minimal polynomial of T.

An itmaginary quadratic discriminant is a negative integer which is a
square modulo 4. It is also called fundamental if it is not the multiple
of another tmaginary quadratic discriminant by a non trivial square of an
integer.

It is just an exercise to show that the definition of discriminant of an

imaginary quadratic order does not depend on the choice of 7 and that it is
compatible with the definition of discriminant of the ring of integers.
Now, we observe that by definition any discriminant of an imaginary quadratic
order is an imaginary quadratic discriminant and also that fundamental dis-
criminants coincide with discriminants of imaginary quadratic fields. Fur-
thermore, the last proposition gives us the following corollary.

Corollary 1.1. If D is an imaginary quadratic discriminant then there exists
a unique 1maginary quadratic order O of discriminant D and if K is the
imaginary quadratic number field containing it we have that D = f?Dy
where Dg 1s the discriminant of the number field and f is the conductor of

0.

Proof. Let D = f2D', where f € N and D’ is a fundamental discriminant.
Then there exists an imaginary quadratic field K such that D = D’ and
we fix O :=Z + fOg. In particular, if Og = [1,7], then O = [1, f7]. Now,
if 22 + bz + ¢ is the minimal polynomial of 7, 2 + fbx + f2c is the minimal
polynomial of f7 and

Disc(O) = f20% — 4f%c = f2(b? — 4¢) = f?Dg

Uniqueness follows trivially from the last proposition because fZD1 = f3Do
if and only if fi = fo and Dy = Ds (where D; and Ds are fundamental
discriminants). O

1.3 Primes of number fields

Definition 1.12. Let K be a field. A function |-|: K — Rx>q is called an
almost-absolute value on K if the following conditions are satisfied:

e |z|=0&2=0 foranyx € K;
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o |zy| = |z|ly| for any x,y € K.

An almost-absolute value is called an absolute value if also the triangular
mequality 1s satisfied:

|z +y| < |z|+ |y| foranyz,y € K
An absolute value is called nonarchimedean if we also have:
@+ y| < max{|z|, |[y[} for any z,y € K

We say that two almost-absolute values |- |1 and |- |2 are equivalent if there
exists A € Rxg such that |- |2 = |- |}

As a first example let p be a prime ideal of a number field K and denote
as ordy(x) the p-adic valuation for any x € K (i.e. the ramification index of
p in 2Ok). Then we choose r > 1 a real number and we define the p-adic

absolute value as
1 ordy(z)
o= (1)

Theorem 1.2. Let K be a number field. Then every almost-absolute value
of K 1s equivalent to exactly one of the following:

o the p-adic absolute value for a prime ideal p of K;
e the absolute value x — |o(x)| for a real embedding o : K — R;

e the absolute value x — |o(x)| for a pair of conjugate complex embed-
dings {o,c} with o : K — C.

The notion of prime of a number field will be crucial in global class field
theory.

Definition 1.13. Let K be a number field. A prime (or a place) of K is an
equivalence class of almost-absolute values of K. We denote a generic prime
by v and the completion of K with respect to one of its absolute values (there
is at least one of them in every equivalence class) by K,. We aslo denote by
O, the ring of integers of K, and by U, its group of units.

We say that a prime v is:

e finite if it associated to a prime ideal of K (and in this case we denote
the ideal as p,);

e real if it is associated to a real embedding (and we denote as a, the
image of a under the embedding for any a € K);

o complex if it is associated to a pair of conjugate complex embeddings.
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We observe that the completion of a number field with respect to a real
prime is R and with respect to a complex prime is C. We want to choose
a representative for any equivalence class and we call them normalized
almost-absolute values. We make this choice in the following way:

ordy(z)
e x|, = (W) T: v is a finite prime associated to p;

e |z|, = |o(x)] if v is a real prime associated to o;
2

e |z|, = |o(x)|® if v is a complex prime associated to o.

In the end, we state two important results which will be crucial in the
sequel. The first one is called the weak approximation theorem while the
second is known as the product formula.

Theorem 1.3. Let K be a field, x1,...,x0, € K, € > 0 and | - |1,...,] - |n
nontrivial inequivalent almost-absolute values on K. Then there exists x € K
such that

|z — @i < €

foranyi=1,...n.
Proof. See |7, Theorem 7.20, pag. 114]. O

Theorem 1.4. Let K be a number field and x € K*. Then

I ==t

vprimeof K

Proof. See |7, Theorem 8.8, pag. 138|. O
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Chapter 2

Local Class Field Theory

The first step in the exploration of class field theory is the study of its local
version. Local class field theory was introduced by Hasse in 1930 and its
main purpose is the classification of abelian extensions of local fields.

We recall that a local field K must be one of the following:

e R or C (archimedean local field);

e a complete discrete valuation field with finite residue field (nonar-
chimedean local field).

First of all, we fix some notations for a nonarchimedean local field K. We
will denote by:

o Ok the ring of integers of K;

e my the maximal ideal of O;

Uk the group of units of Ok;

k := Ok /mg the residue field of K.

2.1 Statements of the main theorems

In this first section we want to state the main theorems of local class field
theory and to prove some corollaries. We recall that if L/K is a finite
unramified extension of nonarchimedean local fields we have an isomorphism
Gal(L/K) = Gal(l/k) inherited from the action of Gal(L/K) on Of, and we
denote as F'roby i the preimage of the map z — zlF] (which is a generator
of Gal(l/k) as a cyclic group). We also denote by K% the extension of
K generated by all of its abelian extensions, by K"" the extension of K
generated by all of its unramified extensions and by Frobg the generator of
Gal(K""/K) which is just F'robr ik when restricted to a finite unramifed
extension L/K. We start by stating the local reciprocity law.

23
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Theorem 2.1. If K is a local field, there exists o unique homomorphism
oK : K* = Gal(K™/K)
such that:

e if L/K is a finite abelian extension, ¢ induces an isomorphism

¢L/K : KX/NmL/K(LX) — Gal(L/K)

e if K is nonarchimedean, ¢x ()| = Froby i for any finite unramified
extension L/K and any prime element m of K.

The maps ¢ and ¢, are called the local Artin maps for K and
L/K respectively.
Now, we state the local existence theorem. We call norm groups of a
local field K its subgroups of the form Nm(L*) := Nmy i (L*) for a finite
abelian extension L/K.

Theorem 2.2. Let K be a local field. A subgroup of K™ is a norm group if
and only if it is open of finte indexz.

Finally, we prove some corollaries to the stated theorems. The first one
is central in local class field theory because it gives an elegant classification
of finite abelian extensions of a local field.

Corollary 2.1. Let K be a local field. Then there is a one-to-one inclusion-
reversing correspondence between the set of its finite abelian extensions and
the set of the open subgroups of finte index of K> (or, equivalently, the set
of its norm subgroups) given by

L+ Nm(L¥)

Proof. The defined map is trivially surjective thanks to the local existence
theorem. In order to prove that it is injective and inclusion-reversing we
need to show that for any finite abelian extensions L and L’ of K we have

L C L' & Nm(L'™) C Nm(L*¥)

The first implication follows immediately from the transitivity of the norm.
For the opposite direction we consider the following diagram:

K INm(L%) 225 Gai(L K

Ji
KX INm(L*) 225 Gal(L/K)
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We recall that the map
Gal(LL'/K) — Gal(L/K) x Gal(L' /K),o ~ (0|1, 0|1/)

is injective and it is immediate to see that its image is the set of couples
(qSL/KOidOQSZ,l/K(T),T) for 7 € Gal(L'/K). Then Gal(LL'/K) = Gal(L'/K)
and so L C L. O
Corollary 2.2. Let K be a local field, L/K a finite abelian extension and

Nm(L*) < H < K*. Then there exists a finite abelian extension M of K
such that H = Nm(M), i.e. H is a norm group.

Proof. We call M the fixed field of ¢ 5 (H mod Nm(L*)) and we consider

the following commutative diagram:

K% 2H5 Gal(L)K)

Jid J{res
(V9%
K* —— Gal(M/K)
It follows immediately that
Nm(M*) = ¢y (1) = by (res(Gal(L/M))) = ¢y (res(dr i (H)))
=id(H)=H
O

Corollary 2.3. Let K be a local field and L1/K and Lo/K finite abelian
extensions. Then:

o Nm((L1L2)*) = Nm(LY) N Nm(L});
o Nm((Ly N Lo)*) = Nm(L)Nm(L}).

Proof. Both the results follow immediately from the fact that the defined
bijection is inclusion-reversing, since:

e 115 is the smallest finite abelian extension of K that contains both
L1 and LQ;

e Nm(L)NNm(LJ) is the largest open subgroup of finite index of K*
which is contained in Nm(L7') and in Nm(L3 );

e [N Loy is the largest finite abelian extension of K that is contained in
L1 and Lg;

e Nm(L{)Nm(L5) is the smallest subgroup of K* which contains both
Nm(L{') and Nm(LJ') and it is a norm group from the previous corol-
lary.

O
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2.2 Proof of the local reciprocity law

In this section we prove the existence of a local Artin map for any local field K
and uniqueness in the archimedean case. Uniqueness in the nonarchimedean
case will be proved at the end of the following section as a consequnce of the
proof of local existence theorem.

Theorem 2.3. If K is a local field, there exists a unique homomorphism
br : K* = Gal(K"/K)
such that:

e if L/K is a finite abelian extension, ¢ induces an isomorphism

(bL/K : KX/NmL/K(LX) — Gal(L/K)

e if K is nonarchimedean, ¢k ()| = Froby i for any finite unramified
extension L/K and any prime element 7 of K.

As a first step, we prove the theorem in the archimedean case.
If K =C, we define

¢ : C* — Gal(C/C)

as the obvious trivial map. All the stated properties are obviously satisfied.
It K =R, we define
¢r : R* — Gal(C/R)

as the map which sends the elements of Ryg to 1 and the others to the
conjugation automorphism. Obviously it is the unique map which satisfies
the stated properties.

Now, we prove the existence of ¢ for nonarchimedean local fields. In order
to simplify the notation, from now on we denote by

H*(L/K) := H*(Gal(L/K), L)
whenever L/K is a Galois extension.

2.2.1 Galois cohomology for local fields

Lemma 2.1. Let L/K be a finite unramified extension of nonarchimedean
local fields. Then the map

NmL/K U - Uk

1S surjective.
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Proof. We denote by [ and k the residue fields of L and K and by G the
Galois group of L/K. Recall that

G = Gal(l/k)

First of all we observe that

_ [HR(G, 1))

= 2 HY(G, 1

1= h(l%)

= HY(G,1*) =0

and
HY(G,1) = H7(G,1) =0

Hence the maps
Nm: 1" =k, Tr:l—k

are surjective. Now, for a generic nonarchimedean local field F with residue
field e, we consider the homorphisms

ag:Ug —e*, u— umodmg

and
BEm :1+mEg —e, 14+ ar™ — amodmpg

and we observe that they are surjective and
ker(ag) =1+ mpg, ker(Bem) =1 +m7£+1

In order to conclude, we have to work with the following commutative dia-
grams:
BL,m

Uy —2E 1 1+mp 227
po b b
Uk —255 k¥ 1 gmy 25 g

Finally, we take u € Ug. The first commutative diagram tells us that there
exists vg € Ur, such that ax(u) = ax(Nm(vg)) and then

u/Nm(vg) € 1 +mg

With analogous considerations on the second diagram we find v; € 1 + my,
such that u/Nm(vov1) € 1+ m3%. Proceeding in this way we can find a

sequence {v;}; such that u/Nm(vg---v;) € 1+m?1. If v := lim;_ oo vo -+ V;,
we have u/Nm(v) € (14 m’} = {1} and we can conclude. O

Proposition 2.1. H.(G,Ur) = 0 for any integer r and for any finite un-
ramified extension of local fields L/ K with Galois group G.
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Proof. From the previous lemma we have that H%(G,Ur) = 0 and, since G
is cyclic, to conclude we just need to prove the proposition for r = 1. We fix
a prime element m € K and we observe that, since

L*2U, xnl 22U, xZ
we have
HYG,L*) = HYG,UL) x HY(G,7Z)
Since H'(G,L*) = 0, the same holds for H*(G,Uy). O

2.2.2 The invariant map

Theorem 2.4. Let K be a nonarchimedean local field. There exists an iso-
morphism

invg : H*(K'"/K) — Q/Z

such that for any finite unramified extension L/K it induces an isomomor-
phism

invg i« H*(L/K) — 77

1
[L: K]

Proof. First of all, we set L/K a finite unramified extension with Galois
group G and we define the isomorphism invy k. We consider the exact
sequence

0—-U,—=L"—=Z—=0

and, since H2(G,UL) = H3(G,UL) = 0, we get an isomorphism
ordy - HY(L/K) — H*(G,7)
Then we consider the exact sequence
0-2—-Q—Q/Z
and, since H'(G, Q) = H?(G,Q) = 0, we get an isomorphism
§: H*(G,7) - HY(G,Q/7)

Now, we know that H'(G,Q/Z) = Hom(G,Q/Z) and we consider the iso-
morphism

1
v:Hom(G,Q/Z) — - K]Z/Z, v(f) = f(FrobL/K)
Finally we can define

invr /g *=vodoordy
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Now, invg can be defined starting from these isomorphisms. It is possi-
ble because, if K C L C FE is a tower of finite unramified extensions, the
following diagram is commutative:

HY(L/K) Y5 )z

|ms I

NVE

HX(E/K) —5 Q/Z

The map invg is called the invariant map of K.
Now, our purpose is to extend the definition of the invariant map to H?(K*/K),
where K* is the separable closure of K.

Lemma 2.2. If L/K is a finite extension of nonarchimedean local fields of
degree n, the following diagram is commutative.

HX(K™/K) ™5 /7

[ Jo

HY(L™ /L) 5 Q/Z
The restriction homomorphism is induced by the compatible homomorphisms
Gal(L*""/L) — Gal(K""/K)

Kunx s Lunx

which are, respectively, the restriction and the natural inclusion.

Proof. The commutative diagram of the statement comes from the compo-
sition of the following commutative squares.

H2(K* /K) 2% H2(Ty,2) —>— H'(Tk,Q/Z) —— Q/Z

[ Jeres Jores |7

H2(L" /L) " B2(Tj2) — HY(T1,Q/Z) — Q/Z,

The commutativity of the first square comes from the commutativity of

Junx ordy 7,
| 2
[ unx ordy, 7
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The commutativity of the second square comes from the fact that the bound-
ary map commutes with the restriction homomorphism.
The commutativity of the third square comes from the fact that

Frobp|gun = Frobf(
O

Now, we continue to consider a finite extension of nonarchimedean local
fields L/K and we observe the following commutative diagram.

0 xR Z/Z H* (K /K) 2 gL /L)

L e e

0 —— H2(L/K) —— H2(K*?/K) -5, H2(KP /L)

Since the inflation homomorphisms are injective we find that the same
holds for the left vertical arrow. We prove an important lemma.

Lemma 2.3. If L/K is a finite Galois extension of nonarchimedean local
fields with Galois group G, there exists an open subgroup V of Uy stable
under G such that H"(G,V') = 0 for any positive integer r.

Proof. We choose a normal basis {o(«) : 0 € G} of L over K (where o € L)
and we define the free G-module

A= Z OKU(Oé)
oceG

We can assume A C Op, and, since it is open in it, there exists a positive
integer N such that 7¥O; C A where 7 is a prime element of K. Now we
set

M :=zNt1A
Vi=1+7'M
V=V’

We observe that
M-M=raN2A . Aca®N 20, cn-aVHAcaM

From these considerations we find that V' is an open subgroup of Uy, stable
under G and {V*};>1 is a descending family of open subgroups of V with
trivial intersection, so we only have to prove that V has trivial cohomology.
We observe that we have an isomorphism

M/aM — VI VT mies 14 7im
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and, since M/7M is free over G, it implies that H"(G,V?/Vi*1) = 0 for

any positive integer r. Now, if f is a r-cocycle with values in V, there exist

a (r — 1)-cochain g; with values in V and a r-cocycle fi with values in V!

such that f = d"'(g1) + f1. Proceeding inductively we find that, for any

n > 0, there exist a (r — 1)-cochain g,,4+1 with values in V™ and a r-cocycle

fni1 with values in V™! such that f, = d""'(gn+1) + fur1. The product
[e.e]

g = H gn is defined by a Cauchy sequence, so it converges and we get

n=1
f =d"~Y(g), which implies H"(G,V) = 0 for any positive integer 7. O
Now we can prove that H2(L/K) has order [L : K] and so it is isomorphic
to [L:—IK]Z/Z. We just need to show that |[H?(L/K)| < [L : K] and we do it
by induction on [L : K.

e For the base case we prove the claim for cyclic extensions. We consider
V as in the previous lemma and we notice that Uy /V is finite because
U;, is compact. Then

_ HX(L/K)|
HYG, L))
—|Z/[L: K]Z| = [L : K]

|H7(G,Z)]

|H*(L/K) HYG,Z)|

= h(L*) = h(UL)h(Z) = h(V')

e We assume the claim is true for any positive integer n < [L : K]. It
is possible to prove that Gal(L/K) is solvable (see |7, Corollary 7.59,
pag. 131]) and it implies that there exists a tower of Galois extensions
K C E C L. The inflation-restriction exact sequence

0— H*E/K) — H*(L/K) — H*(L/E)
finally tells us that

[H*(L/K)| < [H*(L/E)||H*(B/K)| = [L : K]

Finally, we can prove the existence of the invariant map for K*? /K.

Theorem 2.5. Let K be a nonarchimedean local field. There exists an iso-
morphism
invg - H*(K*P /K) — Q/Z

such that for any finite Galois extension L/K it induces an isomorphism

invg i« H*(L/K) —

1
[L : K]Z/Z

Proof. From the above discussions and results we have that

H*(L/K) Cc H*(K""/K)
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for every finite Galois extension L/K. Then, since
H*(K*°P|K) = U H*(L/K)
L/K finite Galois

we have that
Inf: H3 (K" /K) - H*(K*?/K)

is an isomorphism and we can conclude by composing its inverse with

invg : H*(K""/K) — Q/Z

2.2.3 The local Artin map

Let L/K be a finite Galois extension of nonarchimedean local fields with
Galois group G.

For any subgroup H of Gal(L/K) there exists a field K C E' C L such that
H = Gal(L/E). We know that H'(Gal(L/E),L*) = 0 and the properties
of the invariant map tell us that H2(L/FE) is cyclic of order equal to [L : E].
Then hypoteses of Tate’s theorem are satisfied and we find an isomorphism

G = H2(G, LX) = H)(G, LX) = K*/Nm(L*)

When L/K is a finite abelian extension, we define the local Artin map of
the extension as the inverse of the previous isomorphism

br/x : K*/Nm(L*) = Gal(L/K)

Proposition 2.2. Let K C E C L be a tower of finite abelian extensions of
nonarchimedean local fields. Then the following diagram commutes:

K% 25 Gal(L/K)

b

¢
K* “2% Gal(E/K)
where the right vertical arrow is just the restriction homomorphism.

Proof. See |8, Proposition 3.3, pag. 107]. O]

As a consequence of the previous proposition we can finally define the
local Artin map of K

oK 1 K* = Gal(K™/K)

The last thing we have to prove is the following proposition.
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Proposition 2.3. If L/ K is a finite unramified extension of nonarchimedean
local fields and 7 is a prime element in K, we have that

¢L/K(7T) = FTObL/K

Proof. We set G := Gal(L/K), n = [L : K| and ¢ := Frobyi. As a first
claim we prove that the cochain

¢:G*— L~
po’,o?)=1if i+j<n-—1
plo’, o)) =mifi+j>n—1

represents a generator of H2(L/K).
In order to do it, we use the definition of invy, /. We choose f € HY (G,Q/7),
f(0%) = L +7Z and we consider f: G — Q, f(0%) = L as alifting of f. Then

n

07 f(o",07) = o' f(0?) = F(o™) + f(o")
and the claim follows from the identification of Z with 7% because
(ot =0if i+j<n-—1
(et oy=1if i+j>n—1

Now we conclude the proof following the proof of Tate’s Theorem, recalling
that we have the following chain of isomorphisms:

G=H*G,2)=2H G, I) = H G, L") = K*/Nm(L*)
The definitions of the first two isomorphisms immediately imply that the

image of o in H=Y(G, 1) is (0 — 1) + I%. Then, the boundary map defining
the third isomorphism comes from the snake lemma applied to the diagram

HY(G,I)

|

(L) —— L*(d)c I 0

| | !

0 LXG LX(¢)G IG

|

HY(G,L>)
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We choose x5 + IgL*(¢) € L™ (¢)c as an element which sends to
o—-1+1%¢Ig.
Finally, the image of o — 1 + I? in HY(G, L*) is

Nmg(z,) = Z o'y
=0
n—2 .
=T, + Z(xa.i+1 — 2, 4+ ¢(0,0"™)) + 21 — Tym1 + ¢(0, 0™
i=1

2.3 Proof of the local existence theorem

In this section we want to prove the local existence theorem.

Theorem 2.6. Let K be a local field. A subgroup of K* is a norm group if
and only if it 1s open of finte index.

As a first step, we prove it for archimedean local fields.
If K = C, the only norm subgroup is C* = Nm(C*) and it is open of finite
index, so we just need to prove that it is the only one. If H < C* is open
of finite index, there exists a positive integer n such that C*"™ C H, but
C*™ = C* for every n so H = C*.
If K =R, the only norm subgroups are R* = Nm(R*) and Rs9g = Nm(C*)
and they are open of finite index, so we just need to prove that there are no
more. If H < R* is open of finite index, there exists a positive integer n
such that R*™ C H, but R*™ is R* if n is odd and R+ if n is even, so H is
one of them.
Then, we have to prove the theorem for nonarchimedean local fields, which
is the most difficult part. First of all, we introduce the notion of Lubin-Tate
formal group laws and we briefly recall the theory of Newton polygon.

2.3.1 Lubin-Tate formal group laws

Definition 2.1. Let R be a commutative ring. A commutative formal
group law is a power series F' € R[[X,Y]] such that

o F(X,Y)=X+Y+ terms of degree > 2;
o F(X,F(Y,2)) = F(F(X,Y),Z);
o F(X,Y)=F(Y,X).
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A homomorphism f : F — G between commutative formal group laws is a
power series f € TR[[T]] such that

fIF(X,Y)) = G(f(X), f(Y))

Let K be a nonarchimedean local field with |k| = ¢ and 7 a prime element
in it. We define

LT(n) :=={f € Og[[T]] : f = 7T modT?, f = T9 modr}

Proposition 2.4. For any f € LT (w) there ezists a unique commutative
formal group law Fy over Ok such that f is an endomorphism of F.

We call {F}terr(x) as the family of the Lubin-Tate formal group laws
associated to .

Proof. See [8, Proposition 2.12, pag. 33|. O

Proposition 2.5. For any f,g € LT(w) and any a € O there exists a
unique homomorphism

lalg,r : Fy — Fy
such that:
e [aly s =al mod T?;
e golalyr=lalgrof.
Furthermore, if we set
[aly := laly.s

the inclusion
OK — End(Ff), a— [a]f

1S a ring homomorphism.

Proof. See [8, Proposition 2.14, Corollary 2.17, pag. 34]|. O
2.3.2 Newton polygon
Definition 2.2. Let K be a local field and consider the polynomial

p(x) = ao+ -+ apz"”

in K[x] with asa, # 0. We define the Newton polygon of p as the convex
hull of the set of points

{(i,vg(a;)) :i=0,...,n}
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Theorem 2.7. Let K be a local field and p a polynomial as the one considered
in the previous definition. If {ly,...,1,} is the set of the slopes of the line
segments of the Newton polygon of p, {j1,...,Jr} is the set of the lenghts of
their projections and {a1, ..., a5} are the roots of p in K we have:

o [; #1; wheneveri # j;

. —UK(OQ') S {ll, ...,lr},’
o the number of roots with valuation equal to —l; is, at most, j;.

Proof. See |7, Proposition 7.44, pag. 125]. O

2.3.3 Construction of K, and ¢,

Let K be a nonarchimedean local field with |k| = ¢, = a prime element of
Ok and f a polynomial of degree ¢ in LT (7). If n is a positive integer we
set
Ap={x e K°7:|z| <1}
Apn ={z € Ay : [n]}(x) =0}

where Ay, C Ay are two Og-modules with the operations defined by

T +a, Y= Fr(z,y)
axx:=la]f(z)
We observe that Ay, is just the set of roots of f(™ because [r]; = f
and because f(”)/T is a product of Eisenstein polynomials, i.e. its roots
have positive valuations from the theory on Newton polygons. Now, for any

positive integer n we set
K = K[Agn]

The previous considerations and the fact that f(® is separable imply that
K /K is a Galois extension and it is independent of the choice of f. Indeed,
if f and g are two different polynomials in LT'(7), the isomorphism [1]4 ¢
induces an isomorphism of Og-modules Ay, — Ay,. By induction, we
choose

e 71 a non-zero root of f;
e m, aroot of f—m,_1.

Now, the polynomial f/T is Eisenstein, so the extension K|[m]|/K is totally
ramified of degree ¢ — 1. From the results about Newton polygons we know
that v[r,)(m1) = q%l, S0 it is a prime element. Then the polynomial f — m
is Eisenstein and K{[ma]/K|[m1] is a totally ramified extension of degree gq.
Proceeding in this way we find that K[r,]/K is a totally ramified extension
of degree (¢ — 1)¢" L.

Obviously, K[r,] C Ky, because f(™(m,) = 0 and we want to prove that
they are equal.
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Proposition 2.6. Let K be a nonarchimedean local field. Any K -automorphism
of Ky induces an O -automorphism of As,, and

Auto, (Afn) = (O /m™)*
Proof.

e Obviously, if a is a root of f(™| the same holds for o(a) where
o € Gal(Kr,/K). Furthermore, if o € Ok, we have

o(lalf(@)) = o( lim [a]gm(a)) = lim o([a]gm(a))

m—+00 m——+0o0
= lim_[d]sm(00) = [d]f(oa)

where [a] 7., is the sum of the terms of degree < m of [a];.

e In order to prove that
Auto, (Apn) = (O /m™)~
we just need to show that
Afp = Og/m"

and we will do it by induction. Since Ay ; has g elements, the structure
theorem for finitely generated modules over a PID implies that

Aﬁl = OK/m

Now, we assume the statement is true in the case n — 1 and we prove
it in the case n. Thanks to the results on the Newton polygon, we
observe that if
a € Ay,_1, then the roots of the polynomial f —« stands in Ay, i.e.
the map

Af,n — Af,n—la T [ﬂ-]f@:)

is surjective. Then we have an exact sequence
0—=Ap1 = App = App1—0

where the third arrow is the surjective map previously defined. Finally,
Ay, has ¢" elements and, since Ay q is a cyclic module, the same holds
for Ay, and then

A fn = O K / m”
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Thanks to the previous proposition we have
(q—1)g" " = [K[my] : K] < [Krp : K] = |Gal(Krpn/K)| < (¢ 1)¢" ™"

and it implies that
Krpn = K[my)

and
(O /m")* = Gal(Krn/K)

Proposition 2.7. 7 is a norm from Ky, for any positive integer n.

Proof. We define
FolT) = (f/T) o f V) =g 4 ... g Tla=Da""

and we observe that f,(m,) = 0. Then f, is the minimum polynomial of m,
over K and then, if n > 1, we have

Nmg_ k() = <_1)(q71)qn—1ﬂ _
If n = 1 the statement follows from the transitivity of the norm. O

Finally, we set
K= Kxn

n>1
We observe that K is a Galois extension of K since it is the union of an

increasing sequence of Galois extensions of K. Now, using the fact that
KN K" = K we define the map

¢ KX — Gal(K, - K" /K)

in the following way: if x = un™ where u € Uk, ¢-(x) acts on K"" as
Froby and on K, according to

Or(2)(A) = [u” ] (N)

with A € Ay, for some n. It is immediate to see that ¢, is a group homo-
morphism. Another immediate consequence of the definition is that, if K,
is the unramified extension of K of degree m, ¢ () induces the identity on
Ky p - Ky, whenever ¢ € (14+m") - (7). Indeed, Frob}} is just the identity
on K, and if uw € 1 + m" the same holds for its inverse and [u™!];(\) = A
for A € Ay, follows from the isomorphism

(O /m™)* =2 Gal(Kypn/K)

Proposition 2.8. Let K be a nonarchimedean local field. Then K, - K""
and ¢, are independent of the choice of 7.

Proof. See [8, Theorem 3.9, pag. 40]. O]

From now on we will denote ¢’ := ¢, for any prime element .
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2.3.4 Local Kronecker-Weber Theorem: end of the proof

Lemma 2.4. If L/K is a finte extension of nonarchimedean local fields and
Nm(L*) is of finite index in K>, then it is open.
Proof. Since

Nm(LX) N Uk = Nm(UL),
Uk /Nm(Ur) injects into K*/Nm(L*), so Nm(Up) is of finite index in Uk
and it is also closed because continuous image of a compact set. Then it

is open in Uy, which is open in K*, so Nm(Uyr) is open in K* and it is
contained in Nm(L*). Then Nm(L*) must be open too. O

Lemma 2.5. Let K be a nonarchimedean local field. Then

Ok ()| Ky run = ¢ (1)

Proof. Let 7 be a prime element of K. We know that ¢x(7) and ¢'(m)
act in the same way on K"". Furthermore, 7 € Nm(K;,) and so ¢x ()
acts trivially on Ky, and the same holds for ¢'(7) = ¢, (7). The statement
follows because the prime elements of K generate K *. O

The last step to prove the local existence theorem is the proof of the local
Kronecker-Weber Theorem.

Theorem 2.8. Let K be a nonarchimedean local field and 7 a prime element
of Ox. Then
Kab — Kﬂ— el
Proof. We denote as K, the unramified extension of K of degree m and we
set
Kn,m = Kﬂ,n K,
Ungm 1= (1+m") - (™)

We know that, if x € U, 1, ¢=(z) induces the identity on K, ,, and then the
same holds for ¢x (). It implies that Uy, C Nm(K,,) and the following
equality proves that they are equal:

(K™ Upn) = (U : L+ m"™)({m) : (7)) = (¢ = 1)¢""'m

= [Kpp: K|[Kp,: K] =[Kpm: K]
where the last equality comes from the fact that K,,, N K, = K. If L/K
is a finite abelian extension we know that Nm(L*) is of finite index in K*,

hence it is open and so there exist n,m > 0 such that U, ,, C Nm(L*).
Now, if x € K*, we find that

o () fizes Kpm = x € Nm(K,,) = Upm C Nm(L™) = ¢ () fizes L

and, since any element of Gal(L- K, ,,/K) arises as the image of an element
of K* through ¢x, we have L C K, ;,,. The statement follows. O
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Finally, we can prove the local existence theorem for nonarchimedean
local fields. The existence of the local Artin map implies that any norm
subgroup of K* is of finite index in K>, hence open. Conversely, for any
open subgroup of finite index of K* there exist n, m > 0 such that it contains
Unm = Nm(Kﬁm) Since it contains a norm group, it is a norm group too.

2.3.5 Uniqueness of the local Artin map

Finally, we can also conclude the proof of the local reciprocity law by proving
the uniqueness of the local Artin map.

Theorem 2.9. If K is a nonarchimedean local field and ¢ is a local Artin
map for K, then ¢i 1s unique.

Proof. We assume that ¢x and ¢ are two local Artin maps for K and we
fix a prime element m of Og. We know that the image of m under any local
Artin map induces the identity on K, and the Frobenius automorphism on
K"" hence we have that ¢x(7) and ¢(7) induces the same automorphism
on K- K% = K%®_ so they are equal. We can conclude because K* is
generated by its prime elements. O

2.4 An example: cyclotomic extensions of QQ,

Let p be a prime positive integer, n > 1 a positive integer and (,, a primitive
n-th root of 1 over Q,,.
The Galois group of Q,((,)/Q) is cyclic, hence abelian, so we can study the
action of elements of Q) on Q,((,) described by the local Artin map. We
distinguish three cases.

First case: we assume n to be coprime with p. In this situation, the poly-
nomial X" — 1 is separable over F), and its splitting field is F,,s, where f is
the smallest positive integer such that n divides p/ — 1. Then, Qp(¢n)/Qyp is
an unramified extension of degree f and the action of the local Artin map is
described in the following way: if u - p! € Qp with u € Z, its image under
the local Artin map acts as the ¢ power of the Frobenius automorphism.

Second case: we assume n to be a power of p. We set
f(T)=(T+1)?—-1¢€ LT(p)

and from the theory previously developed we immediately have that

Qp(¢pr) = (Qp)p.r- Then the extension is totally ramified of degree (p—1)p"~*
and we can describe the action of u - p' € Q, under the local Artin map as
follows. We observe that (,» —1 is a root of ). so we just need to find the
value [u™Y¢(¢yr — 1). Since Z,/p"Z, = Z/pZ, there exists an integer v such
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that [u™!]; = [v]y = (T +1)” — 1. Then {,r — 1 is sent to ¢% — 1.

Third case: the general case is just an immediate consequence of the previous
cases. Indeed, if n =m - p" with p and m coprime, we have that

Qp(Cn) = Qp((m)(@p(gﬂ')
@p(gm) N @p(CpT) =Q

and the properties of the local Artin map tell us that we can describe it using
the actions on Q,((pm) and Qp(¢pr).
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Chapter 3

Global Class Field Theory

The main purpose of global class field theory is to classify the abelian ex-
tensions of global fields. In this chapter we will put our attention on the
particular case of number fields, i.e. on the finite extensions of Q. There
are two different ways to approach and to state the main theorems of global
class field theory. The most modern and elegant formulation is based on
the notion of ideles introduced by Chevalley. Otherwise, it is possible to
formulate it in terms of ideals and the linked results are often more useful
for applications. In this chapter we will state and prove the main theorems
in terms of ideles and then we will only state the results given in terms of
ideals.

3.1 Adele rings and Idele groups

In this section we want to introduce the notions of adele ring and idele group
of a number field and to study their main properties. First of all we need to
introduce the topological notion of restricted product.

Definition 3.1. The restricted product of a family of topological spaces
(X;); with respect to a family of open sets (U;); where U; C X; for any i is
the topological space

I_II(X/L-7 Ui) :=={(z;); € HXi cx; € U for almost all i}
The topology is defined by taking as a basis of open sets the family
{H Vi : Viiis an open subset of X; and V; = U; for almost all i}

Definition 3.2. Let K be a number field. The adele ring of K s the
topological ring

A = H/ (Ky, Oy)

vprimeof K

43
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where K, is the completion of K with respect to the prime v and O, is its
ring of integers. Addition and multiplication are defined componentwise.

Definition 3.3. Let K be a number field. The idele group of K is the
topological group

k=[] (&0

vprimeof K
Multiplication is defined componentwise.
We observe that as a set Ix is just Ag. Anyway, the topology of I

is not the subspace topology inherited from Ag (but it injects continuosly
inside it). If S is a finite set of primes of K, we define

Is = [[ KX x [] O
vES v¢S

Obviously, Ix s < Ig. Now, we define some important functions involving
I% that will be useful in the sequel:

e The map
ix: K* = 1Ig,a— (a,a,a,...)

is an injective homomorphism. In particular, we can see K* as a sub-
group of Ig. Tt is well-defined because any element of K* is contained
only in finitely many prime ideals of Ok.

e The map
Opou (av)
aK:]IK—>IK,(aU)v'—> H Po

v finite prime

where p, is the prime ideal of Ok associated to v is a surjective ho-
momorphism between the idele class group and the group of fractional
ideals of K.

e The map
ir, : K = Ig,a—(1,...,1,a,1,...1)

where a is in the position associated to K, is an injective homomor-
phism.

The map ix leads to the following fundamental definition.

Definition 3.4. Let K be o number field. The idele class group of K is
the topological group Cg =l /K*.

Now, we recall the notion of norm of ideals and we define norm of ideles.
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Definition 3.5. Let L/K be a finile extension of number fields with ideal
groups Ii and Iy, and idele groups I and 1.
The map
NmL/K I — Ik
1s defined by setting
Ny, (B) = p/ B0
for any prime ideal B of L where p = B N Ok and f(B/p) is the inertia

degree of B over p. Then the map is obtained with a multiplicative extension.
The map
NmL/K cp — I

1s defined by
(NmL/K((aw)w))v = H Nme/Kv (aw)

The following proposition tells us that it is possible to extend norm maps
to ideal and idele class groups and that they commute with the map ajk.

Proposition 3.1. Let L/K be a finite extension of number fields. The
following diagram is commutative:

L

L* Iy, 17,
JNmL/K leL/K leL/K
K> T —55 Iy

Proof. For the commutativity of the left square see |7, Corollary 8.4, pag.
136]. The commutativity of the right square follows from the obvious equality

ordg(l) = [Lw : Kyordy(Nmp,, /5, (1))

for any prime v of K, any prime w of L which lies over v and any [ € L,,. [

3.2 Idelic class field theory

In this section we want to state the main theorems of global class field theory
in terms of ideles. First of all we need to define a map which is central in
this theory. We fix a finite abelian extension of number fields L/K and a
prime v of K. We observe that for any prime w of L which lies over v the
decomposition groups

D(w) ={o € Gal(L/K) : ow = w}
and the local Artin maps

by K — Gal(Ly/Ky)
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coincide, i.e. D(w) and ¢, are independent of the choice of w. Now, we
define

ok Ik = Gal(L/K), ¢r/k(a) = H Pv(av)|L

vprimeof K

We observe that the product is well-defined because if v is a finite prime and
if we choose w in order to have L,,/K, unramified, ¢,(a,) = 1 whenever
ay € U,. Properties of the local Artin maps imply that if K C Ly C Lo is a
tower of finite abelian extensions of number fields we have

br,/k(a)lL, = ér,/k(a)

and so if we vary L through the finite abelian extensions of K we get a
homomorphism

or g — Gal(K®/K)

Definition 3.6. Let L/ K be a finite abelian extension of number fields. ¢x
and ¢rk are called the (idelic) global Artin maps of K and L/K.

Finally, we can state the global reciprocity law and the existence theorem.
Theorem 3.1. Let K be a number field. Then the following properties hold:
* o (K*)=1;
e if L/K is a finite abelian extension, ¢ induces an isomorphism
br/k I /(K* - Nm(I)) — Gal(L/K)
or, equivalently,

¢L/K : C’K/Nm(CL) — Gal(L/K)

Theorem 3.2. Let K be a number field. If N is an open subgroup of finite
index of Ck, then there exists a unique finite abelian extension L/K such
that Nm(Cp) = N.

As usual, class field theory is mainly interested in classifying abelian
extensions of number fields. In this sense we give the following consequence
of the previous theorems.

Corollary 3.1. Let K be a number field. There is a one-to-one correspon-
dence between finite abelian extensions of K and open subgroups of finite
indez of C'x given by the map

L— Nm(CL)

It also satisfies the following properties:
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e 1 Cly& Nm(C’LQ) C Nm(CLl);
e Nm(Cr,.r,) = Nm(Cr,) " Nm(CL,);
e Nm(Cr,nr,) = Nm(Cr,) - Nm(CL,).

The proof of this corollary just follows the same steps as the proof of the
corollaries to the main theorems of local class field theory.
Open subgroups of finite index of Ck are called norm groups. If N is
a norm group, we call the unique finite abelian extension L/K such that
Nm(Cp) = N as the class field of K belonging to N.

3.3 Proof of the global reciprocity law
In this section we prove the Artin global reciprocity law.
Theorem 3.3. Let K be a number field. Then the following properties hold:
° O (K*)=1;
e if L/K is a finite abelian extension, ¢ induces an isomorphism
br/k Ik /(K* - Nm(IL)) — Gal(L/K)
or, equivalently,

611 : Cic/Nm(Cr) — Gal(L/K)

3.3.1 Cohomology of ideles

In this subsection we will give to I, and Cp, a structure of G-modules where
G = Gal(L/K) and we will study their properties under a cohomological
point of view. First of all, if a = (ay)w € Iz and o € G, we set

o(a) := (o(aw))ow

The action on CF, is inherited from this one since L* is G-invariant. It is
immediate to observe that the norms on ideles and idele classes previously
defined are exactly the norms given by the structures of G-modules. Fur-
thermore, ]Ig = Ik and C’f =Ck.

Definition 3.7. Let K be o number field and S o finite set of primes of K
which contains all the infinite ones. Then we define the set of S-units of K
as

U(S):={ae K*:ordy, (a) =0Yv ¢ S}
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The set of T-units of L where T is a finite set of primes of L is invariant
under the action of G, so it can be considered as a G-submodule of L*.
Similarly, I, 7 is a G-submodule of II;,. Furthermore, the usual unit theorem
holds for S-units, i.e.

U(S) = Z|S|_1 X U(S)tors

Now, we observe that if v is a prime of K, w; and we are primes of L which
lie over v sucht that w; = ows for ¢ € G and Gy, = Gal(Ly, /K,), then the

isomorphisms

Gy, = Gy T oro !

Ly, = Ly, T+ 0 'z

are compatible and they induce isomorphisms
H"(Guy, Ly,) = H (Guy, Ly,
Similarly
H'(Guwy, Un,) = H (Guy, Uny)
From now one we will denote by G := G,,, L' := L, and U" := U, for any

prime v of K and any prime w of L which lies over v.

Proposition 3.2. Let L/K be a finite cyclic extension of number fields, S
a finite set of primes of K and T the set of primes of L which lie over the
primes i S. Then

h(Ipr) = [[IL": K.

veS

Proof. We have

WG Ir) =nG [TTIZs) - mG [ T]Uw)

veS wlv vgS wlv
=[G I Ly =[] rG, L)
ves wlv veS
= [[1#2(@" L) = []IL" : ]
ves ves

For the third equality see [8, Proposition 2.3, pag. 204].

For the fourth equality see [8, Proposition 2.5(b), pag. 205] and [8, Corollary
2.6(a), pag. 206].

The last equality comes from the isomorphism

H2(Gv’ Lv><) o~

given by the invariant map. O
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Proposition 3.3. Let L/K be a finite cyclic extension of number fields, S a
set of primes of K which contain all the infinite ones and T the set of primes
of L which lie over the primes in S. Then

[1ize: K.
WU D) = =g

Proof. See |8, Proposition 3.1, pag. 208|. O

3.3.2 The first inequality

In this subsection we want to prove the following inequality, known as the
first inequality.

Theorem 3.4. Let L/K be a finite cyclic extension of number fields. Then
(Ig : K* - Nm(l)) > [L: K|
The proof is based on the following two lemmas.

Lemma 3.1. If K is a number field and S 1s o finite set of primes which
contains the infinte ones and a set of generators for the ideal class group

CI(K), then
Ig =K -Iks

Proof. Since S contains a set of generators for CI(K), any fractional ideal
of K can be written as the product of ideals in S and a principal ideal, i.e.

Ix/(S)-K* =0
Then, we can conclude because the map ax defines an isomorphism
I /Igs - K* = Ik/(S) K~
O

Lemma 3.2. h(CL) = [L : K| whenever L/K is a finite cyclic extension of
number fields.

Proof. We fix a finite set S of primes of K which contains:
o all the infinite primes;
e all the primes that ramify in L;

e the finite primes associated to a set of generators of CI(L);
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and we denote by T the set of primes of L which lie over S.
Thanks to the previous lemma and to the fact that L* NIy = U(T) we
find

Cr, = HL/LX =L* ~]IL7T/L>< = ]IL,T/LX ﬁHL,T = ]ILT/U(T)

and it implies
h(Ip 1)
h(U(T))

where the last equality follows from the results on cohomology of ideles. [

h(Cr) = =[L: K]

The first inequality follows from the previous lemma because

(Ix : K* - Nm(Ip)) = |Hp(G, Cp)| > |HP(G, Cp)|/|H(G, Cr)|
=h(CL) =[L: K]

3.3.3 The second inequality

Now, we want to prove the opposite direction of the inequality. In order to
do it we state a more general theorem.

Theorem 3.5. Let L/K be a finite Galois extension of degree n of number
fields with Galois group G. Then

o (Ig: K*-Nm(ly)) is finite and it divides n;
L HI(G, CL) = 0,’
e H?(G,CY) is finite and its order divides n.

Lemma 3.3. If the first point of the theorem holds in the case of finite cyclic
extensions of prime degree p, then the theorem holds in general.

Proof. We split the proof into three steps.

First step: we assume that the first point of the theorem holds for cyclic
extensions of prime degree p and we prove that all the other points hold for
cyclic extension of prime degree p. The third point of the theorem follows
immediately because

Ix/K*-Nm(Iy) = Cx/Nm(Cr) = HXG,Cr) = H*(G,Cy)

while the second point follows from the fact that h(Cp) = [L : K].

Second step: we assume that the theorem holds for cyclic extensions of prime
degree p and we prove it holds for extensions L/K such that Gal(L/K) is a
p-group. Let G := Gal(L/K), we will prove the claim by induction on |G|.
Notice that, since it is a p-group, it has a normal subgroup H of finite index
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p and set K’ := L. We consider the following inflation-restriction exact
sequences.

0— HY(G/H,Cyx)) — H(G,Cr) - H'(H,Cp)

0 — H*(G/H,Ck/) — H*(G,CL) — H*(H,Cp)
By induction, H'(G/H,Cy/) = 0 and H'(H,CL) =0, so
HYG,Cp) = 0.
Similarly, |H(G/H, Cyo)| divides p and |H2(H,Cy)| divides 5] 5o
|H?(G,Cp)| divides [L : K].
Finally, the first point follows from the equality

(Cx : Nmpk(CL)) = (Cx : Nmgr/k(Cxr))(Nmgrx (Cgr) : Nmp, i (CL))
and from the surjectivity of the obvious map
CK//NmL/K'(CL) - NmK’/K(CK’)/NmL/K(CL)

Third step: we assume that the theorem holds for extensions L/K such
that Gal(L/K) is a p-group and we prove that it holds in general. If
G = Gal(L/K) and H is a p-Sylow of G, we know that the restriction ho-
momorphisms H7.(G,Cr) — Hy(H,Cp) are injective on the p-primary com-
ponents. Then the theorem follows since H'(H,Cr) = 0 and |HY(H, CL)|
and |H?(H,Cyp)| divide [L : L7]. O

Lemma 3.4. If the first point of the theorem holds in the case of finite cyclic
extensions L/ K of prime degree p such that K contains a p-th root of 1, then
the theorem holds in general.

Proof. Let ¢ be a primitive p-th root of 1, K" := K|[(], L' := L-K'. Obviously,
[K': K]=m <pandso L N K'=K. We consider the following diagram
where the rows are exact and the squares commute.

NmL/K

CL CK CK/NWL(CL) — 0

L s 4 |

NmL//K’
CL/ — CK/ — CK//Nm(CL/) — 0

leL’/L leK’/K l

Nm
CL Ly CK CK/Nm(CL) — 0

Now, the compositions of the maps in the first two columns are just exponen-
tiations by m and so the same holds for the third column. Cx/Nm(Cy) is
killed by p and so, since it is coprime with m, the composition of the maps in
the third column is an isomorphism. Finally it implies that (Cx : Nm(CL))
divides (Cg+ : Nm(Cp,)) and it divides [L : K] by hypotesis. O
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Thanks to the previous lemmas we only need to prove the second in-
equality in the case of finite cyclic extensions L/K of prime degree p such
that K contains a p-th root of 1. We will prove it in a more general case, in
particular we will consider L/K to be a finite abelian extension of exponent
p. In particular Gal(L/K) = (Z/pZ)" for a suitable positive integer r and
Kummer theory tells us that L = K[g/ar, ..., §/a;] for suitable a; € K.

We also fix S to be a finite set of primes of K which contains:

all the infinite primes;

all the divisors of p;

all the primes that ramify in L;

a set of generators for Cl(K);

e cnough primes so that all a; are in U(S5).

We set M := K[U(S )%], which is the Kummer extension corresponding
to

U(S) - K*P/K*P =U(S5)/U(S) N K** =U(S)/U(S)? = (Z/pZ)®

where s = |S| and the last isomorphism comes from the unit theorem and the
fact that g, C U(S)tors- Then K C L € M and [M : L] = p' where t = s—r-.

Lemma 3.5. If L/K is a finite abelian extension of number fields and A is
a finite set of primes of K which contain the inifinite ones and those which
ramify in L, the set

{pu(my) : v & A}
generates Gal(L/K).
Proof. For any v ¢ A we denote by (p,, L/K) := ¢, (m,) seen as an element

of G:= Gal(L/K). If H is the subgroup generated by the set considered in
the statement and E is its fixed field we find that

(pv, E/K) = (po, L/K)|p =1

for any v ¢ A. Then all the primes of K which do not lie in A split in E. In
order to prove that H = G we claim that £ = K. We define

D :={(ay)y €lg :a,=1Vv e A}

Obviously D € Nm(Iy) since L,, = K, whenever w|v, v ¢ A.

Furthermore, if a = (ay), € Ik, thanks to the weak approximation theorem
we can find b € K* which is close to a, for v € A. Then there exists o € D
such that (ba), = a, for any v ¢ A and it implies that ba is close to a. Then
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K> - D is dense in [. Now, we assume by contradiction that ¥ # K and so
we can find a field K’ such that K ¢ K’ C L, K # K’ and K'/K is cyclic.
Then

D C Nm(]IL) C Nm(]IK/)

which implies that K* - Nm(Ig/) is dense in Ix. This subgroup must be
open and, hence, closed and so

K* - Nm(lg:) = Ig

Then, thanks to the first inequality, we have K’ = K, a contradiction, and
the proof is concluded. O

Thanks to |8, Lemma 6.2, pag. 215|, which is proved using the properties
of S and the previous lemma, we can find a finite set of primes of K called
T which is disjoint from S and such that

{¢u(my) 10 €T}

is a basis for Gal(M /L) seen as a vector space over ). Obviously ¢ = |T|.

Now we set
E=]][E>x]]&x [ U
veS veT vgSUT

and we observe that it is a subgroup of Ix contained in Nm(Iz). Indeed, if
a = (ay), € F, we can see that any component is a norm:

e if v € S the isomorphism
K} /Nm(L}) = Gal(L,/K,)
implies that the left group is killed by p and so K, ” € Nm(LX);
e if v € T it follows immediately from the fact that L, = K,;

e ifv ¢ SUT, L, is unramified over K, and so the norm map U,, — U,
is surjective.

Now we need to prove an auxiliary lemma.

Lemma 3.6. Let K be a local field with char(K) = 0 and n a positive
wnteger. Then

(i« ) =l
||

and if K is nonarchimedean

W - Up) = 1l

|
where |1y | is the number of n-th roots of 1 in K and |n| is the absolute value

of n.
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Proof. If K = C, the first equation is just

If K =R and n is even, the first equation is just

2=n—
n

If K =R and n is odd, the first equation is just

1

1=n—

n

If K is nonarchimedean, the isomorphism K* = Uk x 7Z tells us that we
only need to prove the second equation. The exponential map defines an
isomorphism from a subgroup of finite index of Ok to a subgroup of finite
index of Uk and it implies

1

h(UK) = h(OK) = (OK : TLOK) = W

where the modules are considered over Z/nZ and it acts trivially. Finally

(UK : U}é) _ ‘Ker(NmZ/nZ(UK)M o |Mn‘

id ~Inl
O

The following two lemmas are crucial to conclude the proof of the second
inequality.

Lemma 3.7. It holds
(Ixsur: E) =p*

Proof. Since K contains a primitive p-th root of 1 and S contains all the
primes with non-trivial valuation on p, we have

2s
(HK7SUT3E):H(K;<ZK,fp):Hp"ur‘ __P — p%
veES vES Plv H ‘p|v
veES
thanks to the product formula. O

Lemma 3.8. It holds

(US UT): K* N E)=pst
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Proof. The unit theorem implies that
(US UT):US UTP)=pt
and it is immediate to see that

USUTPYCK*NE

95

1
so we only need to prove the opposite inclusion. Let b€ K*NE, L := K[br]

and

D:=][K;x[Jvrx ] U

ves veT vgSUT

To conclude we need to show that L = K and we split the proof into three

steps.

First step: D C Nm(I). In order to prove the claim we take (ay,), € D and

we prove that any component is a norm from K, [b%]
e v € S: it is obvious since Kv[b%] = Ky;
e v € T: it follows from the equality
1 1
(K : NmK,[br]) = [K,[b?] : K,]

where the latter divides p;

e v ¢ S U T: it follows from the fact that K, [b%]/Kv is an unramified

extension.

Second step: D - K* = Ix. We observe that
HK,S/D = H U’U/U’LI))
veT
and we consider the obvious map
u(s) — [[v./ut
veT
Its kernel is U(S) N L*P and thanks to Kummer theory the order of
U(S)/U(S) N L*P is p'. Then, since |p|, = 1 for v € T, we have
(U(S):U(S) n L?) = [[ (U, : UF)
veT

and it implies that the considered map is surjective.
Consequently, [x ¢ = D - U(S) and finally

Ix=Ig-K*=D -U(S) - KX =D-K*
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Third step: L = K. By contradiction, we assume L # K and, since L/K
is abelian and hence solvable, there exists a field K’ such that K ¢ K/ C L
and K'/K is cyclic and non-trivial. Now

D c Nm(I) € Nm(Ig)

and so
Ix =D -K*=Nm(lg) - K*

Then the first inequality implies K’ = K, a contradiction. O
Finally, we know that (I : K* - Nm(I)) divides (Ix : K* - E) and

(Igksur: E)

Ig:K*-FE)=(K*I :K*E) =
(L )= (K ksur )= WE T KX 0B

p25
:ps+t:pT:[L:K]

It concludes the proof of the second inequality.

3.3.4 End of the proof

Lemma 3.9. If L/K is a finite abelian extension of number fields,
¢r/K(a) =1 for any a € K*.

Proof. We are going to prove the lemma only in the case of subfields of
cyclotomic extensions. Then it can be proved in general thanks to [8, Lemma
8.5, pag. 222] and [8, Lemma 8.6, pag. 223|. First, we assume L = QI[(y]
and K = Q, where m is a positive integer and (,, is a primitive m-th root
of 1. We can assume m = [" with [ a prime positive integer.

Given a € R* we have ¢oo(a) = [sgn(a)].

Given a = up® € Q) we have ¢y(a) = [u™'] if p =1 and ¢,(a) = [p*] if p # L.
We observe that

boo(=1) = [=1],1(=1) = [-1], ¢p(—1) = [1]
oi(l) = [1], op(l) = [1]
dq(q) = [q], ¢1(q) = a7 '], dp(q) = [1]

and thanks to these equalities we find that

[[¢v(@) =1
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for any a € Q*. Then, the statement holds for any cyclotomic extension
L/K where L = K|[(] thanks to the commutativity of the diagram

PL/K

% Gal(L/K)

NmK/@
Io "2 Gal(Q[Cm) /Q)

where the right vertical arrow is the restriction map. Now, if L/K is abelian
and it is contained in a cyclotomic extension M of K, the statement follows
from the fact that

L/ =Teso K

where res : Gal(M/K) — Gal(L/K) is just the restriction homomorphism.
O

Finally, we can conclude the proof. The first lemma of this subsection
tells us that K C Ker(¢r,/ k) and it is immediate to see that also
Nm(I) C Ker(¢r k). Then ¢k is surjective and it induces a surjective
homomorphism

dr/i I /K™ - Nm(Ir) — Gal(L/K)

Thanks to the second inequality it is an isomorphism.

3.4 Proof of the existence theorem

In this section we prove the existence theorem.

Theorem 3.6. Let K be a number field. If N is an open subgroup of finite
index of Ck, then there exists a unique finite abelian extension L/K such
that Nm(Cr) = N.

First, we need to prove the following lemmas.

Lemma 3.10. Let K be a number field. If U <V is a norm group in Ck
then so is V.

Proof. If U = Nm(Cp) for a suitable finite abelian extension L/K, the
Reciprocity law gives the isomorphism

Ck/U 2 Gal(L/K)

The image of V/U is a subgroup of Gal(L/K) and if M is its fixed field we
get
Ck/V =2 Gal(M/K)

and it implies V' = Nm(C}y). O
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Lemma 3.11. If p is a prime positive integer and K is a number field which
contains a primitive p-th root of 1, any open subgroup V' of Ck such that
Ck/V is finite and killed by p is a norm group.

Proof. Let S a finite set of primes of K which contains
e all the infinite primes;
e all the primes dividing p;

e a set of generators for Cl(K).

3 =

We fix also L := K[U(S)r] and

E=][E>x]]U

vES vgS

We claim that K*-E = K*-Nm(Ip). Obviously, (Ix : K*-Nm(I1)) = p°
and

(Lﬁgilﬁ
(Igs N K*:E N KX)

(Ig:K*-E)=(Igs-K*:E-K*)=

[Tk K)
vES
T wE)uEy) - e P

2|S
p2lS] 5]

where the third equality follows from [8, Proposition 9.2, pag. 224|. Fur-
thermore, E C Nm(I) because

e if v € S, the isomorphism
KX /Nm(LYS) = Gal(Ly/K,)
implies K, ? C Nm(LX);

e if v ¢ S, L, is unramified over K, and the norm map U, — U, is
surjective.

Then the claim is true and we denote by U the inverse image of V in .
Now, I¥. C U and, since U is open, H 1x H U, C U for a suitable finite set

veES vgS
S of primes of K. Then E-K* C U and we can conclude because E- K> /K*

is a norm group. O

Lemma 3.12. If L/K is a finite cyclic extension of number fields, U is an
open subgroup of finite index of Cx and NmZ}K(U) s a morm group, then
U s a norm group.
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Proof. We set U’ := Nmz/lK(U) and, since it is a norm group, we fix M

a suitable finite extension of L such that U' = Nmy;(Cy). We claim
that M/K is an abelian extension. Obviously M/K is Galois because U’ is
invariant. Since

Gal(L/K) = Gal(M/K)/Gal(M/L)

and Gal(L/K) is cyclic, we just need to prove that Gal(M/L) lies in the
center of Gal(M/K). We consider the Artin map

¢M/L :Cp — Gal(M/L)
and, since it is surjective, we only have to show that

Oy (@) = odnp(x)o™t = (o)

for any x € Cr, and 0 € Gal(M/K). It follows immediately from the facts
that Ker(oyy ) = U and Nmp g(ox/xr) = 1 and so M/K is abelian.
Finally, Nm;/x(Cy) C U and so U is a norm group. O

Finally, we can conclude the proof of the existence theorem. We fix U an
open subgroup of C'k of finite index and we prove by induction on its index
that it is a norm group. The case n = 1 is obvious. For the inductive step,
let p be a prime which divides (Ck : U) and, thanks to the previous lemma,
assume K contains a primitive p-th root of 1. There exists a subgroup V
of Ck such that U C V and (Ck : V) = p and we know that it must be a
norm group, i.e. V.= Nm(Cp) for a suitable finite abelian extension L/K.
U .= Nmz/lK(U), the norm map induces an isomorphism Cp /U’ = V/U
which implies that U’ is a norm group by induction. Finally, the previous
lemma again implies that U is a norm group.

3.5 Global class field theory in terms of ideals

In this section we give a formulation of global class field theory in terms of
ideals without proving the results. It will be useful for applications in the
chapter about Complex Multiplication.

Definition 3.8. Let K be a number field and S o finite set of primes of K.
We denote by Ik g the free abelian group generated by the prime ideals that
are not contained in S.

Definition 3.9. Let K be a number field. A modulus for K is a function
m: {primes of K} — Zx>g

which takes value O at complex primes, 0 or 1 af real primes and non-negative
values at finite primes. We denote

m= H pm(p)

pprimeof K
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Given a modulus m we denote as S(m) the set of primes which have a
positive value under m.
Now, if K is a number field and m is a modulus, we define
k.o ac K> : ordy(a—1)>m(p) forall finitep dividing m
ml = ap >0 for all real p dividing m
It is easy to see that Kpy 1 injects into i gy and it leads to the following
definitions.

Definition 3.10. Let K be a number field and m a modulus for K.

A subgroup of I g(m) which contains Ky 15 called a congruence subgroup
modulo m.

The ray class group modulo m is the quotient Cl% := I g(m)/Km1-

A finite abelian extension L/K which is unramified at all primes not in the
support of m and such that Nm(Ip gwm),) C Km1 (where S(m)p is the set
of primes of L which lie over primes in S(m)) is called a ray class field
modulo m and it is denoted as K(m).

It is possible to prove the following.

Proposition 3.4. Let K be a number field and m a modulus for K. If a ray
class field K(m) for K modulo m exists, then it is unique.

Now, we want to define the global Artin map for a finite abelian extension
L/K. First of all, we recall that for any prime ideal 8 of L we can define
its decomposition group as

D(B) :={0c € Gal(L/K) : 06 = B}

Furthermore, if 93 lies over a prime ideal p of K and it is unramified over it
we have that
D(B) = Gal(Ly/K,) = Gal(l/k)

where [ and k are the residue fields of the completions, the first isomorphism
is defined by extending the automorphisms and the second one by considering
the action of the automorphisms on Q. We know that [ and k are finte,
hence Gal(l/k) is a cyclic group generated by = +— z!¥l. We denote its inverse
image under the previous chain of isomorphisms as (p, L/K). Finally, we can
define the global Artin map.

Definition 3.11. Let L/K be a finite abelian extension of number fields and
S a finite set of primes of K that contains oll those which ramify in L. We
define the global Artin map of L/K with respect to S as

VYr/k,s s — Gal(L/K), HP? = H(PmL/K)ni

Now, we give the crucial notion of conductor for abelian extensions of
local and global fields.
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Definition 3.12. If L/ K is a finite abelian extension of local fields we define
its conductor ¢(L/K) as:

e ((L/K)=0if L and K are archimedean and equal;

e (L/K)=1iL=Cand K =R;

e ¢(L/K)=min{n € N: 1+m} C Nm(L*)} if L and K are nonar-
chimedean.

If L/K is a finite abelian extension of number fields we define its conductor
¢(L/K) as the modulus

o«(L/K) : {primesof K} — Z>q,v — ¢(Ly/Ky)

It is well-defined because L/K is Galois and so the local conductors are in-
dependent of the choice of w.

It is possible to prove the following.

Proposition 3.5. Prime ideals in the support of the conductor of a finite
abelian extension of number fields L/K are exactly the prime ideals of K
which ramify in L.

Finally, we can state the main theorems of global class field theory in
terms of ideals.

Theorem 3.7. Let K be a number field and m o modulus for K. If H is
a congruence subgroup modulo m, then there exists a finite abelian extension
L/K such that H = Ku1-Nm(If, sm))- In particular, a ray class field K (m)
for K modulo m exists.

Theorem 3.8. Let K be a number field, m a modulus for K and L/K a
finite abelian extension. Then ¢(L/K) divides m if and only if L lies in
K(m).

Theorem 3.9. Let K be a number field, m a modulus for K and L/K a
finite abelian extension contained in K(m). Then the global Artin map of
L/K induces an isomorphism

IK,S(m)/(KmJ : Nm(IL,S(m)L>) = Gal(L/K)
where S(m)y, is the set of primes of L which lie over primes in S(m).

From the theorems we can deduce that we have an isomorphism
Clg =2 Gal(K(m)/K)

and we can also derive the following corollary.
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Corollary 3.2. Let K be a number field, m a modulus for K and set
Nm(ClLVm) = Km,l . Nm(IL,S(m)L) mod Km71

for any abelian extension L/K contained in K(m).
There is a one-to-one correspondence between the set of finite abelian exten-
sions of K contained in K(m) and the set of subgroups of Cl}. given by the
map

L— Nm(Cle)

It also has the following properties:
e 1 C Ly Nm(Clp,m) C Nm(Clp, m);
e Nm(Clp,.1om) = Nm(Clp, m) " Nm(Clrym);
e Nm(Clpnrom) = Nm(Clp, wm) - Nm(Clr,m)-
Now, we can introduce the important definition of Hilbert class field.

Definition 3.13. Let K be a number field. The Hilbert class field of K
1s the mazimal abelian unramified extension of K. We denote it as Hy.

It is immediate to see that the Hilbert class field is the ray class field of K
with respect to the trivial module. It implies that we have an isomorphism

Cly = Gal(Hg /K)

and, in particular, [Hg : K] = hx where hg is the class number of K.

3.6 The principal ideal theorem

In this section we want to prove an important result in class field theory:
the principal ideal theorem. The statement is the following.

Theorem 3.10. Let K be a number field and Hg its Hilbert class field.
Then every ideal of O becomes principal in O, .

First of all, we recall some notions from group theory. Given a group G,
we denote by G’ its commutator subgroup and by G% := G/G its abelian-
ization.

Definition 3.14. We fiz a group G, a subgroup H < G of finite index and
a right transversal T for H in G. We define the transfer map as

Vo : G — H, gmod G’ [[ ta(to g) ™" mod H'
teT

where t o g is the only element of T such that Htg = H(to g).
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Proposition 3.6. If G is a group and H < G is a subgroup of finite indez,
then Vo g is a well-defined group homomorphism and it is independent of
the choice of o right transversal for H in G.

Proof. Let T and S be two different right transversals for H in G. For any
t € T there exists a unique s € S such that Ht = Hs, i.e. forany t € T
there exists a unqgiue h; € H such that iyt € S. We also observe that
Hhitg = H(to g), i.e. (hit) o g = hiog(t 0 g). Then Vg g is independent of
the choice of the right transversal because

[ s9(s09) " mod H' =[] hutg(heog(t 0 g)) " mod H’

seS teT
= H hitg(t o g)_lht_olg mod H'
teT
= H tg(tog)™? H hi H ht_oé mod H'
teT teT  teT
= H tg(t o g)~" mod H'
teT

Finally, Vg g is a group homomorphism:

Va.u(zy) = H t(zy)(t o zy) "t mod H'

teT

= H te(tox)™? H(t ox)y((tox)oy) ! mod H'
teT teT

= [Ttattoa) [T su(sow) ™" mod H' = Ve @)V (v)
teT seT

O

Proposition 3.7. The transfer map Vg g : G — (G')% is the zero homo-
morphism for any finitely generated group G such that (G : G') < oo.

Proof. We consider a more general setting: we fix H < G a subgroup of
finite index and we prove that the diagram

Gab Ve.r Hab

I I

Io)1% —5 (Iy + Ixle)/Inlg
is commutative, where I (and, similarly, I) is the kernel of the augmen-

tation map
Z|G] — Z, Z Neo — Z Ng
oeG oeG
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the vertical isomorphisms are the maps
do)=0-1

and, if T is a set of representatives of the right cosets of G/H containing 1,
we define

teT

First, we prove that the maps § are isomorphisms. We observe that the set
{(bo)t:c€e Hite T ,t #1}

is a Z-basis of Iy + Iglg since it generates it and
0= an,t(éa)t = 2 Ng ot — Z Nt
o,t ot ot

implies that all the n,; = 0. If we consider the map
Ig+ 1yl — H, (50’)75 — o

it is immediate to see that it is surjective and a left inverse for §. In the
settings of the diagram it is also injective because the equality

do6(a't) = §(oo’)t — do — (80’ )t

1

implies that §od(o't) is sent to oco’oc~1o’'~! which lies in the commutator

subgroup.
Now, the diagram commutes if and only if

S(dc mod IZ) = Z dor mod Il
teT

where o, € H, to = oyt’ with t' € T. Then the equality
8t + tdo = 6t' + doy + do6t’
implies

S(@omodIg) = dor =Y téo=(> t)dc mod Iglg

teT teT teT

and the claim is proved. Finally, to conclude the proof we need to prove that
if H = G’ then S is the zero map. It is shown in [10, Theorem 7.6, pag.
412]. O
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Proposition 3.8. If K C L C M s a tower of finite abelian unramified
extensions of number fields such that Gal(M/K) = Gal(M/L), Sk is a
finite set of primes of K and Sy, is the set of primes of L that lie over them,
then the following diagram is commutative:

Trs 2% Gal(M/K)e

l lv

ILs, WL Gl (ML)

where the first vertical arrow is just extension of ideals and V' := V(1 K),Gal(L/M)-

Proof. Let p be a prime ideal in Ix g, and let qi, ..., q, be the prime ideals
of L which lie over p. We write

Gal(M/K) =|_JGal(M/L)rg’
1,J
where g = (v, M/K) for a prime ideal v of M which lies over p and varying

j from 0 to m — 1 where m is the order of (p, L/K). Then, if q; = L N 7;(x),
we have

m—1

(9i, M/L) = (ri(v), M/L) = 7ig™7; ' = [] mig’9(rig’ 0 9) "
j=0

Finally,
V((p. L/K)) = [ [ (0 M/)

7

O

Finally, we consider a number field K and we call Hy its Hilbert class
field and Hp, the Hilbert class field of Hx. The extension Hpy, /K is
unramified and Galois and, since Hg is the largest subextension of Hp,
that is abelian over K, we also have

Gal(HHK/K)’ = Gal(HHK/HK)
Then we get the following commutative diagram:

VH /K

CUK) —5% Gal(Hy /K)

Ly I

Hypp, /H

Cl(Hk) 55" Gal(Hy,, /Hk)

Horizontal arrows are isomorphisms and the map V is the zero map thanks
to one of the previous propositions. Then also the left vertical map is the
zero map and the proof of the theorem is concluded.
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3.7 An example: the Hilbert class field of Q(v/—5)

As an example of the developed theory we want to compute the Hilbert class
field of the imaginary quadratic field K := Q(y/=5) and, in particular, we
want to prove that it is L := Q(v/5,+/—1). The situation is described in the
following picture:

Q(V5,v~1)

V=9) Q(V5) Q(
Q
where all the extensions are Galois of degree 2. It is well-known that

hi =2 = [Q(V5,V/~1) : Q(vV-5)]

and obviously any Galois extension of degree 2 is abelian, so we just need to
prove that L/K is unramified. We know that the only rational primes which
ramify in Q(v/=5) are 2 and 5, while 5 is the only rational prime which
ramify in Q(+/5) and 2 is the only one which ramify in Q(/—1). Now, we fix
a prime ideal p of Ok and p a prime positive integer such that pZ =p N Z
and we distinguish three cases to prove that p is unramified in Q(v/5, v/—1):

e p =2: in this case, p = (2,1 4+ +/—5) and pOx = p2. If

Q V=)

g
p0r = ([ )
i=1

where the g; are the primes of L which lie over 2Z and their inertia
degrees over it are f, we have gef = 4. Since 27 is ramified in K and
it is unramified in Q(v/5), the only possibilities are

g=2,e=2f=1
or

g=le=2f=2
In both these two cases p is unramified in L;

e p = 5: we just proceed with an argument similar to that of the previous
case;

e p # 2,5: in this case pZ is unramified in Q(v/=5) and in Q(v/—1).
Then the subfield of L/Q fixed by the inertia sugroup of its Galois
group relative to any prime ideal of L which lies over p contains them
and, then, it is just L, so pZ is unramified in L and the same holds for

p.
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Elliptic curves

Theory of elliptic curves is one of the most important branches of the mod-
ern mathematics. The theory is mainly developed in the field of algebraic
geometry but it is strictly related and has a lot of consequences in number
theory, complex analysis and many more research areas. The most famous
example of application of the theory of elliptic curves is the proof of Fer-
mat’s Last Theorem, which states that if x,y, 2z, n are positive integers such
that " 4+ ¢y = 2", xyz # 0, then n = 1,2. In this chapter we will see the
main definitions and results related to elliptic curves in order to define ellip-
tic curves with complex multiplication and to use them to study class field
theory for imaginary quadratic fields. In order to simplify the exposition
we will assume our curves to be defined over a field K with char(K) # 2,3
and we will work only with plane projective curves defined by a Weierstrass
equation.

4.1 Weierstrass equations

Definition 4.1. Let K be a field. An elliptic curve E over K is a smooth
plane projective curve in P?(K) defined by a Weierstrass equation.:

y2z =2 +az? +023,a,be K

We observe that, taking {z = 0} as the hyperplane at infinity, the affine
part of an elliptic curve is described by the equation y? = 2> + ax + b and
the unique point at infinity is (0, 1,0). Furthermore, since elliptic curves are
smooth by definition, the Weierstrass equation must satisfy the condition
4a + 270 # 0.

Definition 4.2. If E/K is an elliptic curve defined by a Weierstrass equation
y? = 2% + ax + b, we define

A(E) := —16(4a® + 27b°)

67
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(4a)®
A(E)

§(E) == —1728

The numbers A(FE) and j(E) are called respectively the discriminant
and the j-invariant of E. Note that j(£) is well-defined because A(E) # 0.
In order to have an idea of how elliptic curves look like over R, we plot

y? =23 far+b

varying the parameters:

Lemma 4.1. Two elliptic curves
v =23 +ax+b

and
y2 =22 +dz+V

defined over a field K are isomorphic over K% (an algebraic closure of K)
if and only if there exists X € (K®)* such that a = \a’' and b = \5b'.

Proof. See |14, Lecture 13, Theorem 13.13, pag. 5]. O]

The name and the importance of the j-invariant come from the following
result.

Proposition 4.1. Two elliptic curves E1/K and Es/K defined over a field
K are isomorphic over K™ if and only if j(E1) = j(Fs).
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Proof. First, we prove that if j(E1) = j(F2) then Ej and E3 are isomorphic.
Assume that E; and Es are defined respectively by the equations

y? =23 +ax+band y? = 23+ d’x +b'. The equality j(E;) = j(E2) implies
that a3b’? = a’2b?. The isomorphism ¢ : Fy — E; wanted will be of the form
(2, y') = (u?2’,uy’) for a suitable u € K. We distinguish the following
cases:

=

e a=0=b#0=d =0, we take u=(3)

9

N

e b=0=a#0=0 =0, we take u = (%)1;
1

e ab# 0= da'b #0, we take u = (%)i = (3)5;

Conversely, we assume that F; and Es are isomorphic over K. From the
previous lemma we know that there exists A € (K%)* such that a = \ad/
and b = A/'. Then:

(4@)3 _ 173 )\12(4a/)3
16(4a® + 2762) 16A12(4a/ + 2702)

j(E1) = 1728 = j(E2)

4.2 The group law of an elliptic curve

The goal of this section is to define a group law on the points of an ellip-
tic curve. In order to do so, we firstly recall the statement of the Bézout
intersection theorem.

Theorem 4.1. Given two plane projective curves over an algebraically closed
field, the number of points of intersection counted with multiplicity is equal
to the product of the degrees of the two curves.

Proof. See |3, Corollary 4.6, pag. 31]. O

In particular, we are interested in the number of points of intersection
between an elliptic curve and a line and the theorem tells us that they are
three if counted with multiplicity. Now, let F/K be an elliptic curve over an
algebraically closed field K and P and @ two points of E. We also set O to
be the unique point of F in the hyperplane at infinity. We define P x @ to
be the third point of intersection of F with the line joining P and ). Notice
that if P = @ the line joining them is just the tangent line at P. Then, we
define

P+Q:=(PxQ)*0

The most difficult part in proving that it defines a group law is to show that
the operation is associative. We will prove it in a particular case and then
we will give all the instruments to prove it in general. First we recall the
Cayley-Bacharach Theorem.
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Theorem 4.2. Let K be an algebraically closed field and Py, ..., Py distinct
points in P?(K) which belong to a non-singular cubic curve. Then there
exists a unique point Py such that every cubic curve which contains P, ..., Ps
must contain also Py.

Proof. See |3, Exercise 4.13, pag. 32]. O]

Lemma 4.2. Addition of points of an elliptic curve is associative, i.e.
(P+Q)+R=P+(Q+R)
for any P,Q,R € F.

Proof. We take P,Q, R points of E and we set P’ := Px(Q and R := Q * R.
We prove the lemma only in the case the set

S:={P.Q,0,R,P+0,Q*R P xQ,0xR'}
contains eight distinct points. We define the following projective lines:
r=PvVvQ,s:=0VR t:=(Px0)Vv(Qx*R)

r=P V0,5 =QVR =[P *Q)V(O*R)

Now, the points of S are eight distinct points of £ and using the previous
theorem we find that the ninth point is

(P'x0)x(Q*R)= (P Q)+ (0OxR)
This equality implies that
(O* (PxQ))*R=Px(0x(QxR))

which is just
(P+Q)*R=Px(Q+R)

and associativity follows. O

Proposition 4.2. The set (E,+) of points of an elliptic curve with addition
1s an abelian group with identity O.

Proof. From the previous Lemma we already know that the addition is as-
sociative.
Addition is commmutative:

P+Q=FP+Q)x0=(Q@*P)xO=Q+P
O is an identity for (E,+):

P+O=(Px0)xO=P
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Finally, if we define —P := P x O, we find that
P+(-P)=P+(P*x0)=(Px(Px0)*xO0=0x0=0

because the tangent line to E at O has multiplicity three in O. So any
element has an opposite and hence (E, +) is an abelian group. ]

In order to help computations and to simplify some proofs in the next
sections, we give explicit algebraic formulas for the additive group law.

Proposition 4.3. Let E be an elliptic curve defined by an equation
v =2 +ax+b

Let Py = (x1,y1) and Py = (x2,y2) be points of E.
Then if x1 = x9 and y1 = —ya we have Py + P, = O (in particular,
=P = (1,-v1))-

Otherwise we have Py + Py = (m2 — x1 — T2, 2ma1 + maxy —m> — Y1), where
m s calculated in the following way:
[ ifaﬁ 75 T, m = %,‘
a,.2
o if z1 =19 and y1 = yp £ 0, m = 5
Proof. See [11, Group Law Algorithm 2.3, pag. 53]. O

Notice that it is possible to prove the associativity of the group law by
using these formulas and making computations in the various cases. The
formulas also tell us that addition of points can be defined on elliptic curves
over a generic field K.

4.3 Isogenies

In this section, we introduce the notion of isogenies and we study their main
properties.

Definition 4.3. Let E1/K and E3/K be two elliptic curves over a field K.
An isogeny o : Ev — Eo is a projective morphism from Ey to Es which
sends the identity of E1 to the identity of Fo.

Obviously composition of isogenies is again an isogeny.
Given a, § : E1 — FEj3 isogenies, we define (o + 5)(P) := a(P) + B(P). We

want to prove it is again an isogeny.

Proposition 4.4. If o, 8 : E1 — FEs are isogenies, then a+ 3 is an isogeny.
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Proof. Obviously, (o + 8)(0) = a(O) + 5(0O) = O + O = O. In order to
prove that it is a morphism we just need to prove that, for any elliptic curve
E, the map

ExE—E, (PQ)—P+Q

is a morphism. The formulas of the previous section tell us that it is ev-
erywhere a morphism except eventually for couple of points of the following
kinds:

(P,P), (P,—P), (P,O), (O,P)

Then, if @ is any point of E, we define
Q:E—E, 1q(P)=P+Q

and we observe that it is a morphism. Given two points 1 and Q3 of E, the
map 7'521 07611 o+o(71g, X TQ,) is again the addition map and it is everywhere
a morphism except eventually for couple of points of the following kinds:

(P_lep_Q2>7 (P_le_P_QQ)v (P_Qla_QQ)? (_QbP_QQ)

In this way we can find a finite number of maps that are the addition on
FE x E and such that for any point of E at least one of these maps is a
morphism in it. Then the addition map is a morphism. O

Now, we state some important properties of isogenies.
Proposition 4.5. Any non-zero isogeny is surjective.
Proof. See [11, Theorem 2.3, pag. 20] O]
Proposition 4.6. Any isogeny is a group homomorphism.
Proof. See [11, Theorem 4.8, pag. 71| O]
Proposition 4.7. Let Ey, FE1, Es and E3 be elliptic curves and let

¢:Fy— Ev,a,8: E1 — Es,%: By — E3

be non-zero isogenies. Then:

e vop=Fop=a=p0;

e Yoa=1of=a=4.

Proof. Since the involved isogenies are non-zero (and, hence, surjective) we
have that

aop=PFop=(a—pB)lop=0=a—-=0=>a=4

The second statement follows similarly. O
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The most important example of isogeny is the multiplication by m map,
with m € Z. In particular, given an elliptic curve E, we define

[m]: E — E,[m](P) :=mP
where mP is defined considering the group law on E.

Proposition 4.8. If E/K is an elliptic curve and m € Z, m # 0, then [m)|
1S G NON-2€Tro 1S0geny.

Proof. The statement is obvious for m = 1, since [1] is just the identity
map. Proceeding by induction we get that, if m > 1, [m + 1] = [m] + [1]
is an isogeny because it is the sum of two isogenies. Furthermore, [—1] is
an isogeny because it is just the map P +— —P, which is a morphism of
varieties from the formulas in the previous section (and obviously —O = O).
A similar induction argument will give us that [m] is an isogeny for any
m < 0. Now, we want to prove that [m] is non-zero for any m # 0. It is
obvious for m = 1, —1 and since [mn] = [m] o [n] we just need to prove it for
m = 2 and m odd. We consider Py = (x,yo) a generic point of F and we
observe that [2](Py) = O if and only if yo = —yp if and only if yop = 0 if and
only if x% + axg + b = 0. So there are only finitely many points of F that
are killed by [2]. It implies that [2] is not constant and also that, if P is one
of these points, [m|(P) = P if m is odd, and so these maps are not constant
too. O

This result immediately implies that [m] = [n] if and only if m = n for
any m,n € Z.
Now, we want to define the degree of an isogeny. In order to do so, we denote
by K(FE) the function field of an elliptic curve over K and we observe that
any non-zero isogeny « : F1 — E5 between elliptic curves over K induces a
homomorphism of fields o* : K(E2) — K(E) defined as a*(¢) = ¢poa. It
is injective, so we can see K(E;)/K(E2) as an extension of fields and it is
possible to prove that it is finite (see [11, Theorem 2.4, pag. 20]). Then we
have the following definition.

Definition 4.4. Let F1 and Es be elliptic curves defined over a field K and
a : By — Ey an isogeny. The degree of « is denoted as deg(a) and it is
just the degree of the field extension K(E1)/K(Es2) if « is non-zero. If « is
constant we set deg(a) = 0.

It is an immediate consequence of this definition that the degree of the
composition of two isogenies is the product of their degrees.
Finally, we can define the concept of dual isogeny which will be crucial in
the study of endomorphism rings of elliptic curves.

Theorem 4.3. For any isogeny o : E1 — Ey between two elliptic curves
there exists a unique isogeny & : Ey — Ey such that & o o = [deg(a)].
The isogeny & is called the dual isogeny of a.
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Proof. See [11, Theorem 6.1, pag. 81]. O

We observe that 0 = 0. Furthermore, the dual isogeny has the following
properties.

Proposition 4.9. For any o and B isogenies between elliptic curves Eq and
Es, v isogeny between Eo and Es and m € Z, the following properties hold:

[m]oa =ao[m];

atB=a+h

TG =doA;

m] = [m];

deg([m]) = m?;

deg(r) = deg(a);

a=a

It follows trivially from the fact that « is a group homomorphism;

aobdoa=aoldeg(a)] =[deg(a)]oa = aoda = [deg(a)];
See [11, Theorem 6.2, pag. 83|;

Gojoyoa=aoldeg(y)]oa=[deg(y)] o[deg(a)] = [deg(y o a)];
We proceed by induction. The statement is clear for m = 0,1. If the
statement is true for m > 1, then

[m+1] = [m] + [1] = [m] + [1] = [m] + [1] = [m + 1]

A similar argument gives the proof for m < 0;

—~

[deg([m])] = [m] o [m] = [m] o [m] = [m?] = deg([m]) = m?;

[deg(a)] © [deg(a)] = [deg(a)?] = [deg([deg(a)])] = [deg(a 0 &)]
= [deg(@)deg(@)] = [deg(@)] o [deg(@)]

= deg(a) = deg(d);

ao & = [deg(a)] = [deg(q)].
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4.4 Endomorphism rings and algebras

Definition 4.5. Let K be a field and E1 /K, Ey/K two elliptic curves. The
set Hom(E1, Eq) of isogenies from Ey to Es is a group under addition.

If E/K is an elliptic curve, End(E) := Hom(E, E) is the endomorphism
ring of E (multiplication is given by composition of isogenies).

We will consider End(E) as a Z-algebra. Recalling the results of the
previous section we know that char End(FE) = 0, since Z injects into it via
the map m — [m]. The surjectivity of non-zero isogenies also tells us that
End(E) has no zero divisors. We observe that

ad = [deg(o)] € Z

and

~

at+a=1—-ac—(1-a)(l—a)eZ
so any enodomorphism « is a root of the polynomial

2? — (a+ &)z + ad € Z[x]

and then End(FE) is integral over Z.
Furthermore, the map *: End(F) — End(F) is an involution of rings.

Definition 4.6. Let E/K be an elliptic curve. The Q-algebra
End’(E) := End(E) @7 Q
is called the endomorphism algebra of E.

From the properties of the tensor product we know that End(E) and Q
injects into End®(E) with intersection Z. Since Q is the fraction field of Z
all the elements of the endomorphism algebra can be written as pure tensors
and so, with an abuse of notation, as go with ¢ € Q and o € End(E). We
also have that g = aq for any a € End’(E) and ¢ € Q. We can extend the
map - to End’(E) by setting ga := ¢&. The map

*: End’(E) — End’(E)
is called the Rosati involution of £. We also define the trace map
Tr(a) :=a+ &

and the norm map

Proposition 4.10. The following properties hold:
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ILhd=a,a+B=a+8 af =pa, ¢=q forany a, B € End(E),
q € Q.

2. The norm map is multiplicative and it takes values in Q>o. It satisfies
Nm(a) = Nm(&) and Nm(«) =0 if and only if a = 0.

3. The trace map is a Q-linear map with values in Q and it satisfies
Tr(a) = Tr(&). Furthermore, Tr(a) = 0 = a? € Q<.

Proof.

1. We write o« = q¢, f = ¢ with ¢, € Q and ¢,7 € End(FE). Take
s € Z such that sq, sr € Z. Then:
&=q¢=qd=q¢=q;
ot B="1(sq0+ s sry) = 1(sqd + sT) = &+
réy = qrjd = By

2. the same settlngs of the previous point we have:

m(a) = qpq6 = ¢*[deg(9)] € Qxo;

m(aB) = aBaf = apBa = aNm(B)a = Nm(a)Nm(B);

Nm( Ja = aNm(a&) = aba = ada = Nm(a)a = Nm(a) = Nm(a);
Nm(a) =0 = ¢?*[deg(¢)) =0=qg=00r ¢ =0=a =0.

3. If o, 8 € End’(E) and ¢q,r € Q, then:
Tr(a) =at+a=1-ad—(1-a)(1-&) = 1-Nm(a)-Nm(l—-a) € Q;
Tr(ga+1B) = qa+rB+qa+18 =qla+a) +r(B+5)
= qTr(a) + rTr(p);

O

Now, our purpose is to classify the endomorphism rings of elliptic curves.
It is the starting point for the study of elliptic curves with complex mul-
tiplication. We start by classifying the endomorphism algebras of elliptic
curves.

Theorem 4.4. Let E/K be an elliptic curve over a field K. Then End’(E)
1s isomorphic to one of the following:

e the field of rationals Q;

e an imaginary quadratic field;
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o g quaternion algebra over Q, i.e. a Q-algebra which admits a Q-basis
{1,a, B, aB} such that o2, 3% # 0 and a3 = —Ba.

Proof. 1f End’(E) = Q there is nothing to prove.

Now, we assume there is o € End’(E) which is not in Q. We can assume
Tr(a) = 0 (we can eventually substitute it with o — TTT@) and it implies
that a? € Q<q. So, if End’(E) = Q(a), then it is an imaginary quadratic
field.

Finally, we assume there is § which is not in Q(«). As we did before, we

can assume T'r(/3) = 0 and, by eventually replacing 8 with g — %a, also

2
that Tr(af8) = 0. Then a« = —&, f = —f and it implies
af = —aB = —pa = —pa

It follows that Q(a, ) is spanned by {1,a, 8,af} and to prove that it is
a quaternion algebra we just need to see that these elements are linearly
independent. It is clear for 1, and 3, so we assume by contradiction that
af = a + ba + ¢f where the coefficients are in Q. It implies that

a + ba
a—c

(a—c)f=a+ba= = € Qo)

but we know that it is not true.

The last thing to prove is that in the last case any v € End®(E) belongs
to Q(«, B). By contradiction we assume the opposite and, as we did before,
we assume T7r(y) = Tr(ay) = 0, which implies afy = —fay = fya. So «
commutes with 5y and we claim that whenever § ¢ Q and p are elements
of the endomorphism algebra which commute, p € Q(d). The statement will
follow immediately.

As usual, we can assume Tr(d) = Tr(p) = Tr(dp) = 0 (we substitute a with
a —a and f with 8 — b — ca for suitable a,b, ¢ € Q) which implies

dp = —pd and, since § and p commute, we have p = 0. So p=0€ Q(5). O

Corollary 4.1. Let E/K be an elliptic curve over a field K. Then End(E)
15 isomorphic to one of the following:

e the ring of integers Z;
e an order in an imaginary quadratic field;

e an order in a quaternion algebra over Q (a subring which is also a free

Z-module of rank 4).

Proof. We only need to prove that End(E) is a free Z-module of rank equal
to the Q-dimension of End’(E): the statement follows because Z is the only
free Z-module of rank 1 which is also a subring of Q and by definition in the
other two cases. We observe that it is possible to choose a Q-basis {e1, ..., e, }
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of End®(E) (where 7 is its dimension) such that its elements are contained
in End(E) and Tr(e;e;) = 0 whenever ¢ # j. Then, for any Z-module A
contained in End’(E) we set

A* .= {a € End’(E) : Tr(a¢) € ZV ¢ € A}

It is easy to see that A* is a Z-module too and that A C B = B* C A*.
Now, we take A := (eq,...,e,)z and we observe that

A C End(E) C End(E)* C A*
If we take o« = aje1 + ... + a,e, € A* with aq; € Q, then

Tr(ae;) = a;Tr(e?) € Z

and this implies that a; is an integer multiple of # Finally, we get that

(eF)
{#16%), vy %} is a Z-basis of A* and from the previous chain of inclusions
we deduce that End(E) is a free Z-module of rank r. O

4.5 Elliptic curves over C

The last section of this chapter is devoted to elliptic curves defined over C.
We start with some definitions.

Definition 4.7. A lattice A in C is a discrete additive subgroup of C that
18 free of rank 2 as Z-module. If w1 and wo are two Z-generators of A we
can write A = [wy, wa].

A fundamental parallelogram for a lattice A (related to a basis {w1,w2})
is a set of the form {x + twy +rwy : t,r e R,0 <t,r < 1}.

Two lattices A1 and Ao are said to be homotetic if there exists A € C
different from zero such that A1 = AAs.

Definition 4.8. A meromorphic function f on the complex plane is called
an elliptic function for a lattice A if f(z + w) = f(2) for any w € A and
any z € C where the function is defined.

The order of an elliptic function is the number of its poles in a fundamental
parallelogram of A counted with multiplicity.

We immediately observe that the well-known Liouville’s Theorem implies
that holomorphic elliptic functions are constant. It is also possible to prove
that the order of an elliptic function also coincides with the number of zeros
in a fundamental parallelogram counted with multiplicity (see [14, Lecture
14, Theorem 14.18, pag. 7]).

Definition 4.9. If A is a lattice of C and k € Z,k > 1, we define:
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o the Eisentstein series of weight 2k as

Gah)= Y

weN,wH#0

o the Weierstrass p-function as

weA,w#0

Proposition 4.11. The following properties hold:
1. Gor(A) converges absolutely for all k > 1;

2. p(z; ) is an even elliptic function of order 2 that is everywhere holo-
morphic outside A;

1
3. ¢'(z;A) = -2 Z m is an odd elliptic function of order 3 that
1is everywhere holomorphic outside A.
Proof.

1. We fix d as the minimum distance between elements of A. We want
to estimate the number of lattice points w such that r < |w| < r + 4
for r a positive real number. In order to do so, we observe that the
radial projections of two distinct points of A on the circumference
|z| = r must be separated by an arch whose length is, at least, %.
So we find that the number of lattice points we are interested in is
bounded by 4%;’". Extending the argument to the case of an annulus
of width 1, we immediately see that the number of lattice points w
such that n < |w| < n + 1 for n a positive integer is bounded by
cn+1):= Z—g(n +1).

o

1 c(n+1)
Then, z W S z 7 < 0Q.

wEA,|w|>1 n=1
The statement follows because

1 1 1
S e Y et Y
WEAWFO wEA,|w|>1 weA,0< |w|<1

and the second summation is finite.

2. First of all we prove that the series defining p converges uniformly
on every compact subset C' of C \. A. Since C is compact we can fix
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r > 0 such that |z| < r for any z € C. Furthermore, for almost all the
elements w € A we have |w| > 2r. Then,

22w — 2)
wi(z —w)?| —

r(i2el | 2l) _ 10r
WPl = 2D? = P

1 1]

(z—w)?  w?|

and we see that it converges with an argument similar to that used
in the previous point. The uniform convergence follows. Then, g is
holomorphic outside A and from the formula we see that it has poles
of order 2 on points of A. It is easy to see that it is periodic: if wg € A,
then

1 1 1
plztwo) =5+ Y (s )
(z 4+ wo) weAw#O (z+w)—w)? w
1 1
=5+ > oo o) = ek)
u)GAuﬂ#O
Finally, p is even:
1
wEAw#O

: S+ >, —é):@(%/\)

—wGAw#O Z+_w>

3. The formula for ' follows immediately from the defining formula for

p. Since p is an elliptic function that is holomorphic outside A, the
same holds for its derivative and from the formula we see that it has
poles of order 3 on points of A. Finally, ¢’ is odd:

— =-2 Z =-2 Z . = —¢'(z; )

wEA - GA

Given a lattice A of C, we define
g2(A) := 60G4(A)

g3(A) := 140G¢(A)
A(A) = g2(A)’ - 27g3(A)?

ga(A)?

F(A) == 1728 A
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where A(A) and j(A) are called respectively the discriminant and the
j-invariant of the lattice. We will prove soon that the j-invariant is well-
defined.

Then, we define Ey to be the elliptic curve over C defined by the equation:
y? =42’ — g2(A)z — g3(A)

We see that this curve could be written in Weierstrass form as

2 _ 3792(/\) 793(/\)
Yy =z 1 T 1

In particular, we see that A(FEy) = A(A). These definitions are justified by
the following results.

Lemma 4.3. Given a lattice A, the function @ has the following Laurent
series at z = 0:

1 oo
== Z (2n 4 1)Gapy2(A)2*"

Proof. See |14, Lecture 14, Theorem 14.28, pag. 11]. O
Proposition 4.12. For any z ¢ A we have that
9'(2)” = 4p(2)° — ga(M)p(2) — gs(A)
Proof. The Laurent expansion of p at z = 0 gives the following:
o p(2) = & 4+ 3G4(A)2? + 5Gg(A)z* + - - -

o ¢/(2) = =% +6G4(N)z + 20Gs(A)z3 + - - -

o p(2)3 =L + 24N 4 15G5(A) +

o« ()% = & — 2B —80Gs(A) +
We set f(z) := ¢/(2)? — 4p(2)% 4+ g2(A)p(z) + g3(A) and, using the previous
formulas, we find that f is an elliptic function such that f(0) = 0, hence it

is also holomorphic because  and ¢’ have poles only on points of A. Then
f is constant and so it is identically zero. O

Proposition 4.13. A(A) # 0 for any lattice A. In particular, Ex is smooth.

Proof. First of all we observe that the discriminant of the polynomial

fa) = 42® — ga(N)z — g3(A)
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is equal to 16A(A), so we just need to prove that f(z) has three distinct
roots. If A = [wy,ws], 21 = G, 20 = ¢ and 23 = %, then we have
f(p(z)) =0 for any 4. Indeed,

Flo(z0) = 4p(2:)" = g2 (M) p(zi) — gs(A) = ¢/ (z1)?

and

©'(21) = ¢' (2 — 22) = ¢/ (—2) = —¢/ (1) = ¢/(2:) = 0
Now, the function z — p(z) — p(z;) is elliptic of order 2 and so it has two
zeros counted with multiplicity. Its derivative in z; is ¢(z;) = 0 so it is a

double zero and in particular it is the only zero of the defined function. So
the roots of f are distinct. O

Theorem 4.5. The map @) : C/A — E\ defined by ®p(2) = (p(2), 9'(2))
if z¢ A and ®p(z) = O otherwise is an isomorphism of additive groups.

Proof. The map is obviously well-defined. We only prove that the given
function is a bijection.

e &, is injective: assume Pp(z1) = Pp(z2) with 21, 22 in a fundamental
parallelogram. We have to distinguish two cases.
If p'(21) # 0, we consider the function z — p(2)—p(21) = p(2)—p(22).
Since it is an elliptic function of order 2 its zeros are +z; and we find
that z1 = 29 or 21 = —z9. If the latter holds,

O (21) = 9'(=22) = =/ (22) = —(21) = ¢'(21) = 0

contrary to our assumption, so z; = 2a.

If o'(21) = 0, ®a(z1) is a point of order 2 and from the proof of
the previous proposition we know that the same holds for z;. Since
o(z1) = p(z2), again the proof of the last proposition implies that
zZ1 = Z9.

e &, is surjective: we fix (z9,y0) € Fa and we consider the map
2z o(2)—xo. It is an elliptic function of order 2, so we can fix zp € C*
such that p(z9) = xo. By eventually replacing zo with its opposite we
find @ (20) = (20, Y0)-

For a complete proof see [14, Lecture 15, Theorem 15.1, pag. 1]. O
Finally, we state the Uniformization Theorem.

Theorem 4.6. If E/C is a complex elliptic curve, then there exists a complex
lattice A such that £ = E,.

Proof. See |14, Lecture 15, Corollary 15.12, pag. 8|. O
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Now, we put our attention on the j-invariant of a lattice. First we see

that
_ 3 3
J(Ep) = —1728% = 172892((/2)) — j(A)

Proposition 4.14. Two lattices A1 and Ao are homotetic if and only if they
have the same j-invariant. In particular, A1 and Ao are homotetic if and
only if Ep, and E\, are isomorphic.

Proof. We assume A1 = Ay with A € C*. Then

9 (Ma2)* o Ag2(Ao)°

J(A1) = j(AAg) = 1728 A(Ay) NCA(A,)

= j(A2)
Conversely, we assume j(A;) = j(A2). The corresponding elliptic curves

have the same j-invariant and so they are isomorphic. Then we know that
there exists A € C* such that

g2(A1)
A4

g3(Aq)

g92(A2) = 6

= g2(M\1), g3(A2) =

= g3(A\A1)

In order to conclude we just need to show that p(z; A), and hence A because
it is the set of poles of p, is completely determined by the values of go(A)
and g3(A) for any lattice A. We know that

©'(2)” = 4p(2)° — ga(N)p(2) — gs(A) = 20/ (2)9" (2) = 12p(2)*¢' (2) — g2(A)g'(2)
= ©"(2) = 6p(2)* — g2(A) /2

and, if we put a,, := (2n + 1)G,,42, the Laurent series of p at z =0 is

1 00
p(Z) = ? + Zlanz2n
n=

Then, comparing the coefficients of 22" we find that

n—1

2n+2)2n+ 1)ap+1 = 6(2 axan—k + 2Gp+1)
k=1

and it implies that any coefficient is determined by the previous ones. Since
a1 = g2(A)/20 and ay = g3(A)/28 our claim is proved. O

Now, we observe that C/A has a natural structure of complex torus if A
is a lattice. We want to define what is a morphism of complex tori and to
state a correspondence between them and isogenies between the associated
elliptic curves.
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Definition 4.10. If A1 and Ay are complex lattices, we say that
¢:C/Ay — C/A

is a morhpism of complex tori if $(0) = 0 and there exists a holomorphic
function f : C — C such that my o f = ¢ om (where w1 and wy are the
natural projections, m; : C — C/A;).

Proposition 4.15. Let Ay and Ao be complex lattices. Then:

1. The map
®: {aeC:ali C Ay} — {morphisms from C/A; toC/A2}, a0 — ¢4

where ¢o(z+ A1) = az+ Ao is an isomorphism of additive groups (and
also of rings if A1 = Aa).

2. The map
U:{aeC:al; CAs} - Hom(Ep,, Ep,), > gy

where Yo (P) = ®y, OgbaO‘I)Xll(P) 1s an isomorphism of additive groups
(and also of rings if Ay = Ag).

Proof. We prove only the first statement.

® is well-defined: obviously ¢, is a morphism of complex tori because the
multiplication by « is holomorphic in C. Furthermore, ¢,(0) = 0 and it is
well-defined because if w € Ay, then aw € As.

® is a group homomorphism: for any z € C we have

Patp(mi(2)) = (o + B)2) = ma(@z) + ma(B2) = (¢a + ¢p)(m1(2))

If Ay = Ay, ® is a ring homomorphism: for any z € C we have

$ap(m(2)) = (aBz) = da(m(B2)) = (ads)(7(2))

® is injective: we assume that ¢, = ¢g. Then (a — )z € Ay for any z € C
and so a — 8 = ((a— B)z)" = 0 because the map z — (a — )z is continuous
from a connected space (C) to a discrete one (Ag) and so it is constant.

® is surjective: we fix ¢ : C/A; — C/A2 a morphism of complex tori and
f : C — C a holomorphic function such that ma o f = ¢ o ;. Now, for any
w € A; we define the holomorphic function g, (2) := f(z +w) — f(z). Since
m2(gw(2)) = @(m1(z + w)) — d(m1(z)) = 0, the image of g, (2) is contained in
Ao and so it is constant. It implies f/(z +w) = f/(2) for any z € C, w € Ay,
so f’ is holomorphic and bounded, hence constant by Liouville’s Theorem.
Finally, we obtain that f(z) = az +  with a,8 € C. We can conclude
because m2(8) = m2(f(0)) = ¢(m1(0)) = ¢(0) =0 and so 5 € As.

For a proof of the second statement see [14, Lecture 16, Theorem 16.4, pag.
4]. O
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We can immediately see that ¢, is a group homomorphism for any o € C
such that aA; C Ag. Then the first point of the previous proposition imme-
diately implies that every morphism of complex tori is also a group homo-
morphism.

Now we prove that conjugation in C and dualization in End(E),) have the
same effects if we consider the isomorphism described in the previous propo-
sition (in the case A = Ag).

Proposition 4.16. Let A be a complez lattice. Then for every ) € End(Ey)
we have that R
) —a = W) —a

Proof. We consider the polynomial p(z) := 2% — Tr(y)x + Nm(¢y). We
know that p € Z[z] and p(z) = (z —¢)(z — ¢) in End(E,). Then, if we set
B = U~1(y)), we get that a and § are the roots of p in C. We distinguish

two cases:

e a € Z: it implies that also ¢ € Z and we know that ¢ = 1. So
f=a=a

e « is a complex algebraic integer in an imaginary quadratic field: it
follows immediately that § = a.

O]

From now on, when the endomorphism ring of a complex elliptic curve £
is an order in an imaginary quadratic field, we will consider it as a subring
of C via the inclusion

[]: End(E) < C, [¢] = 7' (¢)

We say that the pair (E,[]) is normalized.
We conclude our treatment of complex elliptic curves with an useful corollary
of the previous results.

Corollary 4.2. If E is a complez elliptic curve then End(E) is commutative.

Proof. If E is a complex elliptic curve, the Uniformization Theorem tells us
that there exists a complex lattice A such that £ = Ej. Then, End(E)
is isomorphic to {a € C : aA C A}. The latter is a subring of C, so it is
commutative and the same holds for the former. O

So, for a complex elliptic curve End(FE) is isomorphic to Z or to an
imaginary quadratic order. It will be the starting point for the theory of
complex multiplication that we will see in the next chapter.
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Chapter 5

Complex Multiplication

In the previous chapter we proved the classification Theorem for the endo-
morphism ring of an elliptic curve. In particular we saw that if E is an elliptic
curve then End(F) is isomorphic to Z, an order in an imaginary quadratic
field or an order in a quaternion algebra over Q. We also proved that for
a complex elliptic curve only the first two cases are possible. Starting from
these results, we give the following important definition.

Definition 5.1. Let E/K be an elliptic curve over a field K. Then we say
that E has complex multiplication if End(E) 2 Z.

In particular, a complex elliptic curve has complex multiplication if and
only if its endomorphism ring is an order in an imaginary quadratic field.
The main purpose of this chapter is to use the theory of elliptic curves with
complex multiplication to study class field theory in detail for the case of an
imaginary quadratic field.

5.1 Proper ideals

We observe that any fractional ideal of an order in an imaginary quadratic
field is a lattice in C.

Definition 5.2. Let O be an order in an imaginary quadratic field and a a
fractional O-ideal. We say that a is proper if O = {a € C: aa C a}.

Since the inclusion O C {a € C: aa C a} always holds and the latter is
an order we see that any fractional Og-ideal is proper.

Proposition 5.1. Let K be an imaginary quadratic field, O an order of K
and A a lattice in C. Then End(Ex) = O if and only if A is homotetic to a
(fractional) proper O-ideal.

Proof. If A is homotetic to a proper O-ideal, obviously End(Ey) = O.
In order to prove the converse, we assume A = [1,7] and O = [l,w].

87
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End(E)) = O implies w € A and so there exist a,b € Z,b # 0 such that
w = a+br. Then bA = [b,b7] = [b,w —a] C [1,w] = O, so A is homotetic
to a sublattice of O and it is closed under multiplication by O, i.e. it is an
(O-ideal. Obviously, it is also proper. O

Proposition 5.2. Let O be an order in an imaginary quadratic field. A
(fractional) O-ideal a is proper if and only if it is invertible.

Proof. Tf a is invertible and X\ € C*, then
MCa=daalCan =X X0CcO=)1€0O

and so a is proper. For the converse, we fix a := «a[l, 7] a proper O-ideal,
O = [1,w] and ax® +bx + ¢ € Z[z] to be the minimal polynomial of 7. Since
a and [1,7] are homotetic we have that O = {\ € C : A[1,7] C [1,7]} and
it implies w € [1, 7], so we can assume w = nT with n € Z. Furthermore,
wr € [1,7] and then n7? € [1,7] and a|n. Obviously ar[l,7] C [1,7] and
so ar € O = [1,n7], which implies ¢ = n and O = [1,ar]. Now, if we set

a:= afl, 7] we find

ai = N(a)[l,7,7,77] = Ng“) [a,ar, —b, ] = N(a)[1,ar] = N(a)

where the third equality follows from gcd(a, b, c) = 1 and

1 1 N(a)
N(a)=[0:0a] = -1 tall =-[0:a0] =
(@)=[0:a] = ~[[1,a7] : afL, 7] = -0 : 0] = =
Finally, a is an invertible O-ideal with inverse ﬁﬁ. 0l

Thanks to the previous results we can see that for any imaginary quadratic
order O, the Picard group Pic(O) coincides with the set of (fractional) proper
O-ideals modulo homotety. Indeed, in any class of Pic(Q) we can find an
invertible (and so proper) O-ideal and it is easy to see that two O-ideals lie
in the same class if and only if they are homotetic.

5.2 Modular functions

In this section we introduce the definition of modular functions and we study
their main properties. These notions will be crucial in the proofs of the main
theorems of complex multiplication. First of all we denote by

H:={r e C:Im(r) >0}
the upper-half of the complex plane and by

SLy(Z) := {(Z Z) € My(Z) : ad — be = 1}
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the special linear group of degree 2 over Z. Now, we let SLy(Z) act on H in

the following way:
a b _ar+b
c d) T T or +d

€ SLy(Z) and 7 € H. The action is well-defined thanks to

b

d
the following lemma.

for all (¢
C

Lemma 5.1. Let v € SLy(Z) and 7 € H. Then v -7 € H.

Proof. We set v = <Z Z) € SLy(Z) and 7 = x + iy with z,y € R,y > 0.

+b
We need to prove that Im<‘;:+d) > 0. We have

ar +b  (ax + b+ iay)(cx +d —icy)

ct+d leT + d|?
_ (az +b)(cx + d) + acy® + i(ay(cx + d) — cy(az + b))
N ler + d|?

and so

Im<a7 + b) y(ad — bc)

= >0
ct+d ler + d|?

Definition 5.3. A modular function is a map
f:H—=C
such that:
e f is meromorphic;

e f is invariant under the action of SLa(Z), i.e. f(y-71)= f(1) for all
v € SLa(Z) and T € H;

o f is meromorphic at the cusps.

What does it mean to be meromorphic at the cusps? Since f is invariant
under the action of SLy(Z) we have, for any 7 € H,

10 =1((p 1)) = fe D

Furthermore, for every z € Z, the function ¢ = ¢(7) := €*™" defines a
bijection between H, := {7 € H: z < Re(7) < z + 1} and the punctured
unitary open disk Dy.

Then there exists a meromorphic function f : Dy — C such that foq = f.
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Obviously f admits a Laurent expansion and so f admits a so called

g-expansion
“+o0o

F=> ad

k=—00

with ¢ € C for any k. Finally, we say that f is meromorphic at the cusps if
{c : k < 0,cx # 0} is finite.

Now, we recall that if A = [u,v] is a complex lattice where u = u, + iu, and
v = v + ivy, then the area Vol(A) of any fundamental parallelogram of A

). Thanks to this fact

Ug Uy

is the absolute value of the determinant of (U v
z Uy

we can prove the following lemma.

Lemma 5.2. If A = [u,v] is a complex lattice and N = [s,t] is a sublattice
of A with
s =au+bv

t=cu+dv

where a,b,c,d € Z, then
[A:A’]zn@det(a b)z:l:n
c d

Proof. We write u = u; + tuy, v = vy + vy, $ = 5; + sy and t = t, + it,.
Then
Sz Sy\ __ [a b Uy Uy
te ty)  \c d) \vy vy
[A:A]=ne Vol(A) =nVol(A) < det (5% V) = tndet (%
ty 1y Uy Uy

@det(a b)zj:n
c d

It follows that

Definition 5.4. The j-function is the map

j-H—=C, 7~ j([1,71])
where j([1,7]) is the j-invariant of the complex lattice [1,7].
Proposition 5.3. The j-function is a holomorphic modular function.

Proof. We need to prove that j satisifies the properties in the definition of
modular function.
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e j is holomorphic on H. Since the discriminant of a lattice is always
non-zero, we only have to prove that g;(7) := ¢;([1,7]) is holomorphic
for ¢ = 2,3. We prove it for go, a similar argument works for gs.

We know that the series which define go converges absolutely and to
see that it is holomorphic we must prove that it converges uniformly
on compact subsets of H. Obviously, g2(7 + 1) = g2(7) and so it is
enough to prove it in the region |Re(7)| < 1 and Im(r) > € where € is
an arbitrary positive real number, € < 1. We claim that, under these

conditions,
€
|l 4+ Ty| > ix/xz + y?

for any z,y € Z and it concludes the proof.
Let 7 = a +ib with a,b € R. The claim is trivial if [z + ay| > §|z|.
Instead, if |z + ay| < §|z|, then |z| < |y| and the claim follows;

e j is invariant under the action of SLo(Z): it follows from the previous
lemma;

e j is meromorphic at the cusps: it is a consequence of the following

proposition.
O
Proposition 5.4. The g-expansion of the j-function is
jr) =+ > ng”
q n>0
with ¢, € Z for any n.
Proof. See |12, Proposition 7.4, pag. 59]. O

Proposition 5.5. A holomorphic modular function is o polynomial in j. If
the function is also holomorphic at infinity then it is constant.

Proof. We assume that f : H — C is a holomorphic function which is also
holomorphic at infinity. Then the limit

floo) = Tim f(7)
Im(7m)—oc0
exists and it is finite in C. Now, we consider a sequence (1) of points in
H U oo and we study the sequence f(7;). We can assume 75 € D for any k

where ) )
= : < — _
Di={reH: |Re(r)| < 5 Im(r) > 2}
Indeed,
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for any 7 € H and any m € Z and if Im(7) < 3 (and |Re(r)| < 3) then

Im(i) = Im(7) > 2Im(T)

T ImI?

since |7| < % and

1(3)=1((0 3) ) =10

Now, if the imaginary parts of the 75 are bounded, they lie in a compact
set and so we can find a subsequence of f(7;) which converges. If they are
unbounded, we can find a subsequence of 7, such that the sequence of their
images converges to f(oo). Then, f(H U oo) is compact and, thanks to the
Maximum Modulus Principle, we can conclude that f is constant.

If we only assume that f is holomorphic, then its g-expansion has only finitely
many terms with a negative power of ¢ and, thanks to the previous proposi-
tion, there exists a polynomial p such that f —poj is holomorphic at infinity.
Then it is constant, i.e. f is a polynomial in j. O

5.3 Integrality of the j-invariant

In this section we want to prove that the j-invariant of a complex elliptic
curve with complex multiplication is an algebraic integer. First of all, for
any positive integer n we introduce the groups

D ::{(Z Z) EMQ(Z):ad—bc:n}

S, = {<8 Z) GMQ(Z):ad:n,d>0,0§b<d}
and, thanks to the fact that S, is finite, the polynomial

FuX)=[[ X =joa)

OéeSn

Lemma 5.3. For any o € D,, there exists a unique v € SLo(Z) such that
Yo € Sy,.

Proof. See [12, Lemma 9.3, pag. 72|. O
Proposition 5.6. The coefficients of F,,(X) lie in Z[j].

Proof. We write
S|

Fu(X) =) smX™
m=0
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It is immediate to see that s,,(7) is a holomorphic function on H which is
symmetric on the j o a’s for any m. We split the proof into four steps.
First step: s,,(7) is invariant under the action of SLo(Z). We fix v € SLy(Z).
We know that for any a € S,, there exists a unique d, € SLy(Z) such that
0y € Sy, and, since S, is finite, it implies that the map

Sn — Sn, @ daary
is a bijection. The invariance of j under SLs(Z) implies
{joay:ae S} ={joa:aes,}

and it concludes the proof of the claim.

Second step: s, € C[j]. From the previous step we have that, for any m,
. . b

Sm(T + 1) = sp(7) and so s, admits a g-expansion. If o = <8 d) € Sy,

we have

oo
. _ -at+b :7.aT+b
jo a(T) —¢ 2mi 4 + 2 :Cke27rzk =
k=0

where the ¢; are the coefficients of the g-expansion of j.

Then ¢"*t!(joa)(r) — 0 as ¢ — 0 and so, for any m, there exists a positive

integer N such that ¢"Vs,,(7) — 0 as ¢ — 0. Then, for any m, s,, is a

holomorphic modular function and so s,, € C[j].

Third step: s, € Z[[q,q"']]. We fix a positive integer n, ¢, = e%, Q= q%
a b

and a = 0 d € S,. Then j o a admits a Q-expansion

o
. _ —_ a2 2
Joa=6"Q7Y + ) el QU
k=0

with coefficients in Z[(,]. Now, if o € Gal(Q(¢,)/Q) and o((,) = ¢, with r
and n coprime, from the comparison of the related Q-expansions we imme-

diately find
(.O a b )U_.O a rb
7°\0 a)) T7%\o a

Furthermore, jo« only depends on b(modd) and, since r and d are coprime,

we find
) a rb a b )
{]o<0 d>'<0 d)GSn}—{joa.aesn}
and it follows
{(joa)? :a€e Sy} ={joa:aeS,}

Finally, the Q-expansion of s, lies in Z[(,] N Q = Z and, since we already
know that it also admits a g-expansion, we find s, € Z[[q, ¢"]].
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Fourth step: s, € Z[j]. Thanks to the previous two steps we only need to
prove that
Cljl N Zllg, ¢~ ') = ZLj]

If f is an element of the former, we can write
f=aaj+ ...+ ao € C[j]

Now, for any k = 0, ..., d, the polynomial azj* + ... +ag belongs to Z[[q, ¢~ ]|
and, thanks to the g-expansion of j, it implies that a; € Z for any
k=0,..d. O

Thanks to the proposition we find that there exists a polynomial
Gn(X,Y) € Z[X,Y]

such that G, (X,j) = F,(X). We also set H,(X) := G,(X,X). Before

proving the main result we need two more lemmas.

Lemma 5.4. jof is integral over Z[j] for any 8 € Ma(Z) of positive deter-
minant.

Proof. It B € D, there exists v € SLy(Z) such that v5 € S,,. Now

0=Fu(joyB)=Fuliop)
and the statement follows because F), is monic with coefficients in Z[j]. O

Lemma 5.5. H, is non constant and with leading coefficient +1 whenever
n is not a perfect square.

Proof. We fix a = (a b

0 d> € Sn, G = et and Q= q%. We observe that

j—joa=(Q"+ > aQ™) — ((PQ™ + chcnb’“@“

k=0

By hypotesis n is not a perfect square and so the leading terms do not cancel.
Then the Q-expansion of F,(j,j) has terms with negative powers of @ and
the leading coefficient is a root of unity, hence +1 since we know it has
coefficients in Z. Anyway, F,,(j,j) also admits a g-expansion and thanks to
the form of the g-expansion of j we can conclude. O

Finally, we can prove the following.

Theorem 5.1. If E is a complex elliptic curve with complex multiplication
then the j-invariant j(F) is an algebraic integer.
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Proof. We set O := End(E) and we assume it is an order of the imaginary
quadratic field K. We distinguish two cases.
First case: O = Og. We choose p € Ok in the following way:

e p=1+iif K =Q(i);
e p=+—-Dif K=Q(v—D) with D a positive square-free integer.

Then n := |Ng/g(p)| is not a perfect square. Thanks to the Uniformization
Theorem we can choose 7 € H such that j(7) = j(E). Now, p[l,7] C [1,7]

and, since
vaem) (e bere s ere)
ou\|p, pT y Pzly yTx
1 : = =
B leemll = 5o ) (1 Tx>
det
0 7y
20 4+ 21
_ PaTy T PyTy |p\2 —n
Ty
there exist a, b, c,d € Z such that
pT=at+b
p=cr+d
b .
and o 1= ( d) € D,,. Finally
Hn(§(E)) = Fu(§(E),j(E)) = Fu(i(ar),j(7)) =0

and it proves the claim because H,, lies in Z[z] and its leading coefficient is
+1.

Second case: O is a generic order of K.

If we write O = [wi,ws] C O = [1,7], then there exist a,b,c,d € Z such
that

wy=ar+b
we=cTr+d

and a := < € D,, with n > 0. Finally, we know that j(F) = j(a7) is

integral over Z[j(7)] and we can conclude since, from the previous case, j(7)
is integral over Z. O
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5.4 The Chebotarev Density Theorem and other
preliminaries

For the following proofs we need to introduce the Dirichlet density of a set
of finite primes.

Definition 5.5. Let K be a number field and S a set of finite primes of K.
Then the Dirichlet density of S is

It is possible to prove that if S is finite then §(S) = 0 (see [2, pag. 169]).
We will use the following result, known as Chebotarev Density Theorem.

Theorem 5.2. If L/K is a Galois extension of number fields and
S ={p: p finiteprime of K, punramifiedin L, (p,L/K) = (o)}

where (o) is the conjugacy class of o € Gal(L/K), then

Proof. See |2, Theorem 8.17, pag. 170]. O]

Two other important results that will be used in the sequel are stated in
the following proposition.

Proposition 5.7. Let K be a quadratic imaginary number field and O an
order in it. Then:

e ifn € N then any class of Pic(O) contains a proper O-ideal with norm
that is prime to n;

e any class of Pic(O) contains infinitely many ideals of prime norm.

Proof. For the first result see |2, Corollary 7.17, pag. 142|. For the second
one see [14, Lecture 20, Theorem 20.11, pag. 6]. O

5.5 Ring class fields

In order to state the first main theorem of complex multiplication we need
to introduce the notion of ring class field for imaginary quadratic fields. The
idea behind this concept is to extend the definition of Hilbert class field,
which is naturally associated to the ideal class group of Ok, to non-maximal
orders. We fix an imaginary quadratic field K. First of all, if f € Z, we
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define P 7(f) as the subgroup of I K,(f) generated by the principal ideals
aQ such that there exists a positive integer a coprime with f which satisfies
a = amod fOk . It is immediate to see that Pk 7(f) is a congruence subgroup
modulo (f), i.e. it contains K gy ;.

Definition 5.6. Let K be an imaginary quadratic field and O an order
of conductor f in K. The ring class field of O is denoted by Ro and
it 1is defined as the abelian extension associated to the congruence subgroup
Px 7(f) by the existence theorem.

It is immediate to observe that the ring class field of Ok is just the
Hilbert class field, i.e. Rp, = Hg. We can also observe that the primes of
K which ramify in Rp divide the conductor of O.

Proposition 5.8. Let K be an imaginary quadratic field and O an order of
conductor f in K. Then we have an isomorphism

Pic(O) = Iy (p)/ Prz(f)

Proof. We say that an O-ideal a is coprime with f if a + fO = O and we
observe that it implies that a is proper. Indeed, if & € K and aa C a we
have

a0 =ala+ fO)=aa+afO Ca+ fOx CO

We denote by I(O, f) the subgroup of I(O) generated by the O-ideals that
are coprime with f and by P(O, f) its subgroup of principal fractional
O-ideals. We will prove the statement through a chain of isomorphisms

I p/Prz(f) =100, f)/P(O, f) = 1(0)/P(0) = Pic(O)

We define
A = {Ok —ideals prime to f}

B := {0 — ideals primeto f}
F:A— B, Fla)=an O
G:B— A, G(a) =a0g
We prove that:

e F'is well-defined. If a € B, we observe that a + fO = O if and only if
the multiplication by f from O/a to itself is an isomorphism, i.e. if and
only if f and N(a) are coprime. Then, if a € A, the obvious injection

0O/O0 N a—= Ok/a

tells us that a N O € B.
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o (G is well-defined. If a € B, then

aOrg + f = (a+f(9)(9K =00k = Ok

e GoF =idy. If a € A we have

a=alanN O+ fO)C (anN O)Ok + fa
C(anN O0)0g+(anO)C(an O)Ok

The other inclusion is trivial.

e Fo(G =1idg. If a € B we have

aOg N O = (a0 N O)(a+ fO) Ca+ f(aOx N O)
Ca+afOx Ca4+a0 Ca

The other inclusion is trivial.
e (G is multiplicative: it is obvious.
Then, the map F' can be extended to an isomorphism
F: I (p) — (O, f)

In order to get the first isomorphism we just need to prove that

F(Pgz) = PO, )
or, equivalently,
aOk € Pk z(f) & a € O, N(a) primeto f

If o € Ok, a = amod fOk, a € 7 coprime with f, then N(a) = a® mod f
and it implies ged(N (), f) = ged(a?, f) = 1. The implication (=) is proved
since we have also fOxg C O and so a € O. For the converse we assume
O = [1, fw] and so there exists a € Z such that « = a mod fOk. Then
ged(a, f) = 1 because ged(N(a), f) = 1 and N(a) = a? mod f, so the claim
is proved.

Now, we define

H:1(0, f)/P(O, f) = 1(0)/P(0), H([a]) = [q]
We prove that:

e H is a well-defined group homomorphism. It is obviously a group
homomorphism and it is well-defined since P(O, f) C P(O).
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e H is injective. It follows from the equality
PO, f) =10, f) N P(O)

The inclusion (C) is trivial. For the opposite direction we consider
a0 = ab™! € I(O,f) N P(O,f) where « € K and a and b are
O-ideals prime to f. If m = N(b) we have

ma® =mab™ ' =a-mbl=abcC O
which implies maO € P(O, f). Then the same holds for

a® = (ma®)(mO)~!

e H is surjective. It follows from the fact that any class of Pic(QO)
contains an ideal with norm that is prime to f.

O

5.6 The first main theorem of complex multiplica-
tion

The purpose of this section is to prove the first main theorem of complex
multiplication which gives a concrete construction of ring class fields of imag-
inary quadratic fields in terms of the j-invariants of suitable elliptic curves.

Theorem 5.3. If E is a complex elliptic curve with End(E) = O where O
is an order in an imaginary quadratic field K, then Ro = K(j(F)).

Corollary 5.1. If E is a complex elliptic curve with End(E) = O where
K is an imaginary quadratic field, then Hx = K(j(E)).

We fix an imaginary quadratic field K and an order O in it. We set
Ellp(C) :={j(F) : E/C elliptic curve, End(F) = O}

Now, we want to define an action of Pic(O) on Ellp(C) in the following
way: from the Uniformization Theorem and the results on proper ideals we
know that if E is an elliptic curve over C with End(E) = O then there
exists a proper fractional O-ideal b such that £ = Ep. Now, if a is a proper
fractional O-ideal, we set

[a] - § (Ep) = j(Eq-1)

where we use the square brackets to indicate classes. Obviously, it is a
well-defined group action thanks to the fact that homotetic lattices defines
isomorphic elliptic curves. We prove some important properties of this ac-
tion.
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Proposition 5.9. The action of Pic(O) on Ello(C) is free and transitive.

Proof. The action is free because
[a] - §(Ep) = j(Fy) @ a b=, A e C* < [a] =1

Furthermore, the finite sets Pic(Q) and Ellp(C) have the same cardinality
because the map
Pic(O) — Ellp(C), [a] — j(Eq)

is a bijection thanks to the properties we studied. Then the action is also
transitive. O

Before proceeding, we need also to prove the following.

Proposition 5.10. If E is a complex elliptic curve with complex multipli-
cation by O and o € Aut(C), then j(E?) = j(E)° and End(E?) = O.

Proof. The first equality follows immediately from the fact that the j-invariant
of F is a rational combination of the coefficients of a Weierstrass equation

for E. For the other equality, we observe that for any o € Aut(C) and if

E = B for a suitable complex lattice A we have o(Ej) = E,p). Indeed,

92(0(A)) = 60G4(a(A)) = 0(60)0(G4(A)) = o(g2(A))
and the same holds for g3. Then

End(ER) = End(Ey)) ={a € C:ao(A) Co(A)}
={acC:aA C A} =End(Epr) =0

Now, we define a group homomorphism
F:Gal(K%/K) — Pic(O)

in the following way:

F(o)-j(E) = j(E7)
for any o € Gal(K%/K) and any complex elliptic curve E with End(E) = O.
Proposition 5.11. The function F is well-defined.

Proof. Thanks to the properties of the action of Pic(O) on Ellp(C), the
values of F' are uniquely determined by the given condition. Then we only
need to prove that for any two complex elliptic curves Fq and FEo with
complex multiplication by O and any proper fractional O-ideal a we have

J(EY) = [a] - §(E1) = j(E3) = a] - j(E2)
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We assume that j(E2) = [b] - j(E1) for a suitable proper fractional O-ideal
b. Then

J(EF) = j(E2)” = ([b] - j(E1))7 = [b]7 - j(E1)” = [b] - j(ET) = [b][a] - j(EN)
= [a][b] - j(E1) = [a] - j(E2)
For a proof of the third equality see [12, Proposition 2.5, pag. 113]. O

We fix a complex elliptic curve E with End(E) = O and we compute

Then, K(j(FE))/K is Galois and we can consider F' as an injective homo-
morphism

F:Gal(K(j(E))/K) — Pic(O)

In particular, since Pic(O) is an abelian group, we can observe that K (j(E))/K
is an abelian extension.

Lemma 5.6. If p is a prime of K which satisfies:
e p N O is a proper O-ideal of norm p, where p is a prime integer;
e p is unramified in K and p is unramified in K(j(E));

e any element of Ellp(C) is the j-invariant of an elliptic curve defined by
a Weierstrass equation with coefficients in Ok jg)y) and with discrim-
inant that is not divided by any prime q of K(j(E)) which lies over p
(i.e., E has good reduction modulo q);

e for every prime q of K(j(E)) which lies over p, the elements of Ellp(C)
are distinct modulo q.

then F(op) =[p N O.
Proof. See [14, Lecture 21, Theorem 21.1, pag. 3|. O
Proposition 5.12. The map F is surjective.

Proof. If a is a class in Pic(Q), we know that there are infinitely many
primes of K such that the first condition of the previous lemma is satisfied
and [p N O] = a. The other conditions of the lemma excludes only finitely
many primes, so there exists a prime p of K such that

Fo)=[p N Ol=a

Then F is surjective. O
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Finally we have an isomorphism
Gal(K(j(E))/K) = Pic(O)
In particular, we have that
[K((E)) : K] = [Ro : K]

The next step in the proof is to show that Rp C K(j(E)) and it will be
enough to conclude.
Given a finite extension of number fields L/K we denote by

Stk = {p : p primeideal of K which splits completely in L}

Given two sets A and B we write ACB if there exists a finite set C such
that Ac B U C.
We want to prove the following proposition.

Proposition 5.13. If M/K and L/K are finite extensions of number fields
and M /K is Galois, then

S]W/KCSL/K =LCM

Proof. We denote by L’ the Galois closure of L and by N a Galois extension
of K which contains M and L’. We also fix 0 € Gal(N/M). Thanks to
the Chebotarev Density Theorem we can find infinitely many primes p of K
which are unramified in N and such that there exists a prime 8 of N which
lies over p and satisfies (B, N/K) =o. It B’ =B N Oy, we have

(B M/K)=(B,N/K)|y=c|lpy=1
and so p € Sy Since there are infinitely many primes which satisfy these
properties and Sy x CSp k= Spr/k (the last equality is a well-known fact),
we can assume p € Sp/ /. It implies

ol = (B,N/K)|y = (b, L'/ K) = 1

Then o € Gal(N/L') and it implies Gal(N/M) C Gal(N/L'). Then L' C M
and the statement follows. O

Now, we want to use the previous proposition to conclude. We need the
following two lemmas.

Lemma 5.7. It holds

Sk(iEy/Q Cip € Z: pprime, Ja € Os.t.p= N(a)}
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Proof. Let p € Sk (j(E))/q such that it does not divide the conductor of O, it
is unramified in K (j(F)) and there is a prime p of K which lies over p such
that F\(op) = [p N O]. With these restrictions we exclude only finitely many
primes. Now, since p splits completely in K (j(F)), the same holds for p and
so 0y = 1. Then

b N O] = Flop) = F(1) =1

and it implies that p N O is a principal O-ideal. Furthermore, since O/pNO
injects into Ok /p, then

NipnO)=[0:pNO]=[0k:p|=p
and the statement is proved. ]

Lemma 5.8. It holds
{p€Z:pprime, 3a € Os.t.p= N(a)} C Sg, /0

Proof. Let f be the conductor of O and fix a prime p € Z such that it
does not divide f and it is unramified in K. If p = N(«) for a suitable
a € O, then pOgk = pp with p # p and p = aOk. It implies p € Pr z(f), so
(p, Ro/K) = 1 and p splits completely in Rp. If 7 is the complex conjugation
we have that

ker(¢r(ro)/K.f) = T(ker(Pry/k.f) = T(Prz(f))
= Pxz(f) = ker(éry /K. f)

and so 7(Ro) = Ro (see |2, Corollary 8.7, pag. 163|). Finally, Rp/Q is
Galois and so p splits completely in Ro. 0

Thanks to the previous two lemmas we have
Sk(i(e)/e C SRo/0

The extension K (j(F))/Q is Galois. Indeed, if 7 is the complex conjugation,
we have End(E™) = End(E) = O and it implies that

J(E) =j(E7) € K(§(E))

Finally, we can conclude that Rp C K(j(F)).

5.7 The second main theorem of complex multipli-
cation

The purpose of the second main theorem of complex multiplication is to
describe ray class fields of imaginary quadratic fields. In order to state it we
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need to introduce some terminology. If F is a complex elliptic curve with
complex multiplication by Ok we define the set of its torsion points as

Eiprs ={P € E:[a)(P)=0, 3a € Ok}
and, if m is an integral ideal of O, the set of its m-torsion points is
Eml={Pe€E:[a)(P)=0Vaem}

Furthermore, if A is a complex lattice such that E = Ey and ®, : C/A - F
is the usual isomorphism, we define the function

h:E—C
in the following way:
o if () # 0,1728, h(®a(2)) = L8N p(2; A)
o if j(E) = 1728, h(Pa(2) = BR o(z: )2

o if j(E) =0, h(®a(2)) = L3 o(=A)?

where z € C. It is easy to see that h is independent of the choice of A.

Theorem 5.4. Let K be an imaginary quadratic field, m o modulus for
K and E a complex elliptic curve with complex multiplication such that
End(E) = Ok. Then

Proof. See [12, Theorem 5.6, pag. 135]. O]

It is immediate to deduce the following computation of the maximal
abelian extension of an imaginary quadratic field.

Corollary 5.2. Let K be an tmaginary quadratic field and E a complex
elliptic curve with complexr multiplication such that End(E) = O. Then

K% = K(](E), h(EtOTS))
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