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Abstract

It is a common problem in optimization to deal with objective functions whose gradient
cannot be calculated. This is the case of Black-Box functions, where the only available
tool is a program (so called Black-Box) which outputs the value of the function for a
given input, without telling any information about the function itself.

There are actually plenty of well performing algorithms which are made to solve this
kind of problem, making use of clever tecniques to find a descent direction without using
the gradient. However, most of them requires a number of function evaluations (and often
a cpu time as well) which increases dramatically along with the dimension of the problem.
One function evaluation is usually time consuming in real world problems and this is the
reason why the performances of those algorithms are evaluated by taking into account
the number of function evaluations needed to get a certain reduction in the objective
function.

The purpose of this work is to provide practical results about the performance of a new
optimization algorithm. This algorithm solves large scale problems with a small budget
of function evaluations. In the first chapter we just report the state of the art regarding
derivative-free optimization, in the second one we present and explain our algorithm and
provide its performance and data profiles in the third. The conclusions are drawn in the
last chapter.
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Chapter 1

Introduction

The purpose of this chapter is to explain the reasons why derivative free algorithms
are widely used in practice. We will present the state of the art and the theoretical
foundations of our work.

1.1 The Lack of the Gradient

Derivatives are the most fundamental and reliable elements when an optimization prob-
lem needs to be solved. Infact, nearly every mathematical characterization of a (generally
local) minimum requires the first order derivatives to be zero. However, there is a variety
of situations where those derivatives are not available or computationally hard to ob-
tain and that is why efficient methods for derivative free optimization have always been
needed. Optimization without derivatives is considered one of the most important, open,
and challenging areas in computational science and engineering, and one with enormous
practical potential. are some of the reasons why derivative-free optimization is currently
an area of great demand.

The increasing complexity in mathematical modeling, higher sophistication of scien-
tific computing, and an abundance of legacy codes will unavoidably lead to an increase
of problem dimensions (i.e., the number of variables used to model our real application).
With the growth and development of derivative-based nonlinear optimization methods
it became evident that large-scale problems can be solved efficiently, but only if there
is accurate derivative information at hand. Not surprisingly, as we already suggested,
there are considerable disadvantages in not having derivative information, so one can-
not expect the performance of derivative-free methods to be comparable with those of
derivative-based methods. In particular, the scale of the problems that can currently be
efficiently solved by derivative-free methods is still relatively small and does not exceed
a few hundred variables even in easy cases. [1].

As will be explained in the following pages, the algorithm we developed is meant to
raise this practical limit by an order of magnitude. Our intent is indeed to provide a tool
which can significantly reduce objective functions with thousands of variables.
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1.2 DFO Methods

Many techniques have been developed in derivative free optimization. In this section we
will just present the most common methods currently applied in practice.

Before explaining of such techniques, we briefly recall that we are interested in solving
(in practice, we are interested in finding a reasonable approximation of the solution of)
the following:

min f(x),

subject to x ∈ X,

where f is a function whose derivatives are not available. The common assumption on
the set of feasible points X is that it is convex. However, since Section 1.3 we will make
this assumption more strict. We will ask X to be the convex combination of a finite
number of vertices:

X = conv{v1, . . . , vn},

that is,

x =
n∑
i=1

λivi,

λi ≥ 0 and
∑n

i=1 λi = 1.

1.2.1 Directional Direct Search Methods

A simple idea to solve an optimization problem without using derivatives consist of sam-
pling the function in the neighborhood of the current best guess and move to a point
where the function decreases. This is the strategy followed by the Compass algorithm.
This method makes use of the basis D⊕:

D⊕ = [I −I] = [e1 . . . en−e1 . . .−en] .

However, any positive basis (that is, a positive independent set which generate Rn) can
be used instead.
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Inizialization: Choose x0 and α0 > 0;
for k = 0, 1, 2, . . . do

1. Poll Step: Order the poll set Pk = {xk + αkd : d ∈ D⊕}. Start
evaluating f at the poll points following the order determined. If a
poll point xk + αkdk is found such that f(xk + αkdk) < f(xk), then
stop polling, set xk+1 = xk + αkdk, and declare the iteration and the
poll step successful. Otherwise, declare the iteration (and the poll
step) unsuccessful and set xk+1 = xk.;

2. Parameter Update: If the iteration was successful, set αk+1 = αk
(or αk+1 = 2αk). Otherwise, set αk+1 = αk/2.;

3. Optimal Conditions: If αk+1 < αlimit the algorithm stops.
end

Algorithm 1: Compass Algorithm [1]

This algorithm is used for unconstrained optimization problems. However, if we start
from a feasible point x0 and perform a feasibility check every time we evaluate a poll
point, we can also perform constrained optimization, as long as the feasible region is
convex.

The poll set ordering here is extremely important, especially when the problem di-
mension is large. Indeed, start evaluating from the most promising directions could save
a huge number of function evaluations.

1.2.2 Simplicial Direct Search Methods

This subsection will briefly report one of the most used DFO algorithm, which we also
used as a comparison to evaluate the performance of our algorithm, the Nelder-Mead
algorithm. This is a direct search method, in the sense that it evaluates the objective
function at a finite number of points per iteration and decides which action to take next
solely based on those function values and without any explicit or implicit derivative ap-
proximation. The substantial difference between the Nelder-Mead and the directional
direct search methods, is that this time we keep in memory a simplex of n+ 1 points and
replace the worst one at each iteration.
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Inizialization: Choose an initial simplex of vertices Y0 = {y0
0, y

1
0, . . . , y

n
0 }.

Evaluate f at the points in Y0. Choose constants: 0 < γs < 1,
−1 < δic < 0 < δoc < δr < δe;

for k = 0, 1, 2, . . . do
0. Set Y = Yk;
1. Order: Order the n+ 1 vertices of Y = {y0, y1, . . . , yn} so that:
f 0 = f(y0) ≤ f 1 = f(y1) ≤ · · · ≤ fn = f(yn).

2. Reflect: Reflect the worst vertex yn over the centroid
yc =

∑n−1
i=0 y

i/n of the remaining n vertices: yr = yc + δr(yc − yn).
Evaluate f r = f(yr). If f f 0 ≤ f r < fn−1, then replace yn by the
reflected point yr and terminate the iteration:
Yk+1 = {y0, y1, . . . , yn−1, yr}.

3. Expand: If f r < f 0, then calculate the expansion point
ye = yc + δe(yc − yn) and evaluate f e = f(ye). If f f e ≤ f r, replace yn

by the expansion point ye and terminate the iteration:
Yk+1 = y0, y1, . . . , yn−1, ye. Otherwise, replace yn by the reflected point
yr and terminate the iteration: Yk+1 = y0, y1, . . . , yn−1, yr.

4. Contract: Contract: If f r ≥ fn−1, then a contraction is performed
between the best of yr and yn.

4.1 Outside Contraction: If f r < fn then compute
yoc = yc + δoc(yc − yn) and evaluate f oc = f(yoc). If f oc ≤ f r, then
replace yn by the outside contraction point yock and terminate the
iteration: Yk+1 = {y0, y1, . . . , yn−1, yoc}. Otherwise, perform a shrink.

4.2 Inside Contraction: Else if f r ≥ fn then compute
yic = yc + δic(yc − yn) and evaluate f ic = f(yic). If f ic < fn, then
replace yn by the inside contraction point yick and terminate the
iteration: Yk+1 = {y0, y1, . . . , yn−1, yic}. Otherwise, perform a shrink.

5. Shrink: Evaluate f at the n points y0 + γs(yi − y0), i = 1, . . . , n,
and replace y1, . . . , yn by these points, terminating the iteration:
Yk+1 = {y0 + γs(yi − y0), i = 0, ..., n}.

6. Optimal Conditions: A common stopping criterion consists of
terminating the run when the diameter of the simplex becomes
smaller than a chosen tolerance ∆tol > 0.

end
Algorithm 2: Nelder-Mead Algorithm [1]

The strenght of the Nelder-Mead algorithm lies in the number of function evaluations
per iteration which does not usually grow with n. In fact, the shrink step rarely occurs
in practice and therefore the function evaluations are at most 2.

1.2.3 Line-Search Methods

The algorithm presented in the following pages is a modified version of the Implicit
Filtering method by Kelley et al [2], taken from [1]. This algorithm is the first we
present which makes an estimation of the gradient (the so called simplex gradient) to fix
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a direction and carry out the function reduction using the line search.

We start giving a few definitions and the most common example of simplex gradient.
We consider as before a sample set of n+ 1 points which are assumed to be the vertices
of a simplex: Yk = {y0

k, y
1
k, . . . , y

n
k}. This set is assumed to be poised, that is:

det


1 y0

k,1 . . . y0
k,n

1 y1
k,1 . . . y1

k,n
...

...
...

...
1 ynk,1 . . . ynk,n

 6= 0. (1.1)

The simplex gradient in xk = y0
k is then given by:

∇sf(xk) = L−1
k δf(YK),

where

Lk =
[
y1
k − y0

k . . . y
n
k − y0

k

]T
and

δf(YK) =

f(y1
k)− f(y0

k)
...

f(ynk )− f(y0
k)

 .

We also define:

∆k = max
1≤i≤n

‖yik − y0
k‖.

Every time line search is performed, we strenghten the strict decrease condition, asking
a sufficient decrease instead:

f(xk − α∇sf(xk)) ≤ −ηα‖∇sf(xk)‖2. (1.2)

Finally we are ready to present the algorithm:
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Inizialization: Choose an initial point x0 and an initial poised sample set
{y0

0(= x0), y1
0, . . . , y

n
0 }. Choose β, η ∈ (0, 1). Select jmax ∈ N.

for k = 0, 1, 2, . . . do
1. Simplex Gradient Calculation: Compute a simplex gradient
∇sf(xk) such that ∆k ≤ ‖∇sf(xk)‖. Set jcurrent = jmax and µ = 1.

2. Line Search: For j = 0, 1, 2, . . . , jcurrent
(a) Set α = βj. Evaluate f at xk − α∇sf(xk).
(b) If the sufficient decrease condition (1.1) is satisfied for α, then stop
this step with αk = α (and go to Step 4).

3. Line Search Failure: If the line search failed, then divide µ by
two, recompute a simplex gradient ∇sf(xk) such that
∆k ≤ ‖∇sf(xk)‖, increase jcurrent by one, and repeat the line search
(go back to Step 2).

4. New Point: Set:

xk+1 = arg min
x∈χk

{f(xk − αk∇sf(xk)), f(x)},

where χk is the set of points where f has possibly been evaluated
during the course of Steps 1 and 3. Set y0

k+1 = xk+1. Update
y1
k+1, . . . , y

n
k+1 from y0

k, y
1
k, . . . , y

n
k by dropping one of these points.

5. Optimal Conditions: A common stopping criterion consists of
terminating the run when ∆k becomes smaller than a chosen
tollerance ∆tol > 0.

end
Algorithm 3: Modified Implicit Filtering [1]

The computation of a simplex gradient with the property ∆k ≤ ‖∇sf(xk)‖ can be
easily be done by a greedy algorithm presented in [1].

1.2.4 Model Based Trust-Region Methods

This broad class of optimization method differs radically from the others seen before. This
time we are not working directly on the objective function, but we use it to create a model
which is easier to deal with. This model hopefully gives a good approximation of the ob-
jective function itself in a neighborhood (the trust region) of the current guess. Given the
fact that these kind of algorithms requires a lot of theoretical explanation, we will just
report as an example a heavily simplified pseudo code of a first order trust-region method.

12



Inizialization: Choose x0 and ∆ > 0 (the trust region radius);
for k = 0, 1, 2, . . . do

1. Model Computation: Compute mk() (the model used to
approximate f , usually quadratic);

2. Step Computation: Compute sk as:

sk = min
‖s‖<∆

mk(xk + s)

(we are solving the local model subproblem);
3. Descent Ratio Computation:

ρk =
f(xk)− f(xk + s)

mk(xk)−mk(xk + s)

(ρk indicates how well the reduction in the model transfers itself on
the real problem);

4. Trust-Region Radius Update: the updates are usually made
based on two fixed parameters 0 < η0 < η1 in the following way:
(4.1) If ρk > η1: xk+1 ← xk + sk and increase ∆.
(4.2) Elseif ρk > η0 and mk() satisfy certain structural conditions:
xk+1 ← xk + sk and leave ∆ unchanged.
(4.3) Else: xk+1 ← xk and decrease ∆.

5. Optimal Conditions: The algorithm usually terminates whenever
the trust-region radius ∆ becomes too small.

end
Algorithm 4: Simple Trust Region [3]

The reason why model based approaches are not much considered in this thesis is
because the number of points needed to decently fit a model typically raise as n2. With the
standard computational budget being in the order of 100 simplex gradients (100(n+ 1))
it is clear that approach large scale problems with model based methods is not possible.

1.3 Simplicial Decomposition

Simplicial decomposition is a common method used in derivative based optimization. The
reason why we are introducing such a technique is simple: we took simplicial decompo-
sition from that framework and made it the key element of our algorithm.

As we have seen in the previous section, operating on a simplex can be extremely
useful. This time, instead of keeping a fixed number of vertices as a sample set, we
dinamically increase the vertices and solve an optimization subproblem into the simplex
at each iteration. The detailed presentation of the algorithm is left for the next chapter,
while the end of the current one is meant to explain how the simplcial decomposition
works.

Without further delay, let’s introduce the elements of the aglorithm:
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P = {v1, . . . , vn}, vi ∈ Rm

X = conv(v1, . . . , vn)

Î, a subset of {1, . . . , n}.

The elements of Î point to the elements of P which make up the current simplex. For
instance, if Î = {1, 4, 18}, then the simplex vertices are v1, v4 and v18.

With that said, the simplicial decomposition interation is splitted in two fundamental
phases:

Simplex Optimization:

Solve the master problem on the current simplex:

x∗k = arg min f(x)

x =
∑
i∈Î

λivi

λi ≥ 0 and
∑
λi = 1.

Simplex Update:

Solve a linearized subproblem on the whole X:

y = arg min cTx

x ∈ X

Because of the linearity of the objective function, y = vi, ∃i. Then put Î = Î ∪{i}.
If i is already in P̂ , then x∗k is optimal and the algorithm terminates.

The linearization of the problem is usually created in a Frank-Wolfe fashion: c =
∇f(x∗k). This, of course, cannot be done in our framework, where the gradient is not
available.

The simplicial decomposition technique starts working well when n, the dimension
of the problem (that is, the number of vertices of the feasible region X), becomes very
large. That’s because the real optimization is made on the simplex whose dimension
grows slowly and most importantly with no dependence on n. This is the key point we
will exploit to make our algorithm work in the context of large scale problems.
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Chapter 2

A Simplicial Decomposition DFO
Algorithm

In the following sections we will present and carefully detail our algorithm DF-SD, which
perform simplicial decomposition over a convex combination of vertices without using
derivatives.

2.1 Algorithm Overview

Firstly, we recall the problem we are insterested in:

min f(x)

subject to x ∈ X = conv{v1, . . . , vn},

vi ∈ Rn.

Before giving a brief pseudo code of the algorithm, we introduce the elements we will
use. Let Î be the subset of {1, . . . , n} containing the indices of the vertices vi which
compose the current simplex S and:

A = [vi1 , . . . , vil ],

the matrix whose columns are the vertices of S, that is, Î = {i1, . . . , il}. Let also:

V = [v1, . . . , vn],

the matrix of all the vertices of X.
To be clear, we also recall that we consider 3 dimensions during the execution of the

algorithm:

• n, the number of vertices of the feasible region X.

• m, the dimension of the space where x and v1, . . . , vn live.

• l, the dimension of the current simplex S, that is, the number of its vertices. As
already pointed out, l will change at each iteration of the algorithm.
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While the dimension of the function evaluations is m, because f : Rm → R, the dimension
of the problem is actually n. Infact the problem we are going to solve can be rewritten
as the following:

min f̂(y) = f(V y)

s. t. eTy = 1, (2.1)

yi ≥ 0.

We will now present the basic scheme of the algorithm, which will be detailed in the
next sections.

Inizialization: Choose the starting Î (and therefore S) and y0, the convex
combination of the vertices in S. Then l = |Î| and A is the m by l matrix
whose columns are the vertices of S;

for k = 0, 1, 2, . . . do
1. Simplex Optimization: Approximately solve:

y∗k = arg min f(Ay)

s. t. eTy = 1,

yi ≥ 0.

(This is how the objective function is reduced);
2. Simplex Update: Find an approximation ĝ of the gradient of f in
xk = Ay∗k and solve:

vnew = arg min ĝTv.

Then update the simplex: S ← S ∪ {vnew} and so update Î. Add vnew
as a new column of A and put y∗k ← [(y∗k)

1 . . . (y∗k)
l 0]T ;

3. Optimal Conditions: If all the possible vertices are in A already,
the algorithm stops.

end
Algorithm 5: DF-SD Algorithm

2.2 Simplex Optimization Step

This is the step of the algorithm where the objective function is reduced. Before explain-
ing how this is done, we will point out that in the whole we are operating in the reduced
space of the y ∈ Rl. The function we are evaluating is f̂A = f ◦A : Rl → R. Every point
y ∈ Rl subject to the simplex constraints eTy = 1, yi ≥ 0 links to a (not necessarily in
an injective way) point x ∈ X ⊂ Rm. Consequently, while moving in Rl reducing the
function f̂A, we are also reducing f in Rn.
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2.2.1 Direct Search

For the optimization in the reduced space, we used direct search. Given the fact that
the affine dimension of the simplex is l − 1, we actually need just l direction to conduct
optimization. However, so we decided to get a better set of directions. The simplex
is contained in the hyperplane eTx = 1 so we did not use the carthesian (or gradient)
directions e1, . . . , el. Instead, we chose a set of direction contained in the hyperplane.
Such directions are the canonic ones, in the sense that if we are currently in the point y,
then:

Dc = {e1 − y, . . . , el − y,−(e1 − y), . . . ,−(el − y)}. (2.2)

Figure 2.1: Canonic directions for l = 3.

The reason why we used both positive and negative directions even if the sole positive
ones form a positive basis is that, heuristically, if direction d is not a descent direction,
there is a good probability that −d will be one. We remind that this addition of directions
does not represent a problem because l is always a small number.

After setting the initial step of the search αstart and the initial point y0 of the iteration,
the algorithm evaluates the function in the point yj = y0 +αdj, dj ∈ Dc. If f̂A(yj) satisfies
the sufficient decrease condition and the point yj does not break the simplex boundaries,
then an expansion step is performed. Otherwise, the opposite direction is tested, and
subsequently all the directions in Dc in the same way. If no direction can provide a
feasible point with a sufficient decrease, the step α is reduced and the directions trial
is repeated. When α falls below a certain threshold αmin, the simplex optimization
terminates.

2.2.2 Expansion Step

When the algorithm successfully find a new point yj = y0 + αdj, there is the possibility
that a larger step (that is, α) will grant a larger decrease. Consequently, chosen δ > 1,
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the algorithm checks if yj = y0 +αδdj still satisfy sufficient decrease. If another reduction
is attained, the procedure (α ← αδ) continues until the sufficient decrease condition is
violated.

When the expansion step ends, the direct search starts again from the new best guess.
The step α for the direct search is restored as the last one before the expansion step.
Therefore, after each cycle of simplicial decomposition the search step α either remains
unchanged or decreases. As we just pointed out a couple of paragraphs above, the simplex
optimization terminates whenerver α falls below the threshold αmin.

2.2.3 Pseudo Code

Before presenting the pseudo code of the simplex optimization algorithm, we recall the
parameters needed for this step.

• αstart, the starting search step,

• αmin, the threshold under which the optimization terminates,

• ε, the multiplicative decrement of alpha performed whenever no descent direction
is found in the direct search,

• δ, the multiplicative increment of alpha performed during the expansion step,

• γ, the threshold for the sufficient decrease check.

18



Inizialization: α = αstart, y ← y0;
while true do

reduction ← false;
for dj ∈ Dc do

while f̂A(y + αdj) ≤ f̂A(y)− γα2 do
reduction ← true;
α← αδ;

end
if reduction then

α← α/δ;
y ← y + αdi;
break ;

end

end
if reduction then

restore α as before the first expansion;
else

α← αε;
if α < αmin then

break ;
end

end

end
Algorithm 6: Simplex Optimization Step

2.3 Simplex Update Step

The crucial part of our algorithm lies in the simplex update. In the standard simplex
decomposition framework, this operation is performed solving a linearization of the prob-
lem based on the gradient. DF-SD will try to estimate the gradient using the information
gathered during the simplex optimization phase. This estimation is far from optimal, but
it does not require any computational effort. In the following section, we will also present
a modified version of the algorithm, which estimate the full simplex gradient instead.
This will spend a lot of the budget function evaluations, but in smooth contexts will
provide an optimal update for the simplex.

2.3.1 Gradient Estimation

The procedure used by the algorithm to find a good approximation of the gradient is
quite simple. It requires just basic linear algebra and the concept of first order Taylor
approximation. We briefly recall that, given f : Rn → R, the first order approximation
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of f in a neighborhood of x0 is:

f(x) = f(x0) +∇f(x0)T (x− x0). (2.3)

From this equation we can see that g = ∇f(x0) can be obtained as the solution of
the underdetermined linear system:

(x− x0)Tg = f(x)− f(x0). (2.4)

If we take multiple points x1, . . . , xj in a neighborhood of x0, we can add rows to the
system, so the (2.4) becomes:

STg = df, (2.5)

where:
S =

[
x1 − x0 . . . xj − x0

]
and:

df =

f(x1)− f(x0)
...

f(xj)− f(x0)

 .

The next step we need is to obtain the gradient g = ∇f(x0) ∈ Rn through the
informations we have in the reduced space Rl. If we consider the system (2.5) in the
reduced space, we have:

ŜTgy = df̂ , (2.6)

where, obviously:
Ŝ =

[
y1 − y0 . . . yj − y0

]
,

df̂A =

f̂A(y1)− f̂A(y0)
...

f̂A(yj)− f̂A(y0)


and:

gy = ∇yf̂A(y0). (2.7)

We can now expand (2.7) for the final equivalence we need:

gy = ∇yf̂A(y0) = ∇yf(Ay0) = AT∇xf(x0) = ATgx. (2.8)

Combining (2.6) and (2.8), we obtain the system the algorithm will use to estimate
gx, that is:

ŜTATgx = df̂A. (2.9)

The sampling points which compose the matrix Ŝ are the last 2l points where the
algorithm evaluated the function in the last cycle of the simplex optimization. Hoping
into a better estimation, we also add another sampling point, using the direction which
is orthogonal to the Rl-simplex: d2l+1 =

√
l[1 . . . 1]T .

Once we have an estimation of the gradient gx, we can finally add a new vertex to the
simplex. This is done solving the linear program:
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vnew = arg min gTx v, (2.10)

subject to v ∈ conv{vi1 , . . . , vin−l
},

where vi1 , . . . , vin−l
are the columns of Vp.

What the algorithm does is taking the submatrix Vp of V composed by the vertices
which are not in the current simplex and performing a simple matrix multiplication to
see which vector of Vp could provvide the best reduction:

r = V T
p gx.

So:

vnew = (Vp)i∗ , (2.11)

where i∗ is the column index that satisfy:

i∗ = arg min
i∈{1,...,n−l}

ri.

There is the possibility that the every entry of r is positive, that is, there is no descent
vertex. However, because of the unreliability of gx, the algorithm does not stop until the
budget computations are over.

2.3.2 Pseudo Code

We recall that, when the simplex optimization step is over, we already have the evaluation
of f̂A in the points yj = y0 + αdj, dj ∈ Dc for j = 1, . . . , 2l, where:

• α is the smallest acceptable (that is, greater or equal αmin) step,

• y0 is the actual best guess, because the last directions trial from y0 has not made
any decrease.

With that said, the pseudo code follows.
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1. Create Sample: Set α← α/ε and put:

• y2l+1 = y0 + αd2l+1;

• Ŝ =
[
y1 − y0 . . . y2l+1 − y0

]
;

• df̂A =

 f̂A(y1)− f̂A(y0)
...

f̂A(y2l+1)− f̂A(y0)

.

2. Least Squares Estimation: Solve:

ŜTATgx = df̂A.

3. Simplex Update: Solve:

vnew = (Vp)i∗

and put:

• A← [A vnew],

• y0 ← [y1
0 . . . y

l
0 0].

Algorithm 7: Simplex Update Step

2.4 Additional Notes

Before moving onto the Chapter related to the analysis of the numerical results, we will
spend a couple of words on the convergence of the algorithm, as well as on the full gradient
variant.

2.4.1 Algorithm Convergence

First of all, we will assume that f , the function to be minimized, is smooth (once differ-
entiable at least). Given the fact that X is a compact set, f admits a minimum.

We refer to an algorithm iteration, or major cycle, as the sum of the simplex opti-
mization step plus the simplex update step. A simplex optimization cycle, or minor cycle,
will be a single while cycle of Algorithm 6. The following proposition will prove that the
algorithm converges to stationary points.

Proposition 2.1. Given a smooth function f with ∇f Lipschitz continuous, DF-SD
terminates into a stationary point after a finite number of iterations.

Proof. The directions set Dc is a positive spanning set in Rl, the simplex optimization
setp is therefore a directional direct search on the simplex, which converges to a stationary
point (of the simplex) thanks to the convergence results in [1].
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After at most n major cycles, the matrix A contains all vertices of X, that is, A = V
(up to a permutation of the columns). Consequently, the direct search is done on the entire
X and the algorithm terminates returning a stationary point for the master problem.

2.4.2 Full Gradient Variant

We already mentioned before that a possible alternative of estimating the gradient through
the reduced space is to approximate a sort of full gradient instead, that is, the variation
of the function along the directions vj − x0, vj ∈ Vp and x0 = Ay0. This will require a
huge number (n− l) of function evaluations, which is usually slightly less than 1 percent
of the total budget, but in a very smooth context will provide an optimal new vertex. To
avoid wasting too many function evaluations, the full gradient estimation is turned off
whenever the reduction of the function between the end of a simplex optimization step
and the next one (that is, a full major cycle lenght) is less than a fixed percentage. We
call πreduction such percentage and h the step to compute this gradient, then the pseudo
code of the simplex update step becomes:

0. Exit Check: If
f̂A(yold0 )−f̂A(y0)

f̂A(yold0 )
< πreduction then switch to the standard

simplex update.
1. Create Gradient: Put:

gp =

[
f(x0 + h(vi1 − x0))− f(x0)

h
. . .

f(x0 + h(vin−l
− x0))− f(x0)

h

]T
2. Simplex Update: Solve:

i∗ = arg min
i∈{1,...,n−l}

gip,

vnew = (Vp)i∗

and put:

• A← [A vnew],

• y0 ← [y1
0 . . . y

l
0 0].

Algorithm 8: Full Gradient Simplex Update Step

23



24



Chapter 3

Algorithm Performance

Here we will present the performance and data profiles of our algorithm compared to the
current meta. In the following sections we will carefully explain how the performance
test were made and analyze the results.

3.1 Performance and Data Profiles

In this section we will describe the tools used to evaluate the algorithm performance, that
is, the performance and data profiles for DFO solvers, proposed by More’ and Wild [4].
Performance profiles, introduced the first time by Dolan and More’ [5], have proved to be
important for benchmarking optimization solvers. Dolan and More’ define a benchmark in
terms of a set P of benchmark problems, a set S of optimization solvers, and a convergence
test T .

The convergence test, which is used to understand how fast (in terms of function
evaluations) the algorithm reaches the desired target, is the following [4]:

f(x0)− f(x) ≤ (1− τ)(f(x0)− fL), (3.1)

where fL is the smallest value of f obtained by any solver within a given number µf
of function evaluations and τ is the precision parameter which is usually 10−k, k ∈
{1, 3, 5, 7}. A smaller value of τ is requesting a target which is closer to fL.

3.1.1 Performance Profiles

Performance profiles are defined in terms of a performance measure tp,s > 0 obtained for
each p ∈ P and s ∈ S. In the context of Black-Box programming, tp,s is usually defined
as the number of function evaluations needed by solver s to reach the convergence test
(3.1) on problem p. Consequently, larger values of t indicate worst performance. We also
put tp,s = +∞ whenever the convergence test fails within the budget number of function
evaluations. Fixed a problem p ∈ P , we can define the performance ratio rp,s of a solver
s as:

rp,s =
tp,s

min{tp,s : s ∈ S}
,

that is, the ratio between the time taken by solver s and the best time taken by any solver
to reach (3.1). Therefore, rp,s = 1 if and only if s is (one of) the best solver(s) for problem
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p and rp,s = +∞ if and only if s failed to converge on problem p. The performance profile
of a solver s ∈ S is defined as the fraction of problems where the performance ratio is at
most α, that is:

ρs(α) =
1

|P|
size{p ∈ P : rp,s ≤ α}, (3.2)

where |P| denotes the cardinality of P . The plot of ρs(α) will thus represent an increasing
function that ranges between the percentage of P which s is best solving at and the
percentage of P which s can solve.

3.1.2 Data Profiles

Performance profiles provide an accurate view of the relative performance of solvers within
a given number µf of function evaluations. Performance profiles do not, however, provide
sufficient information for a user with an expensive optimization problem [...]. Users with
expensive optimization problems are often interested in the performance of solvers as a
function of the number of functions evaluations. In other words, these users are interested
in the percentage of problems that can be solved (for a given tolerance τ) with κ function
evaluations [4].

We can provide this information with data profiles simply putting:

ds(α) =
1

|P|
size{p ∈ P : tp,s ≤ α}.

This definition of ds is independent of the number of variables in the problem p ∈ P .
This is not realistic because, in our experience, the number of function evaluations needed
to satisfy a given convergence test is likely to grow as the number of variables increases
[4]. The data profile is then defined switching the number of function evaluations with
the number of simplex gradients, that is:

ds(α) =
1

|P|
size{p ∈ P :

tp,s
n+ 1

≤ α}. (3.3)

Data profiles will thus indicate how many problems s can solve in α simplex gradients
time or less.

3.2 Test Problems Definition

Now that the method of performance evaluation is clear, we will describe the problems
set P . We conducted two separate tests. The first one requires the solvers to minimize
quadratic convex functions, while the latter takes smooth but non convex functions. The
feasible region is X = conv(v1, . . . , vn), vi ∈ Rm for both, where every entry of vi is
randomly generated as:

vji ∼ N (0, 100),

that is, a normally distributed random variable with µ = 0 and σ2 = 100.
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3.2.1 Convex Problems

The set of convex problems is fairly simple. We start generating a positive definite matrix
Q with condition number κ using the following algorithm:

• Generate P ∈ Rm×m, with pi,j ∼ Unif(0, 1),

• Symmetrize P : P ← P + P T ,

• Change P ’s eigenvalues: P ← P + (λn−λ1
κ−1

− λ1)I, where λ1 ≤ · · · ≤ λn are
the eigenvalues of P ,

• Take Q as a rotation of P : Q← RTPR, where R is a random orthogonal
matrix.

Algorithm 9: Q Generation

The quadratic function to be minimized is then:

f(x) =
1

2
xTQx+ cTx, (3.4)

where ci ∼ N (0, 100m2).
We also make sure that the minimum of f is outside of X (with a tolerance of 10−10),

repeating the function generation if this is not the case. With that said, for every fixed
m, we generate several instances of this problem by varying κ = 1.1i, i ∈ {1, . . . , 11}.

3.2.2 Non-Convex Problems

The set of non-convex problems is made of 11 scalable functions which (for conducting
reasonably large tests in a fair amount of time) can be computed with a linear number
of operations. We list just the function names, while the Matlab code of the functions is
provided in the Appendix which also include the starting point (that we switch for one
vertex of the ranom generated feasible region) for each function.

• Arwhead Function,

• Brown Almost Linear Function,

• Broyden Function,

• Boundary Value Problem Function,

• Chained Rosenbrock Function,

• Extended ENGVL1 Funcion,

• Extended Freudenstein and Roth Function,

• Oren Function,
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• Penality Function 1,

• Tridiagonal Function (Nash version),

• Trigonometric Function (Nocedal version).

3.3 Solver Definition

Before going into the details of the test, we briefly report the elements of S, the solvers
which compete in the performance evaluation along with the setup we used for every one
of them.

3.3.1 DF-SD

The first algorithm is, of course, DF-SD. As we already presented the algorithm itself,
we just report the setup:

• αstart = 0.1,

• αmin = 10−4,

• ε = 0.1,

• δ = 1.5,

• γ = 0.5.

3.3.2 DF-SD Full Gradient Variant

The setup for the variant is identical to the previous. The only things we have to add
are:

• h = 10−4, the step to compute the pseudo gradient in Rn−l,

• πg = 0.05, the minimum percentage of reduction needed not to switch on the
standard approximation.

3.3.3 SDPEN

SDPEN is a sequential penality derivative free algorithm, that is, an algorithm which
solves the original nonlinear constrained optimization problem by a sequence of approx-
imate minimizations of a merit function where penalization of constraint violation is
progressively increased. The merit function is minimized by a derivative-free aproach
based on line search [6]. The Matlab code was provided by the Derivative-Free Software
Library [7].

We passed the SDPEN algorithm the function f̂(y) = f(Ay) subject to the constraint
|eTy − 1| ≤ 0. The bound constraints and the additional parameters were put at:

• lb = [0 . . . 0]T ,
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• ub = [1 . . . 1]T ,

• ε = 10−3, the constraint violation initial weight,

• αstop = 10−6, the minimum tolerance before the algorithm stops.

If the returned solution provided a constraint violation which is larger than 10−3, we
consider the optimization failed.

3.3.4 Particle Swarm

The Particle Swarm is a metaheuristic algorithm that tries to solve a problem by having a
population of candidate solutions and moving these particles (the so called swarm) around
in the search-space. This algorithm is proven to be a good alternative to standard (non
heuristic methods) when the dimension of the problem are very large so we decided to
use it as another competitor.

The code is provided by Matlab in the Global Optimization Toolbox. Given the
fact that this method does not support non-bound constraints, we implemented a merit
function given by:

g(y) = f̂(y) + f(y0)
1

ε
|eTy − 1|. (3.5)

We considered a solution to be acceptable if |eTy− 1| < 10−3. If the solution was not
acceptable, we put ε← 0.1ε and repeat the optimization until either an acceptable point
is returned or ε < 10−10.

3.3.5 Nelder Mead

The last algorithm we used in our comparison is the Nelder Mead implementation pro-
vided by the Matlab Matrix Computation Toolbox. Unfortunatly, neither generic or
bound constraints support is provided, so we repeated (3.5) and the acceptability check,
with the addition of the bound constraint:

g(y) = −f̂(y)− f(y0)
1

ε
(|eTy − 1|+

∑
max(−yi, 0)), (3.6)

where the negative sign is needed since the algorithm nmsmax solves maximization prob-
lems.

3.4 Additional Setup Informations

The test was conducted on Matlab R2017b installed on Windows 10.0.17134. The ma-
chine mounted an Intel Pentium G3258 at 3.20 GHz and 8.0 GB of RAM. The total
computation was run on one single core and took about one day.

For convex problems, we tested the algorithms on the 11 problems presented above
with the following parameters:

• n ∈ {20, 40, 60, 100, 200, 500, 1000, 2000},

• m = βn, β ∈ {0.2, 0.5},
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for a total of 176 problems. We divided those problems in three groups based on the
problem dimension:

• Small: n ∈ {20, 40, 60},

• Medium: n ∈ {100, 200, 500},

• Large: n ∈ {1000, 2000}.

Given the fact that the performance of the solver on a single problem are very different,
we chose to use τ = 0.1 for the profiles.

During the test on non-convex problems, we encountered the following problem: the
local minimums of the unconstrained functions heuristically are with high probability
in the interior of the feasible reagion. This means that comparing a constraint based
algorithm with a penality one is unfair because the latter is basically doing unconstrained
optimization. We can also see this by the fact that SDPEN cannot solve a single convex
problem without breaking the constraints when n ≥ 200, while on the non-convex ones
it does not break any. With that said, we provide only results with 20 ≤ n ≤ 100, with
different values of τ : τ ∈ {10−1, 10−3, 10−5}.

3.5 Results

We report the plots in the following pages, along with a brief commentary on the results.
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3.5.1 Convex Problems

Without any doubt, both version of DF-SD outperform the other benchmark algorithms.
The only exception is on the small dimension problems, where all the methods are at least
comparable. SDPEN is still a better option whenever the user is interested in reaching a
good reduction of the objective function with a tiny budget, as it solves more than a half
of the problems faster than the other algorithms and it does not gain any more solving
power as the simplex gradients increases.

When we move to medium size problems, the differences become substantial. SDPEN
has a little advantage again on the very low budget side, but it was unable to solve
more than 80 percent of the problems, compared to DF-SD with full gradient which was
capable of succesfully complete more than 95 percent of the convergence tests and did
best on roughly 80 percent.

Finally, on the large scale problems, none of the other algorithms was able to reduce
the objective function up to the convergence test in any problem (nmsmax was excluded
here due to the large amount of computation time needed to solve problems of this
dimension). As we can see from the plots, the full gradient variant really shines compared
to its counterpart whenever the problem has an easily approximable gradient. That’s
because even if it tooks nearly one simplex gradient just to add a new vertex to the
simplex, the new direction often provides a huge decrease in the objective function.
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Figure 3.1: Performance and Data Profiles for Convex Problems.
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3.5.2 Non-Convex Problems

Even if DF-SD was able to reach the convergence on a larger number of problems, SD-
PEN seems actually preferable considering the really small number of iterations it needs
to achive an acceptable objective function reduction. The particle swarm method and
nmsmax also provided better performances compared to the convex case. We already
explain the problem of local minimums in section 3.4 and the plots agree with that.

As τ decreases, the precision required for the convergence test T ranges from 90
percent to 99.999 percent. However, the solvers ranking does not change much, being
DF-SD full gradient the best solver in terms of total problem completed and SDPEN the
best solver in terms of budget management.
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Figure 3.2: Performance and Data Profiles for Convex Problems.
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3.6 Conclusions and Future Work

The conclusions follow clearly from the previous section. Whenever a derivative-free
optimization problem defined on a polytope whose vertices are known needs to be solved,
DF-SD is a good choice, especially if the problem dimension is large. When dealing with
functions with multiple local minima, classic approaches still have good behavior. Hence,
some clever strategies for exploring the feasible set should be developed in this case.

Future tests for this algorithm will therefore include non-convex problems with few
minimums and defined on more complex polyhedra. A larger set of benchmark solvers
could further be included.

Another important line of research might be working on a strategy that cuts out the
worst vertices of the simplex. This add-on could really speed up the computation and
extend the number of algorithm iterations (that is, major cycles) since the dimension of
the simplex would stay restrained. However, a stronger convergence analysis is needed in
this case. With that said, we believe the algorithm represents a good alternative to the
current state-of-the-art methods.
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Appendix A

Matlab Code

A.1 DF-SD

1
2 function [ f min , x min , f s t ep , f to t comput ] = dfsd ( f ob , . . .
3 ve r t ex ar ray , y0 , f budget , verbose )
4 %DFSD, DFO in a convex combination
5 % Perform de r i v a t i v e f r e e opt imiza t i on in to the convex hu l l o f
6 % a s e t o f g iven po in t s us ing s imp l i c i a l decomposit ion .
7 % f min , x min : bes t va lue and point f o r the a lgor i thm
8 % s t ep de c r : bes t va lue a f t e r each computation o f f
9 % f tot comput : t o t a l computations o f f
10 % f ob : o b j e c t i v e func t i on passed as anonymous func t i on
11 % ve r t ex a r r ay : a mxn matrix r ep r e s en t i ng the n po in t s which
12 % g ive the convex hu l l
13 % y0 : i n i t i a l po int g iven as a combination o f the po in t s o f
14 % ve r t ex a r r ay
15 % f budget : maximum number o f computation o f f a l lowed
16 % verbose : bool , p r i n t output
17
18
19 % PARAMETERS
20
21 a l pha s t a r t = . 1 ; % s t a r t i n g value f o r the s tep in the df r e s ea r ch
22 alpha min = 10ˆ(−4) ; % step f o r the conc lu s i on o f s implex opt
23 decr = 0 . 1 ; % mu l t i p l i c a t i v e decrement o f alpha
24 de l t a = 1 . 5 ; % mu l t i p l i c a t i v e increment o f alpha in the expansion
25 gamma = 0 . 5 ; % thre sho ld f o r s u f f i c i e n t dec r ea s e
26
27
28 % LOG ITEMS
29
30 f s t e p = [ ] ; % value o f f ( y ) each computation
31 f comput = 0 ; % computations f o r the cur rent s implex opt
32 f tot comput = 0 ; % t o t a l computations
33 i n n e r c y c l e s = 0 ; % cy c l e s o f s implex minimizat ion
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34 avg exp = [ 0 , 0 ] ; % avg . expans ions during an expansion step
35
36
37 % START
38
39 n = s ize ( ve r t ex ar ray , 2 ) ; % problem dimension (n o f po in t s )
40 p o s s i b l e v e r t = ve r t ex a r r ay ( : , y0==0) ; % po in t s we can add
41 A = ver t ex a r r ay ( : , y0˜=0) ; % po in t s o f the s implex
42 y = y0 ( y0˜=0) ; % s t a r t i n g po int as a combination o f A
43 f = f ob ;
44 check = 0 ;
45
46
47 while ˜ check % MAIN CYCLE
48
49 l = s ize (y , 1 ) ;
50 while l < 3 % dimension check
51 % updates A and y
52 A = [A, p o s s i b l e v e r t ( : , 1 ) ] ; %#ok<AGROW>
53 p o s s i b l e v e r t = p o s s i b l e v e r t ( : , 2 : end) ;
54 y = [ y ; 0 ] ; %#ok<AGROW>
55 l = s ize (y , 1 ) ;
56 end
57
58 alpha = a l pha s t a r t ;
59 E = eye ( l ) ; % to get easy canonic base ve c t o r s
60 f around = zeros (2∗ l , 1 ) ; % f va lue s around the po int
61
62 %
63 % DF OPT ON THE SIMPLEX
64 while alpha > alpha min && ˜check
65 %
66
67 reduct i on = 0 ; % o f the ob j e c t i v e func t i on
68 f y = f (A∗y ) ;
69 f comput = f comput + 1 ; % LOG
70 f s t e p = [ f s t e p ; f y ] ; %#ok<AGROW> % LOG
71 % checks i f we went out o f budget
72 i f f to t comput+f comput > f budget−1
73 check = 1 ;
74 i f verbose
75 disp ( ’ ’ ) ;
76 disp ( ’OUT OF BUDGET’ ) ;
77 disp ( ’ ’ ) ;
78 end
79 break
80 end
81 %
82
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83 a lpha not exp = alpha ; % reminder o f the cur rent s tep
84
85 %
86 for i =1: l % f i nd the descent d i r e c t i o n and move y
87 %
88
89 % t r i e s the p o s i t i v e d i r e c t i o n
90 f around (2∗ i −1) = f (A∗( y+alpha ∗(E( : , i )−y ) ) ) ;
91 f comput = f comput + 1 ; % LOG
92 f s t e p = [ f s t e p ; f y ] ; %#ok<AGROW> % LOG
93 % checks i f we went out o f budget
94 i f f to t comput+f comput > f budget−1
95 check = 1 ;
96 i f verbose
97 disp ( ’ ’ ) ;
98 disp ( ’OUT OF BUDGET’ ) ;
99 disp ( ’ ’ ) ;

100 end
101 break
102 end
103 %
104
105 while f a round (2∗ i −1) <= f y − gamma∗ alpha ˆ2 &&.. .
106 alpha <= 1
107 reduct i on = 1 ;
108 alpha = alpha ∗ de l t a ; % expansion try
109 f around (2∗ i −1) = f (A∗( y+alpha ∗(E( : , i )−y ) ) ) ;
110 f comput = f comput + 1 ; % LOG
111 f s t e p = [ f s t e p ; f y ] ; %#ok<AGROW> % LOG
112 % checks i f we went out o f budget
113 i f f to t comput+f comput > f budget−1
114 check = 1 ;
115 i f verbose
116 disp ( ’ ’ ) ;
117 disp ( ’OUT OF BUDGET’ ) ;
118 disp ( ’ ’ ) ;
119 end
120 break
121 end
122 %
123 end
124
125 i f r educt ion % update the y and ex i t the f o r loop
126 alpha = alpha / de l t a ; % l a s t alpha i s out so go back
127 % 1 step
128 avg exp (1 ) = ( avg exp (1 ) ∗avg exp (2 ) + . . . % LOG
129 log ( alpha / a lpha not exp ) / log ( d e l t a ) ) / . . .
130 ( avg exp (2 )+1) ;
131 avg exp (2 ) = avg exp (2 ) +1;
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132
133 y = y+alpha ∗(E( : , i )−y ) ;
134 break
135 end
136
137 % t r i e s the negat ive d i r e c t i o n
138 f around (2∗ i ) = f (A∗(y−alpha ∗(E( : , i )−y ) ) ) ;
139 f comput = f comput + 1 ; % LOG
140 f s t e p = [ f s t e p ; f y ] ; %#ok<AGROW> % LOG
141 % checks i f we went out o f budget
142 i f f to t comput+f comput > f budget−1
143 check = 1 ;
144 i f verbose
145 disp ( ’ ’ ) ;
146 disp ( ’OUT OF BUDGET’ ) ;
147 disp ( ’ ’ ) ;
148 end
149 break
150 end
151 %
152
153 while f a round (2∗ i ) <= f y − gamma∗ alpha ˆ2 &&.. .
154 alpha <= y( i ) /(1−y ( i ) )
155 reduct i on = 1 ;
156 alpha = alpha ∗ de l t a ; % expansion try
157 f around (2∗ i ) = f (A∗(y−alpha ∗(E( : , i )−y ) ) ) ;
158 f comput = f comput + 1 ; % LOG
159 f s t e p = [ f s t e p ; f y ] ; %#ok<AGROW> % LOG
160 % checks i f we went out o f budget
161 i f f to t comput+f comput > f budget−1
162 check = 1 ;
163 i f verbose
164 disp ( ’ ’ ) ;
165 disp ( ’OUT OF BUDGET’ ) ;
166 disp ( ’ ’ ) ;
167 end
168 break
169 end
170 %
171 end
172
173 i f r educt ion % update the y and ex i t the f o r loop
174 alpha = alpha / de l t a ; % l a s t alpha i s out so go back
175 % 1 step
176 avg exp (1 ) = ( avg exp (1 ) ∗avg exp (2 ) + . . . % LOG
177 log ( alpha / a lpha not exp ) / log ( d e l t a ) ) / . . .
178 ( avg exp (2 )+1) ;
179 avg exp (2 ) = avg exp (2 ) +1;
180
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181 y = y−alpha ∗(E( : , i )−y ) ;
182 break
183 end
184 %
185 end % fo r
186 %
187
188 i f r educt ion % back to the o r i g i n a l alpha
189 alpha = alpha not exp ;
190 else % decrea se the s tep
191 alpha = alpha ∗decr ;
192 end
193
194 i n n e r c y c l e s = i n n e r c y c l e s + 1 ; % LOG
195
196 %
197 end % whi le
198 %
199
200 % se t alpha to the l a s t used in the s implex
201 i f alpha <= alpha min
202 alpha = alpha / decr ;
203 end
204
205
206
207 i f ˜ check
208 f tot comput = f tot comput + f comput ;
209 i f verbose
210 disp ( ’ f ( y ) : ’ ) ;
211 disp ( f y ) ;
212 disp ( ’ ’ ) ;
213 disp ( ’ number o f inner c y c l e s : ’ ) ;
214 disp ( i n n e r c y c l e s ) ;
215 disp ( ’ ’ ) ;
216 disp ( ’ computations o f f : ’ ) ;
217 disp ( f comput ) ;
218 disp ( ’ ’ ) ;
219 end
220 i n n e r c y c l e s = 0 ;
221 f comput = 0 ;
222
223 % grad i en t e s t imat i on
224
225 f around = [ f around ; f (A∗( y+alpha ∗ ones ( l , 1 ) ∗ l ˆ 0 . 5 ) ) ] ;
226 %#ok<AGROW> ( s q r t ( l ) r e s c a l e s )
227 f tot comput = f tot comput + 1 ; % LOG
228 f s t e p = [ f s t e p ; f y ] ; %#ok<AGROW> % LOG
229
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230 df = f around−f y ∗ ones (2∗ l +1 ,1) ; % va r i a t i o n o f f
231
232 S = zeros ( l , 2∗ l +1) ; % po in t s v a r i a t i o n ( y around ( i ) − y )
233
234 for i =1: l
235 S ( : , 2 ∗ i −1) = alpha ∗(E( : , i )−y ) ; % = (y + alpha ∗ d i ) − y
236 S ( : , 2 ∗ i ) = −alpha ∗(E( : , i )−y ) ; % = (y − alpha ∗ d i ) − y
237 end
238 S ( : , 2 ∗ l +1) = alpha ∗ ones ( l , 1 ) ∗ l ˆ 0 . 5 ; % orth . d i r e c t i o n
239
240 % f i nd s the approximation o f the g rad i en t in the n−dim space
241 g x = l s q l i n (S ’∗A’ , df ) ; % l e a s t square beacause system has
242 % rank l and there i s 2 l+1 rows
243
244 % computes the new vertex ( i f a l l entry are p o s i t i v e e x i t s )
245 g r ad i en t va l u e s = po s s i b l e v e r t ’∗ g x ;
246
247 % checks i f budget i s over during the g rad i ent computation
248 i f check
249 break
250 end
251
252 % computes the new vertex
253 [ ˜ , l ower index ] = sort ( g rad i en t va lue s , ’ ascend ’ ) ;
254 v new = po s s i b l e v e r t ( : , l ower index (1 ) ) ;
255
256 % updates the p o s s i b l e v e r t
257 p o s s i b l e v e r t ( : , l ower index (1 ) ) = [ ] ;
258
259 % checks i f we used a l l po in t s
260 i f ˜ s ize ( p o s s i b l e v e r t , 2 )
261 disp ( ’ ’ ) ;
262 disp ( ’ALL POINTS USED’ ) ;
263 disp ( ’ ’ ) ;
264 break
265 end
266
267 % updates A and y
268 A = [A, v new ] ; %#ok<AGROW>
269 y = [ y ; 0 ] ; %#ok<AGROW>
270 end
271
272 end % whi le
273
274 f min = f y ;
275 x min = A∗y ;
276
277 end
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A.2 Non-Convex Problems

1 function [ARWHEAD,ARWHEADV,BLIN ,BLIN V ,BROYDEN,BROYDENV,BVP, . . .
2 BVP V,ChROS,ChROS V,EXTENG,EXTENGV,EXTFRE,EXTFRE V,OREN,OREN V, . .
3 PEN1,PEN1 V,TRID,TRID V,TRIG,TRIG V] = prob lems generator (n ,m)
4
5 % n : dimension (number o f samples )
6 % m: dimension o f the space
7 % V: matrix o f v e r t i c e s ( each column i s a ver tex )
8
9 rng (0 )
10 V = 1e1∗randn(m, n−1) ;
11
12 % Sta r t i ng po in t s
13
14 ARWHEADV = [ ones (m, 1 ) , V ] ;
15
16 BLIN V = [ . 5 ∗ ones (m, 1 ) , V ] ;
17
18 BROYDENV = [ [0 ; − ones (m−2 ,1) ; 0 ] , V ] ;
19
20 BVP start = zeros (m, 1 ) ;
21 for i 0 = 2 :m−1
22 s t = i 0 /(n−1) ;
23 BVP start ( i 0 ) = s t ∗( st −1) ;
24 end
25 BVP V = [ BVP start , V ] ;
26
27 ChROS V = [−ones (m, 1 ) , V ] ;
28
29 EXTENGV = [2∗ ones (m, 1 ) , V ] ;
30
31 EXTFRE V = [−2∗ ones (m, 1 ) , V ] ;
32
33 OREN V = [ ones (m, 1 ) , V ] ;
34
35 PEN1 V = [ ( 1 :m) ’ , V ] ;
36
37 TRID V = [ ones (m, 1 ) , V ] ;
38
39 TRIG V = [ ( 1 /m) ∗ ones (m, 1 ) , V ] ;
40
41
42 % ARWHEAD
43
44 function f = ARWHEAD f(x )
45 temp ARWHEAD = 0 ;
46 for i = 1 :m−1
47 temp ARWHEAD = temp ARWHEAD + (−4.0∗x ( i ) +3.0) + . . .
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48 (x ( i )ˆ2+x(m) ˆ2) ˆ2 ;
49 end
50 f = temp ARWHEAD;
51 end
52 ARWHEAD = @ARWHEAD f;
53
54
55 % BLIN
56
57 function f = BLIN f (x )
58 s = sum( x )−m−1;
59 b = x(m) ;
60 temp BLIN = 0 ;
61 for i = 1 :m−1
62 temp BLIN = temp BLIN + ( s+x( i ) ) ˆ2 ;
63 b = b∗x ( i ) ;
64 end
65 f = temp BLIN + (b−1) ˆ2 ;
66 end
67 BLIN = @BLIN f ;
68
69
70 % BROYDEN
71
72 function f = BROYDEN f(x )
73 temp BROYDEN = 0 ;
74 for i = 2 :m−1
75 temp BROYDEN = temp BROYDEN + . . .
76 ((3−2∗x ( i ) ) ∗x ( i )−x ( i −1)−2∗x ( i +1)+1) ˆ2 ;
77 end
78 f = temp BROYDEN;
79 end
80 BROYDEN = @BROYDEN f;
81
82
83 % BVP
84
85 function f = BVP f (x )
86 temp BVP = 0 ;
87 for i = 2 :m−1
88 s = (1/(m−1) ) ˆ2∗( x ( i )+i /(m−1)+1) ˆ3 ;
89 temp BVP = temp BVP + (2∗x ( i )−x ( i −1)−x ( i +1)+s /2) ˆ2 ;
90 end
91 f = temp BVP ;
92 end
93 BVP = @BVP f ;
94
95
96 % ChROS
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97
98 function f = ChROS f(x )
99 temp ChROS = 0 ;

100 for i = 2 :m
101 temp ChROS = temp ChROS + 4∗( x ( i −1)−x ( i ) )ˆ2+(1−x ( i ) ) ˆ2 ;
102 end
103 f = temp ChROS ;
104 end
105 ChROS = @ChROS f ;
106
107
108 % EXTENG
109
110 function f = EXTENG f(x )
111 temp NoAF = 0 ;
112 for i = 1 :m−1
113 s = x( i )ˆ2+x( i +1) ˆ2 ;
114 temp NoAF = temp NoAF + s ˆ2 −4∗x ( i )+3;
115 end
116 f = temp NoAF ;
117 end
118 EXTENG = @EXTENG f;
119
120
121 % EXTFRE
122
123 function f = EXTFRE f(x )
124 temp EXTFRE = 0 ;
125 for i = 1 :m−1
126 s = (5−x ( i +1) ) ∗x ( i +1)−2;
127 t = (x ( i +1)+1)∗x ( i +1)−14;
128 temp EXTFRE = temp EXTFRE + (x ( i )+x ( i +1)∗ s−13) ˆ2+ . . .
129 (x ( i )+x ( i +1)∗ t−29) ˆ2 ;
130 end
131 f = temp EXTFRE;
132 end
133 EXTFRE = @EXTFRE f ;
134
135
136 % OREN
137
138 function f = OREN f(x )
139 temp OREN = 0 ;
140 for i = 1 :m
141 temp OREN = temp OREN + i ∗x ( i ) ˆ2 ;
142 end
143 f = temp ORENˆ2 ;
144 end
145 OREN = @OREN f ;
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146
147
148 % PEN1
149
150 function f = PEN1 f (x )
151 temp PEN1 = 0 ;
152 s = 0 ;
153 for i = 1 :m
154 temp PEN1 = temp PEN1 + 1e−5∗(x ( i )−1) ˆ2 ;
155 s = s + x( i ) ˆ2 ;
156 end
157 f = temp PEN1 + ( s−0.25) ˆ2 ;
158 end
159 PEN1 = @PEN1 f ;
160
161
162 % TRID
163
164 function f = TRID f (x )
165 temp TRID = (x (1 )−1) ˆ2 ;
166 for i = 2 :m
167 temp TRID = temp TRID + 4∗ i ∗( x ( i )−x ( i −1) ) ˆ2 ;
168 end
169 f = temp TRID ;
170 end
171 TRID = @TRID f ;
172
173
174 % TRIG
175
176 function f = TRIG f (x )
177 s = 0 ;
178 temp TRIG = 0 ;
179 for i = 1 :m
180 s = s + cos ( x ( i ) ) ;
181 end
182 for i = 1 :m
183 temp TRIG = temp TRIG + (m+i−sin ( x ( i ) )−s−i ∗cos ( x ( i ) ) ) ˆ2 ;
184 end
185 f = temp TRIG ;
186 end
187 TRIG = @TRIG f ;
188
189 end
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