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Introduction

The aim of this thesis is to introduce the étale fundamental group of a connected
scheme, which is the analogue in algebraic geometry of the usual fundamental group
of a topological space. As the fundamental group of a topological space (under
some connectedness assumptions) provides a complete description of coverings of the
space in terms of sets with a group action, the étale fundamental group of a con-
nected scheme (which is a pro�nite group) provides a complete description of �nite
étale coverings of the scheme in terms of �nite sets with a continuous group action.
The interest of this result (which is the main one of this work) is that, while coverings
are geometrical objects which might a priori be very complicated, �nite sets with a
continuous action of a pro�nite group are easy to classify: they are disjoint unions
of orbits and each of these orbits is isomorphic to the quotient set of the group with
respect to an open subgroup (see lemma 1.4.9).
The étale fundamental group was introduced by Alexander Grothendieck (1928-2014)
in his revolutionary work [2]. Some decades later, the topic has been approached by
di�erent authors from di�erent perspectives, depending on their preference for an
abstract setting or for a more concrete one. The approach we follow is the abstract
categorical one, as developed by H. W. Lenstra in [1]. Indeed, this thesis is essentially
a detailed rewriting of the sections 3,4 and 5 of Lenstra's notes, with the addition of
the solutions to many of the exercises.
Lenstra starts by observing the similarities between the fundamental group of a
topological space (under some connectedness assumptions, namely connected, locally
path-connected and semilocally simply connected) and the absolute Galois group of
a �eld. In the �rst case, we have an equivalence of categories between the coverings
of the space X and the sets with an action of the fundamental group π(X). In
the second case, we have an anti-equivalence of categories between �nite separable
K-algebras and �nite sets with a continuous action of the absolute Galois group
Gal(Ks/K) (where Ks is the separable closure of K). There are two important dif-
ferences in these example: one is the fact that the latter is an anti-equivalence, while
the former is an equivalence, and the other one is the �niteness assumption which
is lacking in the former example, together with the fact the the usual fundamental
group of a topological space is just a group, without a canonical topology on it, while
the absolute Galois group of a �eld is a pro�nite group and this allows us to restrict
our attention to sets with a continuous actions. The �rst di�erence is due to the
fact that the category of �nite separable K-algebras is actually the opposite of an
important category, namely the category of �nite étale coverings of Spec(K). Then
the absolute Galois group is nothing more than an example of étale fundamental
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INTRODUCTION

group. The second di�erence, instead, is more subtle. If we require the �niteness of
the coverings, the category that we obtain is equivalent to the category of �nite sets
with a continuous action of the pro�nite completion of π(X), but we are losing the
information concerning coverings that are not �nite. On the other hand, a pro�nite
fundamental group exists and allows to describe �nite coverings in more general situ-
ations, requiring only that the base space is connected. While we do not deal in detail
with the Galois theory of �elds, which leads to the above-mentioned anti-equivalence
of categories, we will discuss in depth the case of topological spaces, because it o�ers
interesting analogies with �nite étale coverings of schemes. After discussing the two
aforementioned examples, Lenstra connects them to a general framework, namely
that of Galois categories. Finally, he shows that �nite étale coverings of a connected
scheme follow the same axioms and deduces from this the existence of the étale fun-
damental group of a connected scheme.
Following this path, two are the major steps through which we will reach our goal.
The �rst step is de�ning Galois categories and proving that each essentially small
Galois category is equivalent to the category of �nite sets with a continuous action of
a certain pro�nite group, which is unique up to isomorphism (theorem 1.4.34). The
second step is de�ning the category of �nite étale coverings of a �xed scheme (with
a functor to the category of �nite sets) and proving that it is an essentially small
Galois category (theorem 2.3.10). These steps correspond to the two chapter of this
thesis: in the �rst one we will deal with Galois categories, following section 3 of [1],
and in the second one we will study �nite étale coverings,following sections 4 and 5
of [1]. Finally, in the appendix we will discuss �nite coverings of topological spaces.
It is worth mentioning that the de�nition of �nite étale morphisms that we use in
this thesis, namely the one introduced in [1], is not the one that is usually found
in the literature. A discussion about the equivalence of the two de�nitions can be
found in section 6 of [1] (it turns out that they are equivalent in the case of locally
noetherian schemes, while in the general case our de�nition is stronger).
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Chapter 1

Galois categories

In this chapter we will give an axiomatic treatment of Galois categories, following
section 3 of [1]. A Galois category is a category with a functor to the category of
�nite sets such that certain axioms are satis�ed. In the �rst section, we will describe
in detail these axioms and we will analyse two basic examples: the category of �nite
sets (with the identity functor) and the category of �nite sets with a continuous
action of a pro�nite group (with the forgetful functor). Clearly, the �rst example
is just a special case of the second one, obtained considering the trivial group. The
main result of this chapter (theorem 1.4.34) states that any essentially small Galois
category is equivalent to a category of this type. More precisely, we can attach to any
essentially small Galois category C (with fundamental functor F ) a pro�nite group
π(C, F ) (uniquely determined up to isomorphism and called the fundamental group
of C) such that C is equivalent to the category of �nite sets with a continuous action
of π(C, F ). The proof of this theorem occupies the sections 2-4. It will require a
deeper understanding of the functor F (see section 2) and of the �structure� of the
objects of C. The fundamental group of C will turn out to be (isomorphic to) the
automorphism group of F . We will also prove that two fundamental functors on the
same Galois category must be isomorphic.

1.1 De�nitions and basic examples

We start by recalling some de�nitions in category theory.

De�nition 1.1.1. Let C be a category.

(1) An object Z of C is called a terminal object if for every object X there exists
a unique morphism X → Z in C. We denote a terminal object by 1.

(2) Let X, Y , S be objects of C, with two morphisms f1 : X → S, f2 : Y → S.
A �bred product of X and Y over S is an object X ×S Y , together with two
morphisms p1 : X ×S Y → X, p2 : X ×S Y → Y , such that f1 ◦ p1 = f2 ◦ p2

and, for any object Z with morphisms g1 : Z → X, g2 : Z → Y satisfying
f1 ◦ g1 = f2 ◦ g2, there exists a unique morphism g : Z → X ×S Y such that
g1 = p1 ◦ g and g2 = p2 ◦ g. This de�nition is illustrated by the following
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CHAPTER 1. GALOIS CATEGORIES

commutative diagram.
Z

X ×S Y

X

Y

S

...................................................................................................................................................... .........
...

g

............................................................................................................................................................................................................................................................................................................................ ........
....

g1

...................................................................................................................................................................................................................................................................................................................................................................... ..........
..

g2

...................................................................................
.....
.......
.....

p1

........................................................................................ ............

p2

........................................................................................ ............
f1

...................................................................................
.....
.......
.....

f2

If C has a terminal object 1 and X, Y are objects of C, the product of X and Y
is de�ned as the �bred product X×1 Y (with respect to the unique morphisms
X → 1, Y → 1), if it exists, and denoted by X × Y .

(3) Let (Xi)i∈I be a collection of objects of C. A sum of the Xi's is an object∐
i∈I Xi, together with morphisms qj : Xj →

∐
i∈I Xi for any j ∈ I, such that,

for any object Y and any collection of morphisms fj : Xj → Y with j ∈ I,
there exists a unique morphism f :

∐
i∈I Xi → Y such that f ◦ qj = fj for any

j ∈ I. If I is �nite and I = {i1, . . . , in}, then we can write Xi1 q · · · q Xin

instead of
∐
i∈I Xi. The de�nition of �nite sum is illustrated by the following

commutative diagram.
Xi1

Xik

Xin

∐
i∈I Xi Y

................

................

........................................................................................................................................... ........
....

qi1

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.............
............

qin

..................................................................................................................................... ............
f

...................................................................................................................................................................................................................................................................................................................................................................... ..........
..

fi1

....................
....................

....................
....................

....................
....................

....................
....................

....................
....................

....................
....................

....................
....................

....................
....................

....................
..................
............

fin

(4) An object X of C is called an initial object if for every object Y there exists
a unique morphism X → Y in C (this notion is the dual of that of terminal
object). We denote an initial object by 0.

(5) If X is an object of C and G is a �nite subgroup of AutC(X) (the group of
automorphisms of X in C), a quotient of X by G is an object X/G of C,
together with a morphism p : X → X/G, such that p = p ◦ σ for any σ ∈ G
and, for any object Y with a morphism f : X → Y satisfying f = f ◦ σ for
any σ ∈ G, there exists a unique morphism f : X/G→ Y such that f = f ◦ p.
This de�nition is illustrated by the following commutative diagram.

X

X

X/G Y

................................................................................................................................................................................................................
.....
.......
.....

σ ∈ G

........................................................................................................................................... ........
....

p

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.............
............

p

............................................................ ............

f

.................................................................................................................................................................................................................................................. .........
...

f

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..................
............

f

2



1.1. DEFINITIONS AND BASIC EXAMPLES

(6) A morphism f : X → Y in C is called a monomorphism if, for every object
Z and every pair of morphisms g, h : Z → X, f ◦ g = f ◦ h implies g = h.
Instead, f : X → Y is called an epimorphism if, for every object Z and every
pair of morphisms g, h : Y → Z, g ◦ f = h ◦ f implies g = h (the notions of
monomorphism and epimorphism are dual to each other).

(7) C is called essentially small if it is equivalent to a small category, i.e. one
whose objects form a set.

Remark 1.1.2. (1) If an object is de�ned through a universal property, then it is
unique up to a unique isomorphism. So each of the objects de�ned in 1.1.1(1)-
(5), if it exists, is unique up to a unique isomorphism.

(2) From the de�nitions, it follows that an initial object is the sum of the empty
collection of objects (i.e. the collection with I = ∅), if it exists.

Example 1.1.3. We denote by sets the category of �nite sets (with morphisms given
by functions between sets).

(1) A singleton {x} is a terminal object in the category sets. Indeed, if X is a
(�nite) set there is a unique function f : X → {x}, namely the one de�ned by
f(a) = x for any a ∈ X.

(2) If X, Y , S are �nite sets, with two functions f1 : X → S, f2 : Y → S, then
the �bred product of X and Y over S is

X ×S Y = {(x, y) ∈ X × Y | f1(x) = f2(y)}

(notice that this is also a �nite set, because it is contained in the product of the
�nite sets X and Y ), together with the projections p1 : X×S Y → X, (x, y) 7→
x and p2 : X ×S Y → Y, (x, y) 7→ y. Indeed, f1 ◦ p1 = f2 ◦ p2 by de�nition
and, if Z is a (�nite) set with two functions g1 : Z → X, g2 : Z → Y such that
f1 ◦ g1 = f2 ◦ g2, the function g : Z → X ×S Y, z 7→ (g1(z), g2(z)) (notice that
(g1(z), g2(z)) is really an element of X ×S Y , because f1(g1(z)) = f2(g2(z)))
is the unique function making the diagram commute.
It follows that the product of two �nite sets X and Y , as de�ned in 1.1.1(2),
coincides with their cartesian product.

(3) Let (Xi)i∈I be a �nite collection of �nite sets (i.e. I is �nite). Then the
disjoint union

∐
i∈I Xi is also a �nite set. This disjoint union, together with

the inclusions qj : Xj →
∐
i∈I Xi for j ∈ I, is the sum of the Xi's. Indeed,

if Y is a (�nite) set, with a collection of functions fj : Xj → Y with j ∈ I,
there is a unique function f :

∐
i∈I Xi → Y such that f ◦ qj = fj for any j ∈ I,

namely the one de�ned by f(x) = fj(x) if j is the unique element of I such
that x ∈ Xj . Notice that it was important to assume I �nite. Arbitrary sums
do not exist in the category of �nite sets.

(4) From the previous point and from remark 1.1.2(2), it is clear that the empty
set is an initial object in sets.
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CHAPTER 1. GALOIS CATEGORIES

(5) Let X be a �nite set and G a �nite subgroup of Autsets(X) = SX (the sym-
metric group on X). Then the quotient of X by G is the set of orbits of X
under G: X/G = {Gx | x ∈ X} (this is also a �nite set, because it is smaller
than X), together with the map p : X → X/G, x 7→ Gx. Indeed, if σ ∈ G we
have f(σx) = Gσx = Gx = f(x) for any x ∈ X and, if Y is a (�nite) set with
a function f : X → Y satisfying f = f ◦ σ for any σ ∈ G, then the function
f : X/G → Y, Gx 7→ f(x) is well de�ned and is the unique function making
the diagram commute.

(6) If f : X → Y is a function between �nite sets, then f is a monomorphism if and
only if it is injective. Indeed, assume that f is injective and let g, h : Z → X
be two functions such that f ◦ g = f ◦ h (with Z a �nite set). Then, for
any z ∈ Z, we have f(g(z)) = h(g(z)), which implies g(z) = h(z) by the
injectivity of f . So g = h. Conversely, assume that f is a monomorphism and
x1, x2 ∈ X are such that f(x1) = f(x2). Take Z to be the singleton {a} and
de�ne the functions g : Z → X, a 7→ x1 and h : Z → X, a 7→ x2. Then
f(g(a)) = f(x1) = f(x2) = f(h(a)), which means that f ◦ g = f ◦h. Since f is
a monomorphism, this implies that g = h. Hence x1 = g(a) = h(a) = x2. So
f is injective.
On the other hand, f is an epimorphism if and only if it is surjective. Indeed,
assume that f is surjective and let g, h : Y → Z be two functions such that
g ◦ f = h ◦ f (with Z a �nite set). Let y ∈ Y . Since f is surjective, there
exists x ∈ X such that y = f(x). Then g(y) = g(f(x)) = h(f(x)) = h(y).
So g = h. Conversely, assume that f is an epimorphism. Take Z to be the
�nite set {a, b}, with a 6= b, and de�ne the functions g : Y → Z, y 7→ a and

h : Y → Z, y 7→

{
a if y ∈ f(X)

b if y /∈ f(X)
. For any x ∈ X, we have that f(x) ∈ f(X)

and so h(f(x)) = a = g(f(x)). So h◦f = g ◦f and, since f is an epimorphism,
g = h. Then for any y ∈ Y we have h(y) = g(y) = a, which by de�nition of h
implies y ∈ f(X). Hence Y = f(X), which means that f is surjective.

(7) The category sets is essentially small. Indeed, for any n ∈ N, the sets of
cardinality n are all isomorphic to each other. Then the isomorphism classes
of elements of sets are in bijection with N, which is a set.

We can now formulate the axioms that characterize the categories we are inter-
ested in.

De�nition 1.1.4. Let C be a category and F : C → sets a covariant functor.
We say that C is a Galois category with fundamental functor F if the following
conditions are satis�ed:

(G1) there is a terminal object in C and the �bred product of any two objects over
a third one exists in C;

(G2) any �nite collection of objects of C has a sum in C (in particular, by remark
1.1.2(2), there is an initial object in C) and for any object X in C the quotient
of X by any �nite subgroup of AutC(X) exists;

4



1.1. DEFINITIONS AND BASIC EXAMPLES

(G3) any morphism u in C can be written as u = u′◦u′′, where u′ is a monomorphism
and u′′ is an epimorphism, and any monomorphism u : X → Y in C is an
isomorphism of X with a direct summand of Y , i.e. there exist an object
Z and a morphism q2 : Z → Y such that Y , together with the morphisms
q1 = u : X → Y and q2 : Z → Y , is the sum of X and Z;

(G4) F transforms terminal objects in terminal objects and commutes with �bred
products;

(G5) F commutes with �nite sums, transforms epimorphisms in epimorphisms and
commutes with passage to the quotient by a �nite group of automorphisms (no-
tice that, if G is a �nite subgroup of AutC(X), then F (G) is a �nite subgroup
of Autsets(F (X)));

(G6) if u is a morphism in C such that F (u) is an isomorphism, then u is also an
isomorphism.

Example 1.1.5. By example 1.1.3(1)-(5), it follows that the category sets satis�es
(G1) and (G2). Moreover, let X, Y be �nite sets and u : X → Y a function. Then
u(X) is also a �nite set and we can write u = u′ ◦ u′′, with u′′ = u : X → u(X)
and u′ : u(X) → Y the natural inclusion. We have that u′′ is surjective, and hence
an epimorphism, while u′ is injective, and hence a monomorphism (see example
1.1.3(6)). This shows the �rst part of (G3). For the second part, if u : X → Y is
a monomorphism (i.e. an injective function), we can take Z := Y \u(X) (this is a
�nite set because it is contained in Y ) and q2 : Y \u(X)→ Y the natural inclusion.
Then Y = u(X)q (Y \u(X)), together with the natural inclusions, is a sum of u(X)
and Y \u(X) (see example 1.1.3(3)). Since u is injective, u : X → u(X) is bijective,
i.e. an isomorphism of sets. Then Y , together with q1 = u and q2, is a sum of X
and Z. If we take F to be the identity functor on sets, then (G4), (G5), (G6) are
automatically satis�ed. So sets is a Galois category.

To introduce another example of Galois category, which will turn out to include
all the other ones, we need to recall the de�nition of pro�nite group.

De�nition 1.1.6. A partially ordered set I is called directed if for every i, j ∈ I
there exists k ∈ I such that k ≥ i and k ≥ j. A projective system of sets (respectively,
groups or topological spaces) consists of a directed partially ordered set I, a collection
of sets (respectively, groups or topological spaces) (Si)i∈I and a collection of maps
(respectively, group homomorphisms or continuous maps) (fij : Si → Sj)i,j∈I, i≥j
such that

∀i ∈ I fii = idSi

and
∀i, j, k ∈ I with i ≥ j ≥ k fik = fjk ◦ fij .

Given such a system, its projective limit is de�ned as

lim←−
i∈I

Si :=

{
(xi)i∈I ∈

∏
i∈I

Si

∣∣∣∣∣ fij(xi) = xj ∀i, j ∈ I with i ≥ j

}
.

5
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Remark 1.1.7. (1) The projective limit of a projective system of groups is a sub-
group of the direct product. In particular, it is a group. Analogously, the
projective limit of a projective system of topological spaces can be seen as a
topological space with the subspace topology of the product. Combining the
two things, we get that the projective limit of a projective system of topological
groups is a topological group.

(2) The de�nition of projective system can be generalized to any category. How-
ever, the projective limit in an abstract category cannot be de�ned as in 1.1.6.

Lemma 1.1.8 (Universal property of the projective limit). Given a projective system
of sets (respectively, groups or topological spaces) as in the de�nition 1.1.6, let Y be a
set (respectively, a group or a topological space) with a collection of maps (respectively,
group homomorphisms or continuous maps) (gj : Y → Sj)j∈I such that gj = fij ◦ gi
for any i, j ∈ I with i ≥ j. Then there exists a unique map (respectively, group
homomorphism or continuous map) g : Y → lim←−i∈I Si such that gj = fj ◦ g for any
j ∈ I, where fj : lim←−i∈I Si → Sj is the canonical projection on the j-th factor. This
is illustrated by the following commutative diagram.

Si

Sj

lim←−i∈I SiY

................................................................................................................................................................................................................
.....
.......
.....

fij
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.............
............

fi

........................................................................................................................................... ........
....

fj

..................................................................................................................................... ............
g....................

....................
....................

....................
....................

....................
....................

....................
....................

....................
....................

....................
....................

....................
....................

....................
....................

..................
............

gi

...................................................................................................................................................................................................................................................................................................................................................................... ..........
..

gj

Proof. (Existence) Let y ∈ Y and set g(y) = (gi(y))i∈I . We have to prove that
g(y) ∈ lim←−i∈I Si. Let i, j ∈ I such that i ≥ j. By assumption, we have that
gj = fij ◦ gi. Then fij(gj(y)) = gi(y). This shows that g(y) ∈ lim←−i∈I Si. So g
is a well-de�ned map from Y to lim←−i∈I Si. Let j ∈ I. For any y ∈ Y , we have
that (fj ◦ g)(y) = fj(g(y)) = gj(y). Then fj ◦ g = gj , as we wanted. In the
case of groups, g is a group homomorphism because its components are group
homomorphisms. Analogously, in the case of topological spaces g is continuous.

(Uniqueness) Consider a map g̃ : Y → lim←−i∈I Si such that gj = fj ◦ g̃ for any
j ∈ I. Let y ∈ Y . For any j ∈ I, we have that fj(g̃(y)) = gj(y). Then
g̃(y) = (fi(g̃(y)))i∈I = (gi(y))i∈I = g(y). Hence g̃ = g.

De�nition 1.1.9. A pro�nite group is a topological group that is isomorphic to
the projective limit of a projective system of �nite groups (each endowed with the
discrete topology).

Remark 1.1.10. Let I, (πi)i∈I , (fij : πi → πj)i,j∈I, i≥j be a projective system of �nite
groups, each endowed with the discrete topology. Then each πi is compact. By
Tikhonov's theorem, the product

∏
i∈I πi is also compact. By de�nition, lim←−i∈I πi is

6



1.1. DEFINITIONS AND BASIC EXAMPLES

a subspace of
∏
i∈I πi. Let us prove that it is a closed subspace. We have that

lim←−
i∈I

πi =
⋂
k,j∈I
k≥j

{
x = (xi)i∈I ∈

∏
i∈I

πi

∣∣∣∣∣ fkj(pk(x)) = fkj(xk) = xj = pj(x)

}
,

where pj :
∏
i∈I πi → πj is the canonical projection, for any j ∈ I. By de�nition

of product topology, pj is continuous for any j ∈ I. Since fkj is continuous by
assumption, the composition fkj ◦pk is continuous for any k, j ∈ I with k ≥ j. Then
the map ϕkj :

∏
i∈I πi → πj × πj , x 7→ (pj(x), fkj(pk(x))) is continuous (if we put

the product topology on πj × πj , which coincides with the discrete topology). For
any j ∈ I, consider the diagonal ∆j := {(σ, σ) | σ ∈ πj} ⊆ πj × πj . It is closed,
because πj × πj has the discrete topology. Then

lim←−
i∈I

πi =
⋂
k,j∈I
k≥j

ϕ−1
kj (∆j)

is closed in
∏
i∈I πi, because it is an intersection of closed subsets. Since

∏
i∈I πi is

compact, this implies that lim←−i∈I πi is compact.
Moreover, since each πi has the discrete topology,

∏
i∈I πi is totally disconnected and

Hausdor�. Then its subspace lim←−i∈I πi is also totally disconnected and Hausdor�.
Hence any pro�nite group is compact, totally disconnected and Hausdor�.

Lemma 1.1.11. Let π be a pro�nite group and π′ a subgroup of π. Then π′ is open
if and only if it is closed and of �nite index.

Proof. Assume that π′ is open. Then, since π is a topological group, σπ′ is also open,
for any σ ∈ π. Since π′ is a subgroup, we have that π\π′ =

⋃
σ∈π\π′ σπ

′. So π\π′ is
open, which means that π′ is closed. We have that π =

⋃
σ∈π σπ

′. Since each σπ′

is open and π is compact (see remark 1.1.10), the set {σπ′ | σ ∈ π} must be �nite.
This means that π′ has �nite index in π.
Conversely, assume that π′ is closed and of �nite index. Then, since π is a topological
group, σπ′ is also closed, for any σ ∈ π. We have that π\π′ =

⋃
σ∈π\π′ σπ

′ and this
is a �nite union, because π′ has �nite index. So π\π′ is closed, which means that π′

is open.

De�nition 1.1.12. Let π be a pro�nite group and E a set equipped with an action
of π on it. We say that the action of π on E is continuous if the map π × E → E
de�ning the action is continuous (where E is endowed with the discrete topology and
π × E with the product topology). In this case, we say that E is a π-set. If E1, E2

are two π-sets, a map f : E1 → E2 is called a morphism of π-sets if f(σe) = σf(e)
for every σ ∈ π, e ∈ E.

Remark 1.1.13. Let π be a pro�nite group. For any π-set E, the identity map
idE is clearly a morphism of π-sets. Moreover, it is immediate to check that the
composition of two morphisms of π-sets is again a morphism of π-sets. This shows
that π-sets form a category. We will restrict our attention to �nite π-sets. We denote
the category of �nite π-sets by π-sets.

7
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Lemma 1.1.14. Let π be a pro�nite group and E a set equipped with an action
of π on it. The action is continuous if and only if, for every e ∈ E, the stabilizer
Stabπ(e) := {σ ∈ π | σe = e} is open in π. If E is �nite, this is true if and only if
the kernel π′ := {σ ∈ π | σe = e ∀e ∈ E} is open in π.

Proof. Assume the action of π on E is continuous, i.e. the map ϕ : π × E →
E, (σ, e) 7→ σe is continuous. Let e ∈ E. The map fe : π → π × E, σ 7→ (σ, e)
is continuous, because its components are continuous. So the composition ϕ ◦ fe is
continuous. We have that

Stabπ(e) = {σ ∈ π | e = ϕ(σ, e) = ϕ(fe(σ))} = (ϕ ◦ fe)−1({e}) .

Since {e} is open in E, this implies that Stabπ(e) is open in π.
Conversely, assume that all the stabilizers are open in π. Since E has the discrete
topology, to show that ϕ is continuous we have to prove that ϕ−1({e}) is open in π
for any e ∈ E. Let e ∈ E. We have that

ϕ−1({e}) = {(σ, e′) ∈ π × E | σe′ = e} =
⋃
e′∈E

(
{σ ∈ π | σe′ = e} × {e′}

)
.

Since {e′} is open in E for any e′ ∈ E, if we show that Ue′,e := {σ ∈ π | σe′ = e} is
open in π, then ϕ−1({e}) is open in π×E. If Ue′,e = ∅, then it is clearly open. Assume
Ue′,e 6= ∅. Then there exists σ0 ∈ Ue′,e. This means that σ0e

′ = e and so σ−1
0 e = e′.

We claim that Ue′,e = Stabπ(e)σ0. If σ ∈ Ue′,e, then (σσ−1
0 )e = σ(σ−1

0 e) = σe′ = e.
So σσ−1

0 ∈ Stabπ(e) and σ ∈ Stabπ(e)σ0. Conversely, if σ ∈ Stabπ(e)σ0, then there
exists τ ∈ Stabπ(e) such that σ = τσ0. Then σe′ = (τσ0)e′ = τ(σ0e

′) = τe = e. So
σ ∈ Ue′,e. This shows that Ue′,e = Stabπ(e)σ0. Since π is a topological group, right
multiplication by σ0 is a homeomorphism. By assumption, Stabπ(e) is open. Hence
Ue′,e is open, as we wanted.
Assume now that E is �nite. We have that π′ =

⋂
e∈E Stabπ(e). This is a �nite

intersection and so, if all the stabilizers are open, the kernel is also open. Conversely,
assume that the kernel is open. Let e ∈ E. Since π′ ⊆ Stabπ(e), we have that
Stabπ(e) =

⋃
σ∈Stabπ(e) π

′σ. Since π′ is open, π′σ is also open for any σ ∈ Stabπ(e)
(because π is a topological group). Then Stabπ(e) is open.

Proposition 1.1.15. If π is a pro�nite group, the category π-sets with the forgetful
functor F : π-sets → sets (i.e. the functor that forgets the action of π) is an
essentially small Galois category.

Proof. First of all, we prove that π-sets is essentially small. It is enough to show
that, for any n ∈ N, the collection of isomorphism classes of π-sets of cardinality
n is a set. If E is a π-set of cardinality n, we can identify it with {1, . . . , n}, with
the corresponding action of π. The collection of actions of π on {1, . . . , n} is a set,
because it is contained in the set of all functions from π to Sn (the symmetric group
of degree n). Hence π-sets is essentially small.
We check now that the conditions listed in 1.1.4 are satis�ed.

(G1) Consider a singleton {x} and de�ne on it the trivial action of π: σx = x for
any σ ∈ π. This action is clearly continuous, because the associated map
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π × {x} → {x} is constant. We claim that {x} with this action is a terminal
object in π-sets. If X is a (�nite) π-set, we have a unique map f : X → {x},
i.e. the constant map. We only have to check that this map is a morphism of
π-sets. For any σ ∈ π, a ∈ X, we have f(σa) = x = σx = σf(a).
If X, Y , S are �nite π-sets, with two morphisms of π-sets f1 : X → S, f2 : Y →
S, we de�ne an action of π on the �bred product ofX and Y over S as sets (as in
example 1.1.3(2)) as follows: σ(x, y) = (σx, σy) for any σ ∈ π, (x, y) ∈ X×SY .
This is well de�ned because (σx, σy) ∈ X ×S Y . Indeed, applying the fact
that f1 and f2 are morphisms of π-sets, we get f1(σx) = σf1(x) = σf2(y) =
f2(σy). This is indeed a group action because 1(x, y) = (1x, 1y) = (x, y) and
(στ)(x, y) = ((στ)x, (στ)y) = (σ(τx), σ(τy)) = σ(τx, τy) = σ(τ(x, y)) for any
(x, y) ∈ X×S Y , σ, τ ∈ π. Moreover, the action is continuous by lemma 1.1.14,
because for any (x, y) ∈ X ×S Y we have

Stabπ((x, y)) = {σ ∈ π | (x, y) = σ(x, y) = (σx, σy)} =

= {σ ∈ π | σx = x, σy = y} = Stabπ(x) ∩ Stabπ(y) ,

so Stabπ((x, y)) is open in π because it is the intersection of two open subsets.
Let us check thatX×SY , with this action and the projections p1 : X×SY → X
and p2 : X ×S Y → Y de�ned as in example 1.1.3(2), is the �bred product of
X and Y over S in π-sets. First of all, the projections are morphism of π-sets
by de�nition of the action on X ×S Y . Moreover, f1 ◦ p1 = f2 ◦ p2 and, if Z is
a �nite π-set with two morphisms of π-sets g1 : Z → X, g2 : Z → Y such that
f1 ◦ g1 = f2 ◦ g2, we have a unique map g : Z → X ×S Y such that p1 ◦ g = g1

and p2 ◦ g = g2 as in example 1.1.3(2). We have to check that this map is a
morphism of π-sets. Let σ ∈ π, (x, y) ∈ X ×S Y . Then

g(σ(x, y)) = g((σx, σy)) = (g1(σx), g2(σy)) =

= (σg1(x), σg2(y)) = σ(g1(x), g2(y)) = σg((x, y)) .

Hence g is a morphism of π-sets.

(G2) Let (Xi)i∈I be a �nite collection of �nite π-sets. We de�ne an action of π on
the disjoint union

∐
i∈I Xi as follows: for any σ ∈ π, x ∈

∐
i∈I Xi, σx = σ ∗j x,

where j is the unique element of I such that x ∈ Xj and ∗j denotes the action
of π on Xj . This is clearly a group action and the stabilizer of x ∈

∐
i∈I Xi in

π coincides with the stabilizer of x with respect to the action of π on Xj , where
j is the unique element of I such that x ∈ Xj . So the action is continuous by
lemma 1.1.14, because the action on Xj is continuous for any j ∈ I. We check
now that

∐
i∈I Xi, with this action of π and the inclusions qj : Xj →

∐
i∈I Xi

for j ∈ I, is the sum of the Xi's in π-sets. First of all, the inclusions are
morphisms of π-sets by de�nition of the action on

∐
i∈I Xi. Moreover, if Y

is a �nite π-set with morphisms of π-sets fj : Xj → Y for j ∈ I, we have a
unique map f :

∐
i∈I Xi → Y such that f ◦qj = fj for any j ∈ I, as in example

1.1.3(3). We have to check that f is a morphism of π-sets. For any σ ∈ π,
x ∈

∐
i∈I Xi, we have

f(σx) = f(σ ∗j x) = fj(σ ∗j x) = σfj(x) = σf(x) ,

9
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where j is the unique element of I such that x ∈ Xj (and then σx = σ ∗j x ∈
Xj). So f is a morphism of π-sets.
Let X be a �nite π-set and G a �nite subgroup of Autπ-sets(X). We de�ne an
action of π on X/G (the set of orbits of X under G, as in example 1.1.3(5)) as
follows: σ(Gx) = G(σx) for any σ ∈ π, x ∈ X. Let us check that this is well
de�ned. If Gx1 = Gx2, with x1, x2 ∈ X, there exists g ∈ G such that x2 = gx1.
Since g is a morphism of π-sets, we have that σx2 = σ(gx1) = g(σx1). Then
G(σx2) = G(σx1). This shows that σ(Gx) is well de�ned for Gx ∈ X/G. We
have that 1(Gx) = G(1x) = Gx and (στ)(Gx) = G((στ)x) = G(σ(τx)) =
σ(G(τx)) = σ(τ(Gx)), for any Gx ∈ X/G, σ, τ ∈ π. So this is indeed a group
action. Let us show that it is continuous. For any Gx ∈ X/G, we have that

Stabπ(Gx) = {σ ∈ π | Gx = σ(Gx) = G(σx)} =

= {σ ∈ π | ∃g ∈ G σx = gx} =
⋃
g∈G
{σ ∈ π | σx = gx} .

If we show that Ux,g := {σ ∈ π | σx = gx} is open in π for any g ∈ G, then
Stabπ(Gx) is open. If Ux,g = ∅, then it is clearly open. Assume Ux,g 6= ∅.
Then there exists σ0 ∈ Ux,g. This means that σ0x = gx. We claim that
Ux,g = σ0 Stabπ(x). If σ ∈ Ux,g, we have that σx = gx = σ0x. Then (σ−1

0 σ)x =
σ−1

0 (σx) = x. So σ−1
0 σ ∈ Stabπ(x). Then σ ∈ σ0 Stabπ(x). Conversely,

if σ ∈ σ0 Stabπ(x), there exists τ ∈ Stabπ(x) such that σ = σ0τ . Then
σx = (σ0τ)x = σ0(τx) = σ0x = gx. So σ ∈ Ux,g. This shows that Ux,g =
σ0 Stabπ(x). Since the action of π on X is continuous, Stabπ(x) is open (see
lemma 1.1.14). Since π is a topological group, left multiplication by σ0 is a
homeomorphism. So Ux,g is open in π. By lemma 1.1.14, this shows that
the action of π on X/G is continuous. We prove now that X/G, with this
action and with the map p : X → X/G de�ned as in example 1.1.3(5), is
the quotient of X by G in π-sets. First of all, p is a morphism of π-sets.
Indeed, using the de�nition of p and of the action of π on X/G, we have that
p(σx) = G(σx) = σ(Gx) = σp(x) for any σ ∈ π, x ∈ X. Moreover, p = p ◦ g
for any g ∈ G and, if Y is a �nite π-set with a morphism of π-sets f : X → Y
such that f = f ◦ g for any g ∈ G, we have a unique map f : X/G → Y such
that f ◦ p = f , as in example 1.1.3(5). We have to check that f is a morphism
of π-sets. Since f is a morphism of π-sets, we have that

f(σ(Gx)) = f(G(σx)) = f(σx) = σf(x) = σf(Gx)

for any σ ∈ π, Gx ∈ X/G. So f is a morphism of π-sets.

(G3) Let X, Y be �nite π-sets and u : X → Y a morphism of π-sets. As in
example 1.1.5, we can write u = u′ ◦ u′′, with u′′ : X → u(X) surjective
and u′ : u(X) → Y injective. If y ∈ u(X), there exists x ∈ X such that
y = u(x). Then, using the fact that u is a morphism of π-sets, we have
σy = σu(x) = u(σx) ∈ u(X) for any σ ∈ π. So we can restrict the action of
π from Y to u(X). Clearly, the action of π on u(X) is continuous, because
the action on Y is continuous. So u(X) is also a π-set. We have that u′′ is
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a morphism of π-sets because u′′ = u and the inclusion u′ is a morphism of
π-sets because the action of π on u(X) is the restriction of that on Y . We have
to check that u′ and u′′ are respectively a monomorphism and an epimorphism
in π-sets. If Z is a �nite π-set and g, h : Z → u(X) are two morphisms of
π-sets such that u′ ◦ g = u′ ◦h, then g and h are in particular maps of sets. By
example 1.1.3(6), u′ is a monomorphism in sets. So g = h. This shows that u′

is a monomorphism in π-sets. Analogously, u′′ is an epimorphism in sets by
example 1.1.3(6) and so, if g, h : u(X)→ Z are two morphisms of π-sets such
that g◦u′′ = h◦u′′, we must have g = h. This shows that u′′ is an epimorphism
in π-sets.
Assume now that u : X → Y is a monomorphism in π-sets. We claim that u
is injective. Let x1, x2 ∈ X such that u(x1) = u(x2). Let π′ be the kernel of
the action of π on X, as in lemma 1.1.14. Since the action of π is continuous,
π′ is open in π. By lemma 1.1.11, π′ has �nite index in π. So the set π/π′ is
�nite. We have that π acts on π/π′ by left multiplication: σ(τπ′) = (στ)π′

for any σ, τ ∈ π. This is well de�ned. Indeed, if τ1π
′ = τ2π

′ for τ1, τ2 ∈ π,
then (στ2)−1(στ1) = τ−1

2 τ1 ∈ π′. So (στ1)π′ = (στ2)π′. This is clearly a group
action. Moreover, it has kernel

{σ ∈ π | τπ′ = σ(τπ′) = (στ)π′ ∀τπ′ ∈ π/π′} =

= {σ ∈ π | τ−1στ ∈ π′ ∀τ ∈ π} =
⋂
τ∈π

τπ′τ−1 .

This is a �nite intersection, because π′ has �nite index in π (notice that, if
τ1π
′ = τ2π

′ for τ1, τ2 ∈ π, then τ1 = τ2σ for a σ ∈ π′ and so τ1π
′τ−1

1 =
τ2σπ

′σ−1τ−1
2 = τ2π

′τ−1
2 ). Since π is a topological group, conjugation by τ is

a homeomorphism for any τ ∈ π. Then, since π′ is open, τπ′τ−1 is also open.
So the kernel is open, because it is a �nite intersection of open subsets. By
lemma 1.1.14, the action of π on π/π′ is continuous. So π/π′ is a �nite π-set.
De�ne the functions g : π/π′ → X, τπ′ 7→ τx1 and h : π/π′ → X, τπ′ 7→ τx2.
They are well de�ned. Indeed, if τ1π

′ = τ2π
′, then τ2 = τ1σ, for a σ ∈ π′.

Since π′ is the kernel of the action of π on X, σx1 = x1 and σx2 = x2. Then
τ2x1 = (τ1σ)x1 = τ1(σx1) = τ1x1 and τ2x2 = (τ1σ)x1 = τ1(σx1) = τ1x1.
Moreover, if σ ∈ π and τπ′ ∈ π/π′, then g(σ(τπ′)) = g((στ)π′) = (στ)x1 =
σ(τx1) = σg(τπ′) and h(σ(τπ′)) = h((στ)π′) = (στ)x2 = σ(τx2) = σh(τπ′).
So g and h are morphisms of π-sets. Since u is a morphism of π-sets and
u(x1) = u(x2), we have that

u(g(τπ′)) = u(τx1) = τu(x1) = τu(x2) = u(τx2) = u(h(τπ′))

for any τπ′ ∈ π/π′. Then u ◦ g = u ◦ h. Since u is a monomorphism, this
implies g = h. So x1 = g(π′) = h(π′) = x2. Hence u is injective. As above,
we can restrict the action of π from Y to u(X), which is then a �nite π-set.
On the other hand, if y ∈ Y \u(X), then σy ∈ Y \u(X) for any σ ∈ π. Indeed,
if we had σy ∈ u(X), we would have y = σ−1(σy) ∈ u(X). So we can also
restrict the action of π from Y to Y \u(X), obtaining a continuous action of
π on Y \u(X), which is then a �nite π-set. From the proof of (G2), it follows
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that Y = u(X)q (Y \u(X)), together with the natural inclusions, is the sum of
u(X) and Y \u(X) in π-sets. Let q2 : Y \u(X) → Y be the natural inclusion
and q1 = u : X → u(X). If we show that q1 is an isomorphism of π-sets,
then Y , together with q1 and q2, is the sum of X and Z := Y \u(X). Since
u is injective, the map q1 = u : X → u(X) is bijective. So it has an inverse
u−1 : u(X) → X. We have to show that u−1 is also a morphism of π-sets.
Let σ ∈ π and y ∈ u(X). Then y = u(u−1(y)). Since u is a morphism of
π-sets, σy = σu(u−1(y)) = u(σu−1(y)). So u−1(σy) = σu−1(y). Then u−1 is a
morphism of π-sets.

(G4) It follows from the proof of (G1) and from example 1.1.3(1)-(2).

(G5) The fact that F commutes with �nite sums and with passage to the quotient
by a �nite group of automorphisms follows from the proof of (G2) and from
example 1.1.3(3) and (5).
To show that F sends epimorphisms to epimorphisms, we have to check that
any epimorphism of π-sets is a surjective map (see example 1.1.3(6)). Let X,
Y be �nite π-sets and f : X → Y an epimorphism. Consider the �nite set
Z := {a, b}, with a 6= b, and de�ne on it the trivial action of π: σa = a and
σb = b, for any σ ∈ π. This is clearly a group action and it is continuous,
because the associated map π × Z → Z is just the projection on the second
factor. De�ne the maps g : Y → Z and h : Y → Z as in example 1.1.3(6). Let
σ ∈ π, y ∈ Y . Then g(σy) = a = σa = σg(y). So g is a morphism of π-sets.
As in the proof of (G3), if y ∈ f(X) then also σy ∈ f(X) and if y ∈ Y \f(X)
then also σy ∈ Y \f(X). In the �rst case, h(σy) = a = σa = σh(y). In the
second case, h(σy) = b = σb = σh(y). Hence h is a morphism of π-sets. As in
example 1.1.3(6), we have that g ◦ f = h ◦ f and, since f is an epimorphism of
π-sets, this implies g = h. So Y = f(X), which means that f is surjective.

(G6) We have to show that, if X, Y are �nite π-sets and u : X → Y is a bijective
morphism of π-sets, then u is an isomorphism in π-sets. This can be done as
in the proof of (G3).

1.2 Prorepresentability of F

In the next three sections, C will be an essentially small Galois category with funda-
mental functor F . Our aim is to prove that C is equivalent to the category π-sets
for a (uniquely determined up to isomorphism) pro�nite group π. The �rst step will
be to write F in a more convenient way, as an injective limit of functors of the form
HomC(A,−). We start by recalling the de�nition of injective limit (of sets).

De�nition 1.2.1. An injective system of sets consists of a directed partially ordered
set I, a collection of sets (Si)i∈I and a collection of maps (fij : Si → Sj)i,j∈I, i≤j such
that

∀i ∈ I fii = idSi
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and
∀i, j, k ∈ I with i ≤ j ≤ k fik = fjk ◦ fij .

Lemma 1.2.2. Given an injective system of sets as in the de�nition 1.2.1, we de�ne
the following relation on the disjoint union

∐
i∈I Si: if x ∈ Si and y ∈ Sj (i, j ∈ I),

then
x ∼ y ⇐⇒ ∃k ∈ I : k ≥ i, k ≥ j, fik(x) = fjk(y) .

This relation is an equivalence relation.

Proof. Let x ∈
∐
i∈I Si. Then there exists i ∈ I such that x ∈ Si. We have that

i ≥ i and clearly fii(x) = fii(x). So x ∼ x. Then ∼ is re�exive.
Let x, y ∈

∐
i∈I Si such that x ∼ y. Then, if i, j ∈ I are such that x ∈ Si and y ∈ Sj ,

there exists k ∈ I such that k ≥ i, k ≥ j and fik(x) = fjk(y). So fjk(y) = fik(x),
which shows that y ∼ x. Then ∼ is symmetric.
Let x, y, z ∈

∐
i∈I Si such that x ∼ y and y ∼ z. Then, if i, j, k ∈ I are such

that x ∈ Si, y ∈ Sj and z ∈ Sk, there exist h1, h2 ∈ I such that h1 ≥ i, h1 ≥ j
and fih1(x) = fjh1(y), h2 ≥ j, h2 ≥ k and fjh2(y) = fkh2(z). Since I is directed,
there exists h ∈ I such that h ≥ h1 and h ≥ h2. By de�nition of injective system,
fh1h ◦ fih1 = fih, fh1h ◦ fjh1 = fjh = fh2h ◦ fjh2 and fh2h ◦ fkh2 = fkh. Then

fih(x) = fh1h(fih1(x)) = fh1h(fjh1(y)) = fh2h(fjh2(y)) = fh2h(fkh2(z)) = fkh(z) .

So x ∼ z. Then ∼ is transitive.

De�nition 1.2.3. Given an injective system of sets as in the de�nition 1.2.1, the
quotient (

∐
i∈I Si)/∼, where ∼ is the equivalence relation de�ned in 1.2.2, is called

the injective limit of the injective system and denoted with lim−→i∈I Si.

Lemma 1.2.4 (Universal property of the injective limit). Given an injective system
of sets as in the de�nition 1.2.1, let Y be a set with a collection of maps (gj : Sj →
Y )j∈I such that gi = gj ◦ fij for any i, j ∈ I with i ≤ j. Then there exists a unique
map g : lim−→i∈I Si → Y such that gj = g ◦ fj for any j ∈ I, where fj : Sj → lim−→i∈I Si
is de�ned by fj(x) = [x]∼. This is illustrated by the following commutative diagram.

Si

Sj

lim−→i∈I Si Y

................................................................................................................................................................................................................
.....
.......
.....

fij

........................................................................................................................................... ........
....

fi

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.............
............

fj

..................................................................................................................................... ............
g

...................................................................................................................................................................................................................................................................................................................................................................... ..........
..

gi

....................
....................

....................
....................

....................
....................

....................
....................

....................
....................

....................
....................

....................
....................

....................
....................

....................
..................
............

gj

Proof. (Existence) Let X ∈ lim−→i∈I Si. By de�nition of injective limit, there exist
j ∈ I, x ∈ Sj such that X = [x]∼. We de�ne g(X) = gj(x) ∈ Y . Let us
check that this is well de�ned. Assume that X = [x1]∼ = [x2]∼, with x1 ∈ Sj1 ,
x2 ∈ Sj2 (j1, j2 ∈ I). Then x1 ∼ x2, which means that there exists k ∈ I such

13
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that k ≥ j1, k ≥ j2 and fj1k(x1) = fj2k(x2). By assumption, gj1 = gk ◦ fj1k
and gj2 = gk ◦ fj2k. Then

gj1(x1) = gk(fj1k(x1)) = gk(fj2k(x2)) = gj2(x2) .

This shows that g : lim−→i∈I Si → Y is a well-de�ned map. Moreover, for any
j ∈ I, x ∈ Sj , we have (g ◦ fj)(x) = g(fj(x)) = g([x]∼) = gj(x). Hence
g ◦ fj = gj .

(Uniqueness) Consider a map g̃ : lim−→i∈I Si → Y such that gj = g ◦ fj for any j ∈ I.
LetX ∈ lim−→i∈I Si. By de�nition of injective limit, there exist j ∈ I, x ∈ Sj such
that X = [x]∼ = fj(x). Then g̃(X) = g̃(fj(x)) = (g̃ ◦ fj)(x) = gj(x) = g(X).
Hence g̃ = g.

Lemma 1.2.5. If I, (Si)i∈I , (fij : Si → Sj)i,j∈I, i≥j is a projective system in C, then
for any object X of C the collections (HomC(Si, X))i∈I , (gij := f∗ji : HomC(Si, X)→
HomC(Sj , X), ϕ 7→ ϕ ◦ fji)i,j∈I, i≤j form an injective system of sets.

Proof. Let i ∈ I. Then fii = idSi , by de�nition of projective system. So, for any ϕ ∈
HomC(Si, X), we have f∗ii(ϕ) = ϕ◦fii = ϕ◦ idSi = ϕ. Then gii = f∗ii = idHomC(Si,X).
Let i, j, k ∈ I such that i ≤ j ≤ k. By de�nition of projective system, fki = fji ◦ fkj .
So, for any ϕ ∈ HomC(Si, X), we have f∗ki(ϕ) = ϕ◦fki = ϕ◦fji ◦fkj = f∗ji(ϕ)◦fkj =
f∗kj(f

∗
ji(ϕ)). Then gik = f∗ki = f∗kj ◦ f∗ji = gjk ◦ gij .

Lemma 1.2.6. If I, (Si)i∈I , (fij : Si → Sj)i,j∈I, i≥j is a projective system in C,
then, by lemma 1.2.5, we can associate to each object X of C the injective limit
lim−→i∈I HomC(Si, X). Moreover, if X, Y are objects of C and h : X → Y is a
morphism, we de�ne

lim−→
i∈I

HomC(Si, h) : lim−→
i∈I

HomC(Si, X)→ lim−→
i∈I

HomC(Si, Y ),

Φ = [ϕ]∼ 7→ [h ◦ ϕ]∼ .

Then lim−→i∈I HomC(Si,−) is a functor.

Proof. First of all, we have to show that lim−→i∈I HomC(Si, h) is well de�ned, for any
morphism h : X → Y in C. This follows from the universal property of the injective
limit applied to the collection of maps (HomC(Sj , X) → lim−→i∈I HomC(Si, Y ), ϕ 7→
[h ◦ ϕ]∼)j∈I . We have only to check that these maps are compatible, i.e. that
they satisfy the assumptions of lemma 1.2.4. Let i, j ∈ I such that i ≤ j and let
ϕ ∈ HomC(Si, X). Then

[h ◦ gij(ϕ)]∼ = [h ◦ f∗ji(ϕ)]∼ = [h ◦ ϕ ◦ fji]∼ = [f∗ji(h ◦ ϕ)]∼ = [gij(h ◦ ϕ)]∼ .

We have that gij(h◦ϕ) = idHomC(Sj ,Y )(gij(h◦ϕ)) = gjj(gij(h◦ϕ)). By de�nition of ∼
on
∐
i∈I HomC(Si, Y ), this implies that h◦ϕ ∼ gij(h◦ϕ). So [h◦gij(ϕ)]∼ = [h◦ϕ]∼,

as we wanted.

14
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Let now X be an object of C and consider h = idX : X → X. For any Φ = [ϕ]∼ ∈
lim−→i∈I HomC(Si, X), we have that

lim−→
i∈I

HomC(Si, idX)(Φ) = [idX ◦ϕ]∼ = [ϕ]∼ = Φ .

Then lim−→i∈I HomC(Si, idX) = idlim−→i∈I
HomC(Si,X).

Let X, Y and Z be objects of C, with two morphisms h1 : X → Y , h2 : Y → Z. For
any Φ = [ϕ]∼ ∈ lim−→i∈I HomC(Si, X), we have

lim−→
i∈I

HomC(Si, h2 ◦ h1)(Φ) = [h2 ◦ h1 ◦ φ]∼ = lim−→
i∈I

HomC(Si, h2)([h1 ◦ φ]∼) =

= lim−→
i∈I

HomC(Si, h2)

(
lim−→
i∈I

HomC(Si, h1)(Φ)

)
.

Hence

lim−→
i∈I

HomC(Si, h2 ◦ h1) = lim−→
i∈I

HomC(Si, h2) ◦ lim−→
i∈I

HomC(Si, h1) .

De�nition 1.2.7. A functor G from C to the category of (not necessarily �nite)
sets is called prorepresentable if there exists a projective system I, (Si)i∈I , (fij : Si →
Sj)i,j∈I,i≥j in C such that G is isomorphic to the functor lim−→i∈I HomC(Si,−) de�ned
in lemma 1.2.6.

We want now to show that F is prorepresentable. To do it, we have to de�ne a
suitable projective system in C.

De�nition 1.2.8. A subobject of an object X of C is an equivalence class of
monomorphisms Y → X, where two monomorphisms f1 : Y1 → X, f2 : Y2 → X
are considered equivalent if and only if there exists an isomorphism ϕ : Y1 → Y2

such that f1 = f2 ◦ ϕ (it is immediate to prove that this is an equivalence relation).
The de�nition of this equivalence relation is illustrated by the following commutative
diagram.

Y1

X

Y2
........................................................................................................................................... ........

....
f1

.......................................................................................................................................
....
............

f2

..................................................................................................................................................................................................................... ............
ϕ

Lemma 1.2.9. A morphism f : X → Y in C is a monomorphism if and only if
the �rst projection p1 : X ×Y X → X is an isomorphism (remember that the �bred
product exists by (G1) of the de�nition of Galois category).

Proof. Consider the following diagram.
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X

X ×Y X

X

X

Y

............................................................................................................................................................................................................................................................................................................................ ........
....

idX

...................................................................................................................................................................................................................................................................................................................................................................... ..........
..

idX

...................................................................................
.....
.......
.....

p1

........................................................................................ ............

p2

........................................................................................ ............
f

...................................................................................
.....
.......
.....

f

By de�nition of �bred product, there exists a unique morphism g : X → X×Y X
such that p1 ◦ g = idX and p2 ◦ g = idX .
Assume now that f is a monomorphism. Then, since f ◦ p1 = f ◦ p2, we must have
p1 = p2. We have that p1 ◦ g ◦ p1 = idX ◦p1 = p1 = p1 ◦ idX×YX and p2 ◦ g ◦ p1 =
idX ◦p1 = p1 = p2 = p2 ◦ idX×YX . By uniqueness in the universal property of the
�bred product, this implies that g ◦ p1 = idX×YX . This shows that g is the inverse
of p1 and so p1 is an isomorphism.
Conversely, assume that p1 is an isomorphism. Then, since p1 ◦ g = idX , we have
that g = p−1

1 . Let h1, h2 : Z → X be morphisms such that f ◦ h1 = f ◦ h2. Consider
the following diagram.

Z

X ×Y X

X

X

Y

............................................................................................................................................................................................................................................................................................................................ ........
....

h1

...................................................................................................................................................................................................................................................................................................................................................................... ..........
..

h2

...................................................................................
.....
.......
.....

p1

........................................................................................ ............

p2

........................................................................................ ............
f

...................................................................................
.....
.......
.....

f

By the universal property of the �bred product, there exists a unique morphism
h : Z → X ×Y X such that p1 ◦ h = h1 and p2 ◦ h = h2. Then h = p−1

1 ◦ h1 = g ◦ h1

and h2 = p2 ◦ h = p2 ◦ g ◦ h1 = idX ◦h1 = h1. Hence f is a monomorphism.

Corollary 1.2.10. If f : X → Y is a morphism in C, then f is a monomorphism
if and only if F (f) is a monomorphism (i.e. if and only if F (f) is injective, see
example 1.1.3(6)).

Proof. By lemma 1.2.9, f is a monomorphism if and only if the �rst projection
p1 : X×Y X → X is an isomorphism. By (G4) of the de�nition of Galois category, we
have that F (X×YX) (together with F (p1), F (p2)) is isomorphic to F (X)×F (Y )F (X)
(together with the canonical projections on F (X)). Then F (f) is a monomorphism
if and only if F (p1) is an isomorphism (by lemma 1.2.9 applied to the cateogry sets).
By (G6) of the de�nition of Galois category, if F (p1) is an isomorphism then p1 is also
an isomorphism. The converse is true for any functor. Then p1 is an isomorphism
if and only if F (p1) is an isomorphism, which implies that f is a monomorphism if
and only if F (f) is a monomorphism.

Example 1.2.11. (1) Recall that, by (G2) of the de�nition of Galois category, there
exists an initial object 0 in C. For any object X, the unique map f : 0 → X
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is a monomorphism. Indeed, by (G5) of the de�nition of Galois category, F
commutes with �nite sums. In particular, by remark 1.1.2(2), F sends an
initial object of C to an initial object of sets. This means that F (0) = ∅ (see
example 1.1.3(4)). Then F (f) : ∅ = F (0) → F (X) is clearly injective. Hence,
f is a monomorphism by corollary 1.2.10. If we consider two initial objects,
the canonical isomorphism between them makes the diagram in the de�nition
1.2.8 commute, so they de�ne the same subobject of X.

(2) For any object X, the identity idX : X → X is clearly a monomorphism.
So it de�nes a subobject of X. Given a monomorphism f : Y → X, it is
equivalent to idX if and only if there exists an isomorphism ϕ : Y → X such
that f = idX ◦ϕ = ϕ, i.e. if and only if f is an isomorphism.

(3) If X = 0, the two subobjects considered in (1) and (2) coincide. On the other
hand, if f : Y → 0 is a monomorphism, then it is an isomorphism. Indeed,
there exists a unique morphism g : 0 → Y . Since id0 is the unique morphism
0→ 0, we must have f ◦ g = id0. Then we have also

f ◦ (g ◦ f) = (f ◦ g) ◦ f = id0 ◦f = f = f ◦ idY .

Since f is a monomorphism, this implies g ◦ f = idY . Then g is the inverse of
f and f is an isomorphism. Hence, 0 has a unique subobject.
On the other hand, if X 6∼= 0, then X has at least two distinct subobjects,
namely the ones considered in (1) and (2).

De�nition 1.2.12. An object X of C is said connected if it has exactly two subob-

jects: 0→ X and X
idX−−→ X.

Remark 1.2.13. (1) By de�nition, 0 is not a connected object, because it has only
one subobject.

(2) In other words, X is connected if and only if, for every monomorphism f :
Y → X, either Y is initial or f is an isomorphism (but not both).

(3) Notice that connectedness is invariant by isomorphism, because, if ϕ : X1 → X2

is an isomorphism, then composition with ϕ gives a bijection from subobjects
of X1 to subobjects of X2 (the inverse being composition with ϕ−1).

Example 1.2.14. (1) In the category sets, the connected objects are the singletons.
Indeed, consider a singleton {x} and a �nite set Y with a monomorphism
f : Y → X. By example 1.1.3(6), f is injective. Then |Y | ≤ 1. If |Y | = 0,
then Y = ∅ is initial (example 1.1.3(4)). If |Y | = 1, then f is also surjective
and so it is an isomorphism of sets. Hence {x} is connected.
Conversely, assume X is a connected object. By remark 1.2.13(1), we have
that X 6= ∅. Let x ∈ X. Then the natural inclusion ι : {x} → X is injective,
i.e. a monomorphism (example 1.1.3(4)). Since {x} 6= ∅, by remark 1.2.13(2)
we must have that ι is an isomorphism, i.e. bijective. Then X = {x} is a
singleton.
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(2) If π is a pro�nite group, the connected objects of the category π-sets are the
�nite sets with a transitive continuous action of π (recall that an action is
called transitive if there is exactly one orbit, in particular the action on the
empty set is not transitive).
Indeed, let X be a �nite π-set on which the action of π is transitive. In
particular, X 6= ∅. Let f : Y → X be a monomorphism of π-sets. Then
f is injective, by corollary 1.2.10 (see also the proof of (G3) in proposition
1.1.15). Assume that Y 6= ∅. Then there exists y ∈ Y . Let x ∈ X. Since π
acts transitively on X, there exists σ ∈ π such that x = σf(y). Since f is a
morphism of π-sets, we have that σf(y) = f(σy). Then x = f(σy) ∈ f(Y ).
So f is surjective. We already knew that f was injective, so it is bijective, i.e.
an isomorphism of sets. Since π-sets is a Galois category with fundamental
functor the forgetful functor, by (G6) of the de�nition 1.1.4 this implies that
f is an isomorphism of π-sets. Hence X is connected.
Conversely, assume that X is a connected object in π-sets. We can write X as
the disjoint union of its orbits: X =

∐n
i=1Xi (n ∈ N). Since X is connected,

by remark 1.2.13(1) we have that X 6= ∅. Then n ≥ 1. We have that X1 is
a �nite π-set and the natural inclusion ι : X1 → X is an injective morphism
of π-sets, i.e. a monomorphism of π-sets (see corollary 1.2.10 or the proof of
proposition 1.1.15). Since X1 6= ∅ (orbits are non-empty by de�nition) and X
is connected, ι must be an isomorphism. Then X ∼= X1 and the action of π on
X is transitive.

Lemma 1.2.15. Let X, Y1, Y2 be objects of C and f1 : Y1 → X, f2 : Y2 → X two
morphisms. Consider the �bred product Y1 ×X Y2 (whose existence is guaranteed by
(G1) of the de�nition of Galois category), with the two projections p1 : Y1×XY2 → Y1,
p2 : Y1 ×X Y2 → Y2. If f1 is a monomorphism, then p2 is a monomorphism. If
moreover f2 is also a monomorphism, then f1 ◦ p1 = f2 ◦ p2 : Y1 ×X Y2 → X is a
monomorphism.

Proof. Let Z be an object of C, with two morphisms g, h : Z → Y1 ×X Y2 such that
p2 ◦ g = p2 ◦ h. Then f2 ◦ p2 ◦ g = f2 ◦ p2 ◦ h. By de�nition of �bred product,
f1 ◦p1 = f2 ◦p2. So f1 ◦p1 ◦g = f1 ◦p1 ◦h. Since f1 is a monomorphism, this implies
that p1 ◦ g = p1 ◦ h. Consider the following diagram.

Z

Y1 ×X Y2

Y1

Y2

X

............................................................................................................................................................................................................................................................................................................................ ........
....

p1 ◦ g

...................................................................................................................................................................................................................................................................................................................................................................... ..........
..

p2 ◦ g

...................................................................................
.....
.......
.....

p1

........................................................................................ ............

p2

........................................................................................ ............
f1

...................................................................................
.....
.......
.....

f2

By the universal property of the �bred product, there is a unique morphism Z →
Y1 ×X Y2 making the diagram commute. Clearly g makes the diagram commute.
Since p1 ◦ g = p1 ◦ h and p2 ◦ g = p2 ◦ h, also h makes the diagram commute. Then
g = h, which shows that p2 is a monomorphism.
The last part of the statement follows from the fact that a composition of monomor-
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phisms is a monomorphism.

Remark 1.2.16. (1) Let X be an object of C. If f : Y → X is a monomorphism,
then F (f) is injective (corollary 1.2.10) and so we have

F (Y ) ∼= Im(F (f)) ⊆ F (X) .

If f1 : Y1 → X and f2 : Y2 → X are two equivalent monomorphisms, then there
exists an isomorphism ϕ : Y1 → Y2 such that f1 = f2 ◦ ϕ. Then Im(F (f1)) =
Im(F (f2 ◦ ϕ)) = Im(F (f2)) (in the last equality, we used the fact that F (ϕ)
is an isomorphism, i.e. a bijection). Hence any subobject of X gives rise to a
subset of F (X).

(2) Given two monomorphisms f1 : Y1 → X and f2 : Y2 → X, consider the �bred
product Y1×XY2, with the two projections p1 : Y1×XY2 → Y1, p2 : Y1×XY2 →
Y2. By lemma 1.2.15, f1 ◦ p1 = f2 ◦ p2 : Y1 ×X Y2 → X is a monomorphism.
Moreover, if g1 : Z1 → X and g2 : Z2 → X are two other monomorphisms such
that g1 is equivalent to f1 and g2 is equivalent to f2, then we have isomorphisms
ϕ1 : Y1 → Z1, ϕ2 : Y2 → Z2 such that f1 = g1 ◦ ϕ1 and f2 = g2 ◦ ϕ2. Consider
the following diagrams (where q1 : Z1 ×X Z2 → Z1, q2 : Z1 ×X Z2 → Z2 are
the morphisms that appear in the de�nition of �bred product).

Z1 ×X Z2

Z1

Z2

Y1 ×X Y2

Y1

Y2

X

................................................................................................................................................................................................................
.....
.......
.....

q1

.................................................................................................................................................................................................................................................................................................................................................. ............
q2

..................................................................................................................................................................................................................... ............
ϕ−1

1

...................................................................................
.....
.......
.....

ϕ−1
2

...................................................................................
.....
.......
.....

p1

........................................................................................ ............

p2

........................................................................................ ............
f1

...................................................................................
.....
.......
.....

f2

Y1 ×X Y2

Y1

Y2

Z1 ×X Z2

Z1

Z2

X

................................................................................................................................................................................................................
.....
.......
.....

p1

.................................................................................................................................................................................................................................................................................................................................................. ............
p2

..................................................................................................................................................................................................................... ............
ϕ1

...................................................................................
.....
.......
.....

ϕ2

...................................................................................
.....
.......
.....

q1

........................................................................................ ............

q2

........................................................................................ ............
g1

...................................................................................
.....
.......
.....

g2

By the universal property of the �bred product, there exist morphisms ϕ :
Y1 ×X Y2 → Z1 ×X Z2, ψ : Z1 ×X Z2 → Y1 ×X Y2 such that q1 ◦ ϕ = ϕ1 ◦ p1,
q2 ◦ ϕ = ϕ2 ◦ p2, p1 ◦ ψ = ϕ−1

1 ◦ q1 and p2 ◦ ψ = ϕ−1
2 ◦ q2. Then

q1 ◦ ϕ ◦ ψ = ϕ1 ◦ p1 ◦ ψ = ϕ1 ◦ ϕ−1
1 ◦ q1 = q1 = q1 ◦ idZ1×XZ2

and

q2 ◦ ϕ ◦ ψ = ϕ2 ◦ p2 ◦ ψ = ϕ2 ◦ ϕ−1
2 ◦ q2 = q2 = q2 ◦ idZ1×XZ2 .
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By uniqueness in the universal property of the �bred product, we have that
ϕ ◦ψ = idZ1×XZ2 . In the same way, one can show that ψ ◦ϕ = idY1×XY2 . So ϕ
is an isomorphism. Moreover, g1 ◦ q1 ◦ϕ = g1 = f1 ◦ p1. Then f1 ◦ p1 = f2 ◦ p2 :
Y1 ×X Y2 → X and g1 ◦ q1 = g2 ◦ q2 : Z1 ×X Z2 → X are equivalent. In this
way, we can use the �bred product to associate to every two subobjects of X
another subobject, which we call their intersection. The reason of this name
is that, by (G4) of the de�nition of Galois category, we have that F (Y1×X Y2)
(together with F (p1) and F (p2)) is isomorphic to F (Y1)×F (X)F (Y2) (with the
canonical projections). Then, recalling the de�nition of the �bred product of
sets (example 1.1.3(2)), we have

Im(F (f1 ◦ p1)) = Im(F (f1) ◦ F (p1)) =

= {x ∈ F (X) | ∃y ∈ Im(F (p1)) : F (f1)(y) = x} =

= {x ∈ F (X) | ∃y ∈ F (Y1), y′ ∈ F (Y2) : F (f2)(y′) = F (f1)(y) = x} =

= Im(F (f1)) ∩ Im(F (f2)) .

Assume now that Im(F (f1)) = Im(F (f2)), i.e. f1 and f2 give rise to the same
subset of F (X). Then Im(F (f1 ◦ p1)) = Im(F (f1)) ∩ Im(F (f2)) = Im(F (f1)).
So for any y ∈ F (Y1) there exists z ∈ F (Y1×X Y2) such that F (f1)(y) = F (f1 ◦
p1)(z) = F (f1)(F (p1)(z)). By corollary 1.2.10, F (f1) is a monomorphism, i.e.
injective. Then y = F (p1)(z). So F (p1) is surjective. By corollary 1.2.10,
F (f2) is a monomorphism. By lemma 1.2.15 applied to the category sets
(exchanging the �rst and the second factor and recalling that by (G4) of the
de�nition of Galois category F commutes with �bred product), F (p1) is also a
monomorphism, i.e. injective. Hence F (p1) is a bijection, i.e. an isomorphism
of sets. By (G6) of the de�nition of Galois category, p1 is an isomorphism. In
the same way, one can show that p2 is an isomorphism. Then p2◦p−1

1 : Y1 → Y2

is an isomorphism. By de�nition of �bred product, f1 ◦ p1 = f2 ◦ p2. Then
f1 = f2 ◦ (p2 ◦ p−1

1 ). This shows that f1 and f2 are equivalent.
In other words, to di�erent subobjects ofX must correspond di�erent subsets of
F (X). In particular, since F (X) is a �nite set, X has �nitely many subobjects.

Lemma 1.2.17. Let X be an object of C. If F (X) = ∅, then X is initial.

Proof. By remark 1.2.16, the number of distinct subobjects of X is at most equal
to the number of subsets F (X). But F (X) = ∅ has a unique subset. So X has a
unique subobject and, by example 1.2.11, this implies that X ∼= 0.

De�nition 1.2.18. Let X be an object of C. The connected components of X are
its connected subobjects, i.e. the subobjects of the form Y → X with Y connected.

Lemma 1.2.19. Let X1, . . . , Xn be connected objects of C and consider their sum
X :=

∐n
i=1Xi, with the morphisms q1 : X1 → X, . . . , qn : Xn → X as in the de�ni-

tion 1.1.1(3). Let Y be another connected object and f : Y → X a monomorphism.
Then there exists a unique i ∈ {1, . . . , n} such that f is equivalent to qi.
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Proof. Since Y is connected, Y is not initial (remark 1.2.13(1)). So F (Y ) 6= ∅, by
lemma 1.2.17. Then there exists a ∈ F (Y ). By (G5) of the de�nition of Galois cate-
gory, we have that F (X) = F (

∐n
i=1Xi) ∼=

∐n
i=1 F (Xi) (disjoint union of sets). Then,

since F (f)(a) ∈ F (X), there exists i ∈ {1, . . . , n} such that F (f)(a) ∈ Im(F (qi)).
Let us prove that f is equivalent to qi. Consider the �bred product Y ×X Xi.
By lemma 1.2.15, the projections p1 : Y ×X Xi → Y , p2 : Y ×X Xi → Xi are
monomorphisms. Since Y and Xi are connected, this implies that either Y ×X Xi

is initial or p1 and p2 are both isomorphisms. As in remark 1.2.16, we have that
Im(F (f ◦ p1)) = Im(F (f)) ∩ Im(F (qi)). Since F (f)(a) ∈ Im(F (qi)), we have that
F (f)(a) ∈ Im(F (f)) ∩ Im(F (qi)) = Im(F (f ◦ p1)). In particular, Im(F (f ◦ p1)) 6= ∅.
Then F (Y ×XXi) 6= ∅. By (G5) of the de�nition of Galois category, this implies that
Y ×X Xi is not initial. Then p1 and p2 are both isomorphisms. So p2 ◦p−1

1 : Y → Xi

is an isomorphism and, by de�nition of �bred product, qi ◦ p2 ◦ p−1
1 = f . So f is

equivalent to qi.
Now we prove uniqueness. Assume that i, j ∈ {1, . . . , n} are such that f is equiv-
alent to both qi and qj . Then qi is equivalent to qj , which by remark 1.2.16 im-
plies that Im(F (qi)) = Im(F (qj)). Since F (X) is isomorphic to the disjoint union∐n
i=1 F (Xi), we have that Im(F (qi)) and Im(F (qj)) are disjoint unless i = j. So

Im(F (qi)) = Im(F (qj)) implies that i = j.

Proposition 1.2.20. Every object of C is the sum of its connected components.

Proof. Let X be an object of C. We prove the claim by induction on n = |F (X)|.
If |F (X)| = 0, then F (X) = ∅. Then X ∼= 0, by lemma 1.2.17. So X is the sum
of the empty collection of objects (remark 1.1.2(2)). On the other hand, X has no
connected subobjects (see example 1.2.11(3) and remark 1.2.13(1)). So X is the sum
of its connected subobjects.
Assume the claim is true for every Y such that |F (Y )| < n. If X is connected,

then its only connected subobject is X
idX−−→ X. Clearly, X =

∐1
i=1X, so the

claim is true. If X is not connected, there exists a monomorphism f : Y → X
such that Y is not initial and f is not an isomorphism. Then, by remark 1.2.16(2),
Im(F (f)) 6= ∅ and Im(F (f)) 6= F (X). This means that 0 < | Im(F (f))| < n. By
corollary 1.2.10, F (f) is injective. So |F (Y )| = | Im(F (f))|. Then 0 < |F (Y )| < n.
By (G3) of the de�nition of Galois category, there exists an object Z and a morphism
q2 : Z → X such that X, together with q1 = f and q2, is the sum of Y and Z.
Then, by (G5) of the de�nition of Galois category and by example 1.1.3(3), F (X),
together with F (f) : F (Y ) → F (X) and F (q2) : F (Z) → F (X), is isomorphic
to the disjoint union F (Y ) q F (Z), together with the canonical inclusions. Notice
that this implies that F (q2) is injective and so q2 is a monomorphism by corollary
1.2.10. Moreover, n = |F (X)| = |F (Y )| + |F (Z)|. Since |F (Y )| > 0, we have
|F (Z)| < n. Then we can apply induction to both Y and Z. In this way, we get
Y =

∐m
i=1 Yi and Z =

∐p
j=1 Zj , where Y1 → Y, . . . , Ym → Y are the connected

subobjects of Y and Z1 → Z, . . . , Zp → Z are the connected subobjects of Z. Then
X = Y q Z = (

∐m
i=1 Yi)q (

∐p
j=1 Zj).

Since the composition of monomorphisms is a monomorphism, composition with f
gives that Y1 → X, . . . , Ym → X are connected subobjects ofX and composition with
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q2 gives that Z1 → X, . . . , Zp → X are connected subobjects of X. We claim that
they are all the connected subobjects of X. Let g : W → X be a monomorphism,
with W connected. Since X = (

∐m
i=1 Yi) q (

∐p
j=1 Zj) and Y1, . . . , Ym, Z1, . . . , Zp

are connected, we can apply lemma 1.2.19 to conclude that there exists either i ∈
{1, . . . ,m} such that g is equivalent to Yi → X or j ∈ {1, . . . , p} such that g is
equivalent to Zj → X.

Corollary 1.2.21. Let X be an object of C and σ ∈ AutC(X). Then σ permutes
the connected components of X, i.e., if q1 : X1 → X, . . . , qn : Xn → X are the
(pairwise distinct) connected components of X, then for any j ∈ {1, . . . , n} there
exists a unique j′ ∈ {1, . . . , n} such that σ ◦ qj is equivalent to qj′.

Proof. By proposition 1.2.20, we have that X =
∐n
i=1Xi. Let j ∈ {1, . . . , n}. Since

composition of monomorphisms is a monomorphism, we have that σ◦qj : Xj → X =∐n
i=1Xi is a monomorphism. Since X1, . . . , Xn are connected, we can apply lemma

1.2.19, which leads directly to the claim.

Example 1.2.22. If π is a pro�nite group and X a �nite π-set, then the decomposition
of X in connected components coincides with its orbit decomposition, by example
1.2.14(2).

The proposition 1.2.20 is certainly useful to understand the objects of C, because
it reduces the problem of describing them to the problem of describing the connected
objects. However, the �rst thing that we want to do with connected objects is to
construct a projective system in C, in order to show that F is prorepresentable. We
will take into consideration pairs of the form (A, a), where A is a connected object
of C and a ∈ F (A), and use them to de�ne a directed partially ordered set. Before
doing it, we need to recall another notion in category theory.

De�nition 1.2.23. Let X, Y be objects of C, with two morphisms f, g : X →
Y . An equalizer of f and g is an object Eq(f, g) of C, together with a morphism
ι : Eq(f, g) → X, such that f ◦ ι = g ◦ ι and, for any object Z with a morphism
u : Z → X satisfying f ◦ u = g ◦ u, there exists a unique morphism v : Z → Eq(f, g)
such that u = ι ◦ v. This de�nition is illustrated by the following commutative
diagram.

Eq(f, g)

Z

X Y

......
......

......
......

......
......

......
......

......
......

......
......

..............................

v
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.............
............

........................................................................................ ............
ι ........................................................................................ ............

........................................................................................ ............
f
g

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

..................

............

u

Remark 1.2.24. Being de�ned through a universal property, the equalizer of two
morphisms, if it exists, is unique up to a unique isomomorphism.

Example 1.2.25. Let X, Y be �nite sets, with two maps f, g : X → Y . Set W :=
{x ∈ X | f(x) = g(x)} ⊆ X. ThenW is a �nite set. We claim thatW , together with
the canonical inclusion ι : W → X, is the equalizer of f and g in the category sets
(notice that ι is injective, i.e. a monomorphism: we will show that this holds also in
arbitrary categories). If x ∈ W , then by de�nition f(ι(x)) = f(x) = g(x) = g(ι(x)).
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So f ◦ ι = g ◦ ι. Let Z be a �nite set and u : Z → X a map such that f ◦ u = g ◦ u.
Then, for any z ∈ Z, we have f(u(z)) = g(u(z)), which implies that u(z) ∈ W . So
u(Z) ⊆ W . Then we can de�ne v = u : Z → W and we have clearly that u = ι ◦ v.
On the other hand, this is the unique possible de�nition if we want the diagram to
commute.

Lemma 1.2.26. Let X, Y be objects of C, with two morphisms f, g : X → Y .
Consider the �bred product X ×Y X, with projections p1 : X ×Y X → X, p2 :
X ×Y X → X, and the product X ×X = X ×1X, with projections q1 : X ×X → X,
q2 : X × X → X (both the product and the �bred product exist by (G1) of the
de�nition of Galois category). There exist a morphism p : X ×Y X → X ×X and a
morphism ∆ : X → X ×X such that the �bred product X ×X×X (X ×Y X), together
with the projection on the �rst factor, is an equalizer of f and g (again, this �bred
product exists by (G1) of the de�nition of Galois category). In particular, any pair
of morphisms admits an equalizer in the Galois category C.

Proof. Let h : X → 1 be the unique morphisms from X to the terminal object 1.
Since there is a unique morphism X ×Y X → 1, we have h ◦ p1 = h ◦ p2. Consider
then the following diagram.

X ×Y X

X ×X

X

X

1

............................................................................................................................................................................................................................................................................................................................ ........
....

p1

...................................................................................................................................................................................................................................................................................................................................................................... ..........
..

p2

...................................................................................
.....
.......
.....

q1

........................................................................................ ............

q2

........................................................................................ ............
h

...................................................................................
.....
.......
.....

h

By the universal property of the �bred product, there exists a unique morphism
p : X ×Y X → X × X such that q1 ◦ p = p1 and q2 ◦ p = p2. Consider now the
following diagram.

X

X ×X

X

X

1

............................................................................................................................................................................................................................................................................................................................ ........
....

idX

...................................................................................................................................................................................................................................................................................................................................................................... ..........
..

idX

...................................................................................
.....
.......
.....

q1

........................................................................................ ............

q2

........................................................................................ ............
h

...................................................................................
.....
.......
.....

h

By the universal property of the �bred product, there exists a unique morphism
∆ : X → X ×X such that q1 ◦∆ = idX = q2 ◦∆. Let us consider the �bred product
X ×X×X (X ×Y X) and let ι : X ×X×X (X ×Y X)→ X, κ : X ×X×X (X ×Y X)→
X ×Y X be the two projections. By de�nition of �bred product, ∆ ◦ ι = p ◦ κ. Then
we have

ι = idX ◦ι = q1 ◦∆ ◦ ι = q1 ◦ p ◦ κ = p1 ◦ κ

and
ι = idX ◦ι = q2 ◦∆ ◦ ι = q2 ◦ p ◦ κ = p2 ◦ κ .
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So, since f ◦ p1 = g ◦ p2 by de�nition of X ×Y X, we have that f ◦ ι = f ◦ p1 ◦ κ =
g ◦ p2 ◦ κ = g ◦ ι.
Moreover, let Z be an object of C with a morphism u : Z → X such that f ◦u = g◦u.
By the universal property of the �bred product X ×Y X, there exists a unique
u′ : Z → X ×Y X such that p1 ◦ u′ = u = p2 ◦ u′. We have that

q1 ◦ p ◦ u′ = p1 ◦ u′ = u = idX ◦u = q1 ◦∆ ◦ u

and
q2 ◦ p ◦ u′ = p2 ◦ u′ = u = idX ◦u = q2 ◦∆ ◦ u .

By uniqueness in the universal property for the product X ×X = X ×1 X, we must
have p ◦ u′ = ∆ ◦ u. Consider now the following diagram.

Z

X ×X×X (X ×Y X)

X

X ×Y X

X ×X


...

u


.

u′

...................................................................................
.....
.......
.....

ι

........................................................................................ ............

κ

........................................................................................ ............
∆

...................................................................................
.....
.......
.....

p

By the universal property of the �bred product, there exists a unique v : Z →
X ×X×X (X ×Y X) such that ι ◦ v = u and κ ◦ v = u′.
To conclude, let ṽ : Z → X ×X×X (X ×Y X) be such that ι ◦ ṽ = u. Then
p1 ◦ κ ◦ ṽ = ι ◦ ṽ = u and p2 ◦ κ ◦ ṽ = ι ◦ ṽ = u. By uniqueness of u′, this implies
κ ◦ ṽ = u′. Hence ṽ = v.

Corollary 1.2.27. F commutes with equalizers.

Proof. It follows by (G4) of the de�nition of Galois category and by lemma 1.2.26
(applied to both C and sets), since p and ∆ were constructed using the universal
property of the �bred product.

Lemma 1.2.28. Let X, Y be objects of C, with two morphisms f, g : X → Y .
Consider the equalizer Eq(f, g), together with the morphism ι : Eq(f, g)→ X, as in
the de�nition. Then ι is a monomorphism.

Proof. Let Z be an object of C, with two morphisms h1, h2 : Z → Eq(f, g) such that
ι ◦ h1 = ι ◦ h2. Since f ◦ ι = g ◦ ι, we have that f ◦ ι ◦ h1 = g ◦ ι ◦ h1. Then, by the
universal property of the equalizer, there exists a unique morphism h : Z → Eq(f, g)
such that ι ◦ h = ι ◦ h1. This implies h1 = h2.

Corollary 1.2.29. Let A, X be objects of C, with A connected, and let f, g : A→ X
be two morphisms. Then Eq(f, g) is initial or f = g.

Proof. By lemma 1.2.28, ι : Eq(f, g) → A is a monomorphism. By de�nition of
connected objects, this implies that either Eq(f, g) is initial or ι is an isomorphism.
In the last case, we have

f = f ◦ idA = f ◦ ι ◦ ι−1 = g ◦ ι ◦ ι−1 = g ◦ idA = g

(f ◦ ι = g ◦ ι by de�nition of equalizer).
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Lemma 1.2.30. Let A be a connected object of C and a ∈ F (A). For any object X
of C, de�ne the map

ψX(A,a) : HomC(A,X)→ F (X), f 7→ F (f)(a) .

Then ψX(A,a) is injective.

Proof. Let f, g ∈ HomC(A,X) such that ψX(A,a)(f) = ψX(A,a)(g). This means that
F (f)(a) = F (g)(a). Then a ∈ Eq(F (f), F (g)) ⊆ F (A) (see example 1.2.25). In
particular, Eq(F (f), F (g)) 6= ∅. By corollary 1.2.27, we have that Eq(F (f), F (g)) ∼=
F (Eq(f, g)). So F (Eq(f, g)) 6= ∅ and, by (G5) of the de�nition of Galois category,
this implies that Eq(f, g) is not initial. Since A is connected, by corollary 1.2.29 we
must have f = g. Hence ψX(A,a) is injective.

Lemma 1.2.31. Let I := {(A, a) | A connected, a ∈ F (A)}. We de�ne the following
relation on I:

(A, a) ≥ (B, b) ⇐⇒ ∃f ∈ HomC(A,B) : b = F (f)(a) .

This relation is a preorder, i.e. it is re�exive and transitive. Moreover, (A, a) ≥
(B, b) and (B, b) ≥ (A, a) if and only if there exists an isomorphism f : A→ B such
that b = F (f)(a). In this case we write (A, a) ∼ (B, b). Then we have an induced
order relation on the quotient I/∼. Denote this quotient with I. Then I is a directed
partially ordered set.

Proof. Let (A, a) ∈ I and consider idA ∈ HomC(A,A). Since F is a functor,
F (idA) = idF (A). Then a = idF (A)(a) = F (idA)(a). This shows that (A, a) ≥ (A, a)
and so ≥ is re�exive.
Let (A, a), (B, b), (C, c) ∈ I such that (A, a) ≥ (B, b) and (B, b) ≥ (C, c). Then there
exist f ∈ HomC(A,B), g ∈ HomC(B,C) such that F (f)(a) = b and F (g)(b) = c.
We have that g ◦ f ∈ HomC(A,C) and, since F is a functor, F (g ◦ f) = F (g) ◦F (f).
So F (g ◦ f)(a) = F (g)(F (f)(a)) = F (g)(b) = c. This shows that (A, a) ≥ (C, c) and
so ≥ is transitive.
Assume that (A, a), (B, b) ∈ I are such that (A, a) ≥ (B, b) and (B, b) ≥ (A, a).
Then there exist f ∈ HomC(A,B), g ∈ HomC(B,A) such that F (f)(a) = b and
F (g)(b) = a. We have that g ◦ f ∈ HomC(A,A) and F (g ◦ f)(a) = F (g)(F (f)(a)) =
F (g)(b) = a = F (idA)(a). This means that ψX(A,a)(g ◦ f) = ψX(A,a)(idA), which by
lemma 1.2.30 implies that g ◦ f = idA. Analogously, one can show that f ◦ g = idB.
So f and g are inverse to each other. In particular, f is an isomorphism.
Conversely, assume that (A, a), (B, b) ∈ I and there exists an isomorphism f : A→
B with b = F (f)(a). Clearly, this implies that (A, a) ≥ (B, b). Moreover, we have
that f−1 ∈ HomC(B,A) and F (f−1) = F (f)−1. So F (f−1)(b) = F (f)−1(b) = a.
This shows that (B, b) ≥ (A, a).
The last thing that we have to prove is that I is a directed partially ordered set.
First of all, I is a set because C is essentially small (on the other hand, I could be
a proper class).
Let [(A, a)]∼, [(B, b)]∼ ∈ I. Consider the product A × B = A ×1 B. By proposi-
tion 1.2.20, we can write A×B =

∐n
i=1Ci, with each Ci connected (with morphisms
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qj : Cj → A×B for any j = 1, . . . , n, as in the de�nition 1.1.1(3)). By (G4) of the def-
inition of Galois category, there exists an isomorphism ϕ : F (A)×F (B)→ F (A×B)
such that p′1 = F (p1)◦ϕ and p′2 = F (p2)◦ϕ, where p1 : A×B → A, p2 : A×B → B,
p′1 : F (A)×F (B)→ F (A), p′2 : F (A)×F (B)→ F (B) are the projections. Consider
now (a, b) ∈ F (A)× F (B). Then ϕ((a, b)) ∈ F (A×B). By (G5) of the de�nition of
Galois category, F (A×B) = F (

∐n
i=1Ci)

∼=
∐n
i=1 F (Ci) (disjoint union, see example

1.1.3(3)) and the isomorphism is compatible with the inclusions. So there exists a
unique j ∈ {1, . . . , n} such that ϕ((a, b)) ∈ Im(F (qj)). Let c ∈ F (Cj) be such that
ϕ((a, b)) = F (qj)(c). Then we have

F (p1 ◦ qj)(c) = F (p1)(F (qj)(c)) = F (p1)(ϕ((a, b))) = p′1((a, b)) = a

and

F (p2 ◦ qj)(c) = F (p2)(F (qj)(c)) = F (p2)(ϕ((a, b))) = p′2((a, b)) = b .

This shows that (Cj , c) ≥ (A, a) and (Cj , c) ≥ (B, b). Then [(Cj , c)]∼ ≥ [(A, a)]∼
and [(Cj , c)]∼ ≥ [(B, b)]∼. Hence I is directed.

Remark 1.2.32. (1) While the de�nition of connected object is independent of the
functor F , we have that I and I depend on F , because on the one hand an
element of I is identi�ed not only by a connected object A, but also by an
element a ∈ F (A), and on the other hand also the relation de�ned in lemma
1.2.31 depends on F .

(2) Let (A, a), (B, b) ∈ I and (A, a) ≥ (B, b). By de�nition, this means that
there exists f : A → B such that b = F (f)(a). Assume that f ′ : A → B is
another morphism such that b = F (f ′)(a). Then ψX(A,a)(f) = F (f)(a) = b =

F (f ′)(a) = ψX(A,a)(f
′), which by lemma 1.2.30 implies that f = f ′. So the

morphism f that appears in the de�nition of ≥ is uniquely determined.

Lemma 1.2.33. Let I be de�ned as in lemma 1.2.31. For any i ∈ I, choose a pair
(Ai, ai) ∈ I such that i = [(Ai, ai)]∼. For any i, j ∈ I such that i ≥ j (i.e. (Ai, ai) ≥
(Aj , aj)), let fij : Ai → Aj be the unique morphism such that F (fij)(ai) = aj (see
remark 1.2.32(2)). Then (Ai)i∈I , (fij : Ai → Aj)i,j∈I, i≥j is a projective system in
C.

Proof. For any i ∈ I, we have F (idAi)(ai) = ai (because F is a functor). By
uniqueness, this implies that fii = idAi .
Let i, j, k ∈ I such that i ≥ j ≥ k. Since F is a functor, we have that

F (fjk ◦ fij)(ai) = F (fjk)(F (fij)(ai)) = F (fjk)(aj) = ak .

By uniqueness, this implies that fik = fjk ◦ fij .

Remark 1.2.34. In lemma 1.2.33, we made a choice in order to de�ne a projective
system. So this projective system is not uniquely determined. However, the choice
does not a�ect the functor lim−→i∈I HomC(Ai,−), which is what we are interested
in. Indeed, if for any i ∈ I we choose (Bi, bi) ∈ I such that i = [(Bi, bi)]∼, then
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there exists a unique isomorphism ϕi : Bi → Ai such that F (ϕi)(bi) = ai. This
isomorphism gives rise to a bijection

ϕ∗i : HomC(Ai, X)→ HomC(Bi, X), f 7→ f ◦ ϕi ,

for any objectX of C. Moreover, if i, j ∈ I and i ≥ j, we have that gij := ϕ−1
j ◦fij◦ϕi

is the unique morphism Bi → Bj such that F (gij)(bi) = bj . So the following diagram
is commutative.

HomC(Ai, X)

HomC(Aj , X)

HomC(Bi, X)

HomC(Bj , X)

........................................................................................ ............
ϕ∗i

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

..................

............

f∗ij

........................................................................................ ............
ϕ∗j .......

.......

.......

.......

.......

.......

.......

.......

.......

.......

..................

............

g∗ij

At this point, one can use the universal property of the injective limit to �glue�
together the bijections ϕ∗i and get a bijection

ΦX : lim−→
i∈I

HomC(Ai, X)→ lim−→
i∈I

HomC(Bi, X) .

If X, Y are two objects of C and h : X → Y is a morphism, then it can be proved
that ΦY ◦ lim−→i∈I HomC(Ai, h) = lim−→i∈I HomC(Bi, X) ◦ ΦX . This shows that the
functors lim−→i∈I HomC(Ai,−) and lim−→i∈I HomC(Bi,−) are isomorphic.

Proposition 1.2.35. F is isomorphic to the functor lim−→i∈I HomC(Ai,−), where the
projective system is the one de�ned in lemma 1.2.33. In particular, F is prorepre-
sentable.

Proof. Let X be an object of C. For any i ∈ I, consider the map ψX(Ai,ai), as de�ned
in lemma 1.2.30. Let i, j ∈ I such that i ≥ j. For any f ∈ HomC(Aj , X), we have
that(

ψX(Ai,ai) ◦ f
∗
ij

)
(f) = ψX(Ai,ai)(f ◦ fij) = F (f ◦ fij)(ai) =

= F (f)(F (fij)(ai)) = F (f)(aj) = ψX(Aj ,aj)(f) .

Then ψX(Ai,ai) ◦f
∗
ij = ψX(Aj ,aj). By the universal property of the injective limit (lemma

1.2.4), there exists a unique map ψX : lim−→i∈I HomC(Ai, X) → F (X) such that

ψX(Aj ,aj) = ψX ◦ fXj for any j ∈ I, where fXj : HomC(Aj , X)→ lim−→i∈I HomC(Ai, X)

is de�ned by fXj (g) = [g]∼. We claim that ψX is bijective.
Let [g1]∼, [g2]∼ ∈ lim−→i∈I HomC(Ai, X) such that ψX([g1]∼) = ψX([g2]∼). Then there
exist i, j ∈ I such that g1 ∈ HomC(Ai, X), g2 ∈ HomC(Aj , X). Since I is directed,
there exists k ∈ I such that k ≥ i and k ≥ j. Then

ψX(Ak,ak)(fik(g1)) = ψX(fXk (fik(g1))) = ψX([fik(g1)]∼) = ψX([g1]∼) =

= ψX([g2]∼) = ψX([fjk(g2)]∼) = ψX(fXk (fjk(g2))) = ψX(Ak,ak)(fjk(g2)) .

But we know that ψX(Ak,ak) is injective (lemma 1.2.30). So we must have fik(g1) =

fjk(g2), which implies that g1 ∼ g2. Hence [g1]∼ = [g2]∼ and ψX is injective.
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Let x ∈ F (X). By proposition 1.2.20, we have X =
∐n
α=1Xα, where q1 : X1 →

X, . . . , qn : Xn → X are the connected components of X. By (G5) of the de�nition
of Galois category, F (X) ∼=

∐n
α=1 F (Xα) and the isomorphism is compatible with

inclusions. Then there exists a unique β ∈ {1, . . . , n} such that x ∈ Im(F (qβ)). So
there exists a ∈ F (Xβ) such that x = F (qβ)(a). Since Xβ is connected, we have
that (Xβ, a) ∈ I. Set j := [(Xβ, a)]∼ ∈ I. Then (Xβ, a) ∼ (Aj , aj), i.e. we have an
isomorphism f : Aj → Xβ such that F (f)(aj) = a. Then qβ ◦f ∈ HomC(Aj , X) and

ψX(Aj ,aj)(qβ ◦ f) = F (qβ ◦ f)(aj) = F (qβ)(F (f)(aj)) = F (qβ)(a) = x .

Hence [qβ ◦ f ]∼ ∈ lim−→i∈I HomC(Ai, X) and ψX([qβ ◦ f ]∼) = ψX(fXj (qβ ◦ f)) =

ψX(Aj ,aj)(qβ ◦ f) = x. This shows that ψX is surjective.

It remains to prove that the bijections ψX 's are compatible with morphisms. Let X,
Y be objects of C and h : X → Y a morphism. Let i ∈ I and consider the following
diagram.

HomC(Ai, X)

HomC(Ai, Y )

F (X)

F (Y )

........................................................................................ ............

ψX(Ai,ai)

...................................................................................
.....
.......
.....

h ◦ −

........................................................................................ ............

ψY(Ai,ai)

...................................................................................
.....
.......
.....

F (h)

For any g ∈ HomC(Ai, X), we have that(
F (h) ◦ ψX(Ai,ai)

)
(g) = F (h)

(
ψX(Ai,ai)(g)

)
= F (h)(F (g)(ai)) =

= F (h ◦ g)(ai) = ψY(Ai,ai)(h ◦ g) .

Hence the diagram is commutative. Now we work with the limit. We have to
show that F (h) ◦ ψX = ψY ◦ lim−→i∈I HomC(Ai, h). By uniqueness in the universal

property of the injective limit, it is enough to prove that F (h) ◦ ψX ◦ fXj = ψY ◦
lim−→i∈I HomC(Ai, h) ◦ fXj for any j ∈ I. Let g ∈ HomC(Aj , X). By de�nition, we

have that
(

lim−→i∈I HomC(Ai, h) ◦ fXj
)

(g) = [h ◦ g]∼ (see lemma 1.2.6). Then, by

what we proved above, we have(
ψY ◦ lim−→

i∈I
HomC(Ai, h) ◦ fXj

)
(g) = ψY ([h ◦ g]∼) = ψY

(
fYj (h ◦ g)

)
=

= ψY(Aj ,aj)(h ◦ g) =
(
F (h) ◦ ψX(Aj ,aj)

)
(g) =

(
F (h) ◦ ψX ◦ fXj

)
(g) .

This ends the proof.

1.3 A pro�nite group

Now that we have a very concrete description of the functor F , the next step is to
de�ne a pro�nite group which acts in a natural way on F (X) for any object X.
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De�nition 1.3.1. An object A of C is called a Galois object if it is connected and
A/AutC(A) is terminal.

Remark 1.3.2. (1) For any connected object A of C, lemma 1.2.30 implies that
|HomC(A,A)| ≤ |F (A)|. Then, since AutC(A) is a subset of HomC(A,A), we
have that

|AutC(A)| ≤ |HomC(A,A)| ≤ |F (A)| .

In particular, AutC(A) is �nite, because F (A) is �nite. Then the quotient
A/AutC(A) exists by (G2) of the de�nition of Galois category. Hence the
de�nition 1.3.1 makes sense.

(2) The property of being a Galois object is invariant by isomorphism. Indeed,
assume that ϕ : A → B is an isomorphism and A is Galois. In particular, A
is connected and this implies that B is also connected (see remark 1.2.13(3)).
Denote by pA : A → A/AutC(A) and pB : B → B/AutC(B) the morphisms
that appear in the de�nition of the quotient (see de�nition 1.1.1(5)). Let
σ ∈ AutC(A). Then ϕ ◦ σ ◦ ϕ−1 ∈ AutC(B). So, by de�nition of quotient,
pB ◦ ϕ ◦ σ ◦ ϕ−1 = pB. Hence (pB ◦ ϕ) ◦ σ = pB ◦ ϕ. Since this holds for
any σ ∈ AutC(A), by the universal property of the quotient there exists a
unique morphism Φ : A/AutC(A) → B/AutC(B) such that pB ◦ ϕ = Φ ◦
pA. In the same way, one can show that there exists a unique morphism
Ψ : B/AutC(B)→ A/AutC(A) such that pA ◦ ϕ−1 = Ψ ◦ pB. Then

(Ψ ◦ Φ) ◦ pA = Ψ ◦ pB ◦ ϕ = pA ◦ ϕ−1 ◦ ϕ = pA = idA/AutC(A) ◦pA .

By uniqueness in the universal property of the quotient, this implies Ψ ◦
Φ = idA/AutC(A). Analogously, Φ ◦ Ψ = idB/AutC(B). So A/AutC(A) ∼=
B/AutC(B). Since A is Galois, A/AutC(A) is terminal. Hence B/AutC(B)
is also terminal, i.e. B is Galois.

(3) The de�nition of Galois object does not depend on the functor F .

Lemma 1.3.3. Let X be an object of C. Then |F (X)| = 1 if and only if X is
terminal.

Proof. By (G4) of the de�nition of Galois category, if X is terminal then F (X) is
also terminal, i.e. a singleton (example 1.1.3(1)).
Conversely, assume that |F (X)| = 1, i.e. F (X) is a singleton. Let f : X → 1 be the
unique morphism from X to the terminal object. Consider the map F (f) : F (X)→
F (1). By (G4) of the de�nition of Galois category, F (1) is a singleton. Then F (f)
is a map from a singleton to another singleton. So F (f) must be a bijection, i.e. an
isomorphism of sets. By (G6) of the de�nition of Galois category, this implies that
f is an isomorphism. So X is terminal.

Lemma 1.3.4. Let A be a connected object. Let AutC(A) act on F (A) via σx =
F (σ)(x), for any σ ∈ AutC(A), x ∈ F (A). Then A is Galois if and only this action
is transitive (recall that an action is called transitive if there is exactly one orbit). In
this case, the action is also free (recall that an action is called free if all the stabilizers
are trivial) and |AutC(A)| = |HomC(A,A)| = |F (A)|.
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Proof. Since we know that A is connected, A is Galois if and only A/AutC(A) is
terminal. By (G5) of the de�nition of Galois category,

F (A/AutC(A)) ∼= F (A)/F (AutC(A)) .

Then A/AutC(A) is terminal if and only if |F (A)/F (AutC(A))| = 1, by lemma
1.3.3. But, by example 1.1.3(5), F (A)/F (AutC(A)) is the set of orbits of F (A)
under the action of F (AutC(A)). So A/AutC(A) is terminal if and only if the
action of F (AutC(A)) on F (A) has exactly one orbit, i.e. if and only if this action
is transitive. From the de�nition of the action of AutC(A) on F (A), it is clear that
it is transitive if and only if the action of F (AutC(A)) on F (A) is transitive. This
allows us to conclude that A is Galois if and only if the action of AutC(A) on F (A)
is transitive.
We prove now that in this case the action of AutC(A) on F (A) is also free. By the
orbit-stabilizer theorem, if the action is transitive we have

|F (A)| = |AutC(A)|
| StabAutC(A)(x)|

≤ |AutC(A)| ,

for any x ∈ F (A). But we know that |AutC(A)| ≤ |HomC(A,A)| ≤ |F (A)| (remark
1.3.2). Hence |AutC(A)| = |HomC(A,A)| = |F (A)| and |StabAutC(A)(x)| = 1 for
any x ∈ F (A), i.e. the action of AutC(A) on F (A) is free.

Lemma 1.3.5. Let X be an object of C. Then there exists a pair (A, a) ∈ I (where
I is de�ned as in lemma 1.2.31) such that A is Galois and ψX(A,a) : HomC(A,X)→
F (X) (de�ned as in lemma 1.2.30) is a bijection.

Proof. By (G1) of the de�nition of Galois category, in C any collection of objects
(Xj)j∈J with J �nite admits a product (de�ned recursively), denoted by

∏
j∈J Xj

(if Xj = Z for any j ∈ J , we can also use the notation ZJ). Then, since F (X) is
�nite, we can consider the object Y :=

∏
x∈F (X)X = XF (X). Applying inductively

(G4) of the de�nition of Galois category, we get that there exists an isomorphism
ϕ :
∏
x∈F (X) F (X) = F (X)F (X) → F (Y ), compatible with the projections. For any

x ∈ F (X), de�ne bx = x. Then b := (bx)x∈F (X) ∈
∏
x∈F (X) F (X) and y := ϕ(b) ∈

F (Y ). By proposition 1.2.20, we can write Y =
∐n
i=1Ai, where q1 : A1 → Y, . . . , qn :

An → Y are the connected components of Y . By (G5) of the de�nition of Galois
category, we have that F (Y ) ∼=

∐n
i=1 F (Ai) (disjoint union, by example 1.1.3(3))

and the isomorphism is compatible with the inclusions. So there exists a unique
j ∈ {1, . . . , n} such that y ∈ Im(F (qj)). Then there exists a ∈ F (Aj) such that
y = F (qj)(a). We claim that (Aj , a) has the desired properties.
For any x ∈ F (X), let px : Y → X be the projection on the x-th factor. Then
F (px) ◦ ϕ :

∏
x∈F (X) F (X) → F (X) is the projection on the x-th factor. We have

that px ◦ qj ∈ HomC(Aj , X) and

ψX(Aj ,a)(px ◦ qj) = F (px ◦ qj)(a) = F (px)(F (qj)(a)) =

= F (px)(y) = F (px)(ϕ(b)) = bx = x .
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Then ψX(Aj ,a) : HomC(Aj , X) → F (X) is surjective. By lemma 1.2.30, it is also

injective. So it is a bijection. In particular, |HomC(Aj , X)| = |F (X)|. It remains
to prove that Aj is Galois. By lemma 1.3.4, we have to prove that the action of
AutC(Aj) on F (Aj) is transitive.
Let a′ ∈ F (Aj) and consider the map ψX(Aj ,a′) : HomC(Aj , X)→ F (X). This map is

injective by lemma 1.2.30. Then it must be a bijection, because |HomC(Aj , X)| =
|F (X)| and the sets are �nite. Then the map

ψ := ψX(Aj ,a′) ◦
(
ψX(Aj ,a)

)−1
: F (X)→ F (X)

is also a bijection (i.e. a permutation of the �nite set F (X)). By the universal
property of the product, there exists a morphism σ : Y → Y such that px ◦σ = pψ(x)

for any x ∈ F (X). Analogously, there exists a morphism σ′ : Y → Y such that
px ◦ σ′ = pψ−1(x) for any x ∈ F (X). These morphisms are inverse to each other (by
uniqueness in the universal property of the product). So σ is an automorphism of
Y , i.e. σ ∈ AutC(Y ). We claim that F (σ)(y) = F (qj)(a

′). Let x ∈ F (X). From the

computation above, it follows that
(
ψX(Aj ,a)

)−1
(x) = px ◦ qj . Then

ψ(x) = ψX(Aj ,a′)

((
ψX(Aj ,a)

)−1
(x)

)
= ψX(Aj ,a′)(px ◦ qj) =

= F (px ◦ qj)(a′) = F (px)(F (qj)(a
′)) .

On the other hand, we have that

F (px)(F (σ)(y)) = F (px ◦ σ)(y) = F
(
pψ(x)

)
(y) = F

(
pψ(x)

)
(ϕ(b)) = bψ(x) = ψ(x) .

So (F (px) ◦ ϕ)(ϕ−1(F (qj)(a
′))) = F (px)(F (qj)(a

′)) = F (px)(F (σ)(y)) = (F (px) ◦
ϕ)(ϕ−1(F (σ)(y))), for any x ∈ F (X). Recall that F (px) ◦ ϕ is the projection on
the x-th factor of

∏
x∈F (X) F (X). Since an element of a product of sets is uniquely

determined by its components, this implies that ϕ−1(F (σ)(y)) = ϕ−1(F (qj)(a
′)).

Then, since ϕ−1 is an isomorphism, F (σ)(y) = F (qj)(a
′), as we wanted.

Now, by corollary 1.2.21, we have that there exists a unique j′ ∈ {1, . . . , n} such
that σ ◦ qj is equivalent to qj′ , i.e. Im(F (σ ◦ qj)) = Im(F (qj′)) (remark 1.2.16).
We have that F (σ ◦ qj)(a) = F (σ)(y) = F (qj)(a

′) ∈ Im(F (σ ◦ qj)) ∩ Im(F (qj)) =
Im(F (qj′)) ∩ Im(F (qj)). In particular, Im(F (qj′)) ∩ Im(F (qj)) 6= ∅. Since F (Y ) is
isomorphic to the disjoint union

∐n
i=1 F (Ai), we have that Im(F (qj)) and Im(F (qj′))

would be disjoint if we had j 6= j′. Then we must have j = j′, i.e. σ ◦ qj is equivalent
to qj . This means that there exists an isomorphism σ̃ : Aj → Aj (i.e. σ̃ ∈ AutC(Aj))
such that σ ◦ qj = qj ◦ σ̃. Then, applying what we proved above, we have that

F (qj)(F (σ̃)(a)) = F (σ)(F (qj)(a)) = F (σ)(y) = F (qj)(a
′) .

Since qj is a monomorphism, F (qj) is injective (corollary 1.2.10). Then F (σ̃)(a) = a′.
Hence the action of AutC(Aj) on F (Aj) is transitive.

De�nition 1.3.6. Let I be a partially ordered set. We say that a subset J of I is
co�nal if for every i ∈ I there exists j ∈ J such that i ≤ j.
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Lemma 1.3.7. If I is a directed partially ordered set and J ⊆ I is co�nal, then J
is also directed.

Proof. Let j1, j2 ∈ J ⊆ I. Since I is directed, there exists k ∈ I such that k ≥ j1 and
k ≥ j2. Since J is co�nal, there exists j ∈ J such that j ≥ k. Then, by transitivity,
j ≥ j1 and j ≥ j2. Hence J is directed.

Lemma 1.3.8. Let I be a directed partially ordered set and J ⊆ I a co�nal subset.

(1) If (Si)i∈I , (fij : Si → Sj)i,j∈I, i≥j is a projective system of sets (respectively, of
groups or of topological spaces), then (Si)i∈J , (fij : Si → Sj)i,j∈J, i≥j is also a
projective system of sets (respectively, of groups or of topological spaces) and
there is a bijection (respectively, a group isomorphism or a homeomorphism)
between lim←−i∈I Si and lim←−j∈J Sj.

(2) If (Si)i∈I , (fij : Si → Sj)i,j∈I, i≤j is an injective system of sets, then (Si)i∈J ,
(fij : Si → Sj)i,j∈J, i≤j is also an injective system of sets and there is a bijection
between lim−→i∈I Si and lim−→j∈J Sj.

(3) If (Si)i∈I , (fij : Si → Sj)i,j∈I, i≥j is a projective system in C, then (Si)i∈J , (fij :
Si → Sj)i,j∈J, i≥j is also a projective system in C and lim−→i∈I HomC(Si,−) and
lim−→j∈J HomC(Sj ,−) are isomorphic as functors.

Proof. Notice that it makes sense to consider injective and projective limits indexed
by J , because J is directed by lemma 1.3.7. It is obvious from the de�nitions of
projective and injective systems that restricting the index set from I to J does not
a�ect the fact of being a projective or an injective system. So we have to prove only
the last part of each statement.

(1) For any k ∈ I, denote by fk : lim←−i∈I Si → Sk the k-th projection. Analogously,
for any k ∈ J denote by gk : lim←−j∈J Sj → Sk the k-th projection. Consider the

collection of maps (respectively, group homomorphisms or continuous maps)
(fj : lim←−i∈I Si → Sj)j∈J . Let j1, j2 ∈ J such that j1 ≥ j2. By de�nition of
projective limit, for any x = (xi)i∈I ∈ lim←−i∈I we have that (fj1j2 ◦ fj1)(x) =

fj1j2(xj1) = xj2 = fj2(x). So fj1j2 ◦ fj1 = fj2 . Then we can apply the universal
property of the projective limit to get the existence of a map (respectively, a
group homomorphism or a continuous map) ϕ : lim←−i∈I Si → lim←−j∈J Sj such
that fj = gj ◦ ϕ for any j ∈ J .
We want now to de�ne an inverse of ϕ. Let i ∈ I. Since J is co�nal, there
exists k ∈ J such that k ≥ i. De�ne hi = fki ◦ gk : lim←−j∈J Sj → Si. Let us
prove that hi does not depend on the choice of k. Assume that k1, k2 ∈ J
are such that k1 ≥ i and k2 ≥ i. Since J is directed, there exists k ∈ J
such that k ≥ k1 and k ≥ k2. By de�nition of projective system, we have
that fk1i ◦ fkk1 = fki = fk2i ◦ fkk2 . Moreover, by de�nition of projective limit
we have that, for any x = (xj)j∈J ∈ lim←−j∈J Sj , gk1(x) = fkk1(gk(x)) and

gk2(x) = fkk2(gk(x)). So gk1 = fkk1 ◦ gk and gk2 = fkk2 ◦ gk. Then

fk1i ◦ gk1 = fk1i ◦ fkk1 ◦ gk = fki ◦ gk = fk2i ◦ fkk2 ◦ gk = fk2i ◦ gk2 .
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This shows that hi is well de�ned. Then we can consider the collection of maps
(respectively, group homomorphism or continuous maps) (hi : lim←−j∈J Sj →
Si)i∈I . Let i1, i2 ∈ I such that i1 ≥ i2. Let k ∈ J be such that k ≥ i1. Then,
by transitivity, we have also that k ≥ i2. So, using the fact that fki2 = fi1i2◦fki1
(de�nition of projective system), we get

hi2 = fki2 ◦ gk = fi1i2 ◦ fki1 ◦ gk = fi1i2 ◦ hi1 .

Then we can apply the universal property of the projective limit to get the
existence of a map (respectively, a group homomorphism or a continuos map)
ψ : lim←−j∈J Sj → lim←−i∈I Si such that hi = fi ◦ ψ for any i ∈ I.
For any k ∈ I, if a ∈ J is such that a ≥ k, we have

fk ◦ (ψ ◦ ϕ) = hk ◦ ϕ = fak ◦ ga ◦ ϕ = fak ◦ fa = fk = fk ◦ idlim←−i∈I Si

(the fact that fak ◦ fa = fk can be proved as above). By uniqueness in the
universal property of the projective limit, this implies that ψ ◦ ϕ = idlim←−i∈I Si .
On the other hand, for any k ∈ J we have

gk ◦ (ϕ ◦ ψ) = fk ◦ ψ = hk = fkk ◦ gk = idSk ◦gk = gk = gk ◦ idlim←−j∈J Sj

(since k ∈ J and k ≥ k, we have that hk = fkk ◦ gk, moreover fkk = idSk by
de�nition of projective system). By uniqueness in the universal property of
the projective limit, this implies that ϕ ◦ ψ = idlim←−j∈J Sj . Hence ϕ and ψ are

inverse to each other, which proves the claim.

(2) Denote by ∼I and ∼J the equivalence relations de�ned respectively on
∐
i∈I Si

and
∐
j∈J Sj , as in lemma 1.2.2. For any k ∈ I, de�ne fk : Sk → lim−→i∈I Si, x 7→

[x]∼I . Analogously, for any k ∈ J , de�ne gk : Sk → lim−→j∈J Sj , x 7→ [x]∼J .

Consider the collection of maps (fj : Sj → lim−→i∈I Si)j∈J . Let j1, j2 ∈ J such
that j1 ≤ j2. For any x ∈ Sj1 , we have that fj2(fj1j2(x)) = [fj1j2(x)]∼I =
[x]∼I = fj1(x) (applying the de�nition of ∼I). So fj2 ◦ fj1j2 = fj1 , which
allows us to apply to universal property of the injective limit. So there exists
a map ϕ : lim−→j∈J Sj → lim−→i∈I Si such that fj = ϕ ◦ gj for any j ∈ J .
We want now to de�ne an inverse of ϕ. Let i ∈ I. Since J is co�nal, there
exists k ∈ J such that k ≥ i. De�ne hi = gk ◦ fik : Si → lim−→j∈J Sj . Let us

prove that hi does not depend on the choice of k. Assume that k1, k2 ∈ J
are such that k1 ≥ i and k2 ≥ i. Since J is directed, there exists k ∈ J
such that k ≥ k1 and k ≥ k2. By de�nition of injective system, we have that
fk1k ◦ fik1 = fik = fk2k ◦ fik2 . Moreover, by de�nition of injective limit we
have that, for any x ∈ Sk1 , gk1(x) = [x]∼J = [fk1k(x)]∼J = gk(fk1k(x)). So
gk1 = gk ◦ fk1k. Analogously, gk2 = gk ◦ fk2k. Then

gk1 ◦ fik1 = gk ◦ fk1k ◦ fik1 = gk ◦ fik = gk ◦ fk2k ◦ fik2 = gk2 ◦ fik2 .

This shows that hi is well de�ned. Then we can consider the collection of maps
(hi : lim←−j∈J Sj → Si)i∈I . Let i1, i2 ∈ I such that i1 ≤ i2. Let k ∈ J be such
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that k ≥ i2. Then, by transitivity, we have also that k ≥ i1. So, using the fact
that fi1k = fi2k ◦ fi1i2 (de�nition of injective system), we get

hi1 = gk ◦ fi1k = gk ◦ fi2k ◦ fi1i2 = hi2 ◦ fi1i2 .

Then we can apply the universal property of the injective limit to get the
existence of a map ψ : lim←−i∈I Si → lim←−j∈J Sj such that hi = ψ◦fi for any i ∈ I.
For any k ∈ J we have

(ψ ◦ ϕ) ◦ gk = ψ ◦ fk = hk = gk ◦ fkk = gk ◦ idSk = idlim←−j∈J Sj ◦gk

(since k ∈ J and k ≥ k, we have that hk = gk ◦ fkk, moreover fkk = idSk by
de�nition of injective system). By uniqueness in the universal property of the
injective limit, this implies that ψ ◦ϕ = idlim←−j∈J Sj . On the other hand, for any

k ∈ I, if a ∈ J is such that a ≥ k, we have

(ϕ ◦ ψ) ◦ fk = ϕ ◦ hk = ϕ ◦ ga ◦ fka = fa ◦ fka = fk = idlim←−i∈I Si ◦fk

(the fact that fa ◦ fka = fk can be proved as above). By uniqueness in the
universal property of the injective limit, this implies that ϕ ◦ ψ = idlim←−i∈I Si .
Hence ϕ and ψ are inverse to each other, which proves the claim.

(3) By point (2), for any object X of C we have a bijection

ϕX : lim−→
j∈J

HomC(Sj , X)→ lim−→
i∈I

HomC(Si, X) .

It remains to prove that these bijections are compatible with morphisms. Let
X, Y be objects of C and h : X → Y a morphism. We have to prove that the
following diagram is commutative.

lim−→j∈J HomC(Sj , X)

lim−→j∈J HomC(Sj , Y )

lim−→i∈I HomC(Si, X)

lim−→i∈I HomC(Si, Y )

.......................................................................................................................................... ............

ϕX.....................................................................................................................................
.....
.......
.....

lim−→j∈J HomC(Sj , h)

.......................................................................................................................................... ............
ϕY

.....................................................................................................................................
.....
.......
.....

lim−→i∈I HomC(Si, h)

By uniqueness in the universal property of the injective limit, it is enough to
show that

lim−→
i∈I

HomC(Si, h) ◦ ϕX ◦ gXk = ϕY ◦ lim−→
j∈J

HomC(Sj , h) ◦ gXk

for any k ∈ J , where gXk : HomC(Sk, X) → lim−→j∈J HomC(Sj , X) is de�ned as

in point (2). Let k ∈ J . We de�ne also fXk , fYk and gYk as in point (2). By
de�nition of ϕX and ϕY , we have that ϕX ◦ gXk = fXk and ϕY ◦ gYk = fYk . Let
ϑ ∈ HomC(Sk, X). By de�nition of the functor lim−→i∈I HomC(Si,−) (lemma
1.2.6), we have that(

lim−→
i∈I

HomC(Si, h) ◦ fXk

)
(ϑ) = [h ◦ ϑ]∼I = fYk (h ◦ ϑ) .
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Analogously,(
lim−→
j∈J

HomC(Sj , h) ◦ gXk

)
(ϑ) = [h ◦ ϑ]∼J = gYk (h ◦ ϑ) .

Then(
ϕY ◦ lim−→

j∈J
HomC(Sj , h) ◦ gXk

)
(ϑ) = (ϕY ◦ gYk )(h ◦ ϑ) =

= fYk (h ◦ ϑ) =

(
lim−→
i∈I

HomC(Si, h) ◦ fXk

)
(ϑ) =

=

(
lim−→
i∈I

HomC(Si, h) ◦ ϕX ◦ gXk

)
(ϑ) .

This ends the proof.

Lemma 1.3.9. Let X, Y be objects of C with Y connected and f : X → Y a
morphism. If X is not initial, then f is an epimorphism and F (f) is surjective.

Proof. By (G3) of the de�nition of Galois category, we can write f = u′ ◦ u′′, where
u′′ : X → Z is an epimorphism and u′ : Z → Y is a monomorphism. Since Y is
connected, we have that either Z is initial or u′ is an isomorphism. Since X is not
initial, F (X) 6= ∅ (lemma 1.2.17). Then F (Z) cannot be empty, because we have
the map F (u′′) : F (X) → F (Z). So Z is not initial (by (G5) of the de�nition of
Galois category) and this implies that u′ is an isomorphism. Since any isomorphism
is an epimorphism, u′ is an epimorphism. Then f is an epimorphism because it
is the composition of two epimorphisms. The fact that F (f) is surjective follows
immediately from (G5) of the de�nition of Galois category.

Lemma 1.3.10. Let I be de�ned as in lemma 1.2.31 and consider

J := {[(A, a)]∼ ∈ I | A Galois} ⊆ I .

Then J is co�nal. In particular, since I is directed, J is also directed.

Proof. Recalling the de�nition of I, it is enough to show that for any (B, b) ∈ I
there exists (A, a) ∈ I such that A is Galois and (A, a) ≥ (B, b). Let (B, b) ∈ I,
i.e. B is a connected object and b ∈ F (B). By lemma 1.3.5, there exists a pair
(A, a′) ∈ I such that A is Galois and ψB(A,a′) : HomC(A,B) → F (B) is bijective.
Since B is connected, B is not initial (remark 1.2.13(1)). Then F (B) 6= ∅, by lemma
1.2.17. Since ψB(A,a′) is bijective, this implies that HomC(A,B) 6= ∅, i.e. there exists
a morphism f : A → B. Since A is connected, A is not initial (remark 1.2.13(1)).
Then we can apply lemma 1.3.9 to deduce that F (f) is surjective. Then there exists
a ∈ A such that F (f)(a) = b. Hence (A, a) ≥ (B, b) and (A, a) ∈ I has the desired
properties.
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Corollary 1.3.11. F is isomorphic to the functor lim−→j∈J HomC(Aj ,−), where J is
de�ned as in lemma 1.3.10 and the projective system is given as in lemma 1.2.33,
restricting the index set to J .

Proof. It follows immediately from the lemmas 1.3.10 and 1.3.8(3), together with the
proposition 1.2.35.

Remark 1.3.12. Let J be de�ned as in lemma 1.3.10 and let j ∈ J . Then there
exists (A, a) ∈ I such that A is Galois and j = [(A, a)]∼. If (B, b) ∈ I is such that
[(B, b)]∼ = j, then we have that B is isomorphic to A and so B is also Galois (remark
1.3.2(2)).

Lemma 1.3.13. Let A, B be objects of C, with A Galois and B connected. If
HomC(A,B) 6= ∅, then the action of AutC(A) on HomC(A,B) de�ned by σ.f =
f ◦ σ−1, for any σ ∈ AutC(B), f ∈ HomC(A,B) (it is immediate to verify that this
indeed an action), is transitive.

Proof. Since A is Galois, A is connected. In particular, A is not initial (remark
1.2.13(1)). Then F (A) 6= ∅ (lemma 1.2.17), i.e. there exists a ∈ F (A). Let
f, f ′ ∈ HomC(A,B). By lemma 1.3.9, F (f ′) : F (A) → F (B) is surjective. So
there exists a′ ∈ F (A) such that F (f ′)(a′) = F (f)(a). Since A is Galois, AutC(A)
acts transitively on F (A) (lemma 1.3.4). Then there exists σ ∈ AutC(A) such that
a′ = F (σ)(a). Then we have

ψB(A,a)(f) = F (f)(a) = F (f ′)(a′) = F (f ′)(F (σ)(a)) = F (f ′ ◦ σ)(a) = ψB(A,a)(f
′ ◦ σ) .

But ψB(A,a) is injective.Then f = f ′ ◦σ, which implies that f ′ = f ◦σ−1 = σ.f . Hence
the action of AutC(A) is transitive.

We are now ready to de�ne a projective system of groups whose projective limit
will act on a natural way on F (X), for any object X.

Proposition 1.3.14. Let J be de�ned as in lemma 1.3.10. For any j ∈ J ⊆ I,
choose (Aj , aj) ∈ I as in lemma 1.2.33 (then Aj is Galois by remark 1.3.12). For
any j1, j2 ∈ J such that j1 ≥ j2, choose fj1j2 : Aj1 → Aj2 as in lemma 1.2.33. Let
σ ∈ AutC(Aj1) and consider the following diagram.

Aj1

Aj1

Aj2

Aj2

........................................................................................ ............
fj1j2

...................................................................................
.....
.......
.....

σ

........................................................................................ ............
fj1j2

.......................................................
.....
.......
.....

?

Then:

(1) there exists a unique τσj1j2 ∈ AutC(Aj2) such that τσj1j2 ◦ fj1j2 = fj1j2 ◦ σ;

(2) the map ρj1j2 : AutC(Aj1) → AutC(Aj2), σ 7→ τσj1j2 is a surjective group
homomorphism;

(3) (AutC(Aj))j∈J , (ρj1j2 : AutC(Aj1) → AutC(Aj2))j1,j2∈J, j1≥j2 is a projective
system of groups.
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Proof. (1) Consider aj2 ∈ F (Aj2) and F (fj1j2 ◦ σ)(aj1) ∈ F (Aj2). Since Aj2
is Galois, AutC(Aj2) acts freely and transitively on F (Aj2), by lemma 1.3.4.
Then there exists a unique τσj1j2 ∈ AutC(Aj2) such that F (τσj1j2)(aj2) =
F (fj1j2 ◦ σ)(aj1). By the choice of fj1j2 , we have that aj2 = F (fj1j2)(aj1).
Then we have

ψ
Aj2
(Aj1 ,aj1 )(τσj1j2 ◦ fj1j2) = F (τσj1j2 ◦ fj1j2)(aj1) = F (τσj1j2)(aj2) =

= F (fj1j2 ◦ σ)(aj1) = ψ
Aj2
(Aj1 ,aj1 )(fj1j2 ◦ σ) .

By lemma 1.2.30, this implies that τσj1j2 ◦ fj1j2 = fj1j2 ◦ σ.
On the other hand, if τ ∈ AutC(Aj2) is such that τ ◦ fj1j2 = fj1j2 ◦ σ, then we
have

F (τ)(aj2) = F (τ)(F (fj1j2)(aj1)) = F (τ ◦ fj1j2)(aj1) = F (fj1j2 ◦ σ)(aj1) .

This implies that τ = τσj1j2 and so we have uniqueness.

(2) By point (1), ρj1j2 is a well-de�ned map. Let σ1, σ2 ∈ AutC(Aj1). Applying
the de�nition of ρj1j2 , we get that

(ρj1j2(σ1) ◦ ρj1j2(σ2)) ◦ fj1j2 = ρj1j2(σ1) ◦ (ρj1j2(σ2) ◦ fj1j2) =

= ρj1j2(σ1) ◦ (fj1j2 ◦ σ2) = (ρj1j2(σ1) ◦ fj1j2) ◦ σ2 =

= (fj1j2 ◦ σ1) ◦ σ2 = fj1j2 ◦ (σ1 ◦ σ2) .

By uniqueness in point (1), this implies that ρj1j2(σ1)◦ρj1j2(σ2) = ρj1j2(σ1σ2).
So ρj1j2 is a group homomorphism.
We prove now that ρj1j2 is surjective. Let τ ∈ AutC(Aj2). Since fj1j2 ∈
HomC(Aj1 , Aj2), we have that HomC(Aj1 , Aj2) 6= ∅. Since Aj1 is Galois and
Aj2 is connected, we can apply lemma 1.3.13 and get that AutC(Aj1) acts
transitively on HomC(Aj1 , Aj2). We have that fj1j2 ∈ HomC(Aj1 , Aj2) and
τ ◦ fj1j2 ∈ HomC(Aj1 , Aj2). Then there exists σ ∈ AutC(Aj1) such that τ ◦
fj1j2 = σ.fj1j2 = fj1j2 ◦ σ−1. Hence τ = ρj1j2(σ−1), which shows that ρj1j2 is
surjective.

(3) Let j ∈ J . We have that fjj = idAj , by lemma 1.2.33. Then, for any σ ∈
AutC(Aj), we have that σ ◦ fjj = σ ◦ idAj = σ = idAj ◦σ = fjj ◦ σ. So
σ = ρjj(σ), by de�nition of ρjj . Hence ρjj = idAutC(Aj).
Let j1, j2, j3 be such that j1 ≥ j2 ≥ j3. By lemma 1.2.33, we have that
fj1j3 = fj2j3 ◦ fj1j2 . Let σ ∈ AutC(Aj1). Then, applying the de�nitions, we
have

ρj2j3(ρj1j2(σ)) ◦ fj1j3 = ρj2j3(ρj1j2(σ)) ◦ fj2j3 ◦ fj1j2 =

= fj2j3 ◦ ρj1j2(σ) ◦ fj1j2 = fj2j3 ◦ fj1j2 ◦ σ = fj1j3 ◦ σ .

By de�nition of ρj1j3 , this implies that ρj2j3(ρj1j2(σ)) = ρj1j3(σ). So ρj1j3 =
ρj2j3 ◦ ρj1j2 . This proves the claim.
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From now on, in this section and in the next one, π will denote the projective limit
of the projective system of groups de�ned in 1.3.14(3), unless otherwise speci�ed. We
have that π is a pro�nite group by de�nition.

Remark 1.3.15. (1) As in remark 1.2.34, we can notice that the projective system
de�ned in 1.3.14 depends on the choice we made (for any j ∈ J we chose
(Aj , aj) ∈ I such that j = [(Aj , aj)]∼). However, this choice does not a�ect
the projective limit, i.e. the pro�nite group π. Indeed, if for any j ∈ J
we choose (Bj , bj) ∈ I such that j = [(Bj , bj)]∼, then there exists a unique
isomorphism ϕj : Bj → Aj such that F (ϕj)(bj) = aj . This isomorphism gives
rise to a group isomorphism

γϕj : AutC(Aj)→ AutC(Bj), σ 7→ ϕ−1
j ◦ σ ◦ ϕj .

Moreover, if j1, j2 ∈ J are such that j1 ≥ j2, then gj1j2 = ϕ−1
j2
◦fj1j2 ◦ϕj1 is the

unique morphism Bj1 → Bj2 such that F (gj1j2)(bj1) = bj2 . Let σ ∈ AutC(Aj1).
Then, using the de�nition of ρj1j2 (see proposition 1.3.14), we get

gj1j2 ◦ γϕj1 (σ) = ϕ−1
j2
◦ fj1j2 ◦ ϕj1 ◦ ϕ−1

j1
◦ σ ◦ ϕj1 =

= ϕ−1
j2
◦ fj1j2 ◦ σ ◦ ϕj1 = ϕ−1

j2
◦ ρj1j2(σ) ◦ fj1j2 ◦ ϕj1 =

= ϕ−1
j2
◦ ρj1j2(σ) ◦ ϕj2 ◦ ϕ−1

j2
◦ fj1j2 ◦ ϕj1 = γϕj2 (ρj1j2(σ)) ◦ gj1j2 .

Then, if we de�ne ρ′j1j2 : AutC(Bj1) → AutC(Bj2) in the same way as we

de�ned ρij , we have that γϕj2 (ρj1j2(σ)) = ρ′j1j2

(
γϕj1 (σ)

)
. So the following

diagram is commutative.

AutC(Aj1)

AutC(Aj2)

AutC(Bj1)

HomC(Bj2)

........................................................................................ ............
γϕj1

...................................................................................
.....
.......
.....

ρj1j2

........................................................................................ ............
γϕj2

...................................................................................
.....
.......
.....

ρ′j1j2

At this point, one can show that the map

γ : lim←−
j∈J

AutC(Aj)→ lim←−
j∈J

AutC(Bj), (σj)j∈J 7→
(
γϕj (σj)

)
j∈J

is a well-de�ned group isomorphism, with inverse

γ−1 : lim←−
j∈J

AutC(Bj)→ lim←−
j∈J

AutC(Aj), (σj)j∈J 7→
(
γ−1
ϕj (σj)

)
j∈J

.

Hence lim←−j∈J AutC(Aj) ∼= lim←−j∈J AutC(Bj).

(2) Notice that the projective system de�ned in 1.3.14 depends on the functor F ,
because so does the index set J , in spite of the fact that being a Galois object
does not depend on F (see remark 1.2.32(1)). So the group π depends on the
fundamental functor: if we had another fundamental functor F ′ we would get
another pro�nite group π′. The results that we will prove in the next section
imply that π ∼= π′ as pro�nite groups (see proposition 1.4.21 and theorem
1.4.34(d)).
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Lemma 1.3.16. For any k ∈ J , the k-th projection pk : π → AutC(Ak) is surjective.

Proof. Let τ ∈ AutC(Ak). For any l ∈ J , l ≥ k de�ne

Tl :=

(σj)j∈J ∈
∏
j∈J

AutC(Aj)

∣∣∣∣∣∣ σk = τ, ∀j ∈ J, j ≤ l σj = ρlj(σl)

 ⊆
⊆
∏
j∈J

AutC(Aj) .

We consider the discrete topology on AutC(Aj) (for any j ∈ J) and the product
topology on

∏
j∈J AutC(Aj) (then π is a subspace of

∏
j∈J AutC(Aj)). Denote by ql :∏

j∈J AutC(Aj) → AutC(Al) the l-th projection, which is continuous by de�nition
of product topology. Moreover, for any j1, j2 ∈ J with j1 ≥ j2 de�ne

ϕj1j2 :
∏
j∈J

AutC(Aj)→ AutC(Aj2)×AutC(Aj2), (σj)j∈J 7→ (σj2 , ρj1j2(σj1)) .

Then ϕj1j2 is continuous, because it has components qj2 and ρj1j2 ◦ qj1 , which are
continuous. De�ne ∆j := {(σ, σ) | σ ∈ AutC(Aj)} ⊆ AutC(Aj)×AutC(Aj), for any
j ∈ J . We have that ∆j is closed in AutC(Aj) × AutC(Aj), because this product
has the discrete topology. Moreover, {τ} is closed in AutC(Ak). Then we have that

Tl = q−1
k ({τ}) ∩

 ⋂
j∈J, j≤l

ϕ−1
lj (∆j)


is closed, because it is the intersection of closed subsets. Let T :=

⋂
l∈J
l≥k

Tl. We claim

that T ⊆ π. Let σ = (σj)j∈J ∈ T and let j1, j2 ∈ J such that j1 ≥ j2. Since J
is directed (see lemma 1.3.10), there exists l ∈ J such that l ≥ j1 and l ≥ k. By
transitivity we have also l ≥ j2. Since T ⊆ Tl, we have that σj1 = ρlj1(σl) and σj2 =
ρlj2(σl). But ρlj2 = ρj1j2 ◦ ρlj1 . Then σj2 = ρlj2(σl) = ρj1j2(ρlj1(σl)) = ρj1j2(σj1).
This shows that σ ∈ lim←−j∈J AutC(Aj) = π.

We prove now that T 6= ∅. For any j ∈ J , AutC(Aj) is compact, because it is �nite.
Then, by Tichonov's theorem, the product

∏
j∈J AutC(Aj) is compact. So, in order

to show that T is non-empty, it is enough to prove that Tl1 ∩ · · · ∩ Tln 6= ∅ for any
n ∈ N, l1, . . . , ln ∈ J with l1, . . . , ln ≥ k. Given such l1, . . . , ln, since J is directed,
there exists l ∈ J such that l ≥ li for any i = 1, . . . , n. By transitivity, we have that
l ≥ k. We have that

Tl = q−1
k ({τ}) ∩

 ⋂
j∈J, j≤l

ϕ−1
lj (∆j)

 ⊆ q−1
k ({τ}) ∩

 ⋂
j∈J, j≤li

ϕ−1
lj (∆j)

 = Tli

for any i = 1, . . . , n. Then Tl ⊆ Tl1 ∩ · · · ∩ Tln . By proposition 1.3.14(2), ρlk
is surjective. Then there exists τ ′ ∈ AutC(Al) such that ρlk(τ ′) = τ . For any
j ∈ J , de�ne σj = idAj if j > l and σj = ρlj(τ

′) otherwise. Then σ := (σj)j∈J ∈∏
j∈J AutC(Aj). Moreover, σk = ρlk(τ

′) = τ and the other condition that appears
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in the de�nition of Tl is automatically satis�ed. So σ ∈ Tl. This shows that Tl 6= ∅.
Since Tl ⊆ Tl1 ∩ · · · ∩ Tln , we have that also Tl1 ∩ · · · ∩ Tln 6= ∅, as we wanted. Then
T 6= ∅. If σ = (σj)j∈J ∈ T , we have that σ ∈ π and pk(σ) = σk = τ . This ends the
proof.

Remark 1.3.17. It is clear from the proof of lemma 1.3.16 that this results (i.e. the
fact that the projections are surjective) holds for the projective limit of any projective
system of �nite groups I, (πi)i∈I , (fij : πi → πj)i,j∈I, i≥j with fij surjective for any
i, j ∈ I with i ≥ j.

1.4 The main theorem about Galois categories

Now that we have de�ned the pro�nite group π, we want to show that C is equivalent
to the category π-sets. First of all, we have to de�ne a functor H : C → π-sets.
To do this, we will show that π acts in a natural way on F (X), for any object X
of C and that, if h : X → Y is a morphism in C then F (h) : F (X) → F (Y )
is a morphism of π-sets. If we �x an object X, by corollary 1.3.11 we have that
F (X) ∼= lim−→j∈J HomC(Aj , X). Moreover, we have that AutC(Aj) acts in a natural

way on HomC(Aj , X), via σ.f = f ◦ σ−1 for any σ ∈ AutC(Aj), f ∈ HomC(Aj , X)
(in lemma 1.3.13 we proved that this action is transitive when X is connected). We
would like to �glue� these actions and get an action of π = lim←−j∈J AutC(Aj) on

lim−→j∈J HomC(Aj , X) ∼= F (X). To do it, we will need the following lemma.

Lemma 1.4.1. Let I be any directed partially ordered set (here we do not refer to the
notation we established in lemma 1.2.31) and consider a projective system of �nite
groups (πi)i∈I , (ρij : πi → πj)i,j∈I, i≥j and an injective system of sets (Si)i∈I , (fij :
Si → Sj)i,j∈I, i≤j. Assume that, for any i ∈ I, we have an action of πi on Si. Assume
moreover that, if i, j ∈ I are such that i ≥ j, we have fji(ρij(σ)x) = σfji(x) for any
σ ∈ πi, x ∈ Sj. For any σ = (σi)i∈I ∈ lim←−i∈I πi, X ∈ lim−→i∈I Si, de�ne σX = [σjx]∼,
if x ∈ Sj is such that X = [x]∼. Then this is a well-de�ned continuous action of the
pro�nite group lim←−i∈I πi on the set lim−→i∈I Si.

Proof. Let σ = (σi)i∈I ∈ lim←−i∈I πi, X ∈ lim−→i∈I Si. We have to prove that σX is
well de�ned. Assume that x1 ∈ Sj1 , x2 ∈ Sj2 are such that X = [x1]∼ = [x2]∼
(j1, j2 ∈ I). By de�nition of injective limit, this means there exists j ∈ I such that
j ≥ j1 and j ≥ j2 and fj1j(x1) = fj2j(x2). Using the assumption, we get that

fj1j(ρjj1(σj)x1) = σjfj1j(x1) = σjfj2j(x2) = fj2j(ρjj2(σj)x2) .

By de�nition of projective limit, ρjj1(σj) = σj1 and ρjj2(σj) = σj2 . So fj1j(σj1x1) =
fj2j(σj2x2). By de�nition of injective limit, this implies that [σj1x1]∼ = [σj2x2]∼.
This show that σX is well de�ned.
Let X = [x]∼ ∈ lim−→i∈I Si, with x ∈ Sj (j ∈ I). Since 1 = (1i)i∈I , we have that
1X = [1jx]∼ = [x]∼. Moreover, if σ = (σi)i∈I , τ = (τi)i∈I ∈ lim←−i∈I πi, we have that

(στ)X = (σiτi)i∈IX = [(σjτj)x]∼ = [σj(τjx)]∼ = σ[τjx]∼ = σ(τX) .
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So we have an action of lim←−i∈I πi on lim−→i∈I Si. It remains to prove that this action
is continuous.
Let X = [x]∼ ∈ lim−→i∈I Si, with x ∈ Sj (j ∈ I). We have that

Stablim←−i∈I πi(X) =

{
σ = (σi)i∈I ∈ lim←−

i∈I
πi

∣∣∣∣∣ [x]∼ = X = σX = [σjx]∼

}
=

=

{
σ = (σi)i∈I ∈ lim←−

i∈I
πi

∣∣∣∣∣ ∃k ∈ I : k ≥ j,

fjk(x) = fjk(σjx) = fjk(ρkj(σk)x) = σkfjk(x)

}
=

=
⋃
k∈I
k≥j

{
σ = (σi)i∈I ∈ lim←−

i∈I
πi

∣∣∣∣∣ fjk(x) = σkfjk(x)

}
=
⋃
k∈I
k≥j

p−1
k (Stabπk (fjk(x))) ,

where pk : lim←−i∈I πi → πk is the k-th projection, for any k ∈ I. By de�nition of
the topology on the projective limit, the projections are continuous. Since on πk we
have the discrete topology, Stabπk(fjk(x)) is open in πk and so p−1

k (Stabπk (fjk(x)))
is open in lim←−i∈I πi, for any k ∈ I. Then Stablim←−i∈I πi(X) is open in lim←−i∈I πi, because
it is a union of open subsets. Since this holds for any X ∈ lim−→i∈I Si, the action is
continuous by lemma 1.1.14.

Lemma 1.4.2. Recall that we de�ned π = lim←−j∈J AutC(Aj), where the projective

system is de�ned as in proposition 1.3.14(3). For any object X of C, we have a
continuous action of π on lim−→j∈J HomC(Aj , X), de�ned by

σΦ = [ϕ ◦ σ−1
k ]∼

for any σ = (σj)j∈J ∈ π and Φ = [ϕ]∼ ∈ lim−→j∈J HomC(Aj , X), where k ∈ J is such

that ϕ ∈ HomC(Ak, X). Since lim−→j∈J HomC(Aj , X) ∼= F (X), this induces an action

of π on F (X). We denote by H(X) the set F (X) equipped with this action. Then
H(X) is an object of π-sets (recall that F (X) is a �nite set). Moreover, if X, Y
are objects of C with a morphism h : X → Y , then F (h) is a morphism of π-sets. If
we set H(h) = F (h), then H : C→ π-sets is a functor.

Proof. Let X be an object of C. For any j ∈ J , we have an action of AutC(Aj) on
HomC(Aj , X), de�ned by σ.f = f ◦ σ−1, for any σ ∈ AutC(Sj), f ∈ HomC(Aj , X).
We have to check that the assumptions of lemma 1.4.1 are satis�ed. Let j1, j2 ∈ J
such that j1 ≥ j2. Let σ ∈ AutC(Aj1), f ∈ HomC(Aj2 , X). Applying the de�nition
of ρj1j2 and the fact that it is a group homomorphism (proposition 1.3.14(2)), we get
that

f∗j1j2 (ρj1j2(σ).f) = (ρj1j2(σ).f) ◦ fj1j2 = f ◦ (ρj1j2(σ))−1 ◦ fj1j2 =

= f ◦ ρj1j2
(
σ−1

)
◦ fj1j2 = f ◦ fj1j2 ◦ σ−1 = f∗j1j2(f) ◦ σ−1 = σ.f∗j1j2(f) ,
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which is precisely what we needed. Then lemma 1.4.1 gives us the desired continuous
action.
Let X, Y be objects of C and h : X → Y a morphism. In order to show that F (h) :
F (X)→ F (Y ) is a morphism of π-sets, we have to show that lim−→j∈J HomC(Aj , h) :

lim−→j∈J HomC(Aj , X) → lim−→j∈J HomC(Aj , Y ) is a morphism of π-sets, because the

action of π on F (X) and F (Y ) is induced by that on lim−→j∈J HomC(Aj , X) and

lim−→j∈J HomC(Aj , Y ). Let σ = (σj)j∈J ∈ π and Φ = [ϕ]∼ ∈ lim−→j∈J HomC(Aj , X),

with ϕ ∈ HomC(Ak, X) (k ∈ J). Then we have

lim−→
j∈J

HomC(Aj , h)(σΦ) = lim−→
j∈J

HomC(Aj , h)
(
[ϕ ◦ σ−1

k ]∼
)

=

= [h ◦ ϕ ◦ σ−1
k ]∼ = σ[h ◦ ϕ]∼ = σ lim−→

j∈J
HomC(Aj , h)(Φ) .

Hence lim−→j∈J HomC(Aj , h) is a morphism of π-sets.
It remains to prove that H is a functor. This follows immediately from the fact that
F is a functor. Indeed, H(idX) = F (idX) = idF (X) = idH(X) for any object X of C
and H(h2 ◦ h1) = F (h2 ◦ h1) = F (h2) ◦ F (h1) = H(h2) ◦H(h1) for any h1 : X → Y ,
h2 : Y → Z morphisms in C.

Remark 1.4.3. If H is the functor de�ned in 1.4.2, we have that for ◦H = F , where
for : π-sets→ sets is the forgetful functor.

Now that we have the functor H, we have to prove that it is an equivalence of
categories. First of all, we recall the de�nition of equivalence of categories and a
useful characterization.

De�nition 1.4.4. Let C1 and C2 be categories and G : C1 → C2 a functor. We
say that G is:

(1) an equivalence of categories if there exists a functor G′ : C2 → C1 such that
G′ ◦G is isomorphic to idC1 and G ◦G′ is isomorphic to idC2 (in this case G′

is called a quasi-inverse of G);

(2) faithful if for every two objects X, Y in C1 the map

HomC1(X,Y )→ HomC2(G(X), G(Y )), f 7→ G(f)

is injective;

(3) full if for every two objects X, Y in C1 the map

HomC1(X,Y )→ HomC2(G(X), G(Y )), f 7→ G(f)

is surjective;

(4) fully faithful if it is full and faithful, i.e. if for every two objects X, Y in C1

the map HomC1(X,Y )→ HomC2(G(X), G(Y )), f 7→ G(f) is bijective;
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(5) essentially surjective if for every object Z of C2 there exists an object X of C1

such that Z ∼= G(X).

Lemma 1.4.5. Let C1 and C2 be categories and G : C1 → C2 a functor. Then G is
an equivalence of categories if and only if it is fully faithful and essentially surjective.

Proof. Assume that G is an equivalence of categories and let G′ be a quasi-inverse
of G. Let X,Y be objects of C1. Since G′ ◦ G is isomorphic to idC1 , there exist
isomorphisms αX : X → (G′ ◦ G)(X), αY : Y → (G′ ◦ G)(Y ) such that for any
f ∈ HomC1(X,Y ) the following diagram is commutative.

X

Y

(G′ ◦G)(X)

(G′ ◦G)(Y )

........................................................................................ ............
αX

...................................................................................
.....
.......
.....

f

........................................................................................ ............
αY

...................................................................................
.....
.......
.....

(G′ ◦G)(f)

This means that f = α−1
Y ◦ (G′ ◦G)(f) ◦αX , for any morphism f : X → Y . Assume

now that f, g : X → Y are such that G(f) = G(g). Then (G′ ◦G)(f) = (G′ ◦G)(g)
and so f = α−1

Y ◦ (G′ ◦ G)(f) ◦ αX = α−1
Y ◦ (G′ ◦ G)(g) ◦ αX = g. This shows

that G is faithful. Analogously, one can show that G′ is faithful. Consider now
h ∈ HomC2(G(X), G(Y )). We have that α−1

Y ◦G′(h) ◦ αX ∈ HomC1(X,Y ). Then

α−1
Y ◦G

′(h) ◦ αX = α−1
Y ◦ (G′ ◦G)(α−1

Y ◦G
′(h) ◦ αX) ◦ αX ,

which implies G′(h) = (G′ ◦G)(α−1
Y ◦G′(h) ◦ αX) = G′(G(α−1

Y ◦G′(h) ◦ αX)). Since
G′ is faithful, we get h = G(α−1

Y ◦G′(h) ◦ αX), which shows that G is full. Finally,
if Z is an object of C2, we have that G(G′(Z)) = (G ◦G′)(Z) ∼= Z, because G ◦G′
is isomorphic to idC2 . Hence G is essentially surjective.
Conversely, assume that G is fully faithful and essentially surjective. Since G is
essentially surjective, for any object Z of C2, we can choose an object XZ in C1

such that G(XZ) ∼= Z. We choose also an isomorphism βZ : G(XZ) → Z. De�ne
G′(Z) = XZ . Moreover, let Z, W be objects of C2 and let h : Z → W be a
morphism. Consider β−1

W ◦ h ◦ βZ ∈ HomC2(G(XZ), G(XW )). Since G is fully
faithful, there exists a unique fh ∈ HomC1(XZ , XW ) such that β−1

W ◦h◦βZ = G(fh).
We de�ne G′(h) = fh.
Let us check that G′ is a functor. For any object Z of C2, we have that G(idXZ ) =
idG(XZ) = β−1

Z ◦ idZ ◦βZ . Then idXZ = G′(idZ), by de�nition. Let Z1, Z2, Z3 be
objects of C2, with morphisms h1 : Z1 → Z2 and h2 : Z2 → Z3. We have that

β−1
Z3
◦ (h2 ◦ h1) ◦ βZ1 =

(
β−1
Z3
◦ h2 ◦ βZ2

)
◦
(
β−1
Z2
◦ h1 ◦ βZ1

)
=

= G(fh2) ◦G(fh1) = G(fh2 ◦ fh1) .

This shows that G′(h2◦h1) = fh2◦h1 = fh2 ◦fh1 = G′(h2)◦G′(h1). So G′ is a functor.
We check now that G′ is a quasi-inverse of G. First of all, we show that G ◦ G′ is
isomorphic to idC2 . We already have the isomorphisms βZ : G(XZ) = (G◦G′)(Z)→
Z, for any object Z of C2. We have to show that these isomorphisms are compatible
with each other. Let Z, W be two objects of C2, with a morphism h : Z →W . We
have to show that the following diagram is commutative.
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(G ◦G′)(Z)

(G ◦G′)(W )

Z

W

........................................................................................ ............
βZ

...................................................................................
.....
.......
.....

(G ◦G′)(h)

........................................................................................ ............
βW

...................................................................................
.....
.......
.....

h

By de�nition, (G ◦ G′)(h) = G(fh) = β−1
W ◦ h ◦ βZ , which is exactly what we need.

On the other hand, we have to show that G′ ◦ G is isomorphic to idC1 . Let X
be an object of C1. Then we have an isomorphism βG(X) : G((G′ ◦ G)(X)) =
(G ◦ G′)(G(X)) → G(X). Since G is fully faithful, there exists a unique morphism
αX : (G′ ◦G)(X)→ X such that βG(X) = G(αX). Analogously, there exists a unique
morphism α′X : X → (G′ ◦G)(X) such that β−1

G(X) = G(α′X). Then

G(αX ◦ α′X) = G(αX) ◦G(α′X) = βG(X) ◦ β−1
G(X) = idG(X) = G(idX)

and

G(α′X ◦ αX) = G(α′X) ◦G(αX) = β−1
G(X) ◦ βG(X) = idG((G′◦G)(X)) = G

(
id(G′◦G)(X)

)
.

Since G is faithful, this implies that αX ◦α′X = idX and α′X ◦αX = id(G′◦G)(X). This
shows that αX is an isomorphism. Again, we have to show that the isomorphisms
αX 's are compatible with each other. Let X, Y be objects of C1 and f : X → Y a
morphism. We have to show that the following diagram is commutative.

(G′ ◦G)(X)

(G′ ◦G)(Y )

X

Y

........................................................................................ ............
αX

...................................................................................
.....
.......
.....

(G′ ◦G)(f)

........................................................................................ ............
αY

...................................................................................
.....
.......
.....

f

By de�nition of G′, we have that

G((G′◦G)(f)) = β−1
G(Y )◦G(f)◦βG(X) = G(αY )−1◦G(f)◦G(αX) = G(α−1

Y ◦f ◦αX) .

Since G is faithful, we get (G′ ◦G)(f) = α−1
Y ◦ f ◦ αX , which ends the proof.

Lemma 1.4.6. The fundamental functor F is faithful.

Proof. LetX, Y be objects of C and let f, g : X → Y be morphisms such that F (f) =
F (g). Consider the equalizer Eq(f, g), with the morphism ι : Eq(f, g)→ X, as in the
de�nition 1.2.23 (this equalizer exists by lemma 1.2.26). By corollary 1.2.27, we have
an isomorphism ϕ : Eq(F (f), F (g))→ F (Eq(f, g)) such that F (ι)◦ϕ is the inclusion
of Eq(F (f), F (g)) inside F (X). But Eq(F (f), F (g)) = {x ∈ F (X) | F (f)(x) =
F (g)(x)} = F (X), since F (f) = F (g) (see example 1.2.25 for the equalizer in sets).
So F (ι) ◦ ϕ is an isomorphism. Since ϕ is also an isomorphism, we must have that
F (ι) is an isomorphism, which by (G6) of the de�nition of Galois category implies
that ι is an isomorphism. Then by f ◦ ι = g ◦ ι (see the de�nition of equalizer) we
get f = g.

Lemma 1.4.7. Let C1, C2,C3 be categories and G1 : C1 → C2, G2 : C2 → C3

functors. If G2 ◦G1 : C1 → C3 is faithful, then G1 is also faithfull.
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Proof. Let X, Y be objects of C1 and let f, g : X → Y be morphisms such that
G1(f) = G1(g). Then (G2 ◦G1)(f) = G2(G1(f)) = G2(G1(g)) = (G2 ◦G1)(g). Since
G2 ◦G1 is faithful, this implies that f = g. Hence G1 is faithful.

Corollary 1.4.8. The functor H de�ned in 1.4.2 is faithful.

Proof. It follows from the lemmas 1.4.6 and 1.4.7, together with the remark 1.4.3.

Before proving that H is essentially surjective, we need to understand the struc-
ture of the object of π-sets. Since π-sets is a Galois category (proposition 1.1.15),
we know that any object is the sum of its connected components (proposition 1.2.20)
and that this decomposition corresponds to the orbit decomposition (see example
1.2.22). What we do not know yet is how the connected objects, i.e. the �nite sets
with a transitive continuous action of π (example 1.2.14(2)), look like.

Lemma 1.4.9. In this lemma, we do not use the notation introduced in proposition
1.3.14 and we denote by π an arbitrary pro�nite group. Let E be a �nite set with a
transitive continuous action of π.

(1) There exists an open subgroup π′ ≤ π such that E is isomorphic as a π-set
to π/π′ with the action given by left multiplication: σ(τπ′) = (στ)π′ for any
σ ∈ π, τπ′ ∈ π/π′.

(2) If π is the projective limit of the projective system of �nite groups I, (πi)i∈I ,
(ρij : πi → πj)i,j∈I, i≥j and pj : π = lim←−i∈I πi → πj is the canonical projection
for any j ∈ I, then there exists j ∈ J such that Ker(pj) ≤ π′.

(3) Let j ∈ I be such that Ker(pj) ≤ π′, as in point (2). If pj is surjective,
then there exists a subgroup π′j ≤ πj such that E is isomorphic as a π-set to
πj/π

′
j, with the action given by σ(xπ′j) = (σjx)π′j, for any σ = (σi)i∈I ∈ π,

xπ′j ∈ πj/π′j.

Proof. (1) Since the action of π on E is transitive, E is non-empty. Fix e ∈ E
and de�ne π′ = Stabπ(e). Then π′ is an open subgroup of π by lemma 1.1.14.
By lemma 1.1.11, π′ has �nite index in π, so π/π′ is a �nite set. It is easy to
check that left multiplication de�nes indeed a continuous action of π on π/π′

(see also the proof of (G3) in 1.1.15). Consider now the map

ϕ : π/π′ → E, τπ′ 7→ τe .

First of all, we check that ϕ is well de�ned. If τ1π
′ = τ2π

′, with τ1, τ2 ∈ π,
then we have that τ−1

2 τ1 ∈ π′ = Stabπ(e). So e =
(
τ−1

2 τ1

)
(e) = τ−1

2 (τ1(e)),
which implies that τ1e = τ2e. So ϕ is well de�ned. Transitivity of the action
of π on E implies that ϕ is surjective. Moreover, if τ1π

′, τ2π
′ ∈ π/π′ are such

that ϕ(τ1π
′) = ϕ(τ2π

′), then τ1e = τ2e. So
(
τ−1

2 τ1

)
e = e which implies that

τ−1
2 τ1 ∈ Stabπ(e) = π′. So τ1π

′ = τ2π
′. Then ϕ is also injective. It remains

to prove that ϕ is a morphism of π-sets (since π-sets is a Galois category, a
morphism of π-sets is an isomorphism if and only if it is a bijection, by (G6)
of the de�nition of Galois category). Let σ ∈ π, τπ′ ∈ π/π′. Then

ϕ(σ(τπ′)) = ϕ((στ)π′) = (στ)e = σ(τe) = σϕ(τπ′) .
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This shows that ϕ is a morphism of π-sets.

(2) Since π′ is a subgroup, we have that 1 = (1i)i∈I ∈ π′. Recall that the topology
on π is de�ned as the subspace topology of the product topology, considering
on each πi the discrete topology. Then a local base for π at 1 is given by{

Uj1...jn :=
n⋂
k=1

p−1
jk

({1jk}) =
n⋂
k=1

Ker(pjk)

∣∣∣∣∣ n ∈ N, j1, . . . , jn ∈ I

}
.

Since π′ is open and 1 ∈ π′, there exist n ∈ N, j1, . . . , jn ∈ I such that
Uj1...jn ⊆ π′. Since I is directed, there exists j ∈ I such that j ≥ jk for any
k = 1, . . . , n. We claim that Uj = Ker(pj) ⊆ Uj1...jn . Let σ = (σi)i∈I ∈ Uj ⊆ π.
This means that σj = pj(σ) = 1j . By de�nition of projective system, we have
that pjk(σ) = σjk = ρjjk(σj) = ρjjk(1j) = 1jk for any k = 1, . . . , n (we used the
fact that ρjjk is a group homomorphism). Then σ ∈

⋂n
k=1 Ker(pjk) = Uj1...jk ,

which proves our claim. Then Ker(pj) ⊆ Uj1...jn ⊆ π′.

(3) Assume that pj is surjective and de�ne π′j := pj(π
′) ≤ πj . First of all, we prove

that the de�nition we gave leads indeed to a well-de�ned continuous group
action. Let σ = (σi)i∈I ∈ π = lim←−i∈I πi and let x1, x2 ∈ πj such that x1π

′
j =

x2π
′
j , i.e. x

−1
2 x1 ∈ π′j . Then we have that (σjx2)−1(σjx1) = x−1

2 x1 ∈ π′j , i.e.
(σjx1)π′j = (σjx2)π′j . This shows that the de�nition we gave is unambiguous.
For any xπ′j ∈ πj/π′j , we have that 1(xπ′j) = (1jx)π′j = xπ′j and

(στ)(xπ′j) = (σiτi)i∈I(xπ
′
j) = ((σjτj)x)π′j =

= (σj(τjx))π′j = σ((τjx)π′j) = σ(τ(xπ′j)) ,

for any σ = (σi)i∈I , τ = (τi)i∈I ∈ π. So we have a group action. For any
xπ′j ∈ πj/π′j , we have that

Stabπ(xπ′j) =
{
σ = (σi)i∈I ∈ π | xπ′j = σ(xπ′j) = (σjx)π′j

}
=

=
{
σ = (σi)i∈I ∈ π | x−1σjx ∈ π′j

}
=

=
{
σ = (σi)i∈I ∈ π | σj ∈ xπ′jx−1

}
= p−1

j

(
xπ′jx

−1
)
.

Since the topology on πj is the discrete one, xπ′jx
−1 is open in πj . Then

p−1
j

(
xπ′jx

−1
)
is open in π, because pj is continuous (de�nition of the topology

on the projective limit). So the stabilizer is open and, since this holds for any
xπ′j ∈ πj/π′j , the action is continuous by lemma 1.1.14.
Consider now the map

ψ : π/π′ → πj/π
′
j , τπ

′ 7→ pj(τ)π′j .

If τ1, τ2 ∈ π are such that τ1π
′ = τ2π

′, then τ−1
2 τ1 ∈ π′. So

pj(τ2)−1pj(τ1) = pj
(
τ−1

2 τ1

)
∈ pj(π′) = π′j ,
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which implies that pj(τ1)π′j = pj(τ2)π′j . This shows that ψ is well de�ned. Since
pj is surjective, for any xπ′j ∈ πj/π′j there exists τ ∈ π such that pj(τ) = x
and then ψ(τπ′) = xπ′j . So ψ is surjective. Assume that τ1π

′, τ2π
′ ∈ π/π′

are such that ψ(τ1π
′) = ψ(τ2π

′). This means that pj(τ1)π′j = pj(τ2)π′j , i.e.

pj
(
τ−1

2 τ1

)
= pj(τ2)−1pj(τ1) ∈ π′j = pj(π

′). Then there exists τ ∈ π′ such that

pj
(
τ−1

2 τ1

)
= pj(τ), i.e. τ−1τ−1

2 τ1 ∈ Ker(pj). Since Ker(pj) ≤ π′, we get that
τ−1τ−1

2 τ1 ∈ π′, i.e. τ1π
′ = τ2τπ

′ = τ2π
′ (in the last equality we used the fact

that τ ∈ π′). So ψ is also injective. If we show that ψ is a morphism of π-sets,
we get that ψ is an isomorphism of π-sets. Let σ = (σi)i∈I ∈ π, τπ′ ∈ π/π′.
We have that

ψ(σ(τπ′)) = ψ((στ)π′) = pj(στ)π′j =

= (pj(σ)pj(τ))π′j = (σjpj(τ))π′j = σ(pj(τ)π′j) = σψ(τπ′) .

So ψ is a morphism of π-sets. Then π/π′ and πj/π′j are isomorphic as π-sets.
Combining this result with that of point (1), we get that E is isomorphic to
πj/π

′
j as a π-set.

Remark 1.4.10. From the proof of lemma 1.4.9(1), it is clear that the subgroup π′

is in general not unique: one can take the stabilizer of any element of E. However,
these subgroups are all conjugated.

Lemma 1.4.11. Let C1, C2,C3 be categories and G1 : C1 → C2, G2 : C2 → C3

functors. Assume that �nite sums and quotients by �nite groups of automorphisms
exist in C1, C2 and C3. Assume moreover that G2 has the following property: if
f : X → Y is a morphism in C2 such that G2(f) is an isomorphism, then f is an
isomorphism (a functor satisfying this property is called a conservative functor). If
both G2 and G2 ◦G1 commute with �nite sums or with passage to the quotient by a
�nite group of automorphisms, then so does G1.

Proof. We prove the lemma in the case of �nite sums. The proof in the case of
quotients is analogous. Let X1, . . . , Xn be objects of C1 (n ∈ N). Let X = X1 q
· · ·qXn be the sum of X1, . . . , Xn, with morphisms qi : Xi → X for any i = 1, . . . , n.
Then in C2 we have morphisms G1(qi) : G1(Xi) → G1(X), for any i = 1, . . . , n,
which lead to a unique morphism

ϕ : G1(X1)q · · · qG1(Xn)→ G1(X)

such that ϕ ◦ q′i = G1(qi) for any i = 1, . . . , n, where q′i : G1(Xi) → G1(X1) q · · · q
G1(Xn) is the morphism that appears in the de�nition of sum.

G1(X1)

G1(Xn)

∐n
i=1G1(Xi) G1(X)

.........................................

........................................................................................................................................... ........
....

q′1

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.............
............

q′n

..................................................................................................................................... ............
ϕ

...................................................................................................................................................................................................................................................................................................................................................................... ..........
..

G1(q1)

....................
....................

....................
....................

....................
....................

....................
....................

....................
....................

....................
....................

....................
....................

....................
....................

....................
..................
............

G1(qn)
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Applying G2, we get a morphism G2(ϕ) : G2 (G1(X1)q · · · qG1(Xn)) → (G2 ◦
G1)(X) in C3. On the other hand, since G2 commutes with �nite sums, we have an
isomorphism

ψ : (G2 ◦G1)(X1)q · · · q (G2 ◦G1)(Xn)→ G2 (G1(X1)q · · · qG1(Xn))

in C3 such that ψ◦q′′i = G2(q′i) for any i = 1, . . . , n, where q′′i : (G2◦G1)(Xi)→ (G2◦
G1)(X1)q· · ·q (G2 ◦G1)(Xn) is the morphism that appears in the de�nition of sum.
We have that G2(ϕ)◦ψ : (G2◦G1)(X1)q· · ·q(G2◦G1)(Xn)→ (G2◦G1)(X) satis�es
(G2(ϕ)◦ψ)◦q′′i = G2(ϕ)◦G2(q′i) = G2(ϕ◦q′i) = (G2◦G1)(qi) for any i = 1, . . . , n and,
by uniqueness follows from the universal property of the sum, it is the only morphism
with this property. Then G2(ϕ) ◦ ψ must be an isomorphism, because G2 ◦ G1

commutes with �nite sums. So G2(ϕ) = (G2(ϕ) ◦ ψ) ◦ ψ−1 is an isomorphism. By
the assumption onG2, ϕ is also an isomorphism, i.e. G1(X1)q· · ·qG1(Xn) ∼= G1(X).
Hence G1 commutes with �nite sums.

Corollary 1.4.12. The functor H commutes with �nite sums and with passage to
the quotient by a �nite group of automorphisms.

Proof. It follows from (G5) of the de�nition of Galois category, together with lemma
1.4.11 and remark 1.4.3. Notice that we can apply the lemma because π-sets is
also a Galois category and so the forgetful functor for : C → π-sets satis�es the
assumption ((G5) and (G6) of the de�nition of Galois category).

Lemma 1.4.13. Let k ∈ J . Then Ak is a Galois object of C (remark 1.3.12). Let G
be a subgroup of AutC(Ak) (notice that G is necessarily �nite because AutC(Ak) is
�nite, see remark 1.3.2(1)). Consider the quotient Ak/G, which exists in C by (G2)
of the de�nition of Galois category. We have that H(Ak/G) ∼= AutC(Ak)/G, with the
action of π given by σ(fG) = (σkf)G for any σ = (σj)j∈J ∈ π = lim←−j∈J AutC(Aj),

fG ∈ AutC(Ak)/G.

Proof. Notice that the de�nition we gave leads indeed to a well-de�ned continuous
group action (this can be proved as in the proof of lemma 1.4.9).
First of all, we prove that H(Ak) ∼= AutC(Ak), with the action of π given by σf =
σkf for any σ = (σj)j∈J ∈ π = lim←−j∈J AutC(Aj), f ∈ AutC(Ak) (this can also be

seen as the case G = 1). Consider the map ψAk(Ak,ak) : AutC(Ak) → F (Ak). By
lemma 1.2.30, this map is injective. But |AutC(Ak)| = |F (Ak)| (lemma 1.3.4) and
the sets are �nite. So ψAk(Ak,ak) must be bijective. Consider the map ι : AutC(Ak)→
AutC(Ak), f 7→ f−1. It is clearly a bijection (with ι−1 = ι) and so ψAk(Ak,ak) ◦ ι :

AutC(Ak)→ F (Ak) is a bijection. Recall that H(Ak) was de�ned as the set F (Ak)
with the action given in lemma 1.4.2. Then it is enough to show that ψAk(Ak,ak) ◦ ι
is a morphism of π-sets (recall that a morphism of π-sets is an isomorphism if and
only if it is bijective, by (G6) of the de�nition of Galois category). Since the action
of π on F (Ak) was induced by that on lim−→j∈J HomC(Aj , Ak), this is equivalent to
proving that

ϕ :=
(
ψ′Ak

)−1 ◦ ψAk(Ak,ak) ◦ ι
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is a morphism of π-sets, where ψ′Ak : lim−→j∈J HomC(Aj , Ak)→ F (Ak) is the bijection
de�ned as in the proof of proposition 1.2.35, but considering J as index set instead of
I (it is still a bijection, because it is the composition of ψAk : lim−→i∈I HomC(Ai, Ak)→
F (Ak) with the bijection lim−→j∈J HomC(Aj , Ak)→ lim−→i∈I HomC(Ai, Ak) de�ned as in

lemma 1.3.8). This means that ψ′Ak([f ]∼) = ψ
Aj
(Aj ,aj)

(f), for any f ∈ HomC(Aj , Ak).
Then

ϕ(f) =
((
ψ′Ak

)−1 ◦ ψAk(Ak,ak)

) (
f−1

)
= [f−1]∼ ∈ lim−→

j∈J
HomC(Aj , Ak) ,

for any f ∈ AutC(Ak). Let σ = (σj)j∈J ∈ π, f ∈ AutC(Ak). Then we have

ϕ(σf) = ϕ(σkf) = [(σkf)−1]∼ = [f−1σ−1
k ]∼ = σ[f−1]∼ = σϕ(f)

(see the de�nition of the action in 1.4.2). Hence ϕ is a morphism of π-sets, as we
wanted.
We consider now the general case. We have thatH(Ak/G) ∼= H(Ak)/H(G) (quotient
in π-sets), by corollary 1.4.12. The isomorphism of π-sets ψAk(Ak,ak) ◦ ι : AutC(Ak)→
H(Ak) induces an isomorphism of groups

γ : Autπ-sets(H(Ak))→ Autπ-sets(AutC(Ak)),

α 7→
(
ψAk(Ak,ak) ◦ ι

)−1
◦ α ◦

(
ψAk(Ak,ak) ◦ ι

)
,

which sends H(G) to

γ(H(G)) =

{(
ψAk(Ak,ak) ◦ ι

)−1
◦H(g) ◦

(
ψAk(Ak,ak) ◦ ι

) ∣∣∣∣ g ∈ G} .

We have thatH(Ak)/H(G) is the set of orbits ofH(Ak) under the action ofH(G) and
AutC(Ak)/γ(H(G)) is the set of orbits of AutC(Ak) under the action of γ(H(G)),
with the induced action (see the proof of proposition 1.1.15). It is easy to check the
map

AutC(Ak)/γ(H(G))→ H(Ak)/H(G), γ(H(G))f 7→ H(G)
(
ψAk(Ak,ak) ◦ ι

)
(f)

is a well-de�ned isomorphism of π-sets. So

H(Ak/G) ∼= H(Ak)/H(G) ∼= AutC(Ak)/γ(H(G)) .

Then it is enough to prove that the set of orbits AutC(Ak)/γ(H(G)) coincides with
the quotient set AutC(Ak)/G (in that case, it is clear that the two actions coincide,
because they are both induced by the action on AutC(Ak)). Let f1, f2 ∈ AutC(Ak)
and assume that f1 and f2 are in the same orbit under the action of γ(H(G)). This
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means that there exists g ∈ G such that

f2 = γ(H(g))(f1) =

((
ψAk(Ak,ak) ◦ ι

)−1
◦H(g) ◦

(
ψAk(Ak,ak) ◦ ι

))
(f1) =

=

(
ι−1 ◦

(
ψAk(Ak,ak)

)−1
)(

H(g)
(
ψAk(Ak,ak)(f

−1
1 )
))

=

=

(
ι ◦
(
ψAk(Ak,ak)

)−1
)(

F (g)
(
F (f−1

1 )(ak)
))

=

= ι

((
ψAk(Ak,ak)

)−1 (
F (g ◦ f−1

1 )(ak)
))

= ι(g ◦ f−1
1 ) = f1 ◦ g−1 .

Since g−1 ∈ G, this implies that f2 ∈ f1G and so f2G = f1G. Conversely, assume
that f2G = f1G. Then there exists g ∈ G such that f2 = f1g = γ(H(g−1))(f1)
and so f1 and f2 are in the same orbit under the action of γ(H(G)). This ends the
proof.

Remark 1.4.14. For the sake of convenience, the lemma 1.4.13 was stated for Galois
objects of the form Ak with k ∈ J . However, it can be generalized to arbitrary Galois
objects. Let A be a Galois object of C and let G be a subgroup of AutC(A) (again,
G is �nite because AutC(A) is �nite). Fix a ∈ F (A) (since A is connected, by remark
1.2.13 it is not initial and so F (A) 6= ∅ by lemma 1.2.17). Then k := [(A, a)]∼ ∈ J
and, since [(A, a)]∼ = k = [(Ak, ak)]∼, we have that A ∼ Ak, i.e. there exists an
isomorphism ϕ : A → Ak such that F (ϕ)(a) = ak. This isomorphisms induces
the following isomorphism of groups: γϕ : AutC(Ak) → AutC(A), f 7→ ϕ−1 ◦ f ◦
ϕ. Then we have a bijection AutC(A)/G ∼= AutC(Ak)/γ

−1
ϕ (G). Since π acts on

AutC(Ak)/γ
−1
ϕ (G) as in lemma 1.4.13, we can induce an action of π on AutC(A)/G

such that this bijection becomes an isomorphism of π-sets. It is easy to verify that
A/G ∼= Ak/γ

−1
ϕ (G) (this was done in the case G = AutC(A) in remark 1.3.2(2), the

general case is similar). Then, applying lemma 1.4.13, we have that

H(A/G) ∼= H(Ak/γ
−1
ϕ (G)) ∼= AutC(Ak)/γ

−1
ϕ (G) ∼= AutC(A)/G .

Lemma 1.4.15. The functor H de�ned in 1.4.2 is essentially surjective.

Proof. Let Z be an object of π-sets. We assume �rst that Z is connected, i.e. that
the action of π on Z is transitive. By lemma 1.4.9(3), there exist k ∈ J , G ≤
AutC(Ak) such that Z ∼= AutC(Ak)/G, with the action described as in the lemma.
By lemma 1.4.13, we have that H(Ak/G) ∼= AutC(Ak)/G (again, the quotient exists
by (G2) of the de�nition of Galois category). Comparing the de�nitions of the
actions that were given in the two lemmas, we see that they agree. Then we have
that Z ∼= H(Ak/G).
We deal now with the general case. By proposition 1.2.20, we can write Z = Z1 q
· · · q Zn, with Z1, . . . , Zn connected (this is actually the orbit decomposition, see
example 1.2.22). By what we proved above, there exist X1, . . . , Xn objects of C such
that H(Xi) ∼= Zi for any i = 1, . . . , n. Then, applying corollary 1.4.12, we get that

Z = Z1 q · · · q Zn ∼= H(X1)q · · · qH(Xn) ∼= H (X1 q · · · qXn) .
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It remains to prove that H is full, i.e. that the map

HomC(X,Y )→ Homπ-sets(H(X), H(Y )), f 7→ H(f)

is surjective for any X, Y objects of C. The following lemmas will allow us to
consider only the case when X and Y are both connected.

Lemma 1.4.16. Let X1, . . . , Xn, Y be objects of C. Let X be the sum of X1, . . . , Xn,
together with the morphisms qi : Xi → X, for i = 1, . . . , n. For any i = 1, . . . , n,
consider the map

ηi : HomC(Xi, Y )→ Homπ-sets(H(Xi), H(Y )), f 7→ H(f) .

The maps η1, . . . , ηn induce a map

η1 × · · · × ηn :

n∏
i=1

HomC(Xi, Y )→
n∏
i=1

Homπ-sets(H(Xi), H(Y )),

(f1, . . . , fn) 7→ (η1(f1), . . . , ηn(fn)) .

Moreover, consider the map

η : HomC(X,Y )→ Homπ-sets(H(X), H(Y )), f 7→ H(f) .

Then we have a bijection ϕ : HomC(X,Y ) →
∏n
i=1 HomC(Xi, Y ) and a bijection

ψ : Homπ-sets(H(X), H(Y )) →
∏n
i=1 Homπ-sets(H(Xi), H(Y )) such that η = ψ−1 ◦

(η1 × · · · × ηn) ◦ ϕ. In particular, if ηi is surjective for every i = 1, . . . , n, then η is
also surjective.

Proof. De�ne

ϕ : HomC(X,Y )→
n∏
i=1

HomC(Xi, Y ), f 7→ (f ◦ q1, . . . , f ◦ qn) .

We have that ϕ is bijective by the universal property of the sum. Analogously, de�ne

ϕ′ : Homπ-sets

(
n∐
i=1

H(Xi), H(Y )

)
→

n∏
i=1

Homπ-sets(H(Xi), H(Y )),

f 7→ (f ◦ q′1, . . . , f ◦ q′n) ,

where q′j : H(Xj) →
∐n
i=1H(Xi), with j = 1, . . . , n, are the canonical inclusions.

We have that also ϕ′ is bijective by the universal property of the sum. Since H
commutes with �nite sums (corollary 1.4.12), we have an isomorphism of π-sets
ϑ :

∐n
i=1H(Xi) → H(X) such that ϑ ◦ q′j = H(qj) for any j = 1, . . . , n. We have

that ϑ induces the map

ϑ∗ : Homπ-sets(H(X), H(Y ))→ Homπ-sets

(
n∐
i=1

H(Xi), H(Y )

)
, f 7→ f ◦ ϑ ,
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which is a bijection because ϑ is an isomorphism. De�ne ψ = ϕ′ ◦ϑ∗. Then ψ is a bi-
jection because it is a composition of bijections. Moreover, for any f ∈ HomC(X,Y )
we have

(ψ ◦ η)(f) = ψ(H(f)) = ϕ′(ϑ∗(H(f))) = ϕ′(H(f) ◦ ϑ) =

(H(f) ◦ ϑ ◦ q′i)i=1,...,n = (H(f) ◦H(qi))i=1,...,n = (H(f ◦ qi))i=1,...,n =

= (η1 × · · · × ηn) ((f ◦ qi)i=1,...,n) = ((η1 × · · · × ηn) ◦ ϕ)(f) .

So ψ ◦ η = (η1 × · · · × ηn) ◦ ϕ, which implies the claim.
Finally, assume that ηi is surjective for any i = 1, . . . , n and let (g1, . . . , gn) ∈∏n
i=1 Homπ-sets(H(Xi), H(Y )). Then for any i = 1, . . . , n, since ηi is surjective,

there exists fi ∈ HomC(Xi, Y ) such that gi = ηi(fi). We have that (f1, . . . , fn) ∈∏n
i=1 HomC(Xi, Y ) and (g1, . . . , gn) = (η1 × · · · × ηn)((f1, . . . , fn)). This shows that

η1 × · · · × ηn is surjective. Hence η = ψ−1 ◦ (η1 × · · · × ηn) ◦ ϕ is surjective, because
it is the composition of surjective maps.

The following lemma is in a sense the �converse� of lemma 1.4.13: while that
lemma told us how to get connected π-sets as images of objects of C, this one shows
us what the e�ect of H on connected objects of C is. At the same time, it gives a
description of connected objects as quotients of Galois objects.

Lemma 1.4.17. Let B be a connected object of C. Then:

(1) there exist k ∈ J and a subgroup G ≤ AutC(Ak) (G is �nite because Ak is
Galois by remark 1.3.12 and so AutC(Ak) is �nite by remark 1.3.2(1)) such
that H(B) ∼= AutC(Ak)/G, with the action given by σ(τG) = (σkτ)G, for any
σ = (σj)j∈J ∈ π = lim←−j∈J AutC(Aj), τ ∈ AutC(Aj)/G (this is the same as in

lemma 1.4.9(3));

(2) H(B) is a connected π-set, i.e. the action of π on the set H(B) = F (B) is
transitive (see example 1.2.14(2));

(3) B ∼= Ak/G, where k and G are as in point (1).

Proof. (1) By lemma 1.3.5, there exists a pair (A, a) ∈ I such that A is Galois
and ψB(A,a) : HomC(A,B) → F (B) is bijective. De�ne k := [(A, a)]∼. Since A
is Galois, k ∈ J . Since [(A, a)]∼ = k = [(Ak, ak)]∼, we have (A, a) ∼ (Ak, ak),
i.e. there exists an isomorphism ϕ : A→ Ak such that F (ϕ)(a) = aj . For any
f ∈ HomC(Ak, B), we have that

ψB(Ak,ak)(f) = F (f)(ak) = F (f)(F (ϕ)(a)) =

= F (f ◦ ϕ)(a) = ψB(A,a)(f ◦ ϕ) =
(
ψB(A,a) ◦ ϕ

∗
)

(f) ,

where ϕ∗ : HomC(Ak, B) → HomC(A,B), g 7→ g ◦ ϕ is a bijection because
ϕ is an isomorphism. Then ψB(Ak,ak) = ψB(A,a) ◦ ϕ

∗ is a bijection, because it
is a composition of bijections. Since B is connected, it is not initial (remark
1.2.13(1)). Then F (B) 6= ∅ (lemma 1.2.17). Since F (B) ∼= HomC(Ak, B)
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via ψB(Ak,ak), we have that HomC(Ak, B) 6= ∅. By lemma 1.3.13, AutC(Ak)

acts transitively on HomC(Ak, B). Since ψB(Ak,ak) is bijective, this induces a
transitive action of AutC(Ak) on F (B):

σb = ψB(Ak,ak)

(
σ.
(
ψB(Ak,ak)

)−1
(b)

)
,

for any σ ∈ AutC(Ak), b ∈ F (B). We claim that this action is compati-
ble with that of π on F (B) = H(B), in the sense that σb = σkb for any
σ = (σj)j∈J ∈ π = lim←−j∈J AutC(Aj), b ∈ B. Remember that the action

of π on F (B) = H(B) was induced by that on lim−→j∈J HomC(Aj , B) via the

bijection ψ′B : lim←−j∈J HomC(Aj , B) → F (B) de�ned as in the proof of propo-
sition 1.2.35, but considering J as index set instead of I. Then we have
ψ′B([f ]∼) = ψB(Aj ,aj)(f) for any f ∈ HomC(Aj , B), with j ∈ J . Let b ∈ B.

Since ψB(Ak,ak) is bijective, there exists a unique f ∈ HomC(Ak, B) such that

b = ψB(Ak,ak)(f). Then we have

ψ′B([f ]∼) = ψB(Ak,ak)(f) = b .

This means that [f ]∼ = (ψ′B)−1(b). So, if σ = (σj)j∈J ∈ π = lim←−j∈J AutC(Aj),
we have

σb = ψ′B
(
σ
(
(ψ′B)−1(b)

))
= ψ′B (σ[f ]∼) = ψ′B

(
[f ◦ σ−1

k ]∼
)

=

= ψB(Ak,ak)(f ◦ σ
−1
k ) = ψB(Ak,ak)

(
σ.
(
ψB(Ak,ak)

)−1
(b)

)
= σkb ,

which is what we wanted. Fix now b0 ∈ F (b). Then, since the action of
AutC(Ak) on F (B) is transitive, we have that F (B) is isomorphic as an
AutC(Ak)-set to AutC(Ak)/G, where G = StabAutC(Ak)(b0) and the action
of AutC(Ak) on AutC(Ak)/G is de�ned by σ(τG) = (στ)G for any σ ∈
AutC(Ak), τ ∈ AutC(Ak)/G (this is well known by the theory of group actions,
but can also be seen as a consequence of lemma 1.4.9, since AutC(Ak) is the
projective limit of itself and is �nite). More precisely, the following map is an
isomorphism of AutC(Ak)-sets:

ϑ : AutC(Ak)/G→ F (B), τG 7→ τb0 .

But F (B) = H(B) is also a π-set and AutC(Ak)/G can be seen as a π-set as in
the statement. We claim that ϑ is an isomorphism of π-sets. Since we already
know that it is bijective, we only have to prove that it is a morphism of π-sets.
Let σ = (σj)j∈J ∈ π = lim←−j∈J AutC(Aj) and τG ∈ AutC(Ak)/G. Then

ϑ(σ(τG)) = ϑ((σkτ)G) = (σkτ)b0 = σk(τb0) = σ(τb0) = σϑ(τG) .

This proves that ϑ is a morphism of π-sets. So H(B) ∼= AutC(Ak)/G as π-sets.
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(2) Let b1, b2 ∈ H(B). Since the action of AutC(Ak) on F (B) = H(B) is transitive,
there exists τ ∈ AutC(Ak) such that b2 = τb1. By lemma 1.3.16, the projection
pk : π → AutC(Ak) is surjective. Then there exists σ = (σj)j∈J ∈ π such that
τ = pk(σ) = σk. So, by what we proved above, we have σb1 = σkb1 = τb1 = b2.
This shows that the action of π on H(B) is transitive.

(3) First of all, notice that the quotient Ak/G exists by (G2) of the de�nition of
Galois category. Let f0 = ψ−1

(Ak,ak)(b) ∈ HomC(Ak, B) and let σ ∈ G. Since

G is a subgroup of AutC(Ak), we have that also σ−1 ∈ G = StabAutC(Ak)(b0).
Then

ψB(Ak,ak)(f0) = b0 = σ−1b0 =

= ψB(Ak,ak)

(
σ−1.

(
ψB(Ak,ak)

)−1
(b0)

)
= ψB(Ak,ak)(σ

−1.f0) .

Since ψB(Ak,ak) is injective, this implies that f0 = σ−1.f0 = f0 ◦ σ. Since
this holds for any σ in G, by the universal property of the quotient (de�nition
1.1.1(5)) there exists a (unique) morphism f0 : Ak/G→ B such that f0 = f0◦p,
where p : Ak → Ak/G is the morphism that appears in the de�nition of
quotient. We claim that f0 is an isomorphism. By (G6) of the de�nition
of Galois category, it is enough to prove that F

(
f0

)
: F (Ak/G) → F (B) is

an isomorphism of sets, i.e. a bijection. Since Ak is Galois, it is not initial.
Then, since B is connected, lemma 1.3.9 tells us that F (f0) is surjective. Since
F (f0) = F

(
f0

)
◦F (p), it follows that F

(
f0

)
is also surjective. Since F (Ak/G)

and F (B) are �nite sets, if we prove that they have the same cardinality it
will follow that F

(
f0

)
is bijective. By lemma 1.4.13, H(Ak/G) is isomorphic

as a π-set to AutC(Ak)/G, which in turn is isomorphic to H(B) by point (1).
Then H(Ak/G) and H(B) are isomorphic as π-sets. In particular, they are
isomorphic as sets, so we must have

|F (Ak/G)| = |H(Ak/G)| = |H(B)| = |F (B)|

(recall that, as sets, F (X) and H(X) coincide, for any object X of C). This
ends the proof.

Lemma 1.4.18. Let X, Y be objects of C with X connected. If f : X → Y is an
epimorphism, then Y is also connected.

Proof. Let Z be an object of C and g : Z → Y a monomorphism. Assume that Z
is not initial. We have to prove that g is an isomorphism (see remark 1.2.13(2)).
Consider the �bred product Z×Y X (which exists by (G1) of the de�nition of Galois
category), with projections p1 : Z ×Y X → Z, p2 : Z ×Y X → X. By lemma
1.2.15, p2 is a monomorphism, because g is a monomorphism. Since X is connected,
we have that either Z ×Y X is initial or p2 is an isomorphism. By (G4) of the
de�nition of Galois category, we have that F (Z ×Y X) ∼= F (Z) ×F (Y ) F (X). Since
f is an epimorphism, by (G5) of the de�nition of Galois category we have that
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F (f) : F (X)→ F (Y ) is an epimorphism of sets, i.e. a surjective map (see example
1.1.3(6)). Since Z is not initial, F (Z) 6= ∅ (lemma 1.2.17). So there exists z ∈ F (Z).
Then F (g)(z) ∈ F (Y ). Since F (f) is surjective, there exists x ∈ F (X) such that
F (f)(x) = F (g)(z). Then (z, x) ∈ F (Z) ×F (Y ) F (X) (see example 1.1.3(2)). This
means that F (Z) ×F (Y ) F (X) 6= ∅ and so F (Z ×Y X) 6= ∅, which implies that
Z ×Y X is not initial, by (G5) of the de�nition of Galois category. So p2 is an
isomorphism. This implies that F (p2) is an isomorphism of sets, i.e. a bijection.
We prove now that F (g) is surjective. Let y ∈ F (Y ). Since F (f) is surjective,
there exists x ∈ F (X) such that F (f)(x) = y. Since F (p2) is a bijection, also the
projection F (Z) ×F (Y ) F (X) → F (X) is a bijection, in particular it is surjective.
Then there exists z ∈ F (Z) such that (z, x) ∈ F (Z) ×F (Y ) F (X). This means that
F (g)(z) = F (f)(x) = y. So F (g) is surjective. But g is a monomorphism, so F (g)
is also injective, by corollary 1.2.10. Then F (g) is a bijection, i.e. an isomorphism
of sets. By (G6) of the de�nition of Galois category, g is an isomorphism, which is
what we had to prove.

Lemma 1.4.19. Let X, Y be objects of C, with X connected. Let q1 : Y1 →
Y, . . . , qn : Yn → Y be the connected components of Y . For any i = 1, . . . , n, consider
the map

ηi : HomC(X,Yi)→ Homπ-sets(H(X), H(Yi)), f 7→ H(f) .

The maps η1, . . . , ηn induce a map

η′ :

n∐
i=1

HomC(X,Yi)→
n∐
i=1

Homπ-sets(H(X), H(Yi)),

f 7→ ηj(f) if f ∈ HomC(X,Yj) .

Moreover, consider the map

η : HomC(X,Y )→ Homπ-sets(H(X), H(Y )), f 7→ H(f) .

Then we have a bijection ϕ :
∐n
i=1 HomC(X,Yi)→ HomC(X,Y ) and a bijection ψ :∐n

i=1 Homπ-sets(H(X), H(Yi))→ Homπ-sets(H(X), H(Y )) such that η = ψ◦η′◦ϕ−1.
In particular, if ηi is surjective for every i = 1, . . . , n, then η is also surjective.

Proof. Since H commutes with �nite sums (corollary 1.4.12), we have an isomor-
phism of π-sets ϑ :

∐n
i=1H(Yi)→ H(Y ) such that ϑ◦q′j = H(qj) for any j = 1, . . . , n,

where q′j : H(Yj)→
∐n
i=1H(Yi) is the canonical inclusion.

De�ne

ϕ :
n∐
i=1

HomC(X,Yi)→ HomC(X,Y ), f 7→ qj ◦ f ,

where j is the unique element of {1, . . . , n} such that f ∈ HomC(X,Yj). We prove
that ϕ is bijective.
Let f1, f2 ∈

∐n
i=1 HomC(X,Yi) such that ϕ(f1) = ϕ(f2). Let j1, j2 ∈ {1, . . . , n} such

that f1 ∈ HomC(X,Yj1), f2 ∈ HomC(X,Yj2). Then qj1 ◦ f1 = qj2 ◦ f2. Applying H,
we get H(qj1) ◦H(f1) = H(qj2) ◦H(f2). Then

q′j1 ◦H(f1) = ϑ−1 ◦H(qj1) ◦H(f1) = ϑ−1 ◦H(qj2) ◦H(f2) = q′j2 ◦H(f2) .
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In particular, Im(q′j1◦H(f1)) = Im(q′j2◦H(f2)) (and this image is non-empty, because
X connected implies thatX is not initial and thenH(X) 6= ∅). But Im(q′j1◦H(f1)) ⊆
Im(q′j1) and Im(q′j2 ◦H(f2)) ⊆ Im(q′j2). So Im(q′j1)∩ Im(q′j2) 6= ∅, which implies that
j1 = j2 (recall that the sum

∐n
i=1H(Yi) is just the disjoint union of the H(Yi)'s,

with a suitable action of π, see the proof of proposition 1.1.15). So q′j1 ◦f1 = q′j1 ◦f2.
But q′j1 is a monomorphism by assumption (because it de�nes a subobject of Y ).
Then we must have f1 = f2. So ϕ is injective.
Let now f ∈ HomC(X,Y ). By (G3) of the de�nition of Galois category, we can write
f = u′◦u′′, where u′′ : X → Z is an epimorphism and u′ : Z → Y is a monomorphism.
By lemma 1.4.18, Z is connected, because X is connected. Then, by lemma 1.2.19,
there exists a unique j ∈ {1, . . . , n} such that u′ is equivalent to qj . This means
that there exists an isomorphism α : Z → Yj such that u′ = qj ◦ α. We have that
α◦u′′ ∈ HomC(X,Yj) ⊆

∐n
i=1 HomC(X,Yi) and ϕ(α◦u′′) = qj ◦α◦u′′ = u′ ◦u′′ = f .

This proves surjectivity.
De�ne now

ϕ′ :

n∐
i=1

Homπ-sets(H(X), H(Yi))→ Homπ-sets

(
H(X),

n∐
i=1

H(Yi)

)
, f 7→ q′j ◦ f ,

where j ∈ {1, . . . , n} is such that f ∈ Homπ-sets(H(X), H(Yj)). Recall that π-sets
is a Galois category (proposition 1.1.15). By lemma 1.4.17(2), H(X) is connected
and also H(Yj) is connected, for any j = 1, . . . , n. Then q′1, . . . , q

′
n are the connected

components of
∐n
i=1H(Yi). This means that the same argument that we used to

prove that ϕ is bijective applies also to ϕ′. Then ϕ′ is bijective. We have that ϑ
induces the map

ϑ∗ : Homπ-sets

(
H(X),

n∐
i=1

H(Yi)

)
→ Homπ-sets(H(X), H(Y )), f 7→ ϑ ◦ f ,

which is a bijection because ϑ is an isomorphism. De�ne ψ = ϑ∗ ◦ϕ′. Then ψ is a bi-
jection because it is a composition of bijections. Moreover, let f ∈

∐n
i=1 HomC(X,Yi)

and let j ∈ {1, . . . , n} be such that f ∈ HomC(X,Yj). Then we have

(η ◦ ϕ)(f) = η(qj ◦ f) = H(qj ◦ f) = H(qj) ◦H(f) = ϑ ◦ q′j ◦H(f) =

= ϑ ◦ ϕ′(H(f)) = ϑ∗(ϕ
′(H(f))) = (ϑ∗ ◦ ϕ′)(η′(f)) = (ψ ◦ η′)(f) .

So η ◦ ϕ = ψ ◦ η′, which implies the claim.
Finally, if ηi is surjective for any i = 1, . . . , n and g ∈

∐n
i=1 Homπ-sets(H(X), H(Yi)),

there exists a unique j ∈ {1, . . . , n} such that g ∈ Homπ-sets(H(X), H(Yj)). Then,
since ηj is surjective, there exists f ∈ HomC(H,Yj) ⊆

∐n
i=1 HomC(X,Yi) such that

g = ηj(f) = η′(f). This shows that η′ is surjective. Hence η = ψ ◦ η′ ◦ ϕ−1 is
surjective, because it is the composition of surjective maps.

Lemma 1.4.20. The functor H de�ned in 1.4.2 is full.

Proof. Let X, Y be objects of C. We have to prove that the map

HomC(X,Y )→ Homπ-sets(H(X), H(Y )), f 7→ H(f)
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is surjective. By proposition 1.2.20, we can write X =
∐n
i=1Xi, where Xi → X with

i = 1, . . . , n are the connected components of X. Then by lemma 1.4.16 it is enough
to prove that the map HomC(Xi, Y )→ Homπ-sets(H(Xi), H(Y )), f 7→ H(f) is sur-
jective for any i = 1, . . . , n. So we can assume without loss of generality that X is
connected.
Again by proposition 1.2.20, we can write Y =

∐m
j=1 Yi, where Yj → Y with

j = 1, . . . ,m are the connected components of Y . Then by lemma 1.4.19 it is enough
to prove that the map HomC(X,Yj)→ Homπ-sets(H(X), H(Yj)), f 7→ H(f) is sur-
jective for any j = 1, . . . ,m. So we can assume without loss of generality that also
Y is connected.
Notice that HomC(X,Y ) is �nite. Indeed, since X is connected we have that
ψY(X,x) : HomC(X,Y )→ F (Y ) is injective, where x is any element of F (X) (which is
non-empty because X connected implies that X is not initial, see remark 1.2.13(1)
and lemma 1.2.17). Then |HomC(X,Y )| ≤ |F (Y )| < +∞. By corollary 1.4.8, we
know that the map HomC(X,Y ) → Homπ-sets(H(X), H(Y )) is injective. Then,
in order to show that it is surjective, it is enough to show that |HomC(X,Y )| =
|Homπ-sets(H(X), H(Y ))|.
By lemma 1.4.17, there exist k1, k2 ∈ J , G1 ≤ AutC(Ak1), G2 ≤ AutC(Ak2) such
that X ∼= Ak1/G1 and Y ∼= Ak2/G2. Since J is directed (lemma 1.3.10), there
exists k ∈ J such that k ≥ k1 and k ≥ j2. De�ne L1 := ρ−1

kk1
(G1) ≤ AutC(Ak)

and L2 := ρ−1
kk2

(G2) ≤ AutC(Ak). By (G2) of the de�nition of Galois category,
the quotients Ak/L1 and Ak/L2 exist in C. Denote by p1 : Ak1 → Ak1/G1,
p2 : Ak2 → Ak2/G2, q1 : Ak → Ak/L1, q2 : Ak → Ak/L2 the morphisms that appear
in the de�nition of the quotients. Consider the morphism p1 ◦ fkk1 : Ak → Ak1/G1.
Let σ ∈ L1 = ρ−1

kk1
(G1). Then ρkk1(σ) ∈ G1 and this implies that p1 ◦ ρkk1(σ) = p1

(de�nition of quotient). By de�nition of ρkk1 (proposition 1.3.14), we have that

p1 ◦ fkk1 ◦ σ = p1 ◦ ρkk1(σ) ◦ fkk1 = p1 ◦ fkk1 .

Since this holds for any σ ∈ L1, by the universal property of the quotient there exists
a morphism ϕ : Ak/L1 → Ak1/G1 such that p1 ◦fkk1 = ϕ◦ q1. We claim that ϕ is an
isomorphism. By (G6) of the de�nition of Galois category, it is enough to prove that
F (ϕ) : F (Ak/L1)→ F (Ak1/G1) is an isomorphism of sets, i.e. a bijection. We have
that Ak1/G1

∼= X is connected. Then, by lemma 1.3.9, F (ϕ) is surjective. Since
the sets are �nite, in order to prove that F (ϕ) is bijective it is enough to show that
they have the same cardinality. As sets, we have that F (Ak/L1) = H(Ak/L1) ∼=
AutC(Ak)/L1 and F (Ak1/G1) = H(Ak1/G1) ∼= AutC(Ak1)/G1 (see lemma 1.4.13).
Using the fact that ρkk1 is surjective, it is immediate to prove that the following map
is well-de�ned and bijective:

AutC(Ak)/L1 → AutC(Ak1)/G1, σL1 7→ ρkk1(σ)G1 .

Then |AutC(Ak)/L1| = |AutC(Ak1)/G1|. So X ∼= Ak1/G1
∼= Ak/L1. In the

same way, one can show that Y ∼= Ak2/G2
∼= Ak/L2. These isomorphisms in-

duce a bijection between HomC(X,Y ) and HomC(Ak/L1, Ak/L2). In particular,
we have that |HomC(X,Y )| = |HomC(Ak/L1, Ak/L2)|. Applying lemma 1.4.13,
we have that H(X) ∼= H(Ak/L1) ∼= AutC(Ak)/L1 and H(Y ) ∼= H(Ak/L2) ∼=
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AutC(Ak)/L2. Then we have a bijection between Homπ-sets(H(X), H(Y )) and
Homπ-sets(AutC(Ak)/L1,AutC(Ak)/L2). So

|Homπ-sets(H(X), H(Y ))| = |Homπ-sets(AutC(Ak)/L1,AutC(Ak)/L2)| .

Then what we have to prove is that

|HomC(Ak/L1, Ak/L2)| = |Homπ-sets(AutC(Ak)/L1,AutC(Ak)/L2)| .

Let us count how many morphisms of π-sets we have between AutC(Ak)/L1 and
AutC(Ak)/L2. Notice that, by de�nition of the action of π and using the fact
that pk : π → AutC(Ak) is surjective (lemma 1.3.16), a map f : AutC(Ak)/L1 →
AutC(Ak)/L2 is a morphism of π-sets if and only if it is a morphism of AutC(Ak)-
sets. Let f : AutC(Ak)/L1 → AutC(Ak)/L2 be a morphism of AutC(Ak)-sets and
consider σL1 ∈ AutC(Ak)/L1. Then f(σL1) = f(σ(L1)) = σf(L1), since f is a
morphism of AutC(Ak)-sets. This shows that f is uniquely determined by f(L1).
Since f(L1) ∈ AutC(Ak)/L2, there exists τ ∈ AutC(Ak) such that f(L1) = τL2. For
any σ ∈ L1, we have σL1 = L1 and so

τL2 = f(L1) = f(σL1) = σf(L1) = σ(τL2) = (στ)L2 .

This means that τ−1στ ∈ L2.
On the other hand, let τL2 ∈ AutC(Ak) be such that τ−1στ ∈ L2 for any σ ∈ L1.
Notice that this condition does not depend on the representative we choose. Indeed, if
τ ′ ∈ AutC(Ak) is such that τL2 = τ ′L2, then there exists τ0 ∈ L2 such that τ ′ = ττ0

and so (τ ′)−1στ ′ = τ−1
0 (τ−1στ)τ0 ∈ L2, because L2 is a subgroup of AutC(Ak).

De�ne
fτL2 : AutC(Ak)/L1 → AutC(Ak)/L2, σL1 7→ (στ)L2 .

We have that fτL2 is well de�ned. Indeed, if σ1L1 = σ2L2, with σ1, σ2 ∈ AutC(Ak),
then σ−1

2 σ1 ∈ L1 and so (σ2τ)−1(σ1τ) = τ−1σ−1
2 σ1τ ∈ L2 by the assumption on τL2.

This means that (σ1τ)L2 = (σ2τ)L2. Clearly, fτL2(L1) = τL2. Moreover, fτL2 is a
morphism of AutC(Ak)-sets. Indeed, if σ ∈ AutC(Ak) and σ′L1 ∈ AutC(Ak)/L1, we
have that

fτL2(σ(σ′L1)) = fτL2((σσ′)L1) = ((σσ′)τ)L2 =

= (σ(σ′τ))L2 = σ((σ′τ)L2) = σfτL2(σ′L1) .

So, if τL2 ∈ AutC(Ak)/L2 satis�es τ−1στ ∈ L2 for any σ ∈ L1, we have a morphism
of AutC(Ak)-sets sending L1 into τL2.This shows that

|Homπ-sets(AutC(Ak)/L1,AutC(Ak)/L2)| =
= |HomAutC(Ak)(AutC(Ak)/L1,AutC(Ak)/L2)| =

= |{τL2 ∈ AutC(Ak)/L2 : ∀σ ∈ L1 τ−1στ ∈ L2}| .

We count now the number of morphisms between Ak/L1 and Ak/L2. Let f :
Ak/L1 → Ak → L2 be a morphism in C. Consider the following diagram.
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Ak

Ak

Ak/L1

Ak/L2

........................................................................................ ............
q1

.......................................................
.....
.......
.....

?

........................................................................................ ............
q2

...................................................................................
.....
.......
.....

f

By uniqueness in the universal property of the quotient, f is uniquely determined
by the composition f ◦ q1. We have that Ak/L2

∼= Y is connected, so F (q2) :
F (Ak) → F (Ak/L2) is surjective by lemma 1.3.9. Then there exists a′ ∈ F (Ak)
such that F (q2)(a′) = F (f ◦ q1)(ak). Since Ak is Galois, the action of AutC(Ak)
on F (Ak) is transitive (lemma 1.3.4). Then there exists τ ∈ AutC(Ak) such that
a′ = τak = F (τ)(ak). So we have

ψ
Ak/L2

(Ak,ak)(f ◦ q1) = F (f ◦ q1)(ak) = F (q2)(a′) =

= F (q2)(F (τ)(ak)) = F (q2 ◦ τ)(ak) = ψ
Ak/L2

(Ak,ak)(q2 ◦ τ) .

Since ψAk/L2

(Ak,ak) is injective (lemma 1.2.30), this implies that f ◦ q1 = q2 ◦ τ . Let

τ ′ ∈ AutC(Ak). We have that q2 ◦ τ ′ = f ◦ q1 = q2 ◦ τ if and only if

F (q2 ◦ τ ′)(ak) = ψ
Ak/L2

(Ak,ak)(q2 ◦ τ ′) = ψ
Ak/L2

(Ak,ak)(q2 ◦ τ) = F (q2 ◦ τ)(ak)

(the �only if� follows from the injectivity of ψAk/L2

(Ak,ak)). By (G5) of the de�nition of
Galois category, there exists a bijection

ϑ : F (Ak/L2)→ F (Ak)/F (L2)

such that ϑ ◦ F (q2) = q, where q : F (Ak) → F (Ak)/F (L2), x 7→ F (L2)x is the
projection on the set of orbits. Then we have that F (q2 ◦ τ ′)(ak) = F (q2 ◦ τ)(ak) if
and only if ϑ(F (q2 ◦ τ ′)(ak)) = ϑ(F (q2 ◦ τ)(ak)), i.e. if and only if

F (L2)F (τ ′)(ak) = q(F (τ ′)(ak)) = q(F (τ)(ak)) = F (L2)F (τ)(ak) .

This happens if and only if there exists σ ∈ L2 such that

F (τ ′)(ak) = F (σ)(F (τ)(ak)) = F (στ)(ak) .

But this means that ψAk(Ak,ak)(τ
′) = ψAk(Ak,ak)(στ) and this is true if and only if τ ′ = στ ,

by injectivity of ψAk(Ak,ak). Hence we proved that q2◦τ ′ = f ◦q1 if and only if τ ′ ∈ L2τ .
So f is uniquely determined by the right coset L2τ and di�erent cosets give rise to
di�erent morphisms. In the rest of the proof, we will denote by L2\AutC(Ak) the
set of right cosets.
Let σ ∈ L1. By de�nition of quotient, we have that q1 ◦ σ = q1. Then q2 ◦ τ ◦ σ =
f ◦ q1 ◦σ = f ◦ q1, which implies that L2(τσ) = L2τ , by what we proved above. This
means that τστ−1 ∈ L2.
On the other hand, let L2τ ∈ L2\AutC(Ak) be such that τστ−1 ∈ L2 for any σ ∈ L1

(the fact that this does not depend on the representative can be proved as above).
Let σ ∈ L1. Then, since τστ−1 ∈ L2, we have that q2 ◦ (τστ−1) = q2, by de�nition
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of the quotient. This means that (q2 ◦τ)◦σ = q2 ◦τ . Since this holds for any σ ∈ L1,
there exists a unique f : Ak/L1 → Ak/L2 such that q2 ◦ τ = f ◦ q1. This shows that

|HomC(Ak/L1, Ak/L2)| = |{L2τ ∈ L2\AutC(Ak) : ∀σ ∈ L1 τστ−1 ∈ L2}| .

To �nish the proof, de�ne U := {τL2 ∈ AutC(Ak)/L2 : ∀σ ∈ L1 τ−1στ ∈ L2} and
V := {L2τ ∈ L2\AutC(Ak) : ∀σ ∈ L1 τστ−1 ∈ L2} and consider the map

α : U → V, τL2 7→ L2τ
−1 .

Let us check that this is well de�ned. First of all, if τ1L2 = τ2L2, with τ1, τ2 ∈
AutC(Ak), then we have (τ−1

2 )(τ−1
1 )−1 = τ−1

2 τ1 ∈ L2 and so L2τ
−1
1 = L2τ

−1
2 . More-

over, if τL2 ∈ U , then for any σ ∈ L1 we have (τ−1)σ(τ−1)−1 = τ−1στ ∈ L2. This
shows that L2τ

−1 ∈ V . So α is well de�ned. In the same way, one shows that the
map

β : V → U, L2τ 7→ τ−1L2

is well de�ned. It is clear that α and β are inverse to each other. Hence |U | = |V |,
which is what we needed.

Proposition 1.4.21. The functor H de�ned in 1.4.2 is an equivalence of categories.

Proof. It follows immediately from 1.4.5, 1.4.8, 1.4.15 and 1.4.20.

Now we know that any essentially small category is equivalent to the category
of �nite sets with an action of a certain pro�nite group. One thing is still missing:
uniqueness of this pro�nite group up to isomorphism. In order to prove this unique-
ness, we will consider another pro�nite group which acts in a natural way on F (X)
for any object X. Recall the de�nition of the automorphism group of a functor.

De�nition 1.4.22. Let C1, C2 be categories and let G : C1 → C2 be a functor.
An automorphism of G is an isomorphism of functors G → G, i.e. a collection of
isomorphisms σX : G(X) → G(X), for each object X of C1, such that for any
morphism f : X1 → X2 in C1 the following diagram is commutative.

G(X1)

G(X2)

G(X1)

G(X2)

........................................................................................ ............
σX1

...................................................................................
.....
.......
.....

G(f)

........................................................................................ ............
σX2

...................................................................................
.....
.......
.....

G(f)

Remark 1.4.23. Let C1, C2 be categories and let G : C1 → C2 be a functor.

(1) Automorphisms of G can be composed in an obvious way: if σ = (σX)X∈Ob(C1)

and τ = (τX)X∈Ob(C1) are automorphisms of G, then we de�ne στ = (σX ◦
τX)X∈Ob(C1) and it is immediate to check that στ is indeed an automorphism
of G. It is clear that this composition is associative. Moreover, we de�ne idG =
(idX)X∈Ob(C1), which is obviously an automorphism of G and satis�es σ idG =
σ = idG σ for any automorphism σ of G. Finally, for any automorphism σ of
G we can de�ne σ−1 =

(
(σX)−1

)
X∈Ob(C1)

, which is easily checked to be an

automorphism of G and to satisfy σσ−1 = idX = σ−1σ.
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(2) If C1 is not essentially small, an automorphism of G contains too much data
to be a set: it is a proper class. So we cannot consider the class of all automor-
phisms of G, much less the set of all automorphisms of G. Then, in spite of the
properties veri�ed in point (1), we cannot talk of the automorphism group of
G. If instead C1 is essentially small, then the automorphisms of G form a set.
Indeed, if we denote by I the set of isomorphism classes of objects of C1 and
we �x a representative Xi for each i ∈ I, an automorphism σ = (σX)X∈Ob(C1)

of G is uniquely determined by (σXi)i∈I , which can be seen as an element of
the product

∏
i∈I AutC2(G(Xi)), which is a set. In this case, we denote by

Aut(G) the set of all automorphisms of G, which is a group by point (1).

(3) If C1 is essentially small, we consider on Aut(G) the topology which has as a
subbase {

f−1
Y ({σ})

∣∣ Y ∈ Ob(C1), σ ∈ AutC2(G(Y ))
}
,

where we de�ned fY : Aut(G) → AutC2(G(Y )), (σX)X∈Ob(C1) 7→ σY for any
object Y of C1. This is the coarsest topology such that fY is continuous for
any Y , if we consider the discrete topology on AutC2(G(Y )). Moreover, it can
be easily proved that Aut(G) with this topology is a topological group (i.e. the
group's multiplication and inverse are continuous functions).

Lemma 1.4.24. Let C1, C2,C3 be categories and G1 : C1 → C2, G2 : C2 → C3

functors. If G1 is an equivalence of categories, then there is an isomorphism of
topological groups between Aut(G2) and Aut(G2 ◦G1).

Proof. De�ne

ϕ : Aut(G2)→ Aut(G2 ◦G1), σ = (σY )Y ∈Ob(C2) 7→ (σG1(X))X∈Ob(C1) .

First of all, we have to check that ϕ is well de�ned, i.e. that if σ = (σY )Y ∈Ob(C2) is an
automorphism of G2 then ϕ(σ) = (σG1(X))X∈Ob(C1) is an automorphism of G2 ◦G1.
Let σ = (σY )Y ∈Ob(C2) ∈ Aut(G2). For any object X of C1, we have that G1(X)
is an object of C2 and so σG1(X) : G2(G1(X)) = (G2 ◦ G1)(X) → G2(G1(X)) =
(G2 ◦G1)(X) is an isomorphism. We have to check that the compatibility condition
is satis�ed. Let f : X1 → X2 be a morphism in C1. Then G1(f) : G1(X1) →
G1(X2) is a morphism in C2. Since σ is an automorphism of G2, we have that
G2(G1(f)) ◦ σG1(X1) = σG1(X2) ◦ G2(G1(f)). Since G2(G1(f)) = (G2 ◦ G1)(f), this
shows that ϕ(σ) is an automorphism of G2 ◦G1.
We prove now that ϕ is a group homomorphism. Let σ = (σY )Y ∈Ob(C2), τ =
(τY )Y ∈Ob(C2) ∈ Aut(G2). Then

ϕ(στ) = ϕ
(
(σY ◦ τY )Y ∈Ob(C2)

)
= (σG1(X) ◦ τG1(X))X∈Ob(C1) =

= (σG1(X))X∈Ob(C1)(τG1(X))X∈Ob(C1) = ϕ(σ)ϕ(τ) .

So ϕ is a group homomorphism. We check now that ϕ is continuous. For any object
X0 of C1, de�ne

fX0 : Aut(G2 ◦G1)→ AutC3((G2 ◦G1)(X0)), (σX)X∈Ob(C1) 7→ σX0 .
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Analogously, for any object Y0 of C2, de�ne

gY0 : Aut(G2)→ AutC3(G2(Y0)), (σY )Y ∈Ob(C2) 7→ σY0 .

If X0 is an object of C1, by de�nition of ϕ we have that fX0 ◦ϕ = gG(X0). For any ob-
ject X0 of C1 and for any σ ∈ AutC3((G2 ◦G1)(X0)), we have that ϕ−1(f−1

X0
({σ})) =

(fX0 ◦ ϕ)−1({σ}) = g−1
G(X0)({σ}), which is open by the de�nition of the topology on

Aut(G2) (see remark 1.4.23(3)). So ϕ is continuous.
Let us prove now that ϕ is bijective. Let σ = (σY )Y ∈Ob(C2) ∈ Ker(ϕ). Then

(id(G2◦G1)(X))X∈ObC1
= 1Aut(G2◦G1) = ϕ(σ) = (σG1(X))X∈Ob(C1) .

This means that id(G2◦G1)(X) = σG1(X) for any object X of C1. Let Y be an object
of C2. By lemma 1.4.5, G1 is essentially surjective. Then there exists an object X
of C1 such that Y ∼= G1(X). Let α : G1(X) → Y be an isomorphism. Then G2(α)
is also an isomorphism. Since σ is an automorphism of G2, we have that

σY ◦G2(α) = G2(α) ◦ σG1(X) = G2(α) ◦ id(G2◦G1)(X) = G2(α) .

Then σY = G2(α) ◦G2(α)−1 = idY . So σ = (idY )Y ∈Ob(C2) = 1Aut(G2). This proves
that ϕ is injective.
Let τ = (τX)X∈Ob(C1) ∈ Aut(G2 ◦ G1). Let Y ∈ Ob(C2). Since G1 is essentially
surjective, there exists an object XY of C1 such that Y ∼= G1(XY ). Let αY :
G1(XY ) → Y be an isomorphism. Then G2(αY ) : (G2 ◦ G1)(XY ) → G2(Y ) is also
an isomorphism. Moreover, τXY : (G2◦G1)(XY )→ (G2◦G1)(XY ) is an isomorphism,
because τ is an automorphism of G2 ◦G1. De�ne

σY := G2(αY ) ◦ τXY ◦G2(αY )−1 : G2(Y )→ G2(Y ) .

Then σY is an isomorphism, because it is a composition of isomorphisms. Let us show
that σY does not depend on the choice of XY . Let X ′Y be an object of C1 such that
Y ∼= G1(X ′Y ), with isomorphism α′Y : G1(X ′Y ) → Y . Then α−1

Y ◦ α′Y : G1(X ′Y ) →
G1(XY ) is an isomorphism in C2. Since G1 is an equivalence of categories, it is fully
faithful, by lemma 1.4.5. Then there exists a (unique) morphism f : X ′Y → XY such
that G1(f) = α−1

Y ◦ α′Y . Since τ is an isomorphism of G2 ◦G1, we have that

τXY ◦G2(αY )−1 ◦G2(α′Y ) = τXY ◦G2(α−1
Y ◦ α

′
Y ) = τXY ◦ (G2 ◦G1)(f) =

= (G2 ◦G1)(f) ◦ τX′Y = G2(α−1
Y ◦ α

′
Y ) ◦ τX′Y = G2(αY )−1 ◦G2(α′Y ) ◦ τX′Y .

This implies that G2(αY )◦τXY ◦G2(αY )−1 = G2(α′Y )◦τX′Y ◦G2(α′Y )−1. So σY is well
de�ned, because it does not depend on the choice of XY . Let now g : Y1 → Y2 be a
morphism in C2. As above, we have two objects XY1 , XY2 of C1 with isomorphisms
αY1 : G1(XY1)→ Y1 and αY2 : G1(XY2)→ Y2. Consider the morphism α−1

Y2
◦ g ◦αY1 :

G1(XY1)→ G1(XY2). Since G1 is fully faithful, there exists a unique f : XY1 → XY2

such that G1(f) = α−1
Y2
◦ g ◦ αY1 . Since τ is an automorphism of G2 ◦ G1, we have

that

τXY2
◦G2(αY2)−1◦G2(g)◦G2(αY1) = τXY2

◦G2(α−1
Y2
◦g◦αY1) = τXY2

◦(G2◦G1)(f) =

= (G2◦G1)(f)◦τXY1
= G2(α−1

Y2
◦g◦αY1)◦τX1 = G2(αY2)−1◦G2(g)◦G2(αY1)◦τX1 .
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This implies that

σY2 ◦G2(g) = G2(αY2) ◦ τXY2
◦G2(αY2)−1 ◦G2(g) =

= G2(g) ◦G2(αY1) ◦ τX1 ◦G2(αY1)−1 = G2(g) ◦ σY1 .

So σ ∈ AutC(G2). Moreover, for any X ∈ Ob(C1) we can choose XG1(X) = X and
αG1(X) = idG1(X). Then

σG1(X) = G2(αG1(X)) ◦ τX ◦G2(αG1(X))
−1 =

= G2(idG1(X)) ◦ τX ◦G2(idG1(X))
−1 = id(G2◦G1)(X) ◦τX ◦ id(G2◦G1)(X) = τX .

So ϕ(σ) = (σG1(X))X∈Ob(C1) = (τX)X∈Ob(C1) = τ . This shows that ϕ is surjective.
It remains to prove that ϕ is open. Since we already know that ϕ is bijective, it
is enough to check that the elements of the subbase of Aut(G2) are sent to open
subsets of Aut(G2 ◦G1). Let Y0 be an object of C2 and τ ∈ AutC3(G2(Y0)). Since
G1 is essentially surjective, there exists an object X0 of C1 such that Y0

∼= G1(X0).
Let α : G1(X0)→ Y0 be an isomorphism. Then G2(α) : (G2 ◦G1)(X0)→ G2(Y0) is
an isomorphism in C3 and τ ′ := G2(α)−1 ◦ τ ◦G2(α) ∈ AutC3((G2 ◦G1)(X0)). For
any σ = (σY )Y ∈Ob(C2) ∈ Aut(G2), we have that σY0 = G2(α) ◦ σG1(X0) ◦ G2(α)−1,
by de�nition of automorphism of a functor. Then

g−1
Y0

({τ}) =

= {σ = (σY )Y ∈Ob(C2) ∈ Aut(G2) | G2(α) ◦ σG1(X0) ◦G2(α)−1 = σY0 = τ} =

= {σ = (σY )Y ∈Ob(C2) ∈ Aut(G2) | σG1(X0) = G2(α)−1 ◦ τ ◦G2(α) = τ ′} =

= g−1
G1(X0)({τ

′}) = (fX0 ◦ ϕ)−1({τ ′}) = ϕ−1(f−1
X0

({τ ′})) .

So, since ϕ is bijective, we have that ϕ(g−1
Y0

({τ})) = f−1
X0

({τ ′}), which is open by the
de�nition of the topology on Aut(G2 ◦G1). Then ϕ is open. Hence ϕ is both a group
isomorphism and a homeomorphism.

Lemma 1.4.25. Let (πk)k∈K be a family of �nite groups (with K an arbitrary index
set) and consider on each πk the discrete topology. Then the product

∏
k∈K πk, with

the product topology, is a pro�nite group.

Proof. Let I be the set of �nite subsets of K. If A, B are two �nite subsets of K, we
say that A ≥ B if and only if A ⊇ B. This is clearly an order relation. Moreover, I
with this order relation is a directed partially ordered set. Indeed, if A,B ∈ I then
A ∪ B is also a �nite subset of K, i.e. A ∪ B ∈ I, and we have A ∪ B ≥ A and
A ∪ B ≥ B. We de�ne now a projective system of �nite groups. For any A ∈ I,
de�ne πA :=

∏
k∈A πk. Since each πk is �nite and A is �nite, we have that πA is

a �nite group. We consider on πA the product topology, which coincides with the
discrete one. If A,B ∈ I and A ≥ B, de�ne

fAB : πA =
∏
k∈A

πk → πB =
∏
k∈B

πk, (xk)k∈A 7→ (xk)k∈B .
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This is obviously a group homomorphism. Moreover, we have fAA = idπA for any
A ∈ I and, if A,B,C ∈ I are such that A ≥ B and B ≥ C, fAC = fBC ◦ fAB. So
(πA)A∈I , (fAB : πA → πB)A,B∈I, A≥B is a projective system. Then we can consider
the group π = lim←−A∈I πA. We claim that

∏
k∈K πk

∼= π. For any A ∈ I, consider
the group homomorphism gA :

∏
k∈K πk → πA =

∏
k∈A πk, (xk)k∈K 7→ (xk)k∈A. We

have that gA is also continuous because its components coincide with the projections,
which are continuous by de�nition of product topology. Moreover, if A,B ∈ I are
such that A ≥ B, we have

gB(x) = (xk)k∈B = fAB ((xk)k∈A) = fAB(gA(x))

for any x = (xk)k∈K ∈
∏
k∈K πk, i.e. gB = fAB ◦ gA. Then, by the universal prop-

erty of the projective limit, there exists a unique continuous group homomorphism
g :
∏
k∈K πk → π such that fA ◦ g = gA for any A ∈ I, where fA : π → πA is the

canonical projection.
On the other hand, let k ∈ K. Then {k} ∈ I and π{k} = πk. So we can de-
�ne hk := f{k} : π → π{k} = πk (the canonical projection, which is a continuous
group homomorphism by de�nition of the topology and of the group structure on
the projective limit). Let h : π →

∏
k∈K πk be the map with k-th component hk

for any k ∈ K, i.e. pk ◦ h = hk, where pk is the canonical projection. Then h is
a continuous group homomorphism, because each component is a continuous group
homomorphism. We have that

pk ◦ (h ◦ g) = hk ◦ g = f{k} ◦ g = g{k} = pk = pk ◦ id∏
k∈K πk

for any k ∈ K. So h ◦ g = id∏
k∈K πk . Conversely, if A ∈ I, the k-th component of

fA ◦ (g ◦ h) = gA ◦ h is pk ◦ h = hk = f{k} for any k ∈ A and so fA ◦ (g ◦ h) = fA =
fA ◦ idπ. Since this holds for any A ∈ I, we must have g ◦ h = idπ. This shows that∏
k∈K πk

∼= π (as topological groups) and hence
∏
k∈K πk is a pro�nite group.

Lemma 1.4.26. A closed subgroup of a pro�nite group is a pro�nite group.

Proof. Let π be an arbitrary pro�nite group (unlike in the rest of this section,
here π does not denote the projective limit of the projective system introduced in
the proposition 1.3.14(3)). Then there exists a projective system of �nite groups
I, (πi)i∈I , (fij : πi → πj)i,j∈I, i≥j such that π ∼= lim←−i∈I πi. We can assume without
loss of generality that π = lim←−i∈I πi. Let π′ be a closed subgroup of π. For any
i ∈ I, let fi : π → πi be the canonical projection, which is a continuous group homo-
morphism by de�nition of the topology and of the group structure on the projective
limit. De�ne π′i := fi(π

′) ≤ πi. Then π′i is a �nite group. Moreover, for any i, j ∈ I
such that i ≥ j we have that fij(π′i) = fij(fi(π

′)) = (fij ◦ fi)(π′) = fj(π
′) = π′j

(the de�nition of projective limit implies that fij ◦ fi = fj). So we can restrict fij
to π′i and get a (surjective) group homomorphism f ′ij = (fij)|π′

i

: π′i → π′j . It is

clear that (π′i)i∈I , (f
′
ij : π′i → π′j)i,j∈I, i≥j is a projective system. We will show that

π′ = lim←−i∈I π
′
i. First of all, we prove that π

′ = π ∩
∏
i∈I π

′
i (as subsets of

∏
i∈I πi). If

σ = (σi)i∈I ∈ π′, then for any i ∈ I we have σi = fi(σ) ∈ fi(π′) = π′i. So σ ∈
∏
i∈I π

′
i.

This shows that π′ ⊆
∏
i∈I π

′
i. But we have also that π′ ⊆ π, by assumption. So
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π′ ⊆ π ∩
∏
i∈I π

′
i.

Conversely, let σ = (σi)i∈I ∈ π ∩
∏
i∈I π

′
i. In particular, σ ∈ π. We want to show

that σ ∈ π′ (topological closure). Let U be a neighbourhood of σ in π. By de�nition
of the topology on the projective limit, a local base for π at σ is given by{

Ui1...in :=

n⋂
k=1

f−1
ik

({σik})

∣∣∣∣∣ n ∈ N, i1, . . . , in ∈ I

}
.

Then there exist n ∈ N, i1, . . . , in ∈ I such that Ui1...in ⊆ U . By de�nition of
projective system, I is directed. So there exists j ∈ I such that j ≥ ik for any
k = 1, . . . , n. We claim that Uj ⊆ Ui1...in . Let τ = (τi)i∈I ∈ Uj = f−1

j ({σj}).
Then τj = fj(τ) = σj . Since σ, τ ∈ π = lim←−i∈I πi, we have that fik(τ) = τik =

fjik(τj) = fjik(σj) = σik for any k = 1, . . . , n (de�nition of projective limit). Then
τ ∈ f−1

ik
({σik}) for any k = 1, . . . , n and this shows that τ ∈

⋂n
k=1 f

−1
ik

({σik}) =
Ui1...in . So Uj ⊆ Ui1...in ⊆ U . Since σ ∈

∏
i∈I π

′
i, we have that σj ∈ π′j = fj(π

′).

Then there exists τ ∈ π′ such that σj = fj(τ), i.e. τ ∈ f−1
j ({σj}) = Uj . So

τ ∈ π′ ∩ Uj , which shows that π′ ∩ Uj 6= ∅. Then we have also that π′ ∩ U 6= ∅,
because π′ ∩Uj ⊆ π′ ∩U . Since this holds for any neighbourhood of σ in π, we have
that σ ∈ π′. But π′ is closed by assumption, so π′ = π′ and σ ∈ π′. This proves that
π′ = π ∩

∏
i∈I π

′
i.

We have that lim←−i∈I π
′
i is a subgroup of

∏
i∈I π

′
i ≤

∏
i∈I πi, so we can see lim←−i∈I π

′
i

as a subgroup of
∏
i∈I πi (with the subspace topology). Let σ = (σi)i∈I ∈ lim←−i∈I π

′
i.

Then, by de�nition of projective limit, we have that σj = f ′ij(σi) = fij(σi) for any
i, j ∈ I with i ≥ j. So σ ∈ lim←−j∈J πj = π. Then we have that σ ∈ π ∩

∏
i∈I π

′
i.

This shows that lim←−i∈I π
′
i ⊆ π ∩

∏
i∈I π

′
i. Conversely, let σ = (σi)i∈I ∈ π ∩

∏
i∈I π

′
i.

Then for any i ∈ I we have that σi ∈ π′i. Moreover, σ ∈ π = lim←−i∈I πi and so
σj = fij(σi) = f ′ij(σi) for any i, j ∈ I such that i ≥ j. This shows that σ ∈ lim←−i∈I π

′
i.

Hence π′ = π ∩
∏
i∈I π

′
i = lim←−i∈I π

′
i is a pro�nite group.

Lemma 1.4.27. The automorphism group of the fundamental functor F is a pro�nite
group.

Proof. Since C is essentially small, there exist a small category C′ and an equivalence
of categories G : C′ → C. De�ne F ′ = F ◦G : C′ → sets. By lemma 1.4.24, we have
that Aut(F ) ∼= Aut(F ′) as topological groups. So it is enough to prove that Aut(F ′)
is pro�nite. We can see Aut(F ′) as a subgroup of

∏
X∈Ob(C′) SF ′(X), where SF ′(X)

is the symmetric group on F ′(X) (which is a �nite group because F ′(X) is a �nite
set). Notice that it makes sense to consider this product because Ob(C′) is a set.
Moreover, the topology on Aut(F ′), de�ned as in remark 1.4.23(3), coincides with
the subspace topology of the product, if we consider the discrete topology on SF ′(X)

for any X. By lemma 1.4.25, we have that
∏
X∈Ob(C′) SF ′(X), with the product

topology, is a pro�nite group, because it is a product of �nite groups. We prove now
that Aut(F ′) is closed in

∏
X∈Ob(C′) SF ′(X). For any morphism f : Y → Z in C′,

de�ne

Cf :=

(σX)X∈Ob(C′) ∈
∏

X∈Ob(C′)

SF ′(X)

∣∣∣∣∣∣ σZ ◦ F ′(f) = F ′(f) ◦ σY

 .
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Then we have that Aut(F ′) =
⋂
Y,Z∈Ob(C′), f :Y→Z Cf . Let f : Y → Z be a morphism

in C′. De�ne the map

pZY :
∏

X∈Ob(C′)

SF ′(X) → SF ′(Z)×SF ′(Y ), (σX)X∈Ob(C′) 7→ (σZ , σY ) .

Then, if we consider on SF ′(Z)×SF ′(Y ) the product topology (which coincides with
the discrete one), pZY is continuous, because its components are the canonical pro-
jections on SF ′(Z) and SF ′(Y ), which are continuous by de�nition of the product
topology on

∏
X∈Ob(C′) SF ′(X). Consider now the set

Af := {(σ1, σ2) ∈ SF ′(Z)×SF ′(Y ) | σ1 ◦ F ′(f) = F ′(f) ◦ σ2} ⊆ SF ′(Z)×SF ′(Y ) .

We have that Cf = p−1
ZY (Af ) (see the de�nitions). But Af is closed in SF ′(Z)×SF ′(Y ),

which has the discrete topology. So Cf is closed in
∏
X∈Ob(C′) SF ′(X). Then Aut(F ′)

is closed in
∏
X∈Ob(C′) SF ′(X), because it is the intersection of closed subsets. Hence

Aut(F ′) is a pro�nite group, by lemma 1.4.26.

Remark 1.4.28. In the proof of lemma 1.4.27, we did not use the axioms of Galois
categories. We used only the fact that C is essentially small. So the result is true
for any essentially small category with a functor to the category of �nite sets.

Lemma 1.4.29. For any object Y of C, we have a continuos action of Aut(F ) on
F (Y ), de�ned by σy = σY (y) for any σ = (σX)X∈Ob(C) ∈ Aut(F ), y ∈ F (Y ). We
denote by H ′(Y ) the set F (Y ) equipped with this action. Then H ′(Y ) is an object
of Aut(F )-sets (recall that F (Y ) is a �nite set). Moreover, if Y , Z are objects of
C with a morphism h : Y → Z, then F (h) is a morphism of Aut(F )-sets. If we set
H ′(f) = F (f), then H ′ : C→ Aut(F )-sets is a functor.

Proof. Let Y be an object of C. Since 1Aut(F ) = (idF (X))X∈Ob(C), we have that
1Aut(F )y = idF (Y )(y) = y, for any y ∈ Y . Moreover, let σ = (σX)X∈Ob(C), τ =
(τX)X∈Ob(C) ∈ Aut(F ). Then στ = (σX ◦τX)X∈Ob(C) and so (στ)y = (σY ◦τY )(y) =
σY (τY (y)) = σ(τY (y)) = σ(τy). So we have indeed de�ned a group action. We have
to prove that this action is continuous. Let y ∈ F (Y ). Then

StabAut(F )(y) = {σ = (σX)X∈Ob(C) ∈ Aut(F ) | y = σy = σY (y)} =

= f−1
Y (StabSF (Y )

(y)) ,

where fY : Aut(F )→ SF (Y ), σ = (σX)X∈Ob(C) 7→ σY is continuous by de�nition of
the topology on Aut(F ) (remark 1.4.23(3)), if we consider the discrete topology on
SF (Y ). Then, since StabSF (Y )

is open in SF (Y ), we have that StabAut(F )(y) is open
in Aut(F ). So the action is continuous by lemma 1.1.14.
Let Y , Z be objects of C and h : Y → Z a morphism. Let y ∈ Y and σ =
(σX)X∈Ob(C) ∈ Aut(F ). By de�nition of automorphism of a functor, we have that
σZ ◦ F (h) = F (h) ◦ σY . Then we have that

F (h)(σy) = F (h)(σY (y)) = σZ(F (h)(y)) = σF (h)(y) .
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So F (h) is a morphism of Aut(F )-sets.
It remains to prove that H ′ is a functor. This follows immediately from the fact that
F is a functor. Indeed, H ′(idY ) = F (idY ) = idF (Y ) = idH′(Y ) for any object Y of C
and H ′(h2 ◦h1) = F (h2 ◦h1) = F (h2)◦F (h1) = H ′(h1)◦H ′(h2) for any h1 : Y → Z,
h2 : Z →W morphisms in C.

Remark 1.4.30. If H ′ is the functor de�ned in 1.4.29, then forAut(F ) ◦H ′ = F , where
forAut(F ) : Aut(F )-sets→ sets is the forgetful functor.

Now we want to prove that the functor H ′ de�ned in 1.4.29 is an equivalence of
categories. We need some lemmas.

Lemma 1.4.31. The intersection of all open normal subgroups of a pro�nite group
is trivial.

Proof. Let π be an arbitrary pro�nite group (unlike in the rest of this section,
here π does not denote the projective limit of the projective system introduced in
the proposition 1.3.14(3)). Then there exists a projective system of �nite groups
I, (πi)i∈I , (fij : πi → πj)i,j∈I, i≥j such that π ∼= lim←−i∈I πi. We can assume without

loss of generality that π = lim←−i∈I πi. Let x ∈
⋂
π′Eπ, π′ open π

′. We claim that 1 ∈ {x}
(topological closure). Let U be a neighbourhood of 1. By de�nition of the topology
on the projective limit, a local base for π at 1 is given by{

Uj1...jn :=
n⋂
k=1

p−1
jk

({1jk}) =
n⋂
k=1

Ker(pjk)

∣∣∣∣∣ n ∈ N, j1, . . . , jn ∈ I

}
,

where pj : π = lim←−i∈I πi → πj is the canonical projection (which is a continuous
group homomorphism) for any j ∈ I. So there exist n ∈ N, j1, . . . , jn ∈ I such that
Uj1...jn ⊆ U . For any k = 1, . . . , n, we have that Ker(pjk) is an open normal subgroup
of π. So x ∈ Ker(pjk). Then x ∈

⋂n
k=1 Ker(pjk) = Uj1...jn ⊆ U . This proves that

U ∩ {x} 6= ∅. Since this holds for any U , we have that 1 ∈ {x}. But π is Hausdor�,
by remark 1.1.10. In particular, points are closed. So {x} = {x}. Hence x = 1.

Lemma 1.4.32. In this lemma, we do not use the notation introduced in proposition
1.3.14 and we denote by π an arbitrary pro�nite group. We denote by for : π-sets→
sets the forgetful functor. Since π-sets is a Galois category with fundamental functor
for, we can de�ne a functor H ′ : π-sets → Aut(for)-sets as in lemma 1.4.29. For
any open subgroup π′ of π, we see π/π′ as a π-set with action of π given by left
multiplication, as in lemma 1.4.9.

(1) The map

ϕ : Aut(for)→
∏
π′Eπ
π′ open

Sπ/π′ , (σX)X∈Ob(π-sets) 7→ (σπ/π′)π′Eπ, π′ open

is an injective group homomorphism.
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(2) Let π′ be an open normal subgroup of π. The map

ψπ′ : π/π′ → Autπ-sets(π/π
′), τπ′ 7→

(
τ ′π′ 7→ (τ ′τ−1)π′

)
is an isomorphism of groups. Moreover, if f : π/π′ → π/π′ is a map of sets
such that f ◦ σ = σ ◦ f for any σ ∈ Autπ-sets(π/π

′), then there exists a unique
τπ′ ∈ π/π′ such that f = fτπ′ , where fτπ′ is de�ned by fτπ′(τ ′π′) = (ττ ′)π′

for any τ ′π′ ∈ π/π′ (it is immediate to check that fτπ′ is well de�ned for any
τπ′ ∈ π/π′, using the fact that π′ is normal).

(3) We have that Aut(for) ∼= π as pro�nite groups and H ′ coincides with the functor
induced by this isomorphism.

Proof. (1) The fact that ϕ is a group homomorphism follows from the de�nition
of the group structure on Aut(for). Let σ = (σX)X∈Ob(π-sets) ∈ Ker(ϕ). Then

(σπ/π′)π′Eπ, π′ open = ϕ(σ) = (idπ/π′)π′Eπ, π′ open ,

i.e. σπ/π′ = idπ/π′ for any open normal subgroup π′ of π. Let X be an object
of π-sets. We can write X as the disjoint union of its orbits: X =

∐n
i=1Xi

(n ∈ N), such that the action of π on Xi is transitive for any i = 1, . . . , n. Let
x ∈ X. Then there exists a unique i ∈ {1, . . . , n} such that x ∈ Xi. Denote
by qi : Xi → X the canonical inclusion, which is a morphism of π-sets. Then,
since σ is an automorphism of for, we have that

σX ◦ qi = σX ◦ for(qi) = for(qi) ◦ σXi = qi ◦ σXi .

So σX(x) = σX(qi(x)) = qi(σXi(x)) = σXi(x). By lemma 1.4.9 there exists
an open subgroup πi ≤ π such that Xi is isomorphic to π/πi as a π-set. Let
αi : Xi → π/πi be an isomorphism of π-sets. Since σ is an automorphism of for,
we have that σXi = for(αi)

−1 ◦ σπ/πi ◦ for(αi) = α−1
i ◦ σπ/πi ◦αi. Moreover, let

π′i be the normal core of πi, i.e. π′i :=
⋂
τ∈π τπiτ

−1 E π. Since πi is open, it has
�nite index in π, by lemma 1.1.11. Notice that, if τ1πi = τ2πi with τ1, τ2 ∈ π,
then τ1πiτ

−1
1 = τ2πiτ

−1
2 . So the set {τπiτ−1 | τ ∈ π} is �nite. Since π is a

topological group, conjugation by τ is a homeomorphism for any τ ∈ π and so
τπiτ

−1 is open, because πi is open. Then π′i is open in π, because it is a �nite
intersection of open subsets. So π′i is an open normal subgroup of π, which
implies that σπ/π′i = idπ/π′i . Consider the map βi : π/π′i → π/πi, τπ

′
i 7→ τπi.

This map is well de�ned, because π′i ⊆ πi. Moreover, βi is clearly a morphism
of π-sets, by de�nition of the action on π on π/π′i and on π/πi. Since σ is an
automorphism of for, we have that

σπ/πi ◦ βi = σπ/πi ◦ for(βi) = for(βi) ◦ σπ/π′i = βi ◦ idπ/π′i = βi = idπ/πi ◦βi .

But βi is clearly surjective and so an epimorphism of sets (see example 1.1.3(6)).
Then we must have σπ/πi = idπ/πi . So σXi = α−1

i ◦σπ/πi ◦αi = α−1
i ◦αi = idXi

and σX(x) = σXi(x) = x. Since this holds for any x ∈ X, we have that
σX = idX . Then σ = (idX)X∈Ob(π-sets) = 1Aut(for). Hence ϕ is injective.
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(2) First of all, we check that ψπ′ is well de�ned. Consider τπ′ ∈ π/π′. If τ ′π′ =
τ ′′π′, with τ ′, τ ′′ ∈ π, then (τ ′′)−1τ ′ ∈ π′ and so(

τ ′′τ−1
)−1 (

τ ′τ−1
)

= τ
(
(τ ′′)−1τ ′

)
τ−1 ∈ π′ ,

because π′ is normal. So (τ ′τ−1)π′ = (τ ′′τ−1)π′. This shows that the map
π/π′ → π/π′, τ ′π′ 7→ (τ ′τ−1)π′ is well de�ned. Moreover, it is a morphism
of π-sets. Indeed, if σ ∈ π, we have that ((στ ′)τ−1)π′ = (σ(τ ′τ−1))π′ =
σ((τ ′τ−1)π′). It remains to check that this map does not depend on the choice
of τ . If τ1π

′ = τ2π
′, with τ1, τ2 ∈ π, then τ−1

2 τ1 ∈ π′. So, for any τ ′π′ ∈ π/π′,
we have that(

τ ′τ−1
1

)−1 (
τ ′τ−1

2

)
= τ1(τ ′)−1τ ′τ−1

2 = τ1τ
−1
2 = τ1

(
τ−1

2 τ1

)
τ−1

1 ∈ π′ ,

because π′ is normal in π. Then (τ ′τ−1
1 )π′ = (τ ′τ−1

2 )π′. So ψπ′ is well de�ned.
Let τ1π

′, τ2π
′ ∈ π/π′. For any τ ′π′ ∈ π/π′, we have(

ψπ′(τ1π
′) ◦ ψπ′(τ2π

′)
)

(τ ′π′) = ψ′π(τ1π
′)
((
τ ′τ−1

2

)
π′
)

=

=
((
τ ′τ−1

2

)
τ−1

1

)
π′ =

(
τ ′(τ1τ2)−1

)
π′ = ψπ′((τ1τ2)π′)(τ ′π′) .

So ψπ′(τ1π
′) ◦ ψπ′(τ2π

′) = ψπ′((τ1τ2)π′) = ψπ′((τ1π
′)(τ2π

′)), which shows that
ψπ′ is a group homomorphism. Let τπ′ ∈ Ker(ψπ′), i.e. ψπ′(τπ

′) = idπ/π′ .
Then τ−1π′ = ψπ′(τπ

′)(π′) = idπ/π′(π
′) = π′, which means that τ−1 ∈ π′.

Since π′ is a subgroup of π, we must have also τ = (τ−1)−1 ∈ π′ and so
τπ′ = π′. This shows that ψπ′ is injective. It remains to prove that it is
surjective. Let σ ∈ Autπ-sets(π/π

′). Since σ(π′) ∈ π/π′, there exists τ ∈ π
such that σ(π′) = τπ′. Let τ ′π′ ∈ π/π′, with τ ′ ∈ π. Then, since σ is a
morphism of π-sets, we have that σ(τ ′π′) = σ(τ ′(π′)) = τ ′(σ(π′)) = τ ′(τπ′) =
(τ ′τ)π′ = ψπ′(τ

−1π′)(τ ′π′). So σ = ψπ′(τ
−1π′). This proves surjectivity.

Let now f : π/π′ → π/π′ be a map such that f ◦ σ = σ ◦ f for any σ ∈
Autπ-sets(π/π

′). Since f(π′) ∈ π/π′, there exists τ ∈ π such that f(π′) = τπ′.
Let τ ′π′ ∈ π/π′ and consider ψ(τ ′)−1π′ ∈ Autπ-sets(π/π

′). Then f ◦ ψ(τ ′)−1π′ =

ψ(τ ′)−1π′ ◦ f . We have that ψ(τ ′)−1π′(π
′) =

(
(τ ′)−1

)−1
π′ = τ ′π′ and so

f(τ ′π′) = f
(
ψ(τ ′)−1π′(π

′)
)

= ψ(τ ′)−1π′(f(π′)) =

= ψ(τ ′)−1π′(τπ
′) = (ττ ′)π′ = fτπ′(τ

′π′) .

Then f = fτπ′ , as we wanted. If τ̃π′ ∈ π/π′ is such that f = fτ̃π′ , then
τ̃π′ = fτ̃π′(π

′) = f(π′) = τπ′. So we have uniqueness.

(3) For any τ ∈ π and any �nite π-set X, de�ne σX,τ : X → X, x 7→ τx. By
de�nition of group action, we have that σX,τ−1 is the inverse of σX,τ , so σX,τ
is bijective, i.e. σX,τ ∈ SX = Sfor(X). Let X, Y be two �nite π-sets, with a
morphism of π-sets h : X → Y . By de�nition of morphism of π-sets, we have
that

(h ◦ σX,τ )(x) = h(τx) = τh(x) = (σY,τ ◦ h)(x) ,
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for any x ∈ X. So for(h) ◦ σX,τ = h ◦ σX,τ = σY,τ ◦ h = σY,τ ◦ for(h). This
proves that στ := (σX,τ )X∈Ob(π-sets) is an automorphism of the functor for.
Consider now the map

Φ : π → Aut(for), τ 7→ στ .

We claim that Φ is an isomorphism of topological groups. Let τ1, τ2 ∈ π and
let X be a �nite π-set. By de�nition of group action, we have that

σX,τ1τ2(x) = (τ1τ2)x = τ1(τ2x) =

= σX,τ1(τ2x) = σX,τ1(σX,τ2(x)) = (σX,τ1 ◦ σX,τ2)(x) ,

for any x ∈ X. So σX,τ1τ2 = σX,τ1 ◦ σX,τ2 . Then we have:

Φ(τ1τ2) = στ1τ2 = (σX,τ1τ2)X∈Ob(π-sets) = (σX,τ1 ◦ σX,τ2)X∈Ob(π-sets) =

= (σX,τ1)X∈Ob(π-sets) ◦ (σX,τ2)X∈Ob(π-sets) = στ1 ◦ στ2 = Φ(τ1)Φ(τ2) .

So Φ is a group homomorphism. Let τ ∈ Ker(Φ), i.e.

(σX,τ )X∈Ob(π-sets) = στ = Φ(τ) = 1Aut(for) = (idX)X∈Ob(π-sets) .

Then σX,τ = idX for any �nite π-set X. Let π′ be an open normal subgroup
of π. Then σπ/π′,τ = idπ/π′ . So

τπ′ = σπ/π′,τ (π′) = idπ/π′(π
′) = π′ ,

which means that τ ∈ π′. Then we have that τ ∈
⋂
π′Eπ, π′ open π

′. By lemma
1.4.31, this implies τ = 1. So Φ is injective. Let σ = (σX)X∈Ob(π-sets) ∈
Aut(for). Let π′ be an open normal subgroup of π. We have that σπ/π′ is a
(bijective) map from π/π′ to π/π′. Let α ∈ Autπ-sets(π/π

′). By de�nition
of automorphism of a functor, we have that σπ/π′ ◦ α = σπ/π′ ◦ for(α) =
for(α) ◦ σπ/π′ = α ◦ σπ/π′ ◦ α. Then, by point (2), there exists τπ′π′ ∈ π/π′
such that σπ/π′ = fτπ′π′ . We want now to �nd τ ∈ π such that τπ′π′ = τπ′

for any open normal subgroup π′. This means that τ ∈ τπ′π
′ for any open

normal subgroup π′. So it is enough to show that
⋂
π′Eπ, π′ open(τπ′π

′) 6= ∅. For
any normal open subgroup π′, left multiplication by τπ′ is a homeomorphism,
because π is a topological group. Moreover, by lemma 1.1.11, π′ open implies
π′ closed. So τπ′π′ is closed. Since π is a pro�nite group, it is compact. Then,
in order to prove that

⋂
π′Eπ, π′ open(τπ′π

′) 6= ∅, it is enough to show that
(τπ′1π

′
1) ∩ · · · ∩ (τπ′nπ

′
n) 6= ∅ for any n ∈ N, π′1, . . . , π′n open normal subgroups

of π. Given such π′1, . . . , π
′
n, de�ne π

′ := π′1 ∩ · · · ∩ π′n. Then π′ is a normal
subgroup of π and it is also open, because it is a �nite intersection of open
subsets. Fix i ∈ {1, . . . , n} and consider the map βi : π/π′ → π/π′i, τπ

′ 7→ τπ′i,
which is well de�ned because π′ ⊆ π′i. It is immediate to check that βi is a
morphism of π-sets, by de�nition of the action of π on π/π′ and on π/π′i. Since
σ is an automorphism of for, we have that

fτπ′
i
π′i
◦ βi = σπ/π′i ◦ for(βi) = for(βi) ◦ σπ/π′ = βi ◦ fτπ′π′ .
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So τπ′iπ
′
i = fτπ′

i
π′i

(π′i) = fτπ′
i
π′i

(βi(π
′)) = βi(fτπ′π′(π

′)) = βi(τπ′π
′) = τπ′π

′
i. This

means that τπ′ ∈ τπ′iπ
′
i. So τπ′ ∈ (τπ′1π

′
1) ∩ · · · ∩ (τπ′nπ

′
n), which shows that

(τπ′1π
′
1) ∩ · · · ∩ (τπ′nπ

′
n) 6= ∅, as we wanted. Then there exists τ ∈ π such that

τπ′π
′ = τπ′ for any open normal subgroup π′. So σπ/π′ = fτ ′ππ′ = fτπ′ . From

the de�nitions, it is clear that fτπ′ = σπ/π′,τ . So σπ/π′ = σπ/π′,τ , for any open
normal subgroup π′ of π. Then

ϕ(σ) = (σπ/π′)π′Eπ, π′ open = (σπ/π′,τ )π′Eπ, π′ open = ϕ(στ ) .

Since ϕ is injective by point (1), we must have σ = στ = Φ(τ). So Φ is
surjective. Then Φ is a group isomorphism. We prove now that Φ is continuous.
Recall that a subbase of the topology on Aut(for) is given by{

f−1
Y ({σ})

∣∣ Y ∈ Ob(π-sets), σ ∈ Sfor(Y ) = SY
}
.

where we de�ned fY : Aut(for) → Sfor(Y ) = SY , (σX)X∈Ob(π-sets) 7→ σY . Let
Y be a �nite π-set and σ ∈ SY . We have to prove that Φ−1(f−1

Y ({σ})) =
(fY ◦ Φ)−1({σ}) is open in π. Notice that, for any τ ∈ π, (fY ◦ Φ)(τ) = σY,τ .
Then

(fY ◦ Φ)−1({σ}) = {τ ∈ π | σY,τ = σ} .

If (fY ◦ Φ)−1({σ}) = ∅, then it is clearly open. Otherwise, let τ0 ∈ (fY ◦
Φ)−1({σ}), i.e. σY,τ0 = σ. If τ ∈ (fY ◦ Φ)−1({σ}), then σY,τ = σ and so
σY,τ−1

0 τ = σ−1
Y,τ0
◦ σY,τ = σ−1 ◦ σ = idY . So τ

−1
0 τ ∈ (fY ◦ Φ)−1({idY }) and this

shows that (fY ◦ Φ)−1({σ}) ⊆ τ0(fY ◦ Φ)−1({idY }). Conversely, if τ ∈ (fY ◦
Φ)−1({idY }), then σY,τ = idY and so σY,τ0τ = σY,τ0 ◦σY,τ = σ ◦ idY = σ, which
means that τ0τ ∈ (fY ◦ Φ)−1(σ). So (fY ◦ Φ)−1({σ}) = τ0(fY ◦ Φ)−1({idY }).
Since π is a topological group, multiplication by τ0 is a homeomorphism. Then,
in order to prove that (fY ◦ Φ)−1({σ}) = τ0(fY ◦ Φ)−1({idY }) is open, it is
enough to prove that (fY ◦ Φ)−1({idY }) is open. We have that

(fY ◦ Φ)−1({idY }) = {τ ∈ π | σY,τ = idY } =

= {τ ∈ π | ∀y ∈ Y τy = σY,τ (y) = idY (y) = y} .

This is the kernel of the action of π on Y , which is open by lemma 1.1.14, since
Y is �nite. So Φ is continuous.
Since π is a pro�nite group, it is compact by remark 1.1.10. By lemma 1.4.27,
also Aut(for) is pro�nite. In particular, it is Hausdor�, by remark 1.1.10. If
C ⊆ π is closed, then it is compact (a closed subspace of a compact space is
compact) and so Φ(C) is compact in Aut(for). But a compact subspace of a
Hausdor� space is closed. Then Φ(C) is closed. So Φ is a closed map. We
already know that it is bijective and continuous, so it is a homeomorphism.
This proves that Φ is an isomorphism of topological groups. So π ∼= Aut(for)
as pro�nite groups.
The isomorphism Φ induces an action of Aut(for) on any π-set Y : σ.y =
Φ−1(σ)y for any σ ∈ Aut(for), y ∈ Y . It is immediate to check that this
is a continuous group action and that any morphism of π-sets is a morphism

71



CHAPTER 1. GALOIS CATEGORIES

of Aut(for)-sets. So we have a functor H ′′ : π-sets → Aut(for)-sets, with
H ′′(Y ) = Y equipped with the action of Aut(for), for any object Y of π-sets,
and H ′′(f) = f , for any morphism f : Y1 → Y2 in π-sets. We claim that this
functor coincides with H ′. We have H ′(f) = f = H ′′(f) for any morphism
f in π-sets. So we have to check only that H ′(Y ) = H ′′(Y ), i.e. the two
actions of Aut(for) coincide, for any object Y of π-sets. Let Y be an object
of π-sets. Let σ = (σX)X∈Ob(π-sets) ∈ Aut(for) and y ∈ Y . The action
induced by Φ (functor H ′′) gives us σ.y = Φ−1(σ)y, while the action de�ned
as in lemma 1.4.29 (functor H ′) gives us σy = σY (y). Let τ := Φ−1(σ). Then
σ = Φ(τ) = (σX,τ )X∈Ob(π-sets). In particular, σY = σY,τ . So

σy = σY (y) = σY,τ (y) = τy = Φ−1(σ)y = σ.y .

Lemma 1.4.33. Let C1, C2 be two categories, with C1 essentially small, and let
F1, F2 : C1 → C2 be two functors. If F1 and F2 are isomorphic, then Aut(F1) ∼=
Aut(F2) as pro�nite groups and the isomorphism is canonically determined up to an
inner automorphism of Aut(F1).

Proof. Let α : F1 → F2 be an isomorphism of functors, i.e. for any object X of
C1 we have an isomorphism αX : F1(X) → F2(X) in C2 and these isomorphisms
are compatible with each other, i.e. the following diagram is commutative for any
morphism f : X → Y in C1.

F1(X)

F1(Y )

F2(X)

F2(Y )

........................................................................................ ............
αX

...................................................................................
.....
.......
.....

F1(f)

........................................................................................ ............
αY

...................................................................................
.....
.......
.....

F2(f)

If σ = (σX)X∈Ob(C1) ∈ Aut(F1), then for any X we have that αX ◦ σX ◦ α−1
X :

F2(X)→ F2(X) is an isomorphism, because it is a composition of isomorphisms. So
αX ◦ σX ◦ α−1

X ∈ AutC2(F2(X)). It is immediate to check that these isomorphisms
are compatible with each other, so (αX ◦ σX ◦ α−1

X )X∈Ob(C1) is an automorphism of
F2. Then we can de�ne the map

ϕα : Aut(F1)→ Aut(F2), σ = (σX)X∈Ob(C1) → (αX ◦ σX ◦ α−1
X )X∈Ob(C1) .

We claim that this map is an isomorphism of pro�nite groups. It is clearly bijective,
with inverse

ϕ−1
α : Aut(F2)→ Aut(F1), σ = (σX)X∈Ob(C1) → (α−1

X ◦ σX ◦ αX)X∈Ob(C1) .

If σ = (σX)X∈Ob(C1), τ = (τX)X∈Ob(C1) ∈ Aut(F1), then

ϕα(στ) = ϕα((σX ◦ τX)X∈Ob(C1)) = (αX ◦ σX ◦ τX ◦ α−1)X∈Ob(C1) =

= ((αX ◦ σX ◦ α−1) ◦ (ατX ◦ α−1))X∈Ob(C1) =

= (αX ◦ σX ◦ α−1)X∈Ob(C1)(αX ◦ τX ◦ α−1)X∈Ob(C1) = ϕα(σ)ϕα(τ) .
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So ϕα is a group homomorphism. We prove now that it is continuous. For any
object Y of C1, de�ne fY : Aut(F1) → AutC2(F1(Y )), (σX)X∈Ob(C1) 7→ σY and
gY : Aut(F2) → AutC2(F2(Y )), (σX)X∈Ob(C1) 7→ σY . By de�nition of the topology
on Aut(F2), a subbase is given by{

g−1
Y ({τ})

∣∣ Y ∈ Ob(C1), τ ∈ AutC2(F2(Y ))
}
.

For any object Y of C1 and for any τ ∈ AutC2(F2(Y )), we have that

ϕ−1
α (g−1

Y ({τ})) = (gY ◦ ϕα)−1({τ}) =

{σ = (σX)X∈Ob(C1) | α ◦ σY ◦ α−1 = (gY ◦ ϕα)(σ) = τ} =

= {σ = (σX)X∈Ob(C1) | σY = α−1 ◦ τ ◦ α} = f−1
Y ({α−1 ◦ τ ◦ α}) ,

which is open by de�nition of the topology on Aut(F1). So ϕα is continuous. In
the same way, one can show that ϕ−1

α is continuous. So ϕα is an isomorphism of
topological groups, as we wanted.
It is clear from the de�nition of ϕα that it depends on the isomorphism α. Let β :
F1 → F2 be another isomorphism, i.e. we have isomorphisms βX : F1(X) → F2(X)
(for any object X of C1) that are compatible with each other in the same sense as
above. Then β−1α = (βX ◦α−1

X )X∈Ob(C1) is an automorphism of the functor F1 (for
any X, β−1

X ◦ αX : F1(X) → F1(X) is an isomorphism and these isomorphisms are
compatible). De�ne

γβ−1α : Aut(F1)→ Aut(F1), σ 7→ (β−1α)σ(β−1α)−1

(conjugation by β−1α). Then γβ−1α is an inner automorphism of Aut(F1). For any
σ = (σX)X∈Ob(C1) we have that

ϕβ(σ) = (βX ◦ σX ◦ β−1
X )X∈Ob(C1) =

=
(
αX ◦ (α−1

X ◦ βX ◦ σX ◦ β
−1
X ◦ αX

)
◦ α−1

X )X∈Ob(C1) =

ϕα
(
(α−1

X ◦ βX ◦ σX ◦ β
−1
X ◦ αX)X∈Ob(C1)) = ϕα(γβ−1α(σ)

)
.

Hence ϕβ = ϕα ◦ γβ−1α.

Theorem 1.4.34 (Main theorem about Galois categories). Let C be an essentially
small Galois category with fundamental functor F . Then:

(a) if π′ is a pro�nite group and G : C → π′-sets is an equivalence of categories
such that for′ ◦G = F , where for′ : π′-sets→ sets is the forgetful functor, then
π′ ∼= Aut(F ) as pro�nite groups;

(b) the functor H ′ : C → Aut(F )-sets de�ned in lemma 1.4.29 is an equivalence
of categories;

(c) if F ′ : C → sets is another fundamental functor on C, then F and F ′ are
isomorphic;
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(d) if π′ is a pro�nite group such that C and π′-sets are equivalent, then π′ ∼=
Aut(F ) as pro�nite groups and the isomorphism is canonically determined up
to an inner automorphism of Aut(F ).

Proof. (a) Applying the lemmas 1.4.24 and 1.4.32(3), we get that

Aut(F ) = Aut(for′ ◦G) ∼= Aut(for′) ∼= π′ ,

as topological groups.

(b) By proposition 1.4.21, we have that the functor H : C → π-sets de�ned in
lemma 1.4.2 is an equivalence of categories (here π is again the projective limit
of the projective system of groups de�ned in proposition 1.3.14(3)). Moreover,
by remark 1.4.3, we have that for ◦H = F . By point (1), we have an isomor-
phism Aut(F ) ∼= π, as pro�nite groups. This isomorphism induces a functor
H ′′ : π-sets→ Aut(F )-sets, which is clearly an isomorphism of categories (in
particular an equivalence of categories) and by lemma 1.4.32 coincides with
the functor de�ned applying lemma 1.4.29 to the Galois category π-sets (with
fundamental functor the forgetful functor). We claim that H ′ = H ′′ ◦H. This
is clear on morphisms, because H ′(f) = f = H ′′(f) = H ′′(H(f)) for any mor-
phism f . So we have to prove only that the e�ect on objects is the same, i.e.
that the two actions of Aut(F ) on F (Y ) coincide for any object Y . Let Y be an
object of C. Let σ = (σX)X∈Ob(C) ∈ Aut(F ), y ∈ F (Y ). The functor H ′ gives
us σy = σY (y). On the other hand, by lemma 1.4.32(3), the functor H ′′ ◦ H
gives us σ.y = ϕ−1(σ)y, where ϕ : Aut(for) → Aut(F ) is the isomorphism de-
�ned as in lemma 1.4.24. De�ne τ = (τX)X∈Ob(π-sets) := ϕ−1(σ). This means
that (σX)X∈Ob(C) = σ = ϕ(τ) = (τH(X))X∈Ob(C). In particular, σY = τH(Y ).
Then

σy = σY (y) = τH(Y )(y) = τy = ϕ−1(σ)y = σ.y .

This proves that H ′(Y ) = H ′′(H(Y )). So H ′ = H ′′ ◦ H ′ is an equivalence of
categories, because it is the composition of two equivalences.

(c) De�ne J ′ in the same way as we de�ned J , but using the functor F ′ (see the
lemmas 1.2.31 and 1.3.10 and the remarks 1.2.32(1) and 1.3.15(2)):

J ′ = {[(A, a)]∼′ | A Galois, a ∈ F ′(A)} ,

where [(A, a)] ∼′ [(B, b)] if and only there exists an isomorphism f : A → B
such that F ′(f)(a) = b and [(A, a)]∼′ ≥ [(B, b)]∼′ if and only if there exists
a morphism f : A → B such that F ′(f)(a) = b. By corollary 1.3.11, we
have that F ∼= lim←−j∈J HomC(Aj ,−) and F ′ ∼= lim←−j∈J ′ HomC(Bj ,−), where

for any j ∈ J ′ we chose a pair (Bj , bj) with Bj connected, bj ∈ F ′(Bj) and
j = [(Bj , bj)]∼′ (if j1, j2 ∈ J ′ and j1 ≥ j2, we denote by gj1j2 : Bj1 → Bj2
the unique morphism such that gj1j2(bj1) = bj2). So it is enough to prove that
lim←−j∈J HomC(Aj ,−) ∼= lim←−j∈J ′ HomC(Bj ,−).

First of all, we will �nd an order isomorphism between J and J ′. Let j ∈ J .
Then j = [(Aj , aj)]∼ and Aj is Galois, by remark 1.3.12. In particular, Aj is
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not initial (remark 1.2.13(1)) and so F ′(Aj) 6= ∅, by lemma 1.2.17 applied to
the fundamental functor F ′. Choose a′j ∈ F ′(Aj). Then [(Aj , a

′
j)]∼′ ∈ J ′ (recall

that the fact of being Galois does not depend on the fundamental functor, by
remark 1.3.2(2)). So we can de�ne the map

α : J → J ′, j 7→ [(Aj , a
′
j)]∼′ .

We claim that α is bijective. Let j1, j2 ∈ J be such that α(j1) = α(j2), i.e.
[(A′j1 , a

′
j1

)]∼′ = [(Aj2 , a
′
j2

)]∼′ . This means that there exists an isomorphism f :
Aj1 → Aj2 such that F

′(f)(a′j1) = a′j2 . Consider F (f)(aj1) ∈ F (Aj2). Since Aj2
is Galois, by lemma 1.3.4 the action of AutC(Aj2) on F (Aj2) is transitive. So
there exists σ ∈ AutC(Aj2) such that aj2 = F (σ)(F (f)(aj1)) = F (σ ◦ f)(aj1).
This shows that j1 = [(Aj1 , aj1)]∼ = [(Aj2 , j2)]∼ = j2. So α is injective.
Let k ∈ J ′. Since k = [(Bk, bk)]∼′ ∈ J ′, we have that Bk is Galois, by re-
mark 1.3.12. Moreover, F (Bk) 6= ∅ (because Bk connected implies Bk not
initial, see remark 1.2.13(1) and lemma 1.2.17). Choose b ∈ F (Bk) and de-
�ne j := [(Bk, b)]∼ ∈ J . From [(Aj , aj)]∼ = j = [(Bk, b)]∼ it follows that
there exists an isomorphism f : Aj → Bk such that F (f)(aj) = bj . Consider
F ′(f)(a′j) ∈ F ′(Bk). Since Bk is Galois, the action of AutC(Bk) on F ′(Bk)
is transitive, by lemma 1.3.4 apllied to the fundamental functor F ′. So there
exists σ ∈ AutC(Bk) such that b = F ′(σ)(F ′(f)(a′j)) = F ′(σ ◦ f)(a′j). This
shows that [(Bk, b)]∼′ = [(Aj , a

′
j)]∼′ = α(j). Then α is surjective.

We prove now that, for any j1, j2 ∈ J , α(j1) ≥ α(j2) if and only if j1 ≥ j2.
Assume that j1 ≥ j2, i.e. [(Aj1 , aj1)]∼ ≥ [(Aj2 , aj2)]∼. This means that there
exists a morphism f : Aj1 → Aj2 such that F (f)(aj1) = F (f)(aj2). Con-
sider F ′(f)(a′j1) ∈ F ′(Aj2). Since Aj2 is Galois, by lemma 1.3.4 the action
of AutC(Aj2) on F ′(Aj2) is transitive. So there exists σ ∈ AutC(Aj2) such
that a′j2 = F ′(σ)(F ′(f)(a′j1)) = F ′(σ ◦ f)(a′j1). This shows that α(j1) =
[(Aj1 , a

′
j1

)]∼′ ≥ [(Aj2 , a
′
j2

)]∼′ = α(j2).
Conversely, assume α(j1) ≥ α(j2), i.e. [(A′j1 , a

′
j1

)]∼′ ≥ [(Aj2 , a
′
j2

)]∼′ . This
means that there exists an morphism f : Aj1 → Aj2 such that F ′(f)(a′j1) = a′j2 .
Consider F (f)(aj1) ∈ F (Aj2). Since Aj2 is Galois, by lemma 1.3.4 the action
of AutC(Aj2) on F (Aj2) is transitive. So there exists σ ∈ AutC(Aj2) such that
aj2 = F (σ)(F (f)(aj1)) = F (σ ◦ f)(aj1). This shows that j1 = [(Aj1 , aj1)]∼ ≥
[(Aj2 , aj2)]∼ = j2.
Notice that for any j ∈ J we have

[(Aj , a
′
j)]∼′ = α(j) = [(Bα(j), bα(j))]∼′ .

In particular, Aj ∼= Bα(j). We want to �nd isomorphisms hj : Aj → Bα(j) (for
any j ∈ J) in a way that is compatible with the morphisms fj1j2 and gα(j1)α(j2),
i.e. we would like to have gα(j1)α(j2) ◦ hj1 = hj2 ◦ fj1j2 for any j1, j2 ∈ J
with j1 ≥ j2. For any j ∈ J , let Sj be the set of isomorphisms from Aj to
Bα(j), which is non-empty because Aj ∼= Bα(j). Notice that HomC(Aj , Bα(j)) is

�nite, because we have that ψ
Bα(j)

(Aj ,aj)
: HomC(Aj , Bα(j))→ F (Bα(j)) is injective

(lemma 1.2.30) and F (Bα(j)) is a �nite set. So Sj ⊆ HomC(Aj , Bα(j)) is also
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�nite, for any j ∈ J . Consider the discrete topology on each Sj and the product
topology on

∏
j∈J Sj . Then Sj is compact for any j ∈ J , because it is �nite,

and so the product is compact by Tichonov's theorem. For any j1, j2 ∈ J with
j1 ≥ j2, de�ne

Tj1j2 :=

(hj)j∈J ∈
∏
j∈J

Sj

∣∣∣∣∣∣ gα(j1)α(j2) ◦ hj1 = hj2 ◦ fj1j2

 ⊆∏
j∈J

Sj .

We claim that T :=
⋂
j1,j2∈J, j1≥j2 Tj1j2 6= ∅. For any k ∈ J , de�ne pk :∏

j∈J Sj → Sk to be the canonical projection, which is continuous by de�nition
of product topology. Let j1, j2 ∈ J be such that j1 ≥ j2. If we consider the
discrete topology on HomC(Aj , Bα(j)) for any j, then also the maps

f∗j1j2 : HomC(Aj2 , Bα(j2))→ HomC(Aj1 , Bα(j2)), h 7→ h ◦ fj1j2

and

gα(j1)α(j2)∗ : HomC(Aj1 , Bα(j1))→ HomC(Aj1 , Bα(j2)), h 7→ gα(j1)α(j2) ◦ h

are continuous. Then, considering the product topology (which is again the
discrete topology) on HomC(Aj1 , Bα(j2))×HomC(Aj1 , Bα(j2)), the map

qj1j2 :
∏
j∈J

Sj → HomC(Aj1 , Bα(j2))×HomC(Aj1 , Bα(j2)),

(hj)j∈J 7→
(
gα(j1)α(j2) ◦ hj1 , hj2 ◦ fj1j2

)
is continuous, because its components are gα(j1)α(j2)∗ ◦pj1 and f

∗
j1j2
◦pj2 , which

are compositions of continuous functions. De�ne

∆j1j2 := {(h, h) | h ∈ HomC(Aj1 , Bα(j2))} ⊆
⊆ HomC(Aj1 , Bα(j2))×HomC(Aj1 , Bα(j2)) .

Then ∆j1j2 is closed, because HomC(Aj1 , Bα(j2))×HomC(Aj1 , Bα(j2)) has the
discrete topology. We have that Tj1j2 = q−1

j1j2
(∆j1j2). So Tj1j2 is closed and this

holds for any j1, j2 ∈ J with j1 ≥ j2. Then, by the compactness of
∏
j∈J Sj , in

order to show that T 6= ∅ it is enough to prove that Tj1k1 ∩ · · · ∩ Tjnkn 6= ∅ for
any n ∈ N, j1, . . . , jn, k1, . . . , kn ∈ J with ji ≥ ki for every i = 1, . . . , n. Fix
such j1, . . . , jn, k1, . . . , kn ∈ J . Since J is directed (lemma 1.3.10), there exists
k ∈ J such that k ≥ ji for any i = 1, . . . , n. Then, by transitivity, we have also
that k ≥ ki for any i = 1, . . . , n. Notice that these inequalities are preserved
by α. We know that Sk is non-empty, so we can �x an hk ∈ Sk. For any k′ ∈ J
with k ≥ k′, we have the following diagram.

Ak

Bα(k)

Ak′

Bα(k′)

........................................................................................ ............
fkk′

...................................................................................
.....
.......
.....

hk

........................................................................................ ............
gα(k)α(k′)

.......................................................
.....
.......
.....

?
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Fix any h ∈ Sk′ (recall that we know that Sk′ 6= ∅) and consider F (h ◦
fkk′)(ak), F (gα(k)α(k′) ◦hk)(ak) ∈ F (Bα(k′)). Since [(Bα(k′), bα(k′))]∼′ = α(k′) ∈
J ′, we have that Bα(k′) is Galois, by remark 1.3.12. Then AutC(Bα(k′)) acts
freely and transitively on F (Bα(k′)), by lemma 1.3.4. So there exists a unique
σ ∈ AutC(Bα(k′)) such that F (gα(k)α(k′) ◦ hk)(ak) = F (σ)(F (h ◦ fkk′)(ak)) =

F (σ ◦ h ◦ fkk′)(ak). This means that ψ
Bα(k′)
(Ak,ak)(gα(k)α(k′) ◦ hk) = ψ

Bα(k′)
(Ak,ak)(σ ◦ h ◦

fkk′). But ψ
Bα(k′)
(Ak,ak) is injective by lemma 1.2.30, because Ak is connected. So we

must have gα(k)α(k′)◦hk = σ◦h◦fkk′ . We can de�ne hk′ := σ◦h : Ak′ → Bα(k′).
Then hk′ is an isomorphism, because it is a composition of isomorphisms.
So hk′ ∈ Sk′ . Moreover, gα(k)α(k′) ◦ hk = hk′ ◦ fkk′ . We have that hk′ is

the unique isomorphism with this property. Indeed, if h̃k′ ∈ Sk′ satis�es
gα(k)α(k′) ◦ hk = h̃k′ ◦ fkk′ , we can de�ne σ̃ = h̃k′ ◦ h−1 : Bα(k′) → Bα(k′),
which is an isomorphism because it is a composition of isomorphisms. So
σ̃ ∈ AutC(Bα(k′)). Moreover, h̃k′ = σ̃ ◦ h. Then

F (σ̃)(F (h ◦ fkk′)(ak)) = F (σ̃ ◦ h ◦ fkk′)(ak) =

= F (h̃k′ ◦ fkk′)(ak) = F (gα(k)α(k′) ◦ hk)(ak) .

This implies that σ̃ = σ and so h̃k′ = σ ◦ h = hk′ . Notice that if k′ = k we
get the same morphism we started with. For any k′ > k, choose hk′ ∈ Sk′

arbitrarily (we can do it because Sk′ 6= ∅). So we have de�ned an element
(hj)j∈J of the product

∏
j∈J Sj . We claim that (hj)j∈J ∈ Tj1k1 ∩ · · · ∩ Tjnkn .

Let i ∈ {1, . . . , n}. By lemma 1.2.33, we have that fkki = fjiki ◦ fjji and
gα(k)α(ki) = gα(ji)α(ki) ◦ gα(j)α(ji). So

hki ◦ fjiki ◦ fkji = hki ◦ fkki = gα(k)α(ki) ◦ hk =

= gα(ji)α(ki) ◦ gα(k)α(ji) ◦ hk = gα(ji)α(ki) ◦ hji ◦ fkji .

By lemma 1.3.9, fkji : Ak → Aji is an epimorphism, because Aji is connected
and Ak is not initial. So we must have hki ◦ fjiki = gα(ji)α(ki) ◦ hji . This
means that (hj)j∈J ∈ Tjiki . Then (hj)j∈J ∈ Tj1k1 ∩ · · · ∩ Tjnkn . In particular,
Tj1k1 ∩ · · · ∩ Tjnkn 6= ∅, which is what we needed. So T 6= ∅. Fix (hj)j∈J ∈ T .
Let now X be an object of C. For any j ∈ J , the isomorphism hj gives rise to
a bijection

h∗j : HomC(Bα(j), X)→ HomC(Aj , X), f 7→ f ◦ hj .

If j1, j2 ∈ J are such that j1 ≥ j2, then the following diagram is commutative,
because hj2 ◦ fj1j2 = gα(j1)α(j2) ◦ hj1 .

HomC(Bα(j1), X)

HomC(Bα(j2), X)

HomC(Aj1 , X)

HomC(Aj2 , X)

........................................................................................ ............
h∗j1

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

..................

............

g∗α(j1)α(j2)

........................................................................................ ............
h∗j2

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

..................

............

f∗j1j2

Then we can use the universal property of the injective limit to get a bijection
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ΦX : lim←−j∈J HomC(Bα(j), X) → lim←−j∈J HomC(Aj , X). Since α : J → J ′ is an
order isomorphism, we have that

lim←−
j∈J

HomC(Bα(j), X) = lim←−
j∈J ′

HomC(Bj , X) .

So we have a bijection ΦX : lim←−j∈J ′ HomC(Bj , X) → lim←−j∈J HomC(Aj , X). It
remains to prove that these bijections are compatible with morphisms, i.e. that
for any morphism h : X → Y we have

ΦY ◦ lim←−
j∈J ′

HomC(Bj , h) = lim←−
j∈J

HomC(Aj , h) ◦ ΦX .

Let X ∈ lim←−j∈J ′ HomC(Bj , X). Then there exist k ∈ J ′ and f ∈ HomC(Bk, X)

such that X = [f ]∼. We have that(
ΦY ◦ lim←−

j∈J ′
HomC(Bj , h)

)
[X] =

(
ΦY ◦ lim←−

j∈J ′
HomC(Bj , h)

)
([f ]∼) =

= ΦY ([h ◦ f ]∼) = [h∗α−1(k)(h ◦ f)]∼ = [h ◦ f ◦ hα−1(k)]∼ =

= lim←−
j∈J

HomC(Aj , h)
(
[f ◦ hα−1(k)]∼

)
= lim←−

j∈J
HomC(Aj , h)

(
[h∗α−1(k)(f)]∼

)
=

=

(
lim←−
j∈J

HomC(Aj , h) ◦ ΦX

)
([f ]∼) =

(
lim←−
j∈J

HomC(Aj , h) ◦ ΦX

)
(X) .

This proves the compatibility condition. So

lim←−
j∈J

HomC(Aj ,−) ∼= lim←−
j∈J ′

HomC(Bj ,−) ,

which is what we wanted.

(d) Let G : C → π′-sets be an equivalence of categories and let for′ : π′-sets →
sets be the forgetful functor. Consider the functor F ′ := for′ ◦G : C → sets.
We claim that F ′ is a fundamental functor on C. Recall that π′-sets is a
Galois category with fundamental functor for′. Then for′ satis�es (G4), (G5)
and (G6) of the de�nition.
Let X, Y , S be objects of C1, with two morphisms f1 : X → S, f2 : Y → S.
Consider the �bred product G(X) ×G(S) G(Y ) in π′-sets, together with the
projections p1 : G(X)×G(S)G(Y )→ G(X) and p1 : G(X)×G(S)G(Y )→ G(Y ).
By de�nition of �bred product, G(f1)◦p1 = G(f2)◦p2. SinceG is an equivalence
of categories, it is essentially surjective (lemma 1.4.5). Then there exists an
object Z of C1 with G(Z) ∼= G(X)×G(S) G(Y ). Let ϕ : G(Z)→ G(X)×G(S)

G(Y ) be an isomorphism. Consider the morphisms p1 ◦ ϕ : G(Z) → G(X),
p2 ◦ ϕ : G(Z) → G(Y ). Since G is an equivalence, it is full (lemma 1.4.5). So
there exist morphisms q1 : Z → X, q2 : Z → Y such that G(q1) = p1 ◦ ϕ and
G(q2) = p2 ◦ ϕ. We have that

G(f1 ◦ q1) = G(f1) ◦G(q1) = G(f1) ◦ p1 ◦ ϕ =

= G(f2) ◦ p2 ◦ ϕ = G(f2) ◦G(q2) = G(f2 ◦ q2) .
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Since G is an equivalence of categories, it is faithful (lemma 1.4.5). So we
must have f1 ◦ q1 = f2 ◦ q2. Moreover, let W be an object of C with two
morphisms g1 : W → X, g2 : W → Y such that f1 ◦ g1 = f2 ◦ g2. Then
G(f1) ◦ G(g1) = G(f1 ◦ g1) = G(f2 ◦ g2) = G(f2) ◦ G(g2). By the universal
property of the �bred product, there exists a unique morphism h : G(W ) →
G(X) ×G(S) G(Y ) with p1 ◦ h = G(g1) and p2 ◦ h = G(g2). Consider the
morphism ϕ−1 ◦ h : G(W ) → G(Z). Since G is fully faithful, there exists a
unique morphism g : W → Z such that G(g) = ϕ−1 ◦ h. Then we have

G(q1 ◦ g) = G(q1) ◦G(g) = p1 ◦ ϕ ◦ ϕ−1 ◦ h = p1 ◦ h = G(g1)

and

G(q2 ◦ g) = G(q2) ◦G(g) = p2 ◦ ϕ ◦ ϕ−1 ◦ h = p2 ◦ h = G(g2) .

Since G is faithful, this implies q1◦g = g1 and q2◦g = g2. If g̃ : W → Z satis�es
q1◦ g̃ = g1 and q2◦ g̃ = g2, then G(g1) = G(q1◦ g̃) = G(q1)◦G(g̃) = p1◦ϕ◦G(g̃)
and G(g2) = G(q2 ◦ g̃) = G(q2) ◦ G(g̃) = p2 ◦ ϕ ◦ G(g̃). By uniqueness of h,
we must have ϕ ◦G(g̃) = h. So G(g̃) = ϕ−1 ◦ h. By uniqueness of g, we must
have g̃ = g. This proves that Z is a �bred product of X and Y over S. So
X ×S Y ∼= Z and G(X ×S Y ) ∼= G(Z) ∼= G(Z)×G(S) G(Y ). Then G preserves
�bred products. By (G4) of the de�nition of Galois category, we have that for′

preserves �bred products too. So F ′ = for′ ◦G preserves �bred products. In
the same way, it can be proved that F ′ preserves terminal objects, �nite sums
and quotients by �nite groups of automorphisms. So F ′ satis�es (G4).
Let f : X → Y be an epimorphism in C. Let Z be an object of π′-sets and let
g1, g2 : G(Y )→ Z be two morphisms such that g1◦G(f) = g2◦G(f). Since G is
essentially surjective, there exists an object W of C such that Z ∼= G(W ). Let
ϕ : Z → G(W ) be an isomorphism. Consider the morphisms ϕ ◦ g1 : G(Y )→
G(W ) and ϕ ◦ g2 : G(Y )→ G(W ). Since G is full, there exist two morphisms
h1, h2 : Y →W with G(h1) = ϕ ◦ g1 and G(h2) = ϕ ◦ g2. We have that

G(h1 ◦ f) = G(h1) ◦G(f) = ϕ ◦ g1 ◦G(f) =

= ϕ ◦ g2 ◦G(f) = G(h2) ◦G(f) = G(h2 ◦ f) .

Since G is faithful, this implies that h1 ◦ f = h2 ◦ f . But f is an epimorphism,
so we must have h1 = h2. Then g1 = ϕ−1 ◦ G(h1) = ϕ−1 ◦ G(h2) = g2. This
proves that G(f) is an epimorphism. Then, by (G5) of the de�nition of Galois
category, we have that F ′(f) = for′(G(f)) is an epimorphism. So F ′ satis�es
(G5).
Finally, let f : X → Y be a morphism in C such that F ′(f) = for′(G(f))
is an isomorphism. By (G6) of the de�nition of Galois category, we have
that G(f) : G(X) → G(Y ) is an isomorphism in π-sets. So we can con-
sider the morphism G(f)−1 : G(Y ) → G(X). Since G is full, there ex-
ists a morphism g : Y → X such that G(g) = G(f)−1. We have that
G(f ◦ g) = G(f) ◦ G(g) = G(f) ◦ G(f)−1 = idG(Y ) = G(idY ) and G(g ◦ f) =
G(g) ◦ G(f) = G(f)−1 ◦ G(f) = idG(X) = G(idX). Since G is faithful, this
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implies f ◦ g = idY and g ◦ f = idX . So f is an isomorphism. This proves that
F ′ satis�es (G6).
So F ′ is a fundamental functor. By point (c), we have that F and F ′ are isomor-
phic. Then, by lemma 1.4.33, we have an isomorphism of pro�nite groups be-
tween Aut(F ) and Aut(F ′) and this isomorphism is canonically determined up
to an inner automorphism of Aut(F ). On the other hand, applying the lemmas
1.4.24 and 1.4.32(3), we have that Aut(F ′) = Aut(G◦ for′) ∼= Aut(for′) ∼= π′ as
pro�nite groups (and all the isomorphisms involved are canonical). This ends
the proof.

De�nition 1.4.35. Given a Galois category C with fundamental functor F , we
de�ne π(C, F ) := Aut(F ) and we call this pro�nite group the fundamental group of
C with respect to F .

From the main theorem about Galois categories, it follows that the fundamental
group of a Galois category, up to isomorphism, does not depend on the fundamental
functor. We conclude with a lemma which can be used to show that the construction
of the fundamental group of a connected scheme is functorial (see remark 2.3.14).

Lemma 1.4.36. Let D be a category such that we can associate to any object X of
D an essentially small Galois category CX with fundamental functor FX : CX →
sets and to any morphism f : X → Y in D a functor Gf : CY → CX with an
isomorphism of functors αf = (αf,B)B∈Ob(CY ) : FX ◦Gf → FY . Assume that:

(1) for any object X of D we have an isomorphism of functors

βX = (βX,A)A∈Ob(CX) : GidX → idCX

such that FX(βX,A) = αidX ,A for any object A of CX ;

(2) for any two morphisms f : X → Y , g : Y → Z in D we have an isomorphism
of functors γf,g = (γf,g,C)C∈Ob(CZ) : Gf ◦ Gg → Gg◦f such that the following
diagram in sets is commutative for any object C of CZ .

(FX ◦Gf ◦Gg)(C)

(FX ◦Gg◦f )(C)

(FY ◦Gg)(C)

FZ(C)

..................................................................................................................................................................................................................... ............
αf,Gg(C)

..................................................................................................................................................................................................................... ............
αg◦f,C

...................................................................................
.....
.......
.....

FX(γf,g,C)

...................................................................................
.....
.......
.....

αg,C

If for any object X of C we de�ne π(X) := π(CX , FX) = Aut(FX), then we can
extend π to a functor D → Prof , where Prof is the category of pro�nite groups,
with morphisms given by continuous group homomorphisms.

Proof. Let f : X → Y be a morphism in D. De�ne

π(f) : π(X) = Aut(FX)→ π(Y ) = Aut(FY ),

σ = (σA)A∈Ob(CX) 7→ (αf,B ◦ σGf (B) ◦ α−1
f,B)B∈Ob(CY ) .
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First of all, we check that π(f) is well de�ned, i.e. that π(f)(σ) is indeed an auto-
morphism of FY , for any automorphism σ of FX . Let σ = (σA)A∈Ob(CX) ∈ Aut(FX).
For any object B of CY , we have that αf,B ◦ σGf (B) ◦ α−1

f,B : FY (B) → FY (B) is
a bijection, because it is a composition of bijections. We have to check that the
compatibility condition is satis�ed. Let h : B1 → B2 be a morphism in CY . Since
αf is an isomorphism of functors, then also α−1

f = (α−1
f,B)B∈CY is an isomorphism of

functors. Applying this and the fact that σ is an automorphism of FX , we get that

αf,B2 ◦ σGf (B2) ◦ α−1
f,B2
◦ FY (h) = αf,B2 ◦ σGf (B2) ◦ FY (h) ◦ α−1

f,B1
=

= αf,B2 ◦ FY (h) ◦ σGf (B1) ◦ α−1
f,B1

= FY (h) ◦ αf,B1 ◦ σGf (B1) ◦ α−1
f,B1

.

This shows that π(f)(σ) = (αf,B ◦ σGf (B) ◦ α−1
f,B)B∈Ob(CY ) is an automorphism of

FY . We prove now that π(f) is a group homomorphism. Let σ = (σA)A∈Ob(CX), τ =
(τA)A∈Ob(CX) ∈ Aut(FX). Then

π(f)(στ) = π(f)
(
(σA ◦ τA)A∈Ob(CX)

)
= (αf,B ◦σGf (B) ◦ τGf (B) ◦α−1

f,B)B∈Ob(CY ) =

= (αf,B ◦ σGf (B) ◦ α−1
f,B ◦ αf,B ◦ τGf (B) ◦ α−1

f,B)B∈Ob(CY ) =

= (αf,B◦σGf (B)◦α−1
f,B)B∈Ob(CY )(αf,B◦τGf (B)◦α−1

f,B)B∈Ob(CY ) = π(f)(σ)π(f)(τ) .

So π(f) is a group homomorphism. We check now that π(f) is continuous. For any
object A0 of CX , de�ne

pA0 : Aut(FX)→ SFX(A0), σ = (σA)A∈Ob(CX) 7→ σA0 .

Analogously, for any object B0 of CY , de�ne

qB0 : Aut(FY )→ SFY (B0), σ = (σB)B∈Ob(CY ) 7→ σB0 .

By de�nition of the topology on Aut(FY ) (see remark 1.4.23(3)), a base is given by

{q−1
B0

({τ0}) | B0 ∈ Ob(CY ), τ0 ∈ SFY (B0)} .

Let B0 be an object of CY . For any σ = (σA)A∈Ob(CX) ∈ Aut(FX), we have that

(qB0 ◦ π(f))(σ) = qB0

(
(αf,B ◦ σGf (B) ◦ α−1

f,B)B∈Ob(CY )

)
=

= αf,B0 ◦ σGf (B0) ◦ α−1
f,B0

= αf,B0 ◦ pGf (B0)(σ) ◦ α−1
f,B0

.

Then, for any τ0 ∈ SFY (B0),

π(f)−1(q−1
B0

({τ0})) = (qB0 ◦ π(f))−1({τ0}) =

= {σ = (σA)A∈Ob(CX) ∈ Aut(FX) | αf,B0 ◦ pGf (B0)(σ) ◦ α−1
f,B0

= τ0} =

= {σ = (σA)A∈Ob(CX) ∈ Aut(FX) | pGf (B0)(σ) = α−1
f,B0
◦ τ0 ◦ αf,B0} =

= p−1
Gf (B0)({α

−1
f,B0
◦ τ0 ◦ αf,B0}) ,
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which by de�nition of the topology on Aut(FX) (see remark 1.4.23(3)) implies that
π(f)−1(q−1

B0
({τ0})) is open. Then π(f) is continuous. So π(f) : π(X) → π(Y ) is a

morphism in Prof .
We check now that π is a functor. Let X ∈ Ob(D) and let σ = (σA)A∈Ob(CX) ∈
Aut(FX). For any object A of CX , we have that

αidX ,A ◦ σGidX
(A) ◦ α−1

idX ,A
= FX(βX,A) ◦ σGidX

(A) ◦ FX(βX,A)−1 = σA

(we applied the �rst assumption and the de�nition of automorphism of a functor).
So

π(idX)(σ) = (αidX ,A ◦ σGidX
(A) ◦ α−1

idX ,A
)A∈ObCX

= (σA)A∈Ob(CX) = σ .

Then π(idX) = idAut(FX) = idπ(X).
Finally, let X, Y , Z be objects of D and f : X → Y , g : Y → Z two morphisms.
Let σ = (σA)A∈Ob(CX). For any object C of CZ , we have that

αg,C ◦ αf,Gg(C) ◦ σGf (Gg(C)) ◦ α−1
f,Gg(C) ◦ α

−1
g,C =

= αg◦f,C ◦ FX(γf,g,C) ◦ σGf (Gg(C)) ◦ FX(γf,g,C)−1 ◦ α−1
g◦f,C =

= αg◦f,C ◦ σGg◦f (C) ◦ α−1
g◦f,C

(we applied the second assumption and the de�nition of automorphism of a functor).
So

π(g)(π(f)(σ)) = π(g)
(

(αf,B ◦ σGf (B) ◦ α−1
f,B)B∈Ob(CY )

)
=

= (αg,C ◦ αf,Gg(C) ◦ σGf (Gg(C)) ◦ α−1
f,Gg(C) ◦ α

−1
g,C)C∈Ob(CZ) =

= (αg◦f,C ◦ σGg◦f (C) ◦ α−1
g◦f,C)C∈Ob(CZ) = π(g ◦ f)(σ) .

Then π(g) ◦ π(f) = π(g ◦ f). Hence π is a functor.

82



Chapter 2

Galois theory for schemes

In this chapter we will study the category of �nite étale coverings of a connected
scheme (we do not consider the empty scheme as a connected scheme), with the
aim of proving that it is a Galois category (with a suitable fundamental functor).
Then the existence of the fundamental group will follow from theorem 1.4.34. In the
�rst section (based on section 4 of [1]), we will deal with the algebraic aspect of our
problem: after giving the necessary de�nitions, we will prove all the algebraic results
that will be needed later. In particular, we will de�ne projective separable algebras
and we will describe their behaviour under extensions of the scalar ring. The second
and third sections follow section 5 of [1]. In our treatment of �nite étale coverings,
we will point out many analogies with �nite coverings of topological spaces. The
interested reader can �nd an extensive discussion of the latter, from the de�nition
to the proof that they form a Galois category if the base space is connected, in
the appendix. In the second section, we will de�ne �nite étale morphisms and we
will study their properties. It will be useful to consider base changes, which will
reveal a similarity between �nite étale coverings of a scheme and �nite coverings
of a topological space: the latter are de�ned as continuous maps which are locally
trivial coverings (see the appendix) and in some sense also �nite étale coverings are
�locally trivial� (but not in the Zariski topology). The analogue of trivial coverings
will be the notion of totally split morphisms. In the third section, we will de�ne
a functor from the category of �nite étale coverings of a scheme X to the category
of �nite sets and we will prove that this makes the former into a Galois category if
X is connected. In the case of topological spaces (see the appendix) we can de�ne
a fundamental functor for any point of the space. Similarly, here we will de�ne a
fundamental functor for any geometric point of our scheme (i.e. any morphism of
schemes Spec(Ω)→ X, where Ω is an algebraically closed �eld).

2.1 Algebraic preliminaries

We collect in this section all the algebraic results that we will need in the following
ones. Rings are always assumed to be commutative with unity and ring homomor-
phisms preserve the unity. Throughout this section, A will be a ring. We denote by
ModA the category of A-modules.
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De�nition 2.1.1. LetM a �nitely generated free A-module, with basis (w1, . . . , wn).
Let f : M → M be A-linear. By de�nition of basis, for any i = 1, . . . , n there exist
uniquely determined ai1, . . . , ain ∈ A such that f(wi) =

∑n
j=1 aijwj . The trace of f

is de�ned by

Tr(f) =
n∑
i=1

aii .

Remark 2.1.2. (1) If M is a �nitely generated free A-module, then it has a �nite
basis. Indeed, if (wi)i∈I is an A-basis ofM and x1, . . . , xn generate A, then for
any j = 1, . . . , n we can write xj =

∑
i∈Ij ajiwi, with Ij a �nite subset of I and

aji ∈ A for any i ∈ Ij . Then M is generated by (wi)i∈
⋃n
j=1 Ij

. In particular, for

any i0 ∈ I we have that wi0 is a linear combination of (wi)i∈
⋃n
j=1 Ij

. But since

(wi)i∈I is a basis, it is a linear independent set. So we must have i0 ∈
⋃n
j=1 Ij .

Then I =
⋃n
j=1 Ij . This proves that I is �nite, because it is a �nite union

of �nite sets. It can also be proved that, if A 6= 0, all bases have the same
cardinality, which is called the rank ofM over A and denoted by rankA(M) (to
prove it, consider any maximal ideal m of A and the quotient �eld k := A/m,
which can be seen as an A-algebra in a natural way: then for any A-basis
(w1, . . . , wn) of B we have that (w1⊗ 1, . . . , wn⊗ 1) is a k-basis of M ⊗A k, so
n = dimk(M ⊗A k) is independent of the choice of the basis).

(2) The trace of an endomorphism, de�ned as in 2.1.1, is independent of the choice
of the basis. The proof is analogous to the well-known one in the case of vector
spaces (one proves that the trace of a matrix is invariant by conjugation and
that the matrices associated to the same endomorphism with respect to two
bases are conjugate to each other).

Lemma 2.1.3. Let B be an A-algebra. Assume that B is �nitely generated and free
as an A-module. For every b ∈ B, de�ne mb : B → B, x 7→ bx. By de�nition
of A-algebra, we have that mb is A-linear, so we can consider its trace. We de�ne
Tr(b) := Tr(mb).

(1) The map Tr : B → A, b 7→ Tr(b) is A-linear.

(2) The map ϕ : B → HomA(B,A), x 7→ (y 7→ Tr(xy)) is A-linear.

Proof. (1) Let (w1, . . . , wn) be an A-basis of B (see remark 2.1.2). Let b1, b2 ∈ B,
λ1, λ2 ∈ A. For any i = 1, . . . , n, consider ai1, . . . , ain ∈ A such that mb1(wi) =∑n

j=1 aijwj and a′i1, . . . , a
′
in ∈ A such that mb2(wi) =

∑n
j=1 a

′
ijwj . Then we

have

mλ1b1+λ2b2(wi) = (λ1b1 + λ2b2)wi = λ1(b1wi) + λ2(b2wi) =

= λ1mb1(wi) + λ2mb2(wi) =

= λ1

 n∑
j=1

aijwj

+ λ2

 n∑
j=1

a′ijwj

 =

n∑
j=1

(λ1aij + λ2a
′
ij)wj .
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So, by de�nition of trace, we have that

Tr(λ1b1 + λ2b2) = Tr(mλ1b1+λ2b2) =
n∑
i=1

(λ1aii + λ2a
′
ii) =

= λ1

(
n∑
i=1

aii

)
+ λ2

(
n∑
i=1

a′ii

)
=

= λ1 Tr(mb1) + λ2 Tr(mb2) = λ1 Tr(b1) + λ2 Tr(b2) .

Hence Tr is A-linear.

(2) First of all, we prove that ϕ is well de�ned, i.e. that ϕ(x) : B → A is indeed
an A-linear map for any x ∈ B. Let y1, y2 ∈ B, λ1, λ2 ∈ A. Then, applying
the A-linearity of Tr, we have

ϕ(x)(λ1y1 + λ2y2) = Tr(x(λ1y1 + λ2y2)) = Tr(λ1(xy1) + λ2(xy2)) =

= λ1 Tr(xy1) + λ2 Tr(xy2) = λ1ϕ(x)(y1) + ϕ(x)(y2) .

So ϕ(x) is A-linear and ϕ is well de�ned.
Let now x1, x2 ∈ B, λ1, λ2 ∈ A. Then for any y ∈ B we have

ϕ(λ1x1 + λ2x2)(y) = Tr((λ1x1 + λ2x2)y) = Tr(λ1(x1y) + λ2(x2y)) =

= λ1 Tr(x1y) + λ2 Tr(x2y) = λ1ϕ(x1)(y) + λ2ϕ(x2)(y)

(we applied again the A-linearity of Tr). So ϕ(λ1x1 + λ2x2) = λ1ϕ(x1) +
λ2ϕ(x2). Hence ϕ is A-linear.

De�nition 2.1.4. Let B be an A-algebra. We say that B is a free separable A-
algebra if B is �nitely generated and free as an A-module and the map ϕ de�ned in
lemma 2.1.3 is an isomorphism of A-modules.

Remark 2.1.5. Let B be as in lemma 2.1.3. Then HomA(B,A) is always isomorphic
to B as an A-module. Indeed, if (w1, . . . , wn) is a basis of B, then (w∗1, . . . , w

∗
n) is a

basis of HomA(B,A), where we de�ned

w∗j : B → A,

n∑
i=1

aiwi 7→ aj

for any j = 1, . . . , n. So we have an isomorphism of A-modules ϑ : B → HomA(B,A)
de�ned by ϑ(wi) = w∗i for any i = 1, . . . , n (extended by linearity). This isomor-
phism, however, depends on the basis.

Example 2.1.6. Consider the A-algebra An (with ring operations de�ned componen-
twise), which is clearly �nitely generated and free as an A-module. We claim that
An is a free separable A-algebra. Let (e1, . . . , en) be the canonical basis of An, i.e.
ei = (δik)k=1,...,n for any i = 1, . . . , n. Let x = (x1, . . . , xn) ∈ An. We have that

mx(ei) = xei = (x1, . . . , xn)(δik)k=1,...,n = (xkδik)k=1,...,n = xiei
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for any i = 1, . . . , n. Then Tr(x) = Tr(mx) =
∑n

i=1 xi. Consider now the map
ϕ : An → HomA(An, A) de�ned as in lemma 2.1.3. By what we proved, we have that
ϕ(x)(y) = Tr(xy) = Tr((x1y1, . . . , xnyn)) =

∑n
i=1 xiyi for any x = (x1, . . . , xn), y =

(y1, . . . , yn) ∈ An. De�ne now

ψ : HomA(An, A)→ An, f 7→ (f(e1), . . . , f(en)) .

For any x = (x1, . . . , xn) ∈ An, j ∈ {1, . . . , n} we have that ϕ(x)(ej) =
∑n

i=1 xiδij =
xj and so

ψ(ϕ(x)) = (ϕ(x)(e1), . . . , ϕ(x)(en)) = (x1, . . . , xn) = x = idAn(x) .

So ψ ◦ ϕ = idAn . Conversely, let f ∈ HomA(An, A) and let x = (x1, . . . , xn) ∈ An.
Then, applying the A-linearity of f , we get that

ϕ(ψ(f))(x) = ϕ((f(e1), . . . , f(en)))(x) =
n∑
i=1

f(ei)xi = f

(
n∑
i=1

xiei

)
= f(x) .

So (ϕ ◦ ψ)(f) = f = idHomA(An,A)(f), for any f ∈ HomA(An, A). Then ϕ ◦ ψ =
idHomA(An,A). This proves that ϕ and ψ are inverse to each other. In particular, ϕ
is an isomorphism, i.e. An is a free separable A-algebra.

The notion of free separable algebra will be involved in the de�nition of �nite
étale morphisms (see 2.2.1). However, in order to prove most results about �nite
étale morphisms, we will need a more general notion, that of projective separable
algebras. To introduce this concept, we start by recalling the de�nition of projective
modules.

De�nition 2.1.7. An A-module P is called projective if the functor

HomA(P,−) : ModA →ModA

is exact, i.e. if for every exact sequence M0
f−→M1

g−→M2 of A-modules the induced

sequence HomA(P,M0)
f◦−−−→ HomA(P,M1)

g◦−−−→ HomA(P,M2) is also exact.

Example 2.1.8. A is a projective A-module, because the functor HomA(A,−) is iso-
morphic to idModA .

We prove now some lemmas that will allow us to give a very useful characteriza-
tion of projective modules.

Lemma 2.1.9. Let (Pi)i∈I a collection of A-modules and P :=
⊕

i∈I Pi. For every
A-module M we have an isomorphism

ϕM : HomA(P,M)→
∏
i∈I

HomA(Pi,M) .

Moreover, these isomorphisms are compatible, in the sense that, if M , N are A-
modules and f : M → N is an A-linear map, then the following diagram is commu-
tative.

HomA(P,M)
∏
i∈I HomA(Pi,M)

HomA(P,N)
∏
i∈I HomA(Pi, N)

........................................................................................ ............
ϕM

...................................................................................
.....
.......
.....

f ◦ −

........................................................................................ ............
ϕN

...................................................................................
.....
.......
.....

∏
i∈I(f ◦ −)
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Proof. For any j ∈ J , de�ne qj : Pj → P, x 7→ (δijx)i∈I . Notice that, for any
x = (xi)i∈I ∈ P we have x =

∑
i∈I qi(xi).

Let M be an A-module. De�ne

ϕM : HomA(P,M)→
∏
i∈I

HomA(Pi,M), h 7→ (h ◦ qi)i∈I .

Let h1, h2 ∈ HomA(P,M), λ1, λ2 ∈ A. Then

ϕ(λ1h1 + λ2h2) = ((λ1h1 + λ2h2) ◦ qi)i∈I = (λ1(h1 ◦ qi) + λ2(h2 ◦ qi))i∈I =

= λ1(h1 ◦ qi)i∈I + λ2(h2 ◦ qi)i∈I = λ1ϕ(h1) + λ2ϕ(h2) .

So ϕM is A-linear. Conversely, if (hi)i∈I ∈
∏
i∈I HomA(Pi,M), we can de�ne h :

P → M, (xi)i∈I 7→
∑

i∈I hi(xi) (notice that this sum is well de�ned because only
�nitely many of the xi's are non-zero). If (xi)i∈I , (yi)i∈I ∈ P , λ1, λ2 ∈ A, then we
have

h (λ1(xi)i∈I + λ2(yi)i∈I) = h ((λ1xi + λ2yi)i∈I) =

=
∑
i∈I

hi(λ1xi + λ2yi) =
∑
i∈I

(λ1hi(xi) + λ2hi(yi)) =

= λ1

∑
i∈I

hi(xi) + λ2

∑
i∈I

hi(yi) = λ1h ((xi)i∈I) + λ2h ((yi)i∈I) ,

because each hi is A-linear. So h is A-linear. Then we can de�ne

ϕ′M :
∏
i∈I

HomA(Pi,M)→ HomA(P,M),

(hi)i∈I 7→

(
h : P →M, (xi)i∈I 7→

∑
i∈I

hi(xi)

)
.

Let (gi)i∈I , (hi)i∈I ∈
∏
i∈I HomA(Pi,M), λ1, λ2 ∈ A. For any (xi)i∈I ∈ P , we have

ϕ′M (λ1(gi)i∈I + λ2(hi)i∈I) ((xi)i∈I) = ϕ′M ((λ1gi + λ2hi)i∈I) ((xi)i∈I) =

=
∑
i∈I

(λ1gi + λ2hi)(xi) =
∑
i∈I

(λ1gi(xi) + λ2hi(xi)) = λ1

∑
i∈I

gi(xi) + λ2

∑
i∈I

hi(xi) =

= λ1ϕ
′
M ((gi)i∈I) ((xi)i∈I) + λ2ϕ

′
M ((hi)i∈I) ((xi)i∈I) .

So ϕ′M (λ1(gi)i∈I + λ2(hi)i∈I) = λ1ϕ
′
M ((gi)i∈I)+λ2ϕ

′
M ((hi)i∈I) and ϕ′M is A-linear.

We check that ϕM and ϕ′M are inverse to each other. Let h ∈ HomA(P,M). For any
x = (xi)i∈I ∈ P we have that

ϕ′M (ϕM (h))(x)ϕ′M ((h ◦ qi)i∈I) ((xi)i∈I) =
∑
i∈I

h(qi(xi)) = h

(∑
i∈I

qi(xi)

)
= h(x) .

So ϕ′M ◦ ϕM = idHomA(P,M). Let now (hi)i∈I ∈
∏
i∈I HomA(Pi,M) and de�ne h =

ϕ′M ((hi)i∈I). For any j ∈ I, x ∈ Pj , we have

h(qj(x)) = h ((δijx)i∈I) =
∑
i∈I

hi(δijx) =
∑
i∈I

δijhi(x) = hj(x)
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and so h ◦ qj = hj . Then we have that

ϕM
(
ϕ′M ((hi∈I))

)
= ϕM (h) = (h ◦ qi)i∈I = (hi)i∈I = id∏

i∈I HomA(Pi,M) ((hi)i∈I) .

So ϕM ◦ ϕ′M = id∏
i∈I HomA(Pi,M). Then ϕM and ϕ′M are inverse to each other.

Finally, let M , N be A-modules and f : M → N an A-linear map. For any h ∈
HomA(P,M) we have that

ϕN (f ◦ h) = (f ◦ h ◦ qi)i∈I =

(∏
i∈I

(f ◦ −)

)
((h ◦ qi)i∈I) =

(∏
i∈I

(f ◦ −)

)
(ϕM (h)) .

This proves the commutativity of the diagram.

Corollary 2.1.10. Let (Pi)i∈I a collection of A-modules and de�ne P :=
⊕

i∈I Pi.
Then P is projective if and only if each Pi is projective.

Proof. For any i ∈ I, denote f i∗ : HomA(Pi,M0) → HomA(Pi,M1), h 7→ f ◦ h and
gi∗ : HomA(Pi,M1)→ HomA(Pi,M2), h 7→ g ◦ h.
Let M0

f−→ M1
g−→ M2 be an exact sequence of A-modules. By lemma 2.1.9, there is

an isomorphism of sequences between

HomA(P,M0)
f◦−−−→ HomA(P,M1)

g◦−−−→ HomA(P,M2)

and ∏
i∈I

HomA(Pi,M0)

∏
i∈I f

i
∗−−−−−→
∏
i∈I

HomA(Pi,M1)

∏
i∈I g

i
∗−−−−−→
∏
i∈I

HomA(Pi,M2) .

So P is projective if and only if the last sequence is exact for every exact sequence

M0
f−→M1

g−→M2.We have that

Ker

(∏
i∈I

gi∗

)
=

{
(hi)i∈I ∈

∏
i∈I

HomA(Pi,M1)

∣∣∣∣∣ (g ◦ hi)i∈I = (0)i∈I

}
=

=

{
(hi)i∈I ∈

∏
i∈I

HomA(Pi,M1)

∣∣∣∣∣ ∀i ∈ I g ◦ hi = 0

}
=
∏
i∈I

Ker(gi∗)

and

Im

(∏
i∈I

f i∗

)
=

{
(hi)i∈I ∈

∏
i∈I

HomA(Pi,M1)

∣∣∣∣∣ ∃(h′i)i∈I ∈∏
i∈I

HomA(Pi,M0) :

(hi)i∈I = (f ◦ h′i)i∈I

}
=

=

{
(hi)i∈I ∈

∏
i∈I

HomA(Pi,M1)

∣∣∣∣∣ ∀i ∈ I ∃h′i ∈ HomA(Pi,M0) : hi = g ◦ h′i

}
=

=
∏
i∈I

Im(f i∗) .
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Then we have that Ker
(∏

i∈I g
i
∗
)

= Im
(∏

i∈I f
i
∗
)
if and only if Ker(gi∗) = Im(f i∗) for

every i ∈ I. This means that the sequence

∏
i∈I

HomA(Pi,M0)

∏
i∈I f

i
∗−−−−−→
∏
i∈I

HomA(Pi,M1)

∏
i∈I g

i
∗−−−−−→
∏
i∈I

HomA(Pi,M2)

is exact if and only if each of the sequences

HomA(Pi,M0)
f i∗−→ HomA(Pi,M1)

gi∗−→ HomA(Pi,M2)

is exact. Since this holds for every exact sequence M0
f−→ M1

g−→ M2 of A-modules,
we have that P is projective if and only if each Pi is projective.

Example 2.1.11. Any free A-module is projective. Indeed, if an A-module is free
then it is isomorphic to

⊕
i∈I A for some index set I. So it is projective by corollary

2.1.10 and example 2.1.8.

De�nition 2.1.12. A short exact sequence of A-modules 0→M0
f−→M1

g−→M2 → 0
is said to split if there is an isomorphism of A-modules ϕ : M1 → M0 ⊕M2 such
that ϕ ◦ f = i0 and g ◦ ϕ−1 = p2, where we de�ned i0 : M0 →M0 ⊕M2, x 7→ (x, 0)
and p2 : M0 ⊕M2 → M2, (x, y) 7→ y. The de�nition is illustrated by the following
diagram.

0 M0 M1 M2 0

0 M0 M0 ⊕M2 M2 0

........................................................................................ ............ ........................................................................................ ............
f

........................................................................................ ............
g

........................................................................................ ............

........................................................................................ ............ .................................................. ............

i0
.................................................. ............

p2
........................................................................................ ............

...................................................................................
.....
.......
.....

idM0

...................................................................................
.....
.......
.....

ϕ

...................................................................................
.....
.......
.....

idM2

Lemma 2.1.13. Let 0 → M0
f−→ M1

g−→ M2 → 0 be a short exact sequence of
A-modules. The following are equivalent:

(i) the sequence splits;

(ii) there exists an A-linear map α : M1 →M0 such that α ◦ f = idM0 ;

(iii) there exists an A-linear map β : M2 →M1 such that g ◦ β = idM1 .

Proof. De�ne i0 : M0 → M0 ⊕M2, x 7→ (x, 0), i2 : M2 → M0 ⊕M2, y 7→ (0, y),
p1 : M0⊕M2 →M0, (x, y) 7→ x and p2 : M0⊕M2 →M2, (x, y) 7→ y. It is clear that
these maps are A-linear. Moreover, notice that p0 ◦ i0 = idM0 and p2 ◦ i2 = idM2 .

(i) =⇒ (ii) Since the sequence 0 → M0
f−→ M1

g−→ M2 → 0 splits, there exists an
isomorphism of A-modules ϕ : M1 → M0 ⊕ M2 such that ϕ ◦ f = i0 and
g ◦ ϕ−1 = p2. De�ne α := p0 ◦ ϕ : M1 →M0. Then α is A-linear, because it is
the composition of A-linear maps, and we have α◦f = p0◦ϕ◦f = p0◦i0 = idM0 .
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(ii) =⇒ (i) De�ne ϕ : M1 →M0⊕M2, x 7→ (α(x), g(x)). We have that ϕ is A-linear,
because α and g are A-linear. We claim that ϕ is bijective. Let (y0, y2) ∈
M0 ⊕M2. We have that g is surjective, by de�nition of short exact sequence.
So there exists x1 ∈ M1 such that y2 = g(x1). Consider x2 = f(y0 − α(x1)) ∈
Im(f) ⊆M1. By de�nition of exact sequence, we have that Im(f) = Ker(g). So
g(x2) = 0. Then we have that g(x1 +x2) = g(x1)+g(x2) = y2. Moreover, since
α ◦ f = idM0 , we have that α(x1 + x2) = α(x1) +α(x2) = α(x1) + (α ◦ f)(y0−
α(x1)) = α(x1) + y0 − α(x1) = y0. Then ϕ(x1 + x2) = (y0, y2). This proves
that ϕ is surjective. Let x ∈ Ker(ϕ), i.e. (α(x), g(x)) = ϕ(x) = (0, 0). Then
α(x) = 0 and g(x) = 0. So x ∈ Ker(g). But Ker(g) = Im(f), by de�nition of
exact sequence. So there exists m ∈M0 such that x = f(m). Then 0 = α(x) =
α(f(m)) = m, because α ◦ f = idM0 . This implies that x = f(0) = 0 and so
ϕ is injective. Then ϕ is an isomorphism of A-modules. For any x ∈ M0, we
have that (ϕ ◦ f)(x) = ϕ(f(x)) = (α(f(x)), g(f(x))) = (x, 0) = i0(x), because
α◦f = idM0 and g ◦f = 0 (de�nition of exact sequence). So ϕ◦f = i0. On the
other hand, for any x ∈M1 we have that (p2 ◦ϕ)(x) = p2((α(x), g(x))) = g(x).

So p2 ◦ ϕ = g, i.e. g ◦ ϕ−1 = p2. This proves that the sequence 0 → M0
f−→

M1
g−→M2 → 0 splits.

(i) =⇒ (iii) Since the sequence 0 → M0
f−→ M1

g−→ M2 → 0 splits, there exists an
isomorphism of A-modules ϕ : M1 → M0 ⊕ M2 such that ϕ ◦ f = i0 and
g ◦ ϕ−1 = p2. De�ne β := ϕ−1 ◦ i2 : M2 →M1. Then β is A-linear, because it
is the composition of A-linear maps, and we have g ◦β = g ◦ϕ−1 ◦ i2 = p2 ◦ i2 =
idM2 .

(iii) =⇒ (i) De�ne ψ : M0 ⊕M2 → M1, (x, y) 7→ f(x) + β(y). Since f and β are
A-linear, for any (x1, y1), (x2, y2) ∈M0 ⊕M2, λ1, λ2 ∈ A we have

ψ(λ1(x1, y1) + λ2(x2, y2)) = ψ((λ1x1 + λ2x2, λ1y1 + λ2y2)) =

= f(λ1x1 +λ2x2)+β(λ1y1 +λ2y2) = λ1f(x1)+λ2f(x2)+λ1β(y1)+λ2β(y2) =

= λ1(f(x1) + β(y1)) + λ2(f(x2) + β(y2)) = λ1ψ((x1, y1)) + λ2ψ((x2, y2)) .

So ψ is A-linear. We claim that ψ is bijective. Let m ∈M1. Since g◦β = idM2 ,
we have that g(β(g(m))) = g(m). So g(m−β(g(m))) = g(m)−g(β(g(m))) = 0,
i.e. m − β(g(m)) ∈ Ker(g). By de�nition of exact sequence, we have that
Ker(g) = Im(f). So there exists x ∈M0 such that m− β(g(m)) = f(x). Then
ψ((x, g(m))) = f(x) + β(g(m)) = m − β(g(m)) + β(g(m)) = m. This proves
that ψ is surjective. Let (x, y) ∈ Ker(ψ), i.e. f(x) + β(y) = ψ((x, y)) = 0.
Then β(y) = −f(x) = f(−x) ∈ Im(f). By de�nition of exact sequence,
we have that Im(f) = Ker(g). So g(β(y)) = 0. Since g ◦ β = idM2 , we
have that y = g(β(y)) = 0. Then f(x) = −β(y) = −β(0) = 0. But f
is injective by de�nition of short exact sequence, so we must have x = 0.
Then (x, y) = (0, 0) and so ψ is injective. Then ψ is an isomorphism of A-
modules. De�ne ϕ := ψ−1 : M1 → M0 ⊕M2. For any x ∈ M0, we have that
(ψ ◦ i0)(x) = ψ((x, 0)) = f(x) +β(0) = f(x). So ψ ◦ i0 = f , which implies that
ϕ ◦ f = ψ−1 ◦ f = i0. On the other hand, for any (x, y) ∈ M0 ⊕M2 we have
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that (g ◦ ψ)((x, y)) = g(f(x) + β(y)) = g(f(x)) + g(β(y)) = y = p2((x, y)),
because g ◦ f = 0 (by de�nition of exact sequence) and g ◦ β = idM2 . So

g ◦ϕ−1 = g ◦ψ = p2. This proves that the sequence 0→M0
f−→M1

g−→M2 → 0
splits.

Lemma 2.1.14. Let P be an A-module. The following are equivalent:

(i) P is projective;

(ii) for every A-modules M , N , every surjective A-linear map f : M → N and
every A-linear map g : P → N there exists an A-linear map h : P → M such
that f ◦ h = g (see also the diagram);

M N

P

........................................................................................ ......................................................................................................... .................
f

...................................................................................
.....
.......
.....

g

......................................................................................
....
............

h

(iii) every short exact sequence of A-modules 0→M0 →M1 → P → 0 splits;

(iv) there exists an A-module Q such that P ⊕Q is a free A-module.

Proof. (i) =⇒ (ii) Let M , N be A-modules, f ∈ HomA(M,N) surjective and g ∈
HomA(P,N). Since f is surjective, the sequence M

f−→ N → 0 is exact. Then,
since P is projective, the sequence

HomA(P,M)
f◦−−−→ HomA(P,N)→ 0

is also exact. This means that the map

f∗ : HomA(P,M)→ HomA(P,N), h 7→ f ◦ h

is surjective. Then there exists h ∈ HomA(P,M) such that g = f∗(h) = f ◦ h.

(ii) =⇒ (iii) Let 0 → M0 → M1
f−→ P → 0 be a short exact sequence. Then f :

M1 → P is surjective. Consider g := idP ∈ HomA(P, P ). Then we can apply
the assumption and get an A-linear map h : P →M1 such that f ◦h = g = idP .
By lemma 2.1.13, this implies that the sequence 0 → M0 → M1 → P → 0
splits.

(iii) =⇒ (iv) Let (wi)i∈I be a set of generators for P over A. Consider the free
module F =

⊕
i∈I A, with basis (ei)i∈I . Then we can de�ne an A-linear

map f : F → P by f(ei) = wi for any i ∈ I (extended by linearity). Let
Q := Ker(f) ⊆ F and denote by i : Q → F the inclusion, which is clearly

A-linear. Then the sequence 0 → Q
i−→ F

f−→ P → 0 is exact. By assumption,
it splits. So we have that P ⊕Q ∼= F is free.

(iv) =⇒ (i) This follows immediately from 2.1.10 and 2.1.11.

91



CHAPTER 2. GALOIS THEORY FOR SCHEMES

Corollary 2.1.15. Let P be a �nitely projective A-module. Then P is projective if
and only if there exist an A-module Q and an n ∈ N such that P ⊕Q ∼= An.

Proof. If there exist an A-module Q and an n ∈ N such that P ⊕Q ∼= An, then P is
projective by the implication (iv) =⇒ (i) in the lemma 2.1.14. Conversely, assume
that P is projective. Let (w1, . . . , wn) be a set of generators of P over A and de�ne
an A-linear map ϕ : An → P by ϕ(ei) = wi, extended by linearity (where (e1, . . . , en)
is the canonical basis of An). Then the sequence

0→ Ker(ϕ)
i−→ An

ϕ−→ P → 0

is exact (where i : Ker(ϕ) → An is the canonical inclusion). Since P is projective,
this sequence splits, by lemma 2.1.14 ((i) =⇒ (iii)). Then P ⊕Ker(ϕ) ∼= An.

Related to the notion of projective A-module is that of �at A-module.

De�nition 2.1.16. Let M be an A-module.

(1) We say that P is �at if the functor

P ⊗− : ModA →ModA

is exact, i.e. if for every exact sequence M0
f−→ M1

g−→ M2 of A-modules the

induced sequence P ⊗M0
idP ⊗f−−−−→ P ⊗M1

idP ⊗g−−−−→ P ⊗M2 is also exact.

(2) We say that M is faithfully �at if a sequence M0
f−→M1

g−→M2 of A-modules is

exact if and only if the induced sequence P⊗M0
idP ⊗f−−−−→ P⊗M1

idP ⊗g−−−−→ P⊗M2

is exact.

Remark 2.1.17. From the de�nitions it is clear that any faithfully �at A-module is
also �at.

Example 2.1.18. A is a faithfully �at (in particular, �at) A-module, because the
functor A⊗− is isomorphic to idModA .

The following resuls are the analogue of lemma 2.1.9 and corollary 2.1.10.

Lemma 2.1.19. Let (Pi)i∈I a collection of A-modules and P :=
⊕

i∈I Pi. For every
A-module M we have an isomorphism

ψM : P ⊗AM →
⊕
i∈I

(Pi ⊗AM) .

Moreover, these isomorphisms are compatible, in the sense that, if M , N are A-
modules and f : M → N is an A-linear map, then the following diagram is commu-
tative.

P ⊗AM
⊕

i∈I(Pi ⊗AM)

P ⊗A N
⊕

i∈I(Pi ⊗A N)

........................................................................................ ............
ψM

...................................................................................
.....
.......
.....

idP ⊗f

........................................................................................ ............
ψN

...................................................................................
.....
.......
.....

⊕
i∈I(idPi ⊗f)
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Proof. For any j ∈ J , de�ne qj : Pj → P, x 7→ (δijx)i∈I . Notice that, for any
x = (xi)i∈I ∈ P we have x =

∑
i∈I qi(xi).

Let M be an A-module. We de�ne

ψM : P ⊗AM →
⊕
i∈I

(Pi ⊗AM), (xi)i∈I ⊗m 7→ (xi ⊗m)i∈I ,

extended by linearity (we can do so because the map P × M →
⊕

i∈I(Pi ⊗A
M), ((xi)i∈I ,m) 7→ (xi ⊗ m)i∈I is A-bilinear). So ψM is an A-linear map. Con-
versely, for any j ∈ I we can de�ne

ψ′M,j : Pj ⊗AM → P ⊗AM, x⊗m 7→ qj(x)⊗m ,

extended by linearity (we can do so because the map Pj ×M → P ⊗AM), (x.m) 7→
qj(x)⊗m is A-bilinear). Then we de�ne

ψ′M :
⊕
i∈I

(Pi ⊗AM)→ P ⊗AM, (xi)i∈I 7→
∑
i∈I

ψ′M,i(xi) ,

which is A-linear, because ψ′M = ϕ′P⊗AM

(
(ψ′M,i)i∈I

)
, where

ϕ′P⊗AM :
∏
i∈I

HomA(Pi ⊗AM,P ⊗AM)→ HomA

(⊕
i∈I

(Pi ⊗AM), P ⊗AM

)

is de�ned as in lemma 2.1.9). We check that ψM and ψ′M are inverse to each other.
Let (xi)i∈I ⊗m ∈ P ⊗AM . Then

ψ′M (ψM ((xi)i∈I ⊗m)) = ψ′M ((xi ⊗m)i∈I) =
∑
i∈I

ψ′M,i(xi ⊗m) =

=
∑
i∈I

(qi(xi)⊗m) =

(∑
i∈I

qi(xi)

)
⊗m = x⊗m = idP⊗AM (x⊗m) .

Then ψ′M ◦ ψM = idP⊗AM (by linearity, it is enough to check equality on pure
tensors). Let now (xi ⊗mi)i∈I ∈

⊕
i∈I(Pi ⊗AM). Then we have

ψM
(
ψ′M ((xi ⊗mi)i∈I)

)
= ψM

(∑
i∈I

ψ′M,i(xi ⊗mi)

)
= ψM

(∑
i∈I

qi(xi)⊗mi

)
=

=
∑
i∈I

ψM (qi(xi)⊗mi) =
∑
j∈I

ψM ((δijxj)i∈I ⊗mj) =
∑
j∈I

((δijxj ⊗mj)i∈I) =∑
j∈I

(δijxj ⊗mj)


i∈I

= (xi ⊗mi)i∈I = id⊕
i∈I(Pi⊗AM) ((xi ⊗mi)i∈I) .

So ψM ◦ ψ′M = id⊕
i∈I(Pi⊗AM) (also here, by linearity it is enough to check equality

on a set of generators). Then ψM and ψ′M are inverse to each other.
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Finally, let M , N be A-modules and f : M → N an A-linear map. For any (xi)i∈I ⊗
m ∈ P ⊗AM , we have that

ψN ((idP ⊗f) ((xi)i∈I ⊗m)) = ψN ((xi)i∈I ⊗ f(m)) = (xi ⊗ f(m))i∈I =

=

(⊕
i∈I

(idPi ⊗f)

)
((xi ⊗m)i∈I) =

(⊕
i∈I

(idPi ⊗f)

)
(ψM ((xi)i∈I ⊗m)) .

So ψN ◦(idP ⊗f) =
(⊕

i∈I(idPi ⊗f)
)
◦ψM (by linearity, it is enough to check equality

on pure tensors), as we wanted.

Corollary 2.1.20. Let (Pi)i∈I a collection of A-modules and de�ne P :=
⊕

i∈I Pi.
Then P is �at if and only if each Pi is �at.

Proof. Let M0
f−→ M1

g−→ M2 be an exact sequence of A-modules. By lemma 2.1.19,
there is an isomorphism of sequences between

P ⊗AM0
idP ⊗f−−−−→ P ⊗AM1

idP ⊗g−−−−→ P ⊗AM2

and⊕
i∈I

(Pi ⊗AM0)

⊕
i∈I(idPi ⊗f)

−−−−−−−−−→
⊕
i∈I

(Pi ⊗AM1)

⊕
i∈I(idPi ⊗g)−−−−−−−−−→

⊕
i∈I

(Pi ⊗AM2) .

So P is �at if and only if the last sequence is exact for every exact sequence M0
f−→

M1
g−→M2.We have that

Ker

(⊕
i∈I

(idPi ⊗g)

)
=

=

{
(xi)i∈I ∈

⊕
i∈I

(Pi ⊗AM1)

∣∣∣∣∣ ((idPi ⊗g)(xi))i∈I = (0)i∈I

}
=

=

{
(xi)i∈I ∈

⊕
i∈I

(Pi ⊗AM1)

∣∣∣∣∣ ∀i ∈ I (idPi ⊗g)(xi) = 0

}
=
⊕
i∈I

Ker(idPi ⊗g)

and

Im

(⊕
i∈I

(idPi ⊗f)

)
=

{
(xi)i∈I ∈

⊕
i∈I

(Pi ⊗AM1)

∣∣∣∣∣ ∃(x′i)i∈I ∈⊕
i∈I

(Pi ⊗AM0) :

(xi)i∈I = ((idPi ⊗f)(x′i))i∈I)

}
=

=

{
(xi)i∈I ∈

⊕
i∈I

(Pi ⊗AM1)

∣∣∣∣∣ ∀i ∈ I ∃x′i ∈ Pi ⊗AM0 : xi = (idPi ⊗f)(x′i)

}
=

=
⊕
i∈I

Im(idPi ⊗f) .
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Then Ker
(⊕

i∈I(idPi ⊗g)
)

= Im
(⊕

i∈I(idPi ⊗f)
)
if and only if Ker(idPi ⊗g) =

Im(idPi ⊗f) for every i ∈ I. This means that the sequence⊕
i∈I

(Pi ⊗AM0)

⊕
i∈I(idPi ⊗f)

−−−−−−−−−→
⊕
i∈I

(Pi ⊗AM1)

⊕
i∈I(idPi ⊗g)−−−−−−−−−→

⊕
i∈I

(Pi ⊗AM2)

is exact if and only if each of the sequences

Pi ⊗AM0

idPi ⊗f−−−−→ Pi ⊗AM1

idPi ⊗g−−−−→ Pi ⊗AM2

is exact. Since this holds for every exact sequence M0
f−→ M1

g−→ M2 of A-modules,
we have that P is �at if and only if each Pi is �at.

Example 2.1.21. Any free A-module is �at. Indeed, if an A-module is free then it
is isomorphic to

⊕
i∈I A for some index set I. So it is �at by corollary 2.1.20 and

example 2.1.18.

Corollary 2.1.22. Any projective A-module is �at.

Proof. Let P be a projective A-module. By lemma 2.1.14 ((i) =⇒ (iv)), there exists
an A-module Q such that P ⊕Q is free. Then P ⊕Q is �at by example 2.1.21. By
corollary 2.1.20, this implies that P is �at.

We want to give now a local characterization of �nitely generated projective A-
modules. We start with the case when A is local and then we will reduce to this case
through localization.

Lemma 2.1.23. Assume that A is local. Then a �nitely generated A-module is
projective if and only if it is free.

Proof. Let m be the unique maximal ideal of A and k := A/m the residue �eld. For
any a ∈ A, denote by a the image of a through the canonical projection A→ A/m.
We already know that any free A-module is projective (example 2.1.11). Conversely,
assume that P is a �nitely generated projective module and consider P/mP as a
k-module in the obvious way. For any x ∈ P , denote by x the image of x through
the canonical projection P → P/mP . Let (w1, . . . , wn) be a set of generators of P
over A. Then (w1, . . . , wn) generates P/mP over A and so also over A/m = k. By
the well-known properties of vector spaces, there exists a subset I ⊆ {1, . . . , n} such
that (wi)i∈I is a k-basis of P/mP . Consider the free module F :=

⊕
i∈I A, with basis

(ei)i∈I , and de�ne an A-linear map f : F → P by ϕ(ei) = wi for any i ∈ I (extended
by linearity). First of all, we prove that f is surjective. Consider the k-module F/mF
and, for any x ∈ F , denote by x the image of x through the canonical projection
F → F/mF . Since (ei)i∈I generates F over A, we have that (ei)i∈I generates F/mF
over A and so also over A/m = k. Moreover, if

∑
i∈I λiei = 0, with λi ∈ k for any

i ∈ I, then for any i ∈ I there exists ai ∈ I such that λi = ai and so we have

0 =
∑
i∈I

λiei =
∑
i∈I

ai ei =
∑
i∈I

aiei ,
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which means that
∑

i∈I aiei ∈ mF . Then there exist b1, . . . , bm ∈ m, x1, . . . , xm ∈ F
(m ∈ N) such that

∑
i∈I aiei =

∑m
j=1 bjxj . For any j = 1, . . . ,m, we can write

xj =
∑

i∈I cjiei, with cji ∈ A for any i ∈ I. Then we have

∑
i∈I

aiei =
m∑
j=1

bj

(∑
i∈I

cjiei

)
=
∑
i∈I

 m∑
j=1

bjcji

 ei .

Since (ei)i∈I is a basis of F , we must have ai =
∑m

j=1 bjcji ∈ m for any i ∈ I.
Then λi = ai = 0 for any i ∈ I. So (ei)i∈I is a k-basis of F/mF . By de�nition
of f , the induced map f : F/mF → P/mP, x 7→ f(x) sends the k-basis (ei)i∈I to
(wi)i∈I , which is a k-basis of P/mP . Then f is an isomorphism of k-vector spaces.
In particular, it is surjective, i.e. Coker(f) = (P/mP )/ Im(f) = 0. We have that

Im
(
f
)

=
{
y ∈ P/mP

∣∣∣ ∃x ∈ F/mF y = f(x) = f(x)
}

=

=
{
f(x)

∣∣∣ x ∈ F} = (Im(f) + mF )/mF .

So

0 = Coker(f) = (P/mP )/((Im(f) + mF )/mF ) ∼=
∼= (P/ Im(f))/m(P/ Im(f)) = Coker(f)/mCoker(f) .

This means that mCoker(f) = Coker(f). Moreover, we have that Coker(f) is �nitely
generated overA ((w1+Im(f), . . . , wn+Im(f)) is a set of generators). By Nakayama's
lemma, this implies that Coker(f) = 0, i.e. f is surjective. Then the sequence

0→ Ker(f)→ F
f−→ P → 0

is exact. By lemma 2.1.14 ((i) =⇒ (iii)), this sequence splits, because P is projective.
So there is an isomorphism ϕ : F → P ⊕ Ker(f). Consider the projection p2 :
P ⊕ Ker(f) → Ker(f), which is clearly A-linear and surjective. Then p2 ◦ ϕ :
F → Ker(f) is an A-linear and projective map. It follows that ((p2 ◦ ϕ)(ei))i∈I
generates Ker(f). In particular, Ker(f) is �nitely generated. Moroever, since F ∼=
P ⊕ Ker(f), we have that F/mF ∼= (P ⊕ Ker(f))/m(P ⊕ Ker(f)). But m(P ⊕
Ker(f)) = (mP ) ⊕ (mKer(f)). Indeed, if (x, y) ∈ m(P ⊕ Ker(f)), then there exist
a1, . . . , am ∈ m, (x1, y1), . . . , (xn, yn) ∈ P ⊕ Ker(f) (m ∈ N) such that (x, y) =∑m

j=1 aj(xj , yj) =
(∑m

j=1 ajxj ,
∑m

j=1 ajyj

)
∈ (mP ) ⊕ (mKer(f)). Conversely, if

(x, y) ∈ (mP )⊕(mKer(f)), then there exist a1, . . . , am ∈ m, x1, . . . , xm ∈ P (m ∈ N)
such that x =

∑m
j=1 ajxj and b1, . . . , br ∈ m, y1, . . . , yr ∈ Ker(f) (r ∈ N) such that

y =
∑r

j=1 bjyj . Then

(x, y) = (x, 0) + (y, 0) =

 m∑
j=1

ajxj , 0

+

0,

r∑
j=1

bjyj

 =

=

m∑
j=1

aj(xj , 0) +

r∑
j=1

bj(0, yj) ∈ m(P ⊕Ker(f)) .
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So

F/mF ∼= (P ⊕Ker(f))/((mP )⊕ (mKer(f))) ∼= (P/mP )⊕ (Ker(f)/mKer(f)) ,

as A-modules and so also k-vector spaces. Then we have

|I| = dimk(F/mF ) = dimk(P/mP ) + dimk(Ker(f)/mKer(f)) =

= |I|+ dimk(Ker(f)/mKer(f))

(recall that (wi)i∈I is a k-basis of P/mP and (ei)i∈I is a k-basis of F/mF ). It follows
that dimk(Ker(f)/mKer(f)) = 0, i.e. Ker(f)/mKer(f) = 0. This means that
mKer(f) = Ker(f). Since Ker(f) is �nitely generated, by Nakayama's lemma this
implies that Ker(f) = 0. So f is injective. Hence f is an isomorphism of A-modules
and P ∼= F is free.

Lemma 2.1.24. Let P be an A-module and B an A-algebra. If P is a projective
A-module, then P ⊗A B is a projective B-module.

Proof. Since P is projective, by lemma 2.1.14 ((i) =⇒ (iv)) there exists an A-module
Q such that P⊕Q is free, i.e. we have an isomorphism of A-modules P⊕Q ∼=

⊕
i∈I A,

for some index set I. By lemma 2.1.19, we have that

(P ⊗AB)⊕(Q⊗AB) ∼= (P ⊕Q)⊗AB ∼=

(⊕
i∈I

A

)
⊗AB ∼=

⊕
i∈I

(A⊗AB) ∼=
⊕
i∈I

B

(the last isomorphism comes from the canonical isomorphism of B-modules A⊗AB →
B, a⊗ b 7→ ab). Notice that lemma 2.1.19 gives only an isomorphism of A-modules.
However, it is immediate to check that in this case (i.e. when we consider the tensor
product with an A-algebra B) the isomorphism we de�ned is also B-linear. So
(P ⊗AB)⊕ (Q⊗AB) ∼=

⊕
i∈I B is a free B-module. By lemma 2.1.14 ((iv) =⇒ (i)),

we have that P ⊗A B is a projective B-module.

Recall the de�nition of �nitely presented A-module.

De�nition 2.1.25. Let M be an A-module. We say that M is �nitely presented if
there exists an exact sequence Am → An →M → 0, with m,n ∈ N.

Remark 2.1.26. An A-module M is �nitely presented if and only if there exist n ∈ N
and a surjective A-linear map f : An → M such that Ker(f) is �nitely generated.

Indeed, if Am
ι−→ An

f−→ M → 0 is an exact sequence as in the de�nition, then
Ker(f) = Im(i) is generated by (ι(e1), . . . , ι(em)), where (e1, . . . , em) is a basis of
Am (for example, the canonic one). Conversely, if f : An → M is surjective and
Ker(f) is �nitely generated, then choose a set of generators (w1, . . . , wm) of Ker(f)
(m ∈ N) and consider the A-linear map ι : Am → An with ι(ei) = wi for any
i = 1, . . . ,m (extended by linearity). Then Im(ι) = Ker(f) and so the sequence

Am
ι−→ An

f−→M → 0 is exact.
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Lemma 2.1.27. Let M , N be A-modules, with M �nitely presented, and let S ⊆ A
be a multiplicative subset. The map

ϕ : S−1 HomA(M,N)→ HomS−1A(S−1M,S−1N),
f

s
7→ 1

s
S−1f .

is an isomorphism of S−1A-modules.

Proof. Since M is �nitely presented, there exists an exact sequence Am
α−→ An

β−→
M → 0, with m,n ∈ N. De�ne wi := β(ei) ∈ M for any i = 1, . . . , n, where
(e1, . . . , en) is the canonical basis of An. Then (w1, . . . , wn) generatesM , because β is
surjective. Moreover, de�ne xi := α(e′i) ∈ An for any i = 1, . . . ,m, where (e′1, . . . , e

′
m)

is the canonical basis of Am. Then (x1, . . . , xn) generates Im(α) = Ker(β).
First of all, we have to check that ϕ is well de�ned. We know that for any f ∈
HomA(M,N) the map S−1f : S−1M → S−1N is S−1(A)-linear. So for any s ∈ S
we have that 1

sS
−1f ∈ HomS−1A(S−1M,S−1N). Assume now that f

s = f ′

s′ , with
f, f ′ ∈ HomA(M,N), s, s′ ∈ S. Then there exists u ∈ S such that u(s′f − sf ′) = 0.
Let m

t ∈ S
−1M , with m ∈M and t ∈ S. Then(

1

s
S−1f

)(m
t

)
=

1

s

(
(S−1f)

(m
t

))
=

1

s

f(m)

t
=
f(m)

st

and analogously
(

1
s′S
−1f ′

) (
m
t

)
= f ′(m)

s′t . We have that

u((s′t)f(m)− (st)f ′(m)) = tu(s′f(m)− sf(m)) = t(u(s′f − sf ′))(m) = 0 .

So f(m)
st = f ′(m)

s′t and then 1
sS
−1f = 1

s′S
−1f ′. This proves that ϕ is well de�ned. We

prove now that it is S−1A-linear. Notice that

S−1 : HomA(M,N)→ HomS−1A(S−1M,S−1N)

is A-linear. Let λ1 = a1
s1
, λ2 = a2

s2
∈ S−1A, f1

t1
, f2

t2
∈ S−1 HomA(M,N) (with a1, a2 ∈

A, s1, s2, t1, t2 ∈ S and f1, f2 ∈ HomA(M,N)). We have that

ϕ

(
λ1
f1

t1
+ λ2

f2

t2

)
= ϕ

(
s2t2a1f1 + s1t1a2f2

s1s2t1t2

)
=

=
1

s1s2t1t2
S−1(s2t2a1f1 + s1t1a2f2) =

1

s1s2t1t2

(
s2t2a1S

−1f1 + s1t1a2S
−1f2

)
=

=
a1

s1

1

t1
S−1f1 +

a2

s2

1

t2
S−1f2 = λ1ϕ(f1) + λ2ϕ(f2) .

So ϕ is S−1A-linear. Let f
s ∈ Ker(ϕ), i.e. ϕ

(
f
s

)
= 0. For any i = 1, . . . , n, we have

that

0 = ϕ

(
f

s

)(wi
1

)
=

(
1

s
S−1f

)(wi
1

)
=
f(wi)

s

(see the computation above). Then there exists ui ∈ S such that uif(wi) = ui(1 ·
f(m) − 0 · s) = 0. Let u := u1 · · ·un ∈ S. Then for any i ∈ I we have that
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uf(wi) =
(∏

j 6=i uj

)
uif(wi) = 0. Then uf = 0, because (w1, . . . , wn) generates m.

We have that f
s = uf

us = 0
us = 0. This proves that ϕ is injective.

Let now g ∈ HomS−1A(S−1M,S−1N). For any i = 1, . . . , n we have that g
(
wi
1

)
∈

S−1N and so there exist ni ∈ N and si ∈ S such that g
(
wi
1

)
= ni

si
. De�ne s :=∏n

i=1 si ∈ S. Then for any i = 1, . . . , n we have that g
(
wi
1

)
= ni

si
=

(
∏
j 6=i sj)ni

(
∏
j 6=i sj)si

= ñi
s ,

where we de�ned ñi :=
(∏

j 6=i sj

)
ni ∈ N . Consider the A-linear map f : An → N

obtained extending by linearity f(ei) = ñi for any i = 1, . . . , n. Let j ∈ {1, . . . ,m}.
Since xj ∈ An, there exist aj1, . . . , ajn ∈ A such that xj =

∑n
i=1 ajiei. We have that

0 = β(xj) = β

(
n∑
i=1

ajiei

)
=

n∑
i=1

ajiβ(ei) =
n∑
i=1

ajiwi .

Then

0 = g(0) = g

(∑n
i=1 ajiwi

1

)
=

n∑
i=1

ajig
(wi

1

)
=

n∑
i=1

aji
ñi
s

=

∑n
i=1 ajiñi
s

.

This means that there exists uj ∈ S such that uj (
∑n

i=1 ajiñi) = 0. Consider u :=∏m
j=1 uj . Then, for any j = 1, . . . ,m we have that

uf(xj) = uf

(
n∑
i=1

ajiei

)
= u

(
n∑
i=1

ajif(ei)

)
=

= u

(
n∑
i=1

ajiñi

)
=

∏
j′ 6=j

uj′

uj

(
n∑
i=1

ajiñi

)
= 0 .

De�ne f ′ := uf ∈ HomA(An, N). By what we have just proved, f ′(xj) = 0 for
any j = 1, . . . ,m. Since (x1, . . . , xm) generates Ker(β), we have that f ′(x) = 0 for
any x ∈ Ker(β), i.e. Ker(β) ⊆ Ker(f ′). Then we can factor f ′ through an A-linear
map f ′ : An/Ker(β) → N such that f = f ′ ◦ p, where p : An → An/Ker(β) is
the canonical projection on the quotient. In particular, f ′(ei + Ker(β)) = f ′(ei) =
uf(ei) = uñi for any i = 1, . . . , n. Since β is surjective, by the isomorphism theorem
we have an isomorphism β : An/Ker(β) → M , with β(x + Ker(β)) = β(x) for any
x ∈ An. In particular, β(ei + Ker(β)) = β(ei) = wi for any i = 1, . . . , n. We de�ne

h := f ′ ◦ β−1 ∈ HomA(M,N). For any i = 1, . . . , n, we have that

h(wi) = f ′
(
β
−1

(wi)
)

= f ′(ei + Ker(β)) = uñi .

Consider h
us ∈ S

−1 HomA(M,N). For any i = 1, . . . , n we have

ϕ

(
h

us

)(wi
1

)
=

(
1

us
S−1h

)(wi
1

)
=
h(wi)

us
=
uñi
us

=
ñi
s

= g
(wi

1

)
.

Since (w1, . . . , wn) generates M over A, (w1
1 , . . . ,

wn
1 ) generates S−1M over S−1A.

Then we must have ϕ
(
h
us

)
= g. This proves that ϕ is surjective.
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Lemma 2.1.28. (1) Let M be an A-module. We have that M = 0 if and only if
Mp = 0 for every prime ideal p of A.

(2) LetM , N be A-modules and f : M → N an A-linear map. Then f is surjective
(respectively, injective or bijective) if and only if fp is surjective (respectively,
injective or bijective) for every prime ideal p of A.

Proof. (1) It is clear that ifM = 0 thenMp = 0 for any prime ideal p. Conversely,
assume that Mp = 0 for any prime ideal p. Assume by contradiction that
M 6= 0 and let m ∈ M\{0}. Then the annihilator AnnA(m) is a proper
ideal of A, because 1 /∈ AnnA(m). So there exists a maximal ideal m such
that AnnA(m) ⊆ m. In particular, m is prime, so we have that Mm = 0 by
assumption. So m

1 = 0 in Mm. This means that there exists s ∈ A\p such that
sm = 0. Then s ∈ AnnA(M) ⊆ m, which is a contradtion. So we must have
M = 0.

(2) Let p be a prime ideal of A. We have that Coker(f)p = (N/ Im(f))p ∼=
Np/ Im(f)p, because the localization commutes with quotients. We have that
Im(f)p and Im(fp) are submodules of Np and

Im(f)p =
{y
s

∣∣∣ y ∈ Im(f), s ∈ A\p
}

=

{
f(x)

s

∣∣∣∣ x ∈M, s ∈ A\p
}

=

=
{
fp

(x
s

) ∣∣∣ x
s
∈Mp

}
= Im(fp) .

So Coker(f)p ∼= Np/ Im(f)p = Np/ Im(fp) = Coker(fp).
On the other hand, consider Ker(f) ⊆ M . For any x ∈ Ker(f) and s ∈
A\p, we have that fp

(
x
s

)
= f(x)

s = 0. So x
s ∈ Ker(fp). This shows that

Ker(f)p ⊆ Ker(fp). Conversely, if x
s ∈ Ker(fp), with x ∈ M and s ∈ A\p,

then 0 = fp
(
x
s

)
= f(x)

s . Then there exists u ∈ A\p such that uf(x) = 0.
Since f is A-linear, we have that f(ux) = uf(x) = 0. So ux ∈ Ker(f). Then
x
s = ux

us ∈ Ker(f)p. So Ker(f)p = Ker(fp).
Now we have that f is surjective if and only if Coker(f) = 0 and by point (1)
we have that this is true if and only if Coker(fp) ∼= Coker(f)p = 0 for every
prime ideal p of A, so if and only if fp is surjective for every prime ideal p of A.
Analogously, f is injective if and only if Ker(f) = 0 and by point (1) we have
that this is true if and only if Ker(fp) = Ker(f)p = 0 for every prime ideal p of
A, so if and only if fp is injective for every prime ideal p of A. Then we have
also that f is bijective if and only if fp is bijective for every prime ideal p of A.

For any f ∈ A, we de�ne Sf := {fn | n ≥ 0}, Af := S−1
f A and Mf := S−1

f M ∼=
M ⊗A Af for any A-module M (then Mf is an Af -module).

Lemma 2.1.29. Let (fi)i∈I be a collection of elements of A such that A =
∑

i∈I fiA.

(1) For every A-module M , we have that M = 0 if and only if Mfi = 0 for every
i ∈ I.

100



2.1. ALGEBRAIC PRELIMINARIES

(2) Let M , N be A-modules and g : M → N an A-linear map. Then g is surjective
(respectively, injective or bijective) if and only if gfi : Mfi → Nfi is surjective
(respectively, injective or bijective) for every i ∈ I.

(3) Let M be an A-module. If Mfi is a �nitely generated Afi-module for every
i ∈ I, then M is �nitely generated.

Proof. (1) It is clear that if M = 0 then Mfi = 0 for any i ∈ I. Conversely,
assume that Mfi = 0 for any i ∈ I. Let p be a prime ideal of A. In particular,
p 6= A and so there exists i ∈ I such that fi /∈ p (otherwise we would have
A =

∑
i∈I fiA ⊆ p. Since p is prime, it follows that fni /∈ p for any n ∈ N, i.e.

Sfi ⊆ A\p. Then we have that Mp
∼= (Mfi)pfi = 0pfi = 0. Since this holds for

every prime ideal p of A, by lemma 2.1.28(1) it follows that M = 0.

(2) The proof is analogous to that of lemma 2.1.28(2).

(3) Since
∑

i∈I fiA = A, we have that 1 ∈
∑

i∈I fiA, i.e. there exist n ∈ N,
i1, . . . , in ∈ I, a1, . . . , an ∈ A such that 1 =

∑n
k=1 akfik . Then for any x ∈ A

we have that x = x · 1 = x (
∑n

k=1 akfik) =
∑n

k=1(xak)fik . So A =
∑n

k=1 fikA.
Let k ∈ {1, . . . , n} and let (xk1, . . . , xkrk) be a set of generators of Mfik

over
Afik . By de�nition of localization, for any h = 1, . . . , rk there exist mkh ∈M ,
nkh ∈ N such that xkh = mkh

f
nkh
ik

. For any x ∈Mfik
, there exist λ1, . . . , λrk ∈Mfik

such that

x =

rk∑
h=1

λhxkh =

rk∑
h=1

λh
mkh

fnkhik

=

rk∑
h=1

(
λh

1

fnkhik

)
ymh

1
.

This proves that
(
mk1

1 , . . . ,
mkrk

1

)
is a set of generators of Mfik

over Afik . We

claim that (mkh)k=1,...,n, h=1,...,rk generates M . Let N ⊆ M be the submodule
generated by (mkh)k=1,...,n, h=1,...,rk and consider the quotient M/N . Let k ∈
{1, . . . , n}. We have that (M/N)fik

∼= Mfik
/Nfik

, because the localization
commutes with quotients. On the other hand, we have that Nfik

contains mkh
1

for any h = 1, . . . , rk. Since
(
mk1

1 , . . . ,
mkrk

1

)
generates Mfik

over Afik , we

have that Nfik
= Mfik

. So Mfik
/Nfik

= 0. Then (M/N)fik = 0 and this
holds for any k = 1, . . . , n. Applying point (1) to the collection (fik)k=1,...,n,
we get that M/N = 0, i.e. M = N . This proves that M is generated by
(mkh)k=1,...,n, h=1,...,rk . Since this is a �nite set, M is �nitely generated.

We are now ready to give our local characterization.

Proposition 2.1.30. Let P be an A-module. The following are equivalent:

(i) P is a �nitely generated projective A-module;

(ii) P is �nitely presented and for any prime ideal p of A we have that Pp is a free
Ap-module;
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(iii) P is �nitely presented and for any maximal ideal m of A we have that Pm is a
free Am-module;

(iv) there is a collection (fi)i∈I of elements of A such that
∑

i∈I fiA = A and for
each i ∈ I the Afi-module Pfi is free of �nite rank.

Proof. (i) =⇒ (ii) Since P is �nitely generated and projective, by corollary 2.1.15
there exist an A-module Q and an n ∈ N such that An ∼= P ⊕Q. Let ϕ : An →
P ⊕ Q be an isomorphism. Denote by p1 : P ⊕ Q → P and p2 : P ⊕ Q → Q
the canonical projections, which are A-linear and surjective. We have that
p1 ◦ϕ : An → P is surjective, because ϕ is an isomorphism and p1 is surjective.
Moreover, Ker(p1 ◦ ϕ) = ϕ−1(Ker(p1)) = ϕ−1(Im(ι2)), where we de�ned ι2 :
Q → P ⊕ Q, x 7→ (0, x). We have that p2 ◦ ϕ is surjective, because ϕ is an
isomorphism and p2 is surjective. Then Q is generated by ((p2◦ϕ)(e1), . . . , (p2◦
ϕ)(en)) and Im(ι2) is generated by ((ι2 ◦p2 ◦ϕ)(e1), . . . , (ι2 ◦p2 ◦ϕ)(en)), where
(e1, . . . , en) is the canonical basis of An. So Im(ι2) is �nitely generated. Since
ϕ is an isomorphism, we have also that Ker(p1 ◦ ϕ) = ϕ−1(Im(ι2)) is �nitely
generated. This proves that P is �nitely presented (see remark 2.1.26).
Let p be a prime ideal of A. Since localization at p corresponds to tensor
product with Ap, by lemma 2.1.24 we have that Pp is projective over Ap.
Moreover, if (w1, . . . , wm) generates P over A, then we have that (w1

1 , . . . ,
wm
1 )

generates Pp over Ap. So Pp is �nitely generated over Ap. Then, by lemma
2.1.23, we have that Pp is free over Ap (because Ap is a local ring).

(ii) =⇒ (iii) This is obvious, because every maximal ideal is prime.

(iii) =⇒ (iv) Let m be a maximal ideal of A. By assumption, Pm is free over Am.
Moreover, since P is �nitely presented, it is in particular �nitely generated over
A and so Pm is �nitely generated over Am (if (w1, . . . , wn) generates P over A,
then

(
w1
1 , . . . ,

wn
1

)
generates Pm over Am). This means that the rank of Pm

over Am is �nite (see remark 2.1.2(1)). So there exists an isomorphism of Am-
modules g : Anm

m → Pm, where nm = rankAm(Pm). Let h := g−1 : Pm → Anm
m .

Notice that Anm
m
∼= (Anm)m as Am-modules, because the localization commutes

with direct sums. Let ϕ : Anm
m → (An)m be an isomorphism of Am-modules.

Then g ◦ ϕ−1 ∈ HomAm((Anm)m, Pm) and ϕ ◦ h ∈ HomAm(Pm, (A
nm)m). By

lemma 2.1.27, there exist g′ ∈ HomA(Anm , P ), h′ ∈ HomA(P,Anm), s, t ∈ A\m
such that g ◦ ϕ−1 = 1

s (g′)m and ϕ ◦ h = 1
t (h
′)m (here we use the assumption

that P is �nitely presented; on the other hand it is clear that Anm is �nitely

presented, because we have the exact sequence 0→ Anm
idAnm−−−−→ Anm → 0). We

have that

1

st
(g′◦h′)m =

(
1

s
(g′)m

)
◦
(

1

t
(h′)m

)
= g◦ϕ−1◦ϕ◦h = g◦g−1 = idPm = (idP )m .

By injectivity in lemma 2.1.27, this implies that g′◦h′
st = idP in HomA(P, P )m

(we use again the fact that P is �nitely presented). This means that there
exists u ∈ A\m such that u(g′ ◦ h′ − st idP ) = 0. On the other hand, we have
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that

1

st
(h′ ◦ g′)m =

(
1

t
(h′)m

)
◦
(

1

s
(g′)m

)
=

= ϕ ◦ h ◦ g ◦ ϕ−1 = ϕ ◦ g−1 ◦ g ◦ ϕ−1 = id(Anm )m = (idAnm )m .

By injectivity in lemma 2.1.27, this implies h
′◦g′
st = idAnm in HomA(Anm , Anm)m

(we use again the fact that Anm is �nitely presented). This means that there ex-
ists v ∈ A\m such that v(h′ ◦ g′− st idAnm ) = 0. De�ne fm := stuv (everything
we de�ned up to now depended on m, but we did not make explicit this depen-
dence in the notation in order to avoid confusion). Since A\m is a multiplicative
subset of A, we have that fm ∈ A\m. De�ne g′′ := tuvg′

fm
∈ HomA(Anm , P )fm

and h′′ := suvh′

fm
∈ HomA(Anm , P )fm . We can associate to g′′ and h′′ the

two maps g̃ = 1
fm

(tuvg′)fm ∈ HomAfm
((Anm)fm , Pfm) and h̃ = 1

fm
(suvh′)f ∈

HomAfm
(Pfm , (A

nm)fm), as in lemma 2.1.27. We have that

g̃ ◦ h̃ =

(
1

fm
(tuvg′)fm

)
◦
(

1

fm
(suvh′)fm

)
=
tuvsv

f2
m

(ug′ ◦ h′)fm =

=
tuvsv

f2
m

(ust idP )fm =
s2t2u2v2

f2
m

(idP )fm =
f2
m

f2
m

idPfm = idPfm .

Conversely,

h̃ ◦ g̃ =

(
1

fm
(suvh′)fm

)
◦
(

1

fm
(tuvg′)fm

)
=
suvtu

f2
m

(vh′ ◦ g′)fm =

=
suvtu

f2
m

(vst idAnm )fm =
s2t2u2v2

f2
m

(idAnm )fm = id(Anm )fm
.

So g̃ and h̃ are inverse to each other. In particular, they are isomorphisms
of Afm-modules. Then Pfm

∼= (Anm)fm as Afm-modules. On the other hand,
we have that (Anm)fm

∼= Anm
fm

as Afm-modules, because the localization com-
mutes with direct sums. So Pfm

∼= Anm
fm

is a free Afm-module of rank nm
(in particular, the rank is �nite). Let now I be the set of all maximal ide-
als of A and consider the collection (fm)m∈I . For any maximal ideal m0 we
have that fm0 ∈

(∑
m∈I fmA

)
\m0, so

∑
m∈I fmA * m0. Then we must have∑

m∈I fmA = A (recall that any proper ideal is contained in a maximal ideal).
So the collection (fm)m∈I satis�es the required properties.

(iv) =⇒ (i) Since
∑

i∈I fiA = A, we have that 1 ∈
∑

i∈I fiA, i.e. there exist n ∈ N,
i1, . . . , in ∈ I, a1, . . . , an ∈ A such that 1 =

∑n
k=1 akfik . Then for any x ∈ A

we have that x = x · 1 = x (
∑n

k=1 akfik) =
∑n

k=1(xak)fik . So A =
∑n

k=1 fikA.
Then, replacing I with {i1, . . . in}, we can assume without loss of generality
that I is �nite.
The fact that P is �nitely generated follows from lemma 2.1.29(3). In order
to prove that P is projective, we prove �rstly that it is �nitely presented (this
will allow us to apply lemma 2.1.27). Let i ∈ I. By assumption, we have that
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Pfi is free of �nite rank over Afi . Let n(i) := rankAfi (Pfi). Then we have

an isomorphism of Afi-modules gi : A
n(i)
fi
→ Pfi . Let (ei1, . . . , ein(i)) be the

canonical basis of An(i)
fi

. For any k = 1, . . . , n(i), we have that gi(eik) ∈ Pfi , so
by de�nition of localization there exist xik ∈ P , mik ∈ N such that gi(eik) =
xik
f
mik
i

. Let mi := maxk=1,...,n(i)mik. Then, for any k = 1, . . . , n(i), we have

gi(eik) =
xik
fmiki

=
fmi−miki xik

fmi−miki fmiki

=
x̃ik
fmii

,

where we de�ned x̃ik := fmi−miki xik ∈ P . De�ne now hi := fmii gi : A
n(i)
fi
→

Pfi . Then hi is an isomorphism of Afi-modules, with inverse 1
f
mi
i

g−1. De�ne

moreover an A-linear map h′i : An(i) → P by h′i(e
′
ik) = x̃ik for any k =

1, . . . , n(i) (extended by linearity), where (e′i1, . . . , e
′
in(i)) is the canonical basis

of An(i). Localizing we get an Afi-linear map (h′i)fi : (An(i))fi → Pfi . Since
the localization commutes with direct sums, we have an isomorphism of Afi-

modules ϕi : (An(i))fi → A
n(i)
fi

. This isomorphism sends
e′ik
1 to eik for any

k = 1, . . . , n(i). Consider then hi ◦ ϕi ∈ HomAfi
((An(i))fi , Pfi). For any

k = 1, . . . , n(i), we have that

(hi ◦ ϕi)
(
e′ik
1

)
= hi(eik) = fmii gi(eik) =

= fmii

x̃ik
fmii

=
x̃ik
1

=
h′i(e

′
ik)

1
= (h′i)fi

(
e′ik
1

)
.

So hi ◦ ϕi = (h′i)fi . Since both hi and ϕi are isomorphisms, it follows that
(h′i)fi is an isomorphism of Afi-modules. De�ne now F :=

⊕
i∈I A

n(i) and

h′ : F → P, (xi)i∈I 7→
∑
i∈I

h′i(xi) .

This map is A-linear because it is equal to ϕ′P ((h′i)i∈I), where

ϕ′P :
∏
i∈I

HomA(An(i), P )→ HomA(F, P )

is de�ned as in lemma 2.1.9. Moreover, for any i ∈ I, we have h′ ◦ qi = h′i,
where we de�ned qi : An(i) → F, x 7→ (δijx)j∈I . We know that (h′)fi ◦ (qi)fi =
(h′ ◦ qi)fi = (h′i)fi is an isomorphism, in particular it is surjective. It follows
that (h′)fi is surjective. Since this holds for any i ∈ I, by lemma 2.1.29(2)
we have that h′ is surjective. Moreover, consider Ker(h′) ⊆ F . Let i ∈ I.
As in the proof of lemma 2.1.28(2), we have that Ker(h′)fi = Ker((h′)fi). We

claim now that Ker((h′)fi) is �nitely generated over Afi . Since hi : A
n(i)
fi
→

Pfi is an isomorphism of Afi-modules, we have that (hi(ei1), . . . , hi(ein(i))) =(
x̃i1
1 , . . . ,

x̃in(i)

1

)
is a basis of Pfi as an Afi-module. We have also that

x̃ik
1

= (h′i)fi

(
e′ik
1

)
= ((h′)fi ◦ (qi)fi)

(
e′ik
1

)
= (h′)fi

(
qi(e

′
ik)

1

)
,
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for any k = 1, . . . , n(i). Consider now j ∈ I, j 6= i and the Afi-linear map (h′ ◦
qj)fi = (h′)fi ◦ (qj)fi : (An(j))fi → Pfi . For any k = 1, . . . , n(j), we have that

(h′)fi

(
qj(e

′
jk)

1

)
= ((h′)fi ◦ (qj)fi)

(
e′jk
1

)
∈ Pfi , so there exist λjk1, . . . , λjkn(i) ∈

Af(i) such that

(h′)fi

(
qj(e

′
jk)

1

)
=

n(i)∑
r=1

λjkr
x̃ir
1

=

n(i)∑
r=1

λjkr(h
′)fi

(
qi(e

′
ir)

1

)
.

Since (h′)fi is Afi-linear, this implies that

(h′)fi

qj(e′jk)
1

−
n(i)∑
r=1

λjkr
qi(e

′
ir)

1

 = 0 ,

i.e. yjk :=
qj(e

′
jk)

1 −
∑n(i)

r=1 λjkr
qi(e
′
ir)

1 ∈ Ker((h′)fi). Denote now by M the Afi-
submodule of Ffi generated by (yjk)j∈I, j 6=i, k=1,...,n(j). Since I is �nite, we have
that M is �nitely generated. Moreover, since Ker((h′)fi) is an Afi-submodule
of Ffi , we have that M ⊆ Ker((h′)fi). Let x ∈ Ker((h′)fi), i.e. (h′)fi(x) = 0.
Notice that F is generated by (qj(e

′
jk))j∈I, k=1,...,n(j). Then Ffi is generated

by
(
qj(e

′
jk)

1

)
j∈I, k=1,...,n(j)

over Afi . So there exist µjk ∈ Afi (for any j ∈ I,

k = 1, . . . , n(j)) such that x =
∑

j∈J, k=1,...,n(j) µjk
qj(e

′
jk)

1 . Then we have

x =

n(i)∑
k=1

µik
qi(e

′
ik)

1
+

∑
j∈I\{i}

k=1,...,n(j)

µjk

qj(e′jk)
1

−
n(i)∑
r=1

λjkr
qi(e

′
ir)

1

+

+
∑

j∈I\{i}
k=1,...,n(j)

µjk

n(i)∑
r=1

λjkr
qi(e

′
ir)

1
=

=

n(i)∑
r=1

µir
qi(e

′
ir)

1
+

∑
j∈I\{i}

k=1,...,n(j)

µjkyjk +

n(i)∑
r=1

qi(e
′
ir)

1

 ∑
j∈I\{i}

k=1,...,n(j)

µjkλjkr

 =

=

n(i)∑
r=1

qi(e
′
ir)

1

µir +
∑

j∈I\{i}
k=1,...,n(j)

µjkλjkr

+ y ,

where we de�ned y :=
∑

j∈I\{i}
k=1,...,n(j)

µjkyjk ∈ M . De�ne also νir := µir +∑
j∈I\{i}, k=1,...,n(j) µjkλjkr ∈ Afi , for any r = 1, . . . , n(i). Then we get that

x =
∑n(i)

r=1 νir
qi(e
′
ir)

1 + y. Since M ⊆ Ker((h′)fi), we have that (h′)fi(y) = 0.
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So, applying the Afi-linearity of (h′)fi , we get

0 = (h′)fi(x) =

n(i)∑
r=1

νir(h
′)fi

(
qi(e

′
ir)

1

)
+ (h′)fi(y) =

n(i)∑
r=1

νir
x̃ik
1

.

But we know that

(
x̃i1
1 , . . . ,

x̃in(i)

1

)
is a basis of Pfi as an Afi-module, in

particular it is linearly independent. So we must have νir = 0 for any r =
1, . . . , n(i) and x = y ∈ M . This proves that Ker((h′)fi) = M is �nitely
generated. Since Ker(h′)fi = Ker((h′)fi) and this is �nitely generated for any
i ∈ I, we have that Ker(h′) is also �nitely generated, by lemma 2.1.29(3).
Notice that F =

⊕
i∈I A

n(i) ∼= A
∑
i∈I n(i) as A-modules and

∑
i∈I n(i) is �nite,

because I is �nite. Let ϕ : A
∑
i∈I n(i) → F be an isomorphism. Then h′ ◦ ϕ :

A
∑
i∈I n(i) → P is a surjective A-linear map, because h′ is surjective and A-

linear. Moreover, Ker(h′ ◦ ϕ) = ϕ−1(Ker(h′)) is isomorphic to Ker(h′) as an
A-module, so it is �nitely generated, because Ker(h′) is �nitely generated. This
proves that P is �nitely presented (see remark 2.1.26).
Let nowM , N be A-modules and α : M → N a surjective A-linear map. Then
Coker(α) = 0. Let i ∈ I and consider the Afi-linear map αfi : Mfi → Nfi .
By lemma 2.1.29(2), αfi is surjective. By assumption, Pfi is free over Afi , in
particular it is projective (example 2.1.11). Then, by lemma 2.1.14 ((i) =⇒
(ii)), we have that the map

(αfi)∗ : HomAfi
(Pfi ,Mfi)→ HomAfi

(Pfi , Nfi), β 7→ αfi ◦ β

(which is clearly Afi-linear) is surjective. Since P is �nitely presented, by
lemma 2.1.27 we have isomorphisms ϕM : HomA(P,M)fi → HomAfi

(Pfi ,Mfi)
and ϕN : HomA(P,N)fi → HomAfi

(Pfi , Nfi). Consider the following diagram,
where we de�ned α∗ : HomA(P,M)→ HomA(P,N), β 7→ α ◦ β.

HomA(P,M)fi HomAfi
(Pfi ,Mfi)

HomA(P,N)fi HomAfi
(Pfi , Nfi)

........................................................................................ ............
ϕM

...................................................................................
.....
.......
.....

(α∗)fi

........................................................................................ ............
ϕN

...................................................................................
.....
.......
.....

(αfi)∗

For any β
fmi
∈ HomA(P,M)fi (β ∈ HomA(P,M) and m ∈ N) we have that

ϕN

(
(α∗)fi

(
β

fmi

))
= ϕN

(
α∗(β)

fmi

)
=

= ϕN

(
α ◦ β
fmi

)
=

1

fmi
(α ◦ β)fi =

1

fmi
(αfi ◦ βfi) =

= αfi ◦
(
βfi
fmi

)
= (αfi)∗

(
βfi
fmi

)
= (αfi)∗

(
ϕM

(
β

fmi

))
.

So the diagram commutes, i.e. ϕN ◦ (α∗)fi = (αfi)∗ ◦ ϕM . Then we have that
(α∗)fi = ϕ−1

N ◦ (αfi)∗ ◦ ϕM is surjective, because (αfi)∗ is surjective and ϕM
and ϕN are isomorphisms. Since this holds for any i ∈ I, we have that α∗ is
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surjective, by lemma 2.1.29. By lemma 2.1.14 ((ii) =⇒ (i)), we have that P is
projective.

Remark 2.1.31. The proposition 2.1.30 has an important geometrical meaning: it
means that P is �nitely generated and projective if and only if the associated sheaf of
OSpec(A)-modules P̃ is locally free of �nite rank (recall that, given a scheme (X,OX)
and a sheaf F of OX -modules, F is locally free of �nite rank if for every x ∈ X there
exists an open neighbourhood U of x in X such that F|U ∼=

⊕nU
i=1(OX)|U as sheaves

of (OX)|U -modules, for an nU ∈ N).
Indeed, if P is �nitely generated and projective, let (fi)i∈I be a collection of elements
of A as in 2.1.30(iv). Let p ∈ Spec(A). Then p 6= A, so there exists i0 ∈ I such that
fi0 /∈ p (otherwise we would have A =

∑
i∈I fiA ⊆ p). This means that p ∈ D(fi0),

i.e. the distinguished open subset D(fi0) is an open neighbourhood of p in Spec(A).
Consider the sheaf of OSpec(Afi0

)-modules P̃fi0 . By assumption, Pfi0 is a free Afi0 -

module, so there exists n ∈ N such that Pfi0
∼= Anfi0

as Afi0 -modules. Then

P̃fi0
∼= Ãnfi0

∼=
n⊕
i=1

Ãfi0 =

n⊕
i=1

OSpec(Afi0
) ,

as sheaves of OSpec(Afi0
)-modules. Moreover, we have that(
D(fi0), (OSpec(A))|D(fi0

)

)
∼= Spec(Afi0 ) .

This isomorphism allows us to see P̃fi0 as a sheaf of (OSpec(A))|D(fi0
)
-modules on

D(fi0) and it can be easily proved that this sheaf is isomorphic to P̃|D(fi0
)
. Then we

get that P̃|D(fi0
)
∼=
⊕n

i=1(OSpec(A))|D(fi0
)
. So P̃ is locally free of �nite rank.

Conversely, assume that P̃ is locally free of �nite rank and let p be a prime ideal of
A, i.e. p ∈ Spec(A). Then there exists an open neighbourhood U of p in Spec(A)
such that P̃|U

∼=
⊕nU

i=1(OSpec(A))|U as sheaves of (OSpec(A))|U -modules. Consider now
the stalks at p. We have that ((OSpec(A))|U )p ∼= (OSpec(A))p ∼= Ap. Then we have
isomorphisms of Ap-modules

Pp
∼=
(
P̃
)
p

∼=
(
P̃|U

)
p

∼=

(
nU⊕
i=1

(OSpec(A))|U

)
p

∼=
nU⊕
i=1

((OSpec(A))|U )p ∼=
nU⊕
i=1

Ap

(we used the fact that stalks commute with direct sums). So Pp is a free Ap-module
of �nite rank (this is also part of the statement of corollary 2.1.33 and we will give
an alternative proof with an algebraic approach). Then the condition (ii) of the
proposition 2.1.30 is satis�ed and P must be �nitely generated and projective.

Corollary 2.1.32. Let P be an A-module. If there exists a collection (fi)i∈I of
elements of A such that

∑
i∈I fiA = A and for every i ∈ I the Afi-module Pfi is

�nitely generated and projective, then P is �nitely generated and projective as an
A-module.
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Proof. Let i ∈ I. Since Pfi is �nitely generated and projective over Afi , by propo-
sition 2.1.30 ((i) =⇒ (iv)) there exists a collection (αij)j∈Ji of elements of Afi such
that

∑
j∈Ji αijAfi = Afi and the (Afi)αij -module (Pfi)αij is free of �nite rank. Let

j ∈ Ji. By de�nition of localization, there exist hij ∈ A and nij ∈ N such that

αij =
hij

f
nij
i

. De�ne

ϕ : Afihij → (Afi)αij ,
x

(fihij)n
7→

(
x

f
n(1+nij)

i

)
αnij

.

Let us check that ϕ is well de�ned. If x
(fihij)n

= y
(fihij)m

, with x, y ∈ A and n,m ∈ N,
then there exists k ∈ N such that (fihij)

k(x(fihij)
m − y(fihij)

n) = 0. Then in Afi
we have

0 =
(fihij)

k(x(fihij)
m − y(fihij)

n)

f
(k+m+n)(1+nij)
i

=

=
fki h

k
ij

f
k(1+nij)
i

(
xfmi h

m
ij

f
(m+n)(1+nij)
i

−
yfni h

n
ij

f
(m+n)(1+nij)
i

)
=

=

(
hij

f
nij
i

)k( x

f
n(1+nij)
i

(
hij

f
nij
i

)m
− y

f
m(1+nij)
i

(
hij

f
nij
i

)n)
=

= αkij

(
x

f
n(1+nij)
i

αmij −
y

f
m(1+nij)
i

αnij

)

So (
x

f
n(1+nij)

i

)
αnij

=

(
y

f
m(1+nij)

i

)
αmij

in (Afi)αij and this proves that ϕ is well de�ned. Moreover, we have that

ϕ
(

1Afihij

)
= ϕ

(
1

(fihij)0

)
=

(
1
f0
i

)
α0
ij

= 1(Afi )αij

and for every x, y ∈ A, n,m ∈ N we have

ϕ

(
x

(fihij)n
y

(fihij)m

)
= ϕ

(
xy

(fihij)n+m

)
=

=

(
xy

f
(n+m)(1+nij)

i

)
αn+m
ij

=

(
x

f
n(1+nij)

i

y

f
m(1+nij)

i

)
αnijα

m
ij

=

=

(
x

f
n(1+nij)

i

)
αnij

(
y

f
m(1+nij)

i

)
αmij

= ϕ

(
x

(fihij)n

)
ϕ

(
y

(fihij)m

)
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and

ϕ

(
x

(fihij)n
+

y

(fihij)m

)
= ϕ

(
x(fihij)

m + y(fihij)
n)

(fihij)n+m

)
=

=

(
x(fihij)

m+y(fihij)
n

f
(n+m)(1+nij)

i

)
αn+m
ij

=

(
x

f
n(1+nij)

i

(
hij

f
nij
i

)m
+ y

f
m(1+nij)

i

(
hij

f
nij
i

)n)
αnijα

m
ij

=

=

(
x

f
n(1+nij)

i

αmij + y

f
m(1+nij)

i

αnij

)
αnijα

m
ij

=

(
x

f
n(1+nij)

i

)
αnij

+

(
y

f
m(1+nij)

i

)
αmij

=

= ϕ

(
x

(fihij)n

)
+ ϕ

(
y

(fihij)m

)
.

Then ϕ is a ring homomorphism. Let now x
(fihij)n

∈ Ker(ϕ), with x ∈ A and n ∈ N.
This means that (

x

f
n(1+nij)

i

)
αnij

= ϕ

(
x

(fihij)n

)
= 0 .

Then there exists k ∈ N such that αkij
x

f
n(1+nij)

i

= 0 in Afi , i.e.
hkijx

f
knij+n(1+nij)

i

=(
hij

f
nij
i

)k
x

f
n(1+nij)

i

= 0. This means that there exists m ∈ N such that fmi h
k
ijx = 0.

Let K := max{k,m}. Then

(fihij)
Kx = fKi h

K
ij x = fK−mi hK−kij fmi h

k
ijx = 0 .

So x
(fihij)n

= 0 in Afihij . Then Ker(ϕ) = 0, i.e. ϕ is injective.

Let now

(
x
fn
i

)
αmij

∈ (Afi)αij , with x ∈ A, n,m ∈ N. Let k := max{m,n −mnij} ∈ N

and consider
xf
k−(n−mnij)

i hk−mij

(fihij)k
∈ Afihij . We have that

ϕ

xfk−(n−mnij)
i hk−mij

(fihij)k

 =

(
xf
k−(n−mnij)

i hk−mij

f
k(1+nij)

i

)
αkij

=

(
xhk−mij

f
knij+n−mnij
i

)
αkij

=

=

(
x
fni

(
hij

f
nij
i

)k−m)
αkij

=

(
x
fni
αk−mij

)
αkij

=

(
x
fni

)
αmij

.

This proves that ϕ is surjective. So ϕ : Afihij → (Afi)αij is an isomorphism. Then
we can see the (Afi)αij -module (Pfi)αij as an Afihij -module, which is again free of
�nite rank. It can then be proved that Pfihij ∼= (Pfi)αij as Afihij -modules (the proof
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is analogous to what we did above for Afihij and (Afi)αij ). So Pfihij is a free Afihij -
module of �nite rank.
Now, since

∑
j∈Ji αijAfi = Afi , there exist λij =

sij

f
mij
i

∈ Afi (with sij ∈ A, mij ∈ N,

for any j ∈ Ji) such that 1
1 =

∑
j∈Ji αijλij =

∑
j∈Ji

hij

f
nij
i

sij

f
mij
i

=
∑

j∈Ji
hijsij

f
nij+mij
i

. Let

N := maxj∈Ji(nij +mij). Then

1

1
=
∑
j∈Ji

hij

f
nij
i

sij

f
mij
i

=
∑
j∈Ji

hijsij

f
nij+mij
i

=

∑
j∈Ji hijsijf

N−nij−mij
i

fNi
,

which means that there exists k ∈ N such that

0 = fki

1 · fNi − 1 ·
∑
j∈Ji

hijsijf
N−nij−mij
i

 = fk+N
i −

∑
j∈Ji

hijsijf
k+N−nij−mij
i ,

i.e. fk+N
i =

∑
j∈Ji hijsijf

k+N−nij−mij
i . Let m be a maximal ideal of A. Since∑

i∈I fiA = A, there exists i ∈ I such that fi /∈ m (otherwise A ⊆ m, which is a
contradiction). Since m is maximal, it is in particular prime. Then fhi /∈ m for any
h > 0. In particular, fk+N+1

i /∈ m. Then
∑

i∈I f
k+N+1
i A * m. Since this holds for

every maximal ideal m, we must have that
∑

i∈I f
k+N+1
i A = A. Then there exist

ai ∈ A (for i ∈ I) such that

1 =
∑
i∈I

fk+N+1
i ai =

∑
i∈I

fi

∑
j∈Ji

hijsijf
k+N−nij−mij
i

 ai =

=
∑
i∈I

∑
j∈Ji

fihijsijf
k+N−nij−mij
i ai ∈

∑
i∈I
j∈Ji

(fihij)A .

Then
∑

i∈I,j∈J(fihij)A = A, because
∑

i∈I,j∈J(fihij)A is an ideal of A. So the
collection (fihij)i∈I,j∈Ji satis�es the assumptions of proposition 2.1.30 ((iv) =⇒ (i)),
which allows us to conclude that P is a �nitely generated and projective A-module

Corollary 2.1.33. Let P be a �nitely generated projective A-module.

(1) For any prime ideal p of A, we have that Pp is a free Ap-module of �nite rank.

(2) The function rankA(P ) : Spec(A)→ Z, p 7→ rankAp(Pp) is locally constant. In
particular, it is continuous (if we endow Z with the discrete topology) and if
Spec(A) is connected it is constant.

Proof. Since P is �nitely generated and projective, by the implication (i) =⇒ (iv)
of the proposition 2.1.30 there exists a collection (fi)i∈I of elements of A such that∑

i∈I fiA = A and for each i ∈ I the Afi-module Pfi is free of �nite rank.
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(1) Let p be a prime ideal of A. In particular, P 6= A. Then there exists i ∈ I
such that fi /∈ p (otherwise we would have A =

∑
i∈I fiA ⊆ p). Since p is

prime, it follows that fni /∈ p for any n ∈ N, i.e. Sfi ⊆ A\p. Then we have that
Ap
∼= (Afi)pfi . This isomorphism allows us to see (Pfi)pfi as an Ap-module.

Then Pp
∼= (Pfi)pfi as Ap-modules. By assumption Pfi is free of �nite rank, i.e.

there exists n ∈ N such that Pfi ∼= (Afi)
n asAfi-modules. Since the localization

commutes with direct sums, we get that Pp
∼= (Pfi)pfi

∼= ((Afi)pfi )
n ∼= Anp as

Ap-modules. This proves the claim.

(2) Let p ∈ Spec(A) and i as in the proof of point (1). Then D(fi) is an open
neighbourhood of p in Spec(A). If n ∈ N is such that Pfi ∼= (Afi)

n as Afi-
modules, in the proof of point (1) we saw that Pp

∼= Anp and so rankAp(Pp) = n

(notice that this rank is well de�ned because Ap 6= 0, since 1
1 6=

0
1). Let now q ∈

D(fi). This means that fi /∈ q. Then we can apply the same argument we used
in point (1) in order to show that rankAq(Pq) = n. Hence the function rankA(P )
is locally constant. The rest of the statement follows immediately, because a
locally constant function is always continuous and a continuous function from
a connected space to a discrete one must be constant.

Remark 2.1.34. Let (X,OX) be a scheme. Working with stalks, one can associate a
rank function X → Z to any locally free sheaf of OX -modules of �nite rank and this
function is locally constant. Then corollary 2.1.33 can be seen as a consequence of
remark 2.1.31.

De�nition 2.1.35. Let P be a �nitely generated projective A-module.

(1) The function rankA(P ) : Spec(A) → Z, p 7→ rankAp(Pp) de�ned in corollary
2.1.33(2) is called the rank of P over A.

(2) We say that P is faithfully projective if rankA(P )(p) ≥ 1 for every p ∈ Spec(A)
(we will write shortly rankA(P ) ≥ 1).

Remark 2.1.36. (1) Recall that any free module is projective (example 2.1.11). So
now we have two de�nitions of rank in the case of a �nitely generated free
module (remark 2.1.2 and de�nition 2.1.35(1)). The �rst de�nition gives us a
non-negative integer, while the second one is a function from Spec(A) to Z.
However, if P is a free A-module of rank n (n ∈ N), then Pp is a free Ap-module
of rank n for any p ∈ Spec(A), because the localization commutes with direct
sum. So the rank function we de�ned in 2.1.35(1) is constantly equal to n,
namely to the rank de�ned as in 2.1.2.

(2) Notice that, unlike the de�nition of the rank of a �nitely generated A-module
that we gave in remark 2.1.2, the de�nition we gave in 2.1.35(1) makes sense
also when A = 0. Indeed, in that case we have that Spec(A) = ∅ and the rank
of 0 (the unique A-module) is the unique function ∅ → Z.
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The rank enjoys a lot of interesting properties concerning operations between
�nitely generated projective A-modules. As an example, we see what happens with
direct sums and with tensor products (the results are intuitive if we think about the
case of free modules of �nite rank).

Lemma 2.1.37. Let P1, . . . , Pn be �nitely generated projective A-modules. Then⊕n
i=1 Pi is also �nitely genererated and projective over A and

rankA

(
n⊕
i=1

Pi

)
=

n∑
i=1

rankA(Pi)

as functions on Spec(A) (i.e. rankA (
⊕n

i=1 Pi) (p) =
∑n

i=1 rankA(Pi)(p) for any
p ∈ Spec(A)).

Proof. Since Pi is projective for every i ∈ I, we have that
⊕n

i=1 Pi is projective by
corollary 2.1.10. Moreover, if (vi1, . . . , vimi) generates Pi for any i = 1, . . . , n, then
((v1k1 , . . . , vnkn))k1=1,...,m1, ..., kn=1,...,mn generates

⊕n
i=1 Pi. Indeed, if (x1, . . . , xn) ∈⊕n

i=1 Pi, then for every i = 1, . . . , n we have that xi ∈ Pi and so there exist
λi1, . . . , λimi ∈ A such that xi =

∑mi
ki=1 λikiviki . So

(x1, . . . , xn) =

 m1∑
k1=1

λ1k1v1k1 , . . . ,

mn∑
kn=1

λnknvnkn

 =

=

m1∑
k1=1

· · ·
mn∑
kn=1

λ1k1 · · ·λnkn(v1k1 , . . . , vnkn) .

This shows that
⊕n

i=1 Pi is �nitely generated.
Let now p ∈ Spec(A). Fix i ∈ I. By corollary 2.1.33(1), we have that (Pi)p is free
of �nite rank. De�ne mi := rankAp((Pi)p) (by de�nition of rankA(Pi), this means
that mi = rankA(Pi)(p)). Then (Pi)p ∼= Amip . Since the localization commutes with
direct sums (see lemma 2.1.19, recalling that localization at p corresponds to tensor
product with Ap), we have that(

n⊕
i=1

Pi

)
p

∼=
n⊕
i=1

(Pi)p ∼=
n⊕
i=1

Amip
∼= A

∑n
i=1mi

p

as Ap-modules (notice that lemma 2.1.19 gives only an isomorphism of A-modules,
but it is immediate to check that in this case that isomorphism is also Ap-linear).
Then, by de�nition of the rank for �nitely generated projective A-modules, we get
that

rankA

(
n⊕
i=1

Pi

)
(p) =

n∑
i=1

mi =
n∑
i=1

rankA(Pi)(p) .

Lemma 2.1.38. Localization and tensor products commute. More precisely, if S is
a multiplicatively closed subset of A and M , N are A-modules, then S−1(M⊗AN) ∼=
(S−1M)⊗S−1A (S−1N) as S−1A-modules.
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Proof. Consider the map

ϕ : S−1M × S−1N → S−1(M ⊗A N),
(m
s
,
n

t

)
7→ m⊗ n

st
.

First of all we check that ϕ is well de�ned. Assume that m1,m2 ∈ M , n1, n2 ∈ N
and s1, s2, t1, t2 ∈ S are such that m1

s1
= m2

s2
and n1

t1
= n2

t2
. Then there exist u, v ∈ S

such that u(m1s2 −m2s1) = 0 and v(n1t2 − n2t1) = 0. Then uv ∈ S and

uv(s2t2(m1 ⊗ n1)− s1t1(m2 ⊗ n2)) = (um1s2)⊗ (vn1t2)− (um2s1)⊗ (vn2s1) =

= (um2s1)⊗ (vn2t1)− (um2s1)⊗ (vn2s1) = 0 .

So m1⊗n1
s1t1

= m2⊗n2
s2t2

. This proves that ϕ is well de�ned. We prove now that ϕ is
S−1A-bilinear. Let λ1 = a1

u1
, λ2 = a2

u2
∈ S−1A, m1

s1
, m2
s2
∈ S−1M and n

t ∈ S−1N .
Then

ϕ

(
λ1
m1

s1
+ λ2

m2

s2
,
n

t

)
= ϕ

(
u2s2a1m1 + u1s1a2m2

s1s2u1u2
,
n

t

)
=

=
(u2s2a1m1 + u1s1a2m2)⊗ n

s1s2u1u2t
=
u2s2a1(m1 ⊗ n) + u1s1a2(m2 ⊗ n)

s1s2u1u2t
=

=
a1

u1

m1 ⊗ n
s1t

+
a2

u2

m2 ⊗ n
s2t

= λ1ϕ

(
m1

s1
,
n

t

)
+ λ2ϕ

(
m2

s2
,
n

t

)
.

Analogously, if λ1 = a1
u1
, λ2 = a2

u2
∈ S−1A, ms ∈ S

−1M and n1
t1
, n2
t2
∈ S−1N , we have

that

ϕ

(
m

s
, λ1

n1

t1
+ λ2

n2

t2

)
= ϕ

(
m

s
,
u2t2a1n1 + u1t1a2n2

t1t2u1u2

)
=

=
(u2s2a1m1 + u1s1a2m2)⊗ n

s1s2u1u2t
=
u2t2a1(m⊗ n1) + u1t1a2(m⊗ n2)

su1u2t1t2
=

=
a1

u1

m⊗ n1

st1
+
a2

u2

m⊗ n2

st2
= λ1ϕ

(
m

s
,
n1

t1

)
+ λ2ϕ

(
m

s
,
n2

t2

)
.

So ϕ is S−1A-bilinear. By the universal property of the tensor product, ϕ induces
an S−1A-linear map Φ : S−1M ⊗S−1A S

−1N → S−1(M ⊗A N) with Φ
(
m
s ⊗

n
t

)
=

ϕ
((

m
s ,

n
t

))
for any m

s ∈ S
−1M , nt ∈ S

−1N .
The map ψ : M × N → (S−1M) ⊗S−1A (S−1N), (m,n) 7→ m

1 ⊗
n
1 is clearly A-

bilinear, so it induces an A-linear map Ψ : M ⊗A N → (S−1M)⊗S−1A (S−1N) with
Ψ(m⊗ n) = ψ((m,n)) = m

1 ⊗
n
1 for any m ∈M , n ∈ N . De�ne

Ψ′ : S−1(M ⊗A N)→ (S−1M)⊗S−1A (S−1N),
x

s
7→ 1

s
Ψ(x) .

Let us check that Ψ′ is well de�ned. Let x1, x2 ∈ M ⊗A N , s1, s2 ∈ S such that
x1
s1

= x2
s2
. Then there exists u ∈ S such that u(x1s2 − x2s1) = 0. Since Ψ is A-

linear it follows that 0 = Ψ(ux1s2 − ux2s1) = us2Ψ(x1) − us1Ψ(x2). So 1
s1

Ψ(x1) =
1

us1s2
(us2Ψ(x1)) = 1

us1s2
(us1Ψ(x2)) = 1

s2
Ψ(x2). This proves that Ψ′ is well de�ned.
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We prove now that Ψ′ is S−1A-linear. Let λ1 = a1
u1
, λ2 = a2

u2
∈ S−1A, x1

s1
, x2
s2
∈

S−1(M ⊗A N). Since Ψ is A-linear, we have that

Ψ′
(
λ1
x1

s1
+ λ2

x2

s2

)
= Ψ′

(
u2s2a1x1 + u1s1a2x2

u1u2s1s2

)
=

=
1

u1u2s1s2
Ψ(u2s2a1x1 + u1s1a2x2) =

1

u1u2s1s2
(u2s2a1Ψ(x1) + u1s1a2Ψ(x2)) =

=
a1

u1

1

s1
Ψ(x1) +

a2

u2

1

s2
Ψ(x2) = λ1Ψ′

(
x1

s1

)
+ λ2Ψ′

(
x2

s2

)
.

So Ψ′ is S−1A-linear. It remains to prove that Φ and Ψ′ are inverse to each other.
For any m

s ∈ S
−1M , nt ∈ S

−1N , we have

(Ψ′ ◦ Φ)
(m
s
⊗ n

t

)
= Ψ′

(
m⊗ n
st

)
=

1

st
Ψ(m⊗ n) =

=
1

st

m

1
⊗ n

1
=
m

s
⊗ n

t
= id(S−1M)⊗S−1A(S−1N)

(m
s
⊗ n

t

)
.

So Ψ′ ◦Φ = id(S−1M)⊗S−1A(S−1N) (by linearity, it is enough to check equality on pure

tensors). Conversely, notice that S−1(M ⊗AN) is generated by elements of the form
m⊗n
s , with m ∈M , n ∈ N and s ∈ S. We have that

(Φ ◦Ψ′)

(
m⊗ n
s

)
= Φ

(
1

s
Ψ(m⊗ n)

)
= Φ

(
1

s

m

1
⊗ n

1

)
=

= Φ
(m
s
⊗ n

1

)
=
m⊗ n
s

= idS−1(M⊗AN)

(
m⊗ n
s

)
for any m ∈ M , n ∈ N and s ∈ S. So Φ ◦ Ψ′ = idS−1(M⊗AN). This ends the
proof.

Lemma 2.1.39. If P and P ′ are projective A-modules, we have that P ⊗AP ′ is also
projective.

Proof. Since P and P ′ are projective, by lemma 2.1.14 ((i) =⇒ (iv)) there exist two
A-modules Q and Q′ such that P⊕Q and P ′⊕Q′ are free. Then there exist two index
sets I and J such that P ⊕ Q ∼=

⊕
i∈I A and P ′ ⊕ Q′ ∼=

⊕
j∈J A. Since the tensor

product commutes with direct sums (lemma 2.1.19, notice that this works with both
factors, because for any two A-modules M , N we have that M ⊗A N ∼= N ⊗AM),
we have that

⊕
i∈I
j∈J

A ∼=
⊕
i∈I
j∈J

A⊗A A ∼=

(⊕
i∈I

A

)
⊗A

⊕
j∈J

A

 ∼= (P ⊕Q)⊗A (P ′ ⊕Q′) ∼=

∼= (P ⊗A P ′)⊕ (P ⊗A Q′)⊕ (Q⊗A P ′)⊕ (Q⊗A Q′) .

Then, if we de�neR := (P⊗AQ′)⊕(Q⊗AP ′)⊕(Q⊗AQ′), we have that (P⊗AP ′)⊕R ∼=⊕
i∈I, j∈J A is free. Hence P ⊗A P ′ is projective by lemma 2.1.14 ((iv) =⇒ (i)).
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Lemma 2.1.40. Let P and P ′ be �nitely generated projective A-modules. Then
P ⊗A P ′ is also �nitely generated and projective over A and

rankA(P ⊗A P ′) = rankA(P ) · rankA(P ′)

as functions on Spec(A) (i.e. for any p ∈ Spec(A) we have that rankA(P⊗AP ′)(p) =
rankA(P )(p) · rankA(P ′)(p)).

Proof. We have that P ⊗AP ′ is projective by lemma 2.1.39. Moreover, if (v1, . . . , vn)
generates P and (w1, . . . , wm) generates P ′, then P ⊗A P ′ is generated by (vi ⊗
wj)i=1,...,n, j=1,...,m. So P ⊗A P ′ is �nitely generated over A.
Let now p ∈ Spec(A). By corollary 2.1.33(1), Pp and P ′p are both free of �nite rank
over Ap. Let n := rankAp(Pp) and m := rankAp(P ′p) (by de�nition of rankA(P ), this
means that n = rankA(P )(p) and m = rankA(P ′)(p)). Then Pp

∼= Anp and P ′p ∼= Amp .
Since the localization commutes with tensor products and direct sums (see lemmas
2.1.38 and 2.1.19, recalling that localization at p corresponds to tensor product with
Ap), we have that

(P⊗AP ′)p ∼= Pp⊗ApP
′
p
∼= Anp ⊗ApA

m
p
∼=

⊕
i=1,...,n
j=1,...,m

(Ap⊗ApAp) ∼=
⊕

i=1,...,n
j=1,...,m

Ap
∼= Anmp

as Ap-modules (notice that lemma 2.1.19 gives only an isomorphism of A-modules,
but it is immediate to check that in this case that isomorphism is also Ap-linear).
Then, by de�nition of the rank for �nitely generated projective A-modules, we get
that

rankA(P ⊗A P ′)(p) = nm = rankA(P )(p) · rankA(P ′)(p) .

We will see now the link between faithfully projective and faithfully �at A-
modules.

Lemma 2.1.41. Let M0
f−→M1

g−→M2 be a sequence of A-modules. We have M0
f−→

M1
g−→ M2 is exact if and only if for every prime ideal p of A the sequence of Ap-

modules (M0)p
fp−→ (M1)p

gp−→ (M2)p is exact.

Proof. Notice that, as in the proof of lemma 2.1.28(2), we have Ker(gp) = Ker(g)p
and Im(fp) = Im(f)p, for every prime ideal p of A.

Assume now that M0
f−→ M1

g−→ M2 is exact, i.e. Ker(g) = Im(f). Then, for any
prime ideal p of A, we have that

Ker(gp) = Ker(g)p = Im(f)p = Im(fp) ,

which means that the sequence (M0)p
fp−→ (M1)p

gp−→ (M2)p is exact.

Conversely, assume that, for every prime ideal p of A, the sequence (M0)p
fp−→

(M1)p
gp−→ (M2)p is exact, i.e. Ker(gp) = Im(fp). In particular, we have that

0 = gp ◦ fp = (g ◦ f)p and so 0 = Im((g ◦ f)p) = Im(g ◦ f)p (the last equality
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can be checked as in the proof of lemma 2.1.28(2)), for every prime ideal p of A.
By lemma 2.1.28(1), this implies that Im(g ◦ f) = 0, i.e. g ◦ f = 0. It follows that
Im(f) ⊆ Ker(g). Consider now the quotient Ker(g)/ Im(f). Since the localization
commutes with quotients, we have that

(Ker(g)/ Im(f))p ∼= Ker(g)p/ Im(f)p = Ker(gp)/ Im(fp) = 0

for any prime ideal p of A. By lemma 2.1.28(1), we have Ker(g)/ Im(f) = 0, i.e.

Ker(g) = Im(f). Hence M0
f−→M1

g−→M2 is exact.

Lemma 2.1.42. Let P be a �nitely generated projective A-module. The following
are equivalent:

(i) P is faithfully �at;

(ii) for any A-module M , we have that M = 0 if and only if M ⊗A P = 0;

(iii) the map µ : A→ EndZ(P ), a 7→ (x 7→ ax) is injective;

(iv) P is faithfully projective.

Proof. (i) =⇒ (ii) LetM be an A-module. Consider the sequence 0→M → 0 (with
the only possible maps, i.e. the zero maps). Since P is faithfully �at, we have
that 0→M → 0 is exact if and only if 0 = 0⊗A P →M ⊗A P → 0⊗A P = 0
is exact. On the other hand, by de�nition of exact sequence, we have that
0 → M → 0 is exact if and only if M = 0 and 0 → M ⊗A P → 0 is exact if
and only if M ⊗A P = 0. Hence M = 0 if and only if M ⊗A P = 0.

(ii) =⇒ (iii) First of all, notice that EndZ(P ) is an abelian group, with operation
given by (f +g)(x) = f(x)+g(x), for any f, g ∈ EndZ(P ), x ∈ P (and identity
element the zero map). We check now that µ : A → EndZ(P ) is well de�ned.
Let a ∈ A. By de�nition of A-module, we have that µ(a)(x1 + x2) = a(x1 +
x2) = ax1 + ax2 = µ(a)(x1) + µ(a)(x2) for any x1, x2 ∈ P . So µ(a) : P → P
is a group homomorphism, i.e. it is Z-linear. Then µ(a) ∈ EndZ(P ) for any
a ∈ A, which shows that µ is well de�ned. Let now a1, a2 ∈ A. By de�nition
of A-module, we have that

µ(a1 + a2)(x) = (a1 + a2)x = a1x+ a2x =

= µ(a1)(x) + µ(a2)(x) = (µ(a1) + µ(a2))(x)

for any x ∈ P and so µ(a1 + a2) = µ(a1) + µ(a2). Then µ is a group homo-
morphism from (A,+) to EndZ(P ). So, in order to prove that µ is injective, it
is enough to show that Ker(µ) = 0. We have that

Ker(µ) = {a ∈ A | µ(a) = 0} =

= {a ∈ A | ∀x ∈ P 0 = µ(a)(x) = ax} = AnnA(P ) .

We know that AnnA(P ) is an ideal of A, so we can see it as an A-module. For
any a ∈ AnnA(P ), x ∈ P we have that a⊗x = (a·1)⊗x = a(1⊗x) = 1⊗(ax) =
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1⊗0 = 0. Then, since AnnA(P )⊗AP is generated by pure tensors, we have that
AnnA(P )⊗AP = 0. By assumption, this implies that Ker(µ) = AnnA(P ) = 0.
So µ is injective.

(iii) =⇒ (iv) Since we already know that P is �nitely generated and projective, it is
enough to check that rankA(P ) ≥ 1. Let p be a prime ideal of A. Assume by
contradiction that Pp = 0. Let (w1, . . . , wn) be a set of generators of P . Since
Pp = 0, for any i = 1, . . . , n we have that wi

1 = 0, which means that there
exists ui ∈ A\p such that uiwi = 0. De�ne u :=

∏n
i=1 ui. Since p is prime, we

have that A\p is multiplicative and so u ∈ A\p. For any j = 1, . . . , n, we have

uwj =

(
n∏
i=1

ui

)
wj =

∏
i 6=j

ui

ujwj =

∏
i 6=j

ui

 · 0 = 0 .

Since (w1, . . . , wn) generates P and multiplication by u is A-linear, it follows
that ux = 0 for any x ∈ P . This means that µ(u) = 0 = µ(0). By assumptions,
we must have that u = 0 ∈ p, which is a contradiction with the fact that
u ∈ A\p. Then Pp 6= 0, which implies that rankAp(Pp) 6= 0 and, since the rank
is a non-negative integer by de�nition, rankA(P )(p) = rankAp(Pp) ≥ 1.

(iv) =⇒ (i) LetM0
f−→M1

g−→M2 be a sequence of A-modules. Since P is projective,

by corollary 2.1.22 we have that P is �at. Then, ifM0
f−→M1

g−→M2 is exact, we

have that also the induced sequenceM0⊗AP
f⊗idP−−−−→M1⊗AP

g⊗idP−−−−→M2⊗AP
is exact.
Conversely, assume that M0 ⊗A P

f⊗idP−−−−→ M1 ⊗A P
g⊗idP−−−−→ M2 ⊗A P is exact.

Let p be a prime ideal of A. By lemma 2.1.41, we have that the sequence of
Ap-modules

(M0 ⊗A P )p
(f⊗idP )p−−−−−−→ (M1 ⊗A P )p

(g⊗idP )p−−−−−−→ (M2 ⊗A P )p

is exact. By lemma 2.1.38, we have that (Mi ⊗A Pi)p ∼= (Mi)p ⊗Ap Pp as Ap-
modules, for i = 0, 1, 2. Denote by Φi : (Mi)p ⊗Ap Pp → (Mi ⊗A P )p the
corresponding isomorphism, as in the proof of that lemma, i.e. Φi

(
m
s ⊗

x
t

)
=

m⊗x
st for any m ∈Mi, x ∈ P , s, t ∈ A\p. Consider the following diagram.

(M0)p ⊗Ap Pp (M1)p ⊗Ap Pp (M2)p ⊗Ap Pp

(M0 ⊗A P )p (M1 ⊗A P )p (M2 ⊗A P )p

...................................................................................
.....
.......
.....

Φ0

...................................................................................
.....
.......
.....

Φ1

...................................................................................
.....
.......
.....

Φ2

...................................................................................................................................................... ............
fp ⊗ idPp

...................................................................................................................................................... ............
gp ⊗ idPp

............................................................................................................................................................... ............
(f ⊗ idP )p

............................................................................................................................................................... ............
(g ⊗ idP )p

For any m ∈M0, x ∈ P , s, t ∈ A\p, we have that

(Φ1 ◦ (fp ⊗ idPp))
(m
s
⊗ x

t

)
= Φ1

(
fp

(m
s

)
⊗ x

t

)
=

= Φ1

(
f(m)

s
⊗ x

t

)
=
f(m)⊗ x

st
=

(f ⊗ idP )(m⊗ x)

st
=

= (f ⊗ idP )p

(
m⊗ x
st

)
= (f ⊗ idP )p

(
Φ0

(m
s
⊗ x

t

))
.
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So Φ1 ◦ (fp ⊗ idPp) = (f ⊗ idP )p ◦ Φ0 (since the maps are Ap-linear, it is
enough to check equality on pure tensors). Analogously, one can check that
Φ2 ◦ (gp ⊗ idPp) = (g ⊗ idP )p ◦ Φ1. So the diagram is commutative. Since the
lower row is exact, the upper one is also exact. Since P is �nitely generated
and projective, by corollary 2.1.33 we have that Pp is a free Ap-module of �nite
rank. Then Pp

∼= Anp as Ap-modules, where n = rankAp(Pp). If ϑ : Pp → Anp is
an isomorphism of Ap-modules, we have induced isomorphisms of Ap-modules
idMi ⊗ϑ : (Mi)p⊗Ap Pp → (Mi)p⊗Ap A

n
p , for i = 0, 1, 2. Moreover, (idM1 ⊗ϑ) ◦

(fp ⊗ idPp) = fp ⊗ ϑ = (fp ⊗ idAnp ) ◦ (idM0 ⊗ϑ) and (idM2 ⊗ϑ) ◦ (gp ⊗ idPp) =
gp ⊗ ϑ = (gp ⊗ idAnp ) ◦ (idM1 ⊗ϑ). So the following diagram is commutative.

(M0)p ⊗Ap Pp (M1)p ⊗Ap Pp (M2)p ⊗Ap Pp

(M0)p ⊗Ap A
n
p (M1)p ⊗Ap A

n
p (M2)p ⊗Ap A

n
p

...................................................................................
.....
.......
.....

idM0 ⊗ϑ
...................................................................................
.....
.......
.....

idM1 ⊗ϑ
...................................................................................
.....
.......
.....

idM2 ⊗ϑ

...................................................................................................................................................... ............
fp ⊗ idPp

...................................................................................................................................................... ............
gp ⊗ idPp

................................................................................................................................................... ............
fp ⊗ idAnp

................................................................................................................................................... ............
gp ⊗ idAnp

Then, since the upper row is exact, the lower row is also exact. By lemma
2.1.19 (with Ap instead of A and exchanging the order of the factors), we have
isomorphisms of Ap-modules ψ(Mi)p : (Mi)p ⊗Ap A

n
p → ((Mi)p ⊗Ap Ap)

n, for
i = 0, 1, 2. On the other hand, we have canonical isomorphisms of Ap-modules
σi : (Mi)p⊗ApAp → (Mi)p, m⊗λ 7→ λm, for i = 0, 1, 2. Consider the following
diagram.

(M0)p ⊗Ap A
n
p (M1)p ⊗Ap A

n
p (M2)p ⊗Ap A

n
p

(M0)np (M1)np (M2)np

...................................................................................
.....
.......
.....

σn0 ◦ ψ(M0)p

...................................................................................
.....
.......
.....

σn1 ◦ ψ(M1)p

...................................................................................
.....
.......
.....

σn2 ◦ ψ(M2)p

................................................................................................................................................... ............
fp ⊗ idAnp

................................................................................................................................................... ............
gp ⊗ idAnp

................................................................................................................................................................................................. ............
fnp

................................................................................................................................................................................................. ............
gnp

For any m ∈M0, (λ1, . . . , λn) ∈ Anp we have that

(σn1 ◦ ψ(M1)p ◦ (fp ⊗ idAnp ))(m⊗ (λ1, . . . , λn)) =

= σn1 (ψ(M1)p(fp(m)⊗ (λ1, . . . , λn))) = σn1 ((fp(m)⊗ λ1, . . . , fp(m)⊗ λn)) =

= (σ1(fp(m)⊗ λ1), . . . , σ1(fp(m)⊗ λn)) = (λ1fp(m), . . . , λnfp(m)) =

= (fp(λ1m), . . . , fp(λnm)) = fnp ((λ1m, . . . , λnm)) =

= fp((σ0(m⊗ λ1), . . . , σ0(m⊗ λn))) = fp(σ
n
0 ((m⊗ λ1, . . . ,m⊗ λn))) =

= (fp ◦ σn0 )(ψ(M0)p(m⊗ (λ1, . . . , λn))) .

So σn1 ◦ψ(M1)p ◦ (fp⊗ idAnp ) = fp ◦ σn0 ◦ψ(M0)p (since the maps are Ap-linear, it
is enough to check equality on pure tensors). Analogously, one can show that
σn2 ◦ ψ(M2)p ◦ (gp ⊗ idAnp ) = gp ◦ σn1 ◦ ψ(M1)p . So the diagram is commutative.
Since the upper row is exact, the lower row must also be exact. This means
that Ker(gnp ) = Im(fnp ). It is easy to check that

Ker(gnp ) = Ker(gp)
n

and
Im(fnp ) = Im(fp)

n
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(see the proof of corollary 2.1.20). Then we must have Ker(gp) = Im(fp), i.e.

the sequence (M0)p
fp−→ (M1)p

gp−→ (M2)p is exact. Since this holds for any

prime ideal p of A, applying again lemma 2.1.41 we get that M0
f−→M1

g−→M2

is exact. Hence P is faithfully �at.

Now we want to de�ne the trace also for endomorphisms of a �nitely generated
projective A-module (see 2.1.1 for the de�nition in the case of free A-modules of
�nite rank). This will later allow us to de�ne projective separable A-algebras. For
any A-module P , we denote by P ∗ the dual of P , i.e. P ∗ := HomA(A,P ).

Lemma 2.1.43. Let M be an A-module. For any A-module P we have an A-linear
map

ϑP,M : P ∗ ⊗AM → HomA(P,M), f ⊗m 7→ (p 7→ f(p) ·m)

(extended by linearity). If P = ⊕ni=1Pi, for some A-modules P1, . . . , Pn, then ϑP,M
is bijective if and only if ϑPi,M is bijective for every i = 1, . . . , n.

Proof. First of all, we prove that ϑP,M is well de�ned, for any A-module P . For any
f ∈ P ∗, m ∈M , consider the map ϑf,m : P →M, p 7→ f(p) ·m. For any λ1, λ2 ∈ A,
p1, p2 ∈ P , we have that f(λ1p1 + λ2p2) = λ1f(p1) + λ2f(p2), because f is A-linear.
So

ϑf,m(λ1p1 + λ2p2) = f(λ1p1 + λ2p2) ·m = (λ1f(p1) + λ2f(p2)) ·m =

= λ1(f(p1) ·m) + λ2(f(p2) ·m) = λ1ϑf,m(p1) + λ2ϑf,m(p2) .

Then ϑf,m is A-linear, i.e. ϑf,m ∈ HomA(P,M). So we can consider the map

ΘP,M : P ∗ ×M → HomA(P,M), f 7→ ϑf,m .

We claim that this map is A-bilinear. Let λ1, λ2 ∈ A, f1, f2 ∈ P ∗ and m ∈ M . For
any p ∈ P , we have that (λ1f1 + λ2f2)(p) = λ1f1(p) + λ2f2(p), by de�nition of the
A-module structure on P ∗, and so

ϑλ1f1+λ2f2,m(p) = (λ1f1 + λ2f2)(p) ·m = (λ1f1(p) + λ2f2(p)) ·m =

= λ1(f1(p) ·m) + λ2(f2(p) ·m) = λ1ϑf1,m(p) + λ2ϑf2,m(p) .

Then

ΘP,M ((λ1f1 + λ2f2,m)) = ϑλ1f1+λ2f2,m =

= λ1ϑf1,m + λ2ϑf2,m = λ1ΘP,M ((f1,m)) + λ2ΘP,M ((f2,m)) .

On the other hand, if f ∈ P ∗, λ1, λ2 ∈ A and m1,m2 ∈ M , then for any p ∈ P we
have

ϑf,λ1m1+λ2m2(p) = f(p) · (λ1m1 + λ2m2) =

= λ1(f(p) ·m1) + λ2(f(p) ·m2) = λ1ϑf,m1(p) + λ2ϑf,m2(p) .
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So

ΘP,M ((f, λ1m1 + λ2m2)) = ϑf,λ1m1+λ2m2 =

= λ1ϑf,m1 + λ2ϑf,m2 = λ1ΘP,M ((f,m1)) + λ2ΘP,M ((f,m2)) .

This proves that ΘP,M is A-bilinear, so it induces an A-linear map ϑP,M : P ∗⊗AM →
HomA(P,M) as in the statement.
Assume now that P =

⊕n
i=1 Pi. As in lemma 2.1.9, consider the isomorphisms of

A-modules ϕM : HomA(P,M)→
∏n
i=1 HomA(Pi,M) and ϕA : P ∗ = HomA(P,A)→∏n

i=1 HomA(Pi, A) =
∏n
i=1(Pi)

∗. Since the direct sum of a �nite family of A-modules
coincides with its direct product, we have

∏n
i=1 HomA(Pi,M) =

⊕n
i=1 HomA(Pi,M)

and
∏n
i=1(Pi)

∗ =
⊕n

i=1(Pi)
∗. Since ϕA is an isomorphism, also ϕA ⊗ idM : P ∗ ⊗A

M → (
⊕n

i=1 P
∗
i ) ⊗A M is an isomorphism. Consider moreover the isomorphism

ψM : (
⊕n

i=1 P
∗
i ) ⊗A M →

⊕n
i=1(P ∗i ⊗A M) as in lemma 2.1.19. Then we have the

following diagram.

P ∗ ⊗AM HomA(P,M)

⊕n
i=1(P ∗i ⊗AM)

⊕n
i=1 HomA(Pi,M)

..................................................................................................................................................................................................................... ............
ϑP,M

...................................................................................
.....
.......
.....

ψM ◦ (ϕA ⊗ idM )

..................................................................................................................................................................................................................... ............

⊕n
i=1 ϑPi,M

...................................................................................
.....
.......
.....

ϕM

We claim that this diagram is commutative. Let f ∈ P ∗ and m ∈M . We have that

ϕM (ϑP,M (f ⊗m)) = ϕM (ϑf,m) = (ϑf,m ◦ qi)i=1,...,n ,

where we de�ned qj : Pj → P, x 7→ (δijx)i=1,...,n for any j = 1, . . . , n. On the other
hand,(

n⊕
i=1

ϑPi,M

)
((ψM ◦ (ϕA ⊗ idM ))(f ⊗m)) =

=

(
n⊕
i=1

ϑPi,M

)
(ψM (ϕA(f)⊗m)) =

(
n⊕
i=1

ϑPi,M

)
(ψM ((f ◦ qi)i=1,...,n ⊗m)) =

=

(
n⊕
i=1

ϑPi,M

)
(((f ◦ qi)⊗m)i=1,...,n) = (ϑf◦qi,m)i=1,...,n .

For any i = 1, . . . , n, we have that

(ϑf,m ◦ qi)(p) = ϑf,m(qi(p)) = f(qi(p)) ·m = (f ◦ qi)(p) ·m = ϑf◦qi,m(p)

for any p ∈ Pi and so ϑf,m ◦ qi = ϑf◦qi,m. This proves that

(ϕM ◦ ϑP,M )(f ⊗m) =

((
n⊕
i=1

ϑPi,M

)
◦ (ψM ◦ (ϕA ⊗ idM ))

)
(f ⊗m) .

Then ϕM ◦ ϑP,M = (
⊕n

i=1 ϑPi,M ) ◦ (ψM ◦ (ϕA ⊗ idM )) (since we are dealing with
A-linear maps, it is enough to check equality on pure tensors), i.e. the diagram is
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commutative. Since ϕM and ψM ◦ (ϕA⊗ idM ) are isomorphisms, it follows that ϑP,M
is bijective if and only if

⊕n
i=1 ϑPi,M is bijective. It is easy to prove that

Ker

(
n⊕
i=1

ϑPi,M

)
=

n⊕
i=1

Ker(ϑPi,M )

and

Im

(
n⊕
i=1

ϑPi,M

)
=

n⊕
i=1

Im(ϑPi,M )

(see the proof of corollary 2.1.20). So we have that Ker (
⊕n

i=1 ϑPi,M ) = 0 if and
only if Ker(ϑPi,M ) = 0 for any i = 1, . . . , n, i.e.

⊕n
i=1 ϑPi,M is injective if and only

if ϑPi,M is injective for any i = 1, . . . , n, and Im (
⊕n

i=1 ϑPi,M ) =
⊕n

i=1 HomA(Pi,M)
if and only if Im(ϑPi,M ) = HomA(Pi,M) for any i = 1, . . . , n, i.e.

⊕n
i=1 ϑPi,M is

surjective if and only if ϑPi,M is surjective for any i = 1, . . . , n. Hence
⊕n

i=1 ϑPi,M
is bijective if and only if ϑPi,M is bijective for every i = 1, . . . , n, which ends the
proof.

Remark 2.1.44. A key point in the proof of lemma 2.1.43 was the fact that we were
dealing with a �nite direct sum. The result is not true for in�nite direct sums.
Otherwise the corollary we are about to prove would hold for any projective A-
module and, in the case when A = k is a �eld, this would imply that ϑP,M is
bijective for every two k-vector spaces P and M (because all k-vector spaces are free
and hence projective). A counterexample is given by P = M = k[x].

Corollary 2.1.45. Let P and M be A-modules, with P �nitely generated and pro-
jective. The map ϑP,M : P ∗ ⊗A M → HomA(P,M) de�ned in lemma 2.1.43 is an
isomorphism of A-modules.

Proof. We already know that ϑP,M is A-linear, so we have to prove only that it is
bijective. Since P is �nitely generated and projective, by corollary 2.1.15 there exist
an A-module Q and an n ∈ N such that P ⊕ Q ∼= An. By lemma 2.1.43, in order
to prove that ϑP,M is bijective, it is enough to show that ϑAn,M is bijective. By
the same lemma, in order to prove that ϑAn,M is bijective, it is enough to prove
that ϑA,M is bijective. We have that A∗ ∼= A via ϕ : A∗ → A, f 7→ f(1). Then
ϕ⊗ idM : A∗⊗AM → A⊗AM is also an isomorphism. Moreover, A⊗AM ∼= M via
ψ : A ⊗A M → M, a ⊗m → am and HomA(A,M) ∼= M via ϕ′ : HomA(A,M) →
M, f 7→ f(1). Consider now the following diagram.

A∗ ⊗AM HomA(A,M)

M M

........................................................................................ ............
ϑA,M

...................................................................................
.....
.......
.....

ψ ◦ (ϕ⊗ idM )

........................................................................................ ............
idM

...................................................................................
.....
.......
.....

ϕ′

For any f ∈ A∗, m ∈M , we have that

ϕ′(ϑA,M (f ⊗m)) = ϕ′(ϑf,m) = ϑf,m(1) = f(1) ·m =

= ϕ(f)m = ψ(ϕ(f)⊗m) = ψ((ϕ⊗ idM )(f ⊗m)) .
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So ϕ′ ◦ ϑA,M = ψ ◦ (ϕ ⊗ idM ) (by linearity, it is enough to check equality on pure
tensors). Since ϕ′, ψ and ϕ ⊗ idM are isomorphisms, we get that ϑA,M = (ϕ′)−1 ◦
ψ ◦ (ϕ ⊗ idM ) is bijective, because it is a composition of bijections. This ends the
proof.

Lemma 2.1.46. Let P be an A-module. For any f ∈ P ∗, p ∈ P , de�ne αP (f ⊗p) =
f(p). This de�nition can be extended to an A-linear map αP : P ∗ ⊗A P → A.

Proof. By the universal property of the tensor product, it is enough to prove that
the map P ∗ × P → A, (f, p) 7→ f(p) is A-bilinear. This is immediate: the linearity
in f follows from the de�nition of the A-module structure on P ∗ and the linearity in
p follows from the linearity of f .

De�nition 2.1.47. Let P be a �nitely generated projective A-module, ϑP,P : P ∗⊗A
P → HomA(P, P ) as in lemma 2.1.43 and αP : P ∗ ⊗A P → A as in lemma 2.1.46.
For any endomorphism f ∈ EndA(P ) := HomA(P, P ), we de�ne the trace of f over
A as Tr(f) = (αP ◦ ϑ−1

P,P )(f) (we will write TrP/A(f) when confusion can arise).

Remark 2.1.48. The map Tr : EndA(P ) → A, f 7→ Tr(f) is A-linear, because it is
the composition of the A-linear maps ϑP,P and αP .

The following lemma gives a more explicit description of the trace.

Lemma 2.1.49. Let P be a �nitely generated and projective A-module. Then:

(1) there exist n ∈ N, x1, . . . , xn ∈ P and f1, . . . , fn ∈ P ∗ such that, for every
x ∈ P , we have x =

∑n
i=1 fi(x)xi;

(2) if n ∈ N, x1, . . . , xn ∈ P and f1, . . . , fn ∈ P ∗ are as in point (1), then for every
ϕ ∈ EndA(P ) we have that Tr(ϕ) =

∑n
i=1 fi(ϕ(xi)).

Proof. (1) Since P is �nitely generated and projective, by corollary 2.1.15 there
exists an A-module Q and an n ∈ N such that P ⊕Q ∼= An. Then P ⊕Q is free
of rank n, which implies that it has a basis (w1, . . . , wn). For any i = 1, . . . , n,
de�ne w∗i : P ⊕Q→ A, wj 7→ δij , extended by linearity. Let w ∈ P ⊕Q. Then
there exists a unique n-tuple (a1, . . . , an), with ai ∈ A for any i = 1, . . . n, such
that w =

∑n
i=1 aiwi. For any j = 1, . . . , n we have that

w∗j (w) = w∗j

(
n∑
i=1

aiwi

)
=

n∑
i=1

aiw
∗
j (wi) =

n∑
i=1

aiδij = aj .

So w =
∑n

i=1w
∗
i (w)wi, for any w ∈ P ⊕ Q. De�ne now pP : P ⊕ Q →

P, (p, q) 7→ p and ιP : P → P ⊕ Q, p 7→ (p, 0). Then pP and ιP are clearly
A-linear and pP ◦ ιP = idP . For any i = 1, . . . , n de�ne xi := pP (wi) ∈ P and
fi := w∗i ◦ ιP ∈ HomA(P,A) = P ∗. For any x ∈ P we have that

x = pP (ιP (x)) = pP

(
n∑
i=1

w∗i (ιP (x))wi

)
=

=

n∑
i=1

(w∗i ◦ ιP )(x)pP (wi) =

n∑
i=1

fi(x)xi ,

as we wanted.
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(2) Let ϕ ∈ EndA(P ) = HomA(P, P ). Then, for any i = 1, . . . , n, we have that
fi ◦ ϕ ∈ HomA(P,A) = P ∗. Consider

∑n
i=1(fi ◦ ϕ) ⊗ xi ∈ P ∗ ⊗ P . Applying

the de�nition of ϑP,P (lemma 2.1.43), we get that

ϑP,P

(
n∑
i=1

(fi ◦ ϕ)⊗ xi

)
(x) =

n∑
i=1

(fi ◦ ϕ)(x)xi =
n∑
i=1

fi(ϕ(x))xi = ϕ(x)

for any x ∈ P . So ϑP,P (
∑n

i=1(fi ◦ ϕ)⊗ xi) = ϕ, which implies that
∑n

i=1(fi ◦
ϕ)⊗ xi = ϑ−1

P,P (ϕ). Then the de�nition 2.1.47 gives us

Tr(ϕ) = (αP ◦ ϑ−1
P,P )(ϕ) =

= αP

(
n∑
i=1

(fi ◦ ϕ)⊗ xi

)
=

n∑
i=1

(fi ◦ ϕ)(xi) =
n∑
i=1

fi(ϕ(xi)) .

Remark 2.1.50. (1) What we did in point (1) of lemma 2.1.49 for P ⊕ Q can be
done for any free A-module F of �nite rank: if (w1, . . . , wn) is a basis of F
(see remark 2.1.2), then for any i = 1, . . . , n we can de�ne w∗i ∈ F ∗ by setting
w∗i (wj) = δij for every j = 1, . . . , n and extending linearly. Then we have
w =

∑n
i=1w

∗
i (w)wi for any w ∈ F . It is easy to check that (w∗1, . . . , w

∗
n) is a

basis of F ∗, called the dual basis of (w1, . . . , wn). What lemma 2.1.49(1) says
is that, even if in the case of an arbitrary projective A-module P we do not
have a basis, we have a system of generators (x1, . . . , xn) of P and a �dual�
system of generators (f1, . . . , fn) of P ∗ that behave in a similar way. Indeed,
from the statement of 2.1.49(1) it is clear that (x1, . . . , xn) generates P and,
on the other hand, for any f ∈ P ∗ we have that f =

∑n
i=1 f(xi)fi, because

f(x) = f (
∑n

i=1 fi(x)xi) =
∑n

i=1 fi(x)f(xi) for any x ∈ P . However, while all
bases of a free module of �nite rank have the same cardinality (unless A = 0,
see remark 2.1.2), the n that appears in the statement of lemma 2.1.49(1) is
not unique. Indeed, in the proof n was the rank of the free A-module P ⊕Q,
but if we choose a di�erent Q we can get a di�erent rank. For example, we can
take Q′ = Q ⊕ A and then P ⊕ Q′ = P ⊕ (Q ⊕ A) ∼= (P ⊕ Q) ⊕ A has rank
n+ 1.

(2) Let n,m ∈ N, x1, . . . , xn, y1, . . . , ym ∈ P and f1, . . . , fn, g1, . . . , gm ∈ P ∗ be
such that x =

∑n
i=1 fi(x)xi =

∑m
j=1 gj(x)yj for every x ∈ P . From lemma

2.1.49(2) it follows that, for every ϕ ∈ EndA(P ),

n∑
i=1

fi(ϕ(xi)) = Tr(ϕ) =

m∑
j=1

gj(ϕ(yj)) .

This could be proved directly with some computations and then we could take
the formula in 2.1.49(2) as the de�nition of the trace.

(3) We can use lemma 2.1.49 to prove that the two de�nitions of trace (2.1.1 and
2.1.47) coincide when P is a �nitely generated and free A-module. Let P
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be a free A-module with basis (w1, . . . , wn) and let (w∗1, . . . , w
∗
n) be the dual

basis. As in point (1), we have that w =
∑n

i=1w
∗
i (w)wi for any w ∈ P . Let

ϕ ∈ EndA(P ). For any i = 1, . . . , n we have that ϕ(wi) =
∑n

j=1w
∗
j (ϕ(wi))wj ,

which means that aij = w∗j (ϕ(wi)) for any j = 1, . . . , n, where ai1, . . . , ain are
as in the de�nition 2.1.1. By lemma 2.1.49 we have that

Trprojective(ϕ) =
n∑
i=1

w∗i (ϕ(wi)) =
n∑
i=1

aii = Trfree(ϕ) ,

where we denoted by Trprojective the trace de�ned in 2.1.47 and by Trfree the
trace de�ned in 2.1.1.

Now we turn our attention to A-algebras.

De�nition 2.1.51. Let B be an A-algebra.

(1) We say that B is a �nite projective A-algebra if it is �nitely generated and
projective as an A-module. In this case, we write [B : A] for rankA(B) (see
the de�nition 2.1.35(1)).

(2) We say that B is faithfully projective if it is �nitely generated and faithfully
projective as an A-module, i.e. if it is a �nite projective A-algebra with [B :
A] ≥ 1 (i.e. [B : A](p) ≥ 1 for any p ∈ Spec(A)).

(3) We say that B is a (faithfully) �at A-algebra if it is (faithfully) �at as an
A-module.

We prove some easy properties about �nite projective A-algebras, which we will
need in the following section.

Lemma 2.1.52. Let B1, . . . , Bn be A-algebras and de�ne B :=
∏n
i=1Bi. Then B is

a �nite projective A-algebra if and only if Bi is a �nite projective A-algebra for every
i = 1, . . . , n.

Proof. By de�nition of product of A-algebras, we have that, as an A-module, B =∏n
i=1Bi coincides with the direct sum

⊕n
i=1Bi.

Assume now thatBi is a �nite projectiveA-algebra for every i = 1, . . . , n. This means
that Bi is �nitely generated and projective as an A-module for every i = 1, . . . , n.
By lemma 2.1.37, this implies that

⊕n
i=1Bi is �nitely generated and projective as

an A-module. So B is a �nite projective A-algebra.
Conversely, assume that B is a �nite projective A-algebra, i.e.

⊕n
i=1Bi is �nitely

generated and projective as an A-module. By corollary 2.1.10, it follows that Bi is
a projective A-module for every i = 1, . . . , n. Fix j ∈ I and consider the projection
pj :

⊕n
i=1Bi → Bj , (x1, . . . , xn) 7→ xj , which is A-linear and surjective. Then,

if (v1, . . . , vn) generates
⊕n

i=1Bi as an A-module, we have that (pj(v1), . . . , pj(vn))
generates Bj as an A-module. So Bj is �nitely generated. This shows that Bj is a
�nite projective A-algebra.

Lemma 2.1.53. Let B be an A-algebra and P a B-module. Consider the induced
A-module structure on P . Then:
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(1) if P is �nitely generated over B and B is �nitely generated as an A-module,
then P is �nitely generated over A;

(2) if P is projective over B and B is projective as an A-module, then P is pro-
jective over A.

Proof. (1) Let (w1, . . . , wn) and (v1, . . . , vm) be respectively a set of generators of
P over B and a set of generators of B as an A-module (n,m ∈ N). Let x ∈ P .
Then there exist b1, . . . , bn ∈ B such that x =

∑n
i=1 biwi. For any i = 1, . . . , n,

there exist ai1, . . . , aim ∈ A such that bi =
∑m

j=1 aijvj . Then

x =
n∑
i=1

biwi =
n∑
i=1

 m∑
j=1

aijvj

wi =
n∑
i=1

m∑
j=1

aij(vjwi) .

This shows that (vjwi)i=1,...,n, j=1,...,m generates P over A. Then P is �nitely
generated as an A-module.

(2) Since P is projective as a B-module, by lemma 2.1.14 ((i) =⇒ (iv)) there exists
a B-module Q such that P ⊕ Q is a free B-module, i.e. P ⊕ Q ∼=

⊕
i∈I B as

B-modules, for some index set I. We can consider also on Q the induced A-
module structure. Then, since any B-linear map is also A-linear, we have that
P ⊕ Q ∼=

⊕
i∈I B also as A-modules. Since B is a projective A-module, by

corollary 2.1.10 we have that P ⊕ Q ∼=
⊕

i∈I B is projective over A. Then,
applying again the same corollary, P is projective over A.

Corollary 2.1.54. Let B be a �nite projective A-algebra and C a �nite projective B-
algebra. Consider the induced A-algebra structure on C. Then C is a �nite projective
A-algebra.

Proof. It follows immediately from lemma 2.1.53.

We want now to describe the behaviour of �nitely generated projective A-modules
under extensions of the scalar ring (then the same result will obviously be true for
�nite projective A-algebras).

Lemma 2.1.55. Let M , N be A-modules and let B be a �at A-algebra. De�ne the
map

ϕM,N : HomA(M,N)⊗A B → HomB(M ⊗A B,N ⊗A B), f ⊗ b 7→ f ⊗ (b idB) .

We have that ϕM,N is an isomorphism of B-modules if one of the following two
conditions is satis�ed:

(1) M is �nitely presented and B is �at as an A-module;

(2) M is �nitely generated and projective.
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Proof. First of all, we check that ϕM,N is well de�ned. For any b ∈ B, f ∈
HomA(M,N), the map f ⊗ (b idB) : M ⊗A B → N ⊗A B is clearly B-linear, i.e.
f ⊗ (b idB) ∈ HomB(M ⊗A B,N ⊗A B). So we can consider the map

ΦM,N : HomA(M,N)×B → HomB(M ⊗A B,N ⊗A B), (f, b) 7→ f ⊗ (b idB) .

It is immediate to prove that ΦM,N is A-bilinear. So it induces an A-linear map ϕM,N

as in the statement. We prove now that ϕM,N is also B-linear. Let f ∈ HomA(M,N),
b ∈ B and λ ∈ B. We have that ϕM,N (λ(f⊗b)) = ϕM,N (f⊗(λb)) = f⊗((λb) idB) =
f ⊗ (λ(b idB)). Moreover, for any x ∈M , y ∈ B, we have

(f ⊗ (λ(b idB)))(x⊗ y) = f(x)⊗ (λ(by)) = λ(f(x)⊗ (by)) = λ(f ⊗ (b idB))(x⊗ y) .

So ϕM,N (λ(f ⊗ b)) = f ⊗ (λ(b idB)) = λ(f ⊗ (b idB)). Since ϕM,N is A-linear, we
get that ϕM,N (λx) = λϕM,N (x) for any λ ∈ B, x ∈ HomA(M,N) ⊗A B, i.e. ϕM,N

is B-linear.
We prove now that ϕM,N is an isomorphism when M = An for some n ∈ N
(with no assumption on B). We have a canonical isomorphism of A-modules ϑ :
HomA(An, N)→ Nn, f 7→ (f(e1), . . . , f(en)), where (e1, . . . , en) is the canonical ba-
sis of An. This leads to an isomorphism of B-modules ϑ⊗idB : HomA(An, N)⊗AB →
Nn ⊗A B. Lemma 2.1.19 gives us an isomorphism of A-modules ψB : Nn ⊗A B →
(N ⊗A B)n, which is easily seen to be B-linear. So

ψB ◦ (ϑ⊗ idB) : HomA(An, N)⊗A B → (N ⊗A B)n

is an isomorphism of B-modules. On the other hand, lemma 2.1.19 gives also an
isomorphism of A-modules ψ′B : An ⊗A B → (A ⊗A B)n and also this one is easily
seen to be B-linear and then an isomorphism of B-modules. We have a canonical
isomorphism of B modules σ : A⊗A B → B, a⊗ b 7→ ab, which induces an isomor-
phism of B-modules

⊕n
i=1 σ : (A⊗A B)n → Bn. So (

⊕n
i=1 σ) ◦ψ′B : An⊗A B → Bn

is an isomorphism of B-modules. Its inverse induces an isomorphism of B-modules(
(ψ′B)−1 ◦ (

⊕n
i=1 σ)−1

)∗
: HomB(An ⊗A B,N ⊗A B) → HomB(Bn, N ⊗A B). Fi-

nally, we have a canonical isomorphism of B-modules ϑ′ : HomB(Bn, N ⊗A B) →
(N ⊗A B)n, f 7→ (f(e′1), . . . , f(e′n)), where (e′1, . . . , e

′
n) is the canonical basis of Bn

(notice that e′i = ((
⊕n

i=1 σ) ◦ ψ′B) (ei ⊗ 1), for any i = 1, . . . , n). So

ϑ′ ◦

(ψ′B)−1 ◦

(
n⊕
i=1

σ

)−1
∗ : HomB(An ⊗A B,N ⊗A B)→ (N ⊗A B)n

is an isomorphism of B-modules. Consider now the following diagram.

HomA(An, N)⊗A B HomB(An ⊗A B,N ⊗A B)

(N ⊗A B)n (N ⊗A B)n

..................................................................................................................................................................................................................... ............
ϕAn,N

...................................................................................
.....
.......
.....

ψB ◦ (ϑ⊗ idB)

..................................................................................................................................................................................................................... ............
id(N⊗AB)n

...................................................................................
.....
.......
.....

ϑ′ ◦
(

(ψ′B)−1 ◦ (
⊕n

i=1 σ)−1
)∗
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Let f ∈ HomA(An, N), b ∈ B. We have that

(ψB ◦ (ϑ⊗ idB))(f ⊗ b) = ψB(ϑ(f)⊗ b) = ψB((f(e1), . . . , f(en))⊗ b) =

= (f(e1)⊗ b, . . . , f(en)⊗ b) = ((f ⊗ (b idB))(e1 ⊗ 1), . . . , (f ⊗ (b idB))(en ⊗ 1)) =

=

(f ⊗ (b idB)) ◦ (ψ′B)−1 ◦

(
n⊕
i=1

σ

)−1
 (e′i)


i=1,...,n

=

= ϑ′

(f ⊗ (b idB)) ◦ (ψ′B)−1 ◦

(
n⊕
i=1

σ

)−1
 =

=

ϑ′ ◦
(ψ′B)−1 ◦

(
n⊕
i=1

σ

)−1
∗ (f ⊗ (b idB)) =

=

ϑ′ ◦
(ψ′B)−1 ◦

(
n⊕
i=1

σ

)−1
∗ ◦ ϕAn,N

 (f ⊗ b) .

So ψB ◦ (ϑ⊗ idB) = ϑ′ ◦
(

(ψ′B)−1 ◦ (
⊕n

i=1 σ)−1
)∗
◦ ϕAn,N , i.e. the diagram is com-

mutative. Since (ψB ◦ (ϑ⊗ idB)) and ϑ′ ◦
(

(ψ′B)−1 ◦ (
⊕n

i=1 σ)−1
)∗

are isomorphisms,

it follows that ϕAn,N is bijective.
Assume now that the condition (1) is satis�ed. Since M is �nitely presented, there

exists an exact sequence Am
α−→ An

β−→ M → 0, with m,n ∈ N. Since B is �at, the

sequence (of B-modules) Am ⊗A B
α⊗idB−−−−→ An ⊗A B

β⊗idB−−−−→M ⊗A B → 0⊗A B = 0
is also exact. Recall that the contravariant functor HomB(−, P ) : ModB →ModB
is left exact for any B-module P . In particular, this holds for P = N ⊗A B. So the
sequence

0→ HomB(M ⊗A B,N ⊗A B)
(β⊗idB)∗−−−−−−→ HomB(An ⊗A B,N ⊗A B)

(α⊗idB)∗−−−−−−→
(α⊗idB)∗−−−−−−→ HomB(Am ⊗A B,N ⊗A B) ,

where we de�ned (β⊗ idB)∗ and (α⊗ idB)∗ in the obvious way, is exact. On the other
hand, applying left-exactness of the contravariant functor HomA(−, N) : ModA →
ModA, we get that the sequence

0→ HomA(M,N)
β∗−→ HomA(An, N)

α∗−→ HomA(Am, N)

is exact, where α∗ and β∗ are de�ned in the obvious way. Since B is �at, the sequence

0→ HomA(M,N)⊗A B
β∗⊗idB−−−−−→ HomA(An, N)⊗A B

α∗⊗idB−−−−−→
α∗⊗idB−−−−−→ HomA(Am, N)⊗A B
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is also exact. Consider now the following diagram.
0

HomA(M,N)⊗A B

HomA(An, N)⊗A B

HomA(Am, N)⊗A B

0

HomB(M ⊗A B,N ⊗A B)

HomB(An ⊗A B,N ⊗A B)

HomB(Am ⊗A B,N ⊗A B)

...................................................................................
.....
.......
.....

...................................................................................
.....
.......
.....

β∗ ⊗ idB

...................................................................................
.....
.......
.....

α∗ ⊗ idB

...................................................................................
.....
.......
.....

...................................................................................
.....
.......
.....

(β ⊗ idB)∗

...................................................................................
.....
.......
.....

(α⊗ idB)∗

..................................................................................................................................................................................................................... ............
ϕM,N

..................................................................................................................................................................................................................... ............
ϕAn,N

..................................................................................................................................................................................................................... ............
ϕAm,N

For any f ∈ HomA(M,N), b ∈ B, we have that

ϕAn,N ((β∗ ⊗ idB)(f ⊗ b)) = ϕAn,N (β∗(f)⊗ b) = ϕAn,N ((f ◦ β)⊗ b) =

= (f ◦ β)⊗ (b idB) = (f ⊗ (b idB)) ◦ (β ⊗ idB) =

= (β ⊗ idB)∗(f ⊗ (b idB)) = (β ⊗ idB)∗(ϕM,N (f ⊗ b)) .

So ϕAn,N ◦ (β∗ ⊗ idB) = (β ⊗ idB)∗ ◦ ϕM,N (by linearity, it is enough to check
equality on pure tensors). In the same way, one proves that ϕAm,N ◦ (α∗ ⊗ idB) =
(α⊗idB)∗◦ϕAn,N . So the diagram is commutative. By what we proved above, ϕAn,N
and ϕAm,N are bijective. Now we have that (β ⊗ idB)∗ ◦ ϕM,N = (β∗ ⊗ idB) ◦ ϕAn,N
is injective, because it is the composition of injective functions. So ϕM,N must be
injective.
On the other hand, let f ∈ HomB(M ⊗A B,N ⊗A B). Consider (β ⊗ idB)∗(f) ∈
HomB(An ⊗A B,N ⊗A B). Since ϕAn,N : HomA(An, N) ⊗A B → HomB(An ⊗A
B,N⊗B) is surjective, there exists y ∈ HomA(An, N)⊗AB such that (β⊗idB)∗(f) =
ϕAn,N (y). By the exactness we proved above, we have that (α⊗idB)∗◦(β⊗idB)∗ = 0.
Then

0 = (α⊗ idB)∗((β ⊗ idB)∗(f)) = (α⊗ idB)∗(ϕAn,N (y)) = ϕAm,N ((α∗ ⊗ idB)(y)) .

Since ϕAm,N is injective, it follows that (α∗ ⊗ idB)(y) = 0, i.e. y ∈ Ker(α∗ ⊗ idB).
By the exactness we proved above, we have that Ker(α∗ ⊗ idB) = Im(β∗ ⊗ idB). So
there exists x ∈ HomA(M,N)⊗A B such that y = (β∗ ⊗ idB)(x). Then

(β ⊗ idB)∗(f) = ϕAn,N (y) = ϕAn,N ((β∗ ⊗ idB)(x)) = (β ⊗ idB)∗(ϕM,N (x)) .

But (β⊗ idB)∗ is injective (by exactness of the corresponding sequence). So we must
have f = ϕM,N (x). Hence ϕM,N is surjective.
Assume instead that the condition (2) is satis�ed, i.e. that M is �nitely generated
and projective. By corollary 2.1.15, there exist an A-module Q and an n ∈ N
such that M ⊕ Q ∼= An. Let γ : An → M ⊕ Q be an isomorphism of A-modules,
pM : M ⊕ Q → M and pQ : M ⊕ Q → Q the canonical projections, iM : M →
M ⊕Q, x 7→ (x, 0) and iQ : Q→M ⊕Q, y 7→ (0, y). Then the sequence

0→ Q
γ−1◦iQ−−−−→ An

pM◦γ−−−→M → 0
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is split exact by de�nition. The functors −⊗A B : ModA →ModA, HomA(−, N) :
ModA → ModA and HomB(−, N ⊗A B) : ModB → ModB preserve split exact
sequences. Applying −⊗AB and then HomB(−, N ⊗AB), we get that the sequence

0→ HomB(M ⊗A B,N ⊗A B)
((pM◦γ)⊗idB)∗−−−−−−−−−−→ HomB(An ⊗A B,N ⊗A B)

((γ−1◦iQ)⊗idB)∗

−−−−−−−−−−−→ HomB(Q⊗A B,N ⊗A B)→ 0

is exact. On the other hand, applying �rst HomA(−, N) and then − ⊗A B, we get
that the sequence

0→ HomA(M,N)⊗A B
(pM◦γ)∗⊗idB−−−−−−−−→ HomA(An, N)⊗A B

(γ−1◦iQ)∗⊗idB−−−−−−−−−−→
(γ−1◦iQ)∗⊗idB−−−−−−−−−−→ HomA(Q,N)⊗A B → 0

is exact. Consider now the following diagram.
0

HomA(M,N)⊗A B

HomA(An, N)⊗A B

HomA(Q,N)⊗A B

0

0

HomB(M ⊗A B,N ⊗A B)

HomB(An ⊗A B,N ⊗A B)

HomB(Q⊗A B,N ⊗A B)

0

...................................................................................
.....
.......
.....

...................................................................................
.....
.......
.....

(pM ◦ γ)∗ ⊗ idB

...................................................................................
.....
.......
.....

(γ−1 ◦ iQ)∗ ⊗ idB

...................................................................................
.....
.......
.....

...................................................................................
.....
.......
.....

...................................................................................
.....
.......
.....

((pM ◦ γ)⊗ idB)∗

...................................................................................
.....
.......
.....

((γ−1 ◦ iQ)⊗ idB)∗

...................................................................................
.....
.......
.....

..................................................................................................................................................................................................................... ............
ϕM,N

..................................................................................................................................................................................................................... ............
ϕAn,N

..................................................................................................................................................................................................................... ............
ϕQ,N

Commutativity of the diagram can be proved as above. We know that ϕAn,N is an
isomorphism. Then ((pM ◦γ)⊗ idB)∗ ◦ϕM,N = ϕAn,N ◦ ((pM ◦γ)∗⊗ idB) is injective,
because it is a composition of injective maps. So ϕM,N must be injective. If we start
with the split exact sequence

0→M
γ−1◦iM−−−−−→ An

pQ◦γ−−−→ Q→ 0

and apply the same argument, we get that ϕM,N ◦ ((γ−1 ◦ iM )∗ ⊗ idB) = ((γ−1 ◦
iM )⊗ idB)∗ ◦ ϕAn,N is surjective, because it is a composition of surjective maps. So
ϕM,N must be surjective. Hence ϕM,N is an isomorphism.

Remark 2.1.56. Notice that lemma 2.1.55 (with the condition (1)) is a generalization
of lemma 2.1.27, because localization at S coincides with tensor product with S−1A
(which is a �at A-algebra, see [3], proposition 3.3), for any multiplicative subset
S ⊆ A.
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Proposition 2.1.57. Let B be a faithfully �at A-algebra and P an A-module. Then
P is �nitely generated and projective as an A-module if and only if P ⊗AB is �nitely
generated and projective as a B-module.

Proof. Assume that P is �nitely generated and projective as an A-module. By lemma
2.1.24, P ⊗AB is a projective B-module. Moreover, if (w1, . . . , wn) generates P over
A, then (w1⊗1, . . . , wn⊗1) generates P⊗AB over B. So P⊗AB is �nitely generated
over B.
Conversely, assume that P ⊗A B is �nitely generated and projective as a B-module.
Let (w1, . . . , wn) be a set of generators of P ⊗A B over B. By de�nition of tensor
product, for any i = 1, . . . , n there exist mi ∈ N, pi1, . . . , pimi ∈ P , bi1, . . . , bimi ∈ B
such that wi =

∑mi
j=1 pij⊗bij . Let x ∈ P ⊗AB. Since (w1, . . . , wn) generates P ⊗AB

over B, there exist λ1, . . . , λn ∈ B such that x = λ1w1 + · · ·+ λnwn. Then

x =

n∑
i=1

λiwi =

n∑
i=1

λi

mi∑
j=1

pij ⊗ bij =

n∑
i=1

mi∑
j=1

λibij(pij ⊗ 1) .

So (pij ⊗ 1)i=1,...,n, j=1,...,mi generates P ⊗A B over B. Let F :=
⊕n

i=1

⊕mi
j=1A,

with canonical basis (eij)i=1,...,n, j=1,...,mi and de�ne an A-linear map f : F → P by
f(eij) = pij for any i = 1, . . . , n, j = 1, . . . ,mi, extended by linearity. Consider the
B-linear map f ⊗ idB : F ⊗A B → P ⊗A B. For any i = 1, . . . , n, j = 1, . . . ,mi,
we have that (f ⊗ idB)(eij ⊗ 1) = pij ⊗ 1. Since (pij ⊗ 1)i=1,...,n, j=1,...,mi generates
P ⊗A B over B, we have that f ⊗ idB is surjective. So the sequence

F ⊗A B
f⊗idB−−−−→ P ⊗A B → 0 = 0⊗A B

is exact. Since B is faithfully �at, this implies that the sequence F
f−→ P → 0 is

exact, i.e. f is surjective. Then (f(eij) = pij)i=1,...,n, j=1,...,mi is a set of generators of
P over A and so P is �nitely generated. We prove now that P is �nitely presented
(this will allow us to apply lemma 2.1.55). De�ne Q := Ker(f). Then the sequence

0 → Q
ι−→ F

f−→ P → 0, where ι : Q → F is the canonical inclusion. Since B is �at,
the sequence of B-modules

0→ Q⊗A B
ι⊗idB−−−−→ F ⊗A B

f⊗idB−−−−→ P ⊗A B → 0

is also exact. But P ⊗AB is a projective B-module, so the sequence splits, by lemma
2.1.14 ((i) =⇒ (iii)). Then

(Q⊗A B)⊕ (P ⊗A B) ∼= F ⊗A B =

 n⊕
i=1

mi⊕
j=1

A

⊗A B ∼= n⊕
i=1

mi⊕
j=1

B ,

which is free. By lemma 2.1.14 ((iv) =⇒ (i)), Q ⊗A B is a projective B-module.
Moreover, if ϕ :

⊕n
i=1

⊕mi
j=1B → (Q ⊗A B) ⊕ (P ⊗A B) is an isomorphism and

p1 : (Q ⊗A B) ⊕ (P ⊗A B) → Q ⊗A B is the canonical projection, we have that
p1 ◦ ϕ :

⊕n
i=1

⊕mi
j=1B → Q ⊗A B is a surjective B-linear map. Then ((p1 ◦

ϕ)(e′ij))i=1,...,n, j=1,...,mi generates Q ⊗A B over B, where (e′ij)i=1,...,n, j=1,...,mi is the
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canonical basis of
⊕n

i=1

⊕mi
j=1B. So Q⊗A B is �nitely generated over B. Then we

can apply the same argument we applied above to P ⊗A B and conclude that Q is
�nitely generated. So P is �nitely presented (see remark 2.1.26).
Let now M , N be A-modules and g : M → N a surjective A-linear map. Then
the sequence M

g−→ N → 0 is exact. Since B is �at, it follows that the sequence

M ⊗A B
g⊗idB−−−−→ N ⊗A B → 0 ⊗A B = 0 is also exact, i.e. the B-linear map

g ⊗ idB : M ⊗A B → N ⊗A B is surjective. Then, by lemma 2.1.14 ((i) =⇒ (ii)), we
have that the map

(g⊗ idB)∗ : HomB(P ⊗AB,M ⊗AB)→ HomB(P ⊗AB,N ⊗AB), h 7→ (g⊗ idB) ◦h

is surjective. Since P is �nitely presented and B is �at, by lemma 2.1.55 we have
isomorphisms ϕP,M : HomA(P,M) ⊗A B → HomB(P ⊗A B,M ⊗A B) and ϕP,N :
HomA(P,N) ⊗A B → HomB(P ⊗A B,N ⊗A B). Consider the following diagram,
where we de�ned g∗ : HomA(P,M)→ HomA(P,N), h 7→ g ◦ h.

HomA(P,M)⊗A B HomB(P ⊗A B,M ⊗A B)

HomA(P,N)⊗A B HomB(P ⊗A B,N ⊗A B)

........................................................................................ ............
ϕP,M

...................................................................................
.....
.......
.....

g∗ ⊗ idB

........................................................................................ ............
ϕP,N

...................................................................................
.....
.......
.....

(g ⊗ idB)∗

For any f ∈ HomA(P,M), b ∈ B, we have that

ϕP,N ((g∗⊗ idB)(f ⊗ b)) = ϕP,N (g∗(f)⊗ b) = ϕP,N ((g ◦f)⊗ b) = (g ◦f)⊗ (b idB) =

= (g ⊗ idB) ◦ (f ⊗ (b idB)) = (g ⊗ idB)∗(f ⊗ (b idB)) = (g ⊗ idB)∗(ϕP,M (f ⊗ b)) .

So the diagram commutes, i.e. ϕP,N ◦ (g∗ ⊗ idB) = (g ⊗ idB)∗ ◦ ϕP,M (by linearity
it is enough to check equality on pure tensors). Then we have that g∗ ⊗ idB =
ϕ−1
P,N ◦ (g⊗ idB)∗ ◦ϕP,M is surjective, because (g⊗ idB)∗ is surjective and ϕP,M and

ϕP,N are isomorphisms. Then the sequence

HomA(P,M)⊗A B
g∗⊗idB−−−−→ HomA(P,N)⊗A B → 0 = 0⊗A B

is exact. Since B is faithfully �at, we get that the sequence HomA(P,M)
g−→

HomA(P,N) → 0 is exact, i.e. g is surjective. By lemma 2.1.14 ((ii) =⇒ (i)),
we have that P is a projective A-module.

The following result illustrates the importance of the rank [B : A]. We will
write shortly [B : A] ≥ 1 (respectively, [B : A] ≤ 1 or [B : A] = 1) to say that
[B : A](p) ≥ 1 (respectively, [B : A](p) ≤ 1 or [B : A](p) = 1) for any p ∈ Spec(A).

Lemma 2.1.58. Let B be a �nite projective A-algebra. Consider the corresponding
ring homomorphism ϕ : A → B (which is of course also an A-algebra homomor-
phism). We have that:

(1) ϕ is injective if and only if [B : A] ≥ 1 (i.e. if and and only if B is faithfully
projective, see the de�nition 2.1.51(2));
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(2) ϕ is surjective if and only if [B : A] ≤ 1, and if and only if the map m :
B ⊗A B → B, x ⊗ y 7→ xy (extended by linearity) is an isomorphism of A-
algebras;

(3) ϕ is an isomorphism if and only if [B : A] = 1.

Proof. (1) Let ϕ be injective and assume by contradiction that there exists p ∈
Spec(A) such that [B : A](p) < 1. Then [B : A](p) = 0 (recall that [B : A](p)
is a non-negative integer by de�nition). This means that rankAp(Bp) = 0, i.e.
Bp = 0. Then ϕp : Ap → 0 = Bp cannot be injective (notice that Ap 6= 0,
because 1

1 6=
0
1). This is a contradiction, by lemma 2.1.28(2).

Conversely, assume that [B : A] ≥ 1. Let p ∈ Spec(A). By corollary 2.1.33(2),
we have that Bp is a free Ap-module. Let (w1, . . . , wn) be a basis of Bp over
Ap, with n = rankAp(Bp) = [B : A](p) ≥ 1. Let x = a

s ∈ Ker(ϕp) ⊆ Ap, i.e.
ϕ(a)
s = ϕp (x) = 0. This means that there exists u ∈ A\p such that uϕ(a) = 0.

Then for any y = b
t ∈ Bp we have that xy = a

s
b
t = ab

st = ϕ(a)b
st = 0, because

uϕ(a)b = 0. In particular, xw1 = 0. But (w1, . . . , wn) is linearly independent
over Ap. So we must have x = 0. Then Ker(ϕp) = 0, i.e. ϕp is injective. Since
this holds for any prime ideal p, we have that ϕ is injective by lemma 2.1.28(2).

(2) First of all, notice that m is well de�ned and A-linear, because the multiplica-
tion in B is A-bilinear. Moreover, by de�nition of the ring structure on B⊗AB,
we have that m is also a ring homomorphism. So m is a homomorphism of
A-algebras.
Assume that m is an isomorphism. The rank is clearly invariant by isomor-
phism. So we must have [B ⊗A B : A] = [B : A]. By lemma 2.1.40, we have
that [B ⊗A B : A] = rankA(B ⊗A B) = rankA(B)2 = [B : A]2. So, for any
p ∈ Spec(A), we have that

([B : A](p))2 = [B ⊗A B : A](p) = [B : A](p) ,

which implies that [B : A](p) ∈ {0, 1}. So [B : A] ≤ 1.
Suppose now that [B : A] ≤ 1. Let p ∈ Spec(A). Since rankAp(Bp) = [B :
A](p) ≥ 1, we have that either rankAp(Bp) = 0 or rankAp(Bp) = 1 (because
by de�nition it must be a non-negative integer). In the �rst case we have that
Bp = 0 and so ϕp : Ap → Bp = 0 must be surjective. If instead rankAp(Bp) = 1,
let w be a generator of Bp over Ap. Let x = b

s ∈ Bp. The A-linear map
mb : B → B, y 7→ by induces an Ap-linear map (mb)p : Bp → Bp. De�ne
ψx := 1

s (mb)p. Consider ψx(w) ∈ Bp. Since w generates Bp over Ap, there
exists λx ∈ Ap such that ψx(w) = λxw. By de�nition of Ap, there exist a ∈ A,
u ∈ A\p such that λx = a

u . Consider 1
1 ∈ Bp. Since w generates Bp over Ap,

there exists λ ∈ Ap such that 1
1 = λw. Then, since ψx is Ap-bilinear, we have

that

ψx

(
1

1

)
= ψx(λw) = λψx(w) = λ(λxw) = λx(λw) =

a

u

1

1
=
a · 1
u

=
ϕ(a)

u
.
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On the other hand, by de�nition of ψx, we have that

ψx

(
1

1

)
=

1

s
(mb)p

(
1

1

)
=

1

s

mb(1)

1
=

1

s

b · 1
1

=
b

s
.

So x = b
s = ϕ(a)

u = ϕp

(
a
u

)
= ϕp(λx). This proves that ϕp is surjective. So ϕp

is surjective for any prime ideal p. By lemma 2.1.28(2), ϕ is surjective.
Finally, assume that ϕ is surjective and let us prove that m is bijective. It is
clear that m is surjective, because for any b ∈ B we have b = m(b ⊗ 1). Let
x1 ⊗ y1 + · · · + xn ⊗ yn ∈ Ker(m). Since ϕ : A → B is surjective, for any
i = 1, . . . , n there exists ai ∈ A such that yi = ϕ(ai). Then

x1 ⊗ y1 + · · ·+ xn ⊗ yn = x1 ⊗ ϕ(a1) + · · ·+ xn ⊗ ϕ(an) =

= x1 ⊗ (a1 · 1) + · · ·+ xn ⊗ (an · 1) = a1(x1 ⊗ 1) + · · ·+ an(xn ⊗ 1) =

= (a1x1)⊗ 1 + · · ·+ (anxn)⊗ 1 = (a1x1 + · · ·+ anxn)⊗ 1 .

Then 0 = m(x1⊗y1 + · · ·+xn⊗yn) = m((a1x1 + · · ·+anxn)⊗1) = a1x1 + · · ·+
anxn, which implies that x1 ⊗ y1 + · · ·+ xn ⊗ yn = 0⊗ 1 = 0. So Ker(m) = 0,
i.e. m is injective. Hence m is bijective.

(3) It follows immediately from (1) and (2).

We can �nally introduce projective separable A-algebras.

Lemma 2.1.59. Let B be a �nite projective A-algebra. For every b ∈ B, de�ne mb

as in lemma 2.1.3. By de�nition of A-algebra, we have that mb is A-linear. So we
can de�ne Tr(b) := Tr(mb) (as in the de�nition 2.1.47, we will write TrB/A(b) when
confusion can arise).

(1) The map Tr : B → A, b 7→ Tr(b) is A-linear.

(2) The map ϕ : B → HomA(B,A), x 7→ (y 7→ Tr(xy)) is A-linear.

Proof. (1) Let b1, b2 ∈ B, λ1, λ2 ∈ A. For any x ∈ B we have that

mλ1b1+λ2b2(x) = (λ1b1 + λ2b2)x = λ1(b1x) + λ2(b2x) =

= λ1mb1(x) + λ2mb2(x) = (λ1mb1 + λ2mb2)(x) .

So mλ1b1+λ2b2 = λ1mb1 + λ2mb2 . Then the claim follows from remark 2.1.48.

(2) The proof is identical to the one of lemma 2.1.3(2).

De�nition 2.1.60. Let B be an A-algebra. We say that B is a projective separable
A-algebra if B is a �nite projective A-algebra and the map ϕ de�ned in lemma 2.1.59
is an isomorphism of A-modules.
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Remark 2.1.61. The de�nition 2.1.60 is compatible with the de�nition 2.1.4, in the
sense that an A-algebra is free separable if and only if it is projective separable and
free. This follows from remark 2.1.50(3).

To conclude, we prove some results about projective separable A-algebras that
we will use in the following sections.

Lemma 2.1.62. Let 0 → P0
α−→ P1

β−→ P2 → 0 be a short exact sequence of A-
modules, with P1 and P2 �nitely generated and projective. Then:

(1) P0 is also �nitely generated and projective;

(2) if g : P1 → P1 is an A-linear map such that g(Im(α)) ⊆ Im(α), then

TrP1/A(g) = TrP0/A(g0) + TrP2/A(g2) ,

where g0 : P0 → P0 is the unique A-linear map such that g ◦ α = α ◦ g0 and
g2 : P2 → P2 is the unique A-linear map such that g2 ◦ β = β ◦ g.

Proof. (1) Since P2 is projective, the short exact sequence 0 → P0
α−→ P1

β−→
P2 → 0 splits, by lemma 2.1.14 ((i) =⇒ (iii)). So P1

∼= P0 ⊕ P2. Since P1

is projective, by corollary 2.1.10 we get that P0 is projective. Moreover, by
lemma 2.1.13, there exists an A-linear map γ : P1 → P0 such that γ ◦α = idP0 .
This implies in particular that γ is surjective. Then P0 is �nitely generated,
because P1 is �nitely generated. Indeed, if (w1, . . . , wn) generates P1, then
(γ(w1), . . . , γ(wn)) generates P0.

(2) First of all, notice that such g0 and g2 exist and are indeed unique. For g0,
we have that α|P0

: P0 → Im(α) is an isomorphism of A-modules, because α is

injective. So, since g(Im(α)) ⊆ Im(α), we can de�ne g0 = (α|P0
)−1 ◦ g ◦ α|P0

,
which is A-linear because it is a composition of A-linear maps. Then we have
that α ◦ g0 = g ◦ α and this is the unique de�nition of g0 which works. For
g2, notice that, since the sequence is exact, we have Im(α) = Ker(β). So
g(Ker(β)) ⊆ Ker(β). Let π : P1 → P1/Ker(β) be the canonical projection.
Then we have that Ker(β) ⊆ Ker(π ◦ g), so by the universal property of the
quotient there is a unique A-linear map g̃ : P1/Ker(β)→ P1/Ker(β) such that
g̃ ◦ π = π ◦ g. Since β is surjective, by the isomorphism theorem we have an
isomorphism of A-modules β̃ : P1/Ker(β) → P2 such that β̃ ◦ π = β. Then
g2 = β̃ ◦ g̃ ◦ β̃−1 is the unique A-linear map P2 → P2 such that g2 ◦ β = β ◦ g.
Let p0 : P0 ⊕ P2 → P0 and p2 : P0 ⊕ P2 → P2 be the canonical projections and
de�ne also i0 : P0 → P0 ⊕ P2, x 7→ (x, 0) and i2 : P2 → P0 ⊕ P2, y 7→ (0, y).
Notice that p0 ◦ i0 = idP0 , p2 ◦ i2 = idP2 and i0 ◦p0 + i2 ◦p2 = idP0⊕P2 . As in the

proof of point (1), we have that the sequence 0 → P0
α−→ P1

β−→ P2 → 0 splits.
Then there exists an isomorphism ψ : P1 → P0 ⊕ P2 such that ψ ◦ α = i0 and
β◦ψ−1 = p2. De�ne γ := p0◦ψ : P1 → P0 and δ := ψ−1◦i2 : P2 → P1. Then we
have that γ◦α = p0◦ψ◦α = p0◦i0 = idP0 and β◦δ = β◦ψ−1◦i2 = p2◦i2 = idP2

(see also the proof of lemma 2.1.13). By de�nition of g0, we have that

g ◦ α = α ◦ g0 = α ◦ idP0 ◦g0 = α ◦ γ ◦ α ◦ g0 = α ◦ γ ◦ g ◦ α .
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By uniqueness, this implies that g0 = γ◦g◦α. On the other hand, by de�nition
of g2 we have that

β ◦ g = g2 ◦ β = g2 ◦ idP2 ◦β = g2 ◦ β ◦ δ ◦ β = β ◦ g ◦ δ ◦ β .

By uniqueness, this implies that g2 = β ◦ g ◦ δ.
Let now ϑP0,P0 : P ∗0 ⊗A P0 → EndA(P0), ϑP1,P1 : P ∗1 ⊗A P1 → EndA(P1)
and ϑP2,P2 : P ∗2 ⊗A P2 → EndA(P2) be de�ned as in lemma 2.1.43. They are
isomorphisms by corollary 2.1.45. Consider ϑ−1

P1,P1
(g) ∈ P ∗1 ⊗P1. By de�nition

of tensor product, there exist n ∈ N, ϕ1, . . . , ϕn ∈ P ∗1 , p1, . . . , pn ∈ P such that
ϑ−1
P1,P1

(g) = ϕ1 ⊗ p1 + · · ·+ ϕn ⊗ pn. Applying the de�nition of ϑP1,P1 and the
linearity of γ, we get that, for any x ∈ P0,

g0(x) = γ(g(α(x))) = γ((ϑ−1
P1,P1

(ϕ1 ⊗ p1 + · · ·+ ϕn ⊗ pn))(α(x))) =

= γ(ϕ1(α(x))p1 + · · ·+ϕn(α(x))pn) = ϕ1(α(x))γ(p1)+ · · ·+ϕn(α(x))γ(pn) .

By de�nition of ϑP0,P0 , this means that g0 = ϑP0,P0((ϕ1 ◦ α)⊗ (γ(p1)) + · · ·+
(ϕn◦α)⊗(γ(pn))) (notice that ϕi◦α ∈ P ∗0 and γ(pi) ∈ P0 for any i = 1, . . . , n).
Similarly, for any x ∈ P2 we have that

g2(x) = β(g(α(x))) = β((ϑ−1
P1,P1

(ϕ1 ⊗ p1 + · · ·+ ϕn ⊗ pn))(δ(x))) =

= β(ϕ1(δ(x))p1 + · · ·+ϕn(δ(x))pn) = ϕ1(δ(x))β(p1) + · · ·+ϕn(δ(x))β(pn) .

By de�nition of ϑP2,P2 , this means that g2 = ϑP2,P2((ϕ1 ◦ δ)⊗ (β(p1)) + · · ·+
(ϕn ◦δ)⊗(β(pn))) (notice that ϕi ◦δ ∈ P ∗0 and β(pi) ∈ P0 for any i = 1, . . . , n).
Finally, let αP0 : P ∗0 ⊗A P0 → A, αP1 : P ∗1 ⊗A P1 → A and αP2 : P ∗2 ⊗A P2 → A
be de�ned as in lemma 2.1.46. Notice that

α ◦ γ + δ ◦ β = ψ−1 ◦ i0 ◦ p0 ◦ ψ + ψ−1 ◦ i2 ◦ p2 ◦ ψ =

= ψ−1 ◦ (i0 ◦ p0 + i2 ◦ p2) ◦ ψ = ψ−1 ◦ idP0⊕P2 ◦ψ = idP1 .

Then, by de�nition of trace, we have that

TrP0/A(g0) + TrP2/A(g1) = αP0(ϑ−1
P0,P0

(g0)) + αP2(ϑ−1
P2,P2

(g0)) =

= αP0

(
n∑
i=1

(ϕi ◦ α)⊗ (γ(pi))

)
+ αP2

(
n∑
i=1

(ϕi ◦ δ)⊗ (β(pi))

)
=

=
n∑
i=1

(ϕi ◦ α)(γ(pi)) +
n∑
i=1

(ϕi ◦ δ)(β(pi)) =

=
n∑
i=1

(ϕi((α ◦ γ)(pi)) + ϕi((δ ◦ β)(pi))) =
n∑
i=1

(ϕi((α ◦ γ + δ ◦ β)(pi))) =

=

n∑
i=1

ϕi(pi) = αP1

(
n∑
i=1

ϕi ⊗ pi

)
= αP1(ϑ−1

P1,P1
(g)) = TrP1/A(g) ,

as we wanted.
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Corollary 2.1.63. Let B1, . . . , Bn be �nite projective A-algebras and de�ne B :=∏n
i=1Bi (which is also a �nite projective A-algebra, by lemma 2.1.52). For every

b1 ∈ B1, . . . , bn ∈ Bn, we have that

TrB/A((b1, . . . , bn)) =
n∑
i=1

TrBi/A(bi) .

Proof. We prove the claim in the case n = 2. Then the general case follows by
induction.
We have that B = B1 ×B2, as an A-module, coincides with B1 ⊕B2. Consider the
A-linear maps i1 : B1 → B, x 7→ (x, 0) and p2 : B → B2, (x1, x2) 7→ x2 and the
short exact sequence

0→ B1
i1−→ B

p2−→ B2 → 0 .

Let b1 ∈ B1, b2 ∈ B2. For every x1 ∈ B1, x2 ∈ B2, we have that

m(b1,b2)((x1, x2)) = (b1, b2) · (x1, x2) = (b1x1, b2x2) = (mb1(x1),mb2(x2)) .

Then, for every x ∈ B1, we have that

m(b1,b2)(i1(x)) = m(b1,b2)((x, 0)) = (mb1(x),mb2(0)) = (mb1(x), 0) = i1(mb1(x)) .

So m(b1,b2)(Im(i1)) ⊆ Im(i1) and that m(b1,b2) ◦ i1 = i1 ◦mb1 . Moreover, for every
x1 ∈ B1, x2 ∈ B2, we have that p2(m(b1,b2)((x1, x2))) = p2((mb1(x1),mb2(x2))) =
mb2(x2) = mb2(p2((x1, x2))). So p2 ◦mb1,b2 = mb2 ◦ p2. Hence, by lemma 2.1.62, we
have that

TrB/A((b1, b2)) = TrB/A(m(b1,b2)) =

= TrB1/A(mb1) + TrB2/A(mb2) = TrB1/A(b1) + TrB2/A(b2) ,

as we wanted.

Lemma 2.1.64. Let B1, . . . , Bn be A-algebras and de�ne B :=
∏n
i=1Bi. Then B is

a projective separable A-algebra if and only if Bi is a projective separable A-algebra
for every i = 1, . . . , n.

Proof. By lemma 2.1.52, we know that B is �nite projective if and only if Bi is
�nite projective for every i = 1, . . . , n. Assume that this holds and let ϕ : B →
HomA(B,A) be the map de�ned in lemma 2.1.59. Moreover, for any i ∈ I, let
ϕi : Bi → HomA(Bi, A) be the map de�ned in the same way, but considering Bi
instead of B. We have to prove that ϕ is bijective if and only if ϕi is bijective for every
i = 1, . . . , n. Recall that, as an A-module, B =

∏n
i=1Bi coincides with

⊕n
i=1Bi.

Then, by lemma 2.1.9, we have an isomorphism of A-modules ϕA : HomA(B,A) →∏n
i=1 HomA(Bi, A). De�ne

ψ : B →
n∏
i=1

HomA(Bi, A), (b1, . . . , bn) 7→ (ϕ1(b1), . . . , ϕn(bn))
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and consider the following diagram.

B HomA(B,A)

∏n
i=1 HomA(Bi, A)

........................................................................................ ............
ϕ

........................................................................................................................................... ........
....

ψ
...................................................................................
.....
.......
.....

ϕA

Let (b1, . . . , bn) ∈ B. Fix j ∈ {1, . . . , n} and consider the A-linear map qj : Bj →
B, x 7→ (δijx)i=1,...,n. Let x ∈ Bj . Applying corollary 2.1.63, we have that

(ϕ((b1, . . . , bn)) ◦ qj)(x) = ϕ((b1, . . . , bn))((δijx)i=1,...,n) =

= TrB/A((b1, . . . , bn) · (δijx)i=1,...,n) = TrB/A((biδijx)i=1,...,n) =

=
n∑
i=1

TrBi/A(biδijx) = TrBj/A(bjx) = ϕj(bj)(x)

(recall that TrBi/A(0) = 0 for any i = 1, . . . , n, by linearity of the trace: see remark
2.1.48). Then ϕ((b1, . . . , bn)) ◦ qj = ϕj(bj). Since this holds for any j = 1, . . . , n, we
get that

ϕA(ϕ((b1, . . . , bn))) = (ϕ((b1, . . . , bn)) ◦ q1, . . . , ϕ((b1, . . . , bn)) ◦ qn) =

= (ϕ1(b1), . . . , ϕn(bn)) = ψ((b1, . . . , bn)) .

So ϕA ◦ ϕ = ψ. Since ϕA is bijective, it follows that ϕ is bijective if and only if ψ is
bijective. But we have that

Ker(ψ) =

= {(b1, . . . , bn) ∈ B | (ϕ1(b1), . . . , ϕn(bn)) = ψ((b1, . . . , bn)) = (0, . . . , 0)} =

{(b1, . . . , bn) ∈ B | ∀i = 1, . . . , n ϕi(bi) = 0} =
n∏
i=1

Ker(ϕi)

and

Im(ψ) =

{
(f1, . . . , fn) ∈

n∏
i=1

HomA(Bi, A)

∣∣∣∣∣ ∃(b1, . . . , bn) ∈ B :

(ϕ1(b1), . . . , ϕn(bn)) = ψ((b1, . . . , bn)) = (f1, . . . , fn)

}
=

=

{
(f1, . . . , fn) ∈

n∏
i=1

HomA(Bi, A)

∣∣∣∣∣ ∀i = 1, . . . , n ∃bi ∈ Bi : ϕi(bi) = fi

}
=

=
n∏
i=1

Im(ϕi) .

Then Ker(ψ) = 0 if and only if Ker(ϕi) = 0 for every i = 1, . . . , n, i.e. ψ is injective
if and only if ϕi is injective for every i = 1, . . . , n, and Im(ψ) =

∏n
i=1 HomA(Bi, A)

if and only if Im(ϕi) = HomA(Bi, A) for every i = 1, . . . , n, i.e. ψ is surjective if and
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only if ϕi is surjective for every i = 1, . . . , n. So ψ is bijective if and only if ϕi is
bijective for every i = 1, . . . , n, and hence ϕ is bijective if and only if ϕi is bijective
for every i = 1, . . . , n, which is what we wanted.

Lemma 2.1.65. Let B be an A-algebra. For any B-module P (including B it-
self), consider HomA(P,A) as a B-module via (bf)(x) = f(bx) for any b ∈ B,
f ∈ HomA(P,A) and x ∈ P (recall that we have an induced A-module structure on
P , so it makes sense to consider HomA(P,A)). Then, for any B-module P , we have
a B-linear map

γP : HomA(B,A)⊗B HomB(P,B)→ HomA(P,A), f ⊗ g 7→ f ⊗ g

(extended by linearity). If P =
⊕n

i=1 Pi for some B-modules P1, . . . , Pn, then γP is
bijective if and only if γPi is bijective for every i = 1, . . . , n.

Proof. Let P be a B-module. First of all, we prove that the de�nition we gave
makes indeed HomA(P,A) into a B-module. Let b ∈ B, f ∈ HomA(P,A). For any
a1, a2 ∈ A, x1, x2 ∈ P we have that

(bf)(a1x1 + a2x2) = f(b(a1x1 + a2x2)) =

= f(b(a1x1) + b(a2x2)) = f((a1b)x1 + (a2b)x2) =

= f(a1(bx1) + a2(bx2)) = a1f(bx1) + a2f(bx2) = a1(bf)(x1) + a2(bf)(x2) .

So bf is A-linear, i.e. bf ∈ HomA(P,A).
For any f ∈ HomA(P,A), we have that (1Bf)(x) = f(1Bx) = f(x) for any x ∈ P
and so 1Bf = f . Let now b1, b2 ∈ B and f ∈ HomA(P,A). For every x ∈ P , we have
that

((b1 + b2)f)(x) = f((b1 + b2)x) = f(b1x+ b2x) =

= f(b1x) + f(b2x) = (b1f)(x) + (b2f)(x) = (b1f + b2f)(x)

and

((b1b2)f)(x) = f((b1b2)x) = f((b2b1)x) = f(b2(b1x)) = (b2f)(b1x) = (b1(b2f))(x) .

So (b1 + b2)f = b1f + b2f and (b1b2)f = b1(b2f). On the other hand, let b ∈ B and
f1, f2 ∈ HomA(P,A). For any x ∈ P we have that

(b(f1+f2))(x) = (f1+f2)(bx) = f1(bx)+f2(bx) = (bf1)(x)+(bf2)(x) = (bf1+bf2)(x).

So b(f1 + f2) = bf1 + bf2. Then we have a B-module structure on HomA(P,A)
for any B-module P . In particular, we have a B-module structure on HomA(B,A).
Notice also that the B-module structure we have just de�ned on HomA(P,A) induces
an A-module structure which coincides with the standard A-module structure on
HomA(P,A) (this follows immediately from the de�nition of A-linear map).
Since any B-linear map is also A-linear, for any f ∈ HomA(B,A), g ∈ HomB(P,B)
we have that f ◦g ∈ HomA(P,A). In order to show that γP is well de�ned, we have to
check that the map ΓP : HomA(B,A)×HomB(P,B)→ HomA(P,A), (f, g) 7→ f ◦ g
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is B-bilinear. Let b1, b2 ∈ B, f1, f2 ∈ HomA(B,A) and g ∈ HomB(P,B). For any
x ∈ P , we have that

((b1f1 + b2f2) ◦ g)(x) = (b1f1)(g(x)) + (b2f2)(g(x)) =

= f1(b1g(x)) + f2(b2g(x)) = f1(g(b1x)) + f2(g(b2x)) =

= (b1(f1 ◦ g))(x) + (b2(f2 ◦ g))(x) = (b1(f1 ◦ g) + b2(f2 ◦ g))(x) .

So ΓP ((b1f1 + b2f2, g)) = (b1f1 + b2f2) ◦ g = b1(f1 ◦ g) + b2(f2 ◦ g) = b1ΓP ((f1, g)) +
b2ΓP ((f2, g)). On the other hand, let b1, b2 ∈ B, f ∈ HomA(B,A) and g1, g2 ∈
HomB(P,B). For any x ∈ P , we have that

(f ◦ (b1g1 + b2g2))(x) = f(b1g1(x) + b2g2(x)) =

= f(b1g1(x)) + f(b2g2(x)) = f(g1(b1x)) + f(g2(b2x)) =

= (b1(f ◦ g1))(x) + (b2(f ◦ g2))(x) = (b1(f ◦ g1) + b2(f ◦ g2))(x) .

So ΓP ((f, b1g2 + b2g2)) = f ◦ (b1g1 + b2g2) = b1(f ◦ g1) + b2(f ◦ g2) = b1ΓP ((f, g1)) +
b2ΓP ((f, g2)). This proves that ΓP is B-bilinear. So γP is well de�ned.
Assume now that P =

⊕n
i=1 Pi, for some B-modules P1, . . . , Pn. For any j =

1, . . . , n, de�ne qj : Pj → P, x 7→ (δijx)i=1,...,n (then qj is B-linear). As in lemma
2.1.9, consider the isomorphisms ϕA : HomA(P,A) →

∏n
i=1 HomA(Pi, A) and ϕB :

HomB(P,B)→
∏n
i=1 HomB(Pi, B), of A-modules and of B-modules respectively (for

the latter isomorphism, we apply the lemma with B instead of A). Notice that ϕA
is also B-linear. Indeed, if b ∈ B, f ∈ HomA(P,A) and i ∈ {1, . . . , n}, we have that
((bf) ◦ qi)(x) = (bf)(qi(x)) = f(bqi(x)) = f(qi(bx)) = (b(f ◦ qi))(x), for any x ∈ Pi.
So (bf) ◦ qi = b(f ◦ qi), for any i = 1, . . . , n, and

ϕA(bf) = ((bf) ◦ qi)i=1,...,n = (b(f ◦ qi))i=1,...,n = b(f ◦ qi)i=1,...,n = bϑA(f) .

Notice also that, since the direct sum of a �nite family of modules coincides with its
direct product,

∏n
i=1 HomA(Pi, A) =

⊕n
i=1 HomA(Pi, A) and

∏n
i=1 HomB(Pi, B) =⊕n

i=1 HomB(Pi, B). Consider the isomorphism of B-modules idHomA(B,A)⊗ϕB :
HomA(B,A) ⊗B HomB(P,B) → HomA(B,A) ⊗B

⊕n
i=1 HomB(Pi, B) induced by

ϕB. Moreover, consider the isomorphism of B-modules ψHomA(B,A) : HomA(B,A)⊗B⊕n
i=1 HomB(Pi, B)→

⊕n
i=1 (HomA(B,A)⊗B HomB(Pi, B)) as in lemma 2.1.19 (ac-

tually here we have the direct sum on the other factor, but by commutativity of the
tensor product this is not a problem). Then we have the following diagram.

HomA(B,A)⊗B HomB(P,B) HomA(P,A)

⊕n
i=1 (HomA(B,A)⊗B HomB(Pi, B))

⊕n
i=1 HomA(Pi, A)

..................................................................................................................................................................................................................... ............
γP

...................................................................................
.....
.......
.....

ψHomA(B,A) ◦ (idHomA(B,A)⊗ϕB)

..................................................................................................................................................................................................................... ............

⊕n
i=1 γPi

...................................................................................
.....
.......
.....

ϕA

We claim that this diagram is commutative. Let f ∈ HomA(B,A), g ∈ HomB(P,B).
We have that

ϕA(γP (f ⊗ g)) = ϕA(f ◦ g) = (f ◦ g ◦ qi)i=1,...,n = (γPi(f ⊗ (g ◦ qi)))i=1,...,n =
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=

(
n⊕
i=1

γPi

)
((f ⊗ (g ◦ qi))i=1,...,n) =

=

(
n⊕
i=1

γPi

)(
ψHomA(B,A) (f ⊗ (g ◦ qi)i=1,...,n)

)
=

=

((
n⊕
i=1

γPi

)
◦ ψHomA(B,A)

)(
(idHomA(B,A)⊗ϕB)(f ⊗ g)

)
.

Then ϕA ◦γP = (
⊕n

i=1 γPi)◦ (ψHomA(B,A) ◦ (idHomA(B,A)⊗ϕB)) (since we are dealing
with B-linear maps, it is enough to check equality on pure tensors), i.e. the diagram
is commutative. Since ϕA and ψHomA(B,A) ◦ (idHomA(B,A)⊗ϕB) are isomorphisms, it
follows that γP is bijective if and only if

⊕n
i=1 γPi is bijective. It is easy to prove

that

Ker

(
n⊕
i=1

γPi

)
=

n⊕
i=1

Ker(γPi)

and

Im

(
n⊕
i=1

γPi

)
=

n⊕
i=1

Im(γPi)

(see the proof of corollary 2.1.20). So Ker (
⊕n

i=1 γPi) = 0 if and only if Ker(γPi) = 0
for any i = 1, . . . , n, i.e.

⊕n
i=1 γPi is injective if and only if γPi is injective for

any i = 1, . . . , n, and Im (
⊕n

i=1 γPi) =
⊕n

i=1 HomA(Pi, A) if and only if Im(γPi) =
HomA(Pi, A) for any i = 1, . . . , n, i.e.

⊕n
i=1 γPi is surjective if and only if γPi is

surjective for any i = 1, . . . , n. Hence
⊕n

i=1 γPi is bijective if and only if γPi is
bijective for every i = 1, . . . , n, which ends the proof.

Corollary 2.1.66. Let B be an A-algebra and P a �nitely generated and projective
B-module. Then the map γP : HomA(B,A)⊗B HomB(P,B)→ HomA(P,A) de�ned
as in lemma 2.1.65 is bijective.

Proof. Since P is �nitely generated and projective as a B-module, by corollary 2.1.15
there exist a B-module Q and an n ∈ N such that P ⊕ Q ∼= Bn as B-modules.
By lemma 2.1.65, in order to prove that γP is bijective, it is enough to show that
γBn is bijective. By the same lemma, in order to prove that γBn is bijective, it is
enough to prove that γB is bijective. We have that HomB(B,B) ∼= B as B-modules,
via ϕ : HomB(B,B) → B, f 7→ f(1B). Then idHomA(B,A)⊗ϕ : HomA(B,A) ⊗B
HomB(B,B) → HomA(B,A) ⊗B B is an isomorphism of B-modules. Moreover,
HomA(B,A) ⊗B B ∼= HomA(B,A) as B-modules, via ψ : HomA(B,A) ⊗B B →
HomA(B,A), f ⊗b 7→ bf . For any f ∈ HomA(B,A), g ∈ HomB(B,B), we have that

ψ((idHomA(B,A)⊗ϕ)(f ⊗ g)) = ψ(f ⊗ ϕ(g)) = ψ(f ⊗ g(1B)) = g(1B)f .

For any x ∈ B, (g(1B)f)(x) = f(g(1B)x) = f(g(1Bx)) = f(g(x)). So

ψ((idHomA(B,A)⊗ϕ)(f ⊗ g)) = g(1B)f = f ◦ g = γB(f ⊗ g) .

Then γB = ψ ◦ (idHomA(B,A)⊗ϕ) (since we are dealing with B-linear maps, it is
enough to check equality on pure tensors). So γB is bijective, because it is a compo-
sition of bijections. This ends the proof.

140



2.1. ALGEBRAIC PRELIMINARIES

Remark 2.1.67. In the proof of lemma 2.1.65, a key point was the fact that we were
dealing with a �nite direct sum. Then also in corollary 2.1.66 it was important to
assume that P was �nitely generated over B.

Lemma 2.1.68. Let B be a �nite projective A-algebra and P a �nitely gener-
ated and projective B-module. For any ϕ ∈ EndB(P ), we have that TrP/A(ϕ) =
TrB/A(TrP/B(ϕ)).

Proof. First of all, notice that P is �nitely generated and projective over A by
lemma 2.1.53 and that, since any B-linear map is also A-linear, ϕ ∈ EndA(P ).
So it makes sense to consider the trace TrP/A(ϕ). Moreover, as in lemma 2.1.59,
TrB/A(TrP/B(ϕ)) := TrB/A(mTrP/B(ϕ)).
Since P is �nitely generated and projective over B, by lemma 2.1.49(1) (with B
instead of A) there exist n ∈ N, x1, . . . , xn ∈ P and f1, . . . , fn ∈ HomB(P,B) such
that, for every x ∈ P , we have x =

∑n
i=1 fi(x)xi. By the same lemma, since B is a

�nite projective A-algebra, i.e. it is �nitely generated and projective as an A-module,
there exist m ∈ N, b1, . . . , bm ∈ B and g1, . . . , gm ∈ HomA(B,A) such that, for every
b ∈ B, we have b =

∑m
j=1 gj(b)bj . For every i = 1, . . . , n, j = 1, . . . ,m, consider

bjxi ∈ P and gj ◦fi ∈ HomA(P,A) (notice that this works because any B-linear map
is also A-linear). For every x ∈ P , we have that

x =
n∑
i=1

fi(x)xi =
n∑
i=1

 m∑
j=1

gj(fi(x))bj

xi =
n∑
i=1

m∑
j=1

(gj ◦ fi)(x)(bjxi) .

Then, by lemma 2.1.49(2), we have that

TrP/A(ϕ) =

n∑
i=1

m∑
j=1

(gj ◦ fi)(ϕ(bjxi)) =

n∑
i=1

m∑
j=1

gj(fi(bjϕ(xi))) =

=

m∑
j=1

n∑
i=1

gj(bjfi(ϕ(xi))) =

m∑
j=1

gj

(
n∑
i=1

bjfi(ϕ(xi))

)
=

=

m∑
j=1

gj

(
bj

n∑
i=1

fi(ϕ(xi))

)
=

m∑
j=1

gj(bj TrC/B(ϕ)) =

=
m∑
j=1

gj(mTrC/B(ϕ)(bj)) = TrB/A(mTrC/B(ϕ)) = TrB/A(TrC/B(ϕ)) .

Corollary 2.1.69. Let B be a projective separable A-algebra and C a projective
separable B-algebra. Consider the induced A-algebra structure on C. Then C is a
projective separable A-algebra.

Proof. Since B is a projective separable A-algebra, it is in particular �nite projective.
Analogously, C is a �nite projective B-algebra. By corollary 2.1.54, we have that C
is a �nite projective A-algebra. Let ϕB : B → HomA(B,A) be the map de�ned in
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lemma 2.1.59 and ϕC : C → HomA(C,A) the map de�ned in the same way, with C
instead of B. Moreover, let ϕ′C : C → HomB(C,B) be the map de�ned as in lemma
2.1.59, with B instead of A and C instead of B. Let x ∈ C. Applying lemma 2.1.68,
we have that

ϕC(x)(y) = TrC/A(xy) = TrC/A(mxy) =

= TrB/A(TrC/B(mxy)) = TrB/A(TrC/B(xy)) = TrB/A(ϕ′C(x)(y))

for any y ∈ C. So ϕC(x) = TrB/A ◦(ϕ′C(x)). De�ne

(TrB/A)∗ : HomB(C,B)→ HomA(C,A), f 7→ TrB/A ◦f

(this is well de�ned because any B-linear map from C to B is also A-linear and
TrB/A : B → A is A-linear by 2.1.59). Then ϕC(x) = (TrB/A)∗(ϕ

′
C(x)) . Since

this holds for any x ∈ C, we have that ϕC = (TrB/A)∗ ◦ ϕ′C . We have that ϕ′C
is bijective, because C is a projective separable B-algebra. Since B is a projective
separable A-algebra, we have that ϕB : B → HomA(B,A) is an isomorphism of A-
modules. Moreover, if we consider on HomA(B,A) the B-module structure de�ned
in lemma 2.1.65, we have that ϕB is also B-linear. Indeed, if b, x ∈ B we have
that ϕB(bx)(y) = TrB/A((bx)y) = TrB/A(x(by)) = ϕB(x)(by) = (bϕB(x))(y) for any
y ∈ B and so ϕB(bx) = bϕB(x). Then ϕB induces an isomorphism of B-modules

ϕB ⊗ idHomB(C,B) : B ⊗B HomB(C,B)→ HomA(B,A)⊗B HomB(C,B) .

We have that B ⊗B HomB(C,B) ∼= HomB(C,B) as B-modules, via ψ : B ⊗B
HomB(C,B) → HomB(C,B), b ⊗ f 7→ bf , which has inverse ψ−1 : HomB(C,B) →
B⊗B HomB(C,B), f 7→ 1B⊗f . Moreover, let γC : HomA(B,A)⊗B HomB(C,B)→
HomA(C,A) be as in lemma 2.1.65. By corollary 2.1.66, we have that γC is an
isomorphism, because C is �nitely generated and projective as a B-module. Con-
sider γC ◦ (ϕB ⊗ idHomB(C,B)) ◦ ψ−1 : HomB(C,B) → HomA(B,A). For any f ∈
HomB(C,B), we have that

(γC ◦ (ϕB ⊗ idHomB(C,B)) ◦ ψ−1)(f) = γC((ϕB ⊗ idHomB(C,B))(ψ
−1(f))) =

= γC((ϕB ⊗ idHomB(C,B))(1B ⊗ f)) = γC(ϕB(1B)⊗ f) = ϕB(1B) ◦ f .

But, for any y ∈ B, we have that ϕB(1B)(y) = TrB/A(1By) = TrB/A(y). So
ϕB(1B) = TrB/A and (γC ◦ (ϕB⊗ idHomB(C,B))◦ψ−1)(f) = ϕB(1B)◦f = TrB/A ◦f =
(TrB/A)∗(f). Then (TrB/A)∗ = γC ◦ (ϕB ⊗ idHomB(C,B)) ◦ ψ−1, which implies that
ϕC = (TrB/A)∗ ◦ ϕ′C = γC ◦ (ϕB ⊗ idHomB(C,B)) ◦ ψ−1 ◦ ϕ′C is bijective, because it is
a composition of bijections. Hence C is a projective separable A-algebra.

Lemma 2.1.70. Let P be a �nitely generated projective A-module and B an A-
algebra. For any f ∈ EndA(P ), we have that TrP⊗AB/B(f ⊗ idB) = TrP/A(f) · 1.

Proof. First of all, notice that by lemma 2.1.24, P ⊗A B is a projective B-module.
It is also clear that P ⊗A B is �nitely generated as a B-module (see the proof of
proposition 2.1.57). So it makes sense to consider the trace TrP⊗AB/B of a B-linear
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map P ⊗A B → P ⊗A B. If f : P → P is A-linear, it is immediate to prove that
f ⊗ idB : P ⊗A B → P ⊗A B is B-linear. So TrP⊗AB/B(f ⊗ idB) is well de�ned.
Let ϑP,P : P ∗ ⊗A P → EndA(P ) and ϑP⊗AB,P⊗AB : (P ⊗A B)∗ ⊗B (P ⊗A B) →
EndB(P ⊗A B) be de�ned as in lemma 2.1.43. By corollary 2.1.45, they are isomor-
phisms (respectively, of A-modules and of B-modules). Let also αP : P ∗⊗A P → A,
αP⊗AB : (P ⊗A B)∗ ⊗B (P ⊗A B) → B be de�ned as in lemma 2.1.46. Since
ϑP,P is an isomorphism, we have that EndA(P ) is generated by the elements of the
form ϑP,P (ϕ ⊗ p), with ϕ ∈ P ∗ and p ∈ P . Notice that − ⊗ idB : EndA(P ) →
EndB(P ⊗A B) is A-linear. Also the trace is A-linear (remark 2.1.48). Then it is
enough to prove that the claim is true for f = ϑP,P (ϕ⊗ p), with ϕ ∈ P ∗ and p ∈ P .
In this case, we have that

Tr(f) = αP (ϑ−1
P,P (f)) = αP (ϕ⊗ p) = ϕ(p) .

Moreover, ϕ ⊗ idB : P ⊗A B → A ⊗A B is a B-linear map and composing it with
the canonical isomorphism of B-modules ψ : A ⊗A B → B, a ⊗ b 7→ ab we get
ψ ◦ (ϕ⊗ idB) ∈ (P ⊗A B)∗. For any x ∈ P , y ∈ B, we have that

ϑP⊗AB,P⊗AB((ψ ◦ (ϕ⊗ idB))⊗ (p⊗ 1))(x⊗ y) = (ψ ◦ (ϕ⊗ idB))(x⊗ y) · (p⊗ 1) =

= ψ(ϕ(x)⊗ y) · (p⊗ 1) = (ϕ(x)y) · (p⊗ 1) = (ϕ(x)p)⊗ y =

= (ϑP,P (ϕ⊗ p)(x))⊗ y = f(x)⊗ y = (f ⊗ idB)(x⊗ y) .

So ϑP⊗AB,P⊗AB((ψ◦(ϕ⊗idB))⊗(p⊗1))) = f⊗idB (by linearity, it is enough to check
equality on pure tensors). Then ϑ−1

P⊗AB,P⊗AB(f ⊗ idB) = (ψ ◦ (ϕ ⊗ idB)) ⊗ (p ⊗ 1)
and

TrP⊗AB,B(f ⊗ idB) = αP⊗AB(ϑ−1
P⊗AB,P⊗AB(f ⊗ idB)) =

= αP⊗AB((ψ ◦ (ϕ⊗ idB))⊗ (p⊗ 1)) = (ψ ◦ (ϕ⊗ idB))(p⊗ 1) =

= ψ(ϕ(p)⊗ 1) = ϕ(p) · 1 = TrP/A(f) · 1 ,

as we wanted.

Lemma 2.1.71. Let B and C be A-algebras, with B projective separable. Then
B ⊗A C is a projective separable C-algebra.

Proof. Since B is a projective separable A-algebra, it is in particular �nite projective.
Then B ⊗A C is a projective A-algebra by lemma 2.1.24. Moreover, it is �nitely
generated as a C-module, because if (w1, . . . , wn) generates B over A then (w1 ⊗
1, . . . , wn ⊗ 1) generates B ⊗A C over C.
Let now ϕ : B → HomA(B,A) be the A-linear map de�ned in lemma 2.1.59 and
consider the C-linear map ϕ⊗ idC : B⊗AC → HomA(B,A)⊗AC. Since B is �nitely
generated and projective as an A-module, by lemma 2.1.55 (condition (2)) we have
an isomorphism of C-modules ϕB,A : HomA(B,A)⊗AC → HomC(B⊗AC,A⊗AC).
Moreover, we have a canonical isomorphism of C-modules ψ : A⊗AC → C, a⊗ c 7→
ac, which induces an isomorphism of C-modules ψ∗ : HomC(B ⊗A C,A ⊗A C) →
HomC(B ⊗A C,C), h 7→ ψ ◦ h. Consider now the following diagram, where ϕ′ :
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B ⊗A C → HomC(B ⊗A C,C) is de�ned as in lemma 2.1.59, considering C instead
of A and B ⊗A C instead of B.

B ⊗A C B ⊗A C

HomA(B,A)⊗A C HomC(B ⊗A C,C)

..................................................................................................................................................................................................................... ............
idB⊗AC

...................................................................................
.....
.......
.....

ϕ⊗ idC

..................................................................................................................................................................................................................... ............
ψ∗ ◦ ϕB,A

...................................................................................
.....
.......
.....

ϕ′

Let b ∈ B and c ∈ C. We have that

(ψ∗ ◦ ϕB,A)((ϕ⊗ idC)(b⊗ c)) = (ψ∗ ◦ ϕB,A)(ϕ(b)⊗ c) =

= ψ∗(ϕ(b)⊗ (c idC)) = ψ ◦ (ϕ(b)⊗ (c idC)) .

For any x ∈ B, y ∈ C, we have

(ψ ◦ (ϕ(b)⊗ (c idC)))(x⊗ y) = ψ((ϕ(b)(x))⊗ (cy)) = ψ(TrB/A(bx)⊗ (cy)) =

= ψ(TrB/A(mbx)⊗ (cy)) = TrB/A(mbx) · cy .

Moreover, by de�nition of the C-algebra structure on B⊗AC, we have m(b⊗c)(x⊗y) =
m(bx)⊗(cy) = cym(bx)⊗1 = cy(mbx ⊗ idC). Then, using the fact that TrB⊗AC/C is C-
linear (remark 2.1.48) and applying lemma 2.1.70 (with B instead of P and C instead
of B), we get

TrB⊗AC/C(m(b⊗c)(x⊗y)) = TrB⊗AC/C(cy(mbx⊗idC )) =

= cyTrB⊗AC/C(mbx⊗idC ) = cy(TrB/A(mbx) · 1) = TrB/A(mbx) · cy .

Then (ψ ◦ (ϕ(b)⊗ (c idC)))(x⊗ y) = TrB⊗AC/C(m(b⊗c)(x⊗y)) = ϕ′(b⊗ c)(x⊗ y). So

(ψ∗ ◦ ϕB,A)((ϕ⊗ idC)(b⊗ c)) = (ψ ◦ (ϕ(b)⊗ (c idC)))(x⊗ y) = ϕ′(b⊗ c) .

Since this holds for any b ∈ B, c ∈ C, we have that ψ∗ ◦ ϕB,A ◦ (ϕ ⊗ idC) = ϕ′.
Since B is a projective separable A-algebra, ϕ is an isomorphism. Then ϕ ⊗ idC :
B⊗AC → HomA(B,A)⊗AC is an isomorphism of C-modules, with inverse ϕ−1⊗idC .
We already knew that ψ∗ and ϕB,A are isomorphisms of C-modules. So ϕ′ is an
isomorphism of C-modules, because it it is the composition of isomorphisms. Hence
B ⊗A C is a projective separable C-algebra.

Proposition 2.1.72. Let B be an A-algebra and C a faithfully �at A-algebra. Then
B is a projective separable A-algebra if and only if B ⊗A C is a projective separable
C-algebra.

Proof. If B is a projective separable A-algebra, then B⊗AC is a projective separable
C-algebra by lemma 2.1.71.
Conversely, assume that B⊗AC is a projective separable C-algebra. In particular, it
is a �nite projective C-algebra. Then, by proposition 2.1.57, B is a �nite projective
A-algebra. This implies that B is �nitely presented as an A-module, by proposition
2.1.30 ((i) =⇒ (ii)). Let ϕ : B → HomA(B,A), ϕB,A : HomA(B,A) ⊗A C →
HomC(B⊗AC,A⊗AC), ψ : A⊗AC → C and ϕ′ : B⊗AC → HomC(B⊗AC,C) be
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as in the proof of lemma 2.1.71. In the same way as in that proof, it can be shown
that ψ∗ ◦ ϕB,A ◦ (ϕ⊗ idC) = ϕ′. Since B ⊗A C is a projective separable C-algebra,
ϕ′ is an isomorphism of C-modules. We already knew that ψ∗ is an isomorphism of
C-modules. Moreover, ϕB,A is also an isomorphism of C-modules, by lemma 2.1.55
(condition (1)), because B is a �nitely presented A-module and C is �at. It follows
that ϕ⊗ idC = ϕ−1

B,A ◦ (ψ∗)
−1 ◦ϕ′ is an isomorphism of C-modules, i.e. the sequence

0⊗A C = 0→ B ⊗A C
ϕ⊗idC−−−−→ HomA(B,A)⊗A C → 0 = 0⊗A C

is exact. Since C is faithfully �at, this implies that the sequence 0 → B
ϕ−→

HomA(B,A) → 0 is also exact. This means that ϕ is an isomorphism. Hence B
is a projective separable A-algebra.

Proposition 2.1.73. Let B be an A-algebra. If there exists a collection (fi)i∈I of
elements of A such that

∑
i∈I fiA = A and for every i ∈ I the Afi-algebra Bfi is

projective separable, then B is projective separable.

Proof. Since Bfi is a projective separable Afi-algebra, it is in particular �nitely gen-
erated and projective as an Afi-module, for every i ∈ I. Then, by corollary 2.1.32,
B is �nitely generated and projective as an A-module, i.e. it is a �nite projective
A-algebra. By proposition 2.1.30 ((i) =⇒ (ii)), we have also that B is �nitely pre-
sented.
Let i ∈ I. Since B is �nitely presented, by lemma 2.1.27 we have an isomorphism of
Afi-modules ϕ(i)

B,A : HomA(B,A)fi → HomAfi
(Bfi , Afi). Let ϕ : B → HomA(B,A)

be the map de�ned in lemma 2.1.59 and consider its localization ϕfi : Bfi →
HomA(B,A)fi , which is Afi-linear. Denote by ϕi : Bfi → HomAfi

(Bfi , Afi) the
Afi-linear map de�ned as in lemma 2.1.59, considering Afi instead of A and Bfi
instead of B. Then we have the following diagram.

Bfi Bfi

HomA(B,A)fi HomAfi
(Bfi , Afi)

..................................................................................................................................................................................................................... ............

idBfi
...................................................................................
.....
.......
.....

ϕfi

..................................................................................................................................................................................................................... ............

ϕ
(i)
B,A

...................................................................................
.....
.......
.....

ϕi

Recall that Bfi ∼= B⊗AAfi as Afi-algebras and HomA(B,A)fi
∼= HomA(B,A)⊗AAfi

as Afi-modules. Under these isomorphisms, the diagram we are considering corre-
sponds to the one we considered in the proof of lemma 2.1.71. So it is commutative,
as in that proof. This means that ϕi = ϕiB,A ◦ ϕfi . Since Bfi is a projective sep-

arable Afi-algebra, ϕi is bijective. Then, since ϕ(i)
B,A is also bijective, we have that

ϕfi = (ϕ
(i)
B,A)−1 ◦ϕi is bijective. Since this holds for every i ∈ I, by lemma 2.1.29(2)

we get that ϕ is bijective, i.e. B is a projective separable A-algebra.

Lemma 2.1.74. Let B be a projective separable A-algebra and f : B → A a ho-
momorphism of A-algebras. Then there exist an A-algebra C and an isomorphim of
A-algebras α : B → A × C such that f = pA ◦ α, where pA : A × C → A is the
canonical projection.
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Proof. Since f is a homomorphism of A-algebras, it is in particular A-linear, i.e.
f ∈ HomA(B,A). Let ϕ : B → HomA(B,A) be de�ned as in lemma 2.1.59. Since
B is projective separable, ϕ is bijective. So there exists a (unique) b ∈ B such
that f = ϕ(b). This means that f(x) = Tr(bx) for any x ∈ B. In particular,
Tr(b) = Tr(b · 1) = f(1) = 1 (the last equality follows from the fact that f is a
homomorphism of A-algebras and so in particular a ring homomorphism). De�ne
now C := Ker(f) ⊆ B. Then C is clearly an A-submodule of B. Notice now that
f is surjective. Indeed, for any a ∈ A we have that f(a · 1) = af(1) = a. So the
sequence of A-modules

0→ C
i−→ B

f−→ A→ 0

is exact, where i : C = Ker(f) → B is the canonical inclusion. Consider the A-
linear map mb : B → B. For any x ∈ C, we have that f(mb(x)) = f(b)f(x) =
0, because f is a ring homomorphism and f(x) = 0. So mb(x) ∈ Ker(f) = C.
This means that mb(Im(i)) = mb(C) ⊆ C = Im(i) By lemma 2.1.62, we have that
Tr(b) = TrB/A(mb) = TrC/A((mb)C) + TrA/A((mb)A), where (mb)C : C → C is the
unique A-linear map such that i ◦ (mb)C = mb ◦ i and (mb)A : A→ A is the unique
A-linear map such that f ◦mb = (mb)A ◦ f . Considering the fact that i : C → B
is the canonical inclusion, we have that (mb)C = (mb)|C : C → C. Moreover,
since f is surjective, for any y ∈ A there exists x ∈ B such that y = f(x) and so
(mb)A(f(x)) = f(mb(x)) = f(bx) = f(b)f(x) = mf(b)(f(x)) (we applied the fact
that f is a ring homomorphism). Then (mb)A = mf(b). Let now x, y ∈ B. We have
that

ϕ(bx)(y) = Tr(bxy) = f(xy) = f(x)f(y) = f(x) Tr(by) = Tr(f(x)by) = ϕ(f(x)b)(y)

(we applied the fact that the trace is A-linear, see remark 2.1.48). Then ϕ(bx) =
ϕ(f(x)b), which by injectivity of ϕ implies that bx = f(x)b. In particular, we have
that bx = f(x)b = 0 for any x ∈ C, i.e. (mb)|C = 0. Then TrC/A((mb)C) =
TrC/A(0) = 0 (because the trace is A-linear). So

Tr(b) = TrC/A((mb)C) + TrA/A((mb)A) = TrA/A(mf(b)) .

Notice now that A is a free A-module with basis (1). By remark 2.1.50(3), we can
compute the trace TrA/A using the de�nition 2.1.1. Then TrA/A(mf(b)) = mf(b)(1) =
f(b) · 1 = f(b). So Tr(b) = f(b). We have already seen that Tr(b) = 1, so f(b) = 1.
Consider now the map

ψ : A⊕ C → B, (a, x) 7→ ab+ x .

It is immediate to check that ψ is A-linear. Let (a, x) ∈ Ker(ψ), i.e. ab + x =
ψ((a, x)) = 0. Then ab = −x ∈ C = Ker(f). So, applying the linearity of f , we
get that 0 = f(ab) = af(b) = a · 1 = a. Then x = −ab = 0. This proves that
Ker(ψ) = 0, i.e. ψ is injective. Let now y ∈ B. Since f is A-linear, we have that
f(y − f(y)b) = f(y) − f(y)f(b) = f(y) − f(y) · 1 = 0. So y − f(y)b ∈ Ker(f) = C.
Then (f(y), y − f(y)b) ∈ A ⊕ C and ψ((f(y), y − f(y)b)) = f(y)b + y − f(y)b = y.
This proves that ψ is surjective. Then ψ is an isomorphism of A-modules. By the
computation we have just performed, it is also clear that ψ−1(y) = (f(y), y− f(y)b)
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for any y ∈ B. So, if we de�ne α := ψ−1 : B → A ⊕ C, we have that pA ◦ α =
f . It remains to show that C is an A-algebra and that ψ is compatible with the
multiplication (de�ned componentwise on A⊕C). Since f is a ring homomorphism,
if x, y ∈ C = Ker(f), then f(xy) = f(x)f(y) = 0, i.e. xy ∈ Ker(f) = C. So
we can restrict the multiplication from B to C. Commutativity, associativity and
distributivity are inherited from the fact that B is a ring. What is a priori not
clear is the fact that C has a unit element. Notice that, by what we proved above,
b2 = f(b)b = 1 · b = b. Let now a1, a2 ∈ A, x1, x2 ∈ C. By what we proved above,
bx1 = 0 = bx2. Then we have that

ψ((a1, x1))ψ((a2, x2)) = (a1b+ x1)(a2b+ x2) =

= a1a2b
2 + a1bx2 + a2bx1 + x1x2 = a1a2b+ x1x2 =

= ψ((a1a2, x1x2)) = ψ((a1, x1)(a2, x2)) .

So ψ is compatible with the multiplication. Let now x0 := 1 − b = 1 − f(1)b. By
what we proved above, x0 ∈ C and ψ((1, x0)) = ψ((f(1), x0)) = 1. For any x ∈ C,
we have that

ψ((1, x0x)) = ψ((1, x0)(1, x)) = ψ((1, x0))ψ((1, x)) = ψ((1, x)) .

Since ψ is injective, we must have (1, x0x) = (1, x). Then x0x = x. This proves
that x0 is a unit element in C, which is then a ring. Consider the A-linear map
A → C, a 7→ ax0. This map is a ring homomorphism, because for any a1, a2 ∈ A
we have (a1x0)(a2x0) = a1a2x

2
0 = a1a2x0. So C is an A-algebra, in a way that is

compatible with the A-module structure inherited by B. We have that ψ is A-linear
and compatible with multiplication. Moreover, we saw that ψ((1, x0)) = 1. So ψ
is a homomorphism of A-algebras. Then its inverse α is also a homomorphism of
A-algebras. This ends the proof.

Proposition 2.1.75. Let B be a projective separable A-algebra. Consider B⊗AB as
a B-algebra via the second factor and consider the map δ : B⊗AB → B, x⊗y 7→ xy
(extended by linearity). Then there exist a B-algebra C and an isomorphism of B-
algebras α : B ⊗A B → B × C such that δ = pB ◦ α, where pB : B × C → B is the
canonical projection.

Proof. Since B is a projective separable A-algebra, B⊗AB is a projective separable
B-algebra by lemma 2.1.71. Notice that δ is well de�ned and A-linear, because the
multiplication in B is A-bilinear. It is immediate to show that δ is actually B-linear.
Moreover, by de�nition of the ring structure on B⊗AB, we have that δ is also a ring
homomorphism. So δ : B ⊗A B → B is a homomorphism of B-algebras. Applying
lemma 2.1.74, with B ⊗A B instead of B and B instead of A, we get the claim.

2.2 Finite étale morphisms

We start with the de�nition of �nite étale morphisms and of the corresponding
category. Then we will study in detail the properties of these morphisms.
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De�nition 2.2.1. Let X, Y be two schemes and f : Y → X a morphism of schemes.
We say that f is �nite étale if there exists a cover of X by open a�ne subsets
(Ui = Spec(Ai))i∈I such that, for any i ∈ I, the open subscheme f−1(Ui) of Y is
a�ne and equal to Spec(Bi), where Bi is a free separable Ai-algebra. In this situation
we also say that f is a �nite étale covering of X.
If X, Y , Z are schemes and f : Y → X, g : Z → X are �nite étale coverings of X,
then a morphism of coverings from f to g is a morphism of schemes h : Y → Z such
that f = g ◦ h.

Remark 2.2.2. (1) Notice that, if f : Y → X is a morphism of schemes, Ui =
Spec(Ai) is an open a�ne subscheme of X and the open subscheme f−1(Ui)
of Y is a�ne, with f−1(Ui), then Bi is always an Ai-algebra, because the
morphism of schemes f : f−1(Ui) = Spec(Bi)→ Ui = Spec(Ai) corresponds to
a ring homomorphism Ai → Bi.

(2) Let X be a scheme. It is immediate to check that the composition of two
morphism of coverings is again a morphism of coverings. Moreover, for any
�nite étale covering f : Y → X we have that idY is clearly a morphism of
coverings from f to f . This shows that �nite étale coverings of X form a
category. We denote this category by FEtX . Our goal is to prove that FEtX ,
with a suitable functor FEtX → sets, is a Galois category.

There are other remarkable properties that morphisms of schemes can have and
we will see the connection between them and the fact of being �nite étale.

De�nition 2.2.3. Let X, Y be two schemes and f : Y → X a morphism of schemes.
We say that f is:

(1) a�ne if there exists a cover of X by open a�ne subsets (Ui)i∈I such that
f−1(Ui) is a�ne for every i ∈ I;

(2) �nite if there is a cover of X by open a�ne subsets (Ui = Spec(Ai))i∈I such
that, for every i ∈ I, f−1(Ui) is a�ne and equal to Spec(Bi), where the Ai-
algebra Bi (see remark 2.2.2(1)) is �nitely generated as an Ai-module;

(3) �nite and locally free if there exists a cover of X by open a�ne subsets (Ui =
Spec(Ai))i∈I such that, for every i ∈ I, f−1(Ui) is a�ne and equal to Spec(Bi),
where the Ai-algebra Bi (see remark 2.2.2(1)) is �nitely generated and free as
an Ai-module;

(4) surjective if the corresponding map between the underlying topological spaces
is surjective.

Remark 2.2.4. From the de�nitions, it is clear that any �nite morphism of schemes
is a�ne, any �nite and locally free morphism is �nite and any �nite étale morphism
is �nite and locally free.

Lemma 2.2.5. Let X be a scheme and consider two open a�ne subschemes U =
Spec(A) and V = Spec(B) of X. For any x ∈ U ∩ V , there exists W ⊆ U ∩ V such
that x ∈W and W = D(f) = D(g) for some f ∈ A, g ∈ B.
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Proof. Let x ∈ U ∩ V . Since U and V are open, U ∩ V is also open. Since U ∩ V ⊆
U = Spec(A) and distinguished open subsets form a basis of Spec(A), there exists
f ′ ∈ A such that D(f ′) ⊆ U ∩V and x ∈ D(f ′). We have that D(f ′) ⊆ V = Spec(B)
and D(f ′) is open (in U and then also in V ). Since distinguished open subsets form
a basis of Spec(B), there exists g ∈ B such that D(g) ⊆ D(f ′) and x ∈ D(g). De�ne
W := D(g). Our aim is now to �nd an f ∈ A such that W = D(f). We have
that OX(V ) = OSpec(B)(Spec(B)) = B and OX(D(f ′)) = OSpec(A)(D(f ′)) = Af ′ .
Since D(f ′) ⊆ U ∩ V ⊆ V , we can consider the restriction ρV,D(f ′) : OX(V ) =
B → OX(D(f ′)) = Af ′ . We have that ρV,D(f ′)(g) ∈ Af ′ . Then, by de�nition of

localization, there exist g′ ∈ A, n ∈ N, such that ρV,D(f ′)(g) = g′

(f ′)n . In V = Spec(B),

we have that V(ρV,D(f ′)(g)) = V(g) ∩ D(f ′) (by de�nition of the restriction and of
vanishing sets). Recalling that D(g) ⊆ D(f ′) ⊆ V , we have that

D(g) = D(f ′) ∩D(g) = D(f ′) ∩ (V \V(g)) = D(f ′)\(D(f ′) ∩V(g)) =

= D(f ′)\V(ρV,D(f ′)(g)) = D(f ′)\V

(
g′

(f ′)n

)
.

Moreover, in U = Spec(A) we have that V
(

g′

(f ′)n

)
= V(g′) ∩D(f ′) (by de�nition of

vanishing sets). So

D(f ′)\V

(
g′

(f ′)n

)
= D(f ′)\(V(g′) ∩D(f ′)) = D(f ′) ∩ (U\V(g′)) =

= (U\V(f ′)) ∩ (U\V(g′)) = U\(V(f ′) ∪V(g′)) = U\V(f ′g′) = D(f ′g′) .

Then, if we de�ne f := f ′g′ ∈ A, we get W = D(g) = D(f ′g′) = D(f), as we
wanted.

Lemma 2.2.6 (A�ne communication lemma, see [5], 5.3.2). Let X be a scheme
and let P be a property enjoyed by some open a�ne subsets of X. Assume that the
following two conditions are satis�ed:

(1) if an open a�ne subset U = Spec(A) has the property P , then for every f ∈ A
the open a�ne subset Spec(Af ) = D(f) ⊆ U ⊆ X has P ;

(2) if U = Spec(A) is an open a�ne subset of X and there exists a collection
(fi)i∈I of elements of A such that

∑
i∈I fiA = A and the open a�ne subset

Spec(Af ) = D(f) ⊆ U ⊆ X has the property P for every i ∈ I, then U has the
property P .

If there exists a cover of X by open a�ne subsets (Ui)i∈I such that Ui enjoys the
property P for every i ∈ I, then every open a�ne subset of X enjoys P .

Proof. Let (Ui)i∈I be a cover of X by open a�ne subsets such that Ui = Spec(Ai)
enjoys P for every i ∈ I. Let U = Spec(A) be an open a�ne subscheme of X and
consider x ∈ U ⊆ X. Since X =

⋃
i∈I Ui, there exists i ∈ I such that x ∈ Ui.

So x ∈ U ∩ Ui. By lemma 2.2.5, there exists Wx ⊆ U ∩ Ui such that x ∈ Wx

and Wx = D(fx) = D(gx) for some fx ∈ A, gx ∈ Ai. Since Ui = Spec(Ai) enjoys
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P , Spec(Agx) = D(gx) enjoys P , by the �rst assumption. Consider now (fx)x∈U ,
which is a collection of elements of A. Since x ∈ D(fx) for any x ∈ U , we have
that U =

⋃
x∈U D(fx). Consider now the ideal

∑
x∈U fxA ⊆ A. If it was a proper

ideal, there would exist a maximal ideal m such that
∑

x∈U fxA ⊆ m, i.e. fx ∈ m
for any x ∈ U . Then m ∈ Spec(A) = U , but m /∈ D(fx), for any x ∈ U . This is a
contradiction. So

∑
x∈U fxA = A. Since D(fx) = D(gx) enjoys P for every x ∈ U , it

follows that U enjoys P , by the second assumption.

Lemma 2.2.7. Let (X,OX) be a scheme and let f ∈ OX(X). We de�ne

Xf := {x ∈ X | fx /∈ mX,x} = {x ∈ X | fx ∈ OX,x\mX,x = O×X,x} ⊆ X .

Then we have that:

(1) Xf is open;

(2) ρX,Xf (f) ∈ OX(Xf )×, where ρX,Xf : OX(X) → OX(Xf ) is the restriction
map;

(3) if there exists a �nite cover (Ui = Spec(Ai))i=1,...,n of X by open a�ne subsets
such that for every i, j = 1, . . . , n the intersection Ui ∩ Uj is a �nite union
of open a�ne subsets, then the induced ring homomorphism ρ̃ : OX(X)f →
OX(Xf ) is an isomorphism.

Proof. (1) Let x ∈ Xf . By de�nition, this means that fx ∈ O×X,x. Then there
exists ϕ ∈ OX,x such that fxϕ = 1. By de�nition of stalk, there exist an
open neighbourhood U of x in X and g ∈ OX(U) such that ϕ = gx. Then
fxgx = 1 = 1x. Again by de�nition of stalk, this implies that there exists an
open neighbourhood V ⊆ X ∩ U = U of x such that ρX,V (f)ρU,V (g) = 1 (we
denote by ρX,V and ρU,V the restriction maps). Then, for any x′ ∈ V we have
that fx′gx′ = ρX,V (f)x′ρU,V (g)x′ = 1x′ = 1 and so fx′ ∈ O×X,x′ , i.e. x

′ ∈ Xf .
So V ⊆ Xf . This proves that Xf is open.

(2) From the proof of point (1), for every x ∈ Xf there exist an open neighbourhood
Vx ⊆ Xf of x and g(x) ∈ OX(Vx) such that ρX,Vx(f) · g(x) = 1. Then we have
that Xf =

⋃
x∈Xf Vx. Consider the collection

(
g(x)

)
x∈Xf

⊆
∏
x∈Xf OX(Vx).

Let x, x′ ∈ Xf and consider ρVx,Vx∩Vx′
(
g(x)

)
, ρVx′ ,Vx∩Vx′

(
g(x′)

)
∈ OX(Vx ∩

Vx′). Let x′′ ∈ Vx ∩ Vx′ . Since x′′ ∈ Vx and ρX,Vx(f) · g(x) = 1, we have
that fx′′

(
g(x)

)
x′′

= ρX,Vx(f)x′′
(
g(x)

)
x′′

= 1x′′ = 1. Analogously, we have

fx′′
(
g(x′)

)
x′′

= ρX,Vx′ (f)x′′
(
g(x′)

)
x′′

= 1x′′ = 1. By uniqueness of the in-

verse, this implies that
(
g(x)

)
x′′

=
(
g(x′)

)
x′′

By de�nition of stalk, there ex-

ists an open neighbourhood Wx′′ of x′′ in Vx ∩ Vx′ such that ρVx,Wx′′

(
g(x)

)
=

ρVx′ ,Wx′′

(
g(x′)

)
. We have that Vx∩Vx′ =

⋃
x′′∈Vx∩Vx′

Wx′′ . Then, by de�nition
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of sheaf, we get ρVx,Vx∩Vx′
(
g(x)

)
= ρVx′ ,Vx∩Vx′

(
g(x′)

)
, because

ρVx∩Vx′ ,Wx′′

(
ρVx,Vx∩Vx′

(
g(x)

))
= ρVx,Wx′′

(
g(x)

)
=

= ρVx′ ,Wx′′

(
g(x′)

)
= ρVx∩Vx′ ,Wx′′

(
ρVx′ ,Vx∩Vx′

(
g(x′)

))
for every x′′ ∈ Vx ∩ Vx′ . By de�nition of sheaf, there exists g ∈ OX(Xf ) such
that g(x) = ρXf ,Vx(g) for every x ∈ X. Then ρX,Vx(fg) = ρX,Vx(f)ρX,Vx(g) =

ρX,Vx(f) · g(x) = 1 = ρX,Vx(1) for every x ∈ Xf (because the restriction maps
are ring homomorphisms). By de�nition of sheaf, this implies that fg = 1
(because Xf =

⋃
x∈Xf Vx). Then f ∈ OX(Xf )×.

(3) By point (2), ρX,Xf (fn) = ρX,Xf (f)n ∈ OX(Xf )× for every n ≥ 0, i.e.
ρX,Xf (Sf ) ⊆ OX(Xf )×. By the universal property of the localization, the
ring homomorphism ρX,Xf : OX(X) → OX(Xf ) induces indeed a ring homo-
morphism ρ̃ : OX(X)f → OX(Xf ).
Consider i ∈ {1, . . . , n} and de�ne

fi := ρX,Ui(f) ∈ OX(Ui) = OSpec(Ai)(Spec(Ai)) = Ai .

We have that

Xf ∩ Ui = {x ∈ Ui | fx /∈ mX,x} = {x ∈ Ui | (fi)x = ρX,Ui(f)x /∈ mX,x} =

= {p ∈ Spec(Ai) | (fi)p /∈ mSpec(Ai),p} = (Spec(Ai))fi .

IdentifyingOSpec(Ai),p with (Ai)p andmSpec(Ai),p with pp for every p ∈ Spec(Ai),
we get that

(Spec(Ai))fi =

{
p ∈ Spec(Ai)

∣∣∣∣ fi1 /∈ pp

}
= {p ∈ Spec(Ai) | fi /∈ p} = D(fi) .

So Xf ∩ Ui = D(fi). The restriction map

ρUi,D(fi) : OX(Ui) = Ai → OX(D(fi)) = OSpec(Ai)(D(fi))

induces a ring homomorphism ρ̃i : (Ai)fi → OSpec(Ai)(D(fi)) and we know that
this is an isomorphism by the properties of a�ne schemes. This holds for every
i = 1, . . . , n. Let now g

fm ∈ Ker(ρ̃) ⊆ OX(X)f , with g ∈ OX(X) and m ∈ N.

Then ρX,Xf (g)ρX,Xf (f)−m = ρ̃
(

g
fm

)
= 0. Multiplying by ρX,Xf (f)m, we get

that ρX,Xf (g) = 0. Let i ∈ {1, . . . , n}. Then

ρUi,D(fi)(ρX,Ui(g)) = ρX,D(fi)(g) = ρXf ,D(fi)(ρX,Xf (g)) = ρXf ,D(fi)(0) = 0 .

This implies that ρ̃i
(
ρX,Ui (g)

1

)
= ρUi,D(fi)(g) = 0. Since ρ̃i is an isomorphism,

we have that
ρX,Ui (g)

1 = 0 in (Ai)fi . This means that there exists ri ∈ N such
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that f rii ρX,Ui(g) = 0. De�ne r := maxi=1,...,n ri. Then, since ρX,Ui is a ring
homomorphism,

ρX,Ui(f
rg) = ρX,Ui(f)rρX,Ui(g) = f ri ρX,Ui(g) =

= f r−rii f rii ρX,Ui(g) = f r−rii · 0 = 0

for every i = 1, . . . , n. Since X =
⋃n
i=1 Ui, this implies that f rg = 0, by

de�nition of sheaf. Then g
fm = frg

fm+r = 0. So Ker(ρ̃) = 0, i.e. ρ̃ is injective.
Notice that we used only the fact that we had a �nite cover: for injectivity the
assumption about the intersections is not needed.
On the other hand, let g ∈ OX(Xf ). Consider i ∈ {1, . . . , n} and ρXf ,D(fi)(g) ∈
OX(D(fi)) = OSpec(Ai)(D(fi)). Since ρ̃i is an isomorphism, there exist hi ∈ Ai,
mi ∈ N such that ρXf ,D(fi)(g) = ρ̃i

(
hi
f
mi
i

)
. De�ne m := maxi=1,...,nmi. Then,

for every i = 1, . . . , n, we have that hi
f
mi
i

=
f
m−mi
i hi
fmi

= h̃i
fmi

, where we de�ned

h̃i := fm−mii hi ∈ Ai. So

ρXf ,D(fi)(g) = ρ̃i

(
hi
fmii

)
= ρ̃i

(
h̃i
fmi

)
= ρUi,D(fi)

(
h̃i

)
ρUi,D(fi)(fi)

−m .

Let now i, j ∈ {1, . . . , n}. By assumption, we can write Ui ∩ Uj =
⋃Kij
k=1 Vijk,

with Kij ∈ N and Vijk a�ne for every k = 1, . . . ,Kij . Let k ∈ {1, . . . ,Kij}
and Vijk = Spec(Bijk). We have that Vijk ∩ Xf ⊆ Ui ∩ Xf = D(fi) and
Vijk ∩Xf ⊆ Uj ∩Xf = D(fj). Then

ρXf ,Vijk∩Xf (g) = ρD(fi),Vijk∩Xf (ρXf ,D(fi)(g)) =

= ρD(fi),Vijk∩Xf

(
ρUi,D(fi)

(
h̃i

)
ρUi,D(fi)(fi)

−m
)

=

= ρD(fi),Vijk∩Xf

(
ρUi,D(fi)

(
h̃i

))
· ρD(fi),Vijk∩Xf (ρUi,D(fi)(ρX,Ui(f)))−m =

= ρUi,Vijk∩Xf

(
h̃i

)
ρX,Vijk∩Xf (f)−m

and

ρXf ,Vijk∩Xf (g) = ρD(fj),Vijk∩Xf (ρXf ,D(fj)(g)) =

= ρD(fj),Vijk∩Xf

(
ρUj ,D(fj)

(
h̃j

)
ρUj ,D(fj)(fj)

−m
)

=

= ρD(fj),Vijk∩Xf

(
ρUj ,D(fj)

(
h̃j

))
· ρD(fj),Vijk∩Xf (ρUj ,D(fj)(ρX,Uj (f)))−m =

= ρUj ,Vijk∩Xf

(
h̃j

)
ρX,Vijk∩Xf (f)−m .

So ρUi,Vijk∩Xf

(
h̃i

)
ρX,Vijk∩Xf (f)−m = ρUj ,Vijk∩Xf

(
h̃j

)
ρX,Vijk∩Xf (f)−m and,

multiplying by ρX,Vijk∩Xf (f)m, we get that

ρUi∩Uj∩Xf ,Vijk∩Xf

(
ρUi,Ui∩Uj∩Xf

(
h̃i

))
= ρUi,Vijk∩Xf

(
h̃i

)
=

= ρUj ,Vijk∩Xf

(
h̃j

)
= ρUi∩Uj∩Xf ,Vijk∩Xf

(
ρUj ,Ui∩Uj∩Xf

(
h̃j

))
.
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Since this holds for any k = 1, . . . ,Kij and Ui∩Uj ∩Xf =
(⋃Kij

k=1 Vijk

)
∩Xf =⋃Kij

k=1(Vijk∩Xf ), by de�nition of sheaf ρUi,Ui∩Uj∩Xf

(
h̃i

)
= ρUj ,Ui∩Uj∩Xf

(
h̃j

)
.

Notice now that

Ui ∩ Uj ∩Xf = {x ∈ Ui ∩ Uj | fx /∈ mX,x} =

= {x ∈ Ui ∩ Uj | ρX,Ui∩Uj (f)x /∈ mUi∩Uj ,x} = (Ui ∩ Uj)fij ,

where we de�ned fij := ρX,Ui∩Uj (f). Then the restriction map

ρUi∩Uj ,Ui∩Uj∩Xf : OX(Ui ∩ Uj) = OUi∩Uj (Ui ∩ Uj)→
→ OX(Ui ∩ Uj ∩Xf ) = OUi∩Uj

(
(Ui ∩ Uj)fij

)
induces a ring homomorphism

ρ̃ij : OUi∩Uj (Ui ∩ Uj)fij → OUi∩Uj
(
(Ui ∩ Uj)fij

)
,

which is injective by what we proved above, because Ui ∩ Uj admits a �nite
cover by open a�ne subsets and this is the only assumption that we used to
prove that ρ̃ is injective. Now we have that

ρ̃ij

ρUi,Ui∩Uj
(
h̃i

)
1

 = ρUi∩Uj ,Ui∩Uj∩Xf

(
ρUi,Ui∩Uj

(
h̃i

))
=

= ρUi,Ui∩Uj∩Xf

(
h̃i

)
= ρUj ,Ui∩Uj∩Xf

(
h̃j

)
=

= ρUi∩Uj ,Ui∩Uj∩Xf

(
ρUj ,Ui∩Uj

(
h̃j

))
= ρ̃ij

ρUj ,Ui∩Uj
(
h̃j

)
1

 .

Since ρ̃ij is injective, this implies that
ρUi,Ui∩Uj (h̃i)

1 =
ρUj,Ui∩Uj (h̃j)

1 in OX(Ui ∩
Uj)ρX,Ui∩Uj (f). This means that there exists rij ∈ N such that

f
rij
ij

(
ρUi,Ui∩Uj

(
h̃i

)
· 1− ρUj ,Ui∩Uj

(
h̃j

)
· 1
)

= 0 ,

i.e. f
rij
ij ρUi,Ui∩Uj

(
h̃i

)
= f

rij
ij ρUj ,Ui∩Uj

(
h̃j

)
. Let r := maxi,j=1,...,n rij . Then

ρUi,Ui∩Uj

(
f ri h̃i

)
= ρUi,Ui∩Uj (fi)

rρUi,Ui∩Uj

(
h̃i

)
=

= ρUi,Ui∩Uj (ρU,Ui(f))rρUi,Ui∩Uj

(
h̃i

)
= f rijρUi,Ui∩Uj

(
h̃i

)
=

= f
r−rij
ij f

rij
ij ρUi,Ui∩Uj

(
h̃i

)
= f

r−rij
ij f

rij
ij ρUj ,Ui∩Uj

(
h̃j

)
=

= f rijρUj ,Ui∩Uj

(
h̃j

)
= ρUj ,Ui∩Uj (ρU,Uj (f))rρUj ,Ui∩Uj

(
h̃j

)
=

= ρUj ,Ui∩Uj (fj)
rρUj ,Ui∩Uj

(
h̃j

)
= ρUj ,Ui∩Uj

(
f rj h̃j

)
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for every i, j = 1, . . . , n. Then, considering
(
f ri h̃i

)
⊆
∏n
i=1OX(Ui), we get (by

de�nition of sheaf) that there exists h ∈ OX(X) such that ρX,Ui(h) = f ri h̃i for
every i = 1, . . . , n. Then

ρXf ,D(fi)

(
ρ̃

(
h

fm+r

))
= ρXf ,D(fi)(ρX,Xf (h)ρX,Xf (f)−m−r) =

= ρXf ,D(fi)(ρX,Xf (h))ρXf ,D(fi)(ρX,Xf (f))−m−r =

= ρX,D(fi)(h)ρX,D(fi)(f)−m−r = ρUi,D(fi)(ρX,Ui(h))ρUi,D(fi)(ρX,Ui(f))−m−r =

= ρUi,D(fi)

(
f ri h̃i

)
ρUi,D(fi)(fi)

−m−r =

= ρUi,D(fi)(fi)
rρUi,D(fi)

(
h̃i

)
ρUi,D(fi)(fi)

−m−r =

= ρUi,D(fi)

(
h̃i

)
ρUi,D(fi)(fi)

−m = ρXf ,D(fi)(g)

for any i = 1, . . . , n. Since Xf =
⋃n
i=1(Xf ∩ Ui) =

⋃n
i=1 D(fi), by de�nition of

sheaf we get that ρ̃
(

h
fm+r

)
= g. Hence ρ̃ is surjective.

Remark 2.2.8. If (X,OX) = Spec(A) is an a�ne scheme, then for any f ∈ OX(X) =
A we have that Xf = D(f) (see the proof of 2.2.7(3)). Then the lemma 2.2.7 is a
generalization of the fact that OSpec(A)(D(f)) ∼= Af .

Lemma 2.2.9. Let X be a scheme and denote by A := OX(X) the ring of global
sections. Then X is a�ne (and isomorphic to Spec(A)) if and only if there exists a
collection (fi)i∈I of elements of A such that

∑
i∈I fiA = A and Xfi (de�ned as in

lemma 2.2.7) is a�ne for every i ∈ I.

Proof. If X is a�ne, consider I = {1} and f1 = 1 ∈ A. Then we have that∑
i∈I fiA = f1A = 1A = A and

Xf1 = X1 = {x ∈ X | 1 = 1x /∈ mX,x} = X

is a�ne (the last equality follows from the fact that mX,x is a proper ideal of OX,x).
Moreover, if X ∼= Spec(A′), we have that A′ = OSpec(A′)(Spec(A′)) ∼= OX(X) = A.
So X ∼= Spec(A′) ∼= Spec(A).
Conversely, let (fi)i∈I be a collection of elements of A such that

∑
i∈I fiA = A

and Xfi is a�ne for every i ∈ I. For any open a�ne subset U = Spec(B) ⊆
X, the restriction map ρX,U : OX(X) = A → OX(U) = OSpec(B)(Spec(B)) = B
(which is a ring homomorphism) induces a morphism of schemes ϕU : Spec(B) =
U → Spec(A). These morphisms are all compatible with each other. Indeed, if
U1 = Spec(B1) and U2 = Spec(B2) are two open a�ne subsets of X, then we can
cover the intersection U1∩U2 with open a�ne subsets (distinguished open subsets of
Spec(B1) or of Spec(B2)) and we have that (ϕU1)|V = ϕV = (ϕU2)|V for every open
a�ne subset V ⊆ U1 ∩ U2. So (ϕU1)|U1∩U2

= (ϕU2)|U1∩U2
. Then, since X is covered

by its open a�ne subsets, we can glue the morphisms ϕU 's and get a morphism of
schemes ϕ : X → Spec(A). Our aim is now to prove that ϕ is an isomorphism.

154



2.2. FINITE ÉTALE MORPHISMS

Let ϕ# : OSpec(A)(Spec(A)) = A→ OX(X) = A be the ring homomorphism induced
by ϕ. Let a ∈ A = OX(X) and consider ϕ#(a) ∈ OX(X). For every open a�ne
subset U of X, we have that ρX,U ◦ϕ# = ρX,U by de�nition of ϕ, so ρX,U (ϕ#(a)) =
ρX,U (a). Since X is covered by its open a�ne subsets, by de�nition of sheaf we must
have ϕ#(a) = a. Since this holds for every a ∈ A, it follows that ϕ# = idA. Fix now
j ∈ I. Recalling that D(fj) = Spec(A)fj (see remark 2.2.8 or the proof of lemma
2.2.7(3)), we have that

ϕ−1(D(fj)) = {x ∈ X | ϕ(x) ∈ D(fj) = Spec(A)fj} =

= {x ∈ X | (fj)ϕ(x) /∈ mSpec(A),ϕ(x)} =

= {x ∈ X | (fj)x = (ϕ#(fj))x /∈ mX,x} = Xfj ,

by de�nition of morphism of schemes. By assumption, Xfj is a�ne. Then, by
de�nition of ϕ, we have that ϕ|ϕ−1(D(fj))

= ϕXfj : Xfj → Spec(A) corresponds to the

restriction ρX,Xfj : OX(X) = A → OX(Xfj ). So ϕXfj : Xfj = ϕ−1(D(fj)) → D(fj)

corresponds to the induced ring homomorphism

ρ̃j : OX(X)fj → OX(Xfj ) .

We prove now that X satis�es the assumptions of lemma 2.2.7(3). Since
∑

i∈I fiA =
A, there exist n ∈ N, i1, . . . , ik ∈ I and λ1, . . . , λn ∈ A such that 1 =

∑n
k=1 λkfik .

Let now x ∈ X. Assume by contradiction that x /∈ Xfik
for any k ∈ {1, . . . , n}. This

means that (fik)x ∈ mX,x for any k ∈ {1, . . . , n}. Then 1x =
∑n

k=1(λk)x(fik)x ∈
mX,x. This is a contradiction, because mX,x is a proper ideal of OX,x. Then there
exists k ∈ {1, . . . , n} such that x ∈ Xfik

. This shows that X =
⋃n
k=1Xfik

. By
assumption, Xfik

is a�ne for every k = 1, . . . , n. Let h, k ∈ {1, . . . , n} and consider
the intersection Xfih

∩Xfik
. If Xfih

= Spec(Bh), as in the proof of lemma 2.2.7(3)
we have that

Xfih
∩Xfik

= Spec(Bh) ∩Xfik
= D(ρX,Xfih

(fik)) = Spec

(
(Bh)ρX,Xfih

(fik )

)
is a�ne. Then by lemma 2.2.7(3) we have that ρ̃j is an isomorphism and so the
corresponding morphism of schemes ϕXfj : Xfj = ϕ−1(D(fj))→ D(fj) is an isomor-

phism. So we can consider its inverse ψj := ϕ−1
Xfj

: D(fj) → Xfj . The morphisms

ψj 's are all compatible with each other. Indeed, for any i, j ∈ I we have that

(ψi)|D(fi)∩D(fj)
=
(
ϕ−1
Xfi

)
|D(fi)∩D(fj)

=

(
(ϕXfi )|Xfi∩Xfj

)−1

=

(
ϕ|Xfi∩Xfj

)−1

=

=

(
(ϕXfj )|Xfi∩Xfj

)−1

=
(
ϕ−1
Xfj

)
|D(fi)∩D(fj)

= (ψj)|D(fi)∩D(fj)
.

Let p ∈ Spec(A). In particular, p is a proper ideal of A. Then there exists i ∈ I
such that fi /∈ p, because otherwise we would have A =

∑
i∈I fiA ⊆ p. This means

that p ∈ D(fi). Then Spec(A) =
⋃
i∈I D(fi). So we can glue the ψj 's and get a
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morphism of schemes ψ : Spec(A) → X. We have that ϕ and ψ are inverse to each
other, because this is true considering the restrictions to ϕ−1(D(fi)) and D(fi) for
every i ∈ I. So ϕ is an isomorphism of schemes and X ∼= Spec(A) is a�ne.

Lemma 2.2.10. Let X, Y be two schemes and f : Y → X a morphism of schemes.
We have that:

(1) f is a�ne if and only if f−1(U) is a�ne for every open a�ne subscheme U of
X;

(2) f is �nite if and only if for every open a�ne subscheme U = Spec(A) of X
the open subscheme f−1(U) of Y is a�ne and equal to Spec(B), where the
A-algebra B is �nitely generated as an A-module;

(3) f is �nite and locally free if and only if for every open a�ne subscheme U =
Spec(A) of X the open subscheme f−1(U) of Y is a�ne and equal to Spec(B),
where B is a �nite projective A-algebra;

(4) f is �nite étale if and only if for every open a�ne subscheme U = Spec(A) of
X the open subscheme f−1(U) of Y is a�ne and equal to Spec(B), where B
is a projective separable A-algebra.

Proof. (1) If f−1(U) is a�ne for every open a�ne subscheme U of X, then every
cover of X by open a�ne subsets satis�es the condition required in the de�ni-
tion and such a cover exists by de�nition of scheme. So f is a�ne.
Conversely, assume that f is a�ne. Then there exists a cover of X by open
a�ne subsets (Ui)i∈I such that f−1(Ui) is a�ne. We want to prove that
the property of having a�ne preimage satis�es the assumptions of the a�ne
communication lemma. Let U = Spec(A) be an open a�ne subscheme of
X such that f−1(U) is a�ne and f−1(U) = Spec(B). The morphism f :
f−1(U) = Spec(B) → U = Spec(A) corresponds to a ring homomorphism
f# : A → B. Let s ∈ A. By de�nition of morphism of schemes, we have
that f−1(D(s)) = D(f#(s)) = Spec(Bf#(s)). So Spec(As) = D(s) has a�ne
preimage.
On the other hand, let U = Spec(A) be an open a�ne subset of X and let
(si)i∈I be a collection of elements of A such that

∑
i∈I siA = A and f−1(D(si))

is a�ne for every i ∈ I. De�ne B := OY (f−1(U)) = Of−1(U)(f
−1(U)).

The morphism of schemes f induces a ring homomorphism f# : OX(U) =
OSpec(A)(Spec(A)) = A→ OY (f−1(U)) = B. Since

∑
i∈I siA = A, there exist

λi ∈ A (for every i ∈ I) such that 1A =
∑

i∈I siλi. Then, since f# is a ring
homomorphism, we have that

1B = f#(1A) = f#

(∑
i∈I

siλi

)
=
∑
i∈I

f#(si)f
#(si) ∈

∑
i∈I

f#(si)B .

Since
∑

i∈I f
#(si)B is an ideal of B, this implies that

∑
i∈I f

#(si)B = B.
Moreover, let i ∈ I. Recalling that D(si) = Spec(A)si (see remark 2.2.8 or the
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proof of lemma 2.2.7(3)), we have that

f−1(D(si)) = {y ∈ Y | f(y) ∈ D(si) = Spec(A)si} =

= {y ∈ f−1(U) | (si)f(y) /∈ mSpec(A),f(y)} =

= {y ∈ f−1(U) | (f#(si))y /∈ mf−1(U),y} = f−1(U)f#(si) ,

by de�nition of morphism of schemes. So f−1(U)f#(si) is a�ne. Then f−1(U)
satis�es the assumptions of lemma 2.2.9. This allows us to conclude that
f−1(U) is a�ne. By the a�ne communication lemma, we get the claim.

(2) If for every open a�ne subscheme U = Spec(A) of X the open subscheme
f−1(U) of Y is a�ne and equal to Spec(B), where the A-algebra B is �nitely
generated as an A-module, then every cover ofX by open a�ne subsets satis�es
the condition required in the de�nition and such a cover exists by de�nition of
scheme. So f is �nite.
Conversely, assume that f is �nite. Then there exists a cover of X by open
a�ne subsets (Ui = Spec(Ai))i∈I such that, for any i ∈ I, f−1(Ui) is a�ne
and equal to Spec(Bi), where the Ai-algebra Bi is �nitely generated as an Ai-
module. We want to prove that the property �f−1(Spec(A)) = Spec(B) with
B �nitely generated as an A-module� satis�es the assumptions of the a�ne
communication lemma. Let U = Spec(A) be an open a�ne subscheme of X
such that f−1(U) is a�ne and f−1(U) = Spec(B), where the A-algebra B is
�nitely generated as an A-module. The morphism f : f−1(U) = Spec(B) →
U = Spec(A) corresponds to a ring homomorphism f# : A→ B. Let s ∈ A and
consider D(s) = Spec(As). As above, we have that f−1(D(s)) = D(f#(s)) =
Spec(Bf#(s)) is a�ne. Moreover, if (w1, . . . , wn) generates B over A, then(
w1
1 , . . . ,

wn
1

)
generates Bf#(s) over As (notice that Bf#(s)

∼= Bs as an As-
module). So Bf#(s) is �nitely generated as an As-module.
On the other hand, let U = Spec(A) be an open a�ne subset of X and let
(si)i∈I be a collection of elements of A such that

∑
i∈I siA = A and, for every

i ∈ I, f−1(D(si)) is a�ne and equal to Spec(Bi), where the Asi-algebra Bi is
�nitely generated as an Asi-module. Since f is �nite, it is in particular a�ne.
So, by point (1), we have that f−1(U) is a�ne, i.e. there exists a ring B
such that f−1(U) = Spec(B). Then for every i ∈ I we have that Spec(Bi) =
f−1(D(si)) = D(f#(si)) = Spec(Bf#(si)). Then Bi

∼= Bf#(si)
∼= Bsi as an Asi-

module. So Bsi is �nitely generated as an Asi-module for any i ∈ I. By lemma
2.1.29(3), B is �nitely generated as an A-module. By the a�ne communication
lemma, we get the claim.

(3) Assume that for every open a�ne subscheme U = Spec(A) of X the open
subscheme f−1(U) of Y is a�ne and equal to Spec(B), where B is a �nite
projective A-algebra. By de�nition of scheme, there exists a cover of X by
open a�ne subsets (Ui = Spec(Ai))i∈I . By assumption, for every i ∈ I we
have f−1(Ui) = Spec(Bi), where Bi is a �nite projective Ai-algebra. Fix
i ∈ I. By proposition 2.1.30 ((i) =⇒ (iv)), there exists a collection (sij)j∈Ji
of elements of Ai such that

∑
j∈Ji sijAi = Ai and for each j ∈ Ji we have that
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(Bi)sij is a free (Ai)sij -module of �nite rank. De�ne now Uij = Spec((Ai)sij ) =
D(sij) ⊆ Spec(Ai) = Ui, for every i ∈ I, j ∈ Ji. Then Uij is an open a�ne
subset of X for any i ∈ I, j ∈ Ji. Moreover, if p ∈ Spec(Ai) then there exists
j ∈ Ji such that sij /∈ p (otherwise we would have Ai =

∑
j∈Ji sijAi ⊆ p,

which is a contradiction because any prime ideal is a proper ideal). This
means that p ∈ D(fij) = Uij . So Ui =

⋃
j∈Ji Uij , for any i ∈ I. Then

X =
⋃
i∈I Ui =

⋃
i∈I
⋃
j∈Ji Uij , i.e. (Uij)i∈I, j∈Ji is a cover of X by open a�ne

subsets. Let i ∈ I, j ∈ Ji. The morphism f : f−1(Ui) = Spec(Bi) → Ui =
Spec(Ai) corresponds to a ring homomorphism f# : Ai → Bi. As above,
we have that f−1(Uij) = f−1(D(sij)) = D(f#(sij)) = Spec((Bi)f#(sij)). But
(Bi)f#(sij)

∼= (Bi)sij is �nitely generated and free as an (Ai)sij -module. So f
is �nite and locally free.
Conversely, assume that f is �nite and locally free. Then there exists a cover
of X by open a�ne subsets (Ui = Spec(Ai))i∈I such that, for any i ∈ I,
f−1(Ui) is a�ne and equal to Spec(Bi), where the Ai-algebra Bi is �nitely
generated and free as an Ai-module. In particular, Bi is �nitely generated and
projective as an Ai-module, i.e. it is a �nite projective Ai-algebra. We want to
prove that the property �f−1(Spec(A)) = Spec(B) with B a �nite projective
A-algebra� satis�es the assumptions of the a�ne communication lemma. Let
U = Spec(A) be an open a�ne subscheme of X such that f−1(U) is a�ne and
f−1(U) = Spec(B), where B is a �nite projective A-algebra. The morphism
f : f−1(U) = Spec(B) → U = Spec(A) corresponds to a ring homomorphism
f# : A → B. Let s ∈ A and consider D(s) = Spec(As). As above, we have
that f−1(D(s)) = D(f#(s)) = Spec(Bf#(s)) is a�ne and Bf#(s) is �nitely
generated as an As-module, because B is �nitely generated over A. Moreover,
Bf#(s)

∼= Bs ∼= B ⊗A As is projective as an As-module by lemma 2.1.24. So
Bf#(s) is a �nite projective As-algebra.
On the other hand, let U = Spec(A) be an open a�ne subset of X and let
(si)i∈I be a collection of elements of A such that

∑
i∈I siA = A and, for

every i ∈ I, f−1(D(si)) is a�ne and equal to Spec(Bi), where Bi is a �nite
projective Asi-algebra. Since f is �nite and locally free, it is in particular
a�ne. So, by point (1), we have that f−1(U) is a�ne, i.e. there exists a ring
B such that f−1(U) = Spec(B). Then for every i ∈ I we have that Spec(Bi) =
f−1(D(si)) = D(f#(si)) = Spec(Bf#(si)). Fix i ∈ I. Then Bi ∼= Bf#(si)

∼= Bsi
as an Asi-module. So Bsi is a �nite projective Asi-algebra, i.e. it is �nitely
generated and projective as an Asi-module. Since this holds for every i ∈ I,
by corollary 2.1.32 we have that B is �nitely generated and projective as an
A-module, i.e. B is a �nite projective A-algebra. By the a�ne communication
lemma, we get the claim.

(4) Assume that for every open a�ne subscheme U = Spec(A) of X the open
subscheme f−1(U) of Y is a�ne and equal to Spec(B), where B is a projec-
tive separable A-algebra. Since any projective separable A-algebra is a �nite
projective A-algebra, we can apply point (3) to get that f is �nite and locally
free. So there exists a cover of X by open a�ne subsets (Ui = Spec(Ai))i∈I
such that, for every i ∈ I, f−1(Ui) is a�ne and equal to Spec(Bi), where the
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Ai-algebra Bi is �nitely generated and free as an Ai-module. By assumption
we have also that Bi is a projective separable Ai-algebra. Combining the two
things, we get that Bi is a free separable Ai-algebra for every i ∈ I (see remark
2.1.61). So f is �nite étale.
Conversely, assume that f is �nite étale. Then there exists a cover of X
by open a�ne subsets (Ui = Spec(Ai))i∈I such that, for any i ∈ I, f−1(Ui)
is a�ne and equal to Spec(Bi), where Bi is a free separable Ai-algebra. In
particular, Bi is a projective separable Ai-algebra. We want to prove that
the property �f−1(Spec(A)) = Spec(B) with B a projective separable A-
algebra� satis�es the assumptions of the a�ne communication lemma. Let
U = Spec(A) be an open a�ne subscheme of X such that f−1(U) is a�ne
and f−1(U) = Spec(B), where B is a projective separable A-algebra. The
morphism f : f−1(U) = Spec(B) → U = Spec(A) corresponds to a ring ho-
momorphism f# : A → B. Let s ∈ A and consider D(s) = Spec(As). As
above, we have that f−1(D(s)) = D(f#(s)) = Spec(Bf#(s)) is a�ne. More-
over, Bf#(s)

∼= Bs ∼= B ⊗A As is a projective separable As-algebra by lemma
2.1.71.
On the other hand, let U = Spec(A) be an open a�ne subset of X and
let (si)i∈I be a collection of elements of A such that

∑
i∈I siA = A and,

for every i ∈ I, f−1(D(si)) is a�ne and equal to Spec(Bi), where Bi is a
projective separable Asi-algebra. Since f is �nite étale, it is in particular
a�ne. So, by point (1), we have that f−1(U) is a�ne, i.e. there exists a
ring B such that f−1(U) = Spec(B). Then for every i ∈ I we have that
Spec(Bi) = f−1(D(si)) = D(f#(si)) = Spec(Bf#(si)). Fix i ∈ I. Then
Bi ∼= Bf#(si)

∼= Bsi as an Asi-module. So Bsi is a projective separable Asi-
algebra. Since this holds for every i ∈ I, by proposition 2.1.73 we have that B
is a projective separable A-algebra. By the a�ne communication lemma, we
get the claim.

Remark 2.2.11. It is now clear why we had to introduce the notion of projective
algebras: the properties �f−1(Spec(A)) = Spec(B) with B �nitely generated and
free as an A-module� and �f−1(Spec(A)) = Spec(B) with B a free separable A-
algebra� do not satisfy the assumptions of the communication lemma (more precisely,
the second assumption). Then the notion of free separable algebras would not be
enough to give a complete a�ne description of �nite étale morphisms.

Lemma 2.2.12. Let X, Y be schemes and f : Y → X a �nite and locally free
morphism of schemes. For any open a�ne subscheme U = Spec(A) of X, de�ne
dU := [B : A] : U = Spec(A) → Z (see the de�nitions 2.1.51 and 2.1.35), where
B is the �nite projective A-algebra such that f−1(U) = Spec(B) (lemma 2.2.10(3)).
Then there exists a locally constant function d : sp(X)→ Z (where sp(X) denotes the
underlying topological space of X) such that d|U = dU for every open a�ne subscheme
U of X. In particular, d is continuous (considering the discrete topology on Z) and
it is constant if X is connected.

Proof. We have that dU is locally constant for every open a�ne subscheme U =
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Spec(A), by corollary 2.1.33(2). Then, since open a�ne subsets cover X (by def-
inition of scheme), it is enough to show that the the dU 's agree on the overlaps.
Let U1 = Spec(A1) and U2 = Spec(A2) be two open a�ne subschemes of X, with
f−1(U1) = Spec(B1) and f−1(U2) = Spec(B2) (B1 and B2 �nite projective alge-
bras over A1 and A2, respectively). Let p ∈ U1 ∩ U2. By lemma 2.2.5, there exists
W ⊆ U ∩ V such that p ∈ W and W = D(s) = D(t) for some s ∈ A1, t ∈ A2.
Then s /∈ p and t /∈ p. Since p is prime, this implies sn, tn /∈ p for any n ∈ N, i.e.
Ss ⊆ A1\p and St ⊆ A2\p. We have that W = Spec((A1)s) = Spec((A2)t) is a�ne.
We identify p with ps ∈ Spec((A1)s) and pt ∈ Spec((A2)t). Let f#

1 : OX(U1) =
OSpec(A1)(Spec(A1)) = A1 → OY (f−1(U1)) = OSpec(B1)(Spec(B1)) = B1 be the ring

homomorphism induced by f . We have that f−1(W ) = f−1(D(s)) = D(f#
1 (s)) =

Spec
(

(B1)
f#
1 (s)

)
. Then

dW (p) = [(B1)
f#
1 (s)

: (A1)s](ps) = rank((A1)s)ps

((
(B1)

f#
1 (s)

)
ps

)
.

We have that (B1)
f#
1 (s)
∼= (B1)s as an (A1)s-module. So

(
(B1)

f#
1 (s)

)
ps

∼= ((B1)s)ps

as ((A1)s)ps-modules. We have also that ((A1)s)ps
∼= (A1)p. This isomorphism allows

us to see
(

(B1)
f#
1 (s)

)
ps

∼= ((B1)s)ps as as an (A1)p-module (free of the same rank).

Then ((B1)s)ps
∼= (B1)p as (A1)p-modules and so

dW (p) = rank((A1)s)ps

((
(B1)

f#
1 (s)

)
ps

)
= rank(A1)p((B1)p) = [B1 : A1](p) = dU1(p) .

Analogously, one can prove that dW (p) = dU2(p). Then dU1(p) = dU2(p). Since this
holds for every p ∈ U1 ∩ U2, we get that (dU1)|U1∩U2

= (dU2)|U1∩U2
.

Remark 2.2.13. Let X, Y be schemes and f : Y → X a �nite and locally free
morphism of schemes. Consider the pushforward f∗OY , which is a sheaf of OX -
algebras. Applying remark 2.1.31 to any open a�ne subscheme, one gets that f∗OY
is locally free of �nite rank as an OX -module. Then the function d de�ned in 2.2.12
could also be obtained by working on stalks, as in 2.1.34. However, notice that these
stalks are not stalks of OY .

De�nition 2.2.14. Let X, Y be schemes and f : Y → X a �nite and locally free
morphism of schemes. We denote the function d de�ned in 2.2.12 by [Y : X] or
deg(f) and we call it the degree of Y over X or the degree of f .

The following lemma illustrates the importance of the degree of a �nite and
locally free morphism.

Lemma 2.2.15. Let X, Y be two schemes and f : Y → X a �nite and locally free
morphism of schemes. Then:

(1) Y = ∅ if and only if [Y : X] = 0 (i.e. [Y : X](x) = 0 for any x ∈ X);

(2) f is an isomorphism if and only if [Y : X] = 1 (i.e. [Y : X](x) = 1 for any
x ∈ X);
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(3) f is surjective if and only if [Y : X] ≥ 1 (i.e. [Y : X](x) ≥ 1 for any x ∈ X),
and if and only if for every open a�ne subset U = Spec(A) of X we have
f−1(U) = Spec(B), where B is a faithfully projective A-algebra.

Proof. Recall that for every open a�ne subset U of X the preimage f−1(U) is a�ne
and equal to Spec(B), with B a �nite projective A-algebra (lemma 2.2.10(3)). More-
over, for every open a�ne subset U of X, let dU be de�ned as in lemma 2.2.12.

(1) If Y = ∅, then f−1(U) = ∅ = Spec(0) for every open a�ne subset U = Spec(A)
of X, which implies that dU = [0 : A] = 0. So [Y : X] = 0.
Conversely, assume that [Y : X] = 0. Let U = Spec(A) be an open a�ne
subset of X, with f−1(U) = Spec(B) (B a �nite projective A-algebra). Then
[B : A] = dU = [Y : X]|U = 0, which means that for every prime ideal p of A
we have rankAp(Bp) = 0, i.e. Bp = 0. By lemma 2.1.28(1), this implies that
B = 0. So f−1(U) = Spec(0) = ∅. By de�nition of scheme, X is covered by its
open a�ne subsets. Then

Y = f−1(X) = f−1

 ⋃
U⊆X

open a�ne

U

 =
⋃
U⊆X

open a�ne

f−1(U) =
⋃
U⊆X

open a�ne

∅ = ∅ .

(2) Assume that f is an isomorphism. Then for every open a�ne subset U =
Spec(A) of X we have that f−1(U) ∼= U = Spec(A) and dU = [A : A] = 1. So
[Y : X] = 1.
Conversely, assume that [Y : X] = 1. Let U = Spec(A) be an open a�ne
subset of X, with f−1(U) = Spec(B) (B a �nite projective A-algebra). Then
[B : A] = dU = [Y : X]|U = 1. By lemma 2.1.58(3), this implies that the
ring homomorphism f# : A → B induced by f : f−1(U) = Spec(B) → U =
Spec(A) (i.e. the ring homomorphism which de�nes the A-algebra structure on
B, see remark 2.2.2(1)) is an isomorphism. Since the correspondence between
morphism of schemes Spec(B) → Spec(A) and ring homomorphism A → B
is bijective and preserves compositions, it follows that f : f−1(U) → U is an

isomorphism of schemes. Then it has an inverse gU :=
(
f|f−1(U)

)−1
: U →

f−1(U). The morphisms gU 's are compatible with each other. Indeed, if U , V
are two open a�ne subsets of X, we have that

(gU )|U∩V =

((
f|f−1(U)

)−1
)
|U∩V

=

=

((
f|f−1(U)

)
|f−1(U)∩f−1(V )

)−1

=
(
f|f−1(U)∩f−1(V )

)−1
=

=

((
f|f−1(V )

)
|f−1(U)∩f−1(V )

)−1

=

((
f|f−1(V )

)−1
)
|U∩V

= (gV )|U∩V .

Then, since X is covered by its open a�ne subsets, we can glue the gU 's and
get a morphism of schemes g : X → Y . We have that g and f are inverse to
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each other, because this is true considering the restrictions to U and f−1(U),
for every open a�ne subset U of X. So f is an isomorphism.

(3) First of all, notice that [Y : X] ≥ 1 if and only if for every open a�ne subset
U = Spec(A) we have that [B : A] = dU ≥ 1, i.e. B is faithfully projective,
by de�nition (2.1.51(2)), where B is the �nite projective A-algebra such that
f−1(U) = Spec(B). So the last part of the statement is obvious.
Since X is covered by its open a�ne subsets, we have that f is surjective if and
only if f : f−1(U) → U is surjective for every open a�ne subset U of X. On
the other hand, [Y : X] ≥ 1 if and only if dU ≥ 1 for every open a�ne subset
U of X. Then it is enough to prove that, for any open a�ne subset U of X,
f : f−1(U)→ U is surjective if and only if dU ≥ 1.
Let U = Spec(A) be an open a�ne subset ofX, with f−1(U) = Spec(B), where
B is a �nite projective A-algebra. Let f# : A→ B be the ring homomorphism
that corresponds to f : f−1(U) = Spec(B) → U = Spec(A). Assume that
f : f−1(U) = Spec(B) → U = Spec(A) is surjective. Let p ∈ Spec(A). Then
there exists q ∈ Spec(B) such that p = f(q) = (f#)−1(q). If s ∈ A\p, then
f#(s) ∈ B\q. So we can consider the following map:

ϕ : Bp → Bq,
x

s
7→ x

f#(s)
.

Let x1, x2 ∈ B, s1, s2 ∈ A\p such that x1
s1

= x2
s2
. This means that there

exists u ∈ A\p such that u(s2x1 − s1x2) = 0. By de�nition of the A-module
structure on B, we have that u(s2x1−s1x2) = f#(u)(f#(s1)x1−f#(s2)x2). So
f#(u)(f#(s1)x1 − f#(s2)x2) = 0, which implies that x1

f#(s1)
= x2

f#(s2)
, because

f#(u) ∈ B\q. So ϕ is well de�ned. We have that ϕ
(

1
1

)
= 1

f#(1)
= 1

1 and

ϕ
(

0
1

)
= 0

f#(1)
= 0

1 (actually, it is easy to prove that ϕ is an A-linear ring

homomorphism). If we had 1
1 = 0

1 in Bq, there would exist t ∈ B\q such that
0 = t · 1 = t, but this is a contradiction because 0 ∈ q. So 1

1 6=
0
1 in Bp, which

implies that Bp 6= 0. Then dU (p) = [B : A](p) = rankAp(Bp) ≥ 1.
Conversely, assume that [B : A] = dU ≥ 1. By lemma 2.1.58(1), this implies
that f# : A → B is injective. So we can assume that A ⊆ B, identifying A
with f#(A). Since B is �nitely generated as an A-module, we have that B
is integral over A. Then, by the �lying-over� theorem ([3], theorem 5.10), for
every p ∈ Spec(A) there exists q ∈ Spec(B) such that p = q ∩ A = f(q). This
shows that f : Spec(B) = f−1(U)→ Spec(A) = U is surjective.

Remark 2.2.16. We can associate a degree function also to any �nite covering of
topological spaces (see remark 1.2(2) in the appendix). The lemma we have just
proved corresponds to a result that is obvious in the case of topological spaces.
Namely, given a �nite covering f : Y → X, with X, Y two topological spaces, we
have that:

(1) Y = ∅ if and only if |f−1(x)| = 0 for every x ∈ X;
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(2) f is a homeomorphism if and only if |f−1(x)| = 1 for every x ∈ X (for an
arbitrary map this would mean that the map is bijective: the fact that the
inverse is also continuous follows from the de�nition of covering);

(3) f is surjective if and only if |f−1(x)| ≥ 1 for every x ∈ X.

Corollary 2.2.17. Let X, Y be two schemes and f : Y → X a morphism of schemes.
We have that f is surjective, �nite and locally free if and only if for every open a�ne
subscheme U = Spec(A) of X the open subscheme f−1(U) of Y is a�ne and equal
to Spec(B), where B is a faithfully projective A-algebra.

Proof. If f is surjective, �nite and locally free, then the claim follows directly from
lemma 2.2.15(3).
Conversely, assume that for every open a�ne subscheme U = Spec(A) of X the
open subscheme f−1(U) of Y is a�ne and equal to Spec(B), where B is a faithfully
projective A-algebra. Since any faithfully projective A-algebra is in particular a �nite
projective A-algebra, by lemma 2.2.10(3) we have that f is �nite and locally free.
Then we can apply lemma 2.2.15(3) to get that f is also surjective.

We list now some properties of �nite and locally free morphisms and of �nite
étale morphisms. Particularly important is the fact that base changes preserve �nite
étale morphisms (lemma 2.2.28(4)).

Lemma 2.2.18. Let X, Y1, . . . , Yn be schemes (n ∈ N) with morphisms fi : Yi → X
for every i = 1, . . . , n. De�ne Y :=

∐n
i=1 Yi (disjoint union of schemes) and consider

the morphism f : Y → X obtained by gluing the fi's. We have that:

(1) f is �nite and locally free if and only if fi is �nite and locally free for every
i = 1, . . . , n;

(2) if f is �nite and locally free, then [Y : X] =
∑n

i=1[Yi : X] (as functions on X);

(3) f is �nite étale if and only if fi is �nite étale for every i = 1, . . . , n.

Proof. (1) Assume that fi is �nite and locally free for every i = 1, . . . , n. Let
U = Spec(A) be an open a�ne subset of X. By lemma 2.2.10(3), for every
i = 1, . . . , n we have that f−1

i (U) is a�ne and equal to Spec(Bi), where Bi
is a �nite projective A-algebra. By de�nition of f , we have that f−1(U) =∐n
i=1 f

−1
i (U) =

∐n
i=1 Spec(Bi). De�ne B := OY (f−1(U)) = Of−1(U)(f

−1(U)).
By de�nition of sheaf, we have that B = OY (f−1(U)) ∼=

∏n
i=1OY (f−1

i (U)) =∏n
i=1OSpec(Bi)(Spec(Bi)) =

∏
i∈I Bi. Notice that this is an isomorphism of

A-algebras, because for every i ∈ I the commutativity of the diagram
f−1
i (U) f−1(U)

U

........................................................................................ ............

........................................................................................................................................... ........
....

fi

...................................................................................
.....
.......
.....

f

implies the commutativity of the corresponding diagram of ring homomor-
phisms. For every i ∈ I, let si be the unique element of B = OY (f−1(U)) such

163



CHAPTER 2. GALOIS THEORY FOR SCHEMES

that ρf−1(U),f−1
j (U)(si) = δij for any j ∈ I. Consider the sum

∑
i∈I si. For

every j ∈ I we have that

ρf−1(U),f−1
j (U)

(∑
i∈I

si

)
=
∑
i∈I

ρf−1(U),f−1
j (U)(si) =

=
∑
i∈I

δij = 1 = ρf−1(U),f−1
j (U)(1)

(because ρf−1(U),f−1
j (U) is a ring homomorphism). By de�nition of sheaf, this

implies that 1 =
∑

i∈I si ∈
∑

i∈I siA. Since
∑

i∈I siA is an ideal of A, it follows
that

∑
i∈I siA = A. Moreover, we have that

(f−1(U))sj = {y ∈ f−1(U) | (sj)y /∈ mf−1(U),y} =

=
∐
i∈I

{
y ∈ f−1

i (U)
∣∣∣ (δij)y = (ρf−1(U),f−1

i (U)(sj))y /∈ mf−1(U),y

}
= f−1

j (U)

is a�ne for every j ∈ I. By lemma 2.2.9, it follows that f−1(U) is a�ne and
isomorphic to Spec(B). Since B ∼=

∏n
i=1Bi and Bi is a �nite projective A-

algebra for every i ∈ I, by lemma 2.1.52 we have that B is a �nite projective
A-algebra. Since this holds for every open a�ne subset U = Spec(A) of X, by
lemma 2.2.10(3) we have that f is �nite and locally free.
Conversely, assume that f is �nite and locally free. Let U = Spec(A) be an
open a�ne subset of X. By lemma 2.2.10(3), we have that f−1(U) is a�ne and
equal to Spec(B), where B is a �nite projective A-algebra. By de�nition of f ,
we have that Spec(B) = f−1(U) =

∐n
i=1 f

−1
i (U). Then, by de�nition of sheaf,

we have that B = OSpec(B)(Spec(B)) = OY (f−1(U)) ∼=
∏n
i=1OY (f−1

i (U))
(as above, this is an isomorphism of A-algebras). Fix i ∈ I and let si be
the unique element of B = OY (f−1(U)) such that ρf−1(U),f−1

j (U)(si) = δij

for any j ∈ I. As above, we have that f−1
i (U) = (f−1(U))si . But, as in

remark 2.2.8 (see also the proof of lemma 2.2.7(3)), we have that (f−1(U))si =
(Spec(B))si = D(si). So f

−1
i (U) = D(si) = Spec(Bsi) is a�ne. Moreover, we

have that B ∼=
∏n
i=1OY (f−1

i (U)) =
∏n
i=1OSpec(Bsi )

(Spec(Bsi)) =
∏n
i=1Bsi as

A-algebras. Since B is a �nite projective A-algebra, by lemma 2.1.52 we have
that Bsi is a �nite projective A-algebra for every i = 1, . . . , n. Since this holds
for every open a�ne subset U = Spec(A) of X, by lemma 2.2.10(3) we have
that fi is �nite and locally free for every i = 1, . . . , n.

(2) Let U = Spec(A) be an open a�ne subset of X. As in the proof of point (1),
we can write f−1(U) = Spec(B) and f−1(U) = Spec(Bi) for every i = 1, . . . , n,
withB, B1, . . . , Bn �nite projectiveA-algebras andB ∼=

∏n
i=1Bi asA-algebras.

This means that B ∼=
⊕n

i=1Bi as A-modules. Let dU be de�ned as in lemma

2.2.12 and let d(i)
U be de�ned in the same way but considering fi instead of f ,

for every i = 1, . . . , n. By lemma 2.1.37, we have that

dU = [B : A] = rankA(B) =

n∑
i=1

rankA(Bi) =
n∑
i=1

[Bi : A] =
n∑
i=1

d
(i)
U .
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Since this holds for any open a�ne subset U of X, we get that [Y : X] =∑n
i=1[Yi : X].

(3) Assume that fi is �nite étale for every i = 1, . . . , n. Let U = Spec(A) be an
open a�ne subset of X. By lemma 2.2.10(4), for every i = 1, . . . , n we have
that f−1

i (U) is a�ne and equal to Spec(Bi), where Bi is a projective separable
A-algebra. As in the proof of point (1), we have that f−1(U) = Spec(B), with
B ∼=

∏n
i=1Bi as A-algebras. By lemma 2.1.64, we have that B is a projective

separable A-algebra. Since this holds for every open a�ne subset U = Spec(A)
of X, by lemma 2.2.10(4) we have that f is �nite étale.
Conversely, assume that f is �nite étale. Let U = Spec(A) be an open a�ne
subset of X. By lemma 2.2.10(4), we have that f−1(U) is a�ne and equal
to Spec(B), where B is a projective separable A-algebra. As in the proof
of point (1), for every i = 1, . . . , n there exists si ∈ B such that f−1

i (U) =
Spec(Bsi). We have also that B ∼=

∏n
i=1Bsi as A-algebras. Since B is a

projective separable A-algebra, by lemma 2.1.64 we have that Bsi is a projective
separable A-algebra for every i = 1, . . . , n. Since this holds for every open a�ne
subset U = Spec(A) of X, by lemma 2.2.10(4) we have that fi is �nite étale
for every i = 1, . . . , n.

Remark 2.2.19. We can compare lemma 2.2.18 to what happens with �nite coverings
of topological spaces: if f1 : Y1 → X, . . . , fn : Yn → X are �nite coverings of a
topological space X, then gluing them we get a �nite covering f :

∐n
i=1 Yi → X (see

the proof of (G2) in the proposition 1.8 in the appendix) and

|f−1({x})| =

∣∣∣∣∣
n∐
i=1

f−1
i ({x})

∣∣∣∣∣ =
n∑
i=1

|f−1
i ({x})| ,

for any x ∈ X (this equality corresponds to 2.2.18(2)).

Lemma 2.2.20. Let (Xi)i∈I , (Yi)i∈I be two collections of schemes. De�ne X :=∐
i∈I Xi and Y :=

∐
i∈I Yi (disjoint union of schemes). Moreover, for every i ∈ I

let fi : Yi → Xi be a �nite and locally free (respectively, �nite étale) morphism of
schemes. Let f : Y → X be the induced morphism of schemes. Then f is �nite and
locally free (respectively, �nite étale).

Proof. Assume that fi is �nite and locally free for every i ∈ I. Then, for every i ∈ I,
there exists a cover of Xi by open a�ne subsets (Uij = Spec(Aij))j∈Ji such that,
for every j ∈ Ji, f

−1
i (Uij) is a�ne and equal to Spec(Bij), where the Aij-algebra

Bij is �nitely generated and free as an Aij-module. Since X =
∐
i∈I Xi, we have

that (Uij = Spec(Aij))i∈I, j∈Ji is a cover of X by open a�ne subsets. Moreover,
by de�nition of f , we have that f−1(Uij) = f−1

i (Uij) = Spec(Bij) for every i ∈ I,
j ∈ Ji. So the cover (Uij = Spec(Aij))i∈I, j∈Ji has the property required in the
de�nition 2.2.3(3). Then f is �nite and locally free.
Assume now that fi is �nite étale for every i ∈ I. Then, for every i ∈ I, there exists
a cover of Xi by open a�ne subsets (Uij = Spec(Aij))j∈Ji such that, for every j ∈ Ji,
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f−1
i (Uij) is a�ne and equal to Spec(Bij), where Bij is a free separable Aij-algebra.
As above, we have that (Uij = Spec(Aij))i∈I, j∈Ji is a cover of X by open a�ne
subsets and f−1(Uij) = f−1

i (Uij) = Spec(Bij) for every i ∈ I, j ∈ Ji. So the cover
(Uij = Spec(Aij))i∈I, j∈Ji has the property required in the de�nition 2.2.1. Then f
is �nite étale.

Remark 2.2.21. A similar result holds for �nite coverings of topological spaces: if
fi : Yi → Xi is a �nite covering of the topological space Xi for any i ∈ I, then gluing
them we get a �nite covering f :

∐
i∈I Yi →

∐
i∈I Xi. Indeed, let x ∈ Xi. Then there

exists a unique j ∈ I such that x ∈ Xj . Since fj is a �nite covering of Xj , there exists
an open neighbourhood U of x in Xj such that fj : f−1

j (U)→ U is a trivial covering.
Then U is also an open neighbourhood of x in

∐
i∈I Xi and, by de�nition of f , we

have that f−1(U) = f−1
j (U) and f|f−1(U)

= (fj)|
f−1
j

(U)
: f−1(U) = f−1

j (U) → U is a

trivial covering. Finiteness follows from the fact that f−1({x}) = f−1
j ({x}).

Lemma 2.2.22. Let X, Y be schemes and f : Y → X a �nite and locally free
(respectively, �nite étale) morphism. Then, for every open subscheme X ′ of X, the
restriction f|f−1(X′)

: f−1(X ′)→ X ′ is �nite and locally free (respectively, �nite étale)

and [f−1(X ′) : X ′] = [Y : X]|sp(X′)
.

Proof. First of all, notice that f−1(X ′) is an open subscheme of Y by the continuity
of f and that the restriction of f to this open subscheme is again a morphism of
schemes.
Assume that f is �nite and locally free and let U = Spec(A) be an open a�ne subset
of X ′. Then U is also an open a�ne subset of X and, by lemma 2.2.10(3), we have
that f−1(U) is a�ne and equal to Spec(B), where B is a �nite projective A-algebra.

But, since U ⊆ X ′, we have that f−1(U) =
(
f|f−1(X′)

)−1
(U). Then, by lemma

2.2.10(3), we have that f|f−1(X′)
is �nite and locally free.

Assume now that f is �nite étale. For any open a�ne subset U = Spec(A) of X ′,

by lemma 2.2.10(4) we have that
(
f|f−1(X′)

)−1
(U) = f−1(U) is a�ne and equal to

Spec(B), where B is a projective separable A-algebra. Then, by the same lemma,
f|f−1(X′)

is �nite étale.

Finally, let U = Spec(A) be an open a�ne subset of X ′. Let dU and d′U be de�ned
as in lemma 2.2.12, considering respectively f and f|f−1(X′)

. As above, we have that(
f|f−1(X′)

)−1
(U) = f−1(U) = Spec(B) for a �nite projective A-algebra B. Then

dU = [B : A] = d′U . Since X ′ is covered by its open a�ne subsets, it follows that
[f−1(X ′) : X ′] = [Y : X]|sp(X′)

.

Remark 2.2.23. A similar result holds for �nite coverings of topological spaces: if
f : Y → X is a �nite covering of the topogical space X and X ′ is a subset of X, then
the restriction f|f−1(X′)

: f−1(X ′)→ X ′ is a �nite covering of X ′. Indeed, let x ∈ X ′.
Since f is a �nite covering of X, there exist an open neighbourhood U of x in X, a
�nite discrete topological space E and a homeomorphism ϕ : f−1(U)→ U ×E such
that pU ◦ ϕ = f , where pU : U × E → U is the projection on the �rst factor. De�ne
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U ′ := U ∩X ′ ⊆ X ′. We have that x ∈ U ∩X ′ = U ′ and U ′ is open in X ′, because
U is open in X. So U ′ is an open neighbourhood of x in X ′. Since U ′ ⊆ U and
pU ◦ ϕ = f , we have that(

f|f−1(X′)

)−1
(U ′) = f−1(U ′) = (pU ◦ ϕ)−1(U ′) = ϕ−1(p−1

U (U ′)) = ϕ−1(U ′ × E) .

Then, restricting ϕ to f−1(U ′) we get a homeomorphism ϕ : f−1(U ′) = ϕ−1(U ′ ×
E)→ U ′×E. The equality pU ◦ϕ = f is still true when we consider the restrictions,
so pU ′ ◦ ϕ = f|f−1(X′)

, where p′U : U ′ × E → U ′ is the projection on the �rst factor

(which is clearly the restriction of pU ). This shows that f|f−1(X′)
: f−1(X ′)→ X ′ is

a �nite covering of X ′. Moreover, for any x ∈ X ′ we have that
(
f|f−1(X′)

)−1
({x}) =

f−1({x}) and so ∣∣∣∣(f|f−1(X′)

)−1
({x})

∣∣∣∣ =
∣∣f−1({x})

∣∣ ,
which corresponds to the statement about the degree.
Notice that we do not need X ′ to be open. On the other hand, in the case of
schemes we considered only open subsets because they have a natural induced scheme
structure, unlike arbitrary subsets.

Corollary 2.2.24. Let (Xi)i∈I be a collections of schemes and de�ne X :=
∐
i∈I Xi

(disjoint union of schemes). Moreover, let Y be a scheme and f : Y → X a �nite
and locally free (respectively, �nite étale) morphism of schemes. Then, if we de�ne
Yi := f−1(Xi) and fi = f|Yi

: Yi = f−1(Xi) → Xi for every i ∈ I, we have that
Y =

∐
i∈I Yi and fi : Yi → Xi is �nite and locally free (respectively, �nite étale)

for any i ∈ I (notice that this is in a certain sense the converse of lemma 2.2.20).
Moreover, [Yi : Xi] = [Y : X]|sp(Xi)

for any i ∈ I.

Proof. For any i ∈ I we have that Xi is an open subscheme of X (by de�nition of
disjoint union of schemes) and so Yi = f−1(Xi) is an open subscheme of Y , by the
continuity of f . Then we have that

Y = f−1(X) = f−1

(∐
i∈I

Xi

)
=
∐
i∈I

f−1(Xi) =
∐
i∈I

Yi

as schemes. The rest of the claim follows immediately from lemma 2.2.22.

Remark 2.2.25. A similar result holds for �nite coverings of topological spaces: if
f : Y → X is a �nite covering of the topological space X and X =

∐
i∈I Xi (disjoint

union of topological spaces), then we can de�ne Yi := f−1(Xi) and fi = f|Yi
: Yi =

f−1(Xi)→ Xi for every i ∈ I. Then, since f is continuous, we have that Yi is open
in Y for any i ∈ I (recall that Xi is open in X by de�nition of disjoint union) and so

Y = f−1(X) = f−1

(∐
i∈I

Xi

)
=
∐
i∈I

f−1(Xi) =
∐
i∈I

Yi

as topological spaces. Moreover, by remark 2.2.23, for any i ∈ I we have that
fi : Yi → Xi is a �nite covering of Xi and |f−1({x})| = |f−1

i ({x})| for every x ∈ Xi.

167



CHAPTER 2. GALOIS THEORY FOR SCHEMES

Corollary 2.2.26. Let X, Y be schemes and f : Y → X a �nite and locally free
morphism. De�ne

X≥1 = {x ∈ sp(X) | [Y : X](x) ≥ 1} ⊆ sp(X) .

Then:

(1) X≥1 is both open and closed in sp(X);

(2) X≥1 is the (set-theoretic) image of f .

In particular, this holds also for any �nite étale morphism f (because �nite étale
implies �nite and locally free, see remark 2.2.4).

Proof. (1) We have that X≥1 = [Y : X]−1({n ∈ Z | n ≥ 1}). Then X≥1 is both
open and closed in sp(X) because [Y : X] : sp(X) → Z is continuous and
{n ∈ Z | n ≥ 1} is open in Z (which has the discrete topology).

(2) Since X≥1 is open, by lemma 2.2.22 the restriction f : f−1(X≥1) → X≥1 is
�nite and locally free and [f−1(X≥1) : X≥1](x) = [Y : X](x) ≥ 1 for any
x ∈ X≥1. By lemma 2.2.15(3), we have that f : f−1(X≥1) → X≥1 is surjec-
tive. This means that X≥1 = f(f−1(X≥1)). De�ne now X0 := X\X≥1. By
de�nition, the degree has values that are non-negative integers. So X0 = {x ∈
sp(X) | [Y : X](x) = 0}. Since X≥1 is closed, we have that X0 is open. So, by
lemma 2.2.22, the restriction f : f−1(X0) → X0 is �nite and locally free and
[f−1(X0) : X0](x) = [Y : X](x) = 0 for any x ∈ X0. By lemma 2.2.15(1), it
follows that f−1(X0) = ∅. Then

Y = f−1(X) = f−1(X≥1 ∪X0) =

= f−1(X≥1) ∪ f−1(X0) = f−1(X≥1) ∪ ∅ = f−1(X≥1) ,

which implies that X≥1 = f(f−1(X≥1)) = f(Y ).

Remark 2.2.27. A similar result holds for �nite coverings of topological spaces: if
f : Y → X is a �nite covering of the topological space X, then

Im(f) = {x ∈ X | |f−1(x)| ≥ 1} ,

which is both open and closed in X by the continuity of the degree (see remark 1.2(2)
in the appendix).

Lemma 2.2.28. Let X, Y and W be schemes. Let f : Y → X be a �nite and locally
free morphism of schemes and g : W → X any morphism of schemes. Consider
the �bred product Y ×X W (see [4], chapter II, theorem 3.3), with the projections
p1 : Y ×X W → Y and p2 : Y ×X W →W . Then:

(1) p2 : Y ×X W →W is �nite and locally free;
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(2) the diagram

sp(W ) sp(X)

Z

........................................................................................ ............
g

........................................................................................................................................... ........
....

[Y ×X W : W ]

...................................................................................
.....
.......
.....

[Y : X]

is commutative;

(3) if f is surjective, then p2 : Y ×X W →W is surjective;

(4) if f is �nite étale, then p2 : Y ×X W →W is �nite étale.

Proof. (1) Since f is �nite and locally free, there exists a cover of X by open a�ne
subsets (Ui = Spec(Ai))i∈I such that, for every i ∈ I, f−1(Ui) is a�ne and
equal to Spec(Bi), where the Ai-algebra Bi is �nitely generated and free as
an Ai-module. Let i ∈ I. We have that g−1(Ui) is an open subscheme of W
(because g is a morphism of schemes). So we can cover g−1(Ui) with open a�ne
subsets (Vij = Spec(Cij))j∈Ji . Fix j ∈ Ji and consider p−1

2 (Vij) ⊆ Y ×X W .
We claim that p−1

2 (Vij) = f−1(Ui)×Ui Vij . By de�nition of �bred product, we
have f ◦ p1 = g ◦ p2. Then p

−1
1 (f−1(Ui)) = p−1

2 (g−1(Ui)). Since Vij ⊆ g−1(Ui),
we get that p−1

2 (Vij) ⊆ p−1
2 (g−1(Ui)) = p−1

1 (f−1(Ui)). Consider the following
diagram.

p−1
2 (Vij)

f−1(Ui)

Vij

Ui

...................................................................................
.....
.......
.....

p1

........................................................................................ ............

p2

........................................................................................ ............
f

...................................................................................
.....
.......
.....

g

The equality f ◦ p1 = g ◦ p2 is still satis�ed when we consider the restrictions
p1 : p−1

2 (Vij) ⊆ p−1
1 (f−1(Ui)) → f−1(Ui), p2 : p−1

2 (Vij) → Vij , f : f−1(Ui) →
Ui and g : Vij ⊆ g−1(Ui) → Ui. Let now Z be a scheme with two morphisms
of schemes h1 : Z → f−1(Ui), h2 : Z → Vij such that f ◦ h1 = g ◦ h2. Since
f−1(Ui) ⊆ Y , we can see h1 as a morphism of schemes Z → Y . Analogously,
since Vij ⊆W , we can see p2 as a morphism of schemes Z →W . Then, by the
universal property of the �bred product, there exists a unique h : Z → Y ×XW
such that h1 = p1 ◦ h and h2 = p2 ◦ h. Then p2(h(Z)) = h2(Z) ⊆ Vij and so
h(Z) ⊆ p−1

2 (Vij). Then we can see h as a morphism of schemes Z → p−1
2 (Vij)

such that h1 = p1◦h and h2 = p2◦h. Moreover, it is the unique such morphism,
because we know uniqueness when considering h as a morphism Z → Y ×XW .
This proves that p−1

2 (Vij) = f−1(Ui) ×Ui Vij . Recall that Ui = Spec(Ai),
f−1(Ui) = Spec(Bi) and Vij = Spec(Cij). Then

p−1
2 (Vij) = f−1(Ui)×Ui Vij = Spec(Bi)×Spec(Ai) Spec(Cij) = Spec(Bi ⊗Ai Cij)

(see the proof of theorem 3.3 in chapter II of [4]). Since Bi is �nitely generated
and free as an Ai-module, we have that Bi ∼= Anii for some ni ∈ N. Since tensor
product and direct sums commute (lemma 2.1.19), it follows that

Bi ⊗Ai Cij ∼= Anii ⊗ Cij ∼= (Ai ⊗ Cij)ni ∼= Cniij
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as Cij-modules (lemma 2.1.19 gives an isomorphism of Ai-modules, but it is
immediate to check that in this case that isomorphism is also Cij-linear). So
Bi ⊗Ai Cij is �nitely generated and free as a Cij-module. This holds for any
i ∈ I, j ∈ Ji. Now we have that

W = p−1
2 (X) = p−1

2

(⋃
i∈I

Ui

)
=
⋃
i∈I

p−1
2 (Ui) =

⋃
i∈I

⋃
j∈Ji

Vij .

So (Vij = Spec(Cij))i∈I, j∈Ji is a cover of W by open a�ne subsets. This cover
has the property required in the de�nition 2.2.3(3), so p2 is �nite and locally
free.

(2) Let (Ui = Spec(Ai))i∈I , (Vij = Spec(Cij))i∈I, j∈Ji be as in the proof of point
(1). For every i ∈ I, let dUi be de�ned as in lemma 2.2.12. Analogously,
for any i ∈ I, j ∈ Ji, let dVij be de�ned as in lemma 2.2.12 (considering the
morphism p2). Fix i ∈ I, j ∈ Ji and de�ne ni := rankAi(Bi). This means
that Bi ∼= Anii as an Ai-module. As in the proof of point (1), this implies that
Bi⊗AiCij ∼= Cniij as Cij-modules. Then rankCij (Bi⊗AiCij) = ni = rankAi(Bi).

Recalling that p−1
2 (Vij) = Spec(Bi⊗Ai Cij) and using remark 2.1.36(1), we get

that

[Y ×XW : W ](w) = dVij (w) = [Bi⊗Ai Cij : Cij ](x) = rankCij (Bi⊗Ai Cij) =

= rankAi(Bi) = [Bi : Ai](g(w)) = dUi(g(w)) = [Y : X](g(w))

for every w ∈ Vij (in this case g(w) ∈ Ui, because Vij ⊆ g−1(Ui)). Since
this holds for any i ∈ I, j ∈ Ji and since W =

⋃
i∈I
⋃
j∈Ji Vij , it follows that

[Y ×X W : W ] = [Y : X] ◦ g, as we wanted.

(3) Since f is surjective, by lemma 2.2.15(3) we have that [Y : X] ≥ 1. Then,
by point (2), we have that [Y ×X W : W ](w) = [Y : X](g(w)) ≥ 1 for every
w ∈ W . So [Y ×X W : W ] ≥ 1, which implies that p2 is surjective, by lemma
2.2.15(3).

(4) Since f is �nite étale, there exists a cover of X by open a�ne subschemes (Ui =
Spec(Ai))i∈I such that, for every i ∈ I, f−1(Ui) is a�ne and equal to Spec(Bi),
where the Bi is a free separable Ai-algebra. As in the proof of point (1), for
every i ∈ I we can cover g−1(Ui) with open a�ne subsets (Vij = Spec(Cij))j∈Ji
and for every j ∈ Ji we have that p−1

2 (Vij) = Spec(Bi⊗Ai Cij). As in the proof
of point (1), we have that (Vij = Spec(Cij))i∈I, j∈Ji is a cover of W by open
a�ne subsets. Fix now i ∈ I, j ∈ Ji. Since Bi is a free separable Ai-algebra,
it is in particular �nitely generated and free as an Ai-module. As in the proof
of point (1), this implies that Bi ⊗Ai Cij is �nitely generated and free as a
Cij-module. On the other hand, since Bi is a free separable Ai-algebra, it is
in particular projective separable (see remark 2.1.61). Then, by lemma 2.1.71,
we have that Bi ⊗Ai Cij is a projective separable Cij-algebra. Applying again
remark 2.1.61, we get that Bi ⊗Ai Cij is a free separable Cij-algebra. So the
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cover (Vij = Spec(Cij))i∈I, j∈Ji has the property required in the de�nition 2.2.1.
Hence p2 is �nite étale.

Remark 2.2.29. We can compare lemma 2.2.28 to what happens with �nite coverings
of topological spaces: if f : Y → X is a �nite covering of X and g : W → X is any
continuous function, then the projection on the second factor p2 : Y ×XW →W is a
�nite covering of W (see remark 1.12(2) in the appendix, noticing that in that part
of the argument we did not use the base points and that the order of the factors in
the �bered product is not important). Moreover, for any w ∈W we have that

p−1
2 ({w}) = {(y, w′) ∈ Y ×X W | w′ = p2((y, w′)) = w} =

= {(y, w) | y ∈ Y, f(y) = g(w)} = {(y, w) | y ∈ f−1({g(w)})}

and so |p−1
2 ({w})| = |f−1({g(w)})|, which corresponds to 2.2.28(2). This implies

also that, if f is surjective, then |p−1
2 ({w})| = |f−1({g(w)})| ≥ 1 for any w ∈ W

and so p2 is surjective. Notice that this last statement (if f is surjective, then p2 is
surjective) is true for any �bred product of topological spaces: you do not need the
fact that f is a �nite covering. On the other hand, in the proof of lemma 2.2.28(3) we
used the fact that f was �nite and locally free. It is actually true that surjectivity of
morphisms of schemes is preserved by base changes (see [5], exercise 9.4.D), but the
proof in the general case is more complicated. It cannot be reduced to the topological
result, because the underlying topological space of a �bred product of schemes is not
the �bred product of the underlying topological spaces (see [4], chapter II, exercise
3.9).

Lemma 2.2.30. The composition of �nite and locally free (respectively, �nite étale)
morphisms is �nite and locally free (respectively, �nite étale).

Proof. Let X, Y and Z be schemes and let f : Y → X, g : Z → Y be two �nite and
locally free morphisms. Let U = Spec(A) be an open a�ne subset of X. Since f is
�nite and locally free, by lemma 2.2.10(3) we have that f−1(U) is a�ne and equal to
Spec(B), where B is a �nite projective A-algebra. Then, since g is �nite and locally
free, by lemma 2.2.10(3) we have that (f ◦ g)−1(U) = g−1(f−1(U)) = g−1(Spec(B))
is a�ne and equal to Spec(C), where C is a �nite projective B-algebra. Notice that
the A-algebra structure induced on C by the morphism of schemes f ◦g : Spec(C)→
Spec(A) coincides with the one induced by the B-algebra structure. So C is a �nite
projective A-algebra, by corollary 2.1.54. Since this holds for every open a�ne subset
U = Spec(A) of X, by lemma 2.2.10(3) we have that f ◦ g is �nite and locally free.
Assume now that f and g are �nite étale and U = Spec(A) be an open a�ne subset
of X. Since f is �nite étale, by lemma 2.2.10(4) we have that f−1(U) is a�ne and
equal to Spec(B), where B is a projective separable A-algebra. Then, since g is �nite
étale, by lemma 2.2.10(4) we have that (f ◦g)−1(U) = g−1(f−1(U)) = g−1(Spec(B))
is a�ne and equal to Spec(C), where C is a projective separable B-algebra. As
above, the A-algebra structure induced on C by the morphism of schemes f ◦ g :
Spec(C) → Spec(A) coincides with the one induced by the B-algebra structure. So
C is a projective separable A-algebra, by corollary 2.1.69. Since this holds for every
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open a�ne subset U = Spec(A) of X, by lemma 2.2.10(4) we have that f ◦ g is �nite
étale.

Remark 2.2.31. A similar result holds for �nite coverings of topological spaces: if X,
Y and Z are topological spaces, f : Y → X is a �nite covering of X and g : Z → Y
is a �nite covering of Y , then f ◦ g : Z → X is a �nite covering of X. Indeed, let
x ∈ X. Since f is a �nite covering of X, there exist an open neighbourhood U of x in
X, a �nite discrete topological space E and a homeomorphism ϕ : f−1(U)→ U ×E
such that pU ◦ ϕ = f , where pU : U × E → U is the projection on the �rst factor.
Since E has the discrete topology, we have that U × {e} is open in U × E for any
e ∈ E and so U × E =

∐
e∈E U × {e} (topological disjoint union). Then we have

that

f−1(U) = ϕ−1

(∐
e∈E

U × {e}

)
=
∐
e∈E

ϕ−1(U × {e})

(disjoint union of topological spaces). For any e ∈ E, de�ne Ve := ϕ−1(U × {e}), so
that f−1(U) =

∐
e∈E Ve. Since g is a �nite covering of Y , we have that its restriction

g : g−1(f−1(U))→ f−1(U) is a �nite covering of f−1(U) (remark 2.2.23). By remark
2.2.25, we have that g|g−1(Ve)

: g−1(Ve)→ Ve is a �nite covering of Ve, for any e ∈ E.
Since f−1(U) =

∐
e∈E Ve, we have that

(f ◦ g)−1(U) = g−1(f−1(U)) = g−1

(∐
e∈E

Ve

)
=
∐
e∈E

g−1(Ve) .

Let now e ∈ E. We claim that f ◦ g : g−1(Ve) → U is a �nite covering. De�ne qe :
U → U×{e}, x′ 7→ (x′, e), which is continuous because its components (respectively,
the identity and a constant function) are continuous. We have that qe is bijective,
with inverse the restricted projection pU : U ×{e} → U , which is also continuous by
de�nition of product topology. So qe is a homeomorphism. It follows that ϕ−1 ◦ qe :
U → ϕ−1(U × {e}) = Ve is also a homeomorphism, because it is a composition
of homeomorphisms. Let x′ ∈ U and consider y := (ϕ−1 ◦ qe)(x′) ∈ Ve. Since
g : g−1(Ve) → Ve is a �nite covering, there exist an open neighbourhood W of y in
Ve, a �nite discrete topological space F and a homeomorphism ψ : g−1(W )→W ×F
such that pW ◦ ψ = g, where pW : W × F → W is the projection on the �rst
factor. De�ne U ′ := (pU ◦ ϕ)(W ) = (ϕ−1 ◦ qe)−1(W ). Since ϕ−1 ◦ qe : U → Ve is
continuous and W is open in Ve, we have that U ′ is open in U . Moreover, since
y = (ϕ−1 ◦ qe)(x′) ∈W , we have that x′ ∈ (ϕ−1 ◦ qe)−1(W ) = U ′. Notice that, since
U ′ ⊆ U and pU ◦ ϕ = f ,

f−1(U ′) ∩ Ve = (pU ◦ ϕ)−1((pU ◦ ϕ)(W )) ∩ Ve = W

(the last equality follows from the fact that W ⊆ Ve and that pU ◦ ϕ : Ve → U is
bijective). So (f◦g)−1(U ′)∩g−1(Ve) = g−1(f−1(U ′))∩g−1(Ve) = g−1(f−1(U ′)∩Ve) =
g−1(W ). Since ϕ−1◦qe is a homeomorphism, we have that also its restriction ϕ−1◦qe :
(ϕ−1◦qe)−1(W ) = U ′ →W is a homeomorphism. Its inverse pU ◦ϕ : W → U ′ induces
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a homeomorphism (pU ◦ ϕ)× idF : W × F → U ′ × F . Composing it with ψ, we get
a homeomorphism

((pU ◦ ϕ)× idF ) ◦ ψ : g−1(W ) = (f ◦ g)−1(U ′) ∩ g−1(Ve)→ U ′ × F .

Denote by pU ′ : U ′ × F → F the projection on the �rst factor. Notice that

(p′U ◦((pU ◦ϕ)×idF ))(w, f) = p′U ((pU ◦ϕ)(w), f) = (pU ◦ϕ)(w) = (pU ◦ϕ)(pW ((w, f)))

for any w ∈ W , f ∈ F , and so p′U ◦ ((pU ◦ ϕ)× idF ) = pU ◦ ϕ ◦ pW . Then, recalling
that pW ◦ ψ = g and pU ◦ ϕ = f , we have that

pU ′ ◦ (((pU ◦ ϕ)× idF ) ◦ ψ) = pU ◦ ϕ ◦ pW ◦ ψ = f ◦ g .

So f ◦ g : (f ◦ g)−1(U ′) ∩ g−1(Ve)→ U ′ is a �nite trivial covering (�niteness follows
from the fact that F is �nite). This shows that f ◦ g : g−1(Ve) → U is a �nite
covering of U , for any e ∈ E. By remark 2.2.19, we have that f ◦ g :

∐
e∈E g

−1(Ve) =
(f ◦ g)−1(U)→ U is a �nite covering of U (recall that E is �nite). Then there exists
an open neighbourhood U ′′ of x in U such that f ◦ g : (f ◦ g)−1(U ′′)→ U ′′ is a �nite
trivial covering. Since U is open in X, we have that U ′′ is open also in X. So U ′′ is
an open neighbourhood of x in X and f ◦ g : (f ◦ g)−1(U ′′) → U ′′ is a �nite trivial
covering. This shows that f ◦ g is a �nite covering of X.

Lemma 2.2.32. Let X, Y and Z be schemes, f : Y → X and g : Z → X �nite
and locally free morphisms of schemes. Consider the �bred product Y ×X Z, with the
projections p1 : Y ×X Z → Y and p2 : Y ×X Z → Z. Then:

(1) f ◦ p1 = g ◦ p2 : Y ×X Z → X is �nite and locally free;

(2) if f and g are surjective, then f ◦ p1 = g ◦ p2 : Y ×X Z → X is surjective;

(3) if f and g are �nite étale, then f ◦ p1 = g ◦ p2 : Y ×X Z → X is �nite étale.

Proof. Recall that f ◦ p1 = g ◦ p2 by de�nition of �bred product.

(1) Since f is �nite and locally free, by lemma 2.2.28(1) we have that p2 : Y ×XZ →
Z is �nite and locally free. Then, since g is �nite and locally free, by lemma
2.2.30 we have that the composition g ◦ p2 is also �nite and locally free.

(2) Since f is surjective, by lemma 2.2.28(3) we have that p2 : Y ×X Z → Z is
surjective. Then, since g is surjective, the composition g ◦ p2 is also surjective.

(3) Since f is �nite étale, by lemma 2.2.28(4) we have that p2 : Y ×X Z → Z is
�nite étale. Then, since g is �nite étale, by lemma 2.2.30 we have that the
composition g ◦ p2 is also �nite étale.

Remark 2.2.33. Combining the remarks 2.2.29 and 2.2.31, we get that a similar result
is true for �nite coverings of topological spaces: if f : Y → X and g : Z → X are
�nite coverings of a topological space X, then f ◦ p1 = g ◦ p2 : Y ×X Z → X is also
a �nite covering of X, where p1 : Y ×X Z → Y and p2 : Y ×X Z → Z are the two
projections.
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Now we know that �nite étale morphisms are preserved by base changes (lemma
2.2.28(4)). If we restrict our attention to base extensions that are surjective, �nite
and locally free, we have also a �converse� result.

Lemma 2.2.34. Let X, Y and W be schemes, f : Y → X and g : W → X
morphisms of schemes, with f a�ne and g surjective, �nite and locally free. Consider
the �bred product Y ×XW with the projections p1 : Y ×XW → Y and p2 : Y ×XW →
W . Then f is �nite étale (respectively, �nite and locally free) if and only if p2 is
�nite étale (respectively, �nite and locally free).

Proof. By lemma 2.2.28(4) (respectively, (3)), if f is �nite étale (respectively, �nite
and locally free) then p2 is also �nite étale (respectively, �nite and locally free).
Conversely, assume that p2 is �nite étale (respectively, �nite and locally free) and let
U = Spec(A) be an open a�ne subset of X. Since f is a�ne, by lemma 2.2.10(1)
we have that f−1(U) is a�ne. Then f−1(U) = Spec(B) for an A-algebra B. Since g
is surjective, �nite and locally free, by corollary 2.2.17 we have that g−1(U) is a�ne
and equal to Spec(C), where C is a faithfully projective A-algebra. By de�nition of
�bred product, we have that f ◦ p1 = g ◦ p2. Then p

−1
1 (f−1(U)) = (f ◦ p1)−1(U) =

(g ◦ p2)−1(U) = p−1
2 (g−1(U)). Notice that the equality f ◦ p1 = g ◦ p2 holds also

if we consider the restrictions p1 : p−1
1 (f−1(U)) = p−1

2 (g−1(U)) → f−1(U), p2 :
p−1

1 (f−1(U)) = p−1
2 (g−1(U)) → g−1(U), f : f−1(U) → U and g : g−1(U) → U .

Moreover, let Z be a scheme with two morphisms of schemes h1 : Z → f−1(U) and
h2 : Z → g−1(U) such that f ◦ h1 = g ◦ h2. Since f−1(U) ⊆ Y and g−1(U) ⊆ W ,
we can see h1 as a morphism of schemes Z → Y and h2 as a morphism of schemes
Z →W . Then, by the universal property of the �bred product, there exists a unique
h : Z → Y ×X W such that h1 = p1 ◦ h and h2 = p2 ◦ h. Then p1(h(Z)) = h1(Z) ⊆
f−1(U) and we can see h as a morphism of schemes Z → p−1

1 (f−1(U)) = p−1
2 (g−1(U))

such that h1 = p1 ◦ h and h2 = p2 ◦ h. Moreover, it is the unique such morphism,
because we know uniqueness when considering h as a morphism Z → Y ×XW . This
proves that p−1

2 (g−1(U)) = f−1(U)×U g−1(U). Then

p−1
2 (g−1(U)) = f−1(U)×U g−1(U) = Spec(B)×Spec(A) Spec(C) = Spec(B ⊗A C)

(see the proof of theorem 3.3 in chapter II of [4]). Notice that the C-algebra structure
induced on B⊗AC by the morphism p2 : p−1

2 (g−1(U)) = Spec(B⊗AC)→ g−1(U) =
Spec(C) coincides with the one that is usually induced on the tensor product. Since
p2 is �nite étale (respectively, �nite and locally free), by lemma 2.2.10(4) (respec-
tively, (3)) we have that B⊗AC is a projective separable (respectively, �nite projec-
tive) C-algebra. Since C is a faithfully projective A-algebra, by 2.1.42 ((iv) =⇒ (i))
it is also faithfully �at. Then, by proposition 2.1.72 (respectively, 2.1.57) we have
that B is a projective separable (respectively, �nite projective) A-algebra. Since this
holds for any open a�ne subset U = Spec(A) of X, by lemma 2.2.10(4) (respectively,
(3)) we have that f is �nite étale (respectively, �nite and locally free).

We will now furtherly simplify the study of �nite étale morphisms by introducing
another class of morphisms: totally split morphisms.
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De�nition 2.2.35. Let X, Y be schemes and f : Y → X a morphism of schemes.
We say that f is totally split if we can write X =

∐
n∈Z
n≥0

Xn for some schemes

X0, X1, . . . such that, for any n ∈ Z, n ≥ 0, there exists an isomorphism of schemes
ϕn : f−1(Xn) →

∐n
i=1Xn such that pn ◦ ϕn = f , where pn :

∐n
i=1Xn → Xn is

obtained by gluing the identity morphisms idXn : Xn → Xn. This de�nition is
illustrated by the following diagram.

f−1(Xn)

Xn

∐n
i=1Xn

........................................................................................................................................... ........
....

f

.......................................................................................................................................
....
............

pn

..................................................................................................................................................................................................................... ............
ϕn

Example 2.2.36. Any isomorphism of schemes is totally split. Indeed, if X, Y are
schemes and f : Y → X is an isomorphism, we can de�ne X1 := X and Xn := ∅
for any n ∈ Z, n ≥ 0, n 6= 1. Then X = X1 =

∐
n∈Z
n≥0

Xn. Moreover, we can de�ne

ϕ1 := f : f−1(X1) = f−1(X) = Y → X. Then we have p1 ◦ ϕ1 = idX ◦f = f . This
shows that f is totally split. In particular, idX is totally split for any scheme X.

Lemma 2.2.37. Any totally split morphism of schemes is �nite étale.

Proof. Let X, Y be schemes and f : Y → X a totally split morphism of schemes.
Moreover, let X0, X1, . . . be as in the de�nition 2.2.35. Since X =

∐
n∈Z
n≥0

Xn, we have

that Y = f−1(X) = f−1

(∐
n∈Z
n≥0

Xn

)
=
∐
n∈Z
n≥0

f−1(Xn) and f can be obtained by

gluing the restrictions f|f−1(Xn)
: f−1(Xn)→ Xn. By lemma 2.2.20, in order to prove

that f is �nite étale, it is enough to prove that f|f−1(Xn)
: f−1(Xn) → Xn is �nite

étale for any n ∈ Z, n ≥ 0. Fix n ∈ Z, n ≥ 0 and let U = Spec(A) be an open a�ne
subset of Xn. Since f|f−1(Xn)

= pn ◦ ϕn (where pn and ϕn are as in the de�nition

2.2.35), we have that f−1(U) = (pn ◦ ϕn)−1(U) = ϕ−1
n (p−1

n (U)) = ϕ−1
n (

∐n
i=1 U). So

ϕn restricts to an isomorphism of schemes f−1(U) = ϕ−1
n (

∐n
i=1 U)→

∐n
i=1 U . Then

f−1(U) ∼=
n∐
i=1

U =
n∐
i=1

Spec(A) = Spec(An)

(the last equality can be proved as in the proof of lemma 2.2.18). By example 2.1.6,
we have that An is a free separable A-algebra. Then, by remark 2.1.61(3), An is a
projective separable A-algebra. By lemma 2.2.10(4), f|f−1(Xn)

is �nite étale, as we
wanted.

Remark 2.2.38. (1) Let X, Y be schemes and f : Y → X a totally split morphism.
By the lemma we have just proved, f is �nite étale, so it is in particular �nite
and locally free and this allows us to consider its degree [Y : X] : sp(X) → Z
(de�nition 2.2.14). Fix n ∈ Z, n ≥ 0 and let U = Spec(A) be an open
a�ne subset of X. Let dU be de�ned as in lemma 2.2.12. As in the proof
of lemma 2.2.37, we have that f−1(U) = Spec(An). Then dU = [An : A] is
constantly equal to n. Since Xn is covered by open a�ne subsets, it follows
that [Y : X](x) = n for any x ∈ Xn.
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(2) Totally split morphisms of constant degree are the analogue of trivial �nite
coverings of topological spaces. Indeed, by point (1) a totally split morphism
f : Y → X has constant degree if and only if there exists at most one n ∈ Z,
n ≥ 0 such that Xn 6= ∅ (if X 6= ∅, then there exists a unique such n, more
precisely n = [Y : X]), where X0, X1, . . . are as in the de�nition 2.2.35. In
this case, X = Xn and, as in the de�nition 2.2.35, we have an isomorphism of
schemes ϕ = ϕn : f−1(Xn) = f−1(X) = Y →

∐n
i=1Xn =

∐n
i=1X such that

f = p ◦ϕ, where p = pn :
∐n
i=1Xn =

∐n
i=1X → Xn = X is obtained by gluing

the identity morphisms.
On the other hand, if X, Y are topological spaces and f : Y → X is trivial
�nite covering of degree n, then there exist a discrete topological space E with
|E| = n and a homeomorphism ϕ : Y → X × E such that f = pX ◦ ϕ, where
pX : X × E → X is the projection on the �rst factor. Since E is discrete, we
have that E =

∐
e∈E{e} and then

X × E = X ×

(∐
e∈E
{e}

)
=
∐
e∈E

(X × {e}) .

On the other hand, for any e ∈ E, restricting pX we get a homeomorphism
pE : X × {e} → X (with inverse X → X × {e}, x 7→ (x, e)). Gluing these
homeomorphisms, we get a homeomorphism

ψ : X × E =
∐
e∈E

(X × {e})→
∐
e∈E

X .

If we de�ne p :
∐
e∈E X → X, x 7→ x, we have that (p ◦ ψ)((x, e)) =

p(pE((x, e))) = pE(x, e) for any x ∈ X, e ∈ E and so p ◦ ψ = pE . Then
ϕ′ := ψ ◦ ϕ : Y →

∐
e∈E X is a homeomorphism and p ◦ ϕ′ = p ◦ ψ ◦ ϕ =

pE ◦ ϕ = f .

(3) Let X be a connected scheme (in particular, X 6= ∅). If f : Y → X is a
totally split morphism and X0, X1, . . . are as in the de�nition 2.2.35, then from
X =

∐
n∈Z
n≥0

Xn it follows that Xn = ∅ for all but one n ∈ Z, n ≥ 0. By point

(2), this means that f has constant degree.

We list now some properties of totally split morphisms that are similar to those
of �nite étale morphisms.

Lemma 2.2.39. Let X, Y1, . . . , Yk be schemes (k ∈ N) with totally split morphisms
fi : Yi → X for every i = 1, . . . , k. De�ne Y :=

∐k
i=1 Yi (disjoint union of schemes)

and consider the morphism f : Y → X obtained by gluing the fi's. Then f is totally
split.

Proof. For any i = 1, . . . , k, since fi is totally split, we can write X =
∐
n∈Z
n≥0

Xin

for some schemes Xi0, Xi1, . . . such that, for any n ∈ Z, n ≥ 0, there exists an iso-
morphism of schemes ϕin : f−1

i (Xin) →
∐n
α=1Xin such that pin ◦ ϕin = fi, where

pin :
∐n
α=1Xin → Xin is obtained by gluing the identity morphisms idXin : Xin →
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Xin. Let n1, . . . , nk ∈ Z, n1, . . . , nk ≥ 0 and de�ne Xn1...nk :=
⋂k
i=1Xini . By

de�nition of disjoint union of schemes, we have that Xini is open in X for every
i = 1, . . . , k. Then Xn1...nk is open in X, because it is a �nite intersection of open
subsets. By de�nition of f , we have that f−1(Xn1...nk) =

∐
i=1,...,k f

−1
i (Xn1...nk).

Fix i ∈ {1, . . . , k}. We have that Xn1...nk ⊆ Xini and so f−1
i (Xn1...nk) ⊆ f−1

i (Xini).
Since pini ◦ ϕini = fi, we have that f−1

i (Xn1...nk) = (pini ◦ ϕini)−1(Xn1...nk) =
ϕ−1
ini

(p−1
ini

(Xn1...nk)) = ϕ−1
ini

(
∐ni
α=1Xn1...nk). Then we can restrict ϕini to an iso-

morphism of schemes ϕini : f−1
i (Xn1...nk) = ϕ−1

ini
(
∐ni
α=1Xn1...nk) →

∐ni
α=1Xn1...nk .

Gluing these isomorphisms, we get an isomorphism

ϕn1...nk :

k∐
i=1

f−1
i (Xn1...nk) = f−1(Xn1...nk)→

k∐
i=1

ni∐
α=1

Xn1...nk =

n1+···+nk∐
α=1

Xn1...nk .

Let pn1...nk :
∐n1+···+nk
α=1 Xn1...nk → Xn1...nk be the morphism obtained by gluing the

identity morphisms idXn1...nk
: Xn1...nk → Xn1...nk . Then, for any i = 1, . . . , k, we

have that (pn1...nk)|∐ni
α=1 Xn1...nk

is induced by the identity morphisms idXn1...nk
=

(idXini )|Xn1...nk
and so it coincides with the restriction of pini . It follows that

(pn1...nk ◦ ϕn1...nk)|
f−1
i

(Xn1...nk
)

= (pn1...nk)|∐ni
α=1 Xn1...nk

◦ (ϕn1...nk)|
f−1
i

(Xn1...nk
)

=

= pini ◦ ϕini = fi = f|
f−1
i

(Xni...nk
)

for any i = 1, . . . , k. Then pn1...nk ◦ ϕn1...nk = f . Notice that, if we consider
n1, . . . , nk,m1, . . . ,mk ∈ Z, n1, . . . , nk,m1, . . . ,mk ≥ 0 and i ∈ {1, . . . , k} is such
that ni 6= mi, then Xn1...nk ∩Xm1...mk = ∅, because Xn1...nk ⊆ Xini , Xm1...mk ⊆ Ximi

and Xini ∩ Ximi = ∅. Moreover, let x ∈ X. For any i = 1, . . . , k, we have
that X =

∐
n∈Z
n≥0

Xin, so there exists ni ∈ Z, ni ≥ 0 such that x ∈ Xini . Then

x ∈
⋂k
i=1Xini = Xn1...nk . This shows that X =

∐
n1,...,nk∈Z
n1,...,nk≥0

Xn1...nk . Fix now

n ∈ Z, n ≥ 0 and de�ne Xn :=
∐
n1,...,nk∈Z, n1,...,nk≥0

n1+···+nk=n
Xn1...nk . Then Xn is an open

subscheme of X (because it is a union of open subsets). Gluing the isomorphisms
ϕn1...nk 's we get an isomorphism of schemes

ϕn :
∐

n1,...,nk∈Z
n1,...,nk≥0
n1+···+nk=n

Xn1...nk = Xn →
∐

n1,...,nk∈Z
n1,...,nk≥0
n1+···+nk=n

n1+···+nk=n∐
α=1

Xn1...nk =

=

n∐
α=1

∐
n1,...,nk∈Z
n1,...,nk≥0
n1+···+nk=n

Xn1...nk =

n∐
α=1

Xn .

Let pn :
∐n
α=1Xn → Xn be the morphism obtained gluing the identity morphisms

idXn : Xn → Xn. Let n1, . . . , nk ∈ Z, n1, . . . , nk ≥ 0 be such that n1 + · · · + nk.

177



CHAPTER 2. GALOIS THEORY FOR SCHEMES

Then (pn)|∐n
α=1 Xn1...nk

is obtained by gluing the identity morphisms (idXn)|Xn1...nk
=

idXn1...nk
and so it coincides with pn1...nk . It follows that

(pn ◦ ϕn)|Xn1...nk
= (pn)||∐n

α=1 Xn1...nk

◦ (ϕn)|Xn1...nk
= pn1...nk ◦ ϕn1...nk = f .

Since this holds for any n1, . . . , nk, we get that pn ◦ ϕn = f . Finally, we have that

X =
∐

n1,...,nk∈Z
n1,...,nk≥0

Xn1...nk =
∐
n∈Z
n≥0

∐
n1,...,nk∈Z
n1,...,nk≥0
n1+···+nk=n

Xn1...nk =
∐
n∈Z
n≥0

Xn .

Hence f is totally split.

Lemma 2.2.40. Let (Xi)i∈I , (Yi)i∈I be two collections of schemes and de�ne X :=∐
i∈I Xi, Y :=

∐
i∈I Yi (disjoint union of schemes). Moreover, let fi : Xi → Yi be

a totally split morphism of schemes for every i ∈ I. If f : X → Y is the induced
morphism of schemes, then f is totally split.

Proof. Let i ∈ I. Since fi is totally split, we can write Xi =
∐
n∈Z
n≥0

Xin for some

schemes Xi0, Xi1, . . . such that, for any n ∈ Z, n ≥ 0, there exists an isomor-
phism of schemes ϕin : f−1

i (Xin) →
∐n
α=1Xin such that pin ◦ ϕin = fi, where pin :∐n

α=1Xin → Xin is obtained by gluing the identity morphisms idXin : Xin → Xin.
Then we have that

X =
∐
i∈I

Xi =
∐
i∈I

∐
n∈Z
n≥0

Xin =
∐
n∈Z
n≥0

∐
i∈I

Xin .

For any n ∈ Z, n ≥ 0, de�ne Xn :=
∐
i∈I Xin, so that X =

∐
n∈Z
n≥0

Xn. Fix n ∈ Z,

n ≥ 0. We have that f−1(Xn) = f−1
(∐

i∈I Xin

)
=
∐
i∈I f

−1(Xin). Then we can
glue the morphisms of schemes ϕin : f−1(Xin) →

∐n
α=1Xin to get a morphism of

schemes

ϕn : f−1(Xn) =
∐
i∈I

f−1(Xin)→
∐
i∈I

n∐
α=1

Xin =
n∐

α=1

∐
i∈I

Xin =
n∐

α=1

Xn .

Since ϕin is an isomorphism for each i ∈ I, we can consider the inverses ϕ−1
in 's.

Gluing them, we get a morphism of schemes ϕ′n :
∐
i∈I
∐n
α=1Xin =

∐n
α=1Xn →∐

i∈I f
−1(Xin) = f−1(Xn). We have that (ϕ′n ◦ ϕn)|f−1(Xin)

= (ϕ′n)|∐n
α=1 Xin

◦
(ϕn)|f−1(Xn)

= ϕ−1
in ◦ ϕin = idf−1(Xin) = (idf−1(Xn))|f−1(Xin)

for any n ∈ Z, n ≥ 0.

So ϕ′n ◦ ϕn = idf−1(Xn). Analogously, one can show that ϕn ◦ ϕ′n = id∐n
α=1 Xn

.
So ϕn is an isomorphism. Let pn :

∐n
α=1Xn → Xn be the morphism obtained

by gluing the identity morphisms idXn : Xn → Xn. As above, we have that∐n
α=1Xn =

∐
i∈I
∐n
α=1Xin. Let i ∈ I. We have that (pn)|Xin

= (idXn)|Xin
= idXin

and so, recalling the de�nition of pin, we get that (pn)|∐n
α=1 Xin

= pin. Then

(pn ◦ ϕn)|f−1(Xin)
= (pn)|∐n

α=1 Xin
◦ (ϕn)|f−1(Xin)

= pin ◦ ϕin = fi = f|f−1(Xin)
.

Since this holds for any i ∈ I, we have that pn ◦ϕn = f . Hence f is totally split.
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Lemma 2.2.41. Let X, Y and W be schemes. Let f : Y → X be a totally split
morphism and g : W → X any morphism of schemes. Consider the �bred product
Y ×X W , with the projections p1 : Y ×X W → Y and p2 : Y ×X W → W . Then p2

is totally split.

Proof. Since f is totally split, there exist some schemes X0, X1, . . . such that X =∐
n∈Z
n≥0

Xn and, for any n ∈ Z, n ≥ 0, there exists an isomorphism of schemes ϕn :

f−1(Xn) →
∐n
i=1Xn such that πn ◦ ϕn = f , where πn :

∐n
i=1Xn → Xn is obtained

by gluing the identity morphisms idXn : Xn → Xn. For any n ∈ Z, n ≥ 0, de�ne
Wn := g−1(Xn). Then, since g is a morphism of schemes, we have that

W = g−1(X) = g−1

∐
n∈Z
n≥0

Xn

 =
∐
n∈Z
n≥0

g−1(Xn) =
∐
n∈Z
n≥0

Wn ,

as schemes. Fix n ∈ Z, n ≥ 0. We have that p−1
2 (Wn) = p−1

2 (g−1(Xn)) =
f−1(Xn) ×Xn g−1(Xn) = f−1(Xn) ×Xn Wn, with the obvious projections (this can
be checked as in the proof of lemma 2.2.34). Consider the disjoint union

∐n
i=1Wn

and let qn :
∐n
i=1Wn → Wn be the morphism obtained by gluing the identity mor-

phisms idWn : Wn → Wn. Moreover, let q′n :
∐n
i=1Wn →

∐n
i=1Xn be the mor-

phism obtained by gluing n-times the morphism g : Wn = g−1(Xn) → Xn. Then
g◦qn = πn ◦q′n. Moreover, let Z be a scheme with two morphisms h1 : Z →

∐n
i=1Xn

and h2 : Z → Wn such that g ◦ h2 = πn ◦ h1. For any i = 1, . . . , n, let Zi be the
preimage under h1 of the i-th copy of Xn. Then

Z = h−1
1

(
n∐
i=1

Xn

)
=

n∐
i=1

h−1
1 (Xn) =

n∐
i=1

Zi .

For any i = 1, . . . , n, consider the restriction hi := (h2)|Zi
: Zi → Wn. Let h :∐n

i=1 Zi →
∐n
i=1Wn be the morphism of schemes obtained by gluing the hi's. For

any j = 1, . . . , n, let ιj : Xn →
∐n
i=1Xn and ι′j : Wn →

∐n
i Wn be the j-th canonical

inclusions, so that qn ◦ ι′j = idWn , q
′
n ◦ ι′j = ιj ◦ g and h|Zj = ι′j ◦ hj . Then, for any

i = 1, . . . , n,we have that

(qn ◦ h)|Zi
= qn ◦ h|Zi = qn ◦ ι′i ◦ hi = idWn ◦(h2)|Zi

= (h2)|Zi

and

(q′n ◦ h)|Zi
= q′n ◦ h|Zi = q′n ◦ ι′i ◦ hi = ιi ◦ g ◦ (h2)|Zi

= ιi ◦ (g ◦ h2)|Zi
=

= ιi ◦ (πn ◦ h1)|Zi
= ιi ◦ πn ◦ (h1)|Zi

= id∐n
i=1Xn

◦(h1)|Zi
= (h1)|Zi

(by de�nition, the restriction of ιi ◦ πn to the i-th component of
∐n
i=1Xi coincides

with the restriction of the identity). Since this holds for any i = 1, . . . , n, it follows
that qn ◦ h = h2 and q′n ◦ h = h1. On the other hand, if h̃ : Z →

∐n
i=1Wn is another

morphism of schemes such that qn ◦ h̃ = h2 and q′n ◦ h̃ = h1, then for any i = 1, . . . , n
we have that q′n(h̃(Zi)) = h1(Zi) is contained in the i-th copy of Xn, so h̃(Zi) is
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contained in the preimage under q′n of the i-th copy of Xn. This preimage is, by
de�nition of q′n, the i-th copy of Wn inside

∐n
i=1Wn. Then

h̃|Zi
= ι′i ◦ qn ◦ h̃|Zi = ι′i ◦ (qn ◦ h̃)|Zi

= ι′i ◦ (h2)|Zi
= ι′i ◦ hi = h|Zi

.

Since this holds for any i = 1, . . . , n, it follows that h̃ = h. This shows that
∐n
i=1Wn,

together with the morphisms q′n :
∐n
i=1Wn →

∐n
i=1Xn and qn :

∐n
i=1Wn → Wn, is

the �bred product of
∐n
i=1Xn andWn over Xn. Consider now the following diagram

(recall that p−1
2 (Wn) = p−1

2 (g−1(Xn)) = p−1
1 (f−1(Xn)), so p1(p−1

2 (Wn)) ⊆ f−1(Xn)).
p−1

2 (Wn)

∐n
i=1Wn

∐n
i=1Xn

Wn

Xn

............................................................................................................................................................................................................................................................................................................................ ........
....

ϕn ◦ p1

...................................................................................................................................................................................................................................................................................................................................................................... ..........
..

p2

...................................................................................
.....
.......
.....

q′n

........................................................................................ ............

qn

........................................................................................ ............
πn

...................................................................................
.....
.......
.....

g

Applying the de�nition of �bred product and the fact that πn ◦ ϕn = f , we get that
πn ◦ϕn ◦ p1 = f ◦ p1 = g ◦ p2. So the diagram is commutative and, since

∐n
i=1Wn =

(
∐n
i=1Xn)×Xn Wn, there exists a unique morphism ψn : p−1

2 (Wn)→
∐n
i=1Wn such

that q′n ◦ψn = ϕn ◦ p1 and qn ◦ψn = p2. We claim that ψn is an isomorphism. Since
ϕn is an isomorphism, we can consider the following diagram.∐n

i=1Wn

p−1
2 (Wn)

f−1(Xn)

Wn

Xn

............................................................................................................................................................................................................................................................................................................................ ........
....

ϕ−1
n ◦ q′n

...................................................................................................................................................................................................................................................................................................................................................................... ..........
..

qn

...................................................................................
.....
.......
.....

p1

........................................................................................ ............

p2

........................................................................................ ............
f

...................................................................................
.....
.......
.....

g

Since πn ◦ ϕn = f , we have that f ◦ ϕ−1
n = πn. Recalling that πn ◦ q′n = g ◦ qn,

we get that f ◦ ϕ−1
n ◦ q′n = πn ◦ q′n = g ◦ qn. So the diagram is commutative and,

since p−1
2 (Wn) = f−1(Xn)×XnWn, there exists a unique morphism ψ′n :

∐n
i=1Wn →

p−1
2 (Wn) such that p1 ◦ ψ′n = ϕ−1

n ◦ q′n and p2 ◦ ψ′n = qn. We have that

p1 ◦ (ψ′n ◦ ψn) = ϕ−1
n ◦ q′n ◦ ψn = ϕ−1

n ◦ ϕn ◦ p1 = p1 = p1 ◦ idp−1
2 (Wn)

and
p2 ◦ (ψ′n ◦ ψn) = qn ◦ ψn = p2 = p2 ◦ idp−1

2 (Wn) .

By uniqueness in the universal property of the �bred product, this implies that
ψ′n ◦ ψn = idp−1

2 (Wn). On the other hand,

q′n ◦ (ψn ◦ ψ′n) = ϕn ◦ p1 ◦ ψ′n = ϕn ◦ ϕ−1
n ◦ q′n = q′n = q′n ◦ id∐n

i=1Wn

and
qn ◦ (ψn ◦ ψ′n) = p2 ◦ ψ′n = qn = qn ◦ id∐n

i=1 Wn
.
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By uniqueness in the universal property of the �bred product, this implies that
ψn ◦ψ′n = id∐n

i=1Wn
. So ψn and ψ′n are inverse to each other. In particular, ψn is an

isomorphism of schemes. We already know that qn ◦ψn = p2. Since this construction
holds for any n ∈ Z, n ≥ 0, we have that p2 is totally split.

The following lemma is a preparation for the proof of a proposition that will be
a key tool in our proof that FEtX is a Galois category if X is connected.

Lemma 2.2.42. Let X, Y be schemes and f : Y → X a �nite étale morphism.
Consider the �bred product Y ×X Y , with projections p1 : Y ×X Y → Y and p2 :
Y ×X Y → Y . Let ∆ : Y → Y ×X Y be the unique morphism such that the following
diagram is commutative (existence and uniqueness of ∆ follow from the universal
property of the �bred product).

Y

Y ×X Y

Y

Y

X

.................................................................................................................................................................................................................................................. .........
...

∆

............................................................................................................................................................................................................................................................................................................................ ........
....

idY

...................................................................................................................................................................................................................................................................................................................................................................... ..........
..

idY

...................................................................................
.....
.......
.....

p1

........................................................................................ ............

p2

........................................................................................ ............
f

...................................................................................
.....
.......
.....

f

Then ∆(Y ) (the set-theoretic image of ∆) is both open and closed in Y ×X Y and
∆ : Y → ∆(Y ) is an isomorphism of schemes.

Proof. First of all, we prove this in the case when X = Spec(A) is a�ne. Since f is
�nite étale, by lemma 2.2.10(4) we have that f−1(X) is a�ne and equal to Spec(B),
where B is a projective separable A-algebra. Then Y ×X Y = Spec(B) ×Spec(A)

Spec(B) = Spec(B⊗AB) (see the proof of theorem 3.3 in chapter II of [4]). Consider
on B ⊗A B the B-algebra structure induced by the morphism of schemes p2 : Y ⊗X
Y = Spec(B ⊗A B) → Y = Spec(B), i.e. the B-algebra structure via the second
factor. The morphism of schemes ∆ : Y = Spec(B) → Y ×X Y = Spec(B ⊗A B)
corresponds to a ring homomorphism ∆# : B ⊗A B → B, which is also a B-algebra
homomorphism, because p2 ◦∆ = idY . Since p1 ◦∆ = idY = p2 ◦∆, we have that
∆# ◦ p#

1 = idB = ∆# ◦ p#
2 . Then, for any x, y ∈ B, we have that

∆#(x⊗ y) = ∆#((x⊗ 1)(1⊗ y)) = ∆#(x⊗ 1)∆#(1⊗ y) =

= ∆#(p#
1 (x))∆#(p#

2 (y)) = idB(x) idB(y) = xy

(we applied the fact that ∆# is a ring homomorphism). So, since ∆# is B-linear
we have that ∆# = δ, where δ is the map de�ned in proposition 2.1.75. By that
proposition (which we can apply because B is a projective separable A-algebra),
there exist a B-algebra C and an isomorphism of B-algebras α : B ⊗A B → B × C
such that δ = pB◦α, where pB : B×C → B is the canonical projection (which is a B-
algebra homomorphism, in particular a ring homomorphism). Now we translate this
into the language of schemes. The isomorphism α corresponds to an isomorphism
of schemes a : Spec(B × C) → Spec(B ⊗A B) = Y ×X Y . As in the proof of
lemma 2.2.18, we have that Spec(B × C) = Spec(B) q Spec(C) = Y q Spec(C).
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The ring homomorphism pB : B × C → B corresponds to the canonical inclusion
ιY : Y = Spec(B)→ Y q Spec(C) = Spec(B × C). Then, since δ = pB ◦ α, we have
that ∆ = a ◦ ιY . This is illustrated by the following commutative diagram.

Y

Y

Y q Spec(C)

Y ×X Y

...................................................................................
.....
.......
.....

idY

....................................................................................................
p2

........................................................................................ ............
ιY

...................................................................................
.....
.......
.....

a

........................................................................................................................................... ........
....

∆

We have that Y is both open and closed in Y q Spec(C) by de�nition of disjoint
union. Then ∆(Y ) = a(ιY (Y )) = a(Y ) is both open and closed in Y ×X Y , because
a is an isomorphism of schemes (in particular, a homeomorphism). Moreover, ιY :
Y → ιY (Y ) = Y ⊆ Y q Spec(C) is an isomorphism of schemes and, since a :
Y qSpec(C)→ Y ×X Y is an isomorphism of schemes, also the restriction a|Y : Y =
ιY (Y ) → a(ιY (Y )) = ∆(Y ) is an isomorphism of schemes. Then the composition
a|Y ◦ ιY = ∆ : Y → ∆(Y ) is an isomorphism of schemes, as we wanted.
Consider now the general case (X not necessarily a�ne). By de�nition of scheme,
there exists a cover of X by open a�ne subsets (Ui)i∈I . Let i ∈ I and de�ne
Vi := f−1(Ui). Then Vi is an open subscheme of Y . By lemma 2.2.22, the restriction
fi := f|Vi

: Vi = f−1(Ui)→ Ui is �nite étale. Consider the �bred product Vi ×Ui Vi,
with projections p(i)

1 : Vi×Ui Vi → Vi and p
(i)
2 : Vi×Ui Vi → Vi. Consider the following

commutative diagram.
Vi

Vi ×Ui Vi

Vi

Vi

Ui

............................................................................................................................................................................................................................................................................................................................ ........
....

idVi

...................................................................................................................................................................................................................................................................................................................................................................... ..........
..

idVi

...................................................................................
.....
.......
.....

p
(i)
1

........................................................................................ ............

p
(i)
2

........................................................................................ ............
fi

...................................................................................
.....
.......
.....

fi

By the universal property of the �bred product, there exists a unique morphism
∆i : Vi → Vi ×Ui Vi such that p(i)

1 ◦∆i = idVi = p
(i)
2 ◦∆i. Since Ui is a�ne, by what

we proved above we have that ∆i(Vi) is both open and closed in Vi ×Ui Vi and that
∆i : Vi → ∆i(Vi) is an isomorphism of schemes. As in the proof of theorem 3.3 in
chapter II of [4], we have that Y ×X Y =

⋃
i∈I(Vi ×Ui Vi) and Vi ×Ui Vi is open in

Y ×X Y for every i ∈ I. Moreover, p(i)
1 = (p1)|Vi×UiVi

and p
(i)
2 = (p2)|Vi×UiVi

, for

every i ∈ I. Fix i ∈ I. Since Vi ×Ui Vi is an open subscheme of Y ×X Y , we can
consider ∆i as a morphism Vi → Y ×X Y . We have that

p1 ◦∆i = p
(i)
1 ◦∆i = idVi = (idY )|Vi

= (p1 ◦∆)|Vi
= p1 ◦∆|Vi

and
p2 ◦∆i = p

(i)
2 ◦∆i = idVi = (idY )|Vi

= (p2 ◦∆)|Vi
= p2 ◦∆|Vi

.

Then, by uniqueness in the universal property of the �bred product, we have that
∆i = ∆|Vi

. It follows that ∆(Vi) = ∆i(Vi), which is both open and closed in Vi×UiVi.
Since Vi×Ui Vi is open in Y ×X Y , we have that ∆(Vi) is open in Y ×X Y . Since this
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holds for any i ∈ I and Y =
⋃
i∈I Vi, we have that ∆(Y ) = ∆

(⋃
i∈I Vi

)
=
⋃
i∈I ∆(Vi)

is open in Y ×X Y , because it is a union of open subsets.
Let i ∈ I. Notice that ∆−1(Vi ×Ui Vi) = Vi. Indeed, ∆(Vi) = ∆i(Vi) ⊆ Vi ×Ui Vi
implies that Vi ⊆ ∆−1(Vi ×Ui Vi). Conversely, if y ∈ ∆−1(Vi ×Ui Vi), we have that

∆(y) ∈ Vi ×Ui Vi and then, since p1 ◦ ∆ = idY and (p1)|Vi×UiVi
= p

(i)
1 , we get that

y = idY (y) = p1(∆(y)) = p
(i)
1 (∆(y)) ∈ Vi. This shows that ∆−1(Vi ×Ui Vi) = Vi.

Then ∆(Y ) ∩ (Vi ×Ui Vi) = ∆(∆−1(Vi ×Ui Vi)) = ∆(Vi). It follows that

(Y ×X Y )\∆(Y ) =

(⋃
i∈I

(Vi ×Ui Vi)

)
\∆(Y ) =

⋃
i∈I

((Vi ×Ui Vi)\∆(Y )) =

=
⋃
i∈I

((Vi ×Ui Vi)\(∆(Y ) ∩ (Vi ×Ui Vi))) =
⋃
i∈I

((Vi ×Ui Vi)\∆(Vi)) .

For any i ∈ I, since ∆(Vi) is closed in Vi ×Ui Vi, we have that (Vi ×Ui Vi)\∆(Vi) is
open in Vi ×Ui Vi and then also in Y ×X Y , because Vi ×Ui Vi is open in Y ×X Y .
So (Y ×X Y )\∆(Y ) =

⋃
i∈I((Vi ×Ui Vi)\∆(Vi)) is open in Y ×X Y , because it is a

union of open subsets. So ∆(Vi) is closed in Y ×X Y .
Finally, for any i ∈ I we know that ∆i : Vi → ∆i(Vi) is an isomorphism of schemes
and so we can consider the inverse morphism ∆−1

i : ∆i(Vi) = ∆(Vi) → Vi. These
morphisms agree on the overlaps. Indeed, for any i, j ∈ I we have that ∆−1(∆(Vi)∩
∆(Vj)) = ∆−1(∆(Vi)) ∩ ∆−1(∆(Vj)) = Vi ∩ Vj (the last equality follows from the
fact that ∆−1(∆(Vk)) = ∆−1(∆(∆−1(Vk ×Uk Vk))) = ∆−1(Vk ×Uk Vk) = Vk for any
k ∈ I) and so

(∆−1
i )|∆(Vi)∩∆(Vj)

=

((
∆|Vi

)−1
)
|∆(Vi)∩∆(Vj)

=

((
∆|Vi

)
|Vi∩Vj

)−1

= (∆|Vi∩Vj
)−1 =

=

((
∆|Vj

)
|Vi∩Vj

)−1

=

((
∆|Vj

)−1
)
|∆(Vi)∩∆(Vj)

= (∆−1
j )|∆(Vi)∩∆(Vj)

.

Then we can glue the morphisms ∆−1
i 's and a get a morphism

∆′ :
⋃
i∈I

∆(Vi) = ∆(Y )→
⋃
i∈I

Vi = Y .

We have that ∆ : Y → ∆(Y ) and ∆′ : ∆(Y ) → Y are inverse to each other,
because this is true considering the restrictions to Vi and ∆(Vi), for any i ∈ I. Hence
∆ : Y → ∆(Y ) is an isomorphism of schemes.

Proposition 2.2.43. Let X, Y be schemes and f : Y → X a morphism of schemes.
Then f is �nite étale if and only if f is a�ne and there exist a scheme W and a
surjective, �nite and locally free morphism of schemes g : W → X such that the
projection p2 : Y ×X W →W is totally split.

Proof. Assume that f is a�ne and that there exist a scheme W and a surjective,
�nite and locally free morphism of schemes g : W → X such that the projection
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p2 : Y ×X W →W is totally split. By lemma 2.2.37, we have that p2 is �nite étale.
Then, by lemma 2.2.34, f is �nite étale.
Conversely, assume that f is �nite étale. We know that in this case f is a�ne (remark
2.2.4). So we have to show the existence of W and g with the desired properties.
We assume �rstly that f has constant degree and we prove the claim by induction
on n := [Y : X]. If n = 0, then Y = ∅, by lemma 2.2.15(1). De�ne W := X and
g := idX . Then g is clearly surjective. Moreover, g is totally split (example 2.2.36)
and so it is �nite étale by lemma 2.2.37. In particular, g is �nite and locally free.
So the requirements about g are satis�ed. Consider the �bred product Y ×X W ,
with projections p1 : Y ×X W → Y and p2 : Y ×X W → W . Since Y = ∅ and
we have the morphism p1 : Y ×X W → Y , we must have Y ×X W = ∅. Then
p2 : Y ×X W = ∅ →W is totally split (set W0 := W and Wk := ∅ for any k 6= 0).
Let now n ≥ 1 and assume that the claim is true for any �nite étale morphism
of degree less than n. Consider the �bred product Y ×X Y , with projections q1 :
Y ×X Y → Y and q2 : Y ×X Y → Y . Since f is �nite étale, by lemma 2.2.28(4)
we have that q2 is �nite étale. Moreover, by point (2) of the same lemma, we have
that [Y ×X Y : Y ](y) = [Y : X](f(y)) = n for any y ∈ Y . Let ∆ : Y → Y ×X Y
be the unique morphism such that q1 ◦∆ = idY = q2 ◦∆ (existence and uniqueness
follow from the universal property of the �bred product). By lemma 2.2.42, we
have that ∆(Y ) is both open and closed in Y ×X Y and that ∆ : Y → ∆(Y ) is an
isomorphism of schemes. Then Y ×X Y = ∆(Y ) q Y ′ (disjoint union of schemes),
where we de�ned Y ′ := (Y ×X Y )\∆(Y ). De�ne q := (q2)|∆(Y )

: ∆(Y ) → Y and
q′ := (q2)|Y ′ : Y ′ → Y . Since q2 is �nite étale, by lemma 2.2.18(2)-(3) we have
that also q and q′ are �nite étale and n = [Y ×X Y : Y ] = [∆(Y ) : Y ] + [Y ′ : Y ].
Since q ◦ ∆ = (q2)|∆(Y )

◦ ∆ = q2 ◦ ∆ = idY and we proved that ∆ : Y → ∆(Y )

is an isomorphism, we have that q = ∆−1 : ∆(Y ) → Y is an isomorphism. Then,
by lemma 2.2.15(2), we have that [∆(Y ) : Y ] = 1. So [Y ′ : Y ] = n − 1. Applying
the induction hypothesis, we have that there exist a scheme W and a surjective,
�nite and locally free morphism of schemes g′ : W → Y such that the projection
p′2 : Y ′ ×Y W → W is totally split. De�ne g := f ◦ g′ : W → X. Since f is �nite
étale, it is in particular �nite and locally free. Then, by lemma 2.2.30 we have that
g is �nite and locally free. Moreover, since [Y : X] = n ≥ 1, by lemma 2.2.15(3)
we have that f is surjective. Then g is surjective, because it is a composition of
surjective maps. So g satis�es the required properties. Consider the �bred product
∆(Y )×Y W , with projections p′′1 : ∆(Y )×Y W → ∆(Y ) and p′′2 : ∆(Y )×Y W →W .
Consider the morphisms ∆ ◦ g′ : W → ∆(Y ) and idW : W → W . We have that
q ◦ (∆ ◦ g′) = (∆−1 ◦ ∆) ◦ g′ = g′ = g′ ◦ idW , so by the universal property of the
�bred product there exists a unique morphism ϑ : W → ∆(Y ) ×Y W such that
p′′1 ◦ ϑ = ∆ ◦ g′ and p′′2 ◦ ϑ = idW . Consider ϑ ◦ p′′2 : ∆(Y )×Y W → ∆(Y )×Y W . We
have that

p′′1 ◦ (ϑ ◦ p′′2) = ∆ ◦ g′ ◦ p′′2 = ∆ ◦ q ◦ p′′1 = ∆ ◦∆−1 ◦ p′′1 = p′′1 = p′′1 ◦ id∆(Y )×YW

and
p′′2 ◦ (ϑ ◦ p′′2) = idW ◦p′′2 = p′′2 = p′′2 ◦ id∆(Y )×YW .

By uniqueness in the universal property of the �bred product, it follows that ϑ ◦
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p′′2 = id∆(Y )×YW . So p′′2 and ϑ are inverse to each other. This shows that p′′2 is
an isomorphism of schemes. Then p′′2 is totally split, by example 2.2.36. Gluing
p′2 : Y ′ ×Y W → W and p′′2 : ∆(Y )×Y W → W , we get a morphism p2 : (∆(Y )×Y
W )q(Y ′×YW )→W , which is totally split by lemma 2.2.39. Let p′1 : Y ′×YW → Y ′

be the �rst projection. Then we can glue p′1 with p′′1 : ∆(Y )×Y W → ∆(Y ) and get
a morphism p1 : (∆(Y )×Y W )q (Y ′×Y W )→ ∆(Y )qY ′ = Y ×X Y . We claim that
(∆(Y )×Y W )q (Y ′ ×Y W ), together with the morphisms q1 ◦ p1 : (∆(Y )×Y W )q
(Y ′ ×Y W )→ Y and p2 : (∆(Y )×Y W )q (Y ′ ×Y W )→W is the �bred product of
Y and W over X. First of all, notice that

(q2 ◦ p1)|∆(Y )×Y W
= (q2)|∆(Y )

◦ (p1)|∆(Y )×Y W
= q ◦ p′′1 =

= g′ ◦ p′′2 = g′ ◦ (p2)|∆(Y )×Y W
= (g′ ◦ p2)|∆(Y )×Y W

and

(q2 ◦ p1)|Y ′×Y W
= (q2)|Y ′ ◦ (p1)|Y ′×Y W

= q′ ◦ p′1 =

= g′ ◦ p′2 = g′ ◦ (p2)|Y ′×Y W
= (g′ ◦ p2)|Y ′×Y W

.

Then q2 ◦p1 = g′ ◦p2. Recall now that f ◦q1 = f ◦q2, by de�nition of �bred product.
Then

f ◦ (q1 ◦ p1) = f ◦ q2 ◦ p1 = f ◦ g′ ◦ p2 = g ◦ p2 .

Let now Z be a scheme with morphisms h1 : Z → Y and h2 : Z → W such that
f ◦ h1 = g ◦ h2. Since g = f ◦ g′, this means that f ◦ h1 = f ◦ g′ ◦ h2. Consider then
the following diagram.

Z

Y ×X Y

Y

Y

X

............................................................................................................................................................................................................................................................................................................................ ........
....

h1

...................................................................................................................................................................................................................................................................................................................................................................... ..........
..

g′ ◦ h2

...................................................................................
.....
.......
.....

q1

........................................................................................ ............

q2

........................................................................................ ............
f

...................................................................................
.....
.......
.....

f

By the universal property of the �bred product, there exists a unique morphism
η : Z → Y ×X Y = ∆(Y ) q Y ′ such that q1 ◦ η = h1 and q2 ◦ η = g′ ◦ h2. De�ne
Z ′ := η−1(Y ′) and Z ′′ := η−1(∆(Y )). Then Z ′ and Z ′′ are open subschemes of
Z and we have Z = η−1(∆(Y ) q Y ′) = η−1(∆(Y )) q η−1(Y ′) = Z ′′ q Z ′. Let
moreover η′ := η|Z′ : Z ′ = η−1(Y ′) → Y ′, η′′ := η|Z′′ : Z ′′ = η−1(∆(Y )) → ∆(Y ),
h′2 := (h2)|Z′ : Z ′ →W and h′′2 := (h2)|Z′′ : Z ′′ →W . We have that

q′ ◦ η′ = (q2)|Y ′ ◦ η|Z′ = (q2 ◦ η)|Z′ = (g′ ◦ h2)|Z′ = g′ ◦ (h2)|Z′ = g′ ◦ h′2 .

So, by the universal property of the �bred product, there exists a unique morphism
h′ : Z ′ → Y ′ ×Y W such that p′1 ◦ h′ = η′ and p′2 ◦ h′ = h′2. Analogously, we have
that

q ◦ η′′ = (q2)|∆(Y )
◦ η|Z′′ = (q2 ◦ η)|Z′′ = (g′ ◦ h2)|Z′′ = g′ ◦ (h2)|Z′′ = g′ ◦ h′′2 .
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So, by the universal property of the �bred product, there exists a unique morphism
h′′ : Z ′′ → ∆(Y )×Y W such that p′′1 ◦ h′′ = η′′ and p′′2 ◦ h′′ = h′′2. Gluing h

′ and h′′,
we get a morphism h : Z ′′ q Z ′ = Z → (∆(Y )×Y W )q (Y ′ ×Y W ). We have that

(p1 ◦ h)|Z′ = (p1)|Y ′×Y W
◦ h|Z′ = p′1 ◦ h′ = η′ = η|Z′

and
(p1 ◦ h)|Z′′ = (p1)|∆(Y )×Y W

◦ h|Z′′ = p′′1 ◦ h′′ = η′′ = η|Z′′ .

So p1 ◦ h = η. It follows that (q1 ◦ p1) ◦ h = q1 ◦ η = h1. We have also that

(p2 ◦ h)|Z′ = (p2)|Y ′×Y W
◦ h|Z′ = p′2 ◦ h′ = h′2 = (h2)|Z′

and
(p2 ◦ h)|Z′′ = (p2)|∆(Y )×Y W

◦ h|Z′′ = p′′2 ◦ h′′ = h′′2 = (h2)|Z′′ .

So p2 ◦ h = h2. Let h̃ : Z → (∆(Y ) ×Y W ) q (Y ′ ×Y W ) be another morphism of
schemes such that (q1 ◦ p1) ◦ h̃ = h1 and p2 ◦ h̃ = h2. We have that q1 ◦ (p1 ◦ h̃) =
(q1 ◦ p1) ◦ h̃ = h1 and q2 ◦ (p1 ◦ h̃) = g′ ◦ p2 ◦ h̃ = g′ ◦ h2 (recall that q2 ◦ p1 = g′ ◦ p2).
This implies that p1 ◦ h̃ = η, by uniqueness of η. Then we have that Z ′ = η−1(Y ′) =
(p1 ◦ h̃)−1(Y ′) = h̃−1(p−1

1 (Y ′)) ⊆ h̃−1(Y ′×Y W ) and so h̃(Z ′) ⊆ Y ′×Y W . It follows
that

p′1 ◦ h̃|Z′ = (p1)|Y ′×Y W
◦ h̃|Z′ =

(
p1 ◦ h̃

)
|Z′

= η|Z′ = η′

and
p′2 ◦ h̃|Z′ = (p2)|Y ′×Y W

◦ h̃|Z′ =
(
p2 ◦ h̃

)
|Z′

= (h2)|Z′ = h′2 .

By uniqueness of h′, it follows that h̃|Z′ = h′ = h|Z′ . Analogously, one can show that

h̃|Z′′ = h′′ = h|Z′′ . So h̃ = h. This proves that (∆(Y )×Y W )q(Y ′×Y W ) = Y ×XW ,
with projections q1 ◦ p1 : (∆(Y )×Y W )q (Y ′ ×Y W )→ Y and p2 : (∆(Y )×Y W )q
(Y ′ ×Y W ) → W . We know that p2 is totally split and so all the requirements are
satis�ed.
So the claim is true for any �nite étale morphism of constant degree. Finally, let f
be an arbitrary �nite étale morphism. For any n ∈ Z, n ≥ 0, de�ne

Xn := {x ∈ sp(X) | [Y : X](x) = n} = [Y : X]−1({n}) ,

which is open in X because {n} is open in Z (which has the discrete topology) and
[Y : X] : sp(X) → Z is continuous. Then, for any n ∈ Z, n ≥ 0, we have that
Xn is an open subscheme of X. So we can write X =

∐
n∈Z
n≥0

Xn. It follows that

Y = f−1(X) = f−1

(∐
n∈Z
n≥0

Xn

)
=
∐
n∈Z
n≥0

f−1(Xn) =
∐
n∈Z
n≥0

Yn, where we de�ned

Yn := f−1(Xn) for any n ∈ Z, n ≥ 0. Fix n ∈ N, n ≥ 0. By corollary 2.2.24, we
have that fn := f|Yn : Yn → Xn is �nite étale and [Yn : Xn](x) = [Y : X](x) = n
for any x ∈ sp(Xn). So fn has constant rank and, by what we proved above, there
exist a scheme Wn and a surjective, �nite and locally free morphism of schemes
gn : Wn → Xn such that the projection p

(n)
2 : Yn ×Xn Wn → Wn is totally split.
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Denote by p(n)
1 : Yn ×Xn Wn → Yn the �rst projection (then fn ◦ p(n)

1 = gn ◦ p(n)
2 ).

De�neW :=
∐
n∈Z
n≥0

Wn and let g : W =
∐
n∈Z
n≥0

Wn → X =
∐
n∈Z
n≥0

Xn be the morphism

of schemes obtained by gluing the gn's. By lemma 2.2.20, g is �nite and locally
free, because each gn is �nite and locally free. Moreover, let x ∈ sp(X). Since
X =

∐
n∈Z
n≥0

Xn, there exist (a unique) n ∈ Z, n ≥ 0 such that x ∈ sp(Xn). Then, since

gn is surjective, there exists w ∈ sp(Wn) ⊆ sp(W ) such that x = gn(w) = g(w). This
shows that g is surjective. So g satis�es the required properties. Consider now the
sum

∐
n∈Z
n≥0

(Yn ×Xn Wn). Gluing the projections p(n)
1 's and p(n)

2 's, we get morphisms

of schemes p1 :
∐
n∈Z
n≥0

(Yn ×Xn Wn) →
∐
n∈Z
n≥0

Yn = Y and p2 :
∐
n∈Z
n≥0

(Yn ×Xn Wn) →∐
n∈Z
n≥0

Wn = W . For any n ∈ Z, n ≥ 0, we have that

(f ◦ p1)|Yn×XnWn
= f|Yn ◦ (p1)|Yn×XnWn

= fn ◦ p(n)
1 =

= gn ◦ p(n)
2 = g|Wn ◦ (p2)|Yn×XnWn

= (g ◦ p2)|Yn×XnWn
.

So f ◦p1 = g◦p2. Let now Z be a scheme with two morphisms of schemes h1 : Z → Y ,
h2 : Z → W such that f ◦ h1 = g ◦ h2. Fix n ∈ Z, n ≥ 0. De�ne Zn := h−1

1 (Yn).
Then we have that

Zn = h−1
1 (Yn) = h−1

1 (f−1(Xn)) = (f ◦ h1)−1(Xn) =

= (g ◦ h2)−1(Xn) = h−1
2 (g−1(Xn)) = h−1

2 (Wn) .

Consider the following diagram.
Zn

Yn ×Xn Wn

Yn

Wn

Xn

............................................................................................................................................................................................................................................................................................................................ ........
....

(h1)|Zn

...................................................................................................................................................................................................................................................................................................................................................................... ..........
..

(h2)|Zn

...................................................................................
.....
.......
.....

p
(n)
1

........................................................................................ ............

p
(n)
2

........................................................................................ ............
fn

...................................................................................
.....
.......
.....

gn

We have that

fn ◦(h1)|Zn = f|Yn ◦(h1)|Zn = (f ◦h1)|Zn = (g ◦h2)|Zn = g|Wn ◦(h2)|Zn = gn ◦(h2)|Zn .

So the diagram is commutative and, by the universal property of the �bred product,
there exists a unique morphism of schemes hn : Zn → Yn×XnWn such that p

(n)
1 ◦hn =

(h1)|Zn and p
(n)
2 ◦ hn = (h2)|Zn . We have that Z = h−1

1 (Y ) = h−1
1

(∐
n∈Z
n≥0

Yn

)
=∐

n∈Z
n≥0

h−1
1 (Yn) =

∐
n∈Z
n≥0

Zn. So we can glue the morphisms hn's and get a morphism

of schemes h : Z →
∐
n∈Z
n≥0

(Yn ×Xn Wn). For any n ∈ Z, n ≥ 0, we have that

(p1 ◦ h)|Zn = (p1)|Yn×XnWn
◦ h|Zn = p

(n)
1 ◦ hn = (h1)|Zn
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and
(p2 ◦ h)|Zn = (p2)|Yn×XnWn

◦ h|Zn = p
(n)
2 ◦ hn = (h2)|Zn .

So p1 ◦ h = h1 and p2 ◦ h = h2. Let h̃ : Z →
∐
n∈Z
n≥0

(Yn ×Xn Wn) be a morphism

of schemes such that p1 ◦ h̃ = h1 and p2 ◦ h̃ = h2 and n ∈ Z, n ≥ 0. We have
that Zn = h−1

1 (Yn) = (p1 ◦ h̃)−1(Yn) = h̃−1(p−1
1 (Yn)) ⊆ h̃−1(Yn ×Xn Wn) and so

h̃(Zn) ⊆ Yn ×Xn Wn. Then

p
(n)
1 ◦ h̃|Zn = (p1)|Yn×XnWn

◦ h̃|Zn = (p1 ◦ h̃)|Zn = (h1)|Zn

and
p

(n)
2 ◦ h̃|Zn = (p2)|Yn×XnWn

◦ h̃|Zn = (p2 ◦ h̃)|Zn = (h2)|Zn .

This implies that h̃|Zn = hn = h|Zn and, since this holds for any n ∈ Z, n ≥ 0, we

get that h̃ = h. This proves that
∐
n∈Z
n≥0

(Yn ×Xn Wn), together with the projections

p1 and p2, is the �bred product of Y and W over X. Since p2 is obtained by gluing
the p(n)

2 's, which are totally split, by lemma 2.2.40 we have that p2 is totally split.
This ends the proof.

Remark 2.2.44. (1) Retracing the proof of the proposition 2.2.43, we can see that
we could have required g to be �nite étale, instead of just �nite and locally
free. Indeed, we constructed g through the following steps:

(i) [Y : X] = 0: we chose g := idX , which is �nite étale;

(ii) inductive step: we de�ned g := f ◦ g′, where g′ existed by the inductive
hypothesis;

(iii) non-constant degree: we glued the morphisms gn, which existed because
[Yn : Xn] had �nite rank.

Since in the �rst step we had a �nite étale morphism, we could modify the
inductive hypothesis requiring that g be �nite étale. Then in the second step
we would have that g′ is �nite étale and, since f is �nite étale by assumption,
the composition g = f ◦ g′ would be �nite étale by lemma 2.2.30. Then, in the
third point, each gn would be �nite étale and, by lemma 2.2.20, g would also
be �nite étale.

(2) From remark 2.2.38(1), it is clear that in the case of totally split morphisms
the degree has the same meaning as the degree of �nite coverings of topological
spaces: the degree at a point is the cardinality of its preimage. One could be
tempted to use 2.2.43 to generalize this to arbitrary �nite étale morphisms.
Let X, Y , W , f : Y → X and g : W → X be as in the claim of proposition
2.2.43. By 2.2.28(2), we have that [Y ×X W : W ] = [Y : X] ◦ g. Since g is
surjective, knowing the degree of p2 : Y ×X W → W allows us to know the
degree of f : Y → X at any point x ∈ X. Indeed, let x in X. Since g is
surjective, there exists w ∈W such that x = g(w). Then we have that

[Y : X](x) = [Y : X](g(w)) = [Y ×X W : W ](w) = |p−1
2 ({w})|
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(the last equality follows from the fact that p2 is totally split). However, it
is not true in general that |p−1

2 ({w})| = |f−1({x})| (this holds for topologi-
cal spaces, see 2.2.29, but nor for schemes, because the underlying topologi-
cal space of the �bred product of schemes does not coincide with the �bred
product of the underlying topological spaces). So we cannot conclude that
[Y : X](x) = |f−1({x})|. Indeed, this is false in general.
As an example, let X = Spec(Q), Y = Spec(Q(

√
2)) and f : Y → X the mor-

phism of schemes induced by the inclusion Q ↪→ Q(
√

2). We know that Q(
√

2)
is free of rank 2 over Q, with basis (1,

√
2). Let ϕ : Q(

√
2)→ HomQ(Q(

√
2),Q)

be de�ned as in lemma 2.1.3(2). For any a+ b
√

2 ∈ Q(
√

2) (a, b ∈ Q) we have
that ma+b

√
2(1) = (a+ b

√
2) ·1 = a+ b

√
2 and ma+b

√
2(
√

2) = (a+ b
√

2) ·
√

2 =

2b + a
√

2, so Tr(a + b
√

2) = a + a = 2a. Then, for any a + b
√

2 ∈ Q(
√

2)
(a, b ∈ Q), we have that

ϕ(a+ b
√

2)(1) = Tr((a+ b
√

2) · 1) = Tr(a+ b
√

2) = 2a

and

ϕ(a+ b
√

2)(
√

2) = Tr((a+ b
√

2) ·
√

2) = Tr(2b+ a
√

2) = 2(2b) = 4b .

If a+b
√

2 ∈ Ker(ϕ), i.e. ϕ(a+b
√

2) = 0, then we have that 0 = ϕ(a+b
√

2)(1) =
2a and 0 = ϕ(a + b

√
2)(
√

2) = 4b, which implies that a = 0 and b = 0. So
a + b

√
2 = 0, which proves that Ker(ϕ) = 0, i.e. ϕ is injective. Let now

α ∈ HomQ(Q(
√

2),Q). De�ne a := 1
2α(1) ∈ Q and b := 1

4α(
√

2) ∈ Q and
consider a + b

√
2 ∈ Q(

√
2). Then ϕ(a + b

√
2)(1) = 2a = 2 · 1

2α(1) = α(1)

and ϕ(a + b
√

2)(
√

2) = 4b = 4 · 1
4α(
√

2) = α(
√

2). Since (1,
√

2) generates
Q(
√

2) over Q, it follows that ϕ(a + b
√

2) = α. Then ϕ is surjective. So ϕ is
an isomorphism and this shows that Q(

√
2) is a free separable Q-algebra (one

could actually show a more general result: if k ⊆ K is any �nite separable �eld
extension, then K is a free separable k-algebra). Then f is �nite étale. We
have that [Y : X] = [Q(

√
2) : Q] = dimQ(Q(

√
2)) = 2. Moreover, sp(X) =

sp(Spec(Q)) = {0} and sp(Y ) = sp(Spec(Q(
√

2))) = {0}. So |f−1({0})| =
|{0}| = 1 6= 2 = [Y : X](0). This shows that the degree of a �nite étale
morphism does not have the exact same meaning as the degree of a �nite
covering of a topological space, although they share some properties.

(3) In order to gain a better understanding of the meaning of proposition 2.2.43, we
brie�y introduce the notion of a Grothendieck topology (for more on this topic,
see [6]). Given a category C, a Grothendieck topology on C is the assignment
to each object U of C of a collection of families of morphisms {ϕi : Ui → U}i∈I
in C (called the coverings of U), such that:

(i) if ϕ : V → U is an isomorphism in C, then {ϕ : V → U} is a covering of
U ;

(ii) if {ϕi : Ui → U}i∈I is a covering of U and f : V → U is any morphism
in C, then for any i ∈ I the �bred product Ui ×U V (with projections

p
(i)
1 : Ui ×U V → Ui and p

(i)
2 : Ui ×U V → V ) exists and the family

{p(i)
2 : Ui ×U V → V } is a covering of V ;
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(iii) if {ϕi : Ui → U}i∈I is a covering of U and for any i ∈ I we have a covering
{ψij : Vij → Ui}j∈Ji of Ui, then {ϕi ◦ ψij : Vij → U}i∈I, j∈Ji is a covering
of U .

This is a generalization of usual topological spaces in the following way: if X is
a topological space, then we can consider the category OpX whose objects are
the open subsets of X and whose morphisms are the inclusions between them
(notice that in this category the �bred product of two objects over a third one
always exists and is given by the intersection of the two object, independently
from the third one) and we can associate to any object U of OpX the collection
of families of the form {Ui ↪→ U}i∈I , where each Ui is an object of OpX (i.e.
an open subset of X) and U =

⋃
i∈I Ui (it is immediate to check that all the

requirements are satis�ed). If C is a category with a Grothendieck topology
on it and P is a property enjoyed by some of the morphisms of C, we say
that a morphism f : Y → X in C enjoys P locally with respect to the given
topology if there exists a covering {Ui → X}i∈I of X such that the projection

p
(i)
1 : Ui ×X Y → Ui enjoys P for every i ∈ I (notice that the �bered product
Ui ×X Y exists by (ii)).
The category we are interested in is the category Sch of schemes (or, more
generally, the category SchS of schemes over a �xed scheme S; notice that
Sch = SchSpec(Z)). There are several Grothendieck topologies that can be
de�ned on this category. In our case, we can consider as coverings of a schemes
X the families of the form {g : W → X} with g surjective, �nite and locally
free. If g : W → X is an isomorphism, then it is in particular surjective.
Moreover, it is totally split (example 2.2.36) and so �nite étale (lemma 2.2.37),
which implies �nite and locally free (remark 2.2.4). So {g : W → X} is a
covering of X. If {g : W → X} is a covering of X and f : Y → X is any
morphism of schmes, then g is surjective, �nite and locally free and by lemma
2.2.28(1),(3) we have that p2 : W ×X Y → Y is also surjective, �nite and
locally free (the �bred product always exists in the category of schemes) and
so {p2 : W ×X Y → Y } is a covering of Y . Finally, if {g : W → X} is a
covering of X and {h : V → W} is a covering of W , then g and h are both
surjective, �nite and locally free and so, by lemma 2.2.30, g ◦ h is �nite and
locally free. Moreover, the composition of surjective maps is surjective, so g ◦h
is surjective. Then {g ◦ h : V → X} is a covering of X. This shows that
we de�ned indeed a Grothendieck topology. Now 2.2.43 says that an a�ne
morphism of schemes f : Y → X is �nite étale if and only if there exists a
covering {W → X} of X such that p2 : Y ×X W → W is totally split. This
means (recalling that the �bred product is symmetric) that f is �nite étale if
and only if it is locally totally split. Recalling that totally split morphisms (of
constant degree, but this is automatically true if X is connected) correspond to
trivial �nite coverings of topological spaces (remark 2.2.38(2)) and that �nite
coverings of topological spaces are de�ned as continuous maps which are locally
trivial �nite coverings, we see that we have a big similarity between �nite étale
coverings of a scheme and �nite coverings of a topological space.
The Grothendieck topology we have just introduced �tted very well with our
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purpose, but it is not one of the usual Grothendieck topologies that algebraic
geometers work with. In fact, it is not even comparable with some of these
topologies. A more common Grothendieck topology which is also relevant to
our situation is the fppf topology (the acronym stands for ��dèlement plat et de
présentation �nie�, i.e. �faithfully �at and of �nite presentation�), in which a
covering of a scheme X is given by a family {ϕi : Ui → X}i∈I such that each ϕi
is �at and locally of �nite presentation (for the de�nitions, see [5], 24.2.6 and
7.3.17, respectively) and X =

⋃
i∈I ϕi(Ui) (the last condition can be expressed

saying that the family {ϕi}i∈I is jointly surjective). It can be proved that a
morphism is �nite and locally free if and only if it is �nite, �at and locally of
�nite presentation (see [1], 6.6, noticing that, according to the de�nition given
in [1], 6.4, a morphism is �nitely presented if and only if it is �nite and locally
of �nite presentation). In particular, any �nite and locally free morphism is
�at and locally of �nite presentation. So, if g : W → X is surjective, �nite and
locally free, we have that {g : W → X} is a covering of X in the fppf topology.
Then, as above, we can use 2.2.43 to conclude that any �nite étale morphism
is locally totally split in the fppf topology.

(4) We will use proposition 2.2.43 in order to reduce proofs about �nite étale
morphisms to the case of totally split morphisms, which will often be much
easier to deal with. As an example of this use, we give an alternative proof
of lemma 2.2.30 in the case of �nite étale morphisms (you can compare this
approach to what we did in remark 2.2.31). Notice that in the proof of 2.2.43
we used 2.2.30 only in the case of �nite and locally free morphisms, so we
could have postponed until now the proof of that lemma in the case of �nite
étale morphisms, sparing us the algebraic work that underlay the proof we gave
(corollary 2.1.69 and the preceding results).
Let X, Y anz Z be schemes and let f1 : Y → X, f2 : Z → Y be two �nite étale
morphisms. First of all, assume that f1 is totally split. Then we can write
X =

∐
n∈Z
n≥0

Xn for some schemes X0, X1, . . . such that, for any n ∈ Z, n ≥ 0,

there exists an isomorphism of schemes ϕn : f−1
1 (Xn) →

∐n
i=1Xn such that

pn ◦ϕn = f1, where pn :
∐n
i=1Xn is obtained by gluing the identity morphisms

idXn : Xn → Xn. For any n ∈ Z, n ≥ 0, de�ne Zn := (f1 ◦ f2)−1(Xn).

Then Z = (f1 ◦ f2)−1(X) = (f1 ◦ f2)−1

(∐
n∈Z
n≥0

Xn

)
=
∐
n∈Z
n≥0

(f1 ◦ f2)−1(Xn) =∐
n∈Z
n≥0

Zn. By lemma 2.2.20, in order to prove that f1 ◦ f2 is �nite étale, it

is enough to prove that the restriction (f1 ◦ f2)|Zn : Zn = (f1 ◦ f2)−1(Xn) →
Xn is �nite étale for every n ∈ Z, n ≥ 0. Fix such an n. We have that
Zn = (f1 ◦ f2)−1(Xn) = f−1

2 (f−1
1 (Xn)). So f2(Zn) ⊆ f−1

1 (Xn). Then we can
consider the morphism ϕn ◦ f2 : Zn →

∐n
i=1Xn. We claim that this morphism

is �nite étale. Let U = Spec(A) be an open a�ne subset of
∐n
i=1Xn. Since ϕn :

f−1
1 (Xn)→

∐n
i=1Xn is an isomorphism, we have that ϕ−1

n (U) ∼= U = Spec(A).
Then, since f2 is �nite étale, by lemma 2.2.10(4) we have that f−1

2 (ϕ−1
n (U)) =

(ϕn◦f2)−1(U) is a�ne and equal to Spec(B), where B is a projective separable
A-algebra. Since this holds for any open a�ne subset U = Spec(A) of

∐n
i=1Xn,
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by lemma 2.2.10(4) we have that ϕn ◦ f2 : Zn →
∐n
i=1Xn is �nite étale. For

any i = 1, . . . , n, let Zni be the preimage of the i-th copy of Xn under ϕn ◦ f2.
Then Zn = (ϕn ◦ f2)−1 (

∐n
i=1Xn) =

∐n
i=1(ϕn ◦ f2)−1(Xn) =

∐n
i=1 Zni. Fix

i ∈ {1, . . . , n}. Then (ϕn◦f2)|Zni
: Zni → Xn is �nite étale, by corollary 2.2.24.

Notice that

(ϕn ◦ f2)|Zni
= idXn ◦(ϕn ◦ f2)|Zni

= (pn)|Xn ◦ ϕn ◦ (f2)|Zni
=

= pn ◦ ϕn ◦ (f2)|Zni
= f1 ◦ (f2)|Zni

= (f1 ◦ f2)|Zni
.

Then (f1◦f2)|Zni
: Zni → Xn is �nite étale. Since this holds for any i = 1, . . . , n,

by lemma 2.2.18(3) we have that f1 ◦ f2 :
∐n
i=1 Zni = Zn → Xn is �nite étale.

Let now f1 be an arbitrary �nite étale morphism. By proposition 2.2.43 there
exist a schemeW and a surjective, �nite and locally free morphism g : W → X
such that the projection p2 : Y ×XW →W is totally split. Let p1 : Y ×XW →
Y be the �rst projection and consider the �bred product Z×Y (Y ×XW ), with
projections q1 : Z ×Y (Y ×X W ) → Z and q2 : Z ×Y (Y ×X W ) → Y ×X W .
Since f2 is �nite étale, by lemma 2.2.28(4) we have that q2 is �nite étale.
Then, since p2 : Y ×X W → W is totally split, by what we proved above
p2 ◦ q2 : Z ×Y (Y ×X W )→ W is �nite étale. By de�nition of �bred product,
we have that f1 ◦ p1 = g ◦ p2 and f2 ◦ q1 = p1 ◦ q2. Then

(f1 ◦ f2) ◦ q1 = f1 ◦ p1 ◦ q2 = g ◦ (p2 ◦ q2) .

Moreover, let V be a scheme with two morphisms of schemes h1 : V → Z and
h2 : V → W such that (f1 ◦ f2) ◦ h1 = g ◦ h2. Consider then the following
diagram.

V

Y ×X W

Y

W

X

............................................................................................................................................................................................................................................................................................................................ ........
....

f2 ◦ h1

...................................................................................................................................................................................................................................................................................................................................................................... ..........
..

h2

...................................................................................
.....
.......
.....

p1

........................................................................................ ............

p2

........................................................................................ ............
f1

...................................................................................
.....
.......
.....

g

Since f1 ◦ (f2 ◦ h1) = g ◦ h2, by the universal property of the �bred product
there exists a unique morphism h′ : V → Y ×X W such that p1 ◦ h′ = f2 ◦ h1

and p2 ◦ h′ = h2. Consider now the following diagram.
V

Z ×Y (Y ×X W )

Z

Y ×X W

Y

............................................................................................................................................................................................................................................................................................................................................................................................................................. .........
...

h1

.............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................. ...........
.

h′

...................................................................................
.....
.......
.....

q1

........................................................................................ ............

q2

........................................................................................ ............
f2

...................................................................................
.....
.......
.....

p1

Since f2◦h1 = p1◦h′, by the universal property of the �bred product there exists
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a unique morphism h : V → Z×Y (Y ×XW ) such that q1◦h = h1 and q2◦h = h′.
Then we have that (p2 ◦ q2) ◦ h = p2 ◦ h′ = h2. Let h̃ : V → Z ×Y (Y ×X W )
be another morphism of schemes such that q1 ◦ h̃ = h1 and (p2 ◦ q2) ◦ h̃ = h2.
Then p1 ◦ (q2 ◦ h̃) = f2 ◦ q1 ◦ h̃ = f2 ◦ h1 and p2 ◦ (q2 ◦ h̃) = h1. By uniqueness
of h′, this implies that q2 ◦ h̃ = h′. Since we had also q1 ◦ h̃ = h1, we must
have h̃ = h. This proves that Z ×Y (Y ×X W ), together with the morphisms
q1 : Z ×Y (Y ×X W ) → Z and p2 ◦ q2 : Z ×Y (Y ×X W ) → W , is the �bred
product of Z and W over X. Since p2 ◦ q2 is �nite étale and g is surjective,
�nite and locally free, by lemma 2.2.34, we have that f1 ◦ f2 is �nite étale.

From now on, we will adopt the following notation: if X is a scheme and E is a
�nite set, we will write X×E :=

∐
e∈E X (disjoint union of schemes). This notation

is motivated by what we did in remark 2.2.38(2), where we saw that, if X and E are
topological spaces with E discrete, then X × E =

∐
e∈E X × {e} and each X × {e}

is homeomorphic to X.

Lemma 2.2.45. Let X be a scheme, D and E �nite sets. Any map ϕ : D → E
induces a morphism of schemes X×D → X×E, which is �nite étale (we will denote
this morphism by idX ×ϕ, in analogy to what happens for topological spaces).

Proof. Let ϕ : D → E be any map. For any e ∈ E, denote by qe : X →
∐
e∈E X =

X × E the e-th inclusion, which is a morphism of schemes. Then for any d ∈ D we
have a morphism of schemes qϕ(d) : X → X × E. Gluing these morphisms, we get a
morphism

∐
d∈DX = X ×D → X ×E. From now on, we denote this morphism by

idX ×ϕ.
In order to avoid confusion, denote the d-th copy of X in X × D =

∐
d∈DX by

Xd, for any d ∈ D, and the e-th copy of X in X × E =
∐
e∈E X by Xe, for any

e ∈ E. We have that X × D = (idX ×ϕ)−1(X × E) = (idX ×ϕ)−1
(∐

e∈E Xe

)
=∐

e∈E(idX ×ϕ)−1(Xe). By lemma 2.2.20, in order to prove that idX ×ϕ is �nite
étale, it is enough to prove that (idX ×ϕ)|(idX ×ϕ)−1(Xe)

: (idX ×ϕ)−1(Xe) → Xe

is �nite étale for every e ∈ E. Fix e ∈ E. By de�nition of idX ×ϕ, we have
that (idX ×ϕ)−1(Xe) =

∐
d∈D q

−1
ϕ(d)(Xe). Moreover, by de�nition of qϕ(d), for every

d ∈ D we have that q−1
ϕ(d)(Xe) is empty if ϕ(d) 6= e and equal to Xd if ϕ(d) = e.

Then (idX ×ϕ)−1(Xe) =
∐
d∈ϕ−1({e})Xd. So the restriction (idX ×ϕ)|(idX ×ϕ)−1(Xe)

:

(idX ×ϕ)−1(Xe) =
∐
d∈ϕ−1({e})Xd → Xe is totally split (de�ne Xen := X and

ϕen := id∐
d∈ϕ−1({e})Xd

if n = |ϕ−1(d)| and Xen := ∅ otherwise). Then this restriction
is �nite étale by lemma 2.2.37.

We are now going to prove the analogue of the lemma 1.5 of the appendix:
having saw that �nite étale morphisms are �locally trivial�, we want to show that
also morphisms between them are �locally trivial�. In order to do that, we need two
algebraic lemmas.

Lemma 2.2.46. For any ring A and any �nite set E, de�ne AE :=
∏
e∈E A (with

componentwise operations, which make it into a ring; then the ring homomorphism
ϑE : A → AE , a 7→ (a, . . . , a) makes AE into an A-algebra). Let A be a ring with
no non-trivial idempotents (i.e., if a ∈ A and a2 = a, then a = 0 or a = 1) and let
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D, E be �nite sets. Then any map ϕ : D → E induces an A-algebra homomorphism
Φ : AE → AD and all A-algebra homomorphisms AE → AD are of this form.

Proof. If ϕ : D → E is any map, we can de�ne Φ : AE → AD, (ae)e∈E 7→ (aϕ(d))d∈D.
For any (ae)e∈E , (be)e∈E ∈ AE , we have that

Φ((ae)e∈E + (be)e∈E) = Φ((ae + be)e∈E) = (aϕ(d) + bϕ(d))d∈D =

= (aϕ(d))d∈D + (bϕ(d))d∈D = Φ((ae)e∈E) + Φ((be)e∈E)

and

Φ((ae)e∈E · (be)e∈E) = Φ((ae · be)e∈E) = (aϕ(d) · bϕ(d))d∈D =

= (aϕ(d))d∈D · (bϕ(d))d∈D = Φ((ae)e∈E) · Φ((be)e∈E) .

Moreover, Φ(1AE ) = Φ((1)e∈E) = (1)d∈D = 1AD . So Φ is a ring homomorphism. For
any a ∈ A, we have that

Φ(ϑE(a)) = Φ((a)e∈E) = (a)d∈D = ϑD(a) .

Then Φ ◦ ϑE = ϑD, which means that Φ is an A-algebra homomorphism.
Let f : AE → AD be any A-algebra homomorphism. If A = 0, then AE = AD = 0
and so f = 0 is induced by any map ϕ : D → E. Assume now that A 6= 0.
For any e ∈ E, de�ne xe := (δee′)e′∈E ∈ AE . Notice that x2

e = xe, for every
e ∈ E. Let d ∈ D and de�ne pd : AD → A, (ad′)d′∈D 7→ ad. It is immediate
to check that pd is an A-algebra homomorphism. Then pd ◦ f : AE → A is an A-
algebra homomorphism (because it is a composition of A-algebra homomorphisms)
and, for every e ∈ E, we have that (pd ◦ f)(xe) = (pd ◦ f)(x2

e) = (pd ◦ f)(xe)
2,

which by assumption implies that (pd ◦ f)(xe) ∈ {0, 1}. Moreover, 1AE = (1)e∈E =
(
∑

e∈E δee′)e′∈E =
∑

e∈E(δee′)e′∈E =
∑

e∈E xe and so 1 = (pd ◦ f)(1AE ) = (pd ◦
f)
(∑

e∈E xe
)

=
∑

e∈E(pd ◦ f)(xe). This implies that there exists at least one e ∈ E
such that (pd ◦ f)(xe) 6= 0, and so (pd ◦ f)(xe) = 1. We claim that such an e is
unique. Let e1, e2 ∈ E be such that (pd ◦ f)(xe1) = 1 = (pd ◦ f)(xe2) and assume
by contradiction that e1 6= e2. Then xe1 · xe2 = 0 and, since pd ◦ f is a ring
homomorphism,

0 = (pd ◦ f)(0) = (pd ◦ f)(xe1 · xe2) = (pd ◦ f)(xe1) · (pd ◦ f)(xe2) = 1 · 1 = 1 .

This is a contradiction. Then there exists a unique e ∈ E such that (pd ◦ f)(xe) = 1.
Let ϕ(d) be this e. Then we have a map ϕ : D → E such that (pd ◦ f)(xe) = δeϕ(d)

for any d ∈ D, e ∈ E. Let Φ : AE → AD be the morphism induced by ϕ, as above.
We claim that f = Φ. Let x = (ae′)e′∈E ∈ AE . We have that x = (ae′)e′∈E =
(
∑

e∈E aeδee′)e′∈E =
∑

e∈E(aeδee′)e′∈E =
∑

e∈E aexe. Then, for any d ∈ D,

(pd ◦ f)(x) = (pd ◦ f)

(∑
e∈E

aexe

)
=
∑
e∈E

ae(pd ◦ f)(xe) =
∑
e∈E

aeδeϕ(d) = aϕ(d) ,

because pd ◦ f is an A-algebra homomorphism. It follows that

f(x) = ((pd ◦ f)(x))d∈D = (aϕ(d))d∈D = Φ((a′e)e′∈E) = Φ(x) .

This proves the claim.
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Lemma 2.2.47. Let A be a local ring. Then A has no non-trivial idempotents.

Proof. Let m = A\A× be the unique maximal ideal of A and let a ∈ A be such that
a2 = a. This means that a(a − 1) = a2 − a = 0 ∈ m. Since m is maximal, it is in
particular prime. Then we have that either a ∈ m or a− 1 ∈ m. Assume that a ∈ m.
If we had also a− 1 ∈ m, we would have that 1 = a− (a− 1) ∈ m, because m is an
ideal, but this is a contradiction, because m is a proper ideal. So a−1 ∈ A\m = A×.
It follows that a = a(a− 1)(a− 1)−1 = 0 · (a− 1)−1 = 0. In the same way, one shows
that if a− 1 ∈ m then a− 1 = 0, i.e. a = 1.

Lemma 2.2.48. Let X, Y , Z be schemes, f : Y → X and g : Z → X totally split
morphisms and h : Y → Z a morphism of schemes such that f = g ◦ h. For any
x ∈ X, there exists an open a�ne neighbourhood U of x in X such that f , g and
h are �trivial above U �, i.e. such that there exist �nite sets D and E, isomorphisms
of schemes α : f−1(U) → U ×D and β : g−1(U) → U × E and a map ϕ : D → E
such that the following diagram is commutative, where pU : U ×D =

∐
d∈D U → U

and qU : U × E =
∐
e∈E → U are the morphisms obtained by gluing the identity

morphisms idU : U → U .

f−1(U)

U

U ×D U × E

g−1(U)

U

................................................................................................................................................................................................................
.....
.......
.....

f

........................................................................................................................................... ........
....

α

.......................................................................................................................................
....
............

pU

............................................................................................................................................................................................................................................................................................................................................................................................................................................................................... ............
h

..................................................................................................................................................................................................................... ............
idU ×ϕ

............................................................................................................................................................................................................................................................................................................................................................................................................................................................................... ............
idU

................................................................................................................................................................................................................
.....
.......
.....

g

.......................................................................................................................................
....
............

β

........................................................................................................................................... ........
....

qU

Proof. Since f is totally split, there exist some schemes X0, X1, . . . such that X =∐
n∈Z
n≥0

Xn and, for any n ∈ Z, n ≥ 0, there exists an isomorphism of schemes αn :

f−1(Xn) →
∐n
i=1Xn such that pn ◦ αn = f , where pn :

∐n
i=1Xn → Xn is obtained

by gluing the identity morphisms idXn : Xn → Xn. Analogously, since g is totally
split, we can write X =

∐
m∈Z
m≥0

X ′m for some schemes X ′0, X
′
1, . . . such that, for any

m ∈ Z, m ≥ 0, there exists an isomorphism of schemes βm : f−1(X ′m) →
∐m
j=1X

′
m

such that qm ◦βm = g, where qm :
∐m
j=1X

′
m → X ′m is obtained by gluing the identity

morphisms idX′m : X ′m → X ′m. Since x ∈ X =
∐
n∈Z
n≥0

Xn =
∐
m∈Z
m≥0

X ′m, there exist

n,m ∈ Z, n,m ≥ 0 such that x ∈ Xn and x ∈ X ′m. Then x ∈ Xn ∩ X ′m. De�ne
D := {1, . . . , n} and E := {1, . . . ,m}. We have that Xn and X ′m are both open in X
by de�nition of disjoint union, so Xn∩X ′m is an open subscheme of X. By de�nition
of scheme, there exists an open a�ne subset V = Spec(A) of Xn ∩ X ′m such that
x ∈ V . Since V ⊆ Xn and pn ◦ αn = f , we have that f−1(V ) = (pn ◦ αn)−1(V ) =
α−1
n (p−1

n (V )) = α−1
n (V ×D). Then, restricting αn to f−1(V ), we get an isomorphism

of schemes αn : f−1(V ) = α−1
n (V×D)→ V×D. Analogously, since V ⊆ X ′m and qm◦

βm = g, we have that g−1(V ) = (qm◦βm)−1(V ) = β−1
m (q−1

m (V )) = β−1
m (V×E). Then,

restricting βm to g−1(V ), we get an isomorphism of schemes βm : g−1(V ) = β−1
m (V ×

E)→ V ×E. Since f = g◦h, we have that f−1(V ) = (g◦h)−1(V ) = h−1(g−1(V )), so
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h(f−1(V )) ⊆ g−1(V ). Then we can consider the morphism of schemes βm ◦h ◦α−1
n :

V ×D → V ×E. We have that V ×D =
∐n
i=1 V =

∐n
i=1 Spec(A) = Spec(

∏n
i=1A) =

Spec(AD) and V × E =
∐m
j=1 V =

∐m
j=1 Spec(A) = Spec(

∏m
j=1A) = Spec(AE)

(this can be checked as in the proof of lemma 2.2.18). Then βm ◦ h ◦ α−1
n : V ×

D = Spec(AD) → V × E = Spec(AE) corresponds to a ring homomorphism ψ :
AE → AD. The restriction pn : p−1

n (V ) = V × D = Spec(AD) → V = Spec(A)
corresponds to the ring homomorphism ϑD : A → AD, a 7→ (a)d∈D. Analogously,
the restriction qm : q−1

m (V ) = V × E = Spec(AE) → V = Spec(A) corresponds to
the ring homomorphism ϑE : A → AE , a 7→ (a)e∈E . Recalling that pn ◦ αn = f ,
qm ◦ βm = g and g ◦ h = f , we get that

qm ◦ (βm ◦ h ◦ α−1
n ) = g ◦ h ◦ α−1

n = f ◦ α−1
n = pn .

In terms of ring homomorphisms, this means that ψ ◦ ϑE = ϑD, i.e. ψ : AE →
AD is an A-algebra homomorphism. Since x ∈ V = Spec(A), we can consider
the localization Ax, which is a local ring, and the localized map ψx : (AE)x →
(AD)x, which is Ax-linear. Since the localization commutes with direct sums (see
lemma 2.1.19, recalling that localization at x corresponds to tensor product with
Ax) and a �nite product of modules coincides with their direct sum, we have that

(AE)x =
(⊕m

j=1A
)
x

∼=
⊕m

j=1Ax = (Ax)E and (AD)x = (
⊕n

i=1A)x
∼=
⊕n

i=1Ax =

(Ax)D as Ax-modules. Let ψE : (AE)x → (Ax)E and ψD : (AD)x → (Ax)D be
the corresponding isomorphims, analogously to lemma 2.1.19. It is immediate to
check that ψx, ψE and ψD are ring homomorphisms, if we consider the obvious
ring structures, so they are homomorphisms of Ax-algebras. Then the composition
ψD ◦ ψx ◦ ψ−1

E : (Ax)E → (Ax)D is also a homomorphism of Ax-algebras. By lemma
2.2.47, we have that Ax has no non-trivial idempotents. Then, by lemma 2.2.46, there
exists a map ϕ : D → E such that ψD ◦ ψx ◦ ψ−1

E is induced by ϕ. This means that
(ψD ◦ ψx ◦ ψE)−1((α1, . . . , αm)) = (αϕ(1), . . . , αϕ(n)) for any (α1, . . . , αm) ∈ (Ax)E .
Let Φ : AE → AD be the A-algebra homomorphism induced by ϕ. Localizing it at x,
we get an Ax-algebra homomorphism Φx : (AE)x → (AD)x (analogously to ψx, this
is Ax-linear by de�nition of localization and it can be easily checked that it is a ring

homomorphism). For any
(
a1
s1
, . . . , amsm

)
∈ (Ax)E (a1, . . . , am ∈ A, s1, . . . , sm ∈ A\x),

we have that

(ψD ◦ Φx ◦ ψ−1
E )

((
a1

s1
, . . . ,

am
sm

))
= ψD

Φx

 m∑
j=1

(ajδjj′)j′=1,...,m

sj

 =

= ψD

 m∑
j=1

Φ((ajδjj′)j′=1,...,m)

sj

 =

m∑
j=1

ψD

(
(ajδjϕ(i))i=1,...,n

sj

)
=

=
m∑
j=1

(
ajδjϕ(i)

sj

)
i=1,...,n

=

 m∑
j=1

ajδjϕ(i)

sj


i=1,...,n

=

=

(
aϕ(i)

sϕ(i)

)
i=1,...,n

= (ψD ◦ ψx ◦ ψ−1
E )

((
a1

s1
, . . . ,

am
sm

))
.
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So ψD ◦ Φx ◦ ψ−1
E = ψD ◦ ψx ◦ ψ−1

E , which implies that Φx = ψx. Notice that
AE is �nitely presented as an A-module, because it is a free A-module of �nite

rank (you can consider the exact sequence 0 → AE = Am
id
AE−−−→ AE = Am → 0).

Then, by lemma 2.1.27, we have an isomorphism of Ax-modules HomA(AE , AD)x →
HomAx((AE)x, (A

D)x). We denote this isomorphism by χ. Then ψx = χ
(
ψ
1

)
and

Φx = χ
(

Φ
1

)
. Then χ

(
ψ
1

)
= ψx = Φx = χ

(
Φ
1

)
. Since χ is bijective, it follows

that ψ
1 = Φ

1 in HomA(AE , AD)x. This means that there exists u ∈ A\x such that

u(ψ · 1− Φ · 1) = 0, i.e. uψ = uΦ. Then we have also ψ
1 = Φ

1 in HomA(AE , AD)u.
De�ne U := Vu = Spec(Au) ⊆ V . Since u /∈ x, we have that x ∈ Vu = U . So U
is an open a�ne neighbourhood of x. Since U ⊆ V ⊆ Xn and pn ◦ αn = f , we
have that f−1(U) = α−1

n (U ×D) (see above) and, restricting αn to f−1(U), we get
an isomorphism of schemes α := αn : f−1(U) = α−1

n (U × D) → U × D. From the
de�nition of pn, it is clear that its restriction pn : p−1

n (U) = U ×D → U coincides
with pU (de�ned as in the statement). Since pn ◦ αn = f , we have that pU ◦ α = f .
Analogously, since U ⊆ V ⊆ X ′m and qm◦βm = g, we have that g−1(U) = β−1

m (U×E)
(see above). Then, restricting βm to g−1(U), we get an isomorphism of schemes
β := βm : g−1(U) = β−1

m (U × E) → U × E. From the de�nition of qm, it is clear
that its restriction qm : q−1

m (U) = U × E → U coincides with qU (de�ned as in the
statement). Since qm ◦ βm = g, we have that qU ◦ β = g. From the de�nitions of pU ,
qU and idU ×ϕ (see lemma 2.2.45), we have that qU ◦ (idU ×ϕ) = pU = idU ◦pU (for
any d ∈ D, the restriction of qU ◦ (idU ×ϕ) to the d-th copy of U in U ×D =

∐n
i=1 U

is pU ◦ qϕ(d) : U → U , where qϕ(d) : U → U × E is as in the proof of 2.2.45,
and this composition is equal to idU by de�nition of pU ). It remains to prove the
commutativity of the upper part of the diagram.
Since f = g◦h, we have that f−1(U) = (g◦h)−1(U) = h−1(g−1(U)). So h(f−1(U)) ⊆
g−1(U). We have to prove that β ◦ h = (idU ×ϕ) ◦ α. Consider β ◦ h ◦ α−1 :
U ×D → U × E. From the de�nitions of α and β, it is clear that β ◦ h ◦ α−1 is the
restriction of βm ◦ h ◦ α−1

n . We have that U × D = Spec(Au) × D = Spec((Au)D)
and U × E = Spec((Au)E) (this can be checked as we did above with V instead of
U). Then

β ◦ h ◦ α−1 : U ×D = Spec((Au)D)→ U × E = Spec((Au)E)

corresponds to a ring homomorphism ψ′ : (Au)E → (Au)D. Since β ◦ h ◦ α−1 is the
restriction of βm ◦ h ◦ α−1

n and the latter morphism corresponds to the ring homo-
morphism ψ : AE → AD, we have that ψ′ = ψD ◦ ψu ◦ ψ−1

E . Since AE is �nitely pre-
sented, by lemma 2.1.27 we have an isomorphism of Au-modules HomA(AE , AD)u →
HomAu((AE)u, (A

D)u). We denote this isomorphim by χ′. Then χ′
(
ψ
1

)
= ψu and

χ′
(

Φ
1

)
= Φu. We know that ψ

1 = Φ
1 in HomA(AE , AD)u, so ψu = Φu. Then ψ′ =

ψD◦Φu◦ψE . On the other hand, idU ×ϕ : U×D = Spec((Au)D)→ U×E = ((Au)E)
corresponds to a ring homomorphism Φ′ : (Au)E → (Au)D. By de�nition, idU ×ϕ
is obtained by gluing the morphisms qϕ(d) : U → U × E =

∐
e∈E U (see lemma

2.2.45). For any d ∈ D, we have that qϕ(d) : U = Spec(Au)→ U ×E = Spec((Au)E)

corresponds to the ring homomorphism πϕ(d) : (Au)E → Au, (α1, . . . , αm) 7→ αϕ(d).
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Then

Φ′((α1, . . . , αm)) = (αϕ(1), . . . , αϕ(n)) = (ψD ◦ Φu ◦ ψ−1
E )((α1, . . . , αm))

(the last equality can be proved as we did above with Φx instead of Φu), for any
(α1, . . . , αm) ∈ AE . So Φ′ = ψD ◦ Φu ◦ ψE = ψ′, which implies that idU ×ϕ =
β ◦ h ◦ α−1. This ends the proof.

As in the case of �nite coverings of topological spaces (corollary 1.6 of the ap-
pendix), we can generalize the lemma we have just proved to a �nite number of
morphisms.

Corollary 2.2.49. Let X, Y1, . . . , Yn be schemes (n ∈ N), f1 : Y1 → X, . . . , fn :
Yn → X totally split morphisms and h1 : Y1 → Y2, . . . , hn−1 : Yn−1 → Yn morphisms
of schemes such that fi = fi+1 ◦ hi for every i = 1, . . . , n− 1. For any x ∈ X, there
exists an open a�ne neighbourhood U of x in X such that f1, . . . , fn, h1, . . . , hn−1 are
all trivial above U , in the same sense as in the lemma 2.2.48: there exist �nite sets
D1, . . . , Dn, isomorphisms of schemes α1 : f−1

1 (U) → U × D1, . . . , αn : f−1
n (U) →

U × Dn and maps ϕ1 : D1 → D2, . . . , ϕn−1 : Dn−1 → Dn such that the following
diagram is commutative for any i = 1, . . . , n−1, where p1 : U×D1 → U, . . . , pn : U×
Dn → U are the morphisms obtained by gluing the identity morphisms idU : U → U .

f−1
i (U)

U

U ×Di U ×Di+1

f−1
i+1(U)

U

................................................................................................................................................................................................................
.....
.......
.....

fi

........................................................................................................................................... ........
....

αi

.......................................................................................................................................
....
............

pi

............................................................................................................................................................................................................................................................................................................................................................................................................................................................................... ............
hi

..................................................................................................................................................................................................................... ............
idU ×ϕi

............................................................................................................................................................................................................................................................................................................................................................................................................................................................................... ............
idU

................................................................................................................................................................................................................
.....
.......
.....

fi+1

.......................................................................................................................................
....
............

αi+1

........................................................................................................................................... ........
....

pi+1

Proof. By lemma 2.2.48, for any i = 1, . . . , n−1 there exists an open a�ne neighbour-
hood Ui of x inX such that fi, fi+1 and hi are trivial above Ui. De�ne V :=

⋂n−1
i=1 Ui.

Then V is an open subscheme of X, because it is a �nite intersection of open sub-
schemes. Moreover, x ∈ V . Then, by de�nition of scheme, there exists an open a�ne
subset U of V such that x ∈ U . So U is an open a�ne neighbourhood of x in X and,
since U ⊆ V ⊆ Ui for any i = 1, . . . , n− 1, it is immediate to check that f1, . . . , fn,
h1, . . . , hn−1 are all trivial above U .

The �rst application of lemma 2.2.48 will be the proof that any morphism be-
tweem �nite étale coverings is itself �nite étale.

Lemma 2.2.50. Let X, Y and Z be schemes and let g : Z → X, h : Y → Z be
morphisms of schemes. If g and g ◦ h are both a�ne, then h is a�ne.

Proof. Since g ◦ h : Z → X is a�ne, there exists a cover of X by open a�ne subsets
(Ui)i∈I such that (g ◦ h)−1(Ui) is a�ne for every i ∈ I. Let i ∈ I. Since g is
continuous and Ui is open in X, g−1(Ui) is open in Z. Moreover, since g is a�ne, by
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lemma 2.2.10(1) we have that g−1(Ui) is a�ne, because Ui is a�ne. Then g−1(Ui)
is an open a�ne subset of Z. We have that

Z = g−1(X) = g−1

(⋃
i∈I

Ui

)
=
⋃
i∈I

g−1(Ui) .

So (g−1(Ui))i∈I is a cover of Z by open a�ne subsets. Since h−1(g−1(Ui)) = (g ◦
h)−1(Ui) is a�ne for every i ∈ I, we have that h is a�ne.

Lemma 2.2.51. Let X, Y and Z be schemes and let f1 : Y → X, f2 : Z → X be
�nite étale coverings of X. Let h : Y → Z be a morphism of coverings from f1 to f2

(i.e., h is a morphism of schemes such that f1 = f2 ◦ h). Then h is �nite étale.

Proof. Assume �rstly that f1 and f2 are totally split. For every x ∈ X, let Ux be
an open a�ne neighbourhood of x ∈ X such that f1, f2 and h are trivial above Ux,
as in lemma 2.2.48. Then X =

⋃
x∈X Ux and so Z = f−1

2 (X) = f−1
2

(⋃
x∈X Ux

)
=⋃

x∈X f
−1
2 (Ux). Since f2 is �nite étale, it is in particular a�ne. Then, by lemma

2.2.10(3), we have that f−1
2 (Ux) is a�ne for every x ∈ X. So (f−1

2 (Ux))x∈X is
a cover of Z by open a�ne subsets. Fix x ∈ X and let Ax be a ring such that
Ux = Spec(Ax). By the choice of Ux, there exist �nite sets Dx and Ex, isomorphisms
of schemes αx : f−1

1 (Ux) → Ux × Dx and βx : f−1
2 (Ux) → Ux × Ex and a map

ϕx : Dx → Ex such that h|
f−1
1 (Ux)

= β−1
x ◦ (idUx ×ϕx) ◦ αx. By lemma 2.2.45, we

have that idUx ×ϕx is �nite étale. Moreover, αx and β−1
x are �nite étale because

they are isomorphisms (see 2.2.36, together with 2.2.37). Then the composition
h|
f−1
1 (Ux)

= β−1
x ◦ (idUx ×ϕx) ◦ αx is �nite étale by lemma 2.2.30. Then, by lemma

2.2.10(4), we have that

(
h|
f−1
1 (Ux)

)−1

(f−1
2 (Ux)) is a�ne and equal to Bx, where Bx

is a projective separable Ax-algebra. But(
h|
f−1
1 (Ux)

)−1

(f−1
2 (Ux)) = h−1(f−1

2 (Ux)) ∩ f−1
1 (Ux) = h−1(f−1

2 (Ux)) ,

because f−1
1 (Ux) = (f2 ◦ h)−1(Ux) = h−1(f−1

2 (Ux)). So h−1(f−1
2 (Ux)) is a�ne and

equal to Bx, where Bx is a projective separable Ax-algebra. Since this holds for any
x ∈ X, we have that h is �nite étale.
Let now f1 : Y → X and f2 : Z → X be arbitrary �nite étale coverings. In particular,
f1 = f2 ◦ h and f2 are a�ne. Then, by lemma 2.2.50, h is a�ne. By proposition
2.2.43, there exist two schemes W1 and W2 with two surjective, �nite and locally
free morphisms g1 : W1 → X and g2 : W2 → X such that the projections p12 :
Y ×X W1 →W1 and p22 : Z ×X W2 →W2 are totally split. Let p11 : Y ×X W1 → Y
and p21 : Z ×X W2 → Z be the other two projections. Then f1 ◦ p11 = g1 ◦ p12 and
f2 ◦ p21 = g2 ◦ p22. De�ne W := W1 ×X W2 and let p1 : W = W1 ×X W2 → W1

and p2 : W = W1 ×X W2 → W2 be the projections. De�ne also g := g1 ◦ p1.
Since g1 and g2 are surjective, �nite and locally free, by lemma 2.2.32(1)-(2) we
have that g = g1 ◦ p1 = g2 ◦ p2 is also surjective, �nite and locally free. Consider
also (Y ×X W1)×W1 W , with projections q1 : (Y ×X W1)×W1 W → Y ×X W1 and
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q2 : (Y ×X W1)×W1 W →W (then p12 ◦ q1 = p1 ◦ q2), and (Z ×X W2)×W2 W , with
projections q′1 : (Z ×X W2) ×W2 W → Z ×X W2 and q′2 : (Z ×X W2) ×W2 W → W
(then p22 ◦ q′1 = p2 ◦ q′2). By lemma 2.2.41, we have that q2 and q′2 are totally split
morphisms. As in remark 2.2.44(4), one can check that (Z×XW2)×W2 W , together
with the morphisms p21◦q′1 : (Z×XW2)×W2W → Z and q′2 : (Z×XW2)×W2W →W ,
is the �bred product of Z andW overX. Then, since g is surjective, �nite and locally
free, we have that p21 ◦ q′1 : (Z ×X W2)×W2 W → Z is surjective, �nite and locally
free by lemma 2.2.28(1),(3) (applied with g : W → X instead of f and f2 : Z → X
instead of g, so that p21 ◦ q′1 plays the role of p2). Consider moreover the following
diagram.

(Y ×X W1)×W1 W

(Z ×X W2)×W2 W

Z

W

X


...

h ◦ p11 ◦ q1


.

q2

...................................................................................
.....
.......
.....

p21 ◦ q′1

........................................................................................ ............

q′2

........................................................................................ ............
f2

...................................................................................
.....
.......
.....

g

We have that

f2 ◦ h ◦ p11 ◦ q1 = f1 ◦ p11 ◦ q1 = g1 ◦ p12 ◦ q1 = g1 ◦ p1 ◦ q2 = g ◦ q2 .

So the diagram is commutative. By the universal property of the �bred product,
there exists a unique morphism η : (Y ×X W1) ×W1 W → (Z ×X W2) ×W2 W such
that p21 ◦ q′1 ◦ η = h ◦ p11 ◦ q1 and q′2 ◦ η = q2. Since q2 and q′2 are totally split, the
last condition implies that η is �nite étale, by what we proved above. Consider now
(Y ×XW1)×W1W , together with the morphisms p11◦q1 : (Y ×XW1)×W1W → Y and
η : (Y ×XW1)×W1W → (Z×XW2)×W2W . We know that h◦(p11◦q1) = (p21◦q′1)◦η.
Let V be a scheme with two morphisms m1 : V → Y , m2 : V → (Z ×X W2)×W2 W
such that h ◦ m1 = p21 ◦ q′1 ◦ m2. As in remark 2.2.44(4), one can check that
(Y ×X W1)×W1 W , together with the morphisms p11 ◦ q1 : (Y ×X W1)×W1 W → Y
and q2 : (Y ×XW1)×W1W →W , is the �bred product of Y andW over X. Consider
then the following diagram.

V

(Y ×X W1)×W1 W

Y

W

X


...

m1


.

q′2 ◦m2

...................................................................................
.....
.......
.....

p11 ◦ q1

........................................................................................ ............

q2

........................................................................................ ............
f1

...................................................................................
.....
.......
.....

g

We have that

g◦q′2◦m2 = g2◦p2◦q′2◦m2 = g2◦p22◦q′1◦m2 = f2◦p21◦q′1◦m2 = f2◦h◦m1 = f1◦m1 .

So the diagram is commutative. By the universal property of the �bred product, there
exists a unique morphism m : V → (Y ×X W1)×W1 W such that p11 ◦ q1 ◦m = m1
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and q2 ◦m = q′2 ◦m2. We have that

p21 ◦ q′1 ◦ η ◦m = h ◦ p11 ◦ q1 ◦m = h ◦m1 = p21 ◦ q′1 ◦m2

and

p22 ◦ q′1 ◦ η ◦m = p2 ◦ q′2 ◦ η ◦m = p2 ◦ q2 ◦m = p2 ◦ q′2 ◦m2 = p22 ◦ q′1 ◦m2 .

By uniqueness in the universal property of the �bred product, this implies that
q′1 ◦ η ◦ m = q′1 ◦ m2. Moreover, we have that q′2 ◦ η ◦m = q2 ◦ m = q′2 ◦m2. By
uniqueness in the universal property of the �bred product, it follows that η◦m = m2.
We already know that p11 ◦ q1 ◦m = m1. Let now m̃ : V → (Y ×X W1)×W1 W be
another morphism of schemes such that p11 ◦ q1 ◦ m̃ = m1 and η ◦ m̃ = m2. Then

q2 ◦ m̃ = q′2 ◦ η ◦ m̃ = q′2 ◦m2 .

Since we have also that p11◦q1◦m̃ = m1, by de�nition ofm we get m̃ = m. This shows
that (Y ×XW1)×W1W , together with the morphisms p11◦q1 : (Y ×XW1)×W1W → Y
and η : (Y ×X W1) ×W1 W → (Z ×X W2) ×W2 W , is the �bred product of Y and
(Z ×X W2) ×W2 W over Z. We know that p21 ◦ q′1 : (Z ×X W2) ×W2 W → Z is
surjective, �nite and locally free and that η is �nite étale. Then, since h is a�ne, by
proposition 2.2.43 (with Z instead of X and (Z ×X W2) ×W2 W instead of W ) we
have that h is �nite étale.

Remark 2.2.52. A similar result holds for �nite coverings of topological spaces: if
f : Y → X and g : Z → X are �nite coverings of a topological space X and
h : Y → Z is a morphism of coverings from f to g, then h is a �nite covering of Z.
Indeed, let z ∈ Z and consider x := g(z) ∈ X. By lemma 1.5 of the appendix, there
exists an open neighbourhood U of x in X such that f , g and h are trivial above
U . Then there exist �nite discrete topological spaces D and E, homeomorphisms
α : f−1(U) → U × D and β : g−1(U) → U × E and a map ϕ : D → E such that
pU ◦ α = f , qU ◦ β = g, qU ◦ (idU ×ϕ) = pU and h|f−1(U)

= β−1 ◦ (idU ×ϕ) ◦ α,
where pU : U ×D → U and qU : U ×E are the projections on the �rst factor. Since
g(z) = x ∈ U , we have that z ∈ g−1(U). Then we can consider β(z) ∈ U × E.
Let e ∈ E be such that β(z) = (qU (β(z)), e) = (g(z), e) = (x, e) and de�ne V :=
β−1(U × {e}) ⊆ g−1(U). Since E has the discrete topology, we have that U × {e}
is open in U × E. Then, since β is continuous, V is open in g−1(U). Since g is
continuous and U is open in X, we have that g−1(U) is open in Z. So V is open
in Z. Moreover, we have that β(z) = (x, e) ∈ U × {e}, so z ∈ β−1(U × {e}) = V .
Then V is an open neighbourhood of z in Z. Since h is a morphism of coverings
from f to g, we have that f = g ◦ h. Then h−1(V ) ⊆ h−1(g−1(U)) = f−1(U). Since
h|f−1(U)

= β−1 ◦ (idU ×ϕ) ◦ α, we have that

h−1(V ) = α−1((idU ×ϕ)−1(β(V ))) =

= α−1((idU ×ϕ)−1(U × {e})) = α−1(U × ϕ−1({e}))

(we used the fact that V = β−1(U × {e}) and that β is bijective). Then, restricting
α to h−1(V ), we get a homeomorphism α : h−1(V ) = α−1(U × ϕ−1({e})) → U ×
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ϕ−1({e}). Consider now ϑ : U → U × {e}, u 7→ (u, e), which is a continuous
bijection. We have that ϑ−1 = qU : U × {e} → U is also continuous, so ϑ is a
homeomorphism. Moreover, restricting β to V , we get a homeomorphism β : V =
β−1(U × {e}) → U × {e}. Them β−1 ◦ ϑ : U → V is a homeomorphism. It
induces a homeomorphism (β−1 ◦ ϑ) × idϕ−1({e}) : U × ϕ−1({e}) → V × ϕ−1({e}).
So the composition ((β−1 ◦ ϑ) × idϕ−1({e})) ◦ α : h−1(V ) → V × ϕ−1({e}) is also
a homeomorphism. Denote by pV : V × ϕ−1({e}) → V the projection on the �rst
factor. Then pV ◦ ((β−1 ◦ ϑ)× idϕ−1({e})) = β−1 ◦ ϑ ◦ pU . So we have that

pV ◦ (((β−1 ◦ ϑ)× idϕ−1({e})) ◦ α) = β−1 ◦ ϑ ◦ pU ◦ α = β−1 ◦ ϑ ◦ f =

= β−1 ◦ ϑ ◦ g ◦ h = β−1 ◦ ϑ ◦ qU ◦ β ◦ h = β−1 ◦ ϑ ◦ ϑ−1 ◦ β ◦ h = h

(we applied the fact that h(h−1(V )) ⊆ V ⊆ g−1(V ) and that on g1(V ) we have
g = qU ◦ β). This shows that h : h−1(V ) → V is a trivial covering. Moreover, it is
�nite, because ϕ−1({e}) ⊆ D is �nite. Hence h is a �nite covering of Z.
Notice that the lemma 1.7(1) of the appendix is now a consequence of this remark,
together with remark 2.2.27. Notice also that, with this remark, we can give an
alternative proof of the existence of the �bred product in the category CovX , for
a given topological space X (this is the same approach that we will use in order
to prove the existence of the �bred product in the category FEtX , for any scheme
X; see lemma 2.2.54). Indeed, if f1 : Y1 → X, f2 : Y2 → X and g : Z → X are
�nite coverings of X, with morphisms of coverings h1 : Y1 → Z and h2 : Y2 → Z,
then h1 and h2 are �nite coverings of Z and so, by remark 2.2.33, h1 ◦ p1 = h2 ◦
p2 : Y1 ×Z Y2 → Z is also a �nite covering of Z, where p1 : Y1 ×Z Y2 → Y1 and
p2 : Y1×Z Y2 → Y2 are the two projections. Then, by remark 2.2.31, the composition
g ◦ h1 ◦ p1 = f1 ◦ p1 : Y1 ×Z Y2 → X is a �nite covering of X. One can show that
f1 ◦ p1 is the �bred product of f1 and f2 over g in CovX in the same way as we did
in the proof of (G1) in the proposition 1.8 of the appendix.

Lemma 2.2.53. Let X, Y and Z be schemes and let f : Y → X, g : Z → X be
�nite étale coverings of X. A morphism of coverings h : Y → Z from f to g is an
epimorphism in FEtX if and only if it is surjective.

Proof. Assume that h is an epimorphism in FEtX . By lemma 2.2.51, h is �nite étale.
Then, by corollary 2.2.26, we have that h(Y ) = {z ∈ sp(Z) | [Y : Z](z) ≥ 1} is open
and closed in Z. De�ne Z ′ := Z\h(Y ). Then h(Y ) and Z ′ are both open subschemes
of Z and Z = h(Y ) q Z ′. Consider the restrictions g′′ := g|h(Y )

: h(Y ) → X and
g′ := g|Y ′ : Y ′ → X. Since g is �nite étale, by lemma 2.2.18(3) we have that g′ and g′′

are also �nite étale. Consider now h(Y )qZ ′qZ ′ and let g̃ : h(Y )qZ ′qZ ′ → X be
the morphism obtained by gluing g′′ and twice g′. Applying again lemma 2.2.18(3),
we get that g̃ is �nite étale. Then g̃ is an element of CovX . Let ι′′ : h(Y ) →
h(Y )qZ ′qZ ′, ι′1 : Z ′ → h(Y )qZ ′qZ ′ and ι′2 : Z ′ → h(Y )qZ ′qZ ′ be the canonical
inclusions. Then, by de�nition of g̃, we have that g̃ ◦ ι′′ = g′′ and g̃ ◦ ι′1 = g′ = g̃ ◦ ι′2.
Gluing ι′′ and ι′1, we get a morphism of schemesm1 : h(Y )qZ ′ = Z → h(Y )qZ ′qZ ′.
We have that

(g̃ ◦m1)|h(Y )
= g̃ ◦ ι′′ = g′′ = g|h(Y )
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and
(g̃ ◦m1)|Y ′ = g̃ ◦ ι′1 = g′ = g|Y ′ .

So g̃ ◦ m1 = g, which means that m1 is a morphism of coverings from g to g̃.
Analogously, gluing ι′′ and ι′2, we get a morphism of schemes m2 : h(Y )qZ ′ = Z →
h(Y )q Z ′ q Z ′ and we have that

(g̃ ◦m2)|h(Y )
= g̃ ◦ ι′′ = g′′ = g|h(Y )

and
(g̃ ◦m2)|Y ′ = g̃ ◦ ι′2 = g′ = g|Y ′ .

So g̃ ◦m2 = g, which means that m2 is a morphism of coverings from g to g̃. Now
we have that

m1 ◦ h = (m1)|h(Y )
◦ h = ι′′ ◦ h = (m2)|h(Y )

◦ h = m2 ◦ h .

Since h is an epimorphism in FEtX , this implies thatm1 = m2. Then ι′1 = (m1)|Z′ =
(m2)|Z′ = ι′2, which is possible only if Z ′ = ∅. Then, since Z ′ = Z\h(Y ), we have
that h(Y ) = Z, i.e. h is surjective.
Conversely, assume that h is surjective and let W be a scheme with a �nite étale
covering l : W → X and two morphism of coverings m1,m2 : Z → W from g
to l such that m1 ◦ h = m2 ◦ h. Let z ∈ Z and consider x := g(z) ∈ X. By
de�nition of scheme, there exists an open a�ne subset U = Spec(A) of X such
that x ∈ U . Since g(z) = x ∈ U , we have that z ∈ g−1(U). Moreover, g−1(U)
is open in Z, because U is open in X and g is continuous. So g−1(U) is an open
neighbourhood of z in Z. Since f , g and l are �nite étale, they are in particular
a�ne. Then, by lemma 2.2.10(1) we have that f−1(U), g−1(U) and l−1(U) are all
a�ne. Let B, C and D be rings such that f−1(U) = Spec(B), g−1(U) = Spec(C)
and l−1(U) = Spec(D). Since m1 and m2 are morphisms of coverings from g to l, we
have that l ◦m1 = g = l ◦m2. Then g−1(U) = (l ◦m1)−1(U) = m−1

1 (l−1(U)), which
implies that m1(g−1(U)) ⊆ l−1(U), and g−1(U) = (l ◦ m2)−1(U) = m−1

2 (l−1(U)),
which implies that m2(g−1(U)) ⊆ l−1(U). So, restricting m1 and m2 to g−1(U),
we get two morphisms of schemes from g−1(U) = Spec(C) to l−1(U) = Spec(D).
Let m#

1 ,m
#
2 : D → C be the corresponding ring homomorphisms. Analogously,

since h is a morphism of coverings from f to g, we have that f = g ◦ h and so
f−1(U) = (g ◦ h)−1(U) = h−1(g−1(U)), which implies that h(f−1(U)) ⊆ g−1(U).
So, restricting h to f−1(U), we get a morphism of schemes from f−1(U) = Spec(B)
to g−1(U) = Spec(C). Consider the corresponding ring homomorphism h# : C → D.
Sincem1◦h = m2◦h, we have that h#◦m#

1 = h#◦m#
2 . By lemma 2.2.51, we have that

h is �nite étale. Then, since Spec(B) = f−1(U) = h−1(g−1(U)) = h−1(Spec(C)),
we have that B is a projective separable C-algebra (with the C-algebra structure
induced by h#). In particular, B is a �nite projective C-algebra. By assumption h
is surjective, so [Y : Z] ≥ 1 by lemma 2.2.15(3). By de�nition of degree, we have
that [Y : Z]|g−1(U)

= dg−1(U) = [B : C] (see lemma 2.2.12). So [B : C] ≥ 1, which

by lemma 2.1.58(1) implies that h# is injective. Then h# is a monomorphism of
sets (example 1.1.3(6); notice that in that proof we did not use the �niteness of the
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involved sets). Now from h# ◦m#
1 = h# ◦m#

2 it follows that m#
1 = m#

2 and so also
the corresponding morphisms of schemes coincide, i.e. (m1)|g−1(U)

= (m2)|g−1(U)
.

So we have proved that, for any z ∈ Z, there exists an open neighbourhood V of
z in Z such that (m1)|V = (m2)|V . This implies that m1 = m2. Hence h is an
epimorphism.

Lemma 2.2.54. Let X, Y1, Y2 and Z be schemes, f1 : Y1 → X, f2 : Y2 → X and
g : Z → X �nite étale coverings of X and h1 : Y1 → Z, h2 : Y2 → Z two morphisms
of coverings. Consider the �bred product Y1×ZY2, with projections p1 : Y1×ZY2 → Y1

and p2 : Y1×Z Y2 → Y2. De�ne f := f1 ◦ p1 : Y1×Z Y2 → X. Then f is a �nite étale
covering of X and it is the �bred product of f1 and f2 over g in FEtX .

Proof. By lemma 2.2.51, we have that h1 and h2 are �nite étale. Then, by lemma
2.2.32(3), we have that h1 ◦ p1 = h2 ◦ p2 : Y1 ×Z Y2 → Z is �nite étale. Since
h1 is a morphism of coverings from f1 to g, we have that f1 = g ◦ h1. Then f =
f1 ◦ p1 = g ◦ h1 ◦ p1. By lemma 2.2.30, it follows that f is �nite étale, because g
and h1 ◦ p1 are �nite étale. So f : Y1 ×Z Y2 → X is an object of FEtX . Since
f = f1 ◦ p1, we have that p1 is a morphism of coverings from f to f1. Moreover,
since h2 is a morphism of coverings from f2 to g, we have that f2 = g ◦ h2 and
so f = g ◦ h1 ◦ p1 = g ◦ h2 ◦ p2 = f2 ◦ p2. This shows that p2 is a morphism of
coverings from f to f2. We already know that h1 ◦ p1 = h2 ◦ p2 (by de�nition of
�bred product). Let now W be a scheme and l : W → X a �nite étale covering
of X, with two morphisms of coverings m1 : W → Y1, m2 : W → Y2 such that
h1 ◦m1 = h2 ◦m2. By the universal property of the �bred product in the category
of schemes, there exist a unique morphism of schemes m : W → Y1 ×Z Y2 such that
m1 = p1 ◦m and m2 = p2 ◦m. Since m1 is a morphism of coverings from l to f1,
we have that l = f1 ◦m1 and then f ◦m = f1 ◦ p1 ◦m = f1 ◦m1 = l . So m is a
morphism of coverings from l to f . This ends the proof.

Lemma 2.2.55. Let X and Y be schemes, f : X → Y a morphism of schemes. If
f(X) is open in Y and f : X → f(X) is an isomorphism of schemes, then f is a
monomorphism in the category Sch of all schemes.

Proof. Notice that, since f(X) is open, it has a natural subscheme structure and
we can see f as a morphism of schemes from X to f(X). Since f : X → f(X) is
an isomorphism, we can consider the inverse morphism f−1 : f(X) → X. Let now
Z be a scheme with two morphisms g, h : Z → X such that f ◦ g = f ◦ h. Since
(f ◦ g)(Z) = (f ◦ h)(Z) ⊆ f(X), we can see f ◦ g = f ◦ h as a morphism from Z to
f(X). Then we can compose it with f−1 and get

g = f−1 ◦ f ◦ g = f−1 ◦ f ◦ h = h .

This proves that h is a monomorphism in Sch.

Lemma 2.2.56. Let X, Y and Z be schemes and let f : Y → X, g : Z → X be
�nite étale coverings of X. A morphism of coverings h : Y → Z from f to g is an
monomorphism in FEtX if and only if h : Y → h(Y ) is an isomorphism of schemes.
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Proof. First of all, notice that, by lemma 2.2.51, h is �nite étale. Then, by corollary
2.2.26, we have that h(Y ) = {z ∈ sp(Z) | [Y : Z](z) ≥ 1} is open and closed in
Z. In particular, since h(Y ) is open in Z, it has a natural subscheme structure and
h : Y → h(Y ) is a morphism of scheme.
Assume now that h : Y → h(Y ) is an isomorphism of schemes. Then, by lemma
2.2.55, we have that h is a monomorphism in Sch. Let W be a scheme with a �nite
étale covering l : W → X and two morphism of coverings m1,m2 : W → Y from l to
f such that h ◦m1 = h ◦m2. In particular, m1 and m2 are morphisms of schemes.
Then, since h is a monomorphism of schemes, we must have m1 = m2. This proves
that h is a monomorphism in FEtX
Conversely, assume that h is a monomorphism in FEtX . Consider the �bred product
Y ×Z Y , with projections p1 : Y ×Z Y → Y and p2 : Y ×Z Y → Y . By lemma 2.2.54,
we have that f ◦ p1 : Y ×Z Y → X, together with the projections p1 and p2, is the
�bred product of f with itself over g in FEtX . Then, since h is a monomorphism in
FEtX , by lemma 1.2.9 we have that p1 : Y ×Z Y → Y is an isomorphism in FEtX
(notice that the only axiom that we used to prove that lemma was the existence of
�bred products). In particular, p1 is an isomorphism of schemes. Let z ∈ Z and
consider x := g(z) ∈ X. By de�nition of scheme, there exists an open a�ne subset
U = Spec(A) of X such that x ∈ U . Then z ∈ g−1(U). Since f and g are �nite
étale, they are in particular a�ne. Then, by lemma 2.2.10(1), we have that f−1(U)
and g−1(U) are both a�ne. Let B and C be rings such that f−1(U) = Spec(B) and
g−1(U) = Spec(C). Since h is a morphism of coverings, we have that f = g ◦ h and
so Spec(B) = f−1(U) = (g ◦ h)−1(U) = h−1(g−1(U)) = h−1(Spec(C)). Since h is
�nite étale, this implies that B is a projective separable C-algebra. In particular, it
is a �nite projective C-algebra. Consider now p−1

1 (f−1(U)) ⊆ Y ×Z Y . As in the
proof of lemma 2.2.34, we have that

p−1
1 (f−1(U)) = p−1

1 (h−1(g−1(U))) = h−1(g−1(U))×g−1(U) h
−1(g−1(U)) =

= f−1(U)×g−1(U) f
−1(U) = Spec(B)×Spec(C) Spec(B) = Spec(B ⊗C B) .

Since p1 is an isomorphism, its restriction p1 : p−1
1 (f−1(U)) = Spec(B ⊗C B) →

f−1(U) = Spec(B) is also an isomorphism. Then the corresponding ring homomor-
phism p#

1 : B → B⊗C B is also an isomorphism. But p#
1 is de�ned by p#

1 (x) = x⊗1
for any x ∈ B. Let m : B⊗CB → B, x⊗y 7→ xy, extended by linearity, as in lemma
2.1.58(2). We have that (m ◦ p#

1 )(x) = m(x⊗ 1) = x · 1 = x = idB(x) for any x ∈ B.
So m◦p#

1 = idB. Since p
#
1 is invertible, this implies that m = (p#

1 )−1. In particular,
m is invertible and so it is an isomorphism of C-algebras. By lemma 2.1.58(2), it
follows that [B : C] ≤ 1. Then, by de�nition of degree (see lemma 2.2.12), we have
that

[Y : Z](z) = dg−1(U)(z) = [B : C](z) ≤ 1 ,

because z ∈ g−1(U) = Spec(C). This shows that [Y : Z] ≤ 1. We have that
Y = h−1(h(Y )) and then, by lemma 2.2.22, h : Y = h−1(h(Y ))→ h(Y ) is �nite étale,
with degree [Y : h(Y )] = [Y : Z]|h(Y )

. Since h(Y ) = {z ∈ sp(Z) | [Y : Z](z) ≥ 1}, we
have that [Y : Z]|h(Y )

≥ 1. But we have proved that [Y : Z] ≤ 1, so [Y : Z]|h(Y )
≤ 1.

Then [Y : h(Y )] = [Y : Z]|h(Y )
= 1. By lemma 2.2.15(2), h : Y → h(Y ) is an

isomorphism.
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We omit the proof of the following two results, which can be found in [1],5.18-21.
We just mention that the main idea is to show that, for any scheme X, quotients
by �nite groups of automorphisms exist in the category AffX whose objects are
a�ne morphisms Y → X and whose morphisms are de�ned in an analogous way to
morphisms of �nite étale coverings (i.e., if f : Y → X and g : Z → X are a�ne
morphisms, a morphism between them is a morphism of schemes h : Y → Z such
that f = g ◦ h) and then to prove that the full subcategory FEtX is closed with
respect to quotients.

Proposition 2.2.57. For any scheme X, quotients by �nite groups of automor-
phisms exist in FEtX .

Lemma 2.2.58. Let X, Y and Z be schemes, f : Y → X a �nite étale morphism,
G a �nite group of automorphisms of f in FEtX and g : Z → X any morphism of
schemes. Then (Y ×X Z)/G ∼= (Y/G)×X Z in FEtZ .

2.3 The main theorem of Galois theory for schemes

We want now to de�ne a functor FEtX → sets, which will be the fundamental
functor of our Galois category. We will actually have many fundamental functors,
one for each geometric point of X. Recall the following de�nition.

De�nition 2.3.1. Let X be a scheme. A geometric point of X is a morphism of
schemes x : Spec(Ω)→ X, where Ω is an algebraically closed �eld.

Remark 2.3.2. If X is a scheme and a ∈ sp(X), then we can de�ne a geometric point
of X as follows. Let κ(a) = OX,a/mX,a be the residue �eld at a and let Ω be an alge-
braic closure of κ(a). So Ω is algebraically closed and κ(a) ⊆ Ω. Consider the map
x : Spec(Ω)→ sp(X), 0 7→ a, which is continuous because it is constant. Let U be an
open subset ofX. If a /∈ U , then x∗OSpec(Ω)(U) = OSpec(Ω)(x

−1(U)) = OSpec(Ω)(∅) =

0. Then we de�ne x# : OX(U)→ x∗OSpec(Ω)(U) = 0 to be the zero map. If instead
a ∈ U , then x∗OSpec(Ω)(U) = OSpec(Ω)(x

−1(U)) = OSpec(Ω)(Spec(Ω)) = Ω. We have
a natural ring homomorphism OX(U) → OX,a, which composed with the canonical
projection OX,a → κ(a) = OX,a/mX,a gives a ring homomorphism OX(U) → κ(a).
Since κ(a) ⊆ Ω, we can de�ne x# : OX(U) → x∗OSpec(Ω)(U) = Ω. It is immediate
to check that these de�nitions give a morphism of schemes x : Spec(Ω)→ X.
So any non-empty scheme has at least one geometric point. In particular this is
true for any connected scheme (recall that we do not consider the empy scheme as a
connected scheme).

Given a geometric point x : Spec(Ω) → X, we associate to any �nite étale
covering of X the set of morphisms from x to f in SchX , i.e. HomSchX (x, f) = {y :
Spec(Ω) → Y | f ◦ y = x}. It is however not clear that this is a �nite set. In order
to prove this, we start with the case when X = Spec(Ω) and x = idSpec(Ω). We need
an algebraic preparation.

Lemma 2.3.3. Let K be a �eld and A a �nite-dimensional K-algebra. Then there
exist n ∈ Z≥0 and some local K-algebras A1, . . . , An with nilpotent maximal ideals
such that A ∼=

∏n
i=1Ai.
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Proof. Let p be a prime ideal of A. We have that A/p has an induced K-algebra
structure and, since A is �nite-dimensional, A/p is also �nite dimensional (it is
generated by (a1 + p, . . . , an + p), if (a1, . . . , an) generates A over K). Let x ∈
(A/p)\{0} and consider the map mx : Ap → Ap, y 7→ xy, which is K-linear. Let
y ∈ Ker(mx), i.e. xy = mx(y) = 0. Since p is prime, A/p is an integral domain.
Then we must have y = 0. So Ker(mx) = 0, i.e. mx is injective. Since A/p is �nite
dimensional, mx is also surjective. Then there exists y ∈ A/p such that xy = 1.
So x is a unit of A/p and, since this holds for any x ∈ A/p\{0}, we have that
A/p is a �eld. Then p is a maximal ideal. This shows that any prime ideal of A
is maximal. Let now m1, . . . ,mn be pairwise distinct maximal ideals of A. Then
m1, . . . ,mn are coprime with each other. By the Chinese remainder theorem, the
ring homomorphism A →

∏n
i=1A/mi, a 7→ (a + m1, . . . , a + mn) is surjective. This

ring homomorphism is also K-linear, if we consider the induced K-algebra structure
on A/mi for any i = 1, . . . , n. Then we have that

dimK(A) ≥ dimK

(
n∏
i=1

A/mi

)
=

n∑
i=1

dimK(A/mi) ≥
n∑
i=1

1 = n .

(we used the fact that, for any i = 1, . . . , n, A/mi 6= 0, because any maximal ideal
is proper, and so dimK(A/mi) ≥ 1). So the number of distinct maximal ideals
is bounded by dimK(A). In particular, A has �nitely many maximal ideals. Let
m1, . . . ,mn be all the distinct maximal ideals of A and consider their intersection⋂n
i=1 mi. Since any prime ideal is maximal, we have that

⋂n
i=1 mi =

⋂
p prime p =

√
0.

Since A is �nite-dimensional, it is also �nitely generated as a K-algebra. Then
A ∼= K[x1, . . . , xt]/I as K-algebras, for a t ∈ Z≥0 and an ideal I of K[x1, . . . , xt].
Since K is a �eld, it is noetherian. Then, by Hilbert's basis theorem, K[x1, . . . , xn]
is noetherian and so the quotient A ∼= K[x1, . . . , xt]/I is noetherian. It follows that√

0 is �nitely generated as an A-module. Let (b1, . . . , bk) be generators of
√

0 over
A. For any i = 1, . . . , k, by de�nition of nilradical, there exists mi ≥ 1 such that
bmii = 0. Let m :=

∑k
i=1mi. For any x ∈

√
0, there exist a1, . . . , ak ∈ A such that

x =
∑k

i=1 aibi. Then xm =
(∑k

i=1 aibi

)m
=
∑

α1+···+αk=m
α1,...,αk≥0

(
m

α1,...,αk

)∏k
i=1(aibi)

αi .

For any α1, . . . , αk ≥ 0 such that α1 + · · ·+αk = m, there exists i0 ∈ {1, . . . , k} such
that αi0 ≥ mi0 and so b

αi0
i0

= 0. Then
∏k
i=1(aibi)

αi = 0, for any α1, . . . , αk ≥ 0 such

that α1 + · · ·+αk = m. This implies that xm = 0. So
√

0
m

= 0. Then we have that

0 =
√

0
m

=

(
n⋂
i=1

mi

)m
⊇

n⋂
i=1

mm
i ⊇

n∏
i=1

mm
i ,

which implies that
∏n
i=1 m

m
i = 0. We claim that mm

1 , . . . ,m
m
n are pairwise coprime.

If mm
i + mm

j is a proper ideal of A, for some i, j ∈ {1, . . . , n}, there would exist
a maximal ideal m of A such that mm

i + mm
j ⊆ m. Then mm

i ⊆ m and mm
j ⊆ m.

Since m is maximal, it is in particular prime. Then we must have mi ⊆ m and
mj ⊆ m. Since mi and mj are maximal, this implies that mi = m = mj and so
i = j. So mm

1 , . . . ,m
m
n are pairwise coprime. Then, by the Chinese remainder

theorem, the ring homomorphism A →
∏n
i=1A/m

m
i , a 7→ (a + mm

1 , . . . , a + mm
n ) is
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an isomorphism. This ring isomorphism is also K-linear, if we consider the induced
K-algebra structure on A/mm

i for any i = 1, . . . , n. Then, if we de�ne Ai := A/mm
i

for any i = 1, . . . , n, we have that A ∼=
∏n
i=1Ai as K-algebras. Moreover, for any

i = 1, . . . , n, we have that mi is the unique maximal ideal of A that contains mm
i

(because any maximal ideal is prime and so if mm
i ⊆ mj we must have mi ⊆ mj ,

which implies that mi = mj by maximality) and so, by the correspondence theorem
for ideals, mi/m

m
i is the unique maximal ideal of A/mm

i = Ai. Moreover, it is a
nilpotent ideal, because (mi/m

m
i )m = mm

i /m
m
i = 0.

Lemma 2.3.4. Let Ω be an algebraically closed �eld and A a projective separable
Ω-algebra (A is actually free, because all vector spaces are free). Then A ∼= Ωn as
Ω-algebras, for some n ∈ Z≥0.

Proof. Since A is projective separable, it is in particular �nitely generated as an
Ω-vector space. Then, by lemma 2.3.3, we have that A ∼=

∏n
i=1Ai as A-algebras,

for some local K-algebras A1, . . . , An with nilpotent maximal ideals (and n ∈ Z≥0).
Then it is enough to show that Ai = Ω, for any i = 1, . . . , n. Since A is projective
separable, by lemma 2.1.64 we have that Ai is projective separable for every i =
1, . . . , n. Fix i ∈ {1, . . . , n} and let ϕi : Ai → HomΩ(Ai,Ω) be de�ned as in lemma
2.1.59, with Ω instead of A and Ai instead of B. Let now f ∈ HomΩ(Ai,Ω). Since Ai
is projective separable, we have that ϕi is an isomorphism, so there exist a (unique)
a ∈ Ai such that f = ϕi(a). Let x ∈ mi. Then f(x) = ϕi(a)(x) = Tr(ax). We know
that mi is nilpotent, so there exists m ≥ 1 such that mm

i = 0. In particular, xm = 0.
Then mm

ax = m(ax)m = mamxm = m0 = 0. Then max is nilpotent. By remark
2.1.50(3), in the case of vector spaces the trace de�ned in 2.1.47 is the ususal one. It
is well known that the trace of a nilpotent endomorphism of a vector space is 0. Then
f(x) = Tr(ax) = Tr(max) = 0, i.e. x ∈ Ker(f). This holds for any f ∈ HomΩ(Ai,Ω).
If (a1, . . . , ak) is an Ω-basis of Ai (which is �nite dimensional because A is �nite
dimensional), there exist λ1, . . . , λk ∈ Ω such that x = λ1a1 + · · · + λkak. Let
(a∗1, . . . , a

∗
k) be the dual basis of (a1, . . . , ak). Then, for any i = 1, . . . , k, we have

that a∗i ∈ HomΩ(Ai,Ω) and, by what we proved above,

0 = a∗i (x) = a∗i

 k∑
j=1

λjaj

 =
k∑
j=1

λja
∗
i (aj) =

n∑
j=1

λjδij = λi .

So x = 0. This proves that mi = 0. Then Ai is a �eld. Since Ai is an Ω-algebra, it
is a �eld extension of Ω. Moreover, since Ai is �nite dimensional, it is an algebrical
�eld extension. But Ω is algebraically closed. Hence Ai = Ω.

Remark 2.3.5. In [1], 2.7, a more general result is proved, classifying free separable
K-algebras for any �eld K as �nite products of �nite separable �eld extensions of
K.

Lemma 2.3.6. Let Ω be an algebraically closed �eld and let f : Y → Spec(Ω) be a
�nite étale covering. Consider

HomSchSpec(Ω)
(idSpec(Ω), f) = {y : Spec(Ω)→ Y | f ◦ y = idSpec(Ω)} .
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We have that |HomSchSpec(Ω)
(idSpec(Ω), f)| = [Y : Spec(Ω)] (since Spec(Ω) is con-

nected, the degree is constant). In particular, HomSchSpec(Ω)
(idSpec(Ω), f) is a �nite

set.

Proof. Since f is �nite étale and Spec(Ω) is a�ne, by lemma 2.2.10(4) we have
that Y = f−1(Spec(Ω)) is a�ne and equal to Spec(A), where A is a projective
separable Ω-algebra. There is a bijective correspondence between morphisms of
schemes y : Spec(Ω) → Y = Spec(A) such that f ◦ y = idSpec(Ω) and Ω-algebra
homomorphisms A→ Ω. By lemma 2.3.6, there exists n ∈ Z≥0 such that A ∼= Ωn as
A-algebras. Notice that this implies that

n = dimΩ(Ωn) = dimΩ(A) = [A : Ω] = [Y : Spec(Ω)] ,

by de�nition of the degree (see 2.2.12). Then we have to prove that there are exactly
n homomorphisms of Ω-algebras from A (or, equivalently, from Ωn, since A ∼= Ωn)
to Ω. For any i = 1, . . . , n, let pi : Ωn → Ω be the i-th projection, which is
an Ω-algebra homomorphism. Since p1, . . . , pn : Ωn → Ω are n distinct Ω-algebra
homomorphisms, we have to prove that any Ω-algebra homomorphism from Ωn to Ω
is of this form. Let f : Ωn → Ω be a Ω-algebra homomorphism. If E = {1, . . . , n}
and D = {1}, we have that Ωn = ΩE and Ω = ΩD. Since Ω is a �eld, it has no non-
trivial idempotents. Then we can apply lemma 2.2.46 and get that f : ΩE → ΩD

is induced by a map ϕ : D = {1} → E = {1, . . . , n}. If i = ϕ(1), we have that
f((x1, . . . , xn)) = xϕ(1) = xi = pi((x1, . . . , xn)), for any (x1, . . . , xn) ∈ Ωn. So
f = pi.

Lemma 2.3.7. Let X be a scheme and let x : Spec(Ω)→ X be a geometric point of
X. If f : Y → X is a �nite étale covering of X, consider

HomSchX (x, f) = {y : Spec(Ω)→ Y | f ◦ y = x} .

We have that HomSchX (x, f) is a �nite set. Moreover, if f has constant degree, then
|HomSchX (x, f)| = [Y : X].

Proof. Consider the �bred product Y ×X Spec(Ω), with projections p1 : Y ×X
Spec(Ω) → Y and p2 : Y ×X Spec(Ω) → Spec(Ω). Since f is �nite étale, by lemma
2.2.28(4) we have that p2 is a �nite étale covering of Spec(Ω). By lemma 2.3.6, we
have that |HomSchSpec(Ω)

(idSpec(Ω), p2)| = [Y ×X Spec(Ω) : Spec(Ω)]. We claim that
|HomSchSpec(Ω)

(idSpec(Ω), p2)| = |HomSchX (x, f)|. De�ne

ϕ : HomSchSpec(Ω)
(idSpec(Ω), p2)→ HomSchX (x, f), z 7→ p1 ◦ z

Let us check that ϕ is well de�ned. If z ∈ HomSchSpec(Ω)
(idSpec(Ω), p2), we have that

p2 ◦ z = idSpec(Ω). By de�nition of �bred product, we have that f ◦ p1 = x ◦ p2.
Then f ◦ ϕ(z) = f ◦ p1 ◦ z = x ◦ p2 ◦ z = x ◦ idSpec(Ω) = x. This proves that
ϕ(z) ∈ HomSchX (x, f). Then ϕ is well de�ned. Let now y ∈ HomSchX (x, f). Then
f ◦ y = x. Consider the following diagram.
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Spec(Ω)

Y ×X Spec(Ω)

Y

Spec(Ω)

X

............................................................................................................................................................................................................................................................................................................................................................................................................................. .........
...

y

.............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................. ...........
.

idSpec(Ω)

...................................................................................
.....
.......
.....

p1

........................................................................................ ............

p2

........................................................................................ ............
f

...................................................................................
.....
.......
.....

x

We have that f ◦ y = x = x ◦ idSpec(Ω). So the diagram is commutative and,
by the universal property of the �bred product, there exists a unique morphism
z : Spec(Ω) → Y ×X Spec(Ω) such that p1 ◦ z = y and p2 ◦ z = idSpec(Ω), i.e. a
unique z ∈ HomSchSpec(Ω)

(idSpec(Ω), p2) such that ϕ(z) = p1 ◦ z = y. This shows that
ϕ is bijective. Then HomSchX (x, f) is �nite, because HomSchSpec(Ω)

(idSpec(Ω), p2) is
�nite. Moreover,

|HomSchX (x, f)| = |HomSchSpec(Ω)
(idSpec(Ω), p2)| = [Y ×X Spec(Ω) : Spec(Ω)] =

= [Y ×X Spec(Ω) : Spec(Ω)](0) = [Y : X](x(0))

(the last equality follows from lemma 2.2.28(2)). If f has constant rank, it follows
that HomSchX (x, f) = [Y : X].

Lemma 2.3.8. Let X be a scheme and x : Spec(Ω) → X a geometric point of
X. For any �nite étale covering f : Y → X, de�ne Fx(f) := HomSchX (x, f),
which is a �nite set by lemma 2.3.6. Moreover, if f : Y → X and g : Z → X
are �nite étale coverings of X and h : Y → Z is a morphism of coverings, de�ne
Fx(h) : Fx(f)→ Fx(g), y 7→ h ◦ y. Then Fx : FEtX → sets is a functor.

Proof. If f : Y → X and g : Z → X are �nite étale coverings of X and h : Y → Z
is a morphism of coverings, we have that h is in particular a morphism from f to
g in SchX . Then, for any y ∈ Fx(f) = HomSchX (x, f), we have that h ◦ y ∈
HomSchX (x, g) = Fx(g). This shows that Fx(h) : Fx(f)→ Fx(g) is well de�ned.
Moreover, if f : Y → X is a �nite étale covering, we have that Fx(idY )(y) = idY ◦y =
y = idFx(f)(y) for any y ∈ Fx(f) and so Fx(idY ) = idFx(f). Finally, if f1 : Y1 → X,
f2 : Y2 → X and f3 : Y3 → X and �nite étale coverings of X and h1 : Y1 → Y2,
h2 : Y2 → Y3 are morphisms of coverings, we have that

Fx(h2 ◦ h1)(y) = (h2 ◦ h1) ◦ y = h2 ◦ (h1 ◦ y) = Fx(h2)(h1 ◦ y) = Fx(h2)(Fx(h1)(y))

for any y ∈ Fx(f1) and so Fx(h2 ◦ h1) = Fx(h2) ◦ Fx(h1). Hence Fx is a functor.

Remark 2.3.9. (1) We gave a slightly di�erent de�nition of Fx in comparison with
that of [1] (which relies on the result proved in 2.9), but it can proved that the
two de�nitions are naturally equivalent.

(2) The functor we have just de�ned depends on the geometric point x : Spec(Ω)→
X. However, if X is connected, the functors obtained considering two di�er-
ent geometric points of X are isomorphic. This is a consequence of theorem
1.4.34(c), together with the theorem 2.3.10, which we are about to prove.
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Theorem 2.3.10. Let X be a connected scheme and let x : Spec(Ω) → X be a
geometric point of X (we know that such a point exists by remark 2.3.2). Let Fx :
FEtX → sets be the functor de�ned in lemma 2.3.8. Then FEtX is an essentially
small Galois category with fundamental functor Fx.

Proof. We omit the proof that FEtX is essentially small. We check now that the
conditions listed in de�nition 1.1.4 are satis�ed (the proof of the axioms (G4)-(G6)
is just sketched).

(G1) Consider idX : X → X. We have that idX is totally split (example 2.2.36) and
so it is �nite étale by lemma 2.2.37. For any �nite étale covering f : Y → X,
we have that f is a morphism of schemes with f = idX ◦f , so f is a morphism
of coverings from f to idX . It is clearly the unique such morphism. This proves
that idX is a terminal object in FEtX .
The existence of �bred products was proved in lemma 2.2.54.

(G2) Let (fi : Yi → X)i∈I be a �nite collection of �nite étale coverings of X. We can
clearly assume I = {1, . . . , n} for some n ∈ N. De�ne Y :=

∐n
i=1 Yi and let

f : Y → X be the morphism of schemes obtained by gluing the fi's. By lemma
2.2.18(3), we have that f is a �nite étale covering of X. For any i = 1, . . . , n
denote by qi : Yi → Y the canonical inclusion, which is a morphism of schemes.
Then, by de�nition of f , for any i = 1, . . . , n we have that f ◦ qi = fi, i.e qi is
a morphism of coverings from fi to f . Let now Z be a scheme, g : Z → X a
�nite étale covering of X and hi : Yi → Z a morphism of coverings from fi to
g (i.e. hi is a morphism of schemes and fi = g ◦ hi) for any i = 1, . . . , n. We
can glue the morphisms hi's and get a unique morphism of schemes h : Y → Z
such that h ◦ qi = hi for any i = 1, . . . , n. Then, for any i = 1, . . . , n, we have
that g ◦ h ◦ qi = g ◦ hi = fi = f ◦ qi, i.e. (g ◦ h)|Yi

= f|Yi
. Since the Yi's cover

Y , this implies that g ◦ h = f . So h is a morphism of coverings from f to g.
Hence f : Y → X is the sum of the fi's in FEtX .
Fot the existence of quotients by �nite groups of automorphisms, see 2.2.57
and the above discussion.

(G3) Let f : Y → X, g : Z → X be �nite étale coverings of X and let h : Y → Z
be a morphism of coverings from f to g. By lemma 2.2.51, h is �nite étale.
Then, by corollary 2.2.26, we have that Im(h) = {z ∈ sp(Z) | [Y : Z](y) ≥ 1}
is both open and closed in Z. De�ne Z ′ := Z\ Im(h). Then Im(h) and Z ′ are
both open subschemes of Z and Z = Im(h) q Z ′. Consider the restrictions
g′′ := g|h(Y )

: h(Y ) → X and g′ := g|Y ′ : Y ′ → X. Since g is �nite étale, by
lemma 2.2.18(3) we have that g′ and g′′ are also �nite étale. De�ne u′′ := h :
Y → h(Y ) and let u′ : h(Y ) → Z be the canonical inclusion. Then u′ and
u′′ are morphism of schemes. We have that g′′ = g|h(Y )

= g ◦ u′, so u′ is a
morphism of coverings from g′′ to g. Moreover, g′′ ◦ u′′ = g|h(Y )

◦ h = g ◦ h = f

(because h is a morphism of coverings from f to g) and so u′′ is a morphism
of coverings from f to g′′. Clearly h = u′ ◦ u′′. Moreover, u′′ is surjective by
de�nition. By lemma 2.2.53, this implies that u′′ is an epimorphism in FEtX .
We have that u′ : h(Y ) → u′(h(Y )) = h(Y ) is the identity, in particular it is
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an isomorphism of schemes. Then, by lemma 2.2.56, u′ is a monomorphism in
FEtX .
Assume now that h is a monomorphism in FEtX . As above, Z = Im(h) q Z ′
and g′ = g|Z′ , g

′′ = g|h(Y )
are �nite étale coverings of X. By lemma 2.2.56, we

have that h : Y → h(Y ) is an isomorphism of schemes. Moreover, g′ ◦ h =
g|Z′ ◦ h = g ◦ h = f , so h : Y → h(Y ) is a morphism of coverings from f

to g′. Consider the inverse h−1 : h(Y ) → Y . Since g′ ◦ h = f , we have that
g′ = f ◦ h−1, so h−1 is a morphism of coverings from g′ to f . This proves that
h is an isomorphism from f to g′ in FEtX . Moreover g, together with the
canonical inclusions Im(h)→ Z and Z ′ → Z is the sum of g′′ and g′ in FEtX ,
as in the proof of (G2).

(G4) It follows almost immediately from the proof of (G1) and from example 1.1.3(1)-
(2).

(G5) The fact that Fx commutes with �nite sums follows from the proof of (G2) and
from example 1.1.3(3). In order to show that Fx transforms epimorphisms in
epimorphisms of �nite sets (i.e. surjective functions, see example 1.1.3(6)), one
can prove that this holds if X = Spec(Ω) and x = idSpec(Ω) and then use lemma
2.2.28(3). Finally, the fact that Fx commutes with quotients by �nite groups
of automorphisms can be proved using lemma 2.2.58, together with example
1.1.3(5).

(G6) Let f : Y → X, g : Z → X be �nite étale coverings of X and h : Y → Z a
morphism of coverings such that Fx(h) : Fx(f) → Fx(g) is an isomorphism in
sets, i.e. a bijection. Then |Fx(f)| = |Fx(g)|. Since X is connected, we have
that [Y : X] and [Z : X] are constant. Then, by lemma 2.3.7, we have that
[Y : X] = |Fx(f)| = |Fx(g)| = [Z : X]. By lemma 2.2.51 we have that h is
�nite étale. Then, by corollary 2.2.26, we have that h(Y ) is both open and
closed in Z and so we can write Z = h(Y ) q Z ′, where Z ′ := Z\h(Y ). Let
g′ = g|Z′ : Z ′ → X and g′′ = g|h(Y )

: h(Y ) → X. As in the proof of (G3),
we have that g′ and g′′ are �nite étale coverings of X and g is the sum of g′′

and g′. Using the fact that Fx commutes with �nite sums, one shows that h is
surjective. The surjectivity of h, together with the fact that [Y : X] = [Z : X],
implies that h is an isomorphism of schemes (this can be proved �rstly in the
case when f and g are totally split, using lemma 2.2.48, and then generalized
using proposition 2.2.43). Then h is an isomorphism in FEtX .

Remark 2.3.11. In the proof of theorem 2.3.10, the only point where we applied that
X is connected was (G6).

Corollary 2.3.12 (Main theorem of Galois theory for schemes). Let X be a con-
nected scheme. Then there exists a pro�nite group π(X), uniquely determined up to
isomorphism, such that FEtX is equivalent to π(X)-sets. Moreover, π(X) is isomor-
phic to Aut(Fx) for any geometric point x : Spec(Ω)→ X, where Fx : FEtX → sets
is de�ned as in
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Proof. It follows immediately from the theorem 2.3.10 and from the main theorem
about Galois categories (1.4.34).

De�nition 2.3.13. Let X is a connected scheme and x : Spec(Ω)→ X a geometric
point of X. We de�ne π(X,x) := Aut(Fx) the étale fundamental group of X in x,
where Fx : FEtX → sets is the functor de�ned in lemma 2.3.8.

Remark 2.3.14. The fundamental group de�ned as in 2.3.13 is functorial in (X,x).
More precisely, we can consider the category Sch• whose objects are pairs of the form
(X,x), withX a connected scheme and x : Spec(Ω)→ X a geometric point ofX (base
point), and morphisms are morphisms of schemes that preserve the base points (i.e.,
a morphism from (X,x) to (Y, y) is a morphism of schemes from f : X → Y such that
f ◦x = y). To any object (X,x) of Sch• we can associate the Galois category FEtX
with fundamental functor Fx : FEtX → sets. For any morphism f : (X,x)→ (Y, y)
in Sch•, we can de�ne Gf : FEtY → FEtX via Gf (g) = p2 : Z ×X Y → Y for
any �nite étale covering f : Z → X (the fact that p2 is a �nite étale coverings of X
follows from lemma 2.2.28(4)), extending it to morphisms in the obvious way. Then
it can be proved that the assumptions of lemma 1.4.36 are satis�ed and so π̂ can be
extended to a functor Sch• → Prof .
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Appendix: �nite coverings of

topological spaces

In this appendix, we will deal with another example of Galois category: the category
of �nite coverings of a connected topological space (we do not consider the empty
space as a connected space). In the �rst section (based on [1], 3.7-3.10) we will de�ne
this category and prove that it satis�es all the axioms introduced in the de�nition
1.1.4. In the second section, we will compute the fundamental group of a very
simple connected topological space (exercise 1.25 in [1]). The cross-references that
are internal to the appendix can be distinguished from the ones that come from the
rest of the thesis because the latter are identi�ed by three numbers (the �rst two
indicating the chapter and the section, respectively), while the former present only
two numbers (the �rst one indicating the section).

1 A Galois category

We start by recalling the de�nition.

De�nition 1.1. Let X, Y be topological spaces and f : Y → X a continuous
map. We say that f is a trivial covering of X if there exist a discrete topological
space E and a homeomorphism ϕ : Y → X × E such that f = pX ◦ ϕ, where
pX : X ×E → X is the projection on the �rst coordinate. This is illustrated by the
following commutative diagram.

Y

X

X × E
........................................................................................................................................... ........

....
f

.......................................................................................................................................
....
............

pX

..................................................................................................................................................................................................................... ............
ϕ

We say that f is a covering of X if for every x ∈ X there exists an open subset
U ⊆ X such that x ∈ U and the restriction f : f−1(U)→ U is a trivial covering. A
covering f : Y → X is said to be �nite if for every x ∈ X the preimage f−1({x}) ⊆ Y
is a �nite set. In this case, for any x ∈ X we call |f−1({x})| the degree of f at x.
If X, Y , Z are topological spaces and f : Y → X, g : Z → X are coverings of X,
then a morphism of coverings from f to g is a continuous map h : Y → Z such that
g ◦ h = f .

Remark 1.2. (1) Let X be a topological space. It is immediate to check that the
composition of two morphisms of coverings is again a morphism of coverings.
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Moreover, for any covering f : Y → X we have that idY is clearly a morphism
of coverings from f to f . This shows that coverings of X form a category. We
will restrict our attention to �nite coverings. We denote the category of �nite
coverings of X by CovX .

(2) Let X, Y be topological spaces and f : Y → X a �nite covering of X. The
map

d : X → N, x 7→ |f−1({x})|
is continuous, if we consider the discrete topology on N. Indeed, if n ∈ N, let
x ∈ d−1({n}), i.e. |f−1({x})| = n. By de�nition of covering, there exists an
open subset U ⊆ X such that x ∈ U and f : f−1(U)→ U is a trivial covering.
So there exist a discrete topological space E and a homeorphism ϕ : f−1(U)→
U × E such that f = pU ◦ ϕ, where pU : U × E → U is the projection on the
�rst coordinate. For any x′ ∈ U , we have that f−1({x′}) = (pU ◦ϕ)−1({x′}) =
ϕ−1(p−1

U ({x′})) = ϕ−1({x′} ×E). Since ϕ is a homeomorphism, it is bijective,
so we have |f−1({x′})| = |ϕ−1({x′} × E)| = |{x′} × E| = |E|. Since x ∈ U ,
this holds in particular for x, so n = |f−1({x})| = |E| = |f−1({x′})| for any
x′ ∈ U . This shows that U ⊆ d−1({n}). Hence d−1({n}) is open, which shows
that d is continuous.
In particular, if X is connected we have that d is a constant map, i.e. f has
the same degree at all points of X. We call this degree the degree of f .

Our aim in this section is to prove that, if X is a connected topological space,
then CovX is an essentially small Galois category. First of all we have to de�ne a
functor CovX → sets.

Lemma 1.3. Let X 6= ∅ be a topological space and �x x ∈ X. For any �nite covering
f : Y → X, de�ne Fx(f) = f−1({x}). Moreover, if f : Y → X and g : Z → X are
�nite coverings of X and h : Y → Z is a morphism of coverings, we de�ne

Fx(h) : Fx(f) = f−1({x})→ Fx(g) = g−1({x}), y 7→ h(y) .

Then Fx : CovX → sets is a functor.

Proof. First of all, if f : Y → X is a �nite covering, then f−1({x}) is a �nite set. So
it is indeed an object of sets.
Let f : Y → X and g : Z → X be �nite coverings of X and h : Y → Z a morphism
of coverings. We have to show that Fx(h) is a well-de�ned map. Let y ∈ f−1({x}).
Then and f(y) = x. Since h is a morphism of coverings, we have that f = g◦h. Then
x = f(y) = g(h(y)). So h(y) ∈ g−1({x}) and this shows that Fx(h) : Fx(f)→ Fx(g)
is well de�ned.
Let f : Y → X be a �nite covering and h = idY . Then, for any y ∈ Fx(f) =
f−1({x}), we have Fx(h)(y) = h(y) = idY (y) = y. So Fx(h) = idFx(f). Let now
f1 : Y → X, f2 : Z → X, f3 : W → X be �nite coverings of X and let h1 : Y → Z,
h2 : Z →W be morphisms of coverings. For any y ∈ Fx(f) = f−1

1 ({x}), we have

Fx(h2 ◦ h1)(y) = (h2 ◦ h1)(y) = h2(h1(y)) =

= h2(Fx(h1)(y)) = Fx(h2)(Fx(h1)(y)) = (Fx(h2) ◦ Fx(h1))(y) .

So Fx(h2 ◦ h1) = Fx(h2) ◦ Fx(h1). Hence Fx is a functor.
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Remark 1.4. The functor we de�ned in 1.3 depends on the point x we �xed. However,
if X is connected, the functors obtained considering two di�erent points of X are
isomorphic. This could be proved directly, but is also a consequence of theorem
1.4.34(c), together with the proposition 1.8 of this appendix, whose proof is now our
main concern.

The key tool in the proof of the fact that, if X is a connected topological space,
CovX is a Galois category with fundamental functor Fx (for a �xed x ∈ X) will be
the following lemma, which says that not only is each �nite covering locally trivial,
but also morphisms between �nite coverings are �locally trivial�, in the sense that we
will explain.

Lemma 1.5. Let X, Y , Z be topological spaces, f : Y → X and g : Z → X
�nite coverings and h : Y → Z a morphism of coverings between f and g. For any
x ∈ X, there exists an open neighbourhood U of x in X such that f , g and h are
�trivial above U �, i.e. such that there exist �nite discrete topological spaces D and
E, homeomorphisms α : f−1(U) → U × D and β : g−1(U) → U × E and a map
ϕ : D → E such that the following diagram is commutative, where pU : U ×D → U
and qU : U × E → U are the projections on the �rst factor.

f−1(U)

U

U ×D U × E

g−1(U)

U

................................................................................................................................................................................................................
.....
.......
.....

f

........................................................................................................................................... ........
....

α

.......................................................................................................................................
....
............

pU

............................................................................................................................................................................................................................................................................................................................................................................................................................................................................... ............
h

..................................................................................................................................................................................................................... ............
idU ×ϕ

............................................................................................................................................................................................................................................................................................................................................................................................................................................................................... ............
idU

................................................................................................................................................................................................................
.....
.......
.....

g

.......................................................................................................................................
....
............

β

........................................................................................................................................... ........
....

qU

Proof. Let x ∈ X. By de�nition of covering, there exist open neighbourhoods V1, V2

of x inX such that f : f−1(V1)→ V1 and g : g−1(V2)→ V2 are trivial coverings. This
means that there exist discrete topological spaces D and E and homeomorphisms
α : f−1(V1)→ V1 ×D, β : g−1(V2)→ V2 ×E such that pV1 ◦ α = f and qV2 ◦ β = g,
where pV1 : V1 × D → V1 and qV2 : V2 × E → V2 are the projections on the �rst
factor. Since the coverings are �nite, D and E are �nite. De�ne V := V1 ∩V2. Then
also V is an open neighbourhood of x in X. Notice that f−1(V ) = (pV1 ◦α)−1(V ) =
α−1(p−1

V (V )) = α−1(V ×D). So α(fi−1(V )) = V ×D and, restricting α to f−1(V ),
we get a homeomorphism α : f−1(V ) → V × D. Analogously, restricting β to
g−1(V ), we get a homeomorphism β : g−1(V ) → V × E. Clearly, pV ◦ α = f and
qV ◦ β = g, where pV : V × D → V and qV : V × E → V are the projections
on the �rst factor. By de�nition of morphisms of coverings, g ◦ h = f . Then, for
any y ∈ f−1(V ), we have that g(h(y)) = f(y) ∈ V and so h(y) ∈ g−1(V ). Then,
restricting h to f−1(V ), we get a continuous map h : f−1(V ) → g−1(V ). Consider
the map β◦h◦α−1 : V ×D → V ×E, which is continuous because it is the composition
of continuous maps. We have that qV ◦ β ◦ h ◦ α−1 = g ◦ h ◦ α−1 = f ◦ α−1 = pV .
Then, for any (v, d) ∈ V ×D, we have(
β ◦ h ◦ α−1

)
((v, d)) =

(
qV
((
β ◦ h ◦ α−1

)
((v, d))

)
, qE

((
β ◦ h ◦ α−1

)
((v, d))

))
=

217



APPENDIX: FINITE COVERINGS OF TOPOLOGICAL SPACES

= (pV ((v, d)), ϕv(d)) = (v, ϕv(d)) ,

where qE : V × E → E is the projection on the second factor and we de�ned ϕv :
D → E, d 7→ (qE ◦β◦h◦α−1)((v, d)), for any v ∈ V . De�ne ϕ := ϕx : D → E. Then
ϕ is continuous, because we have the discrete topology on D. So the composition
ϕ ◦ pE is also continuous, where pE : V × E → E is the projection on the second
factor. Consider the map

γ : V ×D → E × E, (v, d) 7→ (ϕ(d), ϕv(d)) .

We have that γ is continuous, because its components are ϕ◦pE and qV ◦β ◦h◦α−1,
which are continuous. Since E has the discrete topology, the product E × E is also
discrete. Then the diagonal ∆ := {(e, e) | e ∈ E} ⊆ E × E is open in E × E. It
follows that γ−1(∆) is open in V × D. It is clear, from the de�nitions of γ and
of ϕ, that {x} × D ⊆ γ−1(∆). Then, applying the de�nition of product topology,
we get that for any d ∈ D there exists an open neighbourhood Ud of x in V such
that Ud × {d} ⊆ γ−1(∆) (notice that, since V is open in X, Ud is open also in
X). De�ne U :=

⋂
d∈D Ud. Then U is an open neighbourhood of x, because it is

a �nite intersection of open neighbourhoods of x (remember that D is �nite). Let
(u, d) ∈ U × D. Since U ⊆ Ud, we have that (u, d) ∈ Ud × {d} ⊆ γ−1(∆). So
(ϕ(d), ϕu(d)) = γ((u, d)) ∈ ∆, which means that ϕu(d) = ϕ(d). This shows that
ϕu = ϕ for any u ∈ U . As above, using the fact that pV ◦ α = f and qV ◦ β =
g, we get that α(f−1(U)) = U × D and β(g−1(U)) = U × E. So, restricting α
and β, we get homeomorphisms α : f−1(U) → U × D and β : g−1(U) → U × E
such that pU ◦ α = f and qU ◦ β = g. For any (u, d) ∈ U × D, we have that
(β ◦h◦α−1)((u, d)) = (u, ϕu(d)) = (u, ϕ(d)). So β ◦h◦α−1 = idU ×ϕ. The fact that
qU ◦ (idU ×ϕ) = pU = idU ◦pU is obvious. So the diagram is commutative.

The lemma we have just proved can be generalized to a �nite number of mor-
phisms as follows.

Corollary 1.6. Let X, Y1, . . . , Yn be topological spaces (n ∈ N), f1 : Y1 → X, . . . , fn :
Yn → X �nite coverings of X and h1 : Y1 → Y2, . . . , hn−1 : Yn−1 → Yn morphisms
of coverings. For any x ∈ X, there exists an open neighbourhood U of x in X
such that f1, . . . , fn, h1, . . . , hn−1 are all trivial above U , in the same sense as in
the lemma 1.5: there exist �nite discrete topological spaces D1, . . . , Dn, homeomor-
phisms α1 : f−1

1 (U) → U × D1, . . . , αn : f−1
n (U) → U × Dn and maps ϕ1 : D1 →

D2, . . . , ϕn−1 : Dn−1 → Dn such that the following diagram is commutative for any
i = 1, . . . , n − 1, where p1 : U ×D1 → U, . . . , pn : U ×Dn → U are the projections
on the �rst factor.

f−1
i (U)

U

U ×Di U ×Di+1

f−1
i+1(U)

U

................................................................................................................................................................................................................
.....
.......
.....

fi

........................................................................................................................................... ........
....

αi

.......................................................................................................................................
....
............

pi

............................................................................................................................................................................................................................................................................................................................................................................................................................................................................... ............
hi

..................................................................................................................................................................................................................... ............
idU ×ϕi

............................................................................................................................................................................................................................................................................................................................................................................................................................................................................... ............
idU

................................................................................................................................................................................................................
.....
.......
.....

fi+1

.......................................................................................................................................
....
............

αi+1

........................................................................................................................................... ........
....

pi+1
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Proof. By lemma 1.5, for any i = 1, . . . , n−1 there exists an open neighbourhood Ui
of x in X such that fi, fi+1 and hi are trivial above Ui. De�ne U :=

⋂n−1
i=1 Ui. Then

U is open in X, because it is a �nite intersection of open subsets. Moreover, x ∈ U .
So U is an open neighbourhood of x in X. Since U ⊆ Ui for any i = 1, . . . , n− 1, it
is immediate to check that f1, . . . , fn, h1, . . . , hn−1 are all trivial above U .

Lemma 1.7. Let X be a topological space, f : Y → X and g : Z → X �nite
coverings and h : Y → Z a morphism of coverings from f to g. Then:

(1) Im(h) is both open and closed in Z;

(2) h is an epimorphism in CovX if and only if it is surjective.

Proof. (1) Let z ∈ Z. Consider x := g(z). By lemma 1.5, there exists an open
neighbourhood U of x inX such that f , g and h are trivial above U . This means
that there exist �nite discrete topological spaces D and E, homeomorphisms
α : f−1(U) → U × D and β : g−1(U) → U × E and a map ϕ : D → E such
that β ◦ h = (idU ×ϕ) ◦ α, f = pU ◦ α and g = qU ◦ β, where pU : U ×D → U ,
qU : U × E → E are the projections on the �rst factor. Since g(z) = x ∈ U ,
we have that z ∈ g−1(U).
Assume that z ∈ Im(h). Then there exists y ∈ Y such that z = h(y). Since
h is a morphism of coverings, we have that f = h ◦ g. So f(y) = g(h(y)) =
g(z) = x ∈ U , which implies that y ∈ f−1(U). Consider α(y) ∈ U ×D. Since
f = pU ◦ α, we have that α(y) = (f(y), d) = (x, d), for some d ∈ D. De�ne
e := ϕ(d) ∈ D. Let x′ ∈ U . Then (x′, d) ∈ U × D and, since β ◦ h ◦ α−1 =
idU ×ϕ, we have that

(x′, e) = (idU ×ϕ)((x′, d)) = β(h(α−1((x′, d)))) .

So (x′, e) ∈ β(Im(h)). This shows that U × {e} ⊆ β(Im(h)). Then, since β is
a homeomorphism, we have that β−1(U × {e}) ⊆ Im(h). But U × {e} is open
in U × E, because E has the discrete topology. So β−1(U × {e}) is open in
g−1(U). Since g−1(U) is open in Z, this implies that β−1(U×{e}) is open in Z.
Moreover, β(z) = β(h(y)) = (idU ×ϕ)(α(y)) = (idU ×ϕ)((x, d)) = (x, ϕ(d)) =
(x, e) ∈ U × {e}. So z ∈ β−1(U × {e}). This shows that Im(h) is open.
On the other hand, assume that z /∈ Im(h). Consider β(z) ∈ U × E. Since
g = qU ◦ β, we have that β(z) = (g(z), e) = (x, e), for some e ∈ E. Let
z′ ∈ β−1(U × {e}) ⊆ g−1(U) and assume by contradiction that z′ ∈ Im(h).
Then there exists y ∈ Y such that z′ = h(y). Since f = g ◦ h, we have that
f(y) = g(h(y)) = g(z′) ∈ U . Then y ∈ f−1(U). Consider α(y) ∈ U ×D. Since
f = pU ◦ α, we have that α(y) = (f(y), d) = (x′, d), for some d ∈ D, where we
de�ned x′ := f(y) = g(z′) ∈ U . Moreover, since z′ ∈ β−1(U × {e}) ⊆ g−1(U)
and g = qU ◦ β, we have that β(z′) = (g(z′), e) = (x′, e). Then, since β ◦ h =
(idU ×ϕ) ◦ α, we have

(x′, e) = β(z′) = β(h(y)) = (idU ×ϕ)(α(y)) = (idU ×ϕ)((x′, d)) = (x′, ϕ(d)) .
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So e = ϕ(d). Now we have that

β(z) = (x, e) = (x, ϕ(d)) = (idU ×ϕ)((x, d)) =

= ((idU ×ϕ) ◦ α)(α−1((x, d))) = β(h(α−1((x, d)))) ,

which, since β is a homeomorphism, implies that z = h(α−1((x, d))) ∈ Im(h).
This is a contradiction. So z′ /∈ Im(h). This shows that β−1(U × {e}) ⊆
Z\ Im(h). But U ×{e} is open in U ×E, because E has the discrete topology.
So β−1(U × {e}) is open in g−1(U). Since g−1(U) is open in Z, this implies
that β−1(U × {e}) is open in Z. Moreover, z ∈ β−1(U × {e}) (because β(z) =
(x, e) ∈ U × {e}). This shows that Z\ Im(h) is open. Hence Im(h) is closed.

(2) Assume that h is surjective. By example 1.1.3(6), we have that h is an epi-
morphism of sets (notice that in the proof we did not use the fact that the
sets were �nite, so it works for arbitrary sets). Let W be a topological space
and m : W → X a �nite covering. Let l1, l2 : Y → W be two morphisms of
coverings such that l1 ◦ h = l2 ◦ h. In particular, l1, l2 are maps between sets.
Since h is an epimorphism of sets, this implies that l1 = l2.
Conversely, assume that h is an epimorphism. Consider the set E := {a, b}
(with a 6= b), endowed with the discrete topology, and the �nite trivial covering
pX : X × E → X (projection on the �rst factor). De�ne

l1 : Z → X × E, z 7→ (g(z), a)

and

l2 : Z → X × E, z 7→

{
(g(z), a) if z ∈ Im(h)

(g(z), b) if z /∈ Im(h)
.

It is clear that l1 is continuous, because its components are g, which is contin-
uous by assumption, and the map Z → E, z 7→ a, which is continuous because
it is constant. Let us prove that l2 is continuous. The �rst component is g,
which is continuous. The second component is

m : Z → E, z 7→

{
a if z ∈ Im(h)

b if z /∈ Im(h)
.

We have thatm−1({a}) = Im(h) andm−1({b}) = Z\ Im(h). Both are open, by
point (1). So l2 is continuous. From the de�nitions of l1 and l2, it is clear that
pX ◦l1 = g = pX ◦l2. This means that l1 and l2 are morphisms of coverings. For
any y ∈ Y , we have that h(y) ∈ Im(h) and so l2(h(y)) = (g(h(y)), a) = l1(h(y)).
So l1 ◦ h = l2 ◦ h. Since h is an epimorphism, this implies that l1 = l2. Then,
for any z ∈ Z, we have that l2(z) = l1(z) = (g(z), a), which implies that
z ∈ Im(h). Hence h is surjective.

Proposition 1.8. Let X be a connected topological space (in particular, X 6= ∅) and
�x x ∈ X. Let Fx : CovX → sets be the functor de�ned in lemma 1.3. Then CovX
is an essentially small Galois category with fundamental functor Fx.
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Proof. First of all, we prove that CovX is essentially small. It is enough to show that,
for any n ∈ N, the collection of isomorphism classes of coverings of X of degree n (see
remark 1.2(2)) is a set. If f : Y → X is a covering of degree n, then there is a bijection
ϕ : Y → X × {1, . . . , n} such that f = pX ◦ ϕ, where pX : X × {1, . . . , n} → X is
the projection on the �rst factor. Then ϕ induces a topology on X×{1, . . . , n} such
that ϕ becomes a homeomorphism (notice that, if we consider the product topology
on X ×{1, . . . , n}, then ϕ is in general only a bijection, not a homeomorphism: if it
is a homeomorphism, then f is a trivial covering). Then f is isomorphic to pX . The
collection of all possible topologies on X × {1, . . . , n} is a set, because it is a subset
of the power set of the power set of X. Then the collection of isomorphism classes
of coverings of X of degree n is a set. Hence CovX is essentially small.
We check now that the conditions listed in de�nition 1.1.4 are satis�ed.

(G1) Consider the map idX : X → X (which is clearly continuous). We have an
obvious homeomorphism ϕ : X → X×{1}, x 7→ (x, 1) and clearly pX ◦ϕ = idX
(where pX : X × {1} → X is the projection on the �rst factor). So idX is a
trivial �nite covering. For any �nite covering f : Y → X, we have that f is
continuous and idX ◦f = f , so f is a morphism of coverings from f to idX . It
is clearly the unique such morphism. This proves that idX is a terminal object
in CovX .
Let f1 : Y1 → X, f2 : Y2 → X, g : Z → X be �nite coverings, h1 : Y1 → Z
and h2 : Y2 → Z two morphisms of coverings. This means that g ◦ h1 = f1

and g ◦ h2 = f2. Consider the �bred product Y1 ×Z Y2 as de�ned in example
1.1.3(2), with the subspace topology of the product. Let p1 : Y1 ×Z Y2 → Y1,
p2 : Y1 ×Z Y2 → Y2 be the projections, which are continuous by de�nition of
the product topology, and de�ne f := f1 ◦ p1 : Y1 ×Z Y2 → X. Then f is
continuous, because it is the composition of continuous functions. Notice that
f = f1 ◦ p1 = g ◦ h1 ◦ ◦p1 = g ◦ h2 ◦ p2 = f2 ◦ p2, since h1 ◦ p1 = h2 ◦ p2 by
de�nition of the �bred product of sets. We claim that f is a �nite covering
of X. Let x′ ∈ X. By corollary 1.6, there exists an open neighbourhooud
U of x′ in X such that f1, f2, g, h1, h2 are all trivial above U . This means
that we have �nite discrete topological spaces D1, D2 and E, homeomorphisms
α1 : f−1

1 (U) → U × D1, α2 : f−1
2 (U) → U × D2 and β : g−1(U) → U × E

and two maps ϕ1 : D1 × E, ϕ2 : D2 × E such that: β ◦ h1 = (idU ×ϕ1) ◦ α1,
β ◦ h2 = (idU ×ϕ2) ◦ α2, r1 ◦ α1 = f1, r2 ◦ α2 = f2 and q ◦ β = g, where
r1 : U ×D1 → U , r2 : U ×D2 → D2 and q : U ×E → E are the projections on
the �rst factor. We have that

f−1(U) = {(y1, y2) ∈ Y1 ×Z Y2 | f((y1, y2)) ∈ U} =

= {(y1, y2) ∈ Y1 × Y2 | h1(y1) = h2(y2), f1(y1) ∈ U, f2(y2) ∈ U} =

= {(y1, y2) ∈ f−1
1 (U)× f−1

2 (U) | h1(y1) = h2(y2)} =

= f−1
1 (U)×Z f−1

2 (U) = f−1
1 (U)×g−1(U) f

−1
2 (U)

(the last equality is justi�ed by the fact that h1(f−1
1 (U)) ⊆ g−1(U) and

h2(f−1
2 (U)) ⊆ g−1(U)). Then the homeomorphisms α1, α2 and β induce a
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homeomorphism

γ : f−1(U) = f−1
1 (U)×g−1(U) f

−1
2 (U)→ (U ×D1)×U×E (U ×D2),

(y1, y2) 7→ (α1(y1), α2(y2))

(it is straightforward to check that this is a well-de�ned homeomorphism). We
claim that (U ×D1)×U×E (U ×D2) ∼= U × (D1 ×E D2). De�ne

ϑ : U×(D1×ED2)→ (U×D1)×U×E(U×D2), (u, (d1, d2)) 7→ ((u, d1), (u, d2)) .

Let us prove that ϑ is well de�ned. If (u, (d1, d2)) ∈ U × (D1 ×E D2), then
ϕ1(d1) = ϕ2(d2). So

(idU ×ϕ1)((u, d1)) = (u, ϕ1(d1)) = (u, ϕ2(d2)) = (idU ×ϕ2)((u, d2))

and this proves that ((u, d1), (u, d2)) ∈ (U ×D1)×U×E (U ×D2). So ϑ is well
de�ned. We have that ϑ is continuous, because its components are continuous.
It is also clear that ϑ is injective. We prove now that it is surjective. Let
((u1, d1), (u2, d2)) ∈ (U ×D1)×U×E (U ×D2). This means that (u1, ϕ1(d1)) =
(idU ×ϕ1)((u1, d1)) = (idU ×ϕ2)((u2, d2)) = (u2, ϕ2(d2)). So u1 = u2 and
ϕ1(d1) = ϕ2(d2). Then (d1, d2) ∈ D1×ED2 and (u1, (d1, d2)) ∈ U×(D1×ED2).
Moreover,

ϑ((u1, (d1, d2))) = ((u1, d1), (u1, d2)) = ((u1, d1), (u2, d2)) .

This shows that ϑ is surjective. Finally, the inverse map

ϑ−1 : (U ×D1)×U×E (U ×D2)→ U × (D1 ×E D2),

((u1, d1), (u2, d2)) 7→ (u1 = u2, (d1, d2))

is also continuous, because its components are continuous. So ϑ is a homeomor-
phism. Now we have a homeomorphism ϑ−1◦γ : f−1(U)→ U×(D1×ED2) and
D1×ED2 is a �nite discrete topological space. Denote by p : U×(D1×ED2)→
U the projection on the �rst factor. From the de�nition of ϑ, it follows that
p◦ϑ−1 = r1◦s1, where s1 : (U×D1)×U×E (U×D2)→ U×D1 is the projection
on the �rst factor. On the other hand, from the de�nition of γ we have that
s1 ◦ γ = α1 ◦ p1. So p ◦ (ϑ−1 ◦ γ) = r1 ◦ s1 ◦ γ = r1 ◦ α1 ◦ p1 = f1 ◦ p1 = f .
This proves that f is a �nite covering of X. Since f = f1 ◦ p1, we have that
p1 is a morphism a coverings from f to f1. Analogously, since f = f2 ◦ p2,
we have that p2 is a morphism of coverings from f to f2. We have also that
h1 ◦ p1 = h2 ◦ p2, by de�nition of the �bred product of sets. Let now W be
a topological space and m : W → X a �nite covering, with two morphisms of
coverings l1 : W → Y1, l2 : W → Y2, such that h1 ◦ l1 = h2 ◦ l2. As in example
1.1.3(2), we have a unique map l : W → Y1 ×Z Y2 such that l1 = p1 ◦ l and
l2 = p2 ◦ l. This map is continuous because its components are continuous.
Moreover, f ◦ l = f1 ◦ p1 ◦ l = f1 ◦ l1 = m, where the last equality follows from
the fact that l1 is a morphism of coverings from m to f1. This means that l is
a morphism of coverings from m to f . Hence f : Y1 ×Z Y2 → X is the �bred
product of f1 : Y1 → X and f2 : Y2 → X over g : Z → X in the category
CovX .
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(G2) Let (fi : Yi → X)i∈I be a �nite collection of �nite coverings of X. Let Y be
the disjoint union

∐
i∈I Yi, with inclusions qj : Yj → Y , for any j ∈ I. Recall

that the topology on the disjoint union is de�ned in such a way that a map
from

∐
i∈I Yi to any topological space is continuous if and only if its restriction

to Yj is continuous for any j ∈ I. Consider now the map

f : Y → X, y 7→ fj(y) ,

where j is the unique element of I such that y ∈ Yj . Then f ◦ qj = fj for any
j ∈ I and f is continuous by de�nition of the topology on the disjoint union.
We claim that f is a �nite covering of X. Let x′ ∈ X. For any j ∈ I, since fj is
a �nite covering of X, there exists an open neighbourhood Uj of x′ in X such
that fj : f−1

j (U)→ U is a trivial �nite covering, i.e. there exist a �nite discrete

topological space Ej and a homeomorphism ϕj : f−1
j (U) → U × Ej such that

fj = pj◦ϕj , where pj : Uj×Ej → Uj is the projection on the �rst factor. De�ne
U :=

⋂
i∈I Ui. Since I is �nite, U is an open neighbourhood of x′ in X. For any

j ∈ I, we have that f−1
j (U) = (pj◦ϕj)−1(U) = ϕ−1

j (p−1
j (U)) = ϕ−1

j (U×Ej). So
ϕj(f

−1
j (U)) = U ×Ej and, restricting ϕj to f−1

j (U), we get a homeomorphism

ϕj : f−1
j (U)→ U × Ej . By de�nition of f , we have that

f−1(U) =

{
y ∈ Y =

∐
i∈I

Yi

∣∣∣∣∣ f(y) ∈ U

}
=

=
∐
i∈I
{y ∈ Yi | fi(y) = f(y) ∈ U} =

∐
i∈I

f−1
i (U) .

De�ne ϕ : f−1(U) =
∐
i∈I f

−1
i (U)→

∐
i∈I(U ×Ei), y 7→ ϕj(y), where j is the

unique element of I such that y ∈ Yj . It is straightforward to check that ϕ is
a homeomorphism. Moreover, consider

ϑ : U ×

(∐
i∈I

Ei

)
→
∐
i∈I

(U × Ei), (u, e) 7→ (u, e) .

This is well de�ned, because if (u, e) ∈ U ×
(∐

i∈I Ei
)
we have that u ∈ U and

there exists a unique j ∈ I such that e ∈ Ej , so (u, e) ∈ U×Ej ⊆
∐
i∈I(U×Ei).

It is obvious that ϑ is bijective. Moreover, ϑ is continuous. Indeed, a base of
open subsets of

∐
i∈I(U × Ei) is given by⋃

i∈I
{V × {e} | V ⊆ U open, e ∈ Ei}

and, for any j ∈ I, V ⊆ U open and e ∈ Ej , we have that ϑ−1(V ) = V × {e}
is open in U ×

(∐
i∈I Ei

)
, because

∐
i∈I Ei has the discrete topology. Also the

inverse

ϑ−1 :
∐
i∈I

(U × Ei)→ U ×

(∐
i∈I

Ei

)
, (u, e) 7→ (u, e) .
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is continuous, because the restriction to U ×Ej is continuous for any j ∈ I. So
ϑ is a homeomorphism. Now we have a homeomorphism ϑ−1 ◦ ϕ : f−1(U) →
U ×

(∐
i∈I Ei

)
and

∐
i∈I Ei is a �nite discrete topological space (because I

is �nite and Ej is a �nite discrete topological space for any j ∈ I). Denote
by pU : U ×

(∐
i∈I Ei

)
→ U the projection on the �rst factor and by q′j :

U × Ej →
∐
i∈I(U × Ei) the canonical inclusion, for any j ∈ I. Let j ∈ I.

From the de�nition of ϑ, it follows that pU ◦ϑ−1 ◦ q′j = pj . Moreover, from the
de�nition of ϕ, we have that ϕ ◦ qj = q′j ◦ ϕj . Then

pU ◦ ϑ−1 ◦ ϕ ◦ qj = pU ◦ ϑ−1 ◦ q′j ◦ ϕj = pj ◦ ϕj = fj = f ◦ qj .

Since this holds for any j ∈ I, we must have pU ◦ (ϑ−1 ◦ ϕ) = f . So f is a
�nite covering of X. For any j ∈ I, we have that qj : Yj → Y is a morphism
of coverings from fj to f , because f ◦ qj = fj . Let now Z be a topological
space, g : Z → X a �nite covering and hj : Yj → Z a morphism of coverings
(i.e. hj continuous and g ◦ hj = fj), for any j ∈ I. As in example 1.1.3(3), we
have a unique h : Y =

∐
i∈I Yi → Z such that hj = h ◦ qj for any j ∈ I. This

map is continuous, because for any j ∈ I its restriction to Yj is hj , which is
continuous. Moreover, we have that g ◦ h ◦ qj = g ◦ hj = fj = f ◦ qj for any
j ∈ I and this implies that g ◦ h = f . So h is a morphism of coverings from f
to g. Hence f : Y → X is the sum of the fi's in CovX .
Let now f : Y → X be a �nite covering and G a �nite subgroup of AutCovX (f).
Notice that any automorphism of f is in particular a homeomorphism of Y .
Then we can consider the set of orbits Y/G, provided with the quotient topol-
ogy. For any σ ∈ G, we have that f ◦ σ = f , because σ is a morphism of cov-
erings. Then, as in example 1.1.3(5), we can de�ne f : Y/G→ X, Gy 7→ f(y)
and we have f = f ◦p, where p : Y → Y/G, y 7→ Gy is the canonical projection.
By de�nition of quotient topology, f is continuous. We claim that f is a �nite
covering of X. Let x′ ∈ X. Since G is �nite, by corollary 1.6 there exists an
open neighbourhood U of x′ in X such that f is trivial above U and any σ ∈ G
is trivial above U . This means that there exist a �nite discrete topological
space D, a homeomorphism α : f−1(U) → U ×D and maps ϕσ : D → D, for
any σ ∈ G, such that f = pU ◦ α, where pU : U ×D → U is the projection on
the �rst factor, and α ◦ σ = (idU ×ϕσ) ◦ α, for any σ ∈ G. Let σ, τ ∈ G. We
have that

(idU ×ϕσ◦τ ) ◦ α = α ◦ σ ◦ τ = (idU ×ϕσ) ◦ α ◦ τ = (idU ×ϕσ) ◦ (idU ×ϕτ ) ◦ α .

Since α is a homeomorphism, this implies that idU ×ϕσ◦τ = (idU ×ϕσ) ◦
(idU ×ϕτ ) = idU ×(ϕσ ◦ ϕτ ). Then ϕσ◦τ = ϕσ ◦ ϕτ . Since G is a subgroup of
AutCovX (f), we have that idY ∈ G. Moreover, (idU ×ϕidY )◦α = α◦idY = α =
idU×D ◦α. Since α is a homeomorphism, we get that idU ×ϕidY = idU×D =
idU × idD and so ϕidY = idD. Since G is a subgroup of AutCovX (f), for any
σ ∈ G we have that σ−1 ∈ G. Then, by what we have just proved,

ϕσ ◦ ϕσ−1 = ϕσ◦σ−1 = ϕidY = idD

and
ϕσ−1 ◦ ϕσ = ϕσ−1◦σ = ϕidY = idD .

224



1. A GALOIS CATEGORY

So ϕσ is invertible, i.e. ϕσ is in the symmetric group SD. What we proved above
means that the map ϕ : G → SD, σ 7→ ϕσ is a group homomorphism. Then
Im(ϕ) is a subgroup of SD. Let σ ∈ G. If y ∈ f−1(U), then f(σ(y)) = f(y) ∈
U , since f ◦ σ = f . Then σ(y) ∈ f−1(U). So σ(f−1(U)) ⊆ f−1(U). On the
other hand, since σ−1(y) ∈ f−1(U) by the same argoment, y = σ(σ−1(y)) ∈
σ(f−1(U)). So σ(f−1(U)) = f−1(U). This means that, if we restrict σ to
f−1(U). we get a homeomorphism σ : f−1(U) → f−1(U). So restriction to
f−1(U) maps G to a �nite group of automorphisms of the topological space
f−1(U). We have that

(
f
)−1

(U) = {Gy ∈ Y/G | f(y) = f(y) ∈ U} =

= {Gy ∈ Y/G | y ∈ f−1(U)} = f−1(U)/G .

The homeomorphism α induces the following map:

α :
(
f
)−1

(U) = f−1(U)/G→ (U ×D)/({idU} × Im(ϕ)),

Gy 7→ ({idU} × Im(ϕ))α(y) .

It is immediate to check that α is well de�ned. Moreover, α is continuous
by de�nition of quotient topology, because α ◦ p = q ◦ α is continuous, where
q : U ×D → (U ×D)/({idU}× Im(ϕ)) is the canonical projection. In the same
way, the map

(U ×D)/({idU} × Im(ϕ))→
(
f
)−1

(U) = f−1(U)/G,

({idU} × Im(ϕ))(u, d) 7→ Gα−1((u, d))

is well de�ned and continuous. This map is clearly the inverse of α, which is
then a homeomorphism. Moreover, consider

ϑ : U × (D/ Im(ϕ))→ (U ×D)/({idU} × Im(ϕ)),

(u, Im(ϕ)d) 7→ ({idU} × Im(ϕ))(u, d) .

It is immediate to check that ϑ is well de�ned. We prove now that ϑ is contin-
uous. Let V ⊆ (U ×D)/({idU} × Im(ϕ)) be an open subset. Then q−1(V ) is
open U ×D. Let (u, Im(ϕ)d) ∈ ϑ−1(V ). Then q((u, d)) = ϑ((u, Im(ϕ)d)) ∈ V
and so (u, d) ∈ q−1(V ). Since q−1(V ) is open, by de�nition of product topology
there exists an open subset U ′ ⊆ U such that u ∈ U ′ and U ′ × {d} ⊆ q−1(V )
(recall that D has the discrete topology). Let u′ ∈ U ′. Then ϑ((u′, Im(ϕ)d)) =
({idU}× Im(ϕ))(u′, d) = q((u′, d)) ∈ V . So (u′, Im(ϕ)d) ∈ ϑ−1(V ). This shows
that U ′×{Im(ϕ)d} ⊆ ϑ−1(V ). We have that (u, Im(ϕ)d) ∈ U ′×{Im(ϕ)d} and,
by de�nition of product topology, U ′ × {Im(ϕ)d} is open in U × (D/ Im(ϕ)),
because D/ Im(ϕ) has the discrete topology. So ϑ−1(V ) is open. This proves
that ϑ is continuous. It is obvious that ϑ is bijective, with inverse

ϑ−1 : (U ×D)/({idU} × Im(ϕ))→ U × (D/ Im(ϕ)),

({idU} × Im(ϕ))(u, d) 7→ (u, Im(ϕ)d) ,
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which is immediately checked to be well de�ned. Moreover, ϑ−1 is continuous,
because its components are continuous. Then ϑ is a homeomorphism. Now we
have a homeomorphism ϑ−1 ◦ α :

(
f
)−1

(U)→ U × (D/ Im(ϕ)) and D/ Im(ϕ)
is a �nite discrete topological space. Denote by qU : U × (D/ Im(ϕ))→ U the
projection on the �rst factor. By de�nition of ϑ, we have that qU ◦ϑ−1◦q = pU .
Then we have

(qU ◦ ϑ−1 ◦ α) ◦ p = qU ◦ ϑ−1 ◦ q ◦ α = pU ◦ α = f = f ◦ p ,

which implies that qU ◦ (ϑ−1 ◦α) = f (by uniqueness in the universal property
of the quotient of sets). So f is a �nite covering of X. Since f = f ◦p, we have
that p is a morphism of coverings from f to f . We have also that f ◦ σ = f ,
for any σ ∈ G. Let now Z be a topological space and g : Z → X a �nite
covering, with a morphism of coverings l : Y → Z such that l ◦ σ = l for any
σ in G. As in example 1.1.3(5), we have a unique map l : Y/G→ Z such that
l = l ◦ p. This map is continuous by de�nition of quotient topology, because
l = l ◦ p is continuous. Moreover, since l is a morphism of coverings, we have
that g ◦ l = f and so g ◦ l ◦ p = g ◦ l = f = f ◦ p. This implies that g ◦ l = f . So
l is a morphism of coverings from f to g. Hence f : Y/G→ X is the quotient
of f by G in CovX .

(G3) Let f : Y → X, g : Z → X be �nite coverings and h : Y → Z a morphism
of coverings. Consider Im(h) ⊆ Z with the subspace topology and de�ne
g′ = g : Im(h) → X. Then g′ is continuous, because it is the restriction of
a continuous function. Moreover, g′ = g ◦ u′, where u′ : Im(h) → Z is the
canonical inclusion (continuous by de�nition of the subspace topology). We
claim that g′ is a �nite covering of X. Let x′ ∈ X. By lemma 1.5, there
exists an open neighbourhood U of x′ in X such that f , g and h are trivial
above U . This means that we have �nite discrete topological spaces D and E,
homeomorphisms α : f−1(U) → U ×D and β : g−1(U) → U × E and a map
ϕ : D → E such that β ◦ h = (idU ×ϕ) ◦ α, f = pU ◦ α and g = qU ◦ β, where
pU : U ×D → U and qU : U × E → U are the projections to the �rst factor.
We have that (g′)−1(U) = {z ∈ Im(h) | g(z) = g′(z) ∈ U} = Im(h) ∩ g−1(U).
Let z ∈ (g′)−1(U) = Im(h) ∩ g−1(U). Then g(z) ∈ U and there exists y ∈ Y
such that z = h(y). Since h is a morphism of coverings, we have that f = g ◦h.
So f(y) = g(h(y)) = g(z) ∈ U , i.e. y ∈ f−1(U). Since f = pU ◦ α, we have
that α(y) = (f(y), d), for a d ∈ D. Then, since β ◦ h = (idU ×ϕ) ◦ α, we have
that

β(z) = β(h(y)) = (idU ×ϕ)(α(y)) =

= (idU ×ϕ)((f(y), d)) = (f(y), ϕ(d)) ∈ U × Im(ϕ) .

This shows that β((g′)−1(U)) ⊆ U× Im(ϕ). Conversely, let (u, e) ∈ U× Im(ϕ).
Then e ∈ Im(ϕ), i.e. there exists d ∈ D such that e = ϕ(d). So, if we set
y := α−1((u, d)), we have

(u, e) = (idU ×ϕ)((u, d)) = (idU ×ϕ)(α(y)) = β(h(y)) ∈ β(Im(h)) .
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So β((g′)−1(U)) = U × Im(ϕ). Then, restricting β to (g′)−1(U), we get a
homeomorphism β : (g′)−1(U)→ U× Im(ϕ). Notice that Im(ϕ) ⊆ E is a �nite
discrete topological space. Moreover, since g = qU ◦β, we have also g′ = q′U ◦β,
where q′U : U × Im(ϕ)→ U is the projection on the �rst factor. So g′ is a �nite
covering of X. Since g′ = g ◦ u′, we have that u′ is a morphism of coverings
from g′ to g. De�ne also u′′ = h : Y → Im(h), which is continuous since h is
continuous. We have g′ ◦ u′′ = g ◦ h = f , so u′′ is a morphism of coverings
from f to g′. Clearly we have that f = u′ ◦ u′′. Moreover, u′′ is surjective, so
it is an epimorphism in CovX , by lemma 1.7. It remains to prove that u′ is a
monomorphism in CovX . We have that u′ is injective, so it is a monomorphism
of sets, by example 1.1.3(6) (notice that in the proof we did not use the fact
that the sets were �nite, so it works for arbitrary sets). Let W be a topological
space and m : W → X a �nite covering. Let l1, l2 : W → Im(h) be two
morphisms of coverings such that u′ ◦ l1 = u′ ◦ l2. In particular, l1, l2 are maps
between sets. Since h is a monomorphism of sets, this implies that l1 = l2.
Assume now that h is a monomorphism in CovX . We claim that h is injective.
By the proof of (G1), we have that m = f ◦ p1 = f ◦ p2 : Y ×Z Y → X is a
�nite covering of X, where p1 : Y ×Z Y → Y , p2 : Y ×Z Y → Y are the two
projections, which are morphisms of coverings from m to f . By de�nition of
�bred product, we have that h ◦ p1 = h ◦ p2. Since h is a monomorphism in
CovX , this implies that p1 = p2. Let now y1, y2 ∈ Y such that h(y1) = h(y2).
Then (y1, y2) ∈ Y ×Z Y . So we have y1 = p1((y1, y2)) = p2((y1, y2)) = y2. This
proves that h is injective. Then h : Y → Im(h) is bijective. We claim that it
is a homeomorphism. We already know that h is continuous, so it is enough
to prove that it is open. Let V ⊆ Y be open and let z ∈ h(V ). Then there
exists y ∈ V such that z = h(y). De�ne x′ := g(z) ∈ X and consider U , D,
E, α, β and ϕ as above. Then z ∈ g−1(U). Since f = g ◦ h, we have that
f(y) = g(h(y)) = g(z) = x′, which implies that y ∈ f−1(U) ∩ V . Since V is
open in Y , we have that V ∩ f−1(U) is open in f−1(U). Then α(V ∩ f−1(U))
is open in U ×D, because α is a homeomorphism. Since f = pU ◦ α, we have
that α(y) = (f(y), d) = (x′, d), for a d ∈ D. Then (x′, d) ∈ α(V ∩ f−1(U)).
By de�nition of product topology, there exists an open neighbourhood U ′ of
x′ in X such that U ′ × {d} ⊆ α(V ∩ f−1(U)) (recall that D has the discrete
topology). De�ne e := ϕ(d) ∈ E. Since β ◦ h = (idU ×ϕ) ◦ α, we have that

β(z) = β(h(y)) = (idU ×ϕ)(α(y)) = (idU ×ϕ)((x′, d)) = (x′, e) .

So β(z) ∈ U ′ × {e} and z ∈ β−1(U ′ × {e}). Let x′′ ∈ U ′. Then (x′′, d) ∈
U ′ × {d} ⊆ α(V ∩ f−1(U)), which implies that α−1((x′′, d)) ∈ V ∩ f−1(U). So

(x′′, e) = (idU ×ϕ)((x′, d)) = β(h(α−1((x′′, d)))) ∈ β(h(V )) .

This shows that U ′ × {e} ⊆ β(h(V )), so β−1(U ′ × {e}) ⊆ h(V ). We have
that U ′ × {e} is open in U × E, because E has the discrete topology. Then
β−1(U ′ × {e}) is open in Z. This proves that V is open. So h : Y → Im(h) is
a homeomorphism. Consider the �nite covering g′ : Im(h)→ X as above. We
have that f = g ◦h = g′ ◦h, so h is a morphism of coverings from f to g′. Since
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h : Y → Im(h) is a homeomorphism, we have that h−1 is also continuous.
We have f ◦ h−1 = g′ and so h−1 is a morphism of coverings from g′ to f .
This proves that f : Y → X and g′ : Im(h) → X are isomorphic in CovX .
It remains to prove that g′ (together with the canonical inclusion) is a direct
summand of g : Z → X. Consider W := Z\ Im(h) and g′′ = g : W → X.
Clearly, g′′ is continuous, because it is the restriction of a continuous function.
We claim that g′′ : W → X is a �nite covering. Let x′ ∈ X and consider U , D,
E, α, β and ϕ as above. Then

(g′′)−1(U) = {z ∈W | g(z) = g′′(z) ∈ U} = W ∩ g−1(U) =

= (Z\ Im(h)) ∩ g−1(U) = g−1(U)\(Im(h) ∩ g−1(U)) = g−1(U)\
(
(g′)−1(U)

)
(see above for the last equality). As above, we have β((g′)−1(U)) = U× Im(ϕ).
Then, since β is a homeomorphism, we have that

β((g′′)−1(U)) = β
(
g−1(U)\

(
(g′)−1(U)

))
=

= β(g−1(U))\β((g′)−1(U)) = (U × E)\(U × Im(ϕ)) = U × (E\ Im(ϕ)) .

Then, restricting β to (g′′)−1(U), we get a homeomorphism

β : (g′′)−1(U)→ U × (E\ Im(ϕ)) .

Notice that E\ Im(ϕ) ⊆ E is a discrete topological set. Moreover, since g =
qU ◦ β, we have also g′′ = q′′U ◦ β, where q′′U : U × (E\ Im(ϕ)) → U is the
projection on the �rst factor. So g′′ is a �nite covering of X. We have that
Z = Im(ϕ) q (Z\ Im(ϕ)) = Im(ϕ) qW as sets. By lemma 1.7, we have that
Im(ϕ) is both open and closed in Z. So the topology of Z coincides with the
disjoint union topology. Then we have that g, together with the canonical
inclusions Im(ϕ)→ Z and W → Z, is the sum of g′ and g′′, as in the proof of
(G2).

(G4) We have that Fx(idX) = id−1
X ({x}) = {x}, which is terminal in sets (example

1.1.3(1)). So Fx transforms the terminal object idX (see the proof of (G1)) in
the terminal object {x}.
Let f1 : Y1 → X, f2 : Y2 → X, g : Z → X be �nite coverings, h1 : Y1 → Z and
h2 : Y2 → Z two morphisms of coverings. In the proof of (G1), we saw that
f : Y1 ×Z Y2 → X is the �bred product of f1 and f2 over Z in CovX . For any
(y1, y2) ∈ Y1 ×Z Y2, we have that f((y1, y2)) = f1(y1) = f2(y2). Then

f−1({x}) = {(y1, y2) ∈ Y1 ×Z Y2 | f((y1, y2)) = x} =

= {(y1, y2) ∈ Y1 × Y2 | h1(y1) = h2(y2), f1(y1) = x, f2(y2) = x} =

= {(y1, y2) ∈ f−1
1 ({x})× f−1

2 ({x}) | h1(y1) = h2(y2)} =

= f−1
1 ({x})×Z f−1

2 ({x}) = f−1
1 ({x})×g−1({x}) f

−1
2 ({x})

(in the last equality we used the fact that h1(f−1
1 ({x})) ⊆ g−1({x}) and

h2(f−1
2 ({x})) ⊆ g−1({x})). So

Fx(f1 ×g f2) = Fx(f) = f−1({x}) =

= f−1
1 ({x})×g−1({x}) f

−1
2 ({x}) = Fx(f1)×Fx(g) Fx(f2) ,
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which is what we needed.

(G5) Let (fi : Yi → X)i∈I be a �nite collection of �nite coverings of X and de�ne
Y :=

∐
i∈I Yi. In the proof of (G2), we saw that f : Y → X, y 7→ fj(y), where

j is the unique element of I such that y ∈ Yj , is the sum of the fi's in CovX .
We have that

f−1({x}) =

{
y ∈ Y =

∐
i∈I

Yi

∣∣∣∣∣ f(y) = x

}
=

=
∐
i∈I
{y ∈ Yi | fj(y) = f(y) = x} =

∐
i∈I

f−1
i ({x}) .

So Fx(f) = f−1({x}) =
∐
i∈I f

−1
i ({x}) =

∐
i∈I Fx(fi), which is what we

needed, since the disjoint union is the sum in sets (see example 1.1.3(3)).
Let now f : Y → X be a �nite covering and G a �nite subgroup of AutCovX (f).
In the proof of (G2), we saw that f : Y/G→ X, Gy 7→ f(y) is the quotient of

f by G in CovX . Notice that Fx(G) =
{
σ|Fx(f)

∣∣∣ σ ∈ G}. We have that

(
f
)−1

({x}) = {Gy ∈ Y/G | f(y) = f(Gy) = x} =

= {Gy ∈ Y/G | y ∈ f−1({x})} = f−1({x})/Fx(G) .

So Fx
(
f
)

=
(
f
)−1

({x}) = f−1({x})/Fx(G) = Fx(f)/Fx(G), which is what
we needed (see example 1.1.3(5)).
Let f : Y → X, g : Z → X be �nite coverings and h : Y → Z an epimorphism
of coverings. By lemma 1.7, h is surjective. Let z ∈ Fx(g) = g−1({x}) ⊆ Z.
Then g(z) = x. Moreover, since h is surjective, there exists y ∈ Y such
that z = h(y). Since h is a morphism of coverings, we have that f = g ◦ h.
Then f(y) = g(h(y)) = g(z) = x. So y ∈ f−1({x}) = Fx(f). We have that
Fx(h)(y) = h(y) = z. This shows that Fx(h) : Fx(f)→ Fx(g) is surjective, i.e.
an epimorphism in sets (see example 1.1.3(6)).

(G6) Let f : Y → X, g : Z → X be �nite coverings of X and h : Y → Z a morphism
of coverings such that Fx(h) is an isomorphism of sets, i.e. a bijection. De�ne
A := {x′ ∈ X | Fx′(h) is bijective} ⊆ X. We claim that A is both open and
closed in X. Let x′ ∈ A, i.e. Fx′(h) is bijective. By lemma 1.5, there exists
an open neighbourhood U of x′ in X such that f , g and h are trivial above
U . This means that there exist �nite discrete topological spaces D and E,
homeomorphisms α : f−1(U) → U ×D and β : g−1(U) → U × E and a map
ϕ : D → E such that β ◦ h = (idU ×ϕ) ◦ α, f = pU ◦ α and g = qU ◦ β, where
pU : U ×D → U and qU : U × E → U are the projections to the �rst factor.
Since f = pU ◦ α, we have that

α(f−1({x′})) = α((pU ◦ α)−1({x′})) =

= α(α−1(p−1
U ({x′}))) = p−1

U ({x′}) = {x′} ×D
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(we applied the fact that α is a homeomorphism). Analogously, it can be
proved that β(g−1({x′})) = {x′}×E. Since Fx′(h) = h : Fx′(f) = f−1({x′})→
Fx′(g) = g−1({x′}) is bijective and idU ×ϕ = β ◦h◦α−1, we have that idU ×ϕ :
α(f−1({x′})) = {x′} ×D → β(g−1({x′})) = {x′} × E is bijective. This means
that ϕ is bijective. Then β◦h◦α−1 = idU ×ϕ : U×D → U×E is bijective, which
implies that h : f−1(U)→ g−1(U) is bijective (since β and α are both bijective).
Let now x′′ ∈ U . We know that h(f−1({x′′})) ⊆ g−1({x′′}). Conversely, let
z ∈ g−1({x′′}) ⊆ g−1(U), i.e. g(z) = x′′. Since h : f−1(U) → g−1(U) is
bijective, there exists y ∈ f−1(U) such that z = h(y). Since f = g ◦ h,
we have that f(y) = g(h(y)) = g(z) = x′′. So y ∈ f−1({x′′}) and z =
h(y) ∈ h(f−1({x′′})). Then h(f−1({x′′})) = g−1({x′′}). So, restricting the
bijection h : f−1(U) → g−1(U) to f−1({x′′}), we get a bijection h : Fx′′(f) =
f−1({x′′}) → Fx′′(g) = g−1({x′′}), which by de�nition of Fx′′ coincides with
Fx′′(h). So Fx′′(h) is bijective, which means that x′′ ∈ A. Then U ⊆ A. So A
is open.
On the other hand, let x′ ∈ X\A. If by contradiction there exists x′′ ∈ U ∩A,
then the same argument as above shows that U ⊆ A. But x /∈ A, so this is a
contradiction. This means that U ∩A = ∅, i.e. U ⊆ X\A. Then X\A is open,
i.e. A is closed.
So A is both open and closed. But X is connected. Then we must have either
A = ∅ or A = X. Since x ∈ A, we have that A 6= ∅ and so A = X. This means
that Fx′(h) is bijective for any x′ ∈ X. Let y1, y2 ∈ Y such that h(y1) = h(y2).
Then, since f = g ◦ h, we have that f(y1) = g(h(y1)) = g(h(y2)) = f(y2).
De�ne x′ := f(y1) = f(y2) ∈ X. Then y1, y2 ∈ f−1({x′}) = Fx′(f) and
Fx′(h)(y1) = h(y1) = h(y2) = Fx′(h)(y2). Since Fx′(h) is bijective, we must
have y1 = y2. So h is injective. Let z ∈ Z and de�ne x′ := g(z). Then
z ∈ g−1({x′}) = Fx′(g). Since Fx′(h) : Fx′(f) → Fx′(g) is bijective, there
exists y ∈ Fx′(f) = f−1({x′}) ⊆ Y such that z = Fx′(h)(y) = h(y). So h is
surjective. Now we know that h is bijective and continuous. As in the proof
of (G3), it can be proved that h is open. So h : Y → Z is a homeomorphism.
Since f = g ◦ h, we have that f ◦ h−1 = g. This shows that also h−1 : Z → Y
is a morphism of coverings. Hence h is an isomorphism in CovX .

Remark 1.9. In the proof of proposition 1.8, the point where we applied the fact
that X is connected was (G6). In fact, the axiom (G6) is never satis�ed if X 6= ∅
is not connected. In that case we can write X as the topological disjoint union
X1 q X2, with X1 6= ∅ and X2 6= ∅. Then we can consider the �nite covering
f : Y := (X1 × {1}) q (X2 × {1, 2}) → X. The map h : X → Y, x 7→ (x, 1) is a
morphism of coverings from idX : X → X to f : Y → X. It is clear that h is not
bijective, so it cannot be an isomorphism of coverings. However, if we take x ∈ X1,
we have that Fx(h) : Fx(idX) = {x} → Fx(f) = {(x, 1)} is bijective. Hence CovX is
Galois with fundamental functor Fx (for any x ∈ X) if and only if X is connected.

Corollary 1.10. Let X be a connected topological space. Then there exists a pro�nite
group π̂(X), uniquely determined up to isomorphism, such that CovX is equivalent

230



1. A GALOIS CATEGORY

to π̂(X)-sets. Moreover, π̂(X) is isomorphic to Aut(Fx) for any x ∈ X, where
Fx : CovX → sets is de�ned as in lemma 1.3.

Proof. It follows immediately from the proposition 1.8 and from the main theorem
about Galois categories (1.4.34).

De�nition 1.11. If X is a connected topological space, for any x ∈ X we de�ne
π̂(X,x) := Aut(Fx) the fundamental group of X in x, where Fx : CovX → sets is
the functor de�ned in 1.3.

Remark 1.12. (1) In topology we have another de�nition of fundamental group:
for any topological space X 6= ∅ and any x ∈ X we denote by π(X,x) the
group of homotopy classes of loops with base point x. If X is path-connected,
this group does not depend on the base point and is denoted by π(X). If X
satis�es stronger connectdness assumptions (connected, locally path-connected
and semilocally simply connected), then a theorem in algebraic topology states
that the category of coverings of X (all coverings, not only the �nite ones) is
equivalent to the category of π(X)-sets (also here, all π(X)-sets, not only the
�nite ones). The similarity between this result and corollary 1.10 suggests that
there might be a link between π(X) and π̂(X) (but notice that π(X) is just a
group, not a pro�nite group). Indeed, such a link exists: it can be proved that
π̂(X) is the pro�nite completion of π(X) (see 2.4 for the de�nition of pro�nite
completion).

(2) The fundamental group de�ned as in 1.11 is functorial in (X,x). More precisely,
we can consider the category Conn• of pointed connected topological spaces,
whose objects are pairs of the form (X,x), with X connected and x ∈ X
(base point), and morphisms are continuous functions that send the base point
of a space into the base point of the other space. To any object (X,x) of
Conn• we can associate the Galois category CovX with fundamental functor
Fx : CovX → sets. If we show that the assumptions of lemma 1.4.36 are
satis�ed, then we can extend π̂ to a functor Conn• → Prof .
Let (X,x), (Y, y) be two objects of Conn• and f : (X,x)→ (Y, y) a morphism
in Conn•, i.e. f is continuous and f(x) = y. Then we can de�ne a functor
Gf : CovY → CovX as follows. If g : Z → Y is a �nite covering of Y , we can
consider the �bred product X ×Y Z with the projection p1 : X ×Y Z → X.
Let us prove that p1 is a �nite covering of X. Let x′ ∈ X. Since f(x′) ∈ Y and
g : Z → Y is a �nite covering of Y , there exist an open neighbourhood U of
f(x′) in Y , a discrete topological space E and a homeomorphism ϕ : g−1(U)→
U×E such that pU ◦ϕ = g, where pU : U×E → U is the projection on the �rst
factor. Since f is continuous, f−1(U) is an open subset of X. Moreover, since
f(x′) ∈ U , we have that x′ ∈ f−1(U). So f−1(U) is an open neighbourhood of
x′ in X. We have that

p−1
1 (f−1(U)) = {(x′′, z) ∈ X ×Y Z | x′′ = p1((x′′, z)) ∈ f−1(U)} =

= {(x′′, z) ∈ X × Z | g(z) = f(x′′) ∈ U} =

= {(x′′, z) ∈ f−1(U)× g−1(U) | g(z) = f(x′′)} = f−1(U)×U g−1(U) .
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De�ne

ψ : p−1
1 (f−1(U)) = f−1(U)×U g−1(U)→ f−1(U)× E,

(x′′, z) 7→ (x′′, pE(ϕ(z))) ,

where pE : U×E → E is the projection on the second factor (which is continu-
ous by de�nition of product topology). We have that ψ is continuous, because
its components are continuous. Moreover, de�ne

ψ′ : f−1(U)× E → p−1
1 (f−1(U)) = f−1(U)×U g−1(U),

(x′′, e) 7→ (x′′, ϕ−1((f(x′′), e))) .

This is well de�ned, because for any x′′ ∈ f−1(U), e ∈ E we have that
g(ϕ−1((f(x′′), e))) = pU ((f(x′′), e)) = f(x′′) (we used the fact that pU ◦ϕ = g)
and so (x′′, ϕ−1((f(x′′), e))) ∈ f−1(U) ×U g−1(U). We have that ψ′ is also
continuous, because its components are continuous. Moreover, we have that

ψ′(ψ((x′′, z))) = ψ′((x′′, pE(ϕ(z)))) =

= (x′′, ϕ−1((f(x′′), pE(ϕ(z))))) = (x′′, ϕ−1((g(z), pE(ϕ(z))))) =

= (x′′, ϕ−1((pU (ϕ(z)), pE(ϕ(z))))) = (x′′, ϕ−1(ϕ(z))) = (x′′, z)

for any (x′′, z) ∈ f−1(U)×U g−1(U). So ψ′ ◦ψ = idf−1(U)×Ug−1(U). Conversely,

ψ(ψ′((x′′, e))) = ψ((x′′, ϕ−1((f(x′′), e)))) =

= (x′′, pE(ϕ(ϕ−1((f(x′′), e))))) = (x′′, pE((f(x′′), e))) = (x′′, e)

for any x′′ ∈ f−1(U), e ∈ E. So ψ ◦ψ′ = idf−1(U)×E . This shows that ψ and ψ′

are inverse to each other. So ψ is a homeomorphism. Moreover, by de�nition
we have that pf−1(U) ◦ ψ = p1, where pf−1(U) : f−1(U) × E → f−1(U) is the
projection on the �rst factor. Then p1 : X ×Y Z → X is a �nite covering of X
and we can de�ne Gf (g : Z → Y ) = (p1 : X ×Y Z → X).
If g1 : Z → Y , g2 : W → Y are two �nite coverings and h : Z → W is a
morphism of coverings, then consider the following diagram, where p1 : X ×Y
Z → X, p2 : X ×Y Z → Z, q1 : X ×Y W → X and q2 : X ×Y W →W are the
projections.

X ×Y Z

X ×Y W

X

W

Y

............................................................................................................................................................................................................................................................................................................................ ........
....

p1

...................................................................................................................................................................................................................................................................................................................................................................... ..........
..

h ◦ p2

...................................................................................
.....
.......
.....

q1

........................................................................................ ............

q2

........................................................................................ ............
f

...................................................................................
.....
.......
.....

g2

Since h is a morphism of coverings, we have that g1 = g2 ◦ h and so (using the
de�nition of �bred product) f ◦ p1 = g1 ◦ p2 = g2 ◦ h ◦ p2. Then the diagram is
commutative and, by the universal property of the �bred product, there exists
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a unique continuous map h′ : X ×Y Z → X ×Y W such that q1 ◦ h′ = p1 and
q2 ◦ h′ = h ◦ p2. The fact that q1 ◦ h′ = p1 means that h′ is a morphism of
coverings from p1 = Gf (g1 : Z → Y ) to q1 = Gf (g2 : W → Y ). So we can
de�ne Gf (h) = h′. It is easy to prove that Gf is a functor, using uniqueness
in the universal property of the �bered product.
Let Fx : CovX → sets and Fy : CovY → sets be de�ned as in lemma 1.3. If
g : Z → Y is a �nite covering of Y , we have that

Fx(Gf (g)) = Gf (g)−1({x}) = {(x′, z) ∈ X×Y Z | x′ = Gf (g)((x′, z)) = x} =

= {(x, z) | z ∈ Z, g(z) = f(x) = y} = {x} × g−1({y}) = {x} × Fy(g)

(we used the fact that f(x) = y). So we have a bijection

αf,g : Fx(Gf (g)) = {x} × Fy(g)→ Fy(g), (x, z) 7→ z .

If g1 : Z → Y , g2 : W → Y are two �nite coverings and h : Z → W is a
morphism of coverings, consider the following diagram.

Fx(Gf (g1)) = {x} × Fy(g1)

Fx(Gf (g2)) = {x} × Fy(g2)

Fy(g1)

Fy(g2)

...................................................................................
.....
.......
.....

Fx(Gf (h))

..................................................................................................................................................................................................................... ............
αf,g1

...................................................................................
.....
.......
.....

Fy(h)

..................................................................................................................................................................................................................... ............
αf,g2

For any z ∈ Fy(g1), we have that

Fy(h)(αf,g1((x, z))) = Fy(h)(z) = h(z) = αf,g2((x, h(z))) =

= αf,g2(Gf (h)((x, z))) = αf,g2(Fx(Gf (h))((x, z))) .

So Fy(h) ◦ αf,g1 = αf,g2 ◦ Gf (Fx(h)). Then αf = (αf,g)g∈Ob(CovY ) is an iso-
morphism of functors from Fx ◦Gf to Fy.
Let now (X,x) be an object of Conn•. Let g : Y → X be a �nite covering of
X and let p1 : X ×X Y → X, p2 : X ×X Y → Y be the two projections. Then
GidX (g) = p1, by de�nition. We have that

X ×X Y = {(x′, y) ∈ X × Y | x′ = idX(x′) = g(y)} .

Then p2 is a bijection, with inverse

p−1
2 : Y → X ×X Y, y 7→ (g(y), y) .

We have that p2 is continuous by de�nition of the topology on the �bred prod-
uct and p−1

2 is continuous because its components are continuous. Moreover,
by de�nition of �bred product we have that g ◦ p2 = idX ◦p1 = p1 and so also
g = p1 ◦ p−1

2 . This means that p2 is a morphism of coverings from p1 to g
and p−1

2 is a morphism of coverings from g to p1. Then p2 is an isomorphism
of coverings from p1 = GidX (g) to g = idCovX (g). De�ne β(X,x),g := p2. We
claim that β(X,x) = (β(X,x),g)g∈Ob(CovX) is an isomorphism of functors from
GidX to idCovX . We only have to check the compatibility condition. Let
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g1 : Y → X, g2 : Z → X be two �nite coverings of X, with a morphism of
coverings h : Y → Z. Consider the following diagram, where p2 : X×X Y → Y
and q2 : X ×X Z → Z are the projections on the second factors.

X ×X Y

X ×X Z

Y

Z

...................................................................................
.....
.......
.....

GidX (h)

........................................................................................ ............
p2

...................................................................................
.....
.......
.....

h

........................................................................................ ............
q2

For any (x′, y) ∈ X ×X Y , we have that

q2(GidX (h)((x′, y))) = q2((x′, h(y))) = h(y) = h(p2((x′, y))) .

So β(X,x),g1
◦GidX (h) = q2◦GidX (h) = h◦p2 = idCovX (h)◦β(X,x),g2

. This shows
that β(X,x) is an isomorphism of functors from GidX to idCovX . Moreover, let
g : Y → X be a �nite covering of X and consider Fx(β(X,x),g) : Fx(GidX (g)) =
{x} × Fx(g)→ Fx(g). Using the de�nitions, for any y ∈ Fx(g) we get that

Fx(β(X,x),g)((x, y)) = β(X,x),g((x, y)) = y = αidX ,g((x, y)) .

So Fx(β(X,x),g) = αidX ,g.
Let (X,x), (Y, y), (Z, z) be objects of Conn• with morphisms f1 : (X,x) →
(Y, y) and f2 : (Y, y) → (Z, z). Let g : W → Z be a �nite covering of Z. We
have that

X ×Y (Y ×Z W ) = {(x′, (y′, w)) ∈ X × (Y ×Z W ) | f1(x′) = y′} =

= {(x′, (y′, w)) ∈ X × (Y ×W ) | f1(x′) = y′, (f2 ◦ f1)(x′) = f2(y′) = g(w)}

and
X ×Z W = {(x′, w) ∈ X ×W | (f2 ◦ f1)(x′) = g(w)} .

Then the map

γf1,f2,g : X ×Y (Y ×Z W )→ X ×Z W, (x′, (y′, w)) 7→ (x′, w)

is a well-de�ned bijection, with inverse

γ−1
f1,f2,g

: X ×Z W → X ×Y (Y ×Z W ), (x′, w) 7→ (x′, (f1(x′), w)) .

Both γf1,f2,g and its inverse are continuous, because their components are
continuous. Let p1 : X ×Z W → X, p11 : X ×Y (Y ×Z W ) → X and
p21 : Y ×ZW → Y be the projections on the �rst factors. Then p1◦γf1,f2,g = p11

and p11 ◦ γ−1
f1,f2,g

= p1. This means that γf1,f2,g is a morphism of coverings

from p11 to p1 and γ−1
f1,f2,g

is a morphism of coverings from p1 to p11. Then
γf1,f2,g is an isomorphism of coverings from p11 = Gf1(p21) = Gf1(Gf2(g)) to
p1 = Gf2◦f1(g). We claim that γf1,f2 = (γf1,f2,g)g∈Ob(CovZ) is an isomorphism
of functors from Gf1 ◦Gf2 to Gf2◦f1 . We only have to check the compatibility
condition. Let g1 : W1 → Z, g2 : W2 → Z be two �nite coverings of Z, with a
morphism of coverings h : W1 →W2. Consider the following diagram.
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X ×Y (Y ×Z W1)

X ×Y (Y ×Z W2)

X ×Z W1

X ×Z W2

...................................................................................
.....
.......
.....

(Gf1 ◦Gf2)(h)

..................................................................................................................................................................................................................... ............
γf1,f2,g1

...................................................................................
.....
.......
.....

Gf2◦f1(h)

..................................................................................................................................................................................................................... ............
γf1,f2,g2

For any (x′, (y′, w)) ∈ X ×Y (Y ×Z W1), we have that

γf1,f2,g2(Gf1(Gf2(h))((x′, (y′, w)))) =

= γf1,f2,g2((x′, Gf2(h)((y′, w)))) = γf1,f2,g2((x′, (y′, h(w)))) =

= (x′, h(w)) = Gf2◦f1(h)((x′, w)) = Gf2◦f1(h)(γf1,f2,g((x
′, (y′, w)))) .

So γf1,f2,g2 ◦ (Gf1 ◦Gf2)(h) = Gf2◦f1(h) ◦ γf1,f2,g1 . This shows that γf1,f2 is an
isomorphism of functors from Gf1 ◦ Gf2 to Gf2◦f1 . Finally, let g : W → Z be
a �nite covering of Z and consider the following diagram.

(Fx ◦Gf1 ◦Gf2)(g)

(Fx ◦Gf2◦f1)(g)

(Fy ◦Gf2)(g)

Fz(g)

..................................................................................................................................................................................................................... ............

αf1,Gf2 (g)

..................................................................................................................................................................................................................... ............
αf2◦f1,g

...................................................................................
.....
.......
.....

Fx(γf1,f2,g)

...................................................................................
.....
.......
.....

αf2,g

If p11 : X ×Y (Y ×Z W )→ X is de�ned as above, we have that

(Fx ◦Gf1 ◦Gf2)(g) = p−1
11 ({x}) = {(x, (f1(x), w)) | w ∈W} .

For any w ∈W , we have

αf2◦f1,g(Fx(γf1,f2,g)((x, (f1(x), w)))) = αf2◦f1,g(γf1,f2,g((x, (f1(x), w)))) =

= αf2◦f1,g((x,w)) = w = αf2,g((f1(x), w)) = αf2,g(αf1,Gf2
((x, (f1(x), w)))) .

Then αf2◦f1,g ◦ Fx(γf1,f2,g) = αf2,g ◦ αf1,Gf2
, i.e. the diagram is commutative.

So the assumptions of lemma 1.4.36 are satis�ed and we have a functor π̂ :
Conn• → Prof such that π̂((X,x)) = π(CovX , Fx) = Aut(Fx) = π̂(X,x) for
any object (X,x) of Conn•.

Example 1.13. Let X be a connected topological space and �x x ∈ X. Since CovX
is an essentially small Galois category with fundamental functor Fx, we can apply
to it all the results of the previous sections. For example, any object of CovX is the
sum of its connected components (proposition 1.2.20). It is interesting to describe
the connected objects of CovX . We will prove that a �nite covering f : Y → X
is connected if and only if Y is connected. This explains why connected objects in
Galois categories have this name.
First of all, assume that f : Y → X is a �nite covering of X with Y connected.
Let g : Z → X be another �nite covering and h : Z → Y a monomorphism of
coverings. We have to prove that either g is initial or h is an isomorphism. From
the proof of (G2) in the proposition 1.8, it follows that the initial object in CovX
is ∅ → X. Assume then that Z 6= ∅. By lemma 1.7(1), we have that Im(h) is both
open and closed in Y . On the other hand, Im(h) 6= ∅, because Z 6= ∅. Since Y is
connected, this implies that Im(h) = Y , i.e. h is surjective. By lemma 1.7(2), h is
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an epimorphism in CovX . By (G5) of the de�nition of Galois category, this implies
that Fx(h) is an epimorphism of sets, i.e. surjective. Since h is a monomorphism,
we have that Fx(h) : Fx(g) → Fx(f) is injective, by corollary 1.2.10. So Fx(h) is a
bijection, i.e. an isomorphism of sets. By (G6) of the de�nition of Galois category,
this implies that h is an isomorphism. Hence f : Y → X is connected.
Conversely, assume that f : Y → X is a connected object of CovX . Let A ⊆ Y be
a subspace that is at the same time open and closed. Assume A 6= ∅. We want to
prove that A = Y . Let q : A→ Y be the canonical inclusion, which is continuous by
de�nition of subspace topology. Then f ◦ q : A → X is continuous. We claim that
f ◦ q is a �nite covering of X. Let x′ ∈ X. Since f is a �nite covering of X, there
exist an open neighbourhood U of x′ in X, a �nite discrete topological space E and a
homeomorphism ϕ : f−1(U)→ U×E such that f = pU ◦ϕ, where pU : U×E → U is
the projection on the �rst factor. We have that A∩ f−1(U) is both open and closed
in f−1(U), by de�nition of subspace topology. Then, since ϕ is a homeomorphism,
ϕ(A ∩ f−1(U)) is both open and closed in U × E. De�ne

E′ := {e ∈ E | (x′, e) ∈ ϕ(A ∩ f−1(U))} .

Let e ∈ E′. Since ϕ(A∩f−1(U)) is open, by de�nition of product topology there exists
an open neighbourhood Ve of x′ in X such that Ve × {e} ⊆ ϕ(A ∩ f−1(U)). On the
other hand, if e ∈ E\E′ we have that (x′, e) ∈ (X×E)\ϕ(A∩f−1(U)), which is open
because ϕ(A∩f−1(U)) is closed. Then, by de�nition of product topology, there exists
an open neighbourhood Ve of x′ in X such that Ve×{e} ⊆ (X ×E)\ϕ(A∩ f−1(U)).
Now we have an open neighbourhood Ve of x′ in X for any e ∈ E. De�ne V :=

⋂
e∈E .

Since E is �nite, V is an open neighbourhood of x′ in X. Moreover, we have that

V × E′ =
⋃
e∈E′

(V × {e}) ⊆
⋃
e∈E′

(Ve × {e}) ⊆ ϕ(A ∩ f−1(U))

and

V × (E\E′) =
⋃

e∈E\E′
(V × {e}) ⊆

⋃
e∈E\E′

(Ve × {e}) ⊆ (X × E)\ϕ(A ∩ f−1(U)) .

So (V × E) ∩ ϕ(A ∩ f−1(U)) = V × E′. Consider now (f ◦ q−1)(V ). We have
that (f ◦ q)−1(V ) = q−1(f−1(V )) = A ∩ f−1(V ), by de�nition of q. Then, since
f−1(V ) ⊆ f−1(U), we get (f ◦ q)−1(V ) = (A ∩ f−1(U)) ∩ f−1(V ) and so

ϕ((f ◦ q)−1(V )) = ϕ(A ∩ f−1(U)) ∩ ϕ(f−1(V )) ,

because ϕ is bijective. Since pU ◦ ϕ = f , we have that

ϕ(f−1(V )) = ϕ((pU ◦ ϕ)−1(V )) = ϕ(ϕ−1(p−1
U (V ))) = p−1

U (V ) = V × E .

So ϕ((f ◦ q)−1(V )) = ϕ(A ∩ f−1(U)) ∩ (V × E) = V × E′. Then, restricting ϕ to
f−1(V ) we get a homeomorphism ϕ : f−1(V ) → V × E′. Notice that E′ ⊆ E is a
�nite discrete topological space. If we denote by pV : V × E′ → V the projection
on the �rst factor, we have that pV ◦ ϕ : (f ◦ q)−1(V ) → V is the restriction to
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(f ◦ q)−1(V ) of pU ◦ ϕ = f . This restriction is equal to f ◦ q, by de�nition of q.
So pV ◦ ϕ = f ◦ q. This shows that f ◦ q : (f ◦ q)−1(V ) → V is a trivial covering.
So f ◦ q : A → X is a �nite covering, i.e. an object of CovX . It is clear that
q : A→ Y is a morphism of coverings from f ◦ q to f . Moreover, q is injective, so it
is a monomorphism in CovX (see the proof of (G3) in the proposition 1.8). Since f
is a connected object, we have that either f ◦ q is initial or q is an isomorphism of
coverings. From the proof of (G2) in the proposition 1.8, it follows that the initial
object in CovX is ∅ → X. Then f ◦ q is not initial, because we assumed A 6= ∅. So
q is an isomorphism of coverings. In particular, it is bijective. So A = Im(q) = Y .
This proves that Y is a connected topological space.

2 The fundamental group of the pseudocircle

We start with the de�nition of the topological space we are interested in.

De�nition 2.1. The pseudocircle is the topological space X = {0, 1, 2, 3} with open
subsets: ∅, {0}, {2}, {0, 2}, {0, 1, 2}, {0, 2, 3}, X.

Remark 2.2. First of all, the de�nition we gave in 2.1 gives indeed a topology: ∅ and
X are open and it can be checked that the union and the intersection of any two
open subsets are again open (since X is �nite, there are �nitely many open subsets,
so any union of open subsets is a union of a �nite family and to show tnat it is
open we can apply induction after proving that the union of any two open subsets
is open). Secondly, X is connected. To prove it, it is enough to check that for any
open subset U /∈ {∅, X} the complement X\U is not open. This is immediate from
the de�nition.

Our aim is to compute π̂(X), where X is the pseudocircle. We will achieve
this goal using a combinatorial approach: we will describe all �nite coverings of
X (this is possible because we are dealing with a very simple example: in general
more sophisticated techniques are needed). Before doing this, we need to de�ne
the pro�nite completion of a group, because π̂(X) will turn out to be the pro�nite
completion of a well-known group.

Lemma 2.3. Let G be a group. We de�ne

I := {N E G | [G : N ] < +∞} .

We consider on I the order relation de�ned by N1 ≥ N2 if and only if N1 ⊆ N2.
Then I is a directed partially ordered set. Moreover, for any N1, N2 ∈ I such that
N1 ≥ N2, we de�ne fN1N2 : G/N1 → G/N2, σN1 7→ σN2. Then (G/N)N∈I , (fN1N2 :
G/N1 → G/N2)N1,N2∈I,N1≥N2 is a projective system of �nite groups.

Proof. It is clear that ≥ is an order relation. Let N1, N2 ∈ I, i.e. N1 and N2 are
two normal subgroups of G of �nite index, and consider N1 ∩ N2. It is clear that
N1 ∩ N2 is again a normal subgroup. By the tower law for subgrups, we have that
[G : N1 ∩ N2] = [G : N1] · [N1 : N1 ∩ N2]. Moreover, by the second isomorphism
theorem we have that N1/N1∩N2

∼= N1N2/N2 and so [N1 : N1∩N2] = [N1N2 : N2] ≤
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[G : N2]. Then [G : N1 ∩N2] = [G : N1] · [N1 : N1 ∩N2] ≤ [G : N1] · [G : N2] < +∞.
So N1 ∩N2 ∈ I. We have that N1 ∩N2 ⊆ N1 and N1 ∩N2 ⊆ N2. So N1 ∩N2 ≥ N1

and N1 ∩N2 ≥ N2. This proves that I is directed.
It is clear that fN1N2 is a well-de�ned group homomorphism whenever N1 ⊆ N2, i.e.
N1 ≥ N2. If N ∈ I, we have that fNN (σN) = σN = idG/N (σN) for any σN ∈ G/N
and so fNN = idG/N . Moreover, let N1, N2, N3 ∈ I such that N1 ≥ N2 ≥ N3. Then
fN1N3(σN1) = σN3 = fN2N3(σN2) = fN2N3(fN1N2(σN1)), for ever σN1 ∈ G/N1. So
fN1N3 = fN2N3 ◦ fN1N2 . Hence (G/N)N∈I , (fN1N2 : G/N1 → G/N2)N1,N2∈I,N1≥N2 is
a projective system of �nite groups (the fact that the groups are �nite follows from
the de�nition of I).

De�nition 2.4. Let G be a group. The pro�nite completion of G, denoted by Ĝ, is
the projective limit lim←−N∈I G/N (which is a pro�nite group by de�nition), where the
projective system I, (G/N)N∈I , (fN1N2 : G/N1 → G/N2)N1,N2∈I,N1≥N2 is de�ned as
in lemma 2.3.

Lemma 2.5. Let G be a group. We denote by G-sets the category of fnite sets with
an action of G (notice that in general G is not a topological group, so we cannot talk
about continuity of an action of G; morphisms of G-sets are de�ned in the same way
as we did for pro�nite groups). We have that G-sets is equivalent to the category
Ĝ-sets (since Ĝ is a pro�nite group, here we talk of continuous actions).

Proof. We de�ne a functor F : Ĝ-sets→ G-sets as follows. Let E be a �nite Ĝ-set.
Let σ ∈ G, e ∈ E. Consider σ̃ = (σN)N∈I ∈

∏
N∈I G/N (where I is de�ned as

in lemma 2.3). For any N1, N2 ∈ I with N1 ≥ N2, we have that fN1N2(σN1) =
σN2 by de�nition (see again lemma 2.3). So σ̃ ∈ lim←−N∈I G/N = Ĝ. Then we
can de�ne σ.e := σ̃e. Let us check that this is a group action. If σ = 1G, then
σ̃ = (1GN)N∈I = 1Ĝ. Then 1G.e = 1Ĝe = e. On the other hand, let σ, τ ∈ G. Then
σ̃τ = ((στ)N)N∈I = ((σN)(τN))N∈I = (σN)N∈I(τN)N∈I = σ̃τ̃ . So

(στ).e = σ̃τe = (σ̃τ̃)e = σ̃(τ̃ e) = σ.(τ̃ e) = σ.(τ.e) ,

for any e ∈ E. So this indeed an action of G on E, which is then an object of G-sets.
We de�ne F (E) = E, equipped with this action. Let now E1, E2 be �nite Ĝ-sets
with a morphism of Ĝ-sets f : E1 → E2. Let σ ∈ G, e ∈ E1. Then

f(σ.e) = f(σ̃e) = σ̃f(e) = σ.f(e) .

So f is also a morphism of G-sets. Then we can de�ne F (f) = f . For every
�nite Ĝ-set E, we have that F (idE) = idE = idF (E). Moreover, if E1, E2, E3

are �nite Ĝ-sets with morphisms of Ĝ-sets f : E1 → E2 and g : E2 → E3, then
F (g ◦ f) = g ◦ f = F (g) ◦ F (f). So F is a functor.
We prove now that F is an equivalence of categories. By lemma 1.4.5, we have to
prove that F is fully faithful and essentially surjective. Let E1, E2 be �nite Ĝ-sets
with two morphisms f, g : E1 → E2 such that F (f) = F (g). This means that
f = F (f) = F (g) = g. So F is faithful.
Let now E1, E2 be �nite Ĝ-sets and let f : F (E1) = E1 → F (E2) = E2 be a
morphism of G-sets. Let K be the kernel of the action of Ĝ on E1, i.e. K := {σ ∈
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Ĝ | ∀e ∈ E1 σe = 1} ≤ Ĝ. Since E is fnite, by lemma 1.1.14 we have that K
is open in Ĝ. Then, since 1Ĝ ∈ K, there exists an open neighbourhood of 1Ĝ that
is contained in K. Recall that the topology on the projective limit is de�ned as
the subspace topology of the product topology (considering the discrete topology on
each factor). Then a local base for Ĝ at 1Ĝ is given by{

UN1...Nn :=
n⋂
k=1

p−1
Nk

({1GNk}) =
n⋂
k=1

Ker(pNk)

∣∣∣∣∣ n ∈ N, N1, . . . , Nn ∈ I

}
,

where pN : Ĝ→ G/N is the canonical projection (which is a continuous group homo-
morphism) for anyN ∈ I. So there exist n ∈ N, N1, . . . , Nn ∈ I such that UN1,...,Nn ⊆
K. Since I is directed, there exists N0 ∈ I such that N0 ≥ Nk for any k = 1, . . . , n.
If σ = (σNN)N∈I ∈ UN0 = Ker(pN0), then σN0 = pN0(σ) = 1GN0 and σNk =
fN0Nk(σN0) = fN0Nk(1GN0) = 1GNk for any k = 1, . . . , n. So σ ∈

⋂n
k=1 Ker(pNk) =

UN1...Nk . This shows that UN0 ⊆ UN1...Nn ⊆ K. Let now σ = (σNN)N∈I ∈ Ĝ. Con-
sider σ̃N0

−1σ = (σN0N)−1
N∈I(σNN)N∈I = ((σN0N)−1(σNN))N∈I = ((σ−1

N0
σN )N)N∈I .

We have that pN0(σ̃N0

−1σ) = (σ−1
N0
σN0)N0 = 1GN0. So σ̃N0

−1σ ∈ Ker(pN0) = UN0 ⊆
K. Then, for any e ∈ E1, we have that (σ̃N0

−1σ)e = e and

σe = (σ̃N0 σ̃N0

−1)(σe) = σ̃N0((σ̃N0

−1σ)e) = σ̃N0e = σN0 .e .

Since f is a morphism of G-sets, it follows that

f(σe) = f(σN0 .e) = σN0 .f(e) = σf(e)

for any e ∈ E1. So f is a morphism of Ĝ-sets. Moreover, F (f) = f by de�nition of
F . This proves that F is full.
Finally, let E be a �nite set with an action of G. Let K be the kernel of the
action of G on E, i.e. K := {σ ∈ G | ∀e ∈ E σe = e}. Then K is the kernel
of the group homomorphism ϕ : G → SE1 , σ 7→ (e 7→ σe). So K is a normal
subgroup of G and, by the isomorphism theorem, G/K ∼= Im(ϕ) ≤ SE1 . Then
[G : K] = |G/K| = | Im(ϕ)| ≤ |SE1 | < +∞. This proves that K ∈ I. For any
σ = (σNN)N∈I ∈ Ĝ, e ∈ E, we de�ne σe = σKe. First of all, we have to check
that this is well de�ned. If σKK = σ′KK (with σK , σ′K ∈ G), then σ

−1
K σ′K ∈ K. So,

for any e ∈ E, we have that (σ−1
K σ′K)e = e, which implies that σ′Ke = σKe. We

prove now that we have de�ned a group action. If σ = 1Ĝ, then σKK = 1GK and
so 1Ĝe = 1Ge = e, for any e ∈ E. Moreover, let σ = (σNN)N∈I , τ = (τNN)N∈I ∈ Ĝ.
We have that στ = ((σNN)(τNN))N∈I = ((σNτN )N)N∈I and so

(στ)e = (σKτK)e = σK(τKe) = σ(τKe) = σ(τe) ,

for any e ∈ E. So we have indeed a group action. The kernel of this action is

{σ = (σNN)N∈I ∈ Ĝ | ∀e ∈ E σKe = σe = e} =

= {σ = (σNN)N∈I ∈ Ĝ | σK ∈ K} =

= {σ = (σNN)N∈I ∈ Ĝ | pK(σ) = σKK = K = 1GK} = p−1
K ({1GK}) ,
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which is open in Ĝ because pK : Ĝ→ G/K is continuous and {1GK} is open in G/K
(which has the discrete topology). Since E is �nite, by lemma 1.1.14 we have that
the action of Ĝ on E is continuous. So E, endowed with this action, is an object
of Ĝ-sets. We have that F (E) = E as sets. Moreover, for any σ ∈ G, e ∈ E, we
have that σ.e = σ̃e = (σN)N∈Ie = σe. So the two actions of G on E coincide, i.e.
F (E) = E as objects of G-sets. Hence F is essentially surjective.

Lemma 2.6. De�ne a category D as follows: objects of D are pairs of the form
(E, σ), with E a �nite set and σ ∈ SE, and a morphism from (E1, σ1) to (E2, σ2) is
a map f : E1 → E2 with σ2 ◦ f = f ◦ σ1 (the composition is de�ned in the obvious
way). Then Z-sets is equivalent to D.

Proof. For every object (E, σ) in D we have that σ ◦ idE = σ = idE ◦σ and so idE
is a morphism in D. Moreover, let (E1, σ1), (E2, σ2), (E3, σ3) be objects of D with
morphisms f : (E1, σ1)→ (E2, σ2) and g : (E2, σ2)→ (E3, σ3). Then σ2 ◦ f = f ◦ σ1

and σ3 ◦ g = g ◦ σ2. It follows that

σ3 ◦ (g ◦ f) = (σ3 ◦ g) ◦ f = (g ◦ σ2) ◦ f = g ◦ (σ2 ◦ f) = g ◦ (f ◦ σ1) = (g ◦ f) ◦ σ1 .

So g ◦ f is also a morphism in D. This shows that D is indeed a category.
We de�ne a functor F : D→ Z-sets as follows. Let (E, σ) be an element of D. We
de�ne z.e = σz(e) for every z ∈ Z, e ∈ E. We have that 0.e = σ0(e) = idE(e) = e
for every e ∈ E. Moreover,

z1.(z2.e) = z1.(σ
z2(e)) = σz1(σz2(e)) = (σz1 ◦ σz2)(e) = σz1+z2(e) = (z1 + z2).e

for every z1, z2 ∈ Z, e ∈ E. So we have de�ned an action of Z on E, which is then
an object of Z-sets. We de�ne F ((E, σ)) = E, equipped with this action. Let now
f : (E1, σ1)→ (E2, σ2) be a morphism in D. By de�nition, σ2 ◦ f = f ◦ σ1. Then by
induction we get σz2 ◦ f = f ◦σz1 for every z ≥ 0. This implies f ◦σ−z1 = f ◦ (σz1)−1 =
(σz2)−1 ◦ f = σ−z2 ◦ f for every z ≥ 0. So σz2 ◦ f = f ◦ σz1 for every z ∈ Z. Then

f(z.e) = f(σz1(e)) = (f ◦ σz1)(e) = (σz2 ◦ f)(e) = σz2(f(e)) = z.f(e)

for every z ∈ Z, e ∈ E1. So f is a morphism of Z-sets. We de�ne F (f) = f .
For every object (E, σ) of D, we have that F (idE) = idE = idF (E). Moreover, if
(E1, σ1), (E2, σ2), (E3, σ3) are objects of D with morphisms f : (E1, σ1)→ (E2, σ2)
and g : (E2, σ2)→ (E3, σ3), then F (g ◦ f) = g ◦ f = F (g) ◦ F (f). So F is a functor.
We prove now that F is an equivalence of categories. By lemma 1.4.5, we have to
prove that F is fully faithful and essentially surjective. Let (E1, σ1), (E2, σ2) be
objects of D with two morphisms f, g : (E1, σ1)→ (E2, σ2) such that F (f) = F (g).
This means that f = F (f) = F (g) = g. So F is faithful.
Let now (E1, σ1), (E2, σ2) be objects of D and let f : F (E1) = E1 → F (E2) = E2

be a morphism of Z-sets. For any e ∈ E, we have that

f(σ1(e)) = f(σ1
1(e)) = f(1.e) = 1.f(e) = σ1

2(f(e)) = σ2(f(e)) .

So f ◦ σ1 = σ2 ◦ f , i.e. f is also a morphism in D. Since F (f) = f , F is full.
Finally, let E be a Z-set. De�ne σ : E → E, e 7→ 1e. Then, by de�nition of action, σ
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is invertible, with inverse E → E, e 7→ (−1)e. So (E, σ) is an object of D. We have
that F ((E, σ)) = E as sets, but we have to check that the two actions coincide. By
de�nition, 1.e = σ(e) = 1e for any e ∈ E. Then by induction (using the de�nition
of action) we get that z.e = ze for every z ≥ 0, e ∈ E. This implies that

(−z).e = (−z).(0e) = (−z).(z((−z)e)) = (−z).(z.((−z)e)) = 0.((−z)e) = (−z)e

for every z ≥ 0, e ∈ E. Then z.e = ze for any z ∈ Z, e ∈ E, i.e. the two actions
coincide. So F ((E, σ)) = E in Z-sets. Hence F is essentially surjective.

Corollary 2.7. Let D be the category de�ned in lemma 2.6. Then Ẑ-sets is equiv-
alent to D.

Proof. It follows immediately from the lemmas 2.5 and 2.6.

Proposition 2.8. Let X be the pseudocircle (de�ned in 2.1). We have that π̂(X) ∼=
Ẑ.

Proof. We have to show that CovX is equivalent to Ẑ-sets, which by corollary 2.7
is equivalent to the category D de�ned in 2.6. So it is enough to prove that CovX
is equivalent to D.
We de�ne a functor F : CovX → Ẑ-sets as follows. Let f : Y → X be a �nite
covering ofX. Then f−1({0}) is a �nite set. Moreover, by de�nition of covering there
exists an open subset U of X such that 1 ∈ U and the restriction f : f−1(U) → U
is a trivial covering. By de�nition of X, the only open subsets containing 1 are
{0, 1, 2} and X. But the restriction of a trivial covering is a trivial covering. So, if
f : f−1(X) = Y → X is a trivial covering, then also f : f−1({0, 1, 2}) → {0, 1, 2}
is a trivial covering. So, in any case, we can choose U = {0, 1, 2}. Then there exist
a discrete topological space E1 and a homeomorphism ϕ1 : f−1(U) → U × E1 such
that pU ◦ ϕ1 = f , where pU : U × E1 → U is the projection on the �rst factor.
Since pU ◦ ϕ1 = f , we have that f−1({x}) = ϕ−1

1 (p−1
U ({x})) = ϕ−1

1 ({x} × E1)
for any x ∈ U = {0, 1, 2}. Then ϕ1(f−1({0})) = {0} × E1 and ϕ1(f−1({2})) =
{2} × E1 (we applied the fact that ϕ1 is bijective), which allows us to restrict ϕ1

to homeomorphisms ϕ1 : f−1({0}) → {0} × E1 and ϕ1 : f−1({2}) → {2} × E1.
Analogously, by de�nition of covering there exists an open subset V of X such that
3 ∈ V and the restriction f : f−1(V )→ V is a trivial covering. We can choose V =
{0, 2, 3} because, by de�nition of X, the only open subsets containing 3 are {0, 2, 3}
and X. Then there exist a discrete topological space E3 and a homeomorphism
ϕ3 : f−1(V ) → V × E3 such that pV ◦ ϕ3 = f , where pV : V × E3 → V is the
projection on the �rst factor. As above, we can restrict ϕ3 to homeomorphisms
ϕ3 : f−1({0}) → {0} × E3 and ϕ3 : f−1({2}) → {2} × E3. De�ne i1,0 : E1 →
{0}×E1, e 7→ (0, e), i1,2 : E1 → {2}×E1, e 7→ (2, e), i3,0 : E3 → {0}×E3, e 7→ (0, e)
and i3,2 : E3 → {2} × E3, e 7→ (2, e). These maps are clearly bijective. Consider
now

ψ := i−1
3,2 ◦ ϕ3 ◦ ϕ−1

1 ◦ i1,2 : E1 → E3 ,

which is bijective because it is a composition of bijections. We have that ψ induces
a bijection id{0}×ψ : {0} × E1 → {0} × E3. De�ne σ := ϕ−1

3 ◦ (id{0}×ψ) ◦ ϕ1 :
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f−1({0}) → f−1({0}). We have that σ is bijective, because it is a composition of
bijections. So (f−1({0}), σ) is an element of D. We de�ne F (f) := (f−1({0}), σ)
(for the sake of brevity, we omit to check that the de�nition of σ does not depend
on the choice of the discrete topological spaces E′1, E

′
3 and of the homeomorphisms

ϕ′1, ϕ
′
3).

Now we have to de�ne F on morphisms. Let f : Y → X, g : Z → X be �nite
coverings of X and let h : Y → Z be a morphism of coverings from f to g. As
above, let F (f) = (f−1({0}), σ), F (g) = (g−1({0}), σ′). Since h is a morphism
of coverings, we have that f = g ◦ h. Then g(h(f−1({0})) = f(f−1({0})) ⊆ {0},
which implies that h(f−1({0})) ⊆ g−1({0}). So we can restrict h and get a map h :
f−1({0})→ g−1({0}). We claim that this map is a morphism in D from (f−1({0}), σ)
to (g−1({0}), σ′). Let U , V , E1, E3, ϕ1, ϕ3, i1,0, i1,2, i3,0, i3,2 and ψ be as above.
Moreover, we denote by E′1, E

′
3, ϕ

′
1, ϕ

′
3, i
′
1,0, i

′
1,2, i

′
3,0, i

′
3,2 and ψ′ the topological

spaces and the maps obtained in the same way, but starting from the �nite covering
g. Then σ = ϕ−1

3 ◦ (id{0}×ψ) ◦ ϕ1 and σ′ = (ϕ′3)−1 ◦ (id{0}×ψ′) ◦ ϕ′1. By lemma
1.5, there exists an open subset of X that contains 1 and above which f , g and h are
trivial. Since the only open subsets containing 1 are U and X and triviality above X
implies triviality above U , we have that f , g and h are trivial above U . Then there
exists a map α : E1 → E′1 such that the following diagram is commutative, where
pU : U × E1 → U and p′U : U × E′1 → U are the projections on the �rst factor.

f−1(U)

U

U × E1 U × E′1

g−1(U)

U

................................................................................................................................................................................................................
.....
.......
.....

f

........................................................................................................................................... ........
....

ϕ1

.......................................................................................................................................
....
............

pU

............................................................................................................................................................................................................................................................................................................................................................................................................................................................................... ............
h

..................................................................................................................................................................................................................... ............
idU ×α

............................................................................................................................................................................................................................................................................................................................................................................................................................................................................... ............
idU

................................................................................................................................................................................................................
.....
.......
.....

g

.......................................................................................................................................
....
............

ϕ′1

........................................................................................................................................... ........
....

p′U

Analogously, by lemma 1.5, there exists an open subset of X that contains 3 and
above which f , g and h are trivial. Since the only open subsets containing 3 are V
and X and triviality above X implies triviality above V , we have that f , g and h
are trivial above V . Then there exists a map β : E3 → E′3 such that the following
diagram is commutative, where pV : V × E3 → V and p′V : V × E′3 → V are the
projections on the �rst factor.

f−1(V )

V

V × E3 V × E′3

g−1(V )

V

................................................................................................................................................................................................................
.....
.......
.....

f

........................................................................................................................................... ........
....

ϕ3

.......................................................................................................................................
....
............

pV

............................................................................................................................................................................................................................................................................................................................................................................................................................................................................... ............
h

..................................................................................................................................................................................................................... ............
idV ×β

............................................................................................................................................................................................................................................................................................................................................................................................................................................................................... ............
idV

................................................................................................................................................................................................................
.....
.......
.....

g

.......................................................................................................................................
....
............

ϕ′3

........................................................................................................................................... ........
....

p′V

Now (restricting h to f−1({0})) we have that

σ′ ◦ h = (ϕ′3)−1 ◦ (id{0}×ψ′) ◦ ϕ′1 ◦ h =
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= (ϕ′3)−1 ◦ (id{0}×ψ′) ◦ (idU ×α) ◦ ϕ1 = (ϕ′3)−1 ◦ (id{0}×(ψ′ ◦ α)) ◦ ϕ1

and

h ◦ σ = h ◦ ϕ−1
3 ◦ (id{0}×ψ) ◦ ϕ1 =

= (ϕ′3)−1 ◦ (idV ×β) ◦ (id{0}×ψ) ◦ ϕ1 = (ϕ′3)−1 ◦ (id{0}×(β ◦ ψ)) ◦ ϕ1 .

For any e ∈ E1, we have that

i′1,2(α(e)) = (2, α(e)) = (id{2}×α)((2, e)) = (id{2}×α)(i1,2(e)) .

So i′1,2 ◦ α = (id{2}×α) ◦ i1,2. On the other hand, for any e ∈ E3 we have that
i′3,2(β(e)) = (2, β(e)) = (id{2}×β)((2, e)) = (id{2}×β)(i3,2(e)). So i′3,2 ◦ β =

(id{2}×β) ◦ i3,2 and β ◦ i−1
3,2 = (i′3,2)−1 ◦ (id{2}×β). Then

ψ′ ◦ α = (i′3,2)−1 ◦ ϕ′3 ◦ (ϕ′1)−1 ◦ i′1,2 ◦ α =

= (i′3,2)−1 ◦ ϕ′3 ◦ (ϕ′1)−1 ◦ (id{2}×α) ◦ i1,2 = (i′3,2)−1 ◦ ϕ′3 ◦ h ◦ ϕ−1
1 ◦ i1,2 =

= (i′3,2)−1 ◦ (id{2}×β) ◦ ϕ3 ◦ ϕ−1
1 ◦ i1,2 = β ◦ i−1

3,2 ◦ ϕ3 ◦ ϕ−1
1 ◦ i1,2 = β ◦ ψ .

So σ′ ◦ h = (ϕ′3)−1 ◦ (id{0}×(ψ′ ◦ α)) ◦ ϕ1 = (ϕ′3)−1 ◦ (id{0}×(β ◦ ψ)) ◦ ϕ1 = h ◦ σ,
i.e. h : f−1({0}) → g−1({0}) is a morphism in D from (f−1({0}), σ) = F (f) to
(g−1({0}), σ′) = F (g). Then we can de�ne F (h) := h|f−1({0})

: F (f)→ F (g).

For every �nite covering f : Y → X we have that F (idY ) = (idY )|f−1({0})
=

idf−1({0}) = idF (f). Moreover, if f1 : Y1 → X, f2 : Y2 → X and f3 : Y3 → X
are �nite coverings of X with morphisms of coverings h1 : Y1 → Y2 and h2 : Y2 → Y3,
we have that

F (h2 ◦ h1) = (h2 ◦ h1)|f−1({0})
= (h2)|g−1({0})

◦ (h1)|f−1({0})
= F (h2) ◦ F (h1) .

So F is a functor.
We prove now that F is an equivalence of categories. By lemma 1.4.5, we have to
prove that F is fully faithful and essentially surjective. Let f : Y → X, g : Z → X
be �nite coverings of X with two morphisms of coverings h, h′ : Y → Z such that
F (h) = F (h′). Let U , V , E1, E3, E′1, E

′
3, ϕ1, ϕ3, ϕ′1, ϕ

′
3, α and β be as above. Also,

as above, we can �nd maps α′ : E1 → E′1 and β′ : E3 → E′3 such that restricting
h′ to f−1(U) we have ϕ′1 ◦ h′ = (idU ×α′) ◦ ϕ1 and restricting h′ to f−1(V ) we have
ϕ′3 ◦ h′ = (idV ×β) ◦ ϕ3. Since h|f−1({0})

F (h) = F (h′) = (h′)|f−1({0})
F (h), restricting

h and h′ to f−1({0}) we have that

id{0}×α = ϕ′1 ◦ h ◦ ϕ−1
1 = ϕ′1 ◦ h′ ◦ ϕ−1

1 = id{0}×α .

So α = α′, which implies that h|f−1(U)
= (ϕ′1)−1◦(idU ×α)◦ϕ1 = (ϕ′1)−1◦(idU ×α′)◦

ϕ1 = (h′)|f−1(U)
. Now, restricting h and h′ to {1, 3}, we have that

id{1,3}×β = ϕ′3 ◦ h ◦ ϕ−1
3 = ϕ′3 ◦ h′ ◦ ϕ−1

3 = id{1,3}×β .
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So β = β′, which implies that h|f−1(V )
= (ϕ′3)−1◦(idV ×β)◦ϕ3 = (ϕ′3)−1◦(idV ×β′)◦

ϕ3 = (h′)|f−1(V )
. Since X = U ∪ V , we have that Y = f−1(X) = f−1(U ∪ V ) =

f−1(U) ∪ f−1(V ). So we must have h = h′. This proves that F is faithful.
Let now f : Y → X, g : Z → X be �nite coverings of X and consider a morphism
χ : F (f) → F (g) in D. This means that χ : f−1({0}) → g−1({0}) is a map
such that σ′ ◦ χ = χ ◦ σ, where F (f) = (f−1({0}), σ) and F (g) = (g−1({0}), σ′).
Let U , V , E1, E3, E′1, E

′
3, ϕ1, ϕ3, ϕ′1, ϕ

′
3, i1,0, i1,2, i3,0, i3,2, i

′
1,0, i

′
1,2, i

′
3,0, i

′
3,2,

ψ and ψ′ be as above. De�ne α := (i′1,0)−1 ◦ ϕ′1 ◦ χ ◦ ϕ
−1
1 ◦ i1,0 : E1 → E′1 and

β := (i′3,0)−1 ◦ϕ′3 ◦χ◦ϕ
−1
3 ◦ i3,0 : E3 → E′3. Then α and β are continuous because E1,

E′1, E3, E′3 are all discrete. Moreover, let h1 := (ϕ′1)−1 ◦ (idU ×α) ◦ ϕ1 : f−1(U) →
g−1(U) ⊆ Z and h3 := (ϕ′3)−1 ◦ (idV ×β)◦ϕ3 : f−1(V )→ g−1(V ) ⊆ Z. Then h1 and
h3 are both continuous, because they are compositions of continuous maps (idU ×α
and idV ×β are continuous because α and β are continuous). Moreover,

(idU ×α)((0, e)) = (0, α(e)) = i′1,0(((i′1,0)−1 ◦ ϕ′1 ◦ χ ◦ ϕ−1
1 ◦ i1,0)(e)) =

= (ϕ′1 ◦ χ ◦ ϕ−1
1 )(i1,0(e)) = (ϕ′1 ◦ χ ◦ ϕ−1

1 )((0, e))

for any e ∈ E1. Since ϕ1(f−1({0})) = {0} × E1 (see above), this implies that
(h1)|f−1({0})

= (ϕ′1)−1 ◦ ϕ′1 ◦ χ ◦ ϕ
−1
1 ◦ ϕ1 = χ. Analogously, we have that

(idU ×β)((0, e)) = (0, β(e)) = i′3,0(((i′3,0)−1 ◦ ϕ′3 ◦ χ ◦ ϕ−1
3 ◦ i3,0)(e)) =

= (ϕ′3 ◦ χ ◦ ϕ−1
3 )(i3,0(e)) = (ϕ′3 ◦ χ ◦ ϕ−1

3 )((0, e))

for any e ∈ E3 and, since ϕ3(f−1({0})) = {0} × E3 (see above), this implies that
(h3)|f−1({0})

= (ϕ′3)−1 ◦ ϕ′3 ◦ χ ◦ ϕ
−1
3 ◦ ϕ3 = χ. So (h1)|f−1({0})

= (h1)|f−1({0})
. On the

other hand, we have that

(idU ×α)((2, e)) = (2, α(e)) = i′1,2(((i′1,0)−1 ◦ ϕ′1 ◦ χ ◦ ϕ−1
1 ◦ i1,0)(e)) =

= (i′1,2 ◦ (i′1,0)−1 ◦ ϕ′1 ◦ χ ◦ ϕ−1
1 ◦ i1,0 ◦ i

−1
1,2)((2, e))

for any e ∈ E1. Since ϕ1(f−1({2})) = {2} × E1 (see above), this implies that
(h1)|f−1({2})

= (ϕ′1)−1 ◦ i′1,2 ◦ (i′1,0)−1 ◦ ϕ′1 ◦ χ ◦ ϕ
−1
1 ◦ i1,0 ◦ i

−1
1,2 ◦ ϕ1. Analogously,

(idU ×β)((2, e)) = (2, β(e)) = i′3,2(((i′3,0)−1 ◦ ϕ′3 ◦ χ ◦ ϕ−1
3 ◦ i3,0)(e)) =

= (i′3,2 ◦ (i′3,0)−1 ◦ ϕ′3 ◦ χ ◦ ϕ−1
3 ◦ i3,0 ◦ i

−1
3,2)((2, e))

for any e ∈ E3 and, since ϕ3(f−1({2})) = {2} × E3 (see above), this implies that
(h3)|f−1({2})

= (ϕ′3)−1 ◦ i′3,2 ◦ (i′3,0)−1 ◦ ϕ′3 ◦ χ ◦ ϕ
−1
3 ◦ i3,0 ◦ i−1

3,2 ◦ ϕ3. Recalling the
de�nition of ψ, we have that

(id{0}×ψ)((0, e)) = (0, ψ(e)) = i3,0(ψ(e)) = i3,0((i−1
3,2 ◦ ϕ3 ◦ ϕ−1

1 ◦ i1,2)(e)) =

= (i3,0 ◦ i−1
3,2 ◦ ϕ3 ◦ ϕ−1

1 ◦ i1,2 ◦ i
−1
1,0)((0, e))
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for any e ∈ E1. So id{0}×ψ = i3,0◦i−1
3,2◦ϕ3◦ϕ−1

1 ◦i1,2◦i
−1
1,0. Analogously, id{0}×ψ′ =

i′3,0 ◦ (i′3,2)−1 ◦ ϕ′3 ◦ (ϕ′1)−1 ◦ i′1,2 ◦ (i′1,0)−1. Then

(ϕ′3)−1 ◦ i′3,0 ◦ (i′3,2)−1 ◦ ϕ′3 ◦ (ϕ′1)−1 ◦ i′1,2 ◦ (i′1,0)−1 ◦ ϕ′1 ◦ χ =

= (ϕ′3)−1 ◦ (id{0}×ψ′) ◦ ϕ′1 ◦ χ = σ′ ◦ χ = χ ◦ σ = χ ◦ ϕ−1
3 ◦ (id{0}×ψ) ◦ ϕ1 =

= χ ◦ ϕ−1
3 ◦ i3,0 ◦ i

−1
3,2 ◦ ϕ3 ◦ ϕ−1

1 ◦ i1,2 ◦ i
−1
1,0 ◦ ϕ1 .

This implies that

(h1)|f−1({2})
= (ϕ′1)−1 ◦ i′1,2 ◦ (i′1,0)−1 ◦ ϕ′1 ◦ χ ◦ ϕ−1

1 ◦ i1,0 ◦ i
−1
1,2 ◦ ϕ1 =

= (ϕ′3)−1 ◦ i′3,2 ◦ (i′3,0)−1 ◦ ϕ′3 ◦ χ ◦ ϕ−1
3 ◦ i3,0 ◦ i

−1
3,2 ◦ ϕ3 = (h3)|f−1({2})

.

Then (h1)|f−1({0})∪f−1({2})
= (h3)|f−1({0})∪f−1({2})

. Since f−1(U) ∩ f−1(V ) = f−1(U ∩
V ) = f−1({0, 2}) = f−1({0}) ∪ f−1({2}) and f−1(U) ∪ f−1(V ) = f−1(U ∪ V ) =
f−1(X) = Y , we can glue h1 and h3 to get a continuous map h : Y → Z. Recall
that pU ◦ϕ1 = f and p′U ◦ϕ′1 = g, where pU : U ×E1 → U and p′U : U ×E′1 → U are
the projections on the �rst factors. Then

g ◦ h1 = g ◦ (ϕ′1)−1 ◦ (idU ×α) ◦ ϕ1 = p′U ◦ (idU ×α) ◦ ϕ1 = idU ◦pU ◦ ϕ1 = f .

Analogously, we have that pV ◦ ϕ3 = f and p′V ◦ ϕ′3 = g, where pV : V × E3 → V
and p′V : V × E′3 → V are the projections on the �rst factors, and so

g ◦ h3 = g ◦ (ϕ′3)−1 ◦ (idV ×β) ◦ ϕ3 = p′V ◦ (idV ×β) ◦ ϕ3 = idV ◦pV ◦ ϕ3 = f .

Then g ◦ h = f . So h is a morphism of coverings from f to g. Moreover, F (h) =
h|f−1({0})

= χ. This proves that F is full.

Finally, let (E, σ) be an object of D. Consider the discrete topology on E and de�ne
Y1 := U × E and Y3 := V × E, with the product topology. Moreover, consider the
maps

γ1 : {0, 2} × E → Y3, (x, e) 7→ (x, e)

and

γ3 : {0, 2} × E → Y3, (x, e) 7→

{
(x, σ−1(e)) if x = 0

(x, e) if x = 2

(recall that σ is bijective, by de�nition of D). Notice that the subspace topology
on {0, 2} is the discrete topology, so also the product {0, 2} × E has the discrete
topology, which implies that γ1 and γ3 are continuous. Moreover, γ1 and γ3 are
both injective (for γ3, this follow from the injectivity of σ−1). De�ne on the disjoint
union Y1 q Y3 the following equivalence relation: given y, y′ ∈ Y1 q Y3, we say that
y ∼ y′ if and only if y = y′ or there exists a pair (x, e) ∈ {0, 2} × E such that
y = γi((x, e)) and y′ = γj((x, e)), with i, j ∈ {1, 3} (it is immediate to check that
this is an equivalence relation, using the fact that γ1 and γ3 are injective). Consider
then the quotient space Y := (Y1 q Y3)/∼. Let pU : Y1 = U × E → U ⊆ X and
pV : Y2 = V × E → V ⊆ X be the projections on the �rst factors, which are
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continuous by de�nition of product topology. Gluing them, we get a continuous map
p : Y1 q Y3 → X. For any (x, e) ∈ {0, 2} × E, we have that

p(γ1((x, e))) = pU (γ1((x, e))) = pU ((x, e)) = x =

= pU ((x, σ−1(e))) = pU (γ3((x, e))) = p(γ3((x, e))) .

It follows that p(y) = p(y′) whenever y, y′ ∈ Y1 q Y3 are such that y ∼ y′. Then,
by the universal property of the quotient of topological spaces, we can factor p
through a continuous map f : Y = (Y1 q Y3)/∼ → X such that p = f ◦ π, where
π : Y1 q Y3 → (Y1 q Y3)/∼ is the canonical projection on the quotient. We claim
that f is a �nite covering. Since π is surjective, we have

f−1(U) = π(π−1(f−1(U))) = π(p−1(U)) = π(p−1
U (U)q p−1

V (U)) =

= π(Y1 q ((U ∩ V )× E)) = π(Y1) ∪ π((U ∩ V )× E) .

For any (x, e) ∈ (U∩V )×E = {1, 2}×E ⊆ Y3, we have that (x, e) = γ3((x, σ(e))) and
so (x, e) ∼ γ1((x, σ(e))) = (x, σ(e)), which implies that π((x, e)) = π((x, σ(e))) ∈
π(Y1). This shows that π((U ∩ V ) × E) ⊆ π(Y1). So f−1(U) = π(Y1) ∪ π((U ∩
V ) × E) = π(Y1). We claim that the restriction π|Y1

: Y1 → π(Y1) = f−1(U) is a
homeomorphism. Surjectivity and continuity are clear. If y, y′ ∈ Y1 are such that
π(y) = π(y′), then y ∼ y′. By de�nition of ∼, this means that y = y′ or there exist
(x, e) ∈ {0, 2} × E, i, j ∈ {1, 3} such that y = γi((x, e)) and y′ = γj((x, e)). In the
last case, since y, y′ ∈ Y1, we must have i = j = 1 and so y = γ1((x, e)) = y′. Then
π|Y1

is injective. It remains to prove that π|Y1
: Y1 → π(Y1) is open. By de�nition

of product topology, it is enough to show that π(W × {e}) is open for every W ⊆ U
open, e ∈ E. Fix such W and e. By de�nition of quotient topology, we have to show
that π−1(π(W × {e})) ⊆ Y1 q Y3 is open. We have that

π−1(π(W × {e})) = (π−1(π(W × {e})) ∩ Y1)q (π−1(π(W × {e})) ∩ Y3) .

Since π|Y1
is injective, π−1(π(W × {e})) ∩ Y1 = W × {e}, which is open in Y1. On

the other hand, let y ∈ π−1(π(W ×{e}))∩ Y3. Then there exists y′ ∈W ×{e} ⊆ Y1

such that π(y) = π(y′). This means that y ∼ y′. Since y ∈ Y3 and y′ ∈ Y1,
we cannot have y = y′. Then there exist (x, e′) ∈ {0, 2} × E, i, j ∈ {1, 3} such
that y = γi((x, e

′)) and y′ = γj((x, e
′)). Since y ∈ Y3 and y′ ∈ Y1, we must have

i = 3 and j = 1. Then (x, e′) = γ1((x, e′)) = y′ ∈ W × {e}, which means that
x ∈ W and e′ = e. It follows that y = γ3((x, e)) ∈ γ3((W ∩ {0, 2}) × {e}). So
π−1(π(W × {e}))∩ Y3 ⊆ γ3((W ∩ {0, 2})× {e}). Conversely, if x ∈W ∩ {0, 2}, then
γ3((x, e)) ∼ γ1((x, e)) = (x, e). So π(γ3((x, e))) = π((x, e)) ∈ π(W × {e}), which
implies that γ3((x, e)) ∈ π−1(π(W × {e})) ∩ Y3. Then

π−1(π(W × {e})) ∩ Y3 = γ3((W ∩ {0, 2})× {e}) =

= {γ3((x, e)) | x ∈W ∩ {0, 2}} =
⋃

x∈W∩{0,2}

{γ3((x, e))} .

Let x ∈ W ∩ {0, 2}. Then we have that either x = 0 or x = 2. If x = 0, then
{γ3((x, e))} = {(0, σ−1(e))} = {0} × {σ−1(e)}. We have that {0} is open in X and
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then also in V . Moreover, {σ−1(e)} is open in E (which is discrete). So {γ3((x, e))} =
{0}×{σ−1(e)} is open in V ×E = Y3. Analogously, one can show that, if x = 2, then
{γ3((x, e))} = {2}×{e} is open in V ×E = Y3. It follows that π−1(π(W×{e}))∩Y3 =⋃
x∈W∩{0,2}{γ3((x, e))} is open in Y3. Then π−1(π(W ×{e})) = (π−1(π(W ×{e}))∩

Y1) q (π−1(π(W × {e})) ∩ Y3) is open in Y1 q Y3. This proves that π|Y1
is open.

So π|Y1
: Y1 → f−1(U) is a homeomorphism. Then its inverse π−1

|Y1
: f−1(U) →

Y1 = U × E is also a homeomorphism. By de�nition of f and p, we have that
f ◦ π|Y1

= p|Y1
= pU and so pU ◦ π−1

|Y1
= f . This shows that f : f−1(U) → U

is a trivial covering. Analogously, one can show that f−1(V ) = π(Y3) and that
π|Y3

: Y3 → π(Y3) is a homeomorphism with pV ◦ π−1
|Y3

= f . So f : f−1(V ) → V is a

trivial covering. Then, since X = U ∪ V , we have that f is a covering. Moreover,
f−1({x}) = (pU ◦ π−1

|Y1
)−1({x}) = π|Y1

(p−1
U ({x})) = π|Y1

({x} × E) ∼= {x} × E for

any x ∈ U and f−1({x}) = (pV ◦ π−1
|Y3

)−1({x}) = π|Y3
(p−1
V ({x})) = π|Y3

({x} × E) ∼=
{x} × E for any x ∈ V . In any case, f−1({x}) is �nite. So f is a �nite covering of
X.
Consider now F (f) = (f−1({0}), τ). We have that f−1({0}) = π|Y1

({0} × E) =
π|Y3

({0} × E). Since π|Y1
: Y1 → π(Y1) is a homeomorphism, restricting to {0} × E

we get a homeomorphism (in particular, a bijection) π|Y1
: {0} × E → π|Y1

({0} ×
E) = f−1({0}). Moreover, we have a bijection i0 : E → {0} × E, e 7→ (0, e).
De�ne ϕ := π|Y1

◦ i0 : E → f−1({0}). Let also i2 : E → {2} × E, e 7→ (2, e)

and ψ = i−1
2 ◦ (π|Y3

)−1 ◦ π|Y1
◦ i2 : E → E (this de�nition makes sense because

π|Y1
({2} × E) = f−1({2}) = π|Y3

({2} × E)). By de�nition of F , we have that

τ = π|Y3
◦ (id{0}×ψ) ◦ (π|Y1

)−1 : f−1({0})→ f−1({0}) (see the construction above).
For any e ∈ E, we have that

π|Y1
(i2(e)) = π|Y1

((2, e)) = π(γ1((2, e))) = π(γ3((2, e))) = π|Y3
((2, e)) = π|Y3

(i2(e)) ,

because γ1((2, e)) ∼ γ3((2, e)). Then π|Y1
◦ i2 = π|Y3

◦ i2, which implies that ψ =

i−1
2 ◦ (π|Y3

)−1 ◦ π|Y1
◦ i2 = idE . So τ = π|Y3

◦ (id{0}× idE) ◦ (π|Y1
)−1 = π|Y3

◦
id{0}×E ◦(π|Y1

)−1 = π|Y3
◦ (π|Y1

)−1. Moreover, for any e ∈ E we have that

π|Y3
(i0(e)) = π|Y3

((0, e)) = π(γ3((0, σ(e)))) =

= π(γ1((0, σ(e)))) = π|Y1
((0, σ(e))) = π|Y1

(i0(σ(e))) ,

because γ1((0, σ(e))) ∼ γ3((0, σ(e))). Then π|Y3
◦ i0 = π|Y1

◦ i0 ◦ σ. So

τ ◦ ϕ = π|Y3
◦ (π|Y1

)−1 ◦ π|Y1
◦ i0 = π|Y3

◦ i0 = π|Y1
◦ i0 ◦ σ = ϕ ◦ σ ,

which implies also that ϕ−1 ◦ τ = σ ◦ϕ−1. Then ϕ and ϕ−1 are morphisms in D. So
ϕ is an isomorphism in D from (E, σ) to (f−1({0}), τ) = F (f). Hence F (f) ∼= (E, σ)
and so F is essentially surjective.
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